Sample records for beam transfer function

  1. First-and Second-Order Displacement Transfer Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.

  2. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  3. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  4. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  5. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  6. Schottky Noise and Beam Transfer Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaskiewicz, M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  7. Orbital-angular-momentum transfer to optically levitated microparticles in vacuum

    NASA Astrophysics Data System (ADS)

    Mazilu, Michael; Arita, Yoshihiko; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2016-11-01

    We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present.

  8. Modeling and control of flexible space structures

    NASA Technical Reports Server (NTRS)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  9. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  10. Modified Displacement Transfer Functions for Deformed Shape Predictions of Slender Curved Structures with Varying Curvatives

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2014-01-01

    To eliminate the need to use finite-element modeling for structure shape predictions, a new method was invented. This method is to use the Displacement Transfer Functions to transform the measured surface strains into deflections for mapping out overall structural deformed shapes. The Displacement Transfer Functions are expressed in terms of rectilinearly distributed surface strains, and contain no material properties. This report is to apply the patented method to the shape predictions of non-symmetrically loaded slender curved structures with different curvatures up to a full circle. Because the measured surface strains are not available, finite-element analysis had to be used to analytically generate the surface strains. Previously formulated straight-beam Displacement Transfer Functions were modified by introducing the curvature-effect correction terms. Through single-point or dual-point collocations with finite-elementgenerated deflection curves, functional forms of the curvature-effect correction terms were empirically established. The resulting modified Displacement Transfer Functions can then provide quite accurate shape predictions. Also, the uniform straight-beam Displacement Transfer Function was applied to the shape predictions of a section-cut of a generic capsule (GC) outer curved sandwich wall. The resulting GC shape predictions are quite accurate in partial regions where the radius of curvature does not change sharply.

  11. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  12. Scanning systems for particle cancer therapy

    DOEpatents

    Trbojevic, Dejan

    2015-08-04

    A particle beam to treat malignant tissue is delivered to a patient by a gantry. The gantry includes a plurality of small magnets sequentially arranged along a beam tube to transfer the particle beam with strong focusing and a small dispersion function, whereby a beam size is very small, allowing for the small magnet size. Magnets arranged along the beam tube uses combined function magnets where the magnetic field is a combination of a bending dipole field with a focusing or defocusing quadrupole field. A triplet set of combined function magnets defines the beam size at the patient. A scanning system of magnets arranged along the beam tube after the bending system delivers the particle beam in a direction normal to the patient, to minimize healthy skin and tissue exposure to the particle beam.

  13. Large-Deformation Displacement Transfer Functions for Shape Predictions of Highly Flexible Slender Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.

  14. Planck 2013 results. VII. HFI time response and beams

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is theangular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5°) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multipole ℓ ~ 1500, and below 0.5% at 143 and 217 GHz up to ℓ ~ 2000.

  15. Optimal positions and parameters of translational and rotational mass dampers in beams subjected to random excitation

    NASA Astrophysics Data System (ADS)

    Łatas, Waldemar

    2018-01-01

    The problem of vibrations of the beam with the attached system of translational and rotational dynamic mass dampers subjected to random excitations with peaked power spectral densities, is presented in the hereby paper. The Euler-Bernoulli beam model is applied, while for solving the equation of motion the Galerkin method and the Laplace time transform are used. The obtained transfer functions allow to determine power spectral densities of the beam deflection and other dependent variables. Numerical examples present simple optimization problems of mass dampers parameters for local and global objective functions.

  16. Impaction densitometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrington, Josef R.

    Disclosed is an impaction densitometer having a chamber configured to receive a particle; a beam generator configured to emit a beam; a detector configured to receive the beam and convert a change in intensity of the received beam into an electrical signal corresponding to a particle volume; an impact sensor positioned a known distance from the beam and configured to measure a particle momentum as a function of an impact energy transferred from the particle to the impact sensor; a velocity calculator configured to calculate a particle velocity based on a time it takes the particle to pass through themore » beam and strike the impact sensor; a mass calculator configured to calculate a particle mass as a function of the particle momentum and velocity; and a density calculator configured to calculate a particle density as a function of the particle mass and volume.« less

  17. Measuring the band structures of periodic beams using the wave superposition method

    NASA Astrophysics Data System (ADS)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in the dispersion curve measured from the experiments were deduced to be a result of a combination of measurement noise, the different placement of the accelerometer with finite mass, and the torsional mode.

  18. A new method to calculate the beam charge for an integrating current transformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Yuchi; Han Dan; Zhu Bin

    2012-09-15

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated bymore » an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.« less

  19. Approximate Green's function methods for HZE transport in multilayered materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.

  20. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams.

    PubMed

    Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J

    2016-09-21

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  1. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    NASA Astrophysics Data System (ADS)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  2. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  3. Beamspace Multiple Input Multiple Output. Part II: Steerable Antennas in Mobile Ad Hoc Networks

    DTIC Science & Technology

    2016-09-01

    to the transmitter with half the channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram...steering in a wireless network to maximize signal power and minimize interference [8–10]. The ability to switch beams adds another diversity dimension to...channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram: The transmit array sends four

  4. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    PubMed

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.

  5. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  6. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.

    2017-07-01

    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.

  7. Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations

    NASA Astrophysics Data System (ADS)

    Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.

    2018-04-01

    Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.

  8. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  9. Investigations on the Influence of Parameters During Electron Beam Surface Hardening Using the Flash Technique

    NASA Astrophysics Data System (ADS)

    Grafe, S.; Hengst, P.; Buchwalder, A.; Zenker, R.

    2018-06-01

    The electron beam hardening (EBH) process is one of today’s most innovative industrial technologies. Due to the almost inertia-free deflection of the EB (up to 100 kHz), the energy transfer function can be adapted locally to the component geometry and/or loading conditions. The current state-of-the-art technology is that of EBH with continuous workpiece feed. Due to the large range of parameters, the potentials and limitations of EBH using the flash technique (without workpiece feed) have not been investigated sufficiently to date. The aim of this research was to generate surface isothermal energy transfer within the flash field. This paper examines the effects of selected process parameters on the EBH surface layer microstructure and the properties achieved when treating hardened and tempered C45E steel. When using constant point distribution within the flash field and a constant beam current, surface isothermal energy input was not generated. However, by increasing the deflection frequency, point density and beam current, a more homogeneous EBH surface layer microstructure could be achieved, along with higher surface hardness and greater surface hardening depths. Furthermore, using temperature-controlled power regulation, surface isothermal energy transfer could be realised over a larger area in the centre of the sample.

  10. Laser Pulse Shaping for Low Emittance Photo-Injector

    DTIC Science & Technology

    2012-06-01

    It depends on the product of the beam’s transverse size and angular divergence, , (I.2) where is the standard deviation of the electron...shows the pendulum’s phase velocity as a function of the position θp. As the pendulum oscillates back and forth, its phase, or angular , velocity and...the angular divergence and size of the optical beam. The radius of the optical beam follows the equation 24 To guarantee proper transfer

  11. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire

    NASA Astrophysics Data System (ADS)

    Ma, Guolong; Li, Liqun; Chen, Yanbin

    2017-06-01

    Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.

  12. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Beam Maps and Window Functions

    NASA Technical Reports Server (NTRS)

    Hill, R.S.; Weiland, J.L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C.L.; Halpern, M.; Kogut, A.; Page, L.; hide

    2008-01-01

    Cosmology and other scientific results from the WMAP mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of approximately 2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of approximately 1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of approximately 2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly. errors in the measured disk temperature are approximately 0.5%.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Li, Z.; Ng, C.

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less

  14. Nonperturbative methods in HZE ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.

  15. Poster - 23: Dosimetric Characterization and Transferability of an Accessory Mounted Mini-Beam Collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, William; Crewson, Cody; Alexander, Andrew

    Objective: The dosimetric characterization of an accessory-mounted mini-beam collimator across three beam matched linear accelerators. Materials and Methods: Percent depth dose and profiles were measured for the open and mini-beam collimated fields. The average beam quality and peak-to-valley dose ratio (PVDR), the ratio of average peak dose to average valley dose, were obtained from these measurements. The open field relative output and the mini-beam collimator factor, the ratio of the mini-beam dose to open field dose at the beam center, were measured for square fields of side 2, 3, 4, and 5 cm. Mini-beam output as a function of collimatormore » inclination angle relative to the central axis was also investigated. Results and Discussion: Beam quality for both the open and mini-beam collimated fields agreed across all linacs to within ±1.0%. The PVDR was found to vary by up to ±6.6% from the mean. For the 2, 3, and 4 cm fields the average open field relative output with respect to the 5 cm field was 0.874±0.4%, 0.921±0.3%, and 0.962±0.1%. The average collimator factors were 0.450±3.9%, 0.443±3.9%, 0.438±3.9%, and 0.434±3.9%. A decrease in collimator factor greater than 7% was found for an inclination angle change of 0.09°. Conclusion: The mini-beam collimator has revealed a difference between the three linacs not apparent in the open field data, yet transferability can still be attained through thorough dosimetric characterization.« less

  16. Crossed-beam energy transfer: polarization effects and evidence of saturation

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Colaïtis, A.; Follett, R. K.; Palastro, J. P.; Froula, D. H.; Michel, P.; Goyon, C.; Chapman, T.; Divol, L.; Kemp, G. E.; Mariscal, D.; Patankar, S.; Pollock, B. B.; Ross, J. S.; Moody, J. D.; Tubman, E. R.; Woolsey, N. C.

    2018-05-01

    Recent results on crossed-beam energy transfer are presented. Wavelength tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves (IAWs) with amplitudes up to δ n/n≈ 0.015. Increasing the initial probe intensity to access larger IAW amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam's polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effects in a multibeam situation can dramatically enhance the expected amount of energy transfer.

  17. Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams.

    PubMed

    Quinteiro, G F; Lucero, A O; Tamborenea, P I

    2010-12-22

    We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.

  18. A rapid communication from the AAPM Task Group 201: recommendations for the QA of external beam radiotherapy data transfer. AAPM TG 201: quality assurance of external beam radiotherapy data transfer.

    PubMed

    Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Santanam, Lakshmi; Blodgett, Kurt; Curran, Bruce H; Engelsman, Martijn; Feng, Wenzheng; Mechalakos, Jim; Pavord, Dan; Simon, Tom; Sutlieff, Steven; Zhu, X Ronald

    2010-12-04

    The transfer of radiation therapy data among the various subsystems required for external beam treatments is subject to error. Hence, the establishment and management of a data transfer quality assurance program is strongly recommended. It should cover the QA of data transfers of patient specific treatments, imaging data, manually handled data and historical treatment records. QA of the database state (logical consistency and information integrity) is also addressed to ensure that accurate data are transferred.

  19. Nucleon transfer reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  20. Transverse beam stability measurement and analysis for the SNS accumulator ring

    DOE PAGES

    Xie, Zaipeng; Deibele, Craig; Schulte, Michael J.; ...

    2015-07-01

    In a Field-programmable gate array (FPGA) based transverse feedback damper system we implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron-proton (e-p) instability in a frequency range from 1 MHz to 300 MHz. The transverse damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurement provides the stability diagram for the production beam at SNS. Our paper describes the feedback damper system and its set-up as the BTF diagnostic tool. Experimental BTF results are presented and beam stability analysis is performedmore » based on the BTF measurements for the SNS accumulator ring.« less

  1. Wrinkling and collapse of mesh reinforced membrane inflated beam under bending

    NASA Astrophysics Data System (ADS)

    Tao, Qiang; Wang, Changguo; Xue, Zhiming; Xie, Zhimin; Tan, Huifeng

    2016-11-01

    A novel concept of mesh reinforced membrane (MRM) is proposed in this paper. The tensile collapse mechanism of MRM is elucidated based on three obvious deformed stages. An improved Shell-Membrane model is used to predict the wrinkling and collapse of MRM inflated beam which is verified by a non-contact experiment based on the digital image correlation technique. Further the wrinkling details including the wrinkling evolution, pattern, shape, stress distribution are simulated to evaluate the functions of MRM for loading-carrying capacity of inflated beam. Pressure resistant performance of inflated beam was studied at last. The results revealed that MRM shows a great improvement on the collapse moment of inflated beam. MRM contributes to restrain wrinkling evolution by changing the transfer path of loadings which results from dispersing stress distribution and changing wrinkling pattern. The results show good references to the wrinkling control and the improvement of load-carrying capacity of inflated beam.

  2. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  3. First FAMU observation of muon transfer from μp atoms to higher-Z elements

    NASA Astrophysics Data System (ADS)

    Mocchiutti, E.; Bonvicini, V.; Carbone, R.; Danailov, M.; Furlanetto, E.; Gadedjisso-Tossou, K. S.; Guffanti, D.; Pizzolotto, C.; Rachevski, A.; Stoychev, L.; Vallazza, E.; Zampa, G.; Niemela, J.; Ishida, K.; Adamczak, A.; Baccolo, G.; Benocci, R.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Clemenza, M.; Curioni, A.; Maggi, V.; Mazza, R.; Moretti, M.; Nastasi, M.; Previtali, E.; Bakalov, D.; Danev, P.; Stoilov, M.; Baldazzi, G.; Campana, G.; D'Antone, I.; Furini, M.; Fuschino, F.; Labanti, C.; Margotti, A.; Meneghini, S.; Morgante, G.; Rignanese, L. P.; Rossi, P. L.; Zuffa, M.; Cervi, T.; De Bari, A.; Menegolli, A.; De Vecchi, C.; Nardò, R.; Rossella, M.; Tomaselli, A.; Colace, L.; De Vincenzi, M.; Iaciofano, A.; Somma, F.; Tortora, L.; Ramponi, R.; Vacchi, A.

    2018-02-01

    The FAMU experiment aims to accurately measure the hyperfine splitting of the ground state of the muonic hydrogen atom. A measurement of the transfer rate of muons from hydrogen to heavier gases is necessary for this purpose. In June 2014, within a preliminary experiment, a pressurized gas-target was exposed to the pulsed low-energy muon beam at the RIKEN RAL muon facility (Rutherford Appleton Laboratory, U.K.). The main goal of the test was the characterization of both the noise induced by the pulsed beam and the X-ray detectors. The apparatus, to some extent rudimental, has served admirably to this task. Technical results have been published that prove the validity of the choices made and pave the way for the next steps. This paper presents the results of physical relevance of measurements of the muon transfer rate to carbon dioxide, oxygen, and argon from non-thermalized excited μp atoms. The analysis methodology and the approach to the systematics errors are useful for the subsequent study of the transfer rate as function of the kinetic energy of the μp currently under way.

  4. Alignment effect of N2(A3Σu+) in the energy transfer reaction of aligned N2(A3Σu+) + NO(X2Π) → NO(A2Σ+) + N2(X1Σg+).

    PubMed

    Ohoyama, H; Maruyama, S

    2012-06-28

    Steric effect in the energy transfer reaction of N(2)(A(3)Σ(u)(+)) + NO(X(2)Π) → NO(A(2)Σ(+)) + N(2)(X(1)Σ(g)(+)) has been studied under crossed beam conditions at a collision energy of ~0.07 eV by using an aligned N(2)(A(3)Σ(u)(+)) beam prepared by a magnetic hexapole. The emission intensity of NO(A(2)Σ(+)) has been measured as a function of the magnetic orientation field direction (i.e., alignment of N(2)(A(3)Σ(u)(+))) in the collision frame. A significant alignment effect on the energy transfer probability is observed. The shape of the steric opacity function turns out to be most reactive at the oblique configuration of N(2)(A(3)Σ(u)(+)) with an orientation angle of γ(v(R)) ~ 45° with respect to the relative velocity vector (v(R)), which has a good correlation with the spatial distribution of the 2pπ(g)* molecular orbital of N(2)(A(3)Σ(u)(+)). We propose the electron exchange mechanism in which the energy transfer probability is dominantly controlled by the orbital overlap between N(2)(2pπ(g)*) and NO(6σ).

  5. Effect of static axial loads on the lateral vibration attenuation of a beam with piezo-elastic supports

    NASA Astrophysics Data System (ADS)

    Götz, Benedict; Platz, Roland; Melz, Tobias

    2018-03-01

    In this paper, vibration attenuation of a beam with circular cross-section by resonantly shunted piezo-elastic supports is experimentally investigated for varying axial tensile and compressive beam loads. The beam's first mode resonance frequency, the general electromechanical coupling coefficient and static transducer capacitance are analyzed for varying axial loads. All three parameter values are obtained from transducer impedance measurements on an experimental test setup. Varying axial beam loads manipulate the beam's lateral bending stiffness and, thus, lead to a detuning of the resonance frequencies. Furthermore, they affect the general electromechanical coupling coefficient of transducer and beam, an important modal quantity for shunt-damping, whereas the static transducer capacitance is nearly unaffected. Frequency transfer functions of the beam with one piezoe-elastic support either shunted to an RL-shunt or to an RL-shunt with negative capacitance, the RLC-shunt, are compared for varying axial loads. It is shown that the beam vibration attenuation with the RLC-shunt is less influenced by varying axial beam loads and, therefore, is more robust against detuning.

  6. Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy.

    PubMed

    Gu, Min; Bird, Damian

    2003-05-01

    The three-dimensional optical transfer function is derived for analyzing the imaging performance in fiber-optical two-photon fluorescence microscopy. Two types of fiber-optical geometry are considered: The first involves a single-mode fiber for delivering a laser beam for illumination, and the second is based on the use of a single-mode fiber coupler for both illumination delivery and signal collection. It is found that in the former case the transverse and axial cutoff spatial frequencies of the three-dimensional optical transfer function are the same as those in conventional two-photon fluorescence microscopy without the use of a pinhole.However, the transverse and axial cutoff spatial frequencies in the latter case are 1.7 times as large as those in the former case. Accordingly, this feature leads to an enhanced optical sectioning effect when a fiber coupler is used, which is consistent with our recent experimental observation.

  7. On the renormalisation of the diffusion asymptotics in the problem of reflection of a narrow optical beam from a biological medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appanov, A Yu; Barabanenkov, Yu N

    2005-12-31

    An analytic hybrid method is considered for solving the stationary radiation transfer equation in the problem on reflection of a narrow laser beam from biological media such as the 2% aqueous solution of intralipid and erythrocyte suspension with the volume concentration (hematocrit) H=0.41. The method is based on the reciprocity of the Green function in the radiation transfer theory and on the iteration solution of the integral equation for this function. As a result, the ray intensity is represented as a sum of two terms. The first of them describes the contribution of finite-order scattering to the intensity of amore » beam diffusely reflected from the medium. The second term contains the explicit analytic expression for a spatially distributed effective source of diffuse radiation emerging from the deep layers of the medium to the surface. This approach substantially improves the diffusion approximation for the problem under study and allows one to obtain the uniform asymptotics of the reflection coefficient at the specified interval of distances between the radiation source and detector on the medium surface with the relative error within {+-}6% for the 2% intralipid emulsion and erythrocyte suspension (H=0.41). (radiation scattering)« less

  8. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    NASA Astrophysics Data System (ADS)

    Sangwijit, K.; Yu, L. D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-12-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 1012 to 1 × 1017 ions/cm2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  9. Mechanical system diagnostics using vibration testing techniques

    NASA Technical Reports Server (NTRS)

    Mcleod, Catherine D.; Raju, P. K.; Crocker, M. J.

    1990-01-01

    The 'Cepstrum' technique of vibration-path identification allows the recovery of the transfer function of a system with little knowledge as to its excitation force, by means of a mathematical manipulation of the system output in conjunction with subtraction of part of the output and suitable signal processing. An experimental program has been conducted to evaluate the usefulness of this technique in the cases of simple, cantilever-beam and free-free plate structures as well as in that of a complex mechanical system. On the basis of the transfer functions thus recovered, it was possible to evaluate the shifts in the resonance frequencies of a structure due to the presence of defects.

  10. Analytical transmission cross-coefficients for pink beam X-ray microscopy based on compound refractive lenses.

    PubMed

    Falch, Ken Vidar; Detlefs, Carsten; Snigirev, Anatoly; Mathiesen, Ragnvald H

    2018-01-01

    Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum. The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-coefficients, a compact analytical expression for the modulation transfer function of the system is obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical expressions for optimal numerical aperture, coherence ratio, and bandwidth are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A design procedure for active control of beam vibrations

    NASA Technical Reports Server (NTRS)

    Dickerson, S. L.; Jarocki, G.

    1983-01-01

    The transverse vibrations of beams is discussed and a methodology for the design of an active damping device is given. The Bernoulli-Euler equation is used to derive a transcendental transfer function, which relates a torque applied at one end of the beam to the rotational position and velocity at that point. The active damping device consists of a wire, a linear actuator and a short torque arm attached to one end of the beam. The action of the actuator varies a tension in the wire and creates a torque which opposes the rotation of the beam and thus damps vibration. A design procedure for such an active damper is given. This procedure shows the relationships and trade-offs between the actuator stroke, power required, stress levels in the wire and beam and the geometry of the beam and wire. It is shown that by consideration of the frequency response at the beam natural frequencies, the aforementioned relationships can be greatly simplified. Similarly, a simple way of estimating the effective damping ratios and eigenvalue locations of actively controlled beams is presented.

  12. Analytical simulation of SPS system performance, volume 3, phase 3

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.; Lindsey, W. C.

    1980-01-01

    The simulation model for the Solar Power Satellite spaceantenna and the associated system imperfections are described. Overall power transfer efficiency, the key performance issue, is discussed as a function of the system imperfections. Other system performance measures discussed include average power pattern, mean beam gain reduction, and pointing error.

  13. Bessel beam CARS of axially structured samples

    NASA Astrophysics Data System (ADS)

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  14. Bessel beam CARS of axially structured samples.

    PubMed

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-05

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  15. Simulation Approach for Microscale Noncontinuum Gas-Phase Heat Transfer

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; Gallis, M. A.

    2008-11-01

    In microscale thermal actuators, gas-phase heat transfer from the heated beams to the adjacent unheated substrate is often the main energy-loss mechanism. Since the beam-substrate gap is comparable to the molecular mean free path, noncontinuum gas effects are important. A simulation approach is presented in which gas-phase heat transfer is described by Fourier's law in the bulk gas and by a wall boundary condition that equates the normal heat flux to the product of the gas-solid temperature difference and a heat transfer coefficient. The dimensionless parameters in this heat transfer coefficient are determined by comparison to Direct Simulation Monte Carlo (DSMC) results for heat transfer from beams of rectangular cross section to the substrate at free-molecular to near-continuum gas pressures. This simulation approach produces reasonably accurate gas-phase heat-transfer results for wide ranges of beam geometries and gas pressures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Beam Maps and Window Functions

    NASA Astrophysics Data System (ADS)

    Hill, R. S.; Weiland, J. L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C. L.; Halpern, M.; Page, L.; Dunkley, J.; Gold, B.; Jarosik, N.; Kogut, A.; Limon, M.; Nolta, M. R.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2009-02-01

    Cosmology and other scientific results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of ~2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of ~1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of ~2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly, errors in the measured disk temperature are ~0.5%. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  17. Radiative transfer in a sphere illuminated by a parallel beam - An integral equation approach. [in planetary atmosphere

    NASA Technical Reports Server (NTRS)

    Shia, R.-L.; Yung, Y. L.

    1986-01-01

    The problem of multiple scattering of nonpolarized light in a planetary body of arbitrary shape illuminated by a parallel beam is formulated using the integral equation approach. There exists a simple functional whose stationarity condition is equivalent to solving the equation of radiative transfer and whose value at the stationary point is proportional to the differential cross section. The analysis reveals a direct relation between the microscopic symmetry of the phase function for each scattering event and the macroscopic symmetry of the differential cross section for the entire planetary body, and the interconnection of these symmetry relations and the variational principle. The case of a homogeneous sphere containing isotropic scatterers is investigated in detail. It is shown that the solution can be expanded in a multipole series such that the general spherical problem is reduced to solving a set of decoupled integral equations in one dimension. Computations have been performed for a range of parameters of interest, and illustrative examples of applications to planetary problems as provided.

  18. Full-wave and ray-based modeling of cross-beam energy transfer between laser beams with distributed phase plates and polarization smoothing

    DOE PAGES

    Follett, R. K.; Edgell, D. H.; Froula, D. H.; ...

    2017-10-20

    Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less

  19. Full-wave and ray-based modeling of cross-beam energy transfer between laser beams with distributed phase plates and polarization smoothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K.; Edgell, D. H.; Froula, D. H.

    Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less

  20. Numerical prediction of fire resistance of RC beams

    NASA Astrophysics Data System (ADS)

    Serega, Szymon; Wosatko, Adam

    2018-01-01

    Fire resistance of different structural members is an important issue of their strength and durability. A simple but effective tool to investigate multi-span reinforced concrete beams exposed to fire is discussed in the paper. Assumptions and simplifications of the theory as well as numerical aspects are briefly reviewed. Two steps of nonlinear finite element analysis and two levels of observation are distinguished. The first step is the solution of transient heat transfer problem in representative two-dimensional reinforced concrete cross-section of a beam. The second part is a nonlinear mechanical analysis of the whole beam. All spans are uniformly loaded, but an additional time-dependent thermal load due to fire acts on selected ones. Global changes of curvature and bending moment functions induce deterioration of the stiffness. Benchmarks are shown to confirm the correctness of the model.

  1. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Goyon, C.; Kemp, G. E.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Moody, J. D.; Michel, P.

    2017-01-01

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85 %- 87 % extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

  2. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System.

    PubMed

    Turnbull, D; Goyon, C; Kemp, G E; Pollock, B B; Mariscal, D; Divol, L; Ross, J S; Patankar, S; Moody, J D; Michel, P

    2017-01-06

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

  3. Modulation transfer function assessment in parallel beam and fan beam collimators with square and cylindrical holes.

    PubMed

    Khorshidi, Abdollah; Ashoor, Mansour

    2014-05-01

    This study investigates modulation transfer function (MTF) in parallel beam (PB) and fan beam (FB) collimators using the Monte Carlo method with full width at half maximum (FWHM), square and circular-shaped holes, and scatter and penetration (S + P) components. A regulation similar to the lead-to-air ratio was used for both collimators to estimate output data. The hole pattern was designed to compare FB by PB parameters. The radioactive source in air and in a water phantom placed in front of the collimators was simulated using MCNP5 code. The test results indicated that the square holes in PB (PBs) had better FWHM than did the cylindrical (PBc) holes. In contrast, the cylindrical holes in the FB (FBc) had better FWHM than the square holes. In general, the resolution of FBc was better than that of the PBc in air and scatter mediums. The S + P decreased for all collimators as the distance from the source to the collimator surface (z) increased. The FBc had a lower S + P than FBs, but PBc had a higher S + P than PBs. Of the FB and PB collimators with the identical hole shapes, PBs had a smaller S + P than FBs, and FBc had a smaller S + P than PBc. The MTF value for the FB was greater than for the PB and had increased spatial frequency; the FBc had higher MTF than the FBs and PB collimators. Estimating the FB using PB parameters and diverse hole shapes may be useful in collimator design to improve the resolution and efficiency of SPECT images.

  4. Thermal modulation voltammetry with laser heating at an aqueous|nitrobenzene solution microinterface: determination of the standard entropy changes of transfer for tetraalkylammonium ions.

    PubMed

    Hinoue, Teruo; Ikeda, Eiji; Watariguchi, Shigeru; Kibune, Yasuyuki

    2007-01-01

    Thermal modulation voltammetry (TMV) with laser heating was successfully performed at an aqueous|nitrobenzene (NB) solution microinterface, by taking advantage of the fact that laser light with a wavelength of 325.0 nm is optically transparent to the aqueous solution but opaque to the NB solution. When the laser beam impinges upon the interface from the aqueous solution side, a temperature is raised around the interface through the thermal diffusion subsequent to the light-to-heat conversion following the optical absorption by the NB solution near the interface. Based on such a principle, we achieved a fluctuating temperature perturbation around the interface for TMV by periodically irradiating the interface with the laser beam. On the other hand, the fluctuating temperature perturbation has influence on currents for transfer of an ion across the interface to produce fluctuating currents synchronized with the perturbation through temperature coefficients of several variables concerning the transfer, such as the standard transfer potential and the diffusion coefficient of the ion. Consequently, TMV has the possibility of providing information about the standard entropy change of transfer corresponding to a temperature coefficient of the standard transfer potential and a temperature coefficient of the diffusion coefficient. In this work, the aqueous|NB solution interface of 30 microm in diameter was irradiated with the laser beam at 10 Hz, and the currents synchronized with the periodical irradiation were recorded as a function of the potential difference across the interface in order to construct a TM voltammogram. TM voltammograms were measured for transfer of tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetra-n-butylammonium ions from the aqueous solution to the NB solution, and the standard entropy change of transfer was determined for each ion, according to an analytical procedure based on a mathematical expression of the TM voltammogram. Comparison of the values obtained in this work with the literature values has proved that TMV with laser heating is available for the determination of the standard entropy change of transfer for an ion.

  5. Ultracompact beam splitters based on plasmonic nanoslits

    PubMed Central

    Zhou, Chuanhong; Kohli, Punit

    2011-01-01

    An ultracompact plasmonic beam splitter is theoretically and numerically investigated. The splitter consists of a V-shaped nanoslit in metal films. Two groups of nanoscale metallic grooves inside the slit (A) and at the small slit opening (B) are investigated. We show that there are two energy channels guiding light out by the splitter: the optical and the plasmonic channels. Groove A is used to couple incident light into the plasmonic channel. Groove B functions as a plasmonic scatter. We demonstrate that the energy transfer through plasmonic path is dominant in the beam splitter. We find that more than four times the energy is transferred by the plasmonic channel using structures A and B. We show that the plasmonic waves scattered by B can be converted into light waves. These light waves redistribute the transmitted energy through interference with the field transmitted from the nanoslit. Therefore, different beam splitting effects are achieved by simply changing the interference conditions between the scattered waves and the transmitted waves. The impact of the width and height of groove B are also investigated. It is found that the plasmonic scattering of B is changed into light scattering with increase of the width and the height of B. These devices have potential applications in optical sampling, signal processing, and integrated optical circuits. PMID:21647248

  6. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    NASA Astrophysics Data System (ADS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  7. Crossed-beam energy transfer: polarization effects and evidence of saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnbull, D.; Colaitis, A.; Follett, R. K.

    In this article, recent results on crossed-beam energy transfer are presented. Wave-length tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves with amplitudes up to δn/n ≈ 0.015. Increasing the initial probe intensity to access larger ion acoustic wave amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam’s polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effectsmore » in a multibeam situation can dramatically enhance the expected amount of energy transfer.« less

  8. Crossed-beam energy transfer: polarization effects and evidence of saturation

    DOE PAGES

    Turnbull, D.; Colaitis, A.; Follett, R. K.; ...

    2018-04-05

    In this article, recent results on crossed-beam energy transfer are presented. Wave-length tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves with amplitudes up to δn/n ≈ 0.015. Increasing the initial probe intensity to access larger ion acoustic wave amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam’s polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effectsmore » in a multibeam situation can dramatically enhance the expected amount of energy transfer.« less

  9. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  10. Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation

    NASA Astrophysics Data System (ADS)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2015-02-01

    We study the radiological characteristics of VIP polymer gel dosimeters under carbon beam irradiation with energy of 135 and 290 AMeV. To evaluate dose response of VIP polymer gels, the transverse (or spin-spin) relaxation rate R2 of the dosimeters measured by magnetic resonance imaging (MRI) as a function of linear energy transfer (LET), rather than penetration depth, as is usually done in previous reports. LET is evaluated by use of the particle transport simulation code PHITS. Our results reveal that the dose response decreases with increasing dose-averaged LET and that the dose response-LET relation also varies with incident carbon beam energy. The latter can be explained by taking into account the contribution from fragmentation products.

  11. Measurement of the beam asymmetry Σ for π0 and η photoproduction on the proton at Eγ=9 GeV

    NASA Astrophysics Data System (ADS)

    Al Ghoul, H.; Anassontzis, E. G.; Austregesilo, A.; Barbosa, F.; Barnes, A.; Beattie, T. D.; Bennett, D. W.; Berdnikov, V. V.; Black, T.; Boeglin, W.; Briscoe, W. J.; Brooks, W. K.; Cannon, B. E.; Chernyshov, O.; Chudakov, E.; Crede, V.; Dalton, M. M.; Deur, A.; Dobbs, S.; Dolgolenko, A.; Dugger, M.; Dzhygadlo, R.; Egiyan, H.; Eugenio, P.; Fanelli, C.; Foda, A. M.; Frye, J.; Furletov, S.; Gan, L.; Gasparian, A.; Gerasimov, A.; Gevorgyan, N.; Goetzen, K.; Goryachev, V. S.; Guo, L.; Hakobyan, H.; Hardin, J.; Henderson, A.; Huber, G. M.; Ireland, D. G.; Ito, M. M.; Jarvis, N. S.; Jones, R. T.; Kakoyan, V.; Kamel, M.; Klein, F. J.; Kliemt, R.; Kourkoumeli, C.; Kuleshov, S.; Kuznetsov, I.; Lara, M.; Larin, I.; Lawrence, D.; Levine, W. I.; Livingston, K.; Lolos, G. J.; Lyubovitskij, V.; Mack, D.; Mattione, P. T.; Matveev, V.; McCaughan, M.; McCracken, M.; McGinley, W.; McIntyre, J.; Mendez, R.; Meyer, C. A.; Miskimen, R.; Mitchell, R. E.; Mokaya, F.; Moriya, K.; Nerling, F.; Nigmatkulov, G.; Ochoa, N.; Ostrovidov, A. I.; Papandreou, Z.; Patsyuk, M.; Pedroni, R.; Pennington, M. R.; Pentchev, L.; Peters, K. J.; Pooser, E.; Pratt, B.; Qiang, Y.; Reinhold, J.; Ritchie, B. G.; Robison, L.; Romanov, D.; Salgado, C.; Schumacher, R. A.; Schwarz, C.; Schwiening, J.; Semenov, A. Yu.; Semenova, I. A.; Seth, K. K.; Shepherd, M. R.; Smith, E. S.; Sober, D. I.; Somov, A.; Somov, S.; Soto, O.; Sparks, N.; Staib, M. J.; Stevens, J. R.; Strakovsky, I. I.; Subedi, A.; Tarasov, V.; Taylor, S.; Teymurazyan, A.; Tolstukhin, I.; Tomaradze, A.; Toro, A.; Tsaris, A.; Vasileiadis, G.; Vega, I.; Walford, N. K.; Werthmüller, D.; Whitlatch, T.; Williams, M.; Wolin, E.; Xiao, T.; Zarling, J.; Zhang, Z.; Zihlmann, B.; Mathieu, V.; Nys, J.; GlueX Collaboration

    2017-04-01

    We report measurements of the photon beam asymmetry Σ for the reactions γ ⃗p →p π0 and γ ⃗p →p η from the GlueX experiment using a 9 GeV linearly polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous π0 measurements and are the first η measurements in this energy regime. The results are compared with theoretical predictions based on t -channel, quasiparticle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.

  12. Space Flight Cable Model Development

    NASA Technical Reports Server (NTRS)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  13. MIA analysis of FPGA BPMs and beam optics at APS

    NASA Astrophysics Data System (ADS)

    Ji, Da-Heng; Wang, Chun-Xi; Qin, Qing

    2012-11-01

    Model independent analysis, which was developed for high precision and fast beam dynamics analysis, is a promising diagnostic tool for modern accelerators. We implemented a series of methods to analyze the turn-by-turn BPM data. Green's functions corresponding to the local transfer matrix elements R12 or R34 are extracted from BPM data and fitted with the model lattice using least-square fitting. Here, we report experimental results obtained from analyzing the transverse motion of a beam in the storage ring at the Advanced Photon Source. BPM gains and uncoupled optics parameters are successfully determined. Quadrupole strengths are adjusted for fitting but can not be uniquely determined in general due to an insufficient number of BPMs.

  14. An analytical method for free vibration analysis of functionally graded beams with edge cracks

    NASA Astrophysics Data System (ADS)

    Wei, Dong; Liu, Yinghua; Xiang, Zhihai

    2012-03-01

    In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.

  15. The extraction of the spin structure function, g2 (and g1) at low Bjorken x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndukum, Luwani Z.

    2015-08-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate the spin structure of the proton. The experiment measured inclusive double polarization electron asymmetries using a polarized electron beam, scattered off a solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The scattered electrons were detected by a novel, non-magnetic arraymore » of detectors observing a four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a function of x and W in four Q square bins. A full understanding of the low x region is necessary to get clean results for SANE and extend our understanding of the kinematic region at low x.« less

  16. Preparation of an exponentially rising optical pulse for efficient excitation of single atoms in free space.

    PubMed

    Dao, Hoang Lan; Aljunid, Syed Abdullah; Maslennikov, Gleb; Kurtsiefer, Christian

    2012-08-01

    We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope that is transferred first on a radio frequency carrier, and then on a coherent cw laser beam with an electro-optical phase modulator. The temporally shaped sideband is then extracted with an optical resonator and can be used to efficiently excite a single (87)Rb atom.

  17. Transfer and development length of 15.2 mm (0.6 in.) diameter prestressing strand in high performance concrete : results of the Hoblitzell-Buckner beam tests

    DOT National Transportation Integrated Search

    1995-06-01

    This study examines the transfer and development length of 15.2 mm (0.6 in.) diameter prestressing strand in high performance (high strength) concrete. Two 1067 mm (42.0 in.) deep rectangular beams, commonly called the Hoblitzell-Buckner beams, each ...

  18. Transfer Reactions and the Structure of Neutron-rich Nuclei

    DOE PAGES

    Kay, B. P.; Alcorta, M.; Back, B. B.; ...

    2013-01-01

    The study of transfer reactions in inverse kinematics is a major focus of existing and future radioactive-ion-beam facilities. One of the obstacles in such measurements is poor Q-value resolution, often several hundred keV, which can prevent the extraction of useful information. At Argonne National Laboratory, it has recently been demonstrated that good Q-value resolution can be achieved by transporting the outgoing ions through a high-field solenoid, measuring their position as a function of energy. Furthermore, this provides several advantages over conventional Si arrays, such as large acceptance, good particle identification, and most importantly a Q-value resolution of better than 100more » keV in most cases, including reactions with moderately heavy beams. In this paper, the concept of the solenoidal spectrometer, called HELIOS, will be discussed along with highlights of recent results.« less

  19. State of the art in electromagnetic modeling for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less

  20. Wide-beam sensors for controlling dual-delay systems

    NASA Astrophysics Data System (ADS)

    Edwards, J. B.; Twemlow, J. K.

    1982-09-01

    A class of dual delay feedback systems of open loop transfer function G(s) = k exp(-Xs)/l - exp(-Ws) is shown to be unstable if ratio X/W is noninteger. By means of z-transform techniques it is shown that, by using a feedback transducer that senses over a substantial distance either side of its central axis, closed-loop stability may be restored. Such transducers, termed widebeam sensors, include transmission, backscatter and natural radiation types as well as electromechanical conveyor belt weighers. Designing transducers for very narrow beams may not be desirable from the overall system viewpoint.

  1. Beam-tracing model for predicting sound fields in rooms with multilayer bounding surfaces

    NASA Astrophysics Data System (ADS)

    Wareing, Andrew; Hodgson, Murray

    2005-10-01

    This paper presents the development of a wave-based room-prediction model for predicting steady-state sound fields in empty rooms with specularly reflecting, multilayer surfaces. A triangular beam-tracing model with phase, and a transfer-matrix approach to model the surfaces, were involved. Room surfaces were modeled as multilayers of fluid, solid, or porous materials. Biot theory was used in the transfer-matrix formulation of the porous layer. The new model consisted of the transfer-matrix model integrated into the beam-tracing algorithm. The transfer-matrix model was validated by comparing predictions with those by theory, and with experiment. The test surfaces were a glass plate, double drywall panels, double steel panels, a carpeted floor, and a suspended-acoustical ceiling. The beam-tracing model was validated in the cases of three idealized room configurations-a small office, a corridor, and a small industrial workroom-with simple boundary conditions. The number of beams, the reflection order, and the frequency resolution required to obtain accurate results were investigated. Beam-tracing predictions were compared with those by a method-of-images model with phase. The model will be used to study sound fields in rooms with local- or extended-reaction multilayer surfaces.

  2. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System

    DOE PAGES

    Turnbull, D.; Goyon, C.; Kemp, G. E.; ...

    2017-01-05

    Here, we report the first complete set of measurements of a laser-plasma optical system’s refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstrationmore » of a laser-plasma polarizer with 85$-$87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.« less

  3. Research on accuracy analysis of laser transmission system based on Zemax and Matlab

    NASA Astrophysics Data System (ADS)

    Chen, Haiping; Liu, Changchun; Ye, Haixian; Xiong, Zhao; Cao, Tingfen

    2017-05-01

    Laser transmission system is important in high power solid-state laser facilities and its function is to transfer and focus the light beam in accordance with the physical function of the facility. This system is mainly composed of transmission mirror modules and wedge lens module. In order to realize the precision alignment of the system, the precision alignment of the system is required to be decomposed into the allowable range of the calibration error of each module. The traditional method is to analyze the error factors of the modules separately, and then the linear synthesis is carried out, and the influence of the multi-module and multi-factor is obtained. In order to analyze the effect of the alignment error of each module on the beam center and focus more accurately, this paper aims to combine with the Monte Carlo random test and ray tracing, analyze influence of multi-module and multi-factor on the center of the beam, and evaluate and optimize the results of accuracy decomposition.

  4. Electron Beam Diagnostics Of The JLAB UV FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Pavel; Benson, Stephen; Biallas, George

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A systemmore » of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.« less

  5. Dynamics of optically levitated microparticles in vacuum placed in 2D and 3D optical potentials possessing orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Mazilu, Michael; Chen, Mingzhou; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    We demonstrate the transfer of orbital angular momentum to optically levitated microparticles in vacuum [1]. We prepare two-dimensional and three-dimensional optical potentials. In the former case the microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present. This effect was predicted theoretically [2] and can be understood considering the underlying dynamics arising from the link between the magnitude of the azimuthal index and the beam radius [3]. Whilst a Laguerre-Gaussian beam scales in size with azimuthal index `, recently we have created a "perfect" vortex beam whose radial intensity profile and radius are both independent of topological charge [4, 5]. As the Fourier transform of a perfect vortex yields a Bessel beam. Imaging a perfect vortex, with its subsequent propagation thus realises a complex three dimensional optical field. In this scenario we load individual silica microparticles into this field and observe their trajectories. The optical gradient and scattering forces interplay with the inertial and gravitational forces acting on the trapped particle, including the rotational degrees of freedom. As a result the trapped microparticle exhibits a complex three dimensional motion that includes a periodic orbital motion between the Bessel and the perfect vortex beam. We are able to determine the three dimensional optical potential in situ by tracking the particle. This first demonstration of trapping microparticles within a complex three dimensional optical potential in vacuum opens up new possibilities for fundamental studies of many-body dynamics, mesoscopic entanglement [6, 7], and optical binding [8, 9].

  6. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    NASA Astrophysics Data System (ADS)

    Marsolat, F.; De Marzi, L.; Pouzoulet, F.; Mazal, A.

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm-1. These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Asticio; Center for Optics and Photonics, Universidad de Concepción, Casilla 4016, Concepción; Mar Sánchez-López, María del

    Multiple-beam Fabry-Perot (FP) interferences occur in liquid crystal retarders (LCR) devoid of an antireflective coating. In this work, a highly accurate method to obtain the spectral retardance of such devices is presented. On the basis of a simple model of the LCR that includes FP effects and by using a voltage transfer function, we show how the FP features in the transmission spectrum can be used to accurately retrieve the ordinary and extraordinary spectral phase delays, and the voltage dependence of the latter. As a consequence, the modulation characteristics of the device are fully determined with high accuracy by meansmore » of a few off-state physical parameters which are wavelength-dependent, and a single voltage transfer function that is valid within the spectral range of characterization.« less

  8. Study on depth profile of heavy ion irradiation effects in poly(tetrafluoroethylene-co-ethylene)

    NASA Astrophysics Data System (ADS)

    Gowa, Tomoko; Shiotsu, Tomoyuki; Urakawa, Tatsuya; Oka, Toshitaka; Murakami, Takeshi; Oshima, Akihiro; Hama, Yoshimasa; Washio, Masakazu

    2011-02-01

    High linear energy transfer (LET) heavy ion beams were used to irradiate poly(tetrafluoroethylene-co-ethylene) (ETFE) under vacuum and in air. The irradiation effects in ETFE as a function of the depth were precisely evaluated by analyzing each of the films of the irradiated samples, which were made of stacked ETFE films. It was indicated that conjugated double bonds were generated by heavy ion beam irradiation, and their amounts showed the Bragg-curve-like distributions. Also, it was suggested that higher LET beams would induce radical formation in high density and longer conjugated C=C double bonds could be generated by the second-order reactions. Moreover, for samples irradiated in air, C=O was produced correlating to the yield of oxygen molecules diffusing from the sample surface.

  9. Measurement of the beam asymmetry Σ for π 0 and η photoproduction on the proton at E γ = 9 GeV

    DOE PAGES

    Al Ghoul, H.; Anassontzis, E. G.; Austregesilo, A.; ...

    2017-04-24

    In this paper, we report measurements of the photon beam asymmetrymore » $$\\Sigma$$ for the reactions $$\\vec{\\gamma}p\\to p\\pi^0$$ and $$\\vec{\\gamma}p\\to p\\eta $$ from the GLUEX experiment using a 9 GeV linearly polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $$\\pi^0$$ measurements and are the first $$\\eta$$ measurements in this energy regime. Lastly, the results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.« less

  10. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, A.; Dewald, E. L.; Landen, O. L.

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are usedmore » to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.« less

  11. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  12. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    NASA Astrophysics Data System (ADS)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  13. Alkylation effects on the energy transfer of highly vibrationally excited naphthalene.

    PubMed

    Hsu, Hsu Chen; Tsai, Ming-Tsang; Dyakov, Yuri A; Ni, Chi-Kung

    2011-11-04

    The energy transfer of highly vibrationally excited isomers of dimethylnaphthalene and 2-ethylnaphthalene in collisions with krypton were investigated using crossed molecular beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques at a collision energy of approximately 300 cm(-1). Angular-resolved energy-transfer distribution functions were obtained directly from the images of inelastic scattering. The results show that alkyl-substituted naphthalenes transfer more vibrational energy to translational energy than unsubstituted naphthalene. Alkylation enhances the V→T energy transfer in the range -ΔE(d)=-100~-1500 cm(-1) by approximately a factor of 2. However, the maximum values of V→T energy transfer for alkyl-substituted naphthalenes are about 1500~2000 cm(-1), which is similar to that of naphthalene. The lack of rotation-like wide-angle motion of the aromatic ring and no enhancement in very large V→T energy transfer, like supercollisions, indicates that very large V→T energy transfer requires special vibrational motions. This transfer cannot be achieved by the low-frequency vibrational motions of alkyl groups. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determination of beam-position dependent transfer functions of LCR-G gravimeters by means of moving mass calibration device in the Mátyáshegy Gravity and Geodynamical Observatory, Budapest

    NASA Astrophysics Data System (ADS)

    Koppán, András; Kis, Márta; Merényi, László; Papp, Gábor; Benedek, Judit; Meurers, Bruno

    2017-04-01

    In this presentation authors propose a method for the determination of transfer characteristics and fine calibration of LCR relative gravimeters used for earth-tide recordings, by means of the moving-mass gravimeter calibration device of Budapest-Mátyáshegy Gravity and Geodynamical Observatory. Beam-position dependent transfer functions of four relative LCR G type gravimeters were determined and compared. In order to make these instruments applicable for observatory tidal recordings, there is a need for examining the unique characteristics of equipments and adequately correcting these inherent distorting effects. Thus, the sensitivity for the tilting, temporal changes of scale factors and beam-position dependent transfer characteristics are necessary to be determined for observatory use of these instruments. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. Magnetic experiments were also carried out on the pillar of the calibration device as well, in order to analyse the magnetic effect of the moving stainless steel-mass. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. The calibration process is aided by intelligent controller electronics. A PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. Authors wish to express their thanks to OTKA (Hungarian Scientific Research Fund) for their support (OTKA-K101603, OTKA K109060).

  15. Mathematical model of mass transfer at electron beam treatment

    NASA Astrophysics Data System (ADS)

    Konovalov, Sergey V.; Sarychev, Vladimir D.; Nevskii, Sergey A.; Kobzareva, Tatyana Yu.; Gromov, Victor E.; Semin, Alexander P.

    2017-01-01

    The paper proposes a model of convective mass transfer at electron beam treatment with beams in titanium alloys subjected to electro-explosion alloying by titanium diboride powder. The proposed model is based on the concept that treatment with concentrated flows of energy results in the initiation of vortices in the melted layer. The formation mechanism of these vortices rooted in the idea that the availability of temperature drop leads to the initiation of the thermo-capillary convection. For the melted layer of metal the equations of the convective heat transfer and boundary conditions in terms of the evaporated material are written. The finite element solution of these equations showed that electron-beam treatment results in the formation of multi-vortex structure that in developing captures all new areas of material. It leads to the fact that the strengthening particles are observed at the depth increasing many times the depth of their penetration according to the diffusion mechanism. The distribution of micro-hardness at depth and the thickness of strengthening zone determined from these data supported the view that proposed model of the convective mass transfer describes adequately the processes going on in the treatment with low-energy high-current electron beam.

  16. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  17. X-ray beam transfer between hollow fibers for long-distance transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Yoshihito, E-mail: tanaka@sci.u-hyogo.ac.jp; Matsushita, Ryuki; Shiraishi, Ryutaro

    2016-07-27

    Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined themore » connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.« less

  18. Environmental effects on underwater optical transmission

    NASA Astrophysics Data System (ADS)

    Chu, Peter C.; Breshears, Brian F.; Cullen, Alexander J.; Hammerer, Ross F.; Martinez, Ramon P.; Phung, Thai Q.; Margolina, Tetyana; Fan, Chenwu

    2017-05-01

    Optical communication/detection systems have potential to get around some limitations of current acoustic communications and detection systems especially increased fleet and port security in noisy littoral waters. Identification of environmental effects on underwater optical transmission is the key to the success of using optics for underwater communication and detection. This paper is to answer the question "What are the transfer and correlation functions that relate measurements of hydrographic to optical parameters?" Hydrographic and optical data have been collected from the Naval Oceanographic Office survey ships with the High Intake Defined Excitation (HIDEX) photometer and sea gliders with optical back scattering sensor in various Navy interested areas such as the Arabian Gulf, Gulf of Oman, east Asian marginal seas, and Adriatic Sea. The data include temperature, salinity, bioluminescence, chlorophyll-a fluorescence, transmissivity at two different wavelengths (TRed at 670 nm, TBlue at 490 nm), and back scattering coefficient (bRed at 700 nm, bBlue at 470 nm). Transfer and correlation functions between the hydrographic and optical parameters are obtained. Bioluminescence and fluorescence maxima, transmissivity minimum with their corresponding depths, red and blue laser beam peak attenuation coefficients are identified from the optical profiles. Evident correlations are found between the ocean mixed layer depth and the blue and red laser beam peak attenuation coefficients, bioluminescence and fluorescence maxima in the Adriatic Sea, Arabian Gulf, Gulf of Oman, and Philippine Sea. Based on the observational data, an effective algorithm is recommended for solving the radiative transfer equation (RTE) for predicting underwater laser radiance.

  19. An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.

    2017-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.

  20. Micro-beam friction liner and method of transferring energy

    DOEpatents

    Mentesana, Charles [Leawood, KS

    2007-07-17

    A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.

  1. Development of the (d,n) Proton-transfer Reaction in Inverse Kinematics for Structure Studies

    NASA Astrophysics Data System (ADS)

    Jones, K. L.; Thornsberry, C.; Allen, J.; Atencio, A.; Bardayan, D. W.; Blankstein, D.; Burcher, S.; Carter, A. B.; Chipps, K. A.; Cizewski, J. A.; Cox, I.; Elledge, Z.; Febbraro, M.; Fijałkowska, A.; Grzywacz, R.; Hall, M. R.; King, T. T.; Lepailleur, A.; Madurga, M.; Marley, S. T.; O'Malley, P. D.; Paulauskas, S. V.; Pain, S. D.; Peters, W. A.; Reingold, C.; Smith, K.; Taylor, S.; Tan, W.; Vostinar, M.; Walter, D.

    Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.

  2. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    NASA Astrophysics Data System (ADS)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  3. Relative intensity noise transfer of large-bandwidth pump lasers in Raman fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Keita, Kafing; Delaye, Philippe; Frey, Robert; Roosen, Gérald

    2006-12-01

    A theoretical analysis of the Raman amplification in optical fibers and the pump-to-signal relative intensity noise (RIN) transfer has been performed in the spectral domain. An efficient Raman amplification of a monochromatic signal beam by a large-bandwidth pump beam has been demonstrated for a pump bandwidth much smaller than the Raman linewidth. Under the same approximation the pump-to-signal RIN transfer has been calculated in both cases of copropagating and counterpropagating beams in the two limiting cases of modulated monochromatic and smooth-profile large-bandwidth pump beams. At low frequencies the excess of noise evidenced in the case of a modulated monochromatic pump beam did not exist in the case of large-bandwidth pseudoincoherent sources. As this noise reduction can be as large as 13 dB for a 40 dB net gain of the amplifier, such incoherent pumping sources must be considered for the purpose of low-noise Raman amplifiers.

  4. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivas, Eric Richard

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  5. Effects on electron scattering and resist characteristics using assisting underlayers for e-beam direct write lithography

    NASA Astrophysics Data System (ADS)

    Thrun, Xaver; Choi, Kang-Hoon; Hanisch, Norbert; Hohle, Christoph; Steidel, Katja; Guerrero, Douglas; Figueiro, Thiago; Bartha, Johann W.

    2013-03-01

    Resist processing for future technology nodes becomes more and more complex. The resist film thickness is getting thinner and hardmask concepts (trilayer) are needed for reproducible etch transfer into the stack. Additional layers between resist and substrate are influencing the electron scattering in e-beam lithography and may also improve sensitivity and resolution. In this study, bare silicon wafers with different assisting underlayers were processed in a 300 mm CMOS manufacturing environment and were exposed on a 50 keV VISTEC SB3050DW variable-shaped electron beam direct writer at Fraunhofer CNT. The underlayers are organic-inorganic hybrid coatings with different metal additives. The negative-tone resist was evaluated in terms of contrast, sensitivity, resolution and LWR/LER as a function of the stack. The interactions between resist and different assisting underlayers on e-beam direct writing will be investigated. These layers could be used to optimize the trade-off among resolution, LWR and sensitivity in future applications.

  6. Thermal effects in laser-assisted embryo hatching

    NASA Astrophysics Data System (ADS)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2000-08-01

    Diode lasers [(lambda) equals 1480 nm] are used with in-vitro fertilization [IVF] as a promoter of embryo hatching. A focused laser beam is applied in vitro to form a channel in the zona pellucida (shell) of the pre-embryo. After transfer into the uterus, the embryo hatches: it extrudes itself through the channel and implants into the uterine wall. Laser-assisted hatching can result in improving implantation and pregnancy success rates. We present examples of zone pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g. by overheating. In order to define safe regimes we have derived some thermal side-effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed-beam experiment a HeNe laser probe detects the temperature-induced change in refractive index. We find that the diode laser beam produces superheated water approaching 200 C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration

  7. Use of a Gafchromic film HD-V2 for the profile measurement of energetic ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Ishizaka, Tomohisa; Agematsu, Takashi; Yuyama, Takahiro; Seito, Hajime; Okumura, Susumu

    2017-09-01

    The coloration response of a radiochromic film, Gafchromic HD-V2, to ion beams was investigated to apply the film to measuring the transverse intensity distribution of large-area ion beams. HD-V2 films were, therefore, irradiated with proton (10 MeV) and several heavy-ion (4.1-27 MeV/u) beams in a wide fluence range at the azimuthally-varying-field cyclotron facility in National Institutes for Quantum and Radiological Science and Technology, and read with an image scanner to analyze changes in the optical density. It was shown that the available fluence range (106-1011 ions/cm2) of HD-V2 depends strongly on ion species, i.e., linear energy transfer (LET). In addition, the reduction of the sensitivity to dose was shown over a wide LET range. The transverse intensity distribution of a large-area ion beam was measured using a response function determined from the measured data. We have demonstrated that the Gafchromic film HD-V2 is useful for measuring the intensity distribution at a low fluence and thus evaluating the characteristics of various ion beams.

  8. Neutron transfer in the C 13 + Au 197 reaction from gold isotope residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daub, B. H.; Bleuel, D. L.; Wiedeking, M.

    Residual gold nuclei were produced in this paper via neutron transfer at multiple energies using a 130-MeV 13C beam incident on a stacked-foil target consisting of alternating layers of 197Au and 27Al. Production cross sections, over an energy range of 56 to 129 MeV, for seven gold isotopes and two gold isomers were determined through activation analysis. By using the Wilczynski binary transfer model with a modified version of the recoil formula and a standard evaporation model, we were able to reproduce the isotopic production cross sections at high beam energy, with some disagreement at lower beam energies. Finally, thismore » limiting angular momentum model does not predict the transfer of sufficient angular momentum to reproduce the observed isomeric populations.« less

  9. Neutron transfer in the C 13 + Au 197 reaction from gold isotope residuals

    DOE PAGES

    Daub, B. H.; Bleuel, D. L.; Wiedeking, M.; ...

    2017-08-01

    Residual gold nuclei were produced in this paper via neutron transfer at multiple energies using a 130-MeV 13C beam incident on a stacked-foil target consisting of alternating layers of 197Au and 27Al. Production cross sections, over an energy range of 56 to 129 MeV, for seven gold isotopes and two gold isomers were determined through activation analysis. By using the Wilczynski binary transfer model with a modified version of the recoil formula and a standard evaporation model, we were able to reproduce the isotopic production cross sections at high beam energy, with some disagreement at lower beam energies. Finally, thismore » limiting angular momentum model does not predict the transfer of sufficient angular momentum to reproduce the observed isomeric populations.« less

  10. Monte Carlo study of the effective Sherman function for electron polarimetry

    NASA Astrophysics Data System (ADS)

    Drągowski, M.; Włodarczyk, M.; Weber, G.; Ciborowski, J.; Enders, J.; Fritzsche, Y.; Poliszczuk, A.

    2016-12-01

    The PEBSI Monte Carlo simulation was upgraded towards usefulness for electron Mott polarimetry. The description of Mott scattering was improved and polarisation transfer in Møller scattering was included in the code. An improved agreement was achieved between the simulation and available experimental data for a 100 keV polarised electron beam scattering off gold foils of various thicknesses. The dependence of the effective Sherman function on scattering angle and target thickness, as well as the method of finding optimal conditions for Mott polarimetry measurements were analysed.

  11. Graphene fixed-end beam arrays based on mechanical exfoliation

    NASA Astrophysics Data System (ADS)

    Li, Peng; You, Zheng; Haugstad, Greg; Cui, Tianhong

    2011-06-01

    A low-cost mechanical exfoliation method is presented to transfer graphite to graphene for free-standing beam arrays. Nickel film or photoresist is used to peel off and transfer patterned single-layer or multilayer graphene onto substrates with macroscopic continuity. Free-standing graphene beam arrays are fabricated on both silicon and polymer substrates. Their mechanical properties are studied by atomic force microscopy. Finally, a graphene based radio frequency switch is demonstrated, with its pull-in voltage and graphene-silicon junction investigated.

  12. Crystalline lens MTF measurement during simulated accommodation

    NASA Astrophysics Data System (ADS)

    Borja, David; Takeuchi, Gaku; Ziebarth, Noel; Acosta, Ana C.; Manns, Fabrice; Parel, Jean-Marie

    2005-04-01

    Purpose: To design and test an optical system to measure the optical quality of post mortem lenses during simulated accommodation. Methods: An optical bench top system was designed to measure the point spread function and calculate the modulation transfer function (MTF) of monkey and human ex-vivo crystalline lenses. The system consists of a super luminescent diode emitting at 850nm, collimated into a 3mm beam which is focused by the ex-vivo lens under test. The intensity distribution at the focus (point spread function) is re-imaged and magnified onto a beam profiler CCD camera. The optical quality in terms of spatial frequency response (modulation transfer function) is calculated by Fourier transform of the point spread function. The system was used on ex-vivo lenses with attached zonules, ciliary body and sclera. The sclera was glued to 8 separate PMMA segments and stretched radial by 5mm on an accommodation simulating lens stretching device. The point spread function was measured for each lens in the relaxed and stretched state for 5 human (ages 38-86 years) and 5 cynomolgus monkey (ages 53 - 67 months) fresh post mortem crystalline lenses. Results: Stretching induced measurable changes in the MTF. The cutoff frequency increased from 54.4+/-13.6 lp/mm unstretched to 59.5+/-21.4 lp/mm stretched in the post-presbyopic human and from 51.9+/-24.7 lp/mm unstretched to 57.7+/-18.5 lp/mm stretched cynomolgus monkey lenses. Conclusion: The results demonstrate the feasibility of measuring the optical quality of ex-vivo human and cynomolgus monkey lenses during simulated accommodation. Additional experiments are underway to quantify changes in optical quality induced by stretching.

  13. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions.

    PubMed

    Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J

    2007-10-01

    We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.

  14. Design of an electrostatic phase shifting device for biological transmission electron microscopy.

    PubMed

    Koeck, Philip J B

    2018-04-01

    I suggest an electrostatic phase plate designed to broaden the contrast transfer function of a transmission electron microscope operated close to Scherzer defocus primarily in the low resolution direction. At higher defocus the low frequency behavior is equal to that close to Scherzer defocus, but CTF-correction becomes necessary to extend image interpretation to higher resolution. One simple realization of the phase plate consists of two ring shaped electrodes symmetrically surrounding the central beam. Since no physical components come into contact with the central beam and charge on the electrodes is controlled by an external voltage supply, problems with uncontrolled charging are expected to be reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Dynamic behaviour of a planar micro-beam loaded by a fluid-gap: Analytical and numerical approach in a high frequency range, benchmark solutions

    NASA Astrophysics Data System (ADS)

    Novak, A.; Honzik, P.; Bruneau, M.

    2017-08-01

    Miniaturized vibrating MEMS devices, active (receivers or emitters) or passive devices, and their use for either new applications (hearing, meta-materials, consumer devices,…) or metrological purposes under non-standard conditions, are involved today in several acoustic domains. More in-depth characterisation than the classical ones available until now are needed. In this context, the paper presents analytical and numerical approaches for describing the behaviour of three kinds of planar micro-beams of rectangular shape (suspended rigid or clamped elastic planar beam) loaded by a backing cavity or a fluid-gap, surrounded by very thin slits, and excited by an incident acoustic field. The analytical approach accounts for the coupling between the vibrating structure and the acoustic field in the backing cavity, the thermal and viscous diffusion processes in the boundary layers in the slits and the cavity, the modal behaviour for the vibrating structure, and the non-uniformity of the acoustic field in the backing cavity which is modelled in using an integral formulation with a suitable Green's function. Benchmark solutions are proposed in terms of beam motion (from which the sensitivity, input impedance, and pressure transfer function can be calculated). A numerical implementation (FEM) is handled against which the analytical results are tested.

  16. Examination of the dental cone-beam CT equipped with flat-panel-detector (FPD)

    NASA Astrophysics Data System (ADS)

    Ito, Rieko; Fujita, Naotoshi; Kodera, Yoshie

    2011-03-01

    In dentistry, computed tomography (CT) is essential for diagnosis. Recently, cone-beam CT has come into use. We used an "Alphard 3030" cone-beam CT equipped with an FPD system. This system can obtain fluoroscopic and CT images. Moreover, the Alphard has 4 exposure modes for CT, and each mode has a different field of view (FOV) and voxel size. We examined the image quality of kinetic and CT images obtained using the cone-beam CT system. To evaluate kinetic image quality, we calculated the Wiener spectrum (WS) and modulation transfer function (MTF). We then analyzed the lag images and exposed a phantom. To evaluate CT image quality, we calculated WS and MTF at various places in the FOV and examined the influence of extension of the cone beam X-ray on voxel size. Furthermore, we compared the WS and MTF values of cone-beam CT to those of another CT system. Evaluation of the kinetic images showed that cone-beam CT is sufficient for clinical diagnosis and provides better image quality than the other system tested. However, during exposure of a CT image, the distance from the center influences image quality (especially MTF). Further, differences in voxel size affect image quality. It is therefore necessary to carefully position the region of interest and select an appropriate mode.

  17. Polarized He 3 + 2 ions in the Alternate Gradient Synchrotron to RHIC transfer line

    DOE PAGES

    Tsoupas, N.; Huang, H.; Méot, F.; ...

    2016-09-06

    The proposed electron-hadron collider (eRHIC) to be built at Brookhaven National Laboratory (BNL) will allow the collisions of 20 GeV polarized electrons with 250 GeV polarized protons, or 100 GeV/n polarized 3He +2 ions, or other unpolarized ion species. The large value of the anomalous magnetic moment of the 3He nucleus G He=(g₋2)/2=₋4.184 (where g is the g-factor of the 3He nuclear spin) combined with the peculiar layout of the transfer line which transports the beam bunches from the Alternate Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) makes the transfer and injection of polarized 3He ions frommore » AGS to RHIC (AtR) a special case as we explain in the paper. Specifically in this paper we calculate the stable spin direction of a polarized 3He beam at the exit of the AtR line which is also the injection point of RHIC, and lastly, we discuss a simple modifications of the AtR beam-transfer-line, to perfectly match the stable spin direction of the injected polarized 3He beam to that of the circulating beam, at the injection point of RHIC.« less

  18. Ion recombination correction in carbon ion beams.

    PubMed

    Rossomme, S; Hopfgartner, J; Lee, N D; Delor, A; Thomas, R A S; Romano, F; Fukumura, A; Vynckier, S; Palmans, H

    2016-07-01

    In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be neglected for reference dosimetry and for the determination of depth dose curves in carbon ion beams.

  19. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  20. Singular value description of a digital radiographic detector: Theory and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.

    The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the objectmore » is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to signal detection theory, and the characterization of shift-variant imaging systems.« less

  1. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  2. Thermal radiation heat transfer in participating media by finite volume discretization using collimated beam incidence

    NASA Astrophysics Data System (ADS)

    Harijishnu, R.; Jayakumar, J. S.

    2017-09-01

    The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.

  3. Measurement techniques and applications of charge transfer to aerospace research

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1978-01-01

    A technique of developing high-velocity low-intensity neutral gas beams for use in aerospace research problems is described. This technique involves ionization of gaseous species with a mass spectrometer and focusing the resulting primary ion beam into a collision chamber containing a static gas at a known pressure and temperature. Equations are given to show how charge-transfer cross sections are obtained from a total-current measurement technique. Important parameters are defined for the charge-transfer process.

  4. Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Town, R J; Rosen, M D; Michel, P A

    2010-11-22

    A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys ofmore » Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.« less

  5. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    PubMed

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  6. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    NASA Astrophysics Data System (ADS)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Improved design and in-situ measurements of new beam position monitors for Indus-2

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Babbar, L. K.; Holikatti, A. C.; Yadav, S.; Tyagi, Y.; Puntambekar, T. A.; Senecha, V. K.

    2018-01-01

    Beam position monitors (BPM) are important diagnostic devices used in particle accelerators to monitor position of the beam for various applications. Improved version of button electrode BPM has been designed using CST Studio Suite for Indus-2 ring. The new BPMs are designed to replace old BPMs which were designed and installed more than 12 years back. The improved BPMs have higher transfer impedance, resonance free output signal, equal sensitivity in horizontal and vertical planes and fast decaying wakefield as compared to old BPMs. The new BPMs have been calibrated using coaxial wire method. Measurement of transfer impedance and time domain signals has also been performed in-situ with electron beam during Indus-2 operation. The calibration and beam based measurements results showed close agreement with the design parameters. This paper presents design, electromagnetic simulations, calibration result and in-situ beam based measurements of newly designed BPMs.

  8. Investigation of ion-beam machining methods for replicated x-ray optics

    NASA Technical Reports Server (NTRS)

    Drueding, Thomas W.

    1996-01-01

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.

  9. A comparison between using incoherent or coherent sources to align and test an adaptive optical telescope

    NASA Technical Reports Server (NTRS)

    Anderson, Richard

    1994-01-01

    The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.

  10. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  11. Design of the transfer line from booster to storage ring at 3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayar, C., E-mail: cafer.bayar@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matchedmore » in the exit of transfer line to the injection point of the storage ring.« less

  12. Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, K. A.; Speirs, D. C.; Trines, R. M. G. M.

    2013-10-15

    We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount ofmore » seed pre-pulse produced.« less

  13. Optical Jitter Effects on Target Detection and Tracking of Overhead Persistent Infrared Systems

    DTIC Science & Technology

    2015-12-01

    infrared CdSe cadmium selenide DSP Defense Support Program FIR far-infrared FPA focal plane array Ge germanium GEO geostationary earth orbit...HBCRT High Energy Laser Beam Control Research Testbed HEL high energy laser HgCdTe mercury cadmium telluride IR infrared InSb indium antimonide...MOD model MTF modulation transfer function MWIR mid-wave infrared NIR near infrared OPIR overhead persistent infrared PbSe lead selenide

  14. Laboratory investigation of concrete beam-end treatments : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-05-01

    The ends of prestressed concrete beams located under bridge expansion : joints are often exposed to extended periods of moisture and chlorides. This : exposure can cause the beam ends to deteriorate prematurely, corrode the : prestressing strands, de...

  15. Three-beam double stimulated Raman scatterings: Cascading configuration

    NASA Astrophysics Data System (ADS)

    Rao, B. Jayachander; Cho, Minhaeng

    2018-03-01

    Two-beam stimulated Raman scattering (SRS) has been used in diverse label-free spectroscopy and imaging applications of live cells, biological tissues, and functional materials. Recently, we developed a theoretical framework for the three-beam double SRS processes that involve pump, Stokes, and depletion beams, where the pump-Stokes and pump-depletion SRS processes compete with each other. It was shown that the net Stokes gain signal can be suppressed by increasing the depletion beam intensity. The theoretical prediction has been experimentally confirmed recently. In the previous scheme for a selective suppression of one SRS by making it compete with another SRS, the two SRS processes occur in a parallel manner. However, there is another possibility of three-beam double SRS scheme that can be of use to suppress either Raman gain of the Stokes beam or Raman loss of the pump beam by depleting the Stokes photons with yet another SRS process induced by the pair of Stokes and another (second) Stokes beam. This three-beam double SRS process resembles a cascading energy transfer process from the pump beam to the first Stokes beam (SRS-1) and subsequently from the first Stokes beam to the second Stokes beam (SRS-2). Here, the two stimulated Raman gain-loss processes are associated with two different Raman-active vibrational modes of solute molecule. In the present theory, both the radiation and the molecules are treated quantum mechanically. We then show that the cascading-type three-beam double SRS can be described by coupled differential equations for the photon numbers of the pump and Stokes beams. From the approximate solutions as well as exact numerical calculation results for the coupled differential equations, a possibility of efficiently suppressing the stimulated Raman loss of the pump beam by increasing the second Stokes beam intensity is shown and discussed. To further prove a potential use of this scheme for developing a super-resolution SRS microscopy, we present a theoretical expression and numerical simulation results for the full-width-at-half-maximum of SRS imaging point spread function, assuming that the pump and Stokes beam profiles are Gaussian and the second Stokes beam has a doughnut-shaped spatial profile. It is clear that the spatial resolution with the present 3-beam cascading SRS method can be enhanced well beyond the diffraction limit. We anticipate that the present work will provide a theoretical framework for a super-resolution stimulated Raman scattering microscopy that is currently under investigation.

  16. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  17. Simultaneous dual-functioning InGaN/GaN multiple-quantum-well diode for transferrable optoelectronics

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Yuan, Jialei; Zhang, Shuai; Liu, Yuhuai; Wang, Yongjin

    2017-10-01

    We propose a wafer-level procedure for the fabrication of 1.5-mm-diameter dual functioning InGaN/GaN multiple-quantum-well (MQW) diodes on a GaN-on-silicon platform for transferrable optoelectronics. Nitride semiconductor materials are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type MQW-diode architectures are obtained by a combination of silicon removal and III-nitride film backside thinning. Suspended MQW-diodes are directly transferred from silicon to foreign substrates such as metal, glass and polyethylene terephthalate by mechanically breaking the support beams. The transferred MQW-diodes display strong electroluminescence under current injection and photodetection under light irradiation. Interestingly, they demonstrate a simultaneous light-emitting light-detecting function, endowing the 1.5-mm-diameter MQW-diode with the capability of producing transferrable optoelectronics for adjustable displays, wearable optical sensors, multifunctional energy harvesting, flexible light communication and monolithic photonic circuit.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drueding, T.W.

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less

  19. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  20. Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Delettrez, J. A.; Marozas, J. A.; Weaver, J.; Obenschain, S.; Schmitt, A.

    2014-10-01

    Cross-beam energy transfer (CBET) has become a serious threat to the overall success of polar-drive-ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly effective over the equator of the target, which is hydrodynamically very sensitive to such losses. A promising solution uses laser wavelength detuning between beams to break the resonance between them and reduce energy transfer. Testing this process for direct drive has been limited because of the lack of sufficient detuning capabilities. However, the Naval Research Laboratory's Nike laser has the capability of providing a wide range of detuning between its main drive and backlighter beams. This paper explores the design of an experimental platform on Nike to directly evaluate the benefit of frequency detuning in mitigating CBET. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Electron precipitation in solar flares - Collisionless effects

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Rowland, H. L.

    1984-01-01

    A large fraction of the electrons which are accelerated during the impulsive phase of solar flares stream towards the chromosphere and are unstable to the growth of plasma waves. The linear and nonlinear evolution of plasma waves as a function of time is analyzed with a set of rate equations that follows, in time, the nonlinearly coupled system of plasma waves-ion fluctuations. As an outcome of the fast transfer of wave energy from the beam to the ambient plasma, nonthermal electron tails are formed which can stabilize the anomalous Doppler resonance instability responsible for the pitch angle scattering of the beam electrons. The non-collisional losses of the precipitating electrons are estimated, and the observational implication of these results are discussed.

  2. Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning

    DOE PAGES

    Edgell, D. H.; Follett, R. K.; Igumenshchev, I. V.; ...

    2017-06-13

    The effects of frequency detuning laser beams in direct-drive symmetric implosions were investigated with a 3-D cross-beam energy transfer (CBET) model. Our model shows that interactions between beams with relative angles between 45° and 90° are most significant for CBET in OMEGA direct-drive implosions. There is no net exchange in power between beams but there is significant redistribution of power from the ingoing central portion of the beam profile to the outgoing edge as it is exiting the plasma, reducing the total absorbed power. Furthermore, redistribution of laser power because of CBET increases the root-mean-square (rms) absorption nonuniformity by anmore » order of magnitude. CBET mitigation by shifting relative wavelengths of three groups of laser beams fed by each of the different beamlines was modeled. At an on-target wavelength shift of Δλ ~ 10 Å, the total laser absorption was maximized, and the rms absorption nonuniformity was near minimum. In order to completely decouple the three groups of beams from each other requires wavelength shifts Δλ > 30 Å.« less

  3. Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgell, D. H.; Follett, R. K.; Igumenshchev, I. V.

    The effects of frequency detuning laser beams in direct-drive symmetric implosions were investigated with a 3-D cross-beam energy transfer (CBET) model. Our model shows that interactions between beams with relative angles between 45° and 90° are most significant for CBET in OMEGA direct-drive implosions. There is no net exchange in power between beams but there is significant redistribution of power from the ingoing central portion of the beam profile to the outgoing edge as it is exiting the plasma, reducing the total absorbed power. Furthermore, redistribution of laser power because of CBET increases the root-mean-square (rms) absorption nonuniformity by anmore » order of magnitude. CBET mitigation by shifting relative wavelengths of three groups of laser beams fed by each of the different beamlines was modeled. At an on-target wavelength shift of Δλ ~ 10 Å, the total laser absorption was maximized, and the rms absorption nonuniformity was near minimum. In order to completely decouple the three groups of beams from each other requires wavelength shifts Δλ > 30 Å.« less

  4. Laser-plasma interactions and implosion symmetry in rugby hohlraums

    NASA Astrophysics Data System (ADS)

    Michel, Pierre; Berger, R. L.; Lasinski, B. F.; Ross, J. S.; Divol, L.; Williams, E. A.; Meeker, D.; Langdon, B. A.; Park, H.; Amendt, P.

    2011-10-01

    Cross-beam energy transfer is studied in the context of ``rugby''-hohlraum experiments at the Omega laser facility in FY11, in preparation for future NIF experiments. The transfer acts in opposite direction between rugby and cylinder hohlraums due to the different beam pointing geometries and flow patterns. Its interaction with backscatter is also different as both happen in similar regions inside rugby hohlraums. We will analyze the effects of non-linearities and temporal beam smoothing on energy transfer using the code pF3d. Calculations will be compared to experiments at Omega; analysis of future rugby hohlraum experiments on NIF will also be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE PAGES

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  6. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  7. Wave front engineering by means of diffractive optical elements for applications in microscopy

    NASA Astrophysics Data System (ADS)

    Cojoc, Dan; Ferrari, Enrico; Garbin, Valeria; Cabrini, Stefano; Carpentiero, Alessandro; Prasciolu, Mauro; Businaro, Luca; Kaulich, Burchard; Di Fabrizio, Enzo

    2006-05-01

    We present a unified view regarding the use of diffractive optical elements (DOEs) for microscopy applications a wide range of electromagnetic spectrum. The unified treatment is realized through the design and fabrication of DOE through which wave front beam shaping is obtained. In particular we show applications ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy. We report some details on the design and physical implementation of diffractive elements that beside focusing perform also other optical functions: beam splitting, beam intensity and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of spherical micro beads and for direct trapping and manipulation of biological cells with non-spherical shapes. Another application is the Gauss to Laguerre-Gaussian mode conversion, which allows to trap and transfer orbital angular momentum of light to micro particles with high refractive index and to trap and manipulate low index particles. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for DOEs implementation. High resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in X-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field X-ray microscopy.

  8. The two-beam accelerator and the relativistic klystron power source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessler, A.M.

    1988-04-01

    This paper discusses the concept of a two-beam accelerator. Two versions are discussed; one employing a free electron laser, the second employing a branched beam sent through ''transfer cavities'' as in a klystron. 14 refs., 26 figs., 1 tab. (LSP)

  9. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility.

    PubMed

    Marozas, J A; Hohenberger, M; Rosenberg, M J; Turnbull, D; Collins, T J B; Radha, P B; McKenty, P W; Zuegel, J D; Marshall, F J; Regan, S P; Sangster, T C; Seka, W; Campbell, E M; Goncharov, V N; Bowers, M W; Di Nicola, J-M G; Erbert, G; MacGowan, B J; Pelz, L J; Yang, S T

    2018-02-23

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3  Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

  10. Monte Carlo simulation of neutral-beam injection for mirror fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ronald Lee

    1979-01-01

    Computer simulation techniques using the Monte Carlo method have been developed for application to the modeling of neutral-beam intection into mirror-confined plasmas of interest to controlled thermonuclear research. The energetic (10 to 300 keV) neutral-beam particles interact with the target plasma (T i ~ 10 to 100 keV) through electron-atom and ion-atom collisional ionization as well as ion-atom charge-transfer (charge-exchange) collisions to give a fractional trapping of the neutral beam and a loss of charge-transfer-produced neutrals which escape to bombard the reactor first wall. Appropriate interaction cross sections for these processes are calculated for the assumed anisotropic, non-Maxwellian plasma ionmore » phase-space distributions.« less

  11. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Yang, S. T.

    2018-02-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

  12. Angular aberration in the problem of power beaming to geostationary satellites through the atmosphere.

    PubMed

    Baryshnikov, F F

    1995-10-20

    The influence of angular aberration of radiation as a result of the difference in speed of a geostationary satellite and the speed of the Earth's surface on laser power beaming to satellites is considered. Angular aberration makes it impossible to direct the energy to the satellite, and additional beam rotation is necessary. Because the Earth's rotation may cause bad phase restoration, we face a serious problem: how to transfer incoherent radiation to remote satellites. In the framework of the Kolmogorov turbulence model simple conditions of energy transfer are derived and discussed.

  13. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.

    PubMed

    Chen Hsu, Hsu; Tsai, Ming-Tsang; Dyakov, Yuri A; Ni, Chi-Kung

    2011-08-07

    Energy transfer of highly vibrationally excited naphthalene in the triplet state in collisions with CHF(3), CF(4), and Kr was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Highly vibrationally excited naphthalene (2.0 eV vibrational energy) was formed via the rapid intersystem crossing of naphthalene initially excited to the S(2) state by 266 nm photons. The shapes of the collisional energy-transfer probability density functions were measured directly from the scattering results of highly vibrationally excited naphthalene. In comparison to Kr atoms, the energy transfer in collisions between CHF(3) and naphthalene shows more forward scatterings, larger cross section for vibrational to translational (V → T) energy transfer, smaller cross section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation, especially in the range -ΔE(d) = -100 to -800 cm(-1). On the other hand, the difference of energy transfer properties between collisional partners Kr and CF(4) is small. The enhancement of the V → T energy transfer in collisions with CHF(3) is attributed to the large attractive interaction between naphthalene and CHF(3) (1-3 kcal/mol).

  14. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  15. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    NASA Astrophysics Data System (ADS)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation) analyses of the flexure and beam specimens were also performed. These progressive failure analyses more closely approximated flexural behavior under actual testing conditions by reducing the elastic moduli of elements that were considered to have partially or totally failed. Individual element failures were predicted using the maximum stress, Tsai-Hill and Tsai-Wu failure criteria. Excellent predictions of flexural behavior were attributed to the progressive failure analyses combined with an appropriate failure criterion, and the reliable input material properties that were generated.

  16. Evaluation of left ventricular assist device pump bladders cast from ion-sputtered polytetrafluorethylene mandrels

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.

  17. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  18. Electron lenses for head-on beam-beam compensation in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Fischer, W.; Altinbas, Z.

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  19. Solar concentrator with integrated tracking and light delivery system with summation

    DOEpatents

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  20. Solar concentrator with integrated tracking and light delivery system with collimation

    DOEpatents

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  1. Matrix Formalism of Synchrobetatron Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; /SLAC

    In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and themore » Courant-Snyder functions. The closed orbit changes due to finite energy gains at rf cavities and radiation energy losses were also studied by the 5 x 5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.« less

  2. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  3. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  4. A study of the vibrational energies of two coupled beams by finite element and green function (receptance) methods

    NASA Astrophysics Data System (ADS)

    Shankar, K.; Keane, A. J.

    1995-04-01

    The behaviour of two hinged-hinged beams, point coupled by springs (translational, rotary and a combination of both) with weak to strong coupling is studied from the point of view of vibrational energies, input power and power transferred through the coupling. Two configurations are studied: in the first case the beams are placed parallel to each other and only the transverse, Euler-Bernoulli modes are considered; the second configuration is more complicated with the beams placed perpendicular to each other, executing axial as well as transverse vibrations. These models are studied by using a finite element analysis (FEA) package and, alternatively, via the modally derived Green functions of the uncoupled subsystems. In both cases the beams are given proportional damping and one of the beams is driven by a point harmonic force. The effects of coupling stiffness and modal summation bandwidth are studied. It is shown that there is good agreement between the FEA and the Green function approach over a range of coupling strengths, but that at higher strengths the number of uncoupled modes used significantly affects the accuracy of the Green function method used here. The beams in the second configuration are then further studied from the point of view of SEA coupling loss factors. The frequency averaged coupling loss factors are calculated for weak and strong coupling, first by using a power injection method, where the power balance equations are formed on the assumption of only direct coupling loss factors. Then, the entire matrix of direct and indirect coupling loss factors is derived by using a deterministic modal approach. These are compared and the indirect coupling loss factors are found to be significant in magnitude in respect to the direct coupling loss factors. Several cases are studied in which the coupling powers and energy levels are predicted by using only the direct coupling loss factors and compared with the exact results obtained by using both direct and indirect factors. These agree only under certain conditions for weak coupling and show rather poorer agreement in the case of strong coupling. This behaviour demonstrates the importance of taking into account indirect coupling loss factors in SEA models having several subsystems.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  6. Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2017-11-01

    Hybrid pixel sensor technology such as the Medipix3 represents a unique tool for electron imaging. We have investigated its performance as a direct imaging detector using a Transmission Electron Microscope (TEM) which incorporated a Medipix3 detector with a 300 μm thick silicon layer compromising of 256×256 pixels at 55 μm pixel pitch. We present results taken with the Medipix3 in Single Pixel Mode (SPM) with electron beam energies in the range, 60-200 keV . Measurements of the Modulation Transfer Function (MTF) and the Detective Quantum Efficiency (DQE) were investigated. At a given beam energy, the MTF data was acquired by deploying the established knife edge technique. Similarly, the experimental data required to determine DQE was obtained by acquiring a stack of images of a focused beam and of free space (flatfield) to determine the Noise Power Spectrum (NPS).

  7. QuickPol: Fast calculation of effective beam matrices for CMB polarization

    NASA Astrophysics Data System (ADS)

    Hivon, Eric; Mottet, Sylvain; Ponthieu, Nicolas

    2017-02-01

    Current and planned observations of the cosmic microwave background (CMB) polarization anisotropies, with their ever increasing number of detectors, have reached a potential accuracy that requires a very demanding control of systematic effects. While some of these systematics can be reduced in the design of the instruments, others will have to be modeled and hopefully accounted for or corrected a posteriori. We propose QuickPol, a quick and accurate calculation of the full effective beam transfer function and of temperature to polarization leakage at the power spectra level, as induced by beam imperfections and mismatches between detector optical and electronic responses. All the observation details such as exact scanning strategy, imperfect polarization measurements, and flagged samples are accounted for. Our results are validated on Planck high frequency instrument (HFI) simulations. We show how the pipeline can be used to propagate instrumental uncertainties up to the final science products, and could be applied to experiments with rotating half-wave plates.

  8. Measuring the Refractive Index of a Laser-Plasma Optical System

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Goyon, C.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Kemp, G. E.; Moody, J. D.; Michel, P. A.

    2016-10-01

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by an independent probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive-index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for cross-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85% to 87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility

    DOE PAGES

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; ...

    2018-02-22

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Direct-drive implosions at the National Ignition Facility were conducted to reduce CBET by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams over the equatorial region of the target. For the first time, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in themore » average ablation pressure.« less

  10. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Direct-drive implosions at the National Ignition Facility were conducted to reduce CBET by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams over the equatorial region of the target. For the first time, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in themore » average ablation pressure.« less

  11. Search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam

    NASA Astrophysics Data System (ADS)

    Haddock, Christopher C.; Oi, Noriko; Hirota, Katsuya; Ino, Takashi; Kitaguchi, Masaaki; Matsumoto, Satoru; Mishima, Kenji; Shima, Tatsushi; Shimizu, Hirohiko M.; Snow, W. Michael; Yoshioka, Tamaki

    2018-03-01

    We describe an experimental search for deviations from the inverse-square law of gravity at the nanometer length scale using neutron scattering from noble gases on a pulsed slow neutron beam line. By measuring the neutron momentum transfer (q ) dependence of the differential cross section for xenon and helium and comparing to their well-known analytical forms, we place an upper bound on the strength of a new interaction as a function of interaction length λ which improves upon previous results in the region λ <0.1 nm , and remains competitive in the larger-λ region. A pseudoexperimental simulation is developed for this experiment and its role in the data analysis is described. We conclude with plans for improving sensitivity in the larger-λ region.

  12. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  13. Laser radiation in active amplifying media treated as a transport problem - Transfer equation derived and exactly solved

    NASA Astrophysics Data System (ADS)

    Gupta, S. R. D.; Gupta, Santanu D.

    1991-10-01

    The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.

  14. Measurement of the total cross section from elastic scattering in pp collisions at s = 8   TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.

    2016-08-16

    A measurement of the total pp cross section at the LHC at √s = 8 TeV is presented. An integrated luminosity of 500 μb –1 was accumulated in a special run with high-β* beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. Here, the measurement is performed with the ALFA sub-detector of ATLAS.

  15. Measurement of the total cross section from elastic scattering in pp collisions at s = 8   TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.

    A measurement of the total pp cross section at the LHC at √s = 8 TeV is presented. An integrated luminosity of 500 μb –1 was accumulated in a special run with high-β* beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. Here, the measurement is performed with the ALFA sub-detector of ATLAS.

  16. E-beam-pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  17. Power Beaming Leakage Radiation as A SETI Observable

    NASA Technical Reports Server (NTRS)

    Benford, James N.; Benford, Dominic J.

    2016-01-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beam-ing to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors and ultimately starships. We estimate the principal observable parameters of power beaming leak-age. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system.We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful,if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: Instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be done, which could broaden the parameter space of observable features we have discussed here.

  18. Transfer matrix calculation for ion optical elements using real fields

    NASA Astrophysics Data System (ADS)

    Mishra, P. M.; Blaum, K.; George, S.; Grieser, M.; Wolf, A.

    2018-03-01

    With the increasing importance of ion storage rings and traps in low energy physics experiments, an efficient transport of ion species from the ion source area to the experimental setup becomes essential. Some available, powerful software packages rely on transfer matrix calculations in order to compute the ion trajectory through the ion-optical beamline systems of high complexity. With analytical approaches, so far the transfer matrices are documented only for a few ideal ion optical elements. Here we describe an approach (using beam tracking calculations) to determine the transfer matrix for any individual electrostatic or magnetostatic ion optical element. We verify the procedure by considering the well-known cases and then apply it to derive the transfer matrix of a 90-degree electrostatic quadrupole deflector including its realistic geometry and fringe fields. A transfer line consisting of a quadrupole deflector and a quadrupole doublet is considered, where the results from the standard first order transfer matrix based ion optical simulation program implementing the derived transfer matrix is compared with the real field beam tracking simulations.

  19. THz optical design considerations and optimization for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Garritano, James; Bajwa, Neha; Nowroozi, Bryan; Llombart, Nuria; Grundfest, Warren; Taylor, Zachary D.

    2014-09-01

    THz imaging system design will play an important role making possible imaging of targets with arbitrary properties and geometries. This study discusses design consideration and imaging performance optimization techniques in THz quasioptical imaging system optics. Analysis of field and polarization distortion by off-axis parabolic (OAP) mirrors in THz imaging optics shows how distortions are carried in a series of mirrors while guiding the THz beam. While distortions of the beam profile by individual mirrors are not significant, these effects are compounded by a series of mirrors in antisymmetric orientation. It is shown that symmetric orientation of the OAP mirror effectively cancels this distortion to recover the original beam profile. Additionally, symmetric orientation can correct for some geometrical off-focusing due to misalignment. We also demonstrate an alternative method to test for overall system optics alignment by investigating the imaging performance of the tilted target plane. Asymmetric signal profile as a function of the target plane's tilt angle indicates when one or more imaging components are misaligned, giving a preferred tilt direction. Such analysis can offer additional insight into often elusive source device misalignment at an integrated system. Imaging plane tilting characteristics are representative of a 3-D modulation transfer function of the imaging system. A symmetric tilted plane is preferred to optimize imaging performance.

  20. Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Antal, Zs.; Kresz, N.; Bor, Zs.; Chrisey, D.

    2004-09-01

    We present an investigation on absorbing film assisted laser induced forward transfer (AFA-LIFT) of fungus (Trichoderma) conidia. A KrF excimer laser beam [λ =248nm,FWHM=30ns (FWHM, full width at half maximum)] was directed through a quartz plate and focused onto its silver coated surface where conidia of the Trichoderma strain were uniformly spread. The laser fluence was varied in the range of 0-2600mJ/cm2 and each laser pulse transferred a pixel of target material. The average irradiated area was 8×10-2mm2. After the transfer procedure, the yeast extract medium covered glass slide and the transferred conidia patterns were incubated for 20 h and then observed using an optical microscope. The transferred conidia pixels were germinated and the areas of the culture medium surfaces covered by the pixels were evaluated as a function of laser fluence. As the laser fluence was increased from 0 to 355mJ/cm2 the transferred and germinated pixel area increased from 0 to 0.25mm2. Further increase in fluence resulted in a drastic decrease down to an approximately constant value of 0.06mm2. The yield of successful transfer by AFA-LIFT and germination was as much as 75% at 355mJ/cm2. The results prove that AFA-LIFT can successfully be applied for the controlled transfer of biological objects.

  1. EXPERIMENTAL EVALUATION OF DOSIMETRIC CHARACTERIZATION OF GAFCHROMIC EBT3 AND EBT-XD FILMS FOR CLINICAL CARBON ION BEAMS.

    PubMed

    Yonai, Shunsuke; Arai, Chinatsu; Shimoyama, Kaoru; Fournier-Bidoz, Nathalie

    2018-02-03

    Radiochromic film is a very useful tool for 2D dosimetric measurements in radiotherapy because it is self-developing and has very high-spatial resolution. However, considerable care has to be taken in ion beam radiotherapy owing to the quenching effect of high-linear energy transfer (LET) radiation. In this study, the dose responses of GAFchromic EBT3 and EBT-XD films were experimentally investigated using the clinical carbon ion beam at the Heavy Ion Medical Accelerator in Chiba. Results showed that the relations between absorbed dose and net optical density could be expressed well using an equation proposed by Reinhardt (2015). The quenching effect was evaluated by determining their relative efficiencies for photon irradiation as a function of LET. A correction equation derived in this study allowed the absorbed dose to be determined in the small irradiation field used for carbon ion radiotherapy eye treatments. This study contributes to establishing an absolute dosimetry procedure for heavy ion beams using radiochromic film. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. HYDRO2GEN: Non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams

    NASA Astrophysics Data System (ADS)

    Druett, M. K.; Zharkova, V. V.

    2018-03-01

    Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum radiation, which has high optical thickness, and after the beam is off it governs hydrogen ionisation and leads to the long lasting orders of magnitude enhancement of emission in Balmer and Paschen continua. The ratio of Balmer-to-other-continuum head intensities are found to be correlated with the initial flux of the beam. The height distribution of contribution functions for Paschen continuum emission indicate a close correlation with the observations of heights of WL and HXR emission reported for limb flares. This process also leads to a strong increase of wing emission (Stark's wings) in Balmer and Paschen lines, which is superimposed on large red-shifted enhancements of Hα-Hγ line emission resulting from a downward motion by hydrodynamic shocks. The simulated line profiles are shown to fit closely the observations for various flaring events.

  3. Symmetric large momentum transfer for atom interferometry with BECs

    NASA Astrophysics Data System (ADS)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  4. A plasma amplifier to combine multiple beams at NIF

    NASA Astrophysics Data System (ADS)

    Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; Wilks, S. C.; Rosen, M. D.; London, R. A.; Pickworth, L. A.; Colaitis, A.; Dunlop, W. H.; Poole, P.; Moody, J. D.; Strozzi, D. J.; Michel, P. A.; Divol, L.; Landen, O. L.; MacGowan, B. J.; Van Wonterghem, B. M.; Fournier, K. B.; Blue, B. E.

    2018-05-01

    Combining laser beams in a plasma is enabled by seeded stimulated Brillouin scattering which allows cross-beam energy transfer (CBET) to occur and re-distributes the energy between beams that cross with different incident angles and small differences in wavelength [Kirkwood et al. Phys. Plasmas 4, 1800 (1997)]. Indirect-drive implosions at the National Ignition Facility (NIF) [Haynam et al. Appl. Opt. 46, 3276-3303 (2007)] have controlled drive symmetry by using plasma amplifiers to transfer energy between beams [Kirkwood et al., Plasma Phys. Controlled Fusion 55, 103001 (2013); Lindl et al., Phys. Plasmas 21, 020501 (2014); and Hurricane et al. Nature 506, 343-348 (2014)]. In this work, we show that the existing models are well enough validated by experiments to allow a design of a plasma beam combiner that, once optimized, is expected to produce a pulse of light in a single beam with the energy greatly enhanced over existing sources. The scheme combines up to 61 NIF beams with 120 kJ of available energy into a single f/20 beam with a 1 ns pulse duration and a 351 nm wavelength by both resonant and off-resonance CBET. Initial experiments are also described that have already succeeded in producing a 4 kJ, 1 ns pulse in a single beam by combination of up to eight incident pump beams containing <1.1 kJ/beam, which are maintained near resonance for CBET in a plasma that is formed by 60 pre-heating beams [Kirkwood et al., Nat. Phys. 14, 80 (2018)].

  5. Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Farhad; Mirghaderi, Rasoul; Torabian, Shahabeddin; Imanpour, Ali

    2008-07-01

    Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column. This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam—strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection. Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment-rotation graphs form sub-assemblage show a desirable seismic performance of this connection

  6. Power Beaming Leakage Radiation as a SETI Observable

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Benford, Dominic J.

    2016-07-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  7. Lunar Surface-to-Surface Power Transfer

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2007-01-01

    A human lunar outpost, under NASA study for construction in the 2020's, has potential requirements to transfer electric power up to 50-kW across the lunar surface from 0.1 to 10-km distances. This power would be used to operate surface payloads located remotely from the outpost and/or outpost primary power grid. This paper describes concept designs for state-of-the-art technology power transfer subsystems including AC or DC power via cables, beamed radio frequency power and beamed laser power. Power transfer subsystem mass and performance are calculated and compared for each option. A simplified qualitative assessment of option operations, hazards, costs and technology needs is also described. Based on these concept designs and performance analyses, a DC power cabling subsystem is recommended to minimize subsystem mass and to minimize mission and programmatic costs and risks. Avenues for additional power transfer subsystem studies are recommended.

  8. Laser Radiation in Active Amplifying Media Treated as a Transport Problem - Transfer Equation Derived and Exactly Solved

    NASA Astrophysics Data System (ADS)

    Das Gupta, Santanu; Das Gupta, S. R.

    1991-10-01

    The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein'sA, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the ‘rate equations’ to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.

  9. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    DOE PAGES

    Bottoni, S.; Leoni, S.; Fornal, B.; ...

    2015-08-27

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li( 98Rb,αxn) and 7Li( 98Rb,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions canmore » be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.« less

  10. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications

    NASA Astrophysics Data System (ADS)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro

    2017-02-01

    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  11. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, K; Weber, U; Simeonov, Y

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less

  12. Large area ion beam sputtered YBa2Cu3O(7-delta) films for novel device structures

    NASA Astrophysics Data System (ADS)

    Gauzzi, A.; Lucia, M. L.; Kellett, B. J.; James, J. H.; Pavuna, D.

    1992-03-01

    A simple single-target ion-beam system is employed to manufacture large areas of uniformly superconducting YBa2Cu3O(7-delta) films which can be reproduced. The required '123' stoichiometry is transferred from the target to the substrate when ion-beam power, target/ion-beam angle, and target temperature are adequately controlled. Ion-beam sputtering is experimentally demonstrated to be an effective technique for producing homogeneous YBa2Cu3O(7-delta) films.

  13. Inline CBET Model Including SRS Backscatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David S.

    2015-06-26

    Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. Using the CBET gains derived in this paper, we show how to implement these equations in amore » ray-based laser source for a rad-hydro code.« less

  14. Crossed beam (E--VRT) energy transfer experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertel, I.V.; Hofmann, H.; Rost, K.A.

    A molecular crossed beam apparatus which has been developed to perform electronic-to-vibrational, rotational, translational (E--V,R,T) energy transfer studies is described. Its capabilities are illustrated on the basis of a number of energy transfer spectra obtained for collision systems of the type Na*+Mol(..nu..,j) ..-->..Na+Mol (..nu..',j') where Na* represents a laser excited sodium atom and Mol a diatomic or polyatomic molecule. Because of the lack of reliable dynamic theories on quenching processes, statistical approaches such as the ''linearly forced harmonic oscillator'' and ''prior distributions'' have been used to model the experimental spectra. The agreement is found to be satisfactory, so even suchmore » simple statistics may be useful to describe (E--V,R,T) energy transfer processes in collision systems with small molecules.« less

  15. High-speed reference-beam-angle control technique for holographic memory drive

    NASA Astrophysics Data System (ADS)

    Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi

    2016-09-01

    We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, James N.; Benford, Dominic J., E-mail: jimbenford@gmail.com

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for ourmore » receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.« less

  17. Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams.

    PubMed

    Saminathan, S; Beijers, J P M; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-07-01

    A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.

  18. Comparison of Raman Scattering Measurements and Modeling in NIF Ignition Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strozzi, D J; Hinkel, D E; Williams, E A

    2011-11-04

    Recent NIF indirect-drive experiments have shown significant Raman scattering from the inner beams. NIF data has motivated improvements to rad-hydro modeling, leading to the 'high flux model' [M. D. Rosen et al., HEDP 7, 180 (2011)]. Cross-beam energy transfer [P. A. Michel et al., Phys. Plasmas 17, 056305 (2010] in the laser entrance hole is an important tool for achieving round implosions, and is uniformly distributed across the laser spot in rad-hydro simulations (but not necessarily in experiments). We find the Raman linear gain spectra computed with these plasma conditions agree well in time-dependent peak wavelength with the measured data,more » especially when overlapping laser-beam intensities are used. More detailed, spatially non-uniform modeling of the cross-beam transfer has been performed. The resulting gains better follow the time history of the measured backscatter. We shall present the impact of spatially non-uniform energy transfer on SRS gain. This metric is valid when amplification is in a linear regime, and so we shall also present an assessment of whether electron trapping in Langmuir waves can play a role in these shots.« less

  19. New results in low-energy fusion of 40Ca+Zr,9290

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; Čolović, P.; Corradi, L.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Soić, N.; Strano, E.; Szilner, S.

    2017-07-01

    Background: Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca+96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca+90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840 μ b ). A rather complete data set is available for 40Ca+94Zr , while no measurement of 40Ca+92Zr fusion has been performed in the past. Purpose: Our aim is to measure the full excitation function of 40Ca+92Zr near the barrier and to extend downward the existing data on 40Ca+90Zr , in order to estimate the transfer couplings that should be used in coupled-channels calculations of the fusion of these two systems and of 40Ca+94Zr . Methods: 40Ca beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used, bombarding thin metallic 90Zr (50 μ g /cm2 ) and 92ZrO2 targets (same thickness) enriched to 99.36 % and 98.06 % in masses 90 and 92, respectively. An electrostatic beam deflector allowed the detection of fusion evaporation residues (ER) at very forward angles, and angular distributions of ER were measured. Results: The excitation function of 40Ca+92Zr has been measured down to the level of ≃60 μ b . Coupled-channels (CC) calculations using a standard Woods-Saxon (WS) potential and following the line of a previous analysis of 40Ca+96Zr fusion data give a good account of the new data, as well as of the existing data for 40Ca+94Zr . The previous excitation function of 40Ca+90Zr has been extended down to 40 μ b . Conclusions: Transfer couplings play an important role in explaining the fusion data for 40Ca+92Zr and 40Ca+94Zr . The strength of the pair-transfer coupling is deduced by applying a simple recipe based on the value obtained for 40Ca+96Zr . The logarithmic slopes and the S factors for fusion are reproduced fairly well for all three systems by the CC calculations, and there are no indications of a fusion hindrance at the lowest energies. In contrast, the new data for 40Ca+90Zr indicate the onset of a fusion hindrance at the lowest energies.

  20. Study of the heat transfer in solids using infrared photothermal radiometry and simulation by COMSOL Multiphysics.

    PubMed

    Suarez, V; Hernández Wong, J; Nogal, U; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the heat transfer through a homogeneous and isotropic solid exited by square periodic light beam on its front surface. For this, we use the Infrared Photothermal Radiometry in order to obtain the evolution of the temperature difference on the rear surface of three samples, silicon, copper and wood, as a function of the exposure time. Also, we solved the heat transport equation for this problem with the boundary conditions congruent with the physical situation, by means of numerical simulation based in finite element analysis. Our results show a good agreement between the experimental and numerical simulated results, which demonstrate the utility of this methodology for the study of the thermal response of solids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. FILM-30: A Heat Transfer Properties Code for Water Coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARSHALL, THERON D.

    2001-02-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function ofmore » temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.« less

  2. Microfabrication of Silicon/Ceramic Hybrid Cantilever for Scanning Probe Microscope and Sensor Applications

    NASA Astrophysics Data System (ADS)

    Wakayama, Takayuki; Kobayashi, Toshinari; Iwata, Nobuya; Tanifuji, Nozomi; Matsuda, Yasuaki; Yamada, Syoji

    2003-12-01

    We present here new cantilevers for scanning probe microscopy (SPM) and sensor applications, which consist of silicon cantilever beam and ceramic pedestal. Silicon is only used to make cantilever beams and tips. Precision-machinery-made ceramics replaces silicon pedestal part. The ceramics was recently developed by Sumikin Ceramics and Quarts Co., Ltd. and can be machined precisely with end mill cutting. Many silicon beams are fabricated at once from a wafer using batch fabrication method. Therefore, SPM probes can be fabricated in high productivity and in low cost. These beams are transferred with transfer technique and are bonded on the ceramic pedestal with epoxy glue. We demonstrate here atomic force microscope (AFM) and gas sensor applications of the hybrid structure. In a gas sensor application, the ends of the cantilever are selectively modified with zeolite crystals as a sensitive layer. The bonding strength is enough for each application.

  3. Miniature mechanical transfer optical coupler

    DOEpatents

    Abel, Philip [Overland Park, KS; Watterson, Carl [Kansas City, MO

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  4. In-Situ atomic force microscopic observation of ion beam bombarded plant cell envelopes

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Brown, I. G.; Seprom, C.; Vilaithong, T.

    2007-04-01

    A program in ion beam bioengineering has been established at Chiang Mai University (CMU), Thailand, and ion beam induced transfer of plasmid DNA molecules into bacterial cells (Escherichia coli) has been demonstrated. However, a good understanding of the fundamental physical processes involved is lacking. In parallel work, onion skin cells have been bombarded with Ar+ ions at energy 25 keV and fluence1-2 × 1015 ions/cm2, revealing the formation of microcrater-like structures on the cell wall that could serve as channels for the transfer of large macromolecules into the cell interior. An in-situ atomic force microscope (AFM) system has been designed and installed in the CMU bio-implantation facility as a tool for the observation of these microcraters during ion beam bombardment. Here we describe some of the features of the in-situ AFM and outline some of the related work.

  5. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  6. Cross sections of projectile-like fragments in the reaction {sup 19}F+{sup 66}Zn in the beam energy range of 3-6 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.

    2009-06-15

    Angular distributions of projectile-like fragments (PLFs) have been measured in the reaction {sup 19}F+{sup 66}Zn at E{sub lab}=61,82,92, and 109 MeV to understand their formation in the low energy domain (< or approx. 7 MeV nucleon). In this energy range, maximum angular momentum 'l{sub max}' in the reaction is lower than or close to the critical or limiting angular momentum for complete fusion 'l{sub lim}(CF).' The sum-rule model was modified to explain the cross sections of PLFs in the present study. For the first time, the modified sum-rule model, with a competition of incomplete fusion (ICF) reaction with complete fusionmore » below l{sub lim}(CF) reasonably reproduced the cross sections of PLFs in the beam energy range of the present study. It was observed that the cross sections of lighter PLFs fall more rapidly with decreasing beam energy compared to those of heavier PLFs, suggesting a change in the reaction mechanism from heavier to lighter PLFs. Transfer probabilities for peripheral collisions were calculated within the framework of a semiclassical formalism. The parameters of the nuclear potential required for the calculation of transfer probability were obtained by fitting the elastic scattering data measured in the present work. Calculated transfer probabilities were significantly lower compared to the corresponding experimental values, suggesting a significant overlap of the projectile and the target nuclei in incomplete fusion reactions. The present analysis showed that the overlap of the projectile and the target nuclei increases with increasing mass transfer at a given beam energy and for a given PLF, overlap increases with increasing beam energy.« less

  7. Positron beams and two-photon exchange: The key to precision form factors

    NASA Astrophysics Data System (ADS)

    Bernauer, Jan C.

    2018-05-01

    The proton elastic form factor ratio can be measured either via Rosenbluth separation in an unpolarized beam and target experiment, or via the use of polarization degrees of freedom. However, data produced by these two approaches show a discrepancy, increasing with Q2. The proposed explanation of this discrepancy—two-photon exchange—has been tested recently by three experiments. The results support the existence of a small two-photon exchange effect but cannot establish that theoretical treatment at the measured momentum transfers are valid. At larger momentum transfers, theory remains untested. This paper investigates the possibilities of measurements at DESY and Jefferson Lab to measure the effect at larger momentum transfers.

  8. Understanding gas-surface interactions from direct force measurements using a specialized torsion balance

    NASA Technical Reports Server (NTRS)

    Cook, S. R.; Hoffbauer, M. A.

    1996-01-01

    The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N2, CO, CO2, and H2, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO2-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0 degrees to 85 degrees. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.

  9. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotlyar, V. V.; Kovalev, A. A., E-mail: alexeysmr@mail.ru; Porfirev, A. P.

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  10. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  11. Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams

    PubMed Central

    Wang, L L W; Perles, L A; Archambault, L; Sahoo, N; Mirkovic, D; Beddar, S

    2013-01-01

    The plastic scintillation detectors (PSD) have many advantages over other detectors in small field dosimetry due to its high spatial resolution, excellent water equivalence and instantaneous readout. However, in proton beams, the PSDs will undergo a quenching effect which makes the signal level reduced significantly when the detector is close to Bragg peak where the linear energy transfer (LET) for protons is very high. This study measures the quenching correction factor (QCF) for a PSD in clinical passive-scattering proton beams and investigates the feasibility of using PSDs in depth-dose measurements in proton beams. A polystyrene based PSD (BCF-12, ϕ0.5mm×4mm) was used to measure the depth-dose curves in a water phantom for monoenergetic unmodulated proton beams of nominal energies 100, 180 and 250 MeV. A Markus plane-parallel ion chamber was also used to get the dose distributions for the same proton beams. From these results, the QCF as a function of depth was derived for these proton beams. Next, the LET depth distributions for these proton beams were calculated by using the MCNPX Monte Carlo code, based on the experimentally validated nozzle models for these passive-scattering proton beams. Then the relationship between the QCF and the proton LET could be derived as an empirical formula. Finally, the obtained empirical formula was applied to the PSD measurements to get the corrected depth-dose curves and they were compared to the ion chamber measurements. A linear relationship between QCF and LET, i.e. Birks' formula, was obtained for the proton beams studied. The result is in agreement with the literature. The PSD measurements after the quenching corrections agree with ion chamber measurements within 5%. PSDs are good dosimeters for proton beam measurement if the quenching effect is corrected appropriately. PMID:23128412

  12. Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams

    NASA Astrophysics Data System (ADS)

    Wang, L. L. W.; Perles, L. A.; Archambault, L.; Sahoo, N.; Mirkovic, D.; Beddar, S.

    2012-12-01

    Plastic scintillation detectors (PSDs) have many advantages over other detectors in small field dosimetry due to their high spatial resolution, excellent water equivalence and instantaneous readout. However, in proton beams, the PSDs undergo a quenching effect which makes the signal level reduced significantly when the detector is close to the Bragg peak where the linear energy transfer (LET) for protons is very high. This study measures the quenching correction factor (QCF) for a PSD in clinical passive-scattering proton beams and investigates the feasibility of using PSDs in depth-dose measurements in proton beams. A polystyrene-based PSD (BCF-12, ϕ0.5 mm × 4 mm) was used to measure the depth-dose curves in a water phantom for monoenergetic unmodulated proton beams of nominal energies 100, 180 and 250 MeV. A Markus plane-parallel ion chamber was also used to get the dose distributions for the same proton beams. From these results, the QCF as a function of depth was derived for these proton beams. Next, the LET depth distributions for these proton beams were calculated by using the MCNPX Monte Carlo code, based on the experimentally validated nozzle models for these passive-scattering proton beams. Then the relationship between the QCF and the proton LET could be derived as an empirical formula. Finally, the obtained empirical formula was applied to the PSD measurements to get the corrected depth-dose curves and they were compared to the ion chamber measurements. A linear relationship between the QCF and LET, i.e. Birks' formula, was obtained for the proton beams studied. The result is in agreement with the literature. The PSD measurements after the quenching corrections agree with ion chamber measurements within 5%. PSDs are good dosimeters for proton beam measurement if the quenching effect is corrected appropriately.

  13. High intensity multi beam design of SANS instrument for Dhruva reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K.; Désert, S.

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies ofmore » agglomerates larger than few tens of nm.« less

  14. Resonant charge transfer in He/+/-He collisions studied with the merging-beams technique

    NASA Technical Reports Server (NTRS)

    Rundel, R. D.; Nitz, D. E.; Smith, K. A.; Geis, M. W.; Stebbings, R. F.

    1979-01-01

    Absolute cross sections are reported for the resonant charge-transfer reaction He(+) + He yields He + He(+) at collision energies between 0.1 and 187 eV. The results, obtained using a new merging-beam apparatus are in agreement both with theory and with measurements made using other experimental techniques. The experimentally determined cross sections between 0.5 and 187 eV fall about a line given by sigma exp 1/2(sq-A) = 5.09-2.99 lnW, where W is the collision energy in eV. Considerable attention is paid to the configuration and operation of the apparatus. Tests and calculations which confirm the interpretation of the experimental data in a merging-beam experiment are discussed.

  15. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    PubMed

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  16. Anomalous cross-modulation between microwave beams

    NASA Astrophysics Data System (ADS)

    Ranfagni, Anedio; Mugnai, Daniela; Petrucci, Andrea; Mignani, Roberto; Cacciari, Ilaria

    2018-06-01

    An anomalous effect in the near field of crossing microwave beams, which consists of an unexpected transfer of modulation from one beam to the other, has found a plausible interpretation within the framework of a locally broken Lorentz invariance. A theoretical approach of this kind deserves to be reconsidered also in the light of further experimental work, including a counter-check of the phenomenon.

  17. Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter

    PubMed Central

    Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi

    2015-01-01

    Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, y¯D, were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured y¯D were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm−1. PMID:25210053

  18. On neutral-beam injection counter to the plasma current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helander, P.; Akers, R.J.; Eriksson, L.-G.

    2005-11-15

    It is well known that when neutral beams inject ions into trapped orbits in a tokamak, the transfer of momentum between the beam and the plasma occurs through the torque exerted by a radial return current. It is shown that this implies that the angular momentum transferred to the plasma can be larger than the angular momentum of the beam, if the injection is in the opposite direction to the plasma current and the beam ions suffer orbit losses. On the Mega-Ampere Spherical Tokamak (MAST) [R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C.more » Brickley et al., Plasma Phys. Controlled Fusion 45, A175 (2003)], this results in up to 30% larger momentum deposition with counterinjection than with co-injection, with substantially increased plasma rotation as a result. It is also shown that heating of the plasma (most probably of the ions) can occur even when the beam ions are lost before they have had time to slow down in the plasma. This is the dominant heating mechanism in the outer 40% of the MAST plasma during counterinjection.« less

  19. Neutralization of space charge forces using ionized background gas

    NASA Astrophysics Data System (ADS)

    Steski, D. B.; Zarcone, M. J.; Smith, K. S.; Thieberger, P.

    1996-03-01

    The Tandem Van de Graaff at Brookhaven National Laboratory has delivered pulsed gold beam to the Alternating Gradient Synchrotron (AGS) and AGS Booster since 1992 for relativistic heavy ion physics. There is an ongoing effort to improve the quality and intensity of the negative ion beam delivered to the Tandem from the present Cs sputter sources. Because the beam energy is low (approximately 30 keV) and the current high, there are significant losses due to space charge forces. One of the ways being explored to overcome these losses is to neutralize the space charge forces with ionized background gas. On an ion source test bench, using three different gases (Ar, N2, and Xe), the percentage of current transported from the source to a downstream Faraday cup was increased from 10% to 40% by bleeding in gas. Bleeding in Xe resulted in the best transmission. The time dependence of the neutralization as a function of gas pressure was also observed. This system is presently being transferred to the Negative Ion Injector of the Tandem for use in upcoming heavy ion experiments.

  20. Single and double spin asymmetries for pion electro-production from the deuteron in the resonance region

    NASA Astrophysics Data System (ADS)

    Careccia, Sharon L.

    The single and double spin asymmetries At and Aet have been measured in pi- electro-production off the deuteron using a longitudinally polarized electron beam and a polarized ND3 target. The electron beam was polarized using a strained GaAs cathode and the target was polarized using Dynamic Nuclear Polarization. The data were collected at beam energies of 1.6, 1.7, 2.5 and 4.2 GeV in Hall B at Jefferson Lab in the spring of 2001. The final state particles were detected in the CEBAF Large Acceptance Spectrometer (CLAS). The d(e,e'pi-p)p exclusive channel was identified using the missing mass technique and the asymmetries were extracted as a function of the momentum transfer Q2, invariant mass W, and center of mass pion angles cos(theta*) and φ*. The results are generally in agreement with the phenomenological model MAID at low energies, but there are discrepancies in the 2nd and 3rd resonance regions, as well as at forward angles.

  1. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  2. The quasi-linear relaxation of thick-target electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Mcclements, K. G.; Brown, J. C.; Emslie, A. G.

    1986-01-01

    The effects of quasi-linear interactions on thick-target electron beams in the solar corona are investigated. Coulomb collisions produce regions of positive gradient in electron distributions which are initially monotonic decreasing functions of energy. In the resulting two-stream instability, energy and momentum are transferred from electrons to Langmuir waves and the region of positive slope in the electron distribution is replaced by a plateau. In the corona, the timescale for this quasi-linear relaxation is very short compared to the collision time. It is therefore possible to model the effects of quasi-linear relaxation by replacing any region of positive slop in the distribution by a plateau at each time step, in such a way as to conserve particle number. The X-ray bremsstrahlung and collisional heating rate produced by a relaxed beam are evaluated. Although the analysis is strictly steady state, it is relevant to the theoretical interpretation of hard X-ray bursts with durations of the order of a few seconds (i.e., the majority of such bursts).

  3. Analytic algorithms for determining radiative transfer optical properties of ocean waters.

    PubMed

    Kaskas, Ayse; Güleçyüz, Mustafa C; Tezcan, Cevdet; McCormick, Norman J

    2006-10-10

    A synthetic model for the scattering phase function is used to develop simple algebraic equations, valid for any water type, for evaluating the ratio of the backscattering to absorption coefficients of spatially uniform, very deep waters with data from upward and downward planar irradiances and the remotely sensed reflectance. The phase function is a variable combination of a forward-directed Dirac delta function plus isotropic scattering, which is an elementary model for strongly forward scattering such as that encountered in oceanic optics applications. The incident illumination at the surface is taken to be diffuse plus a collimated beam. The algorithms are compared with other analytic correlations that were previously derived from extensive numerical simulations, and they are also numerically tested with forward problem results computed with a modified FN method.

  4. Data-driven RBE parameterization for helium ion beams

    NASA Astrophysics Data System (ADS)

    Mairani, A.; Magro, G.; Dokic, I.; Valle, S. M.; Tessonnier, T.; Galm, R.; Ciocca, M.; Parodi, K.; Ferrari, A.; Jäkel, O.; Haberer, T.; Pedroni, P.; Böhlen, T. T.

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter {{(α /β )}\\text{ph}} of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the \\text{RB}{{\\text{E}}α}={α\\text{He}}/{α\\text{ph}} and {{\\text{R}}β}={β\\text{He}}/{β\\text{ph}} ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival (\\text{RB}{{\\text{E}}10} ) are compared with the experimental ones. Pearson’s correlation coefficients were, respectively, 0.85 and 0.84 confirming the soundness of the introduced approach. Moreover, due to the lack of experimental data at low LET, clonogenic experiments have been performed irradiating A549 cell line with {{(α /β )}\\text{ph}}=5.4 Gy at the entrance of a 56.4 MeV u-1He beam at the Heidelberg Ion Beam Therapy Center. The proposed parameterization reproduces the measured cell survival within the experimental uncertainties. A RBE formula, which depends only on dose, LET and {{(α /β )}\\text{ph}} as input parameters is proposed, allowing a straightforward implementation in a TP system.

  5. Polarization Rotation Caused by Cross-Beam Energy Transfer in Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J. G.; Turnbull, D.; Froula, D. H.

    2017-10-01

    The first evidence of polarization rotation caused by cross-beam energy transfer (CBET) during direct-drive implosions has been provided by a new beamlets diagnostic that was fielded on OMEGA. Beamlet images are, in essence, the end points of beamlets of light originating from different regions of each beam profile and following paths determined by refraction through the coronal plasma. The intensity of each beamlet varies because of absorption and many CBET interactions along that path. The new diagnostic records images in two time windows and includes a Wollaston prism to split each beamlet into two orthogonal polarization images recording the polarization of each beamlet. Only the common polarization components couple during CBET so when each beam is linearly polarized, CBET rotates the polarization of each beam. A 3-D CBET postprocessor for hydrodynamics codes was used to model the beamlet images. The predicted images are compared to the images recorded by the new diagnostic. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372

  7. Evolution of a Gaussian laser beam in warm collisional magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com; Niknam, A. R.

    2016-07-15

    In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. Itmore » is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).« less

  8. Robust failure detection filters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sanmartin, A. M.

    1985-01-01

    The robustness of detection filters applied to the detection of actuator failures on a free-free beam is analyzed. This analysis is based on computer simulation tests of the detection filters in the presence of different types of model mismatch, and on frequency response functions of the transfers corresponding to the model mismatch. The robustness of detection filters based on a model of the beam containing a large number of structural modes varied dramatically with the placement of some of the filter poles. The dynamics of these filters were very hard to analyze. The design of detection filters with a number of modes equal to the number of sensors was trivial. They can be configured to detect any number of actuator failure events. The dynamics of these filters were very easy to analyze and their robustness properties were much improved. A change of the output transformation allowed the filter to perform satisfactorily with realistic levels of model mismatch.

  9. Beamforming synthesis of binaural responses from computer simulations of acoustic spaces.

    PubMed

    Poletti, Mark A; Svensson, U Peter

    2008-07-01

    Auditorium designs can be evaluated prior to construction by numerical modeling of the design. High-accuracy numerical modeling produces the sound pressure on a rectangular grid, and subjective assessment of the design requires auralization of the sampled sound field at a desired listener position. This paper investigates the production of binaural outputs from the sound pressure at a selected number of grid points by using a least squares beam forming approach. Low-frequency axisymmetric emulations are derived by assuming a solid sphere model of the head, and a spherical array of 640 microphones is used to emulate ten measured head-related transfer function (HRTF) data sets from the CIPIC database for half the audio bandwidth. The spherical array can produce high-accuracy band-limited emulation of any human subject's measured HRTFs for a fixed listener position by using individual sets of beam forming impulse responses.

  10. Single link flexible beam testbed project. Thesis

    NASA Technical Reports Server (NTRS)

    Hughes, Declan

    1992-01-01

    This thesis describes the single link flexible beam testbed at the CLaMS laboratory in terms of its hardware, software, and linear model, and presents two controllers, each including a hub angle proportional-derivative (PD) feedback compensator and one augmented by a second static gain full state feedback loop, based upon a synthesized strictly positive real (SPR) output, that increases specific flexible mode pole damping ratios w.r.t the PD only case and hence reduces unwanted residual oscillation effects. Restricting full state feedback gains so as to produce a SPR open loop transfer function ensures that the associated compensator has an infinite gain margin and a phase margin of at least (-90, 90) degrees. Both experimental and simulation data are evaluated in order to compare some different observer performance when applied to the real testbed and to the linear model when uncompensated flexible modes are included.

  11. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration

    2016-05-01

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  12. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGES

    Abbott, D.; Adderley, P.; Adeyemi, A.; ...

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  13. Assessment of polarization effect on aerosol retrievals from MODIS

    NASA Astrophysics Data System (ADS)

    Korkin, S.; Lyapustin, A.

    2010-12-01

    Light polarization affects the total intensity of scattered radiation. In this work, we compare aerosol retrievals performed by code MAIAC [1] with and without taking polarization into account. The MAIAC retrievals are based on the look-up tables (LUT). For this work, MAIAC was run using two different LUTs, the first one generated using the scalar code SHARM [2], and the second one generated with the vector code Modified Vector Discrete Ordinates Method (MVDOM). MVDOM is a new code suitable for computations with highly anisotropic phase functions, including cirrus clouds and snow [3]. To this end, the solution of the vector radiative transfer equation (VRTE) is represented as a sum of anisotropic and regular components. The anisotropic component is evaluated in the Small Angle Modification of the Spherical Harmonics Method (MSH) [4]. The MSH is formulated in the frame of reference of the solar beam where z-axis lies along the solar beam direction. In this case, the MSH solution for anisotropic part is nearly symmetric in azimuth, and is computed analytically. In scalar case, this solution coincides with the Goudsmit-Saunderson small-angle approximation [5]. To correct for an analytical separation of the anisotropic part of the signal, the transfer equation for the regular part contains a correction source function term [6]. Several examples of polarization impact on aerosol retrievals over different surface types will be presented. 1. Lyapustin A., Wang Y., Laszlo I., Kahn R., Korkin S., Remer L., Levy R., and Reid J. S. Multi-Angle Implementation of Atmospheric Correction (MAIAC): Part 2. Aerosol Algorithm. J. Geophys. Res., submitted (2010). 2. Lyapustin A., Muldashev T., Wang Y. Code SHARM: fast and accurate radiative transfer over spatially variable anisotropic surfaces. In: Light Scattering Reviews 5. Chichester: Springer, 205 - 247 (2010). 3. Budak, V.P., Korkin S.V. On the solution of a vectorial radiative transfer equation in an arbitrary three-dimensional turbid medium with anisotropic scattering. JQSRT, 109, 220-234 (2008). 4. Budak V.P., Sarmin S.E. Solution of radiative transfer equation by the method of spherical harmonics in the small angle modification. Atmospheric and Oceanic Optics, 3, 898-903 (1990). 5. Goudsmit S., Saunderson J.L. Multiple scattering of electrons. Phys. Rev., 57, 24-29 (1940). 6. Budak V.P, Klyuykov D.A., Korkin S.V. Convergence acceleration of radiative transfer equation solution at strongly anisotropic scattering. In: Light Scattering Reviews 5. Chichester: Springer, 147 - 204 (2010).

  14. Optical design of laser transmission system

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Feng, Jinliang; Li, Yongliang; Yang, Jiandong

    1998-08-01

    This paper discusses a design of optical transfer system used in carbon-dioxide laser therapeutic machine. The design of this system is according to the requirement of the therapeutic machine. The therapeutic machine requires the movement of laser transfer system is similar to the movement of human beings arms, which possesses 7 rotating hinges. We use optical hinges, which is composed of 45 degree mirrors. Because the carbon-dioxide laser mode is not good, light beam diameter at focus and divergence angle dissemination are big, we use a collecting lens at the transfer system output part in order to make the light beam diameter at focus in 0.2 to approximately 0.3 mm. For whole system the focus off-axis error is less than 0.5 mm, the transfer power consumption is smaller than 10%. The system can move in three dimension space freely and satisfies the therapeutic machine requirement.

  15. An examination of energy transfers and kinetic mechanisms in argon and in an argon-hydrogen medium excited by an electron beam Application in research on new lasers

    NASA Astrophysics Data System (ADS)

    Puech, V.

    Experimental results on a Ar-H laser pumped by an electron gun are presented, along with a kinetic model of the evolution of states in Ar lasers with additives. Data from trials with the Ar-H laser are provided to confirm model predictions of the electron energy transfer. The electron densities and temperatures evolving on a nanosecond scale in the laser are quantified. A solution is found for the Boltzmann equation for the collisional processes characterizing the electron distribution of interactions between the pumping electrons and the various excited molecular states. The electron distribution function is assumed to be Maxwellian, and the distribution is shown to converge within a few picoseconds when the excitation is above the ionization energy.

  16. Transferring pharmaceuticals into the gas phase

    NASA Astrophysics Data System (ADS)

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2008-11-01

    The dissolution of molecules of biological interest in supercritical carbon dioxide is investigated using pulsed molecular beam mass spectrometry. Due to the mild processing temperatures of most supercritical fluids, their adiabatic expansion into vacuum permits to transfer even thermally very sensitive substances into the gas phase, which is particularly attractive for pharmaceutical and biomedical applications. In addition, supercritical CO2constitutes a chemically inert solvent that is compatible with hydrocarbon-free ultrahigh vacuum conditions. Here, we report on the dissolution and pulsed supersonic jet expansion of caffeine (C8H10N4O2), the provitamin menadione (C11H8O2), and the amino acid derivative l-phenylalanine tert-butyl ester hydrochloride (C6H5CH2CH(NH2)COOC(CH3)3[dot operator]HCl), into vacuum. An on-axis residual gas analyzer is used to monitor the relative amounts of solute and solvent in the molecular beam as a function of solvent densityE The excellent selectivity and sensitivity provided by mass spectrometry permits to probe even trace amounts of solutes. The strong density variation of CO2 close to the critical point results in a pronounced pressure dependence of the relative ion currents of solute and solvent molecules, reflecting a substantial change in solubility.

  17. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; Lambrakos, Samuel G.; Moody, Nathan A.; Petillo, John J.; Yamaguchi, Hisato; Liu, Fangze

    2018-01-01

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al. [Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated by an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quantum yield, emittance, and emission models needed by beam optics codes are discussed.

  18. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  19. Nuclear Structure Studies in the 132Sn Region: Safe Coulex with Carbon Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allmond, James M; Stuchbery, Andrew E; Galindo-Uribarri, Alfredo

    2015-01-01

    The collective and single-particle structure of nuclei in the 132Sn region was recently studied by Coulomb excitation and heavy-ion induced transfer reactions using carbon, beryllium, and titanium targets. In particular, Coulomb excitation was used determine a complete set of electromagnetic moments for the first 2 + states and one-neutron transfer was used to probe the purity and evolution of single-neutron states. These recent experiments were conducted at the Holifield Radioactive Ion Beam Facility at ORNL using a CsI-HPGe detector array (BareBall- CLARION) to detect scattered particles and emitted gamma rays from the in-beam reactions. A Bragg-curve detector was used tomore » measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. A sample of the Coulomb excitation results is presented here with an emphasis placed on 116Sn. In particular, the safe Coulex criterion for carbon targets will be analyzed and discussed.« less

  20. Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, P.; Williams, E. A.; Divol, L.

    2013-05-15

    Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. This increases the ion acoustic velocity and modifies the ion acoustic waves’ dispersion relation, thus reducing themore » plasma response to the beat waves and the efficiency of CBET. This pushes the plasma oscillations driven by CBET in a regime where the phase velocities are much smaller than both the electron and ion thermal velocities. CBET gains are derived for this new regime and generalized to the case of multi ion species plasmas.« less

  1. Physics with Heavy Neutron Rich Ribs at the Hribf

    NASA Astrophysics Data System (ADS)

    Radford, David

    2002-10-01

    The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory has recently produced the world's first post-accelerated beams of heavy neutron-rich nuclei. B(E2;0^+ arrow 2^+) values for neutron-rich ^126,128Sn and ^132,134,136Te isotopes have been measured by Coulomb excitation of radioactive ion beams in inverse kinematics. The results for ^132Te and ^134Te (N=80,82) show excellent agreement with systematics of lighter Te isotopes, but the B(E2) value for ^136Te (N=84) is unexpectedly small. Single-neutron transfer reactions leading to ^135Te were identified using a ^134Te beam on ^natBe and ^13C targets at energies just above the Coulomb barrier. The use of the Be target provided an unambiguous signature for neutron transfer through the detection of two correlated α particles, arising from the breakup of unstable ^8Be. The results of these experiments will be discussed, togther with plans for future experiments with these heavy n-rich RIBs.

  2. Doubling The Intensity Of An ERL Based Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Hutton

    2005-05-01

    A light source based on an Energy Recovered Linac (ERL) [1] consists of a superconducting linac and a transfer line that includes wigglers and undulators to produce the synchrotron light. The transfer line brings the electron bunches back to the beginning of the linac so that their energy can be recovered when they traverse the linac a second time, {lambda}/2 out of RF phase. There is another interesting condition when the length of the transfer line is (n {+-} 1/4) {lambda}. In this case, the electrons drift through on the zero RF crossing, and make a further pass around themore » transfer line, effectively doubling the circulating current in the wigglers and undulators. On the third pass through the linac, they will be decelerated and their energy recovered. The longitudinal focusing at the zero crossing is a problem, but it can be canceled if the drifting beam sees a positive energy gradient for the first half of the linac and a negative gradient for the second half (or vice versa). This paper presents a proposal to use a double chicane at the center of the linac to provide this focusing inversion for the drifting beam while leaving the accelerating and decelerating beams on crest. [1] G. R. Neil, et al, Phys. Rev. Let. 84, 662 2000« less

  3. Beam Wave Considerations for Optical Link Budget Calculations

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2016-01-01

    The bounded beam wave nature of electromagnetic radiation emanating from a finite size aperture is considered for diffraction-based link power budget calculations for an optical communications system. Unlike at radio frequency wavelengths, diffraction effects are very important at optical wavelengths. In the general case, the situation cannot be modeled by supposing isotropic radiating antennas and employing the concept of effective isotropic radiated power. It is shown here, however, that these considerations are no more difficult to treat than spherical-wave isotopic based calculations. From first principles, a general expression governing the power transfer for a collimated beam wave is derived and from this are defined the three regions of near-field, first Fresnel zone, and far-field behavior. Corresponding equations for the power transfer are given for each region. It is shown that although the well-known linear expressions for power transfer in the far-field hold for all distances between source and receiver in the radio frequency case, nonlinear behavior within the first Fresnel zone must be accounted for in the optical case at 1550 nm with typical aperture sizes at source/receiver separations less that 100 km.

  4. Impurity transport during neutral beam injection in the ISX-B tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isler, R. C.; Crume, E. C.; Arnurius, D. E.

    1980-10-01

    In ohmically heated ISX-B discharges, both the intrinsic iron impurity ions and small amounts of argon introduced as a test gas accumulate at the center of the plasma. But during certain beam-heated discharges, it appears that this accumulation does not take place. These results may reflect the conclusion of Stacey and Sigmar that momentum transferred from the beams to the plasma can inhibit inward impurity transport.

  5. Forward multiple scattering corrections as function of detector field of view

    NASA Astrophysics Data System (ADS)

    Zardecki, A.; Deepak, A.

    1983-06-01

    The theoretical formulations are given for an approximate method based on the solution of the radiative transfer equation in the small angle approximation. The method is approximate in the sense that an approximation is made in addition to the small angle approximation. Numerical results were obtained for multiple scattering effects as functions of the detector field of view, as well as the size of the detector's aperture for three different values of the optical depth tau (=1.0, 4.0 and 10.0). Three cases of aperture size were considered--namely, equal to or smaller or larger than the laser beam diameter. The contrast between the on-axis intensity and the received power for the last three cases is clearly evident.

  6. Neutral beam dose and sputtering characteristics in an ion implantation system

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.

    1973-01-01

    A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.

  7. Beam characterisation of the KIRAMS electron microbeam system.

    PubMed

    Sun, G M; Kim, E H; Song, K B; Jang, M

    2006-01-01

    An electron microbeam system has been installed at the Korea Institute of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 microm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV microm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics.

  8. Characteristics of Myeloid Differentiation and Maturation Pathway Derived from Human Hematopoietic Stem Cells Exposed to Different Linear Energy Transfer Radiation Types

    PubMed Central

    Monzen, Satoru; Yoshino, Hironori; Kasai-Eguchi, Kiyomi; Kashiwakura, Ikuo

    2013-01-01

    Exposure of hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET)- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34+ cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34+ cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC), exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D 0 = 0.65) than to X-rays (D 0 = 1.07). Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a+ erythroid-related fraction, whereas carbon-ion beams increased the CD34+CD38− primitive cell fraction and the CD13+CD14+/−CD15− fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell surface antigen expression by mature myeloid cells derived from HSPCs exposed to each type of radiation was similar to that by controls. PMID:23555027

  9. Differential correction system of laser beam directional dithering based on symmetrical beamsplitter

    NASA Astrophysics Data System (ADS)

    Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao

    2018-02-01

    This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.

  10. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    PubMed

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  11. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  12. Study of the bending vibration characteristic of phononic crystals beam-foundation structures by Timoshenko beam theory

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ni, Zhi-Qiang; Jiang, Lin-Hua; Han, Lin; Kang, Xue-Wei

    2015-07-01

    Vibration problems wildly exist in beam-foundation structures. In this paper, finite periodic composites inspired by the concept of ideal phononic crystals (PCs), as well as Timoshenko beam theory (TBT), are proposed to the beam anchored on Winkler foundation. The bending vibration band structure of the PCs Timoshenko beam-foundation structure is derived from the modified transfer matrix method (MTMM) and Bloch's theorem. Then, the frequency response of the finite periodic composite Timoshenko beam-foundation structure by the finite element method (FEM) is performed to verify the above theoretical deduction. Study shows that the Timoshenko beam-foundation structure with periodic composites has wider attenuation zones compared with homogeneous ones. It is concluded that TBT is more available than Euler beam theory (EBT) in the study of the bending vibration characteristic of PCs beam-foundation structures with different length-to-height ratios.

  13. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  14. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.

    2016-03-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.

  15. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOEpatents

    Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.

    1998-06-02

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  16. Full PIC simulations of solar radio emission

    NASA Astrophysics Data System (ADS)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  17. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Moody, J.; Yang, S. T.

    2018-05-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light-changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.

  18. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  19. Making beam splitters with dark soliton collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiglitz, Ken

    2010-10-15

    We show with numerical simulations that for certain simple choices of parameters, the waveguides induced by colliding dark solitons in a Kerr medium yield a complete family of beam splitters for trapped linear waves, ranging from total transmission to total deflection. The way energy is transferred from one waveguide to another is similar to that of a directional coupler, but no special fabrication is required. Dark soliton beam splitters offer potential advantages over their bright soliton counterparts: Their transfer characteristics do not depend on the relative phase or speed of the colliding solitons; dark solitons are generally more robust thanmore » bright solitons; and the probe peaks at nulls of the pump, enhancing the signal-to-noise ratio for probe detection. The last factor is especially important for possible application to quantum information processing.« less

  20. Dual-Beam Sample Preparation | Materials Science | NREL

    Science.gov Websites

    images showing cutting of trenches to remove a wafer section and transferring that section to a grid post section and transferring that section to a grid post. Here the wafer section is lifted out and seen from , extracted from the wafer then transferred and welded to a TEM grid post. Final thinning down to a thickness

  1. Remote steering of laser beams by radar- and laser-induced refractive-index gradients in the atmosphere Remote steering of laser beams

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Shneider, M. N.; Voronin, A. A.; Sokolov, A. V.; Scully, M. O.

    2012-01-01

    Refractive-index gradients induced in the atmospheric air by properly tailored laser and microwave fields are shown to enable a remote steering of laser beams. Heating-assisted modulation of the refractive index of the air by microwave radiation is shown to support small-angle laser-beam bending with bending angles on the order of 10-2. Ionization of the atmospheric air by dyads of femto- and nanosecond laser pulses, on the other hand, can provide beam deflection angles in excess of π/5, offering an attractive strategy for radiation transfer, free-space communications, and laser-based standoff detection.

  2. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    NASA Astrophysics Data System (ADS)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  3. Beam manipulation for resonant plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Chiadroni, E.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Bisesto, F. G.; Cardelli, F.; Castorina, G.; Cianchi, A.; Croia, M.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giribono, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Spataro, B.; Stella, A.; Vaccarezza, C.; Villa, F.

    2017-09-01

    Plasma-based acceleration has already proved the ability to reach ultra-high accelerating gradients. However the step towards the realization of a plasma-based accelerator still requires some effort to guarantee high brightness beams, stability and reliability. A significant improvement in the efficiency of PWFA has been demonstrated so far accelerating a witness bunch in the wake of a higher charge driver bunch. The transformer ratio, therefore the energy transfer from the driver to the witness beam, can be increased by resonantly exciting the plasma with a properly pre-shaped drive electron beam. Theoretical and experimental studies of beam manipulation for resonant PWFA will be presented here.

  4. Simulation of an active underwater imaging through a wavy sea surface

    NASA Astrophysics Data System (ADS)

    Gholami, Ali; Saghafifar, Hossein

    2018-06-01

    A numerical simulation for underwater imaging through a wavy sea surface has been done. We have used a common approach to model the sea surface elevation and its slopes as an important source of image disturbance. The simulation algorithm is based on a combination of ray tracing and optical propagation, which has taken to different approaches for downwelling and upwelling beams. The nature of randomly focusing and defocusing property of surface waves causes a fluctuated irradiance distribution as an illuminating source of immersed object, while it gives rise to a great disturbance on the image through a coordinate change of image pixels. We have also used a modulation transfer function based on Well's small angle approximations to consider the underwater optical properties effect on the transferring of the image. As expected, the absorption effect reduces the light intensity and scattering decreases image contrast by blurring the image.

  5. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    DOE PAGES

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; ...

    2016-03-31

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  6. The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory

    PubMed Central

    Bosbach, Wolfram A.

    2015-01-01

    Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603

  7. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang

    2018-04-01

    Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.

  8. Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi

    2015-01-01

    Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, [Formula: see text], were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured [Formula: see text] were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm(-1). © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    NASA Astrophysics Data System (ADS)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  10. Low frequency piezoresonance defined dynamic control of terahertz wave propagation.

    PubMed

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan

    2016-11-30

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  11. Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.; Betti, R.; Goncharov, V. N.; Huang, H.; Hu, S. X.; Hill, E.; Kelly, J. H.; Meyerhofer, D. D.; Shvydky, A.; Zuegel, J. D.

    2013-08-01

    Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by ˜35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5× increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-drive-ignition implosions by increasing the ablation pressure (1.6×), which will allow for more stable implosions at ignition-relevant velocities.

  12. Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer.

    PubMed

    Kang, Jinho; Shin, Junho; Kim, Chur; Jung, Kwangyun; Park, Suhyeon; Kim, Jungwon

    2014-10-20

    We characterize the timing jitter spectral density of the time-of-flight (TOF) in the indoor atmospheric transfer of optical pulse train over 10 decades of Fourier frequency range (10 μHz - 100 kHz) with sub-100-as resolution using a balanced optical cross-correlator (BOC). Based on the well-known theory for atmospheric transfer of a laser beam, we could fit the measured timing jitter power spectral density to the theory and analyze it with a fairly good agreement from 20 mHz to 10 Hz Fourier frequency range. Moreover, we demonstrate that the BOC-based timing stabilization method can suppress the excess fluctuations in timing from >200 fs (rms) to 2.6 fs (rms) maintained over 130 hours when an optical pulse train is transferred over a 76.2-m long free-space beam path in laboratory environment. The demonstrated stabilization result corresponds to 4 × 10(-20) overlapping Allan deviation at 117,000 s averaging time.

  13. 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.

    2016-05-01

    A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

  14. Development of radiative transfer code for JUICE/SWI mission toward the atmosphere of icy moons of Jupiter

    NASA Astrophysics Data System (ADS)

    Yamada, Takayoshi; Kasai, Yasuko; Yoshida, Naohiro

    2016-07-01

    The Submillimeter Wave Instrument (SWI) is one of the scientific instruments on the JUpiter Icy moon Explorer (JUICE). We plan to observe atmospheric compositions including water vapor and its isotopomers in Galilean moons (Io, Europa, Ganymede, and Callisto). The frequency windows of SWI are 530 to 625 GHz and 1080 to 1275 GHz with 100 kHz spectral resolution. We are developing a radiative transfer code in Japan with line-by-line method for Ganymede atmosphere in THz region (0 - 3 THz). Molecular line parameters (line intensity and partition function) were taken from JPL (Jet Propulsion Laboratory) catalogue. The pencil beam was assumed to calculate a spectrum of H _{2}O and CO in rotational transitions at the THz region. We performed comparisons between our model and ARTS (Atmospheric Radiative Transfer Simulator). The difference were less than 10% and 5% for H _{2}O and CO, respectively, under the condition of the local thermodynamic equilibrium (LTE). Comparison with several models with non-LTE assumption will be presented.

  15. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  16. Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in Direct Metal Laser Sintering Process

    NASA Astrophysics Data System (ADS)

    Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev

    2018-03-01

    Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.

  17. Planck 2015 results. IV. Low Frequency Instrument beams and window functions

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down to -30 dB at 70 GHz. It has been confirmed that the agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer band shapes. The total uncertainties in the effective beam window functions are 0.7% and 1% at 30 and 44 GHz, respectively (at ℓ ≈ 600); and 0.5% at 70 GHz (at ℓ ≈ 1000).

  18. Planck 2015 results: IV. Low Frequency Instrument beams and window functions

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Ashdown, M.; ...

    2016-09-20

    This article presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down tomore » -30 dB at 70 GHz. It has been confirmed that the agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer band shapes. The total uncertainties in the effective beam window functions are 0.7% and 1% at 30 and 44 GHz, respectively (at ℓ ≈ 600); and 0.5% at 70 GHz (at ℓ ≈ 1000).« less

  19. Electrical and morphological characterization of transfer-printed Au/Ti/TiO{sub x}/p{sup +}-Si nano- and microstructures with plasma-grown titanium oxide layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiler, Benedikt, E-mail: benedikt.weiler@nano.ei.tum.de; Nagel, Robin; Albes, Tim

    2016-04-14

    Highly-ordered, sub-70 nm-MOS-junctions of Au/Ti/TiO{sub x}/p{sup +}-Si were efficiently and reliably fabricated by nanotransfer-printing (nTP) over large areas and their functionality was investigated with respect to their application as MOS-devices. First, we used a temperature-enhanced nTP process and integrated the plasma-oxidation of a nm-thin titanium film being e-beam evaporated directly on the stamp before the printing step without affecting the p{sup +}-Si substrate. Second, morphological investigations (scanning electron microscopy) of the nanostructures confirm the reliable transfer of Au/Ti/TiO{sub x}-pillars of 50 nm, 75 nm, and 100 nm size of superior quality on p{sup +}-Si by our transfer protocol. Third, the fabricated nanodevices are alsomore » characterized electrically by conductive AFM. Fourth, the results are compared to probe station measurements on identically processed, i.e., transfer-printed μm-MOS-structures including a systematic investigation of the oxide formation. The jV-characteristics of these MOS-junctions demonstrate the electrical functionality as plasma-grown tunneling oxides and the effectivity of the transfer-printing process for their large-scale fabrication. Next, our findings are supported by fits to the jV-curves of the plasma-grown titanium oxide by kinetic-Monte-Carlo simulations. These fits allowed us to determine the dominant conduction mechanisms, the material parameters of the oxides and, in particular, a calibration of the thickness depending on applied plasma time and power. Finally, also a relative dielectric permittivity of 12 was found for such plasma-grown TiO{sub x}-layers.« less

  20. Simulated Beam Extraction Performance Characterization of a 50-cm Ion Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Hubble, Aimee; Nowak-Gucker, Sarah; Davis, Chris; Peterson, Peter; Viges, Eric; Chen, Dave

    2013-01-01

    A 50 cm ion thruster is being developed to operate at >65 percent total efficiency at 11 kW, 2700 s Isp and over 25 kW, 4500 s Isp at a total efficiency of >75 percent. The engine is being developed to address the need for a multimode system that can provide a range of thrust-to- power to service national and commercial near-earth onboard propulsion needs such as station-keeping and orbit transfer. Operating characteristics of the 50 cm ion thruster were measured under simulated beam extraction. The discharge current distribution at the various magnet rings was measured over a range of operating conditions. The relationship between the anode current distribution and the resulting plasma uniformity and ion flux measured at the thruster exit plane is discussed. The thermal envelope will also be investigated through the monitoring of magnet temperatures over the range of discharge powers investigated. Discharge losses as a function of propellant utilization was also characterized at multiple simulated beam currents. Bulk plasma conditions such as electron temperature and electron density near engine centerline was measured over a range of operating conditions using an internal Langmuir probe. Sensitivity of discharge performance to chamber length is also discussed. This data acquired from this discharge study will be used in the refinement of a throttle table in anticipation for eventual beam extraction testing.

  1. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    PubMed Central

    Sawakuchi, Gabriel O.; Ferreira, Felisberto A.; McFadden, Conor H.; Hallacy, Timothy M.; Granville, Dal A.; Sahoo, Narayan; Akselrod, Mark S.

    2016-01-01

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments. PMID:27147359

  2. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan; Ferreira, Felisberto A.

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared withmore » LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.« less

  3. Theoretical investigations on plasma processes in the Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    The lateral neutralization of ion beams is treated by standard mathematical methods for first order, nonlinear partial differential equations. A closed form analytical solution is derived for the transient lateral beam neutralization for electron injection by means of a von Mises transformation. A nonlinear theory of the longitudinal ion beam neutralization is developed using the von Mises transformation. By means of the Lenard-Balescu equation, the intercomponent momentum transfer between stable, collisionless electron and ion components is calculated.

  4. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navin, A.; Tripathi, V.; Chatterjee, A.

    2004-10-01

    Reactions induced by radioactive {sup 6,8}He beams from the SPIRAL facility were studied on {sup 63,65}Cu and {sup 188,190,192}Os targets and compared to reactions with the stable {sup 4}He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam {gamma} rays for the {sup 6}He+{sup 63,65}Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic {gamma} rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei {sup 6}He at 19.5 and 30 MeV and {sup 8}He atmore » 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for {sup 6,8}He+Cu systems. Cross sections for fusion and direct reactions with {sup 4,6}He beams on heavier targets of {sup 188,192}Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam {gamma}-ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.« less

  5. Rapid cycling medical synchrotron and beam delivery system

    DOEpatents

    Peggs, Stephen G [Port Jefferson, NY; Brennan, J Michael [East Northport, NY; Tuozzolo, Joseph E [Sayville, NY; Zaltsman, Alexander [Commack, NY

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  6. Systems and assemblies for transferring high power laser energy through a rotating junction

    DOEpatents

    Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2016-01-26

    There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.

  7. Comparison Between the NIST and the KEBS for the Determination of Air Kerma Calibration Coefficients for Narrow X-Ray Spectra and 137Cs Gamma-Ray Beams

    PubMed Central

    O’Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn

    2010-01-01

    Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients. PMID:27134777

  8. Comparison Between the NIST and the KEBS for the Determination of Air Kerma Calibration Coefficients for Narrow X-Ray Spectra and (137)Cs Gamma-Ray Beams.

    PubMed

    O'Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn

    2010-01-01

    Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients.

  9. Demonstration of the High RF Power Production Feasibility in the CLIC Power Extraction and Transfer Structure (PETS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelletti, A.; /CERN; Dolgashev, V.

    A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less

  10. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al.[Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated bymore » an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quan-tum yield, emittance, and emission models needed by beam optics codes are discussed. Published by AIP Publishing. https://doi.org/10.1063/1.5008600« less

  11. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    DOE PAGES

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; ...

    2018-01-28

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al.[Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated bymore » an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quan-tum yield, emittance, and emission models needed by beam optics codes are discussed. Published by AIP Publishing. https://doi.org/10.1063/1.5008600« less

  12. Effects of energetic particle phase space modifications by instabilities on integrated modeling

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.

    2016-11-01

    Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.

  13. Validation of MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared channel with field measurements.

    PubMed

    Tang, Bo-Hui; Wu, Hua-; Li, Zhao-Liang; Nerry, Françoise

    2012-07-30

    This work addressed the validation of the MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared (MIR) channel, proposed by Tang and Li [Int. J. Remote Sens. 29, 4907 (2008)], with ground-measured data, which were collected from a field campaign that took place in June 2004 at the ONERA (Office National d'Etudes et de Recherches Aérospatiales) center of Fauga-Mauzac, on the PIRRENE (Programme Interdisciplinaire de Recherche sur la Radiométrie en Environnement Extérieur) experiment site [Opt. Express 15, 12464 (2007)]. The leaving-surface spectral radiances measured by a BOMEM (MR250 Series) Fourier transform interferometer were used to calculate the ground brightness temperatures with the combination of the inversion of the Planck function and the spectral response functions of MODIS channels 22 and 23, and then to estimate the ground brightness temperature without the contribution of the solar direct beam and the bidirectional reflectivity by using Tang and Li's proposed algorithm. On the other hand, the simultaneously measured atmospheric profiles were used to obtain the atmospheric parameters and then to calculate the ground brightness temperature without the contribution of the solar direct beam, based on the atmospheric radiative transfer equation in the MIR region. Comparison of those two kinds of brightness temperature obtained by two different methods indicated that the Root Mean Square Error (RMSE) between the brightness temperatures estimated respectively using Tang and Li's algorithm and the atmospheric radiative transfer equation is 1.94 K. In addition, comparison of the hemispherical-directional reflectances derived by Tang and Li's algorithm with those obtained from the field measurements showed that the RMSE is 0.011, which indicates that Tang and Li's algorithm is feasible to retrieve the bidirectional reflectivity in MIR channel from MODIS data.

  14. Effects of energetic particle phase space modifications by instabilities on integrated modeling

    DOE PAGES

    Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; ...

    2016-07-22

    Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effectivemore » tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Furthermore, those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.« less

  15. Measuring one nucleon transfer reaction 24Mg( p, d)23Mg for astrophysical reaction rates

    NASA Astrophysics Data System (ADS)

    Lee, E. J.; Chae, K. Y.

    2017-12-01

    The level structure of a radionuclide 23Mg has been studied by using the 24Mg( p, d)23Mg one nucleon transfer reaction measurement for the astrophysical 19Ne(α, γ)23Mg reaction rate. A 41 MeV proton beam was produced and accelerated at the 25 MV tandem accelerator of the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory in the United States. The beam particles impinged on an isotopically-enriched 24Mg solid target. Angular distributions of recoiling deuterons were extracted by using a large area silicon strip detector array. By comparing the experimentally-obtained angular distributions with zero range distorted wave Born approximation calculations, spins and parities of three energy levels of 23Mg could be constrained for the first time, which is very important information needed to understand the 19Ne(α, γ)23Mg reaction rate.

  16. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will bemore » discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.« less

  17. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera

    NASA Astrophysics Data System (ADS)

    Vargas, E.; Cifuentes, A.; Alvarado, S.; Cabrera, H.; Delgado, O.; Calderón, A.; Marín, E.

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  18. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera.

    PubMed

    Vargas, E; Cifuentes, A; Alvarado, S; Cabrera, H; Delgado, O; Calderón, A; Marín, E

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  19. ESR dosimeter material properties of phenols compound exposed to radiotherapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Gallo, Salvatore; Iacoviello, Giuseppina; Bartolotta, Antonio; Dondi, Daniele; Panzeca, Salvatore; Marrale, Maurizio

    2017-09-01

    There is a need for a sensitive dosimeter using Electron Spin Resonance spectroscopy for use in medical applications, since non-destructive read-out and dose archival could be achieved with this method. This work reports a systematic ESR investigation of IRGANOX ® 1076 exposed to clinical electron beams produced by a LINAC used for radiation therapy treatments. Recently, dosimetric features of this material were investigated for irradiation with 60Co γ -photons and neutrons in both pellet and film shape and have been found promising thanks to their high efficiency of radiation-matter energy transfer and radical stability at room temperature. Here the analysis of the dosimetric features of these ESR dosimeters exposed to clinical electron beams at energies of 7, 10 and 14 MeV, is described in terms of dependence on microwave power and modulation amplitude, response on dose, dependence on beam type, detection limits, and signal stability after irradiation. The analysis of the ESR signal as function of absorbed dose highlights that the response of this material is linear in the dose range investigated (1-13 Gy) and is independent of the beam energy. The minimum detectable dose is found to be smaller than 1 Gy. Comparison of electron stopping power values of these dosimeters with those of water and soft tissue highlights equivalence of the response to electron beams in the energy range considered. The signal intensity was monitored for 40 days after irradiation and for all energies considered and it shows negligible variations in the first 500 h after irradiation whereas after 1100 h the signal decay is only of about 4%. In conclusion, it is found that phenolic compounds possess good dosimetric features which make it useful as a sensitive dosimeter for medical applications.

  20. Detector evaluation of a prototype amorphous selenium-based full field digital mammography system

    NASA Astrophysics Data System (ADS)

    Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.

    2005-04-01

    This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.

  1. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.

  2. Comparison of heavy-ion- and electron-beam upset data for GaAS SRAMS. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesner, L.D.; Zuleeg, R.; Kolasinski, W.A.

    1992-07-16

    We report the results of experiments designed to evaluate the extent to which focused electron-beam pulses simulate energetic ion upset phenomena in GaAs memory circuits fabricated by the McDonnell Douglas Astronautics Company. The results of two experimental methods were compared, irradiation by heavy-ion particle beams, and upset mapping using focused electron pulses. Linear energy transfer (LET) thresholds and upset cross sections are derived from the data for both methods. A comparison of results shows good agreement, indicating that for these circuits electron-beam pulse mapping is a viable simulation technique.

  3. Atmospheric Quantum Channels with Weak and Strong Turbulence.

    PubMed

    Vasylyev, D; Semenov, A A; Vogel, W

    2016-08-26

    The free-space transfer of high-fidelity optical signals between remote locations has many applications, including both classical and quantum communication, precision navigation, clock synchronization, etc. The physical processes that contribute to signal fading and loss need to be carefully analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the probability distribution for the atmospheric transmittance including beam wandering, beam shape deformation, and beam-broadening effects. Our model, referred to as the elliptic beam approximation, applies to weak, weak-to-moderate, and strong turbulence and hence to the most important regimes in atmospheric communication scenarios.

  4. Topological charge algebra of optical vortices in nonlinear interactions.

    PubMed

    Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V

    2015-12-28

    We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.

  5. Sub-barrier fusion and transfers in the 40Ca + 58,64Ni systems

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Szilner, S.; Mijatović, T.

    2016-05-01

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at energies around and below the Coulomb barrier. The 40Ca beam was delivered by the XTU Tandem accelerator of the Laboratori Nazionali di Legnaro and evaporation residues were measured at very forward angles with the LNL electrostatic beam deflector. Coupled-channels calculations were performed which highlight possible strong effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni system. Microscopic time-dependent Hartree-Fock calculations have also been performed for both systems. Preliminary results are shown.

  6. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  7. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    PubMed

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  8. A simple model for the prediction of the discrete stiffness states of a homogeneous electrostatically tunable multi-layer beam

    NASA Astrophysics Data System (ADS)

    Bergamini, A.; Christen, R.; Motavalli, M.

    2007-04-01

    The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to better understand the processes taking place at the interfaces between layers, demonstrate the existence of discrete stiffness states and to find guidance for the selection of suitable dielectric layers for the generation of the electrostatic normal stresses needed for the shear stress transfer at the interface.

  9. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less

  10. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  11. Multi-beam linear accelerator EVT

    DOE PAGES

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-03-29

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initialmore » specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. Furthermore, a relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.« less

  12. The development of W-PBPM at diagnostic beamline

    NASA Astrophysics Data System (ADS)

    Kim, Seungnam; Kim, Myeongjin; Kim, Seonghan; Shin, Hocheol; Kim, Jiwha; Lee, Chaesun

    2017-12-01

    The photon beam position monitor (PBPM) plays a critically important role in the accurate monitoring of the beam position. W (Wire)-PBPMs are installed at the front end and photon transfer line (PTL) of the diagnostic beamline and detect the change of position and angle of the beam orbit applied to the beamline. It provides beam stability and position data in real time, which can be used in feedback system with BPM in storage-ring. Also it provides beam profile, which makes it possible to figure out the specifications of beam. With two W-PBPMs, the angle information of beam could be acquired and the results coupled with beam profile are used with orbit correction. The W-PBPM has been designed and installed in the diagnostic beamline at Pohang Light Source. Herein the details of the design, analysis and performance for the W-PBPM will be reported.

  13. Heuristic Green's function of the time dependent radiative transfer equation for a semi-infinite medium.

    PubMed

    Martelli, Fabrizio; Sassaroli, Angelo; Pifferi, Antonio; Torricelli, Alessandro; Spinelli, Lorenzo; Zaccanti, Giovanni

    2007-12-24

    The Green's function of the time dependent radiative transfer equation for the semi-infinite medium is derived for the first time by a heuristic approach based on the extrapolated boundary condition and on an almost exact solution for the infinite medium. Monte Carlo simulations performed both in the simple case of isotropic scattering and of an isotropic point-like source, and in the more realistic case of anisotropic scattering and pencil beam source, are used to validate the heuristic Green's function. Except for the very early times, the proposed solution has an excellent accuracy (> 98 % for the isotropic case, and > 97 % for the anisotropic case) significantly better than the diffusion equation. The use of this solution could be extremely useful in the biomedical optics field where it can be directly employed in conditions where the use of the diffusion equation is limited, e.g. small volume samples, high absorption and/or low scattering media, short source-receiver distances and early times. Also it represents a first step to derive tools for other geometries (e.g. slab and slab with inhomogeneities inside) of practical interest for noninvasive spectroscopy and diffuse optical imaging. Moreover the proposed solution can be useful to several research fields where the study of a transport process is fundamental.

  14. Separated structure functions for exclusive K+Λ and K+Σ0 electroproduction at 5.5 GeV measured with CLAS

    NASA Astrophysics Data System (ADS)

    Carman, D. S.; Park, K.; Raue, B. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N. A.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Y.; Tkachenko, S.; Trivedi, A.; Ungaro, M.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-02-01

    We report measurements of the exclusive electroproduction of K+Λ and K+Σ0 final states from an unpolarized proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions σU, σLT, σTT, and σLT' were extracted from the Φ-dependent differential cross sections acquired with a longitudinally polarized 5.499 GeV electron beam. The data span a broad range of momentum transfers Q2 from 1.4 to 3.9 GeV2, invariant energy W from threshold to 2.6 GeV, and nearly the full center-of-mass angular range of the kaon. The separated structure functions provide an unprecedented data sample, which, in conjunction with other meson photo- and electroproduction data, will help to constrain the higher-level analyses being performed to search for missing baryon resonances.

  15. Designing Light Beam Transmittance Measuring Tool Using a Laser Pointer

    NASA Astrophysics Data System (ADS)

    Nuroso, H.; Kurniawan, W.; Marwoto, P.

    2016-08-01

    A simple instrument used for measuring light beam transmittance percentage made of window film has been developed. The instrument uses a laser pointer of 405 nm and 650 nm ±10% as a light source. Its accuracy approaches 80%. Transmittance data was found by comparing the light beam before and after passing the window film. The light intensity measuring unit was deleted by splitting the light source into two beams through a beam splitter. The light beam was changed into resistance by a NORP12 LDR sensor designed at a circuit of voltage divider rule of Khirchoff's laws. This conversion system will produce light beam intensity received by the sensor to become an equal voltage. This voltage will, then, be presented on the computer screen in the form of a real time graph via a 2.0 USB data transfer.

  16. Accelerated iterative beam angle selection in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bangert, Mark, E-mail: m.bangert@dkfz.de; Unkelbach, Jan

    2016-03-15

    Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based onmore » surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could show that optimized beam ensembles using only a few noncoplanar beam orientations often approach the plan quality of fully noncoplanar ensembles. Conclusions: We conclude that iterative BAS in combination with objective function surrogates can be a viable option to implement automated BAS at clinically acceptable computation times.« less

  17. Accelerated iterative beam angle selection in IMRT.

    PubMed

    Bangert, Mark; Unkelbach, Jan

    2016-03-01

    Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n - 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could show that optimized beam ensembles using only a few noncoplanar beam orientations often approach the plan quality of fully noncoplanar ensembles. We conclude that iterative BAS in combination with objective function surrogates can be a viable option to implement automated BAS at clinically acceptable computation times.

  18. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    DOE PAGES

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; ...

    2018-05-25

    Here, cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light–changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase themore » equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.« less

  19. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.

    Here, cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light–changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase themore » equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.« less

  20. Polarimetry of uncoupled light on the NIF.

    PubMed

    Turnbull, D; Moody, J D; Michel, P; Ralph, J E; Divol, L

    2014-11-01

    Polarimetry has been added to the full aperture backscatter diagnostic on the NIF. Wollaston prisms are used to sample a small region of a beam's backscatter, effectively separating it into two linear polarizations, one of which is parallel to the incident beam. A time-averaged measurement of each polarization is obtained by imaging the separated spots off of a scatter plate. Results have improved understanding of crossed beam energy transfer, glint, and sidescatter, and motivated plans to upgrade to a time-resolved polarimeter measuring the full Stokes vector.

  1. Radially polarized conical beam from an embedded etched fiber.

    PubMed

    Kalaidji, Djamel; Spajer, Michel; Marthouret, Nadège; Grosjean, Thierry

    2009-06-15

    We propose a method for producing a conical beam based on the lateral refraction of the TM(01) mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid component usable for many applications has been obtained.

  2. Commissioning of the Electron-Positron Collider VEPP-2000 after the Upgrade

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu.; Belikov, O.; Berkaev, D.; Gorchakov, K.; Zharinov, Yu.; Zemlyanskii, I.; Kasaev, A.; Kirpotin, A.; Koop, I.; Lysenko, A.; Motygin, S.; Perevedentsev, E.; Prosvetov, V.; Rabusov, D.; Rogovskii, Yu.; Senchenko, A.; Timoshenko, M.; Shatilov, D.; Shatunov, P.; Shvarts, D.

    2018-05-01

    The VEPP-2000 electron-positron collider has been operating at BINP since 2010. Applying the concept of round colliding beams allows us to reach the record value of the beam-beam parameter, ξ 0.12. The VEPP-2000 upgrade, including the connection to the new BINP Injection Complex, the improvement of the BEP booster, and the BEP-VEPP-2000 transfer channels for operation at 1 GeV, substantially increases the installation luminosity. Data collection is in progress.

  3. Construction and Performance of a Superconducting Multipole Wiggler

    NASA Astrophysics Data System (ADS)

    Hwang, C. S.; Wang, B.; Chen, J. Y.; Chang, C. H.; Chen, H. H.; Fan, T. C.; Lin, F. Y.; Huang, M. H.; Chang, C. C.; Hsu, S. N.; Hsiung, G. Y.; Hsu, K. T.; Chen, J.; Chien, Y. C.; Chen, J. R.; Chen, C. T.

    2004-05-01

    A 3.2 Tesla superconducting multipole wiggler was designed and fabricated as an X-ray source. The magnet assembly, which consists of 32 pairs of racetrack NbTi superconducting coils with a periodic length of 60 mm, provides 28 effective poles. A 1.4056 m long elliptical cold-bore stainless steel beam duct with taper flanges and a wall thickness of 1 mm, was developed and constructed to fit the ultra-high vacuum condition for electron beam. The magnetic field strength was measured in liquid helium using a cryogenic Hall probe, revealing a field behavior very close to behavior consistent with the designed values. A Hall generator and the stretch wire methods are used to determine the transfer function of the peak field, the first and second integrated field distributions, and the good field region of the magnet. The quench protection of the magnet, the control algorithm for automatic filling of liquid helium, and the boil off rate of liquid helium and liquid nitrogen will also be discussed.

  4. A model of primary and scattered photon fluence for mammographic x-ray image quantification

    NASA Astrophysics Data System (ADS)

    Tromans, Christopher E.; Cocker, Mary R.; Brady, Michael, Sir

    2012-10-01

    We present an efficient method to calculate the primary and scattered x-ray photon fluence component of a mammographic image. This can be used for a range of clinically important purposes, including estimation of breast density, personalized image display, and quantitative mammogram analysis. The method is based on models of: the x-ray tube; the digital detector; and a novel ray tracer which models the diverging beam emanating from the focal spot. The tube model includes consideration of the anode heel effect, and empirical corrections for wear and manufacturing tolerances. The detector model is empirical, being based on a family of transfer functions that cover the range of beam qualities and compressed breast thicknesses which are encountered clinically. The scatter estimation utilizes optimal information sampling and interpolation (to yield a clinical usable computation time) of scatter calculated using fundamental physics relations. A scatter kernel arising around each primary ray is calculated, and these are summed by superposition to form the scatter image. Beam quality, spatial position in the field (in particular that arising at the air-boundary due to the depletion of scatter contribution from the surroundings), and the possible presence of a grid, are considered, as is tissue composition using an iterative refinement procedure. We present numerous validation results that use a purpose designed tissue equivalent step wedge phantom. The average differences between actual acquisitions and modelled pixel intensities observed across the adipose to fibroglandular attenuation range vary between 5% and 7%, depending on beam quality and, for a single beam quality are 2.09% and 3.36% respectively with and without a grid.

  5. Stimulated Electron Desorption Studies from Microwave Vacuum Electronics / High Power Microwave Materials

    DTIC Science & Technology

    2010-02-11

    purchase a new gun. Mr. Mike Ackeret ( Transfer Engineering Inc.) Transfer Engineering’s expertise in specialty UHV work and machining propelled...modifications they helped design for the test stand. With UNLV guidance, Transfer Engineering designed and built the original UNLV SEE Test Stand...Staib electron gun, an isolated beam drift tube, a hexanode delay line with a chevron microchannel plate (MCP) stack, an isolated grid, an isolated

  6. Laser Measurement Of Convective-Heat-Transfer Coefficient

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  7. A new e-beam application in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Malcolm, Fiona

    2005-10-01

    The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.

  8. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2.0 millimeters..

  9. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    PubMed

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  10. Temperature Rise in a Two-Layer Structure Induced by a Rotating or Dithering Laser Beam

    DTIC Science & Technology

    2012-01-01

    References [1] G. Araya and G. Gutierrez, Analytical solution for a transient, three-dimensional temperature dis- tribution due to a moving laser...beam, Int. J. Heat and Mass Transfer 49 ( 2006 ), 4124-4131. [2] R. Bellman, R.E. Marshak, and G.M. Wing, Laplace transform solution of two-medium neutron

  11. Energy-transfer processes in neon-hydrogen mixtures excited by electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, A.; Kruecken, R.; Ulrich, A.

    2005-12-15

    Energy- and charge-transfer processes in neon-hydrogen mixtures (500-1400 hPa neon and 0.001-3 hPa hydrogen partial pressures) excited by a pulsed low-energy ({approx}10 keV) electron beam were investigated using time-resolved spectroscopy. Time spectra of the hydrogen Lyman-{alpha} line, neon excimer emission (second continuum), and neon atomic lines (3p-3s transitions) were recorded. The time-integrated intensity of the Lyman-{alpha} emission was measured for the same range of gas mixtures. It is shown that direct energy transfer from Ne{sub 2}* excimers and neon atoms in the four lowest excited states as well as recombination of H{sub 3}{sup +} ions are the main channels populatingmore » atomic hydrogen in the n=2 state. A rate constant of (4.2{+-}1.4)x10{sup -11} cm{sup 3} s{sup -1} was obtained for the charge transfer from Ne{sub 2}{sup +} ions to molecular hydrogen. A lower limit for the depopulation rate constant of Ne{sub 2}* excimers by molecular hydrogen (combination of energy transfer and ionization) was found to be 1.0x10{sup -10} cm{sup 3} s{sup -1}.« less

  12. Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2016-01-01

    An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.

  13. NLC Luminosity as a Function of Beam Parameters

    NASA Astrophysics Data System (ADS)

    Nosochkov, Y.

    2002-06-01

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  14. Bragg spectroscopy of strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Lingham, M. G.; Fenech, K.; Peppler, T.; Hoinka, S.; Dyke, P.; Hannaford, P.; Vale, C. J.

    2016-10-01

    This article provides an overview of recent developments and emerging topics in the study of two-component Fermi gases using Bragg spectroscopy. Bragg scattering is achieved by exposing a gas to two intersecting laser beams with a slight frequency difference and measuring the momentum transferred to the atoms. By varying the Bragg laser detuning, it is possible to measure either the density or spin response functions which characterize the basic excitations present in the gas. Specifically, one can measure properties such as the dynamic and static structure factors, Tan's universal contact parameter and observe signatures for the onset of pair condensation locally within a gas.

  15. Research Studies on Advanced Optical Module/Head Designs for Optical Data Storage

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Preprints are presented from the recent 1992 Optical Data Storage meeting in San Jose. The papers are divided into the following topical areas: Magneto-optical media (Modeling/design and fabrication/characterization/testing); Optical heads (holographic optical elements); and Optical heads (integrated optics). Some representative titles are as follow: Diffraction analysis and evaluation of several focus and track error detection schemes for magneto-optical disk systems; Proposal for massively parallel data storage system; Transfer function characteristics of super resolving systems; Modeling and measurement of a micro-optic beam deflector; Oxidation processes in magneto-optic and related materials; and A modal analysis of lamellar diffraction gratings in conical mountings.

  16. Projecting non-diffracting waves with intermediate-plane holography.

    PubMed

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  17. Metformin enhances the radiosensitivity of human liver cancer cells to γ–rays and carbon ion beams

    PubMed Central

    Kim, Eun Ho; Kim, Mi-Sook; Furusawa, Yoshiya; Uzawa, Akiko; Han, Soorim; Jung, Won-Gyun; Sai, Sei

    2016-01-01

    The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ–rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ–rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis. Carbon ion beams combined with metformin were more effective than carbon ion beams or γ-rays alone at inducing subG1 and decreasing G2/M arrest, reducing the expression of vimentin, enhancing phospho-AMPK expression, and suppressing phospho-mTOR and phospho-Akt. Thus, metformin effectively enhanced the therapeutic effect of radiation with a wide range of LET, in particular carbon ion beams and it may be useful for increasing the clinical efficacy of carbon ion beams. PMID:27802188

  18. Deformation and Heat Transfer on Three Sides Protected Beams under Fire Accident

    NASA Astrophysics Data System (ADS)

    Imran, M.; Liew, M. S.; Garcia, E. M.; Nasif, M. S.; Yassin, A. Y. M.; Niazi, U. M.

    2018-04-01

    Fire accidents are common in oil and gas industry. The application of passive fire protection (PFP) is a costly solution. The PFP is applied only on critical structural members to optimise project cost. In some cases, beams cannot be protected from the top flange in order to accommodate for the placement of pipe supports and grating. It is important to understand the thermal and mechanical response of beam under such condition. This paper discusses the response of steel beam under ISO 834 fire protected, unprotected and three sides protected beams. The model validated against an experimental study. The experimental study has shown good agreement with FE model. The study revealed that the beams protected from three sides heat-up faster compare to fully protected beam showing different temperature gradient. However, the affects load carrying capacity are insignificant under ISO 834 fire.

  19. Computational model for simulation of sequences of helicity and angular momentum transfer in turbid tissue-like scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Meglinski, Igor

    2017-02-01

    Current report considers development of a unified Monte Carlo (MC) -based computational model for simulation of propagation of Laguerre-Gaussian (LG) beams in turbid tissue-like scattering medium. With a primary goal to proof the concept of using complex light for tissue diagnosis we explore propagation of LG beams in comparison with Gaussian beams for both linear and circular polarization. MC simulations of radially and azimuthally polarized LG beams in turbid media have been performed, classic phenomena such as preservation of the orbital angular momentum, optical memory and helicity flip are observed, detailed comparison is presented and discussed.

  20. Beam splitter phase shifts: Wave optics approach

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Degiorgio, Vittorio

    2017-10-01

    We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.

  1. Characterization of imaging performance in differential phase contrast CT compared with the conventional CT: Spectrum of noise equivalent quanta NEQ(k)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Xiangyang; Yang Yi; Tang Shaojie

    Purpose: Differential phase contrast CT (DPC-CT) is emerging as a new technology to improve the contrast sensitivity of conventional attenuation-based CT. The noise equivalent quanta as a function over spatial frequency, i.e., the spectrum of noise equivalent quanta NEQ(k), is a decisive indicator of the signal and noise transfer properties of an imaging system. In this work, we derive the functional form of NEQ(k) in DPC-CT. Via system modeling, analysis, and computer simulation, we evaluate and verify the derived NEQ(k) and compare it with that of the conventional attenuation-based CT. Methods: The DPC-CT is implemented with x-ray tube and gratings.more » The x-ray propagation and data acquisition are modeled and simulated through Fresnel and Fourier analysis. A monochromatic x-ray source (30 keV) is assumed to exclude any system imperfection and interference caused by scatter and beam hardening, while a 360 Degree-Sign full scan is carried out in data acquisition to avoid any weighting scheme that may disrupt noise randomness. Adequate upsampling is implemented to simulate the x-ray beam's propagation through the gratings G{sub 1} and G{sub 2} with periods 8 and 4 {mu}m, respectively, while the intergrating distance is 193.6 mm (1/16 of the Talbot distance). The dimensions of the detector cell for data acquisition are 32 Multiplication-Sign 32, 64 Multiplication-Sign 64, 96 Multiplication-Sign 96, and 128 Multiplication-Sign 128 {mu}m{sup 2}, respectively, corresponding to a 40.96 Multiplication-Sign 40.96 mm{sup 2} field of view in data acquisition. An air phantom is employed to obtain the noise power spectrum NPS(k), spectrum of noise equivalent quanta NEQ(k), and detective quantum efficiency DQE(k). A cylindrical water phantom at 5.1 mm diameter and complex refraction coefficient n= 1 -{delta}+i{beta}= 1 -2.5604 Multiplication-Sign 10{sup -7}+i1.2353 Multiplication-Sign 10{sup -10} is placed in air to measure the edge transfer function, line spread function and then modulation transfer function MTF(k), of both DPC-CT and the conventional attenuation-based CT. The x-ray flux is set at 5 Multiplication-Sign 10{sup 6} photon/cm{sup 2} per projection and observes the Poisson distribution, which is consistent with that of a micro-CT for preclinical applications. Approximately 360 regions, each at 128 Multiplication-Sign 128 matrix, are used to calculate the NPS(k) via 2D Fourier transform, in which adequate zero padding is carried out to avoid aliasing in noise. Results: The preliminary data show that the DPC-CT possesses a signal transfer property [MTF(k)] comparable to that of the conventional attenuation-based CT. Meanwhile, though there exists a radical difference in their noise power spectrum NPS(k) (trait 1/|k| in DPC-CT but |k| in the conventional attenuation-based CT) the NEQ(k) and DQE(k) of DPC-CT and the conventional attenuation-based CT are in principle identical. Conclusions: Under the framework of ideal observer study, the joint signal and noise transfer property NEQ(k) and detective quantum efficiency DQE(k) of DPC-CT are essentially the same as those of the conventional attenuation-based CT. The findings reported in this paper may provide insightful guidelines on the research, development, and performance optimization of DPC-CT for extensive preclinical and clinical applications in the future.« less

  2. Visualized kinematics code for two-body nuclear reactions

    NASA Astrophysics Data System (ADS)

    Lee, E. J.; Chae, K. Y.

    2016-05-01

    The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.

  3. Coherent pulse and environmental characteristics of the intramolecular proton-transfer lasers based on 3-hydroxyflavone and fisetin

    NASA Astrophysics Data System (ADS)

    Parthenopoulos, Dimitri A.; Kasha, Michael

    1988-04-01

    Coherent stimulated emission and laser beams of good quality are reported for 3-hydroxyfiavone (3-HF) and a polyhydroxyfiavone, risetin, acting as intramolecular proton-transfer lasers. The laser beam quality of these materials is comparable to that observed for rhodamine-6G. Studies of amplified spontaneous emission of 3-hydroxyflavone in highly polar solvents are also reported. The very large changes in dipole moment upon electronic excitation of 3-HF expected according to ZINDO semiempirical molecular orbital calculations fail to give rise to spectral shifts in the high dielectric constant solvents. The results are interpreted as a masking spectral effect caused by specific hydrogen bonding by the solvent.

  4. Galactic Cosmic Ray Event-Based Risk Model (GERM) Code

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.

    2013-01-01

    This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.

  5. Antiproton acceleration in the Fermilab Main Ring and Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.; Dinkel, J.; Ducar, R.

    1987-03-01

    The operation of the Fermilab Main Ring and Tevatron rf systems for colliding beams physics is discussed. The changes in the rf feedback system required for the accelration of antiprotons, and the methods for achieving proper transfer of both protons and antiprotons are described. Data on acceleration and transfer efficiencies are presented.

  6. Ion Figuring of Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Cantey, Thomas M.; Gregory, Don A.

    1997-01-01

    This investigation included experiments to demonstrate ion beam figuring effects on electroless nickel with the expressed desire to figure X-ray optic mandrels. It was important to establish that ion beam figuring did not induce any adverse effects to the nickel surface. The ion beam has consistently been shown to be an excellent indicator of the quality of the subsurface. Polishing is not the only cause for failure in the ion beam final figuring process, the material composition is equally important. Only by careful consideration of both these factors can the ion beam final figuring process achieve its greatest potential. The secondary goal was to construct a model for representing the ion beam material removal rate. Representing the ion beam removal rate is only an approximation and has a number of limiting factors. The resolution of the metrology apparatus limits the modeling of the beam function as well. As the surface error corrections demand more precision in the final figuring, the model representing beam function must be equally precise. The precision to which the beam function can be represented is not only determined by the model but also by the measurements producing that model. The method developed for determining the beam function has broad application to any material destined to be ion beam figured.

  7. Design of the low energy beam transport line for the China spallation neutron source

    NASA Astrophysics Data System (ADS)

    Li, Jin-Hai; Ouyang, Hua-Fu; Fu, Shi-Nian; Zhang, Hua-Shun; He, Wei

    2008-03-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper. The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  8. Automatic phase control in solar power satellite systems

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.

    1978-01-01

    Various approaches to the problem of generating, maintaining and distributing a coherent, reference phase signal over a large area are suggested, mathematically modeled and analyzed with respect to their ability to minimize: phase build-up, beam diffusion and beam steering phase jitter, cable length, and maximize power transfer efficiency. In addition, phase control configurations are suggested which alleviate the need for layout symmetry.

  9. Planned development of a radioactive beam capability at the LBNL 88-inch cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.; Moltz, D.M.; Norman, E.B.

    1997-12-31

    Planned development of low-Z, proton-rich, radioactive beams ({sup 11}C, {sup 13}N, {sup 14}, {sup 15}O, and {sup 18}F) at the 88 inch Cyclotron of the Lawrence Berkeley National Lab is described. Based on the {open_quotes}coupled cyclotron method{close_quotes}, isotopes produced by (p,n) and (p,a) reactions at a high-current (30 mA), low-energy (10 MeV) medical cyclotron will be transferred {approximately}300 meters by high-speed gas-jet transport to the ECR ion-source at the 88 inch Cyclotron. Important features of this approach are its low cost, use of simple and well tested technology, applicability to nearly all elements, and avoidance of lengthy (chemical or physical)more » isotopic release delays at the production target. Developmental progress is reported for various operational components. Based on conservative estimates, e.g. 1% ECR ion-yield, extracted radioactive ion beams are projected to exceed 10{sup 6} ions/sec. Experiments which will use these beams include studies of the scattering of mirror nuclei, single and mutual excitation in inelastic scattering and single nucleon transfer reactions.« less

  10. Plasma-based beam combiner for very high fluence and energy

    DOE PAGES

    Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; ...

    2017-10-02

    Extreme optical fluences, much beyond the damage threshold of conventional optics, are of interest for a range of high-energy-density physics applications. Nonlinear interactions of multiple beams in plasmas have the potential to produce optics that operate at much higher intensity and fluence than is possible in solids. In inertial confinement fusion experiments indirectly driven with lasers, many beams overlap in the plasma inside a hohlraum, and cross-beam energy transfer by Brillouin scattering has been employed to redistribute energy between laser beams within the target. Here in this paper, we show that in a hot, under-dense plasma the energy of manymore » input beams can be combined into a single well-collimated beam. The emerging beam has an energy of 4 kJ (over 1 ns) that is more than triple that of any incident beam, and a fluence that is more than double. Because the optic produced is plasma, and is diffractive, it is inherently capable of generating higher fluences in a single beam than solid-state refractive or reflective optics.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan; Sarfehnia, Arman

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials wasmore » also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. Conclusions: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R{sub 50} = 2.25 cm)« less

  12. Structure and properties of polyaniline nanocomposite coatings containing gold nanoparticles formed by low-energy electron beam deposition

    NASA Astrophysics Data System (ADS)

    Wang, Surui; Rogachev, A. A.; Yarmolenko, M. A.; Rogachev, A. V.; Xiaohong, Jiang; Gaur, M. S.; Luchnikov, P. A.; Galtseva, O. V.; Chizhik, S. A.

    2018-01-01

    Highly ordered conductive polyaniline (PANI) coatings containing gold nanoparticles were prepared by low-energy electron beam deposition method, with emeraldine base and chloroauric acid used as target materials. The molecular and chemical structure of the layers was studied by Fourier transform infrared, Raman, UV-vis and X-ray photoelectron spectroscopy. The morphology of the coatings was investigated by atomic force and transmission electron microscopy. Conductive properties were obtained by impedance spectroscopy method and scanning spreading resistance microscopy mode at the micro- and nanoscale. It was found that the emeraldine base layers formed from the products of electron-beam dispersion have extended, non-conductive polymer chains with partially reduced structure, with the ratio of imine and amine groups equal to 0.54. In case of electron-beam dispersion of the emeraldine base and chloroauric acid, a protoemeraldine structure is formed with conductivity 0.1 S/cm. The doping of this structure was carried out due to hydrochloric acid vapor and gold nanoparticles formed by decomposition of chloroauric acid, which have a narrow size distribution, with the most probable diameter about 40 nm. These gold nanoparticles improve the conductivity of the thin layers of PANI + Au composite, promoting intra- and intermolecular charge transfer of the PANI macromolecules aligned along the coating surface both at direct and alternating voltage. The proposed deposition method of highly oriented, conductive nanocomposite PANI-based coatings may be used in the direct formation of functional layers on conductive and non-conductive substrates.

  13. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  14. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo

    2015-01-01

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  15. Spot-welding solid targets for high current cyclotron irradiation

    PubMed Central

    Ellison, Paul A.; Valdovinos, Hector F.; Graves, Stephen A.; Barnhart, Todd E.; Nickles, Robert J.

    2016-01-01

    Zirconium-89 finds broad application for use in positron emission tomography. Its cyclotron production has been limited by the heat transfer from yttrium targets at high beam currents. A spot welding technique allows a three-fold increase in beam current, without affecting 89Zr quality. An yttrium foil, welded to a jet-cooled tantalum support base accommodates a 50 μA proton beam degraded to 14 MeV. The resulting activity yield of 48 ± 4 MBq/(μA·hr) now extends the outreach of 89Zr for a broader distribution. PMID:27771445

  16. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  17. Intracavity vortex beam generation

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Aït-Ameur, Kamel; Forbes, Andrew

    2011-10-01

    In this paper we explore vortex beams and in particular the generation of single LG0l modes and superpositions thereof. Vortex beams carry orbital angular momentum (OAM) and this intrinsic property makes them prevalent in transferring this OAM to matter and to be used in quantum information processing. We explore an extra-cavity and intra-cavity approach in LG0l mode generation respectively. The outputs of a Porro-prism resonator are represented by "petals" and we show that through a full modal decomposition, the "petal" fields are a superposition of two LG0l modes.

  18. The Scientific program with RIBRAS (Radioactive Ion Beams in Brasil)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.

    The Radioactive Ion Beams Facility (RIBRAS) is in operation since 2004 at the Pelletron Accelerator Laboratory of the University of Sao Paulo and consists of two superconducting solenoids capable of producing low energy secondary beams of light exotic nuclei. Measurements of the elastic scattering, breakup and transfer reactions with radioactive projectiles such as {sup 6}He,{sup 8}Li,{sup 7}Be on several targets have been performed. A review of the research program carried on along the last four years using the RIBRAS facility is presented.

  19. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  20. First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB

    NASA Astrophysics Data System (ADS)

    Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter

    2018-05-01

    160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.

  1. Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load

    NASA Astrophysics Data System (ADS)

    Wang, Yuewu; Wu, Dafang

    2016-10-01

    Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.

  2. The role of electron transfer in DNA building blocks: Evaluation of strand breaks and their implications

    NASA Astrophysics Data System (ADS)

    Almeida, Diogo Alexandre Fialho de

    Radiation-induced damage to biological systems, both direct and indirect processes, has increasingly come under scrutiny by the international scientific community due to recent findings that electrons are a very effective agent in damaging DNA/RNA. Indeed, much remains to be discovered regarding the exact physico-chemical processes that occur in the nascent stages of DNA/RNA damage by incident radiation. However, it is also known that electrons do not exist freely in the physiological medium, but rather solvated and/or pre-solvated states. This leads to the need for new techniques that can better explore the damaging role of "bound" electrons to DNA/RNA. The work presented in this thesis consists on the study of electron transfer in collisions of atomic species with molecules of biological relevance. In order to study these processes, two experimental setups were used. One setup consists of a crossed beam experiment where a neutral potassium beam is created and made to collide with an effusive molecular target beam. The anionic products that stem from electron transfer in potassium atom to the molecular target collisions are then extracted and time-of-flight (TOF) mass analysed. In the second setup a beam of anionic species is formed and made to collide with a molecular target. Collisions with three different anionic beams were performed (H-, O- and OH-), as well as with different simple organic molecules, by measuring the positive and negative ion fragmentation patterns with a quadrupole mass spectrometer (QMS). A comparison between these two collisional systems can greatly help to understand the underlying mechanisms of the electron transfer processes. Finally, studies of potassium collisions with sugar surrogates D-Ribose and THF were performed. These studies show very different fragmentation patterns from DEA, although in the case of THF, it is suggested that the initially accessed states are the same as in DEA. With these studies was also possible to show for the first time collision induced site and bond selectivity breaking, where the electron is transferred into a given state of the acceptor molecule and the resulting fragmentation pathways are exclusive to the initial anionic state. Furthermore, the role of the potassium cation post collisionwas explored and indeed its presence is suggested to induce at least partial suppression of auto-detachment. The implications that ensue from this degradation are analysed in the light of the obtained fragmentation patterns.

  3. Longitudinal Fracture Analysis of a Two-Dimensional Functionally Graded Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2017-11-01

    Longitudinal fracture in a two-dimensional functionally graded beam is analyzed. The modulus of elasticity varies continuously in the beam cross-section. The beam is clamped in its right-hand end. The external loading consists of one longitudinal force applied at the free end of the lower crack arm. The longitudinal crack is located in the beam mid-plane. The fracture is studied in terms of the strain energy release rate. The solution derived is used to elucidate the effects of material gradients along the height as well as along the width of the beam cross-section on the fracture behaviour. The results obtained indicate that the fracture in two-dimensional functionally graded beams can be regulated efficiently by employing appropriate material gradients.

  4. The Qweak experimental apparatus

    NASA Astrophysics Data System (ADS)

    Allison, T.; Anderson, M.; Androić, D.; Armstrong, D. S.; Asaturyan, A.; Averett, T.; Averill, R.; Balewski, J.; Beaufait, J.; Beminiwattha, R. S.; Benesch, J.; Benmokhtar, F.; Bessuille, J.; Birchall, J.; Bonnell, E.; Bowman, J. D.; Brindza, P.; Brown, D. B.; Carlini, R. D.; Cates, G. D.; Cavness, B.; Clark, G.; Cornejo, J. C.; Dusa, S. Covrig; Dalton, M. M.; Davis, C. A.; Dean, D. C.; Deconinck, W.; Diefenbach, J.; Dow, K.; Dowd, J. F.; Dunne, J. A.; Dutta, D.; Duvall, W. S.; Echols, J. R.; Elaasar, M.; Falk, W. R.; Finelli, K. D.; Finn, J. M.; Gaskell, D.; Gericke, M. T. W.; Grames, J.; Gray, V. M.; Grimm, K.; Guo, F.; Hansknecht, J.; Harrison, D. J.; Henderson, E.; Hoskins, J. R.; Ihloff, E.; Johnston, K.; Jones, D.; Jones, M.; Jones, R.; Kargiantoulakis, M.; Kelsey, J.; Khan, N.; King, P. M.; Korkmaz, E.; Kowalski, S.; Kubera, A.; Leacock, J.; Leckey, J. P.; Lee, A. R.; Lee, J. H.; Lee, L.; Liang, Y.; MacEwan, S.; Mack, D.; Magee, J. A.; Mahurin, R.; Mammei, J.; Martin, J. W.; McCreary, A.; McDonald, M. H.; McHugh, M. J.; Medeiros, P.; Meekins, D.; Mei, J.; Michaels, R.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Morgan, N.; Musson, J.; Mesick, K. E.; Narayan, A.; Ndukum, L. Z.; Nelyubin, V.; Nuruzzaman; van Oers, W. T. H.; Opper, A. K.; Page, S. A.; Pan, J.; Paschke, K. D.; Phillips, S. K.; Pitt, M. L.; Poelker, M.; Rajotte, J. F.; Ramsay, W. D.; Roberts, W. R.; Roche, J.; Rose, P. W.; Sawatzky, B.; Seva, T.; Shabestari, M. H.; Silwal, R.; Simicevic, N.; Smith, G. R.; Sobczynski, S.; Solvignon, P.; Spayde, D. T.; Stokes, B.; Storey, D. W.; Subedi, A.; Subedi, R.; Suleiman, R.; Tadevosyan, V.; Tobias, W. A.; Tvaskis, V.; Urban, E.; Waidyawansa, B.; Wang, P.; Wells, S. P.; Wood, S. A.; Yang, S.; Zhamkochyan, S.; Zielinski, R. B.

    2015-05-01

    The Jefferson Lab Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise e → p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 μA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Møller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8° and 11.6° were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silica Cherenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q2=0.025 GeV2 was determined using dedicated low-current (~ 100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet.

  5. Intercomparison of methods for image quality characterization. I. Modulation transfer function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan; Ranger, Nicole T.; Dobbins, James T. III

    The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge testmore » device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 {mu}m opening. The translucent edge test device was made of a laminated and polished Pt{sub 0.9}Ir{sub 0.1} alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0%{+-}0.2% lower than that of Dobbins et al. and 0.7%{+-}0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2%{+-}0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7%{+-}0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0%{+-}0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.« less

  6. Intercomparison of methods for image quality characterization. I. Modulation transfer function.

    PubMed

    Samei, Ehsan; Ranger, Nicole T; Dobbins, James T; Chen, Ying

    2006-05-01

    The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge test device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 microm opening. The translucent edge test device was made of a laminated and polished Pt(0.9)Ir(0.1). alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0% +/- 0.2% lower than that of Dobbins et al. and 0.7% +/- 0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2% +/- 0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7% +/- 0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0% +/- 0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.

  7. Recent results on reactions with radioactive beams at RIBRAS (Radioactive Ion Beams in Brazil)

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Arazi, A.; Barioni, A.; Benjamim, E. A.; de Faria, P. N.; Descouvemont, P.; Gasques, L. R.; E; Leistenschneider; Mendes, D. R., Jr.; Morais, M. C.; Morcelle, V.; Moro, A. M.; Pampa Condori, R.; Pires, K. C. C.; Rodriguez-Gallardo, M.; Scarduelli, V.; Shorto, J. M. B.; Zamora, J. C.

    2015-04-01

    We present a quick description of RIBRAS (Radioactive Ion beams in Brazil), which is a superconducting double solenoid system, installed at the Pelletron Laboratory of the University of São Paulo and extends the capabilities of the original Pelletron Tandem Accelerator of 8MV terminal voltage (8UD) by producing secondary beams of unstable nuclei. The experimental program of the RIBRAS covers the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, have also been included in our recent experimental program.

  8. WE-D-17A-06: Optically Stimulated Luminescence Detectors as ‘LET-Meters’ in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granville, D; Sahoo, N; Sawakuchi, GO

    Purpose: To demonstrate and evaluate the potential of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of linear energy transfer (LET) in therapeutic proton beams. Methods: Batches of Al2O2:C OSLDs were irradiated with an absorbed dose of 0.2 Gy in un-modulated proton beams of varying LET (0.67 keV/μm to 2.58 keV/μm). The OSLDs were read using continuous wave (CW-OSL) and pulsed (P-OSL) stimulation modes. We parameterized and calibrated three characteristics of the OSL signals as functions of LET: CW-OSL curve shape, P-OSL curve shape and the ratio of the two OSL emission band intensities (ultraviolet/blue ratio). Calibration curves were createdmore » for each of these characteristics to describe their behaviors as functions of LET. The true LET values were determined using a validated Monte Carlo model of the proton therapy nozzle used to irradiate the OSLDs. We then irradiated batches of OSLDs with an absorbed dose of 0.2 Gy at various depths in two modulated proton beams (140 MeV, 4 cm wide spread-out Bragg peak (SOBP) and 250 MeV, 10 cm wide SOBP). The LET values were calculated using the OSL response and the calibration curves. Finally, measured LET values were compared to the true values determined using Monte Carlo simulations. Results: The CW-OSL curve shape, P-OSL curve shape and the ultraviolet/blue-ratio provided proton LET estimates within 12.4%, 5.7% and 30.9% of the true values, respectively. Conclusion: We have demonstrated that LET can be measured within 5.7% using Al2O3:C OSLDs in the therapeutic proton beams used in this investigation. From a single OSLD readout, it is possible to measure both the absorbed dose and LET. This has potential future applications in proton therapy quality assurance, particularly for treatment plans based on optimization of LET distributions. This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.« less

  9. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshinowo, Babatunde O.; Izraelevitch, Federico

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquiresmore » kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.« less

  10. Impact of large x-ray beam collimation on image quality

    NASA Astrophysics Data System (ADS)

    Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.

    2016-03-01

    Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.

  11. Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer.

    PubMed

    Nande, Rounak; Greco, Adelaide; Gossman, Michael S; Lopez, Jeffrey P; Claudio, Luigi; Salvatore, Marco; Brunetti, Arturo; Denvir, James; Howard, Candace M; Claudio, Pier Paolo

    2013-06-01

    Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes. Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.

  12. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2017-07-01

    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  13. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  14. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhijun; Li, Wentao; Wang, Wentao

    2016-05-15

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, themore » e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.« less

  15. Detailed characterization of the 1087 MeV/nucleon iron-56 beam used for radiobiology at the alternating gradient synchrotron

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Heilbronn, L.; Miller, J.

    1998-01-01

    We report beam characterization and dosimetric measurements made using a 56Fe beam extracted from the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) with a kinetic energy of 1087 MeV/nucleon. The measurements reveal that the depth-dose distribution of this beam differs significantly from that obtained with a 600 MeV/nucleon iron beam used in several earlier radiobiology experiments at the Lawrence Berkeley National Laboratory's BEVALAC. We present detailed measurements of beam parameters relevant for radiobiology, including track- and dose-averaged linear energy transfer (LET), fragment composition and LET spectra measured behind sample holders used in irradiations of biological samples. We also report measurements of fluence behind three depths (1.94, 4.68 and 9.35 g cm(-2)) of polyethylene targets with the 1087 MeV/nucleon beam, and behind 1.94 g cm(-2) of polyethylene with a 610 MeV/nucleon beam delivered by the AGS. These results are compared to earlier measurements with the 600 MeV/nucleon beam at the BEVALAC.

  16. JPRS report: Science and technology. Central Eurasia

    NASA Astrophysics Data System (ADS)

    1995-02-01

    Translated articles cover the following topics: laser-controlled rotary microwave waveguide junction; optical pulse-phase modulation of semiconductor laser; amplitude-phase distortions of light beam obliquely propagating through ground layer of troposphere; antenna arrays with ultrafast beam scanning; materials for a walk on moon; textile-wood-coal briquette path to capitalism; and development of automated system for scientific research and design of heat and mass transfer processes.

  17. Correction to AD/RHIC-47, Beam Transfer From AGS to RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, J.; Foelsche, H.

    1988-12-12

    RHIC an acronym for Relativistic Heavy Ion Collider, is a facility for colliding heavy ions with each other, proposed for construction at Brookhaven National Laboratory. This facility and the motivation for building it, have been described. It consists of two intersecting storage rings and the purpose of this note is to describe how these two rings are to be filled with beam.

  18. The liquid crystal light valve, an optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Beard, T. D.; Bleha, W. P.; Margerum, J. D.; Wong, S. Y.

    1972-01-01

    A photoactivated liquid crystal light valve is described as an optical-to-optical interface device (OTTO) which is designed to transfer an optical image from a noncoherent light beam to a spatially coherent beam of light, in real time. Schematics of OTTO in use, the liquid cyrstal cell, and the liquid crystal structure are presented. Sensitivity characteristics and the principles of operation are discussed.

  19. Numerical simulation of electron beam welding with beam oscillations

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  20. Nuclear-Structure Physics with MINIBALL at HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Reiter, P.; MINIBALL Collaboration

    2018-02-01

    The MINIBALL spectrometer utilizes successfully a variety of post-accelerated radioactive ion beams provided by the new HIE-ISOLDE accelerator at CERN. In-beam γ-ray spectroscopy after Coulomb excitation (CE) or transfer reactions is performed with optimized setups of ancillary detectors for particle detection. The physics program covers a wide range of shell model investigations. Exotic heavy ion beams will enable unique studies of collective properties up to the actinide region. First data taking with HIE-ISOLDE beams started recently. The higher energies and intensities of the new post-accelerator provides a promising perspective for a new generation of MINIBALL experiments. Intriguing first results were obtained by employing beams of 74,76,78Zn, 110,132Sn, 144Xe with beam energies in the range of 4.0 - 5.5 MeV/u for CE experiments at ‘safe’ energies. In all cases first results for various B(Eλ) values for these isotopes were obtained.

  1. Nanofabrication on unconventional substrates using transferred hard masks

    DOE PAGES

    Li, Luozhou; Bayn, Igal; Lu, Ming; ...

    2015-01-15

    Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less

  2. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.

    PubMed

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-12-01

    Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  3. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) two-photon exchange experiment

    NASA Astrophysics Data System (ADS)

    Rimal, Dipak

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.

  4. Probe measurements of the electron velocity distribution function in beams: Low-voltage beam discharge in helium

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, V.; Mustafaev, A.; Timofeev, N.

    2018-04-01

    Previously developed methods based on the single-sided probe technique are altered and applied to measure the anisotropic angular spread and narrow energy distribution functions of charged particle (electron and ion) beams. The conventional method is not suitable for some configurations, such as low-voltage beam discharges, electron beams accelerated in near-wall and near-electrode layers, and vacuum electron beam sources. To determine the range of applicability of the proposed method, simple algebraic relationships between the charged particle energies and their angular distribution are obtained. The method is verified for the case of the collisionless mode of a low-voltage He beam discharge, where the traditional method for finding the electron distribution function with the help of a Legendre polynomial expansion is not applicable. This leads to the development of a physical model of the formation of the electron distribution function in a collisionless low-voltage He beam discharge. The results of a numerical calculation based on Monte Carlo simulations are in good agreement with the experimental data obtained using the new method.

  5. Preliminary Findings of the Brief Everyday Activities Measurement (BEAM) in Older Adults.

    PubMed

    Scharaga, E A; Holtzer, R

    2015-11-01

    Functional losses are common in healthy and cognitively impaired older adults. However, subtle declines in instrumental activities of daily living (IADLs) are not always detected in self-reports. Performance IADL measurements are financially and time burdensome, restricting their use in varied settings. To address these limitations, we developed the Brief Everyday Activities Measure (BEAM), a short (< 5 minutes) objective IADL measure that assesses medication and finance management. The BEAM was administered to 209 cognitively non-demented community-dwellers (ages 65 - 95 years). Participants completed standardized motor, neuropsychological, psychological, and self-report functional assessments. BEAM completion time ranged from 54.16 to 259.31 seconds. Interclass correlations (ICC) for total BEAM completion time was moderate (0.65, 95% CI [.43 -.78]). Accuracy for total BEAM performance was in the low-moderate range (Kappa = 0.38, p < .001, 95% CI [.18 -.54]). As predicted, lower accuracy and longer time to complete the BEAM were both associated with worse executive functions, attention, and processing speed. Medication and finance management can be efficiently assessed within five minutes. The BEAM may be a valuable screening tool to evaluate these functional abilities.

  6. Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Doran, Simon J.

    2006-12-01

    This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

  7. Digital image film generation: from the photoscientist's perspective

    USGS Publications Warehouse

    Boyd, John E.

    1982-01-01

    The technical sophistication of photoelectronic transducers, integrated circuits, and laser-beam film recorders has made digital imagery an alternative to traditional analog imagery for remote sensing. Because a digital image is stored in discrete digital values, image enhancement is possible before the data are converted to a photographic image. To create a special film-reproduction curve - which can simulate any desired gamma, relative film speed, and toe/shoulder response - the digital-to-analog transfer function of the film recorder is uniquely defined and implemented by a lookup table in the film recorder. Because the image data are acquired in spectral bands, false-color composites also can be given special characteristics by selecting a reproduction curve tailored for each band.

  8. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  9. Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Lei, Y. J.; Zhang, D. P.; Shen, Z. B.

    2017-12-01

    Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.

  10. Response of a tissue equivalent proportional counter to neutrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Robbins, D. E.; Gibbons, F.; Braby, L. A.

    2002-01-01

    The absorbed dose as a function of lineal energy was measured at the CERN-EC Reference-field Facility (CERF) using a 512-channel tissue equivalent proportional counter (TEPC), and neutron dose equivalent response evaluated. Although there are some differences, the measured dose equivalent is in agreement with that measured by the 16-channel HANDI tissue equivalent counter. Comparison of TEPC measurements with those made by a silicon solid-state detector for low linear energy transfer particles produced by the same beam, is presented. The measurements show that about 4% of dose equivalent is delivered by particles heavier than protons generated in the conducting tissue equivalent plastic. c2002 Elsevier Science Ltd. All rights reserved.

  11. Azimuthally and radially excited charge transfer plasmon and Fano lineshapes in conductive sublayer-mediated nanoassemblies.

    PubMed

    Ahmadivand, Arash; Gerislioglu, Burak; Pala, Nezih

    2017-11-01

    Here, the plasmon responses of both symmetric and antisymmetric oligomers on a conductive substrate under linear, azimuthal, and radial polarization excitations are analyzed numerically. By observing charge transfer plasmons under cylindrical vector beam (CVB) illumination for what we believe is the first time, we show that our studies open new horizons to induce significant charge transfer plasmons and antisymmetric Fano resonance lineshapes in metallic substrate-mediated plasmonic nanoclusters under both azimuthal and radial excitation as CVBs.

  12. A high-current electron beam ion trap as a charge breeder for the reacceleration of rare isotopes at the NSCL.

    PubMed

    Schwarz, S; Bollen, G; Kostin, M; Marti, F; Zavodszky, P; Crespo López-Urrutia, J R; Dilling, J; Kester, O

    2008-02-01

    Reacceleration of low-energy rare isotope beams available from gas stopping of fast-fragment beams or from an ISOL target station to energies in the range of 0.3-12 MeV/nucleon is needed for experiments such as low-energy Coulomb excitation and transfer reaction studies and for the precise study of astrophysical reactions. The implementation of charge breeding as a first step in a reaccelerator is a key to obtaining a compact and cost-efficient reacceleration scheme. For highest efficiency it is essential that single charge states are obtained in a short breeding time. A low-emittance beam must be delivered. An electron beam ion trap (EBIT) has the potential to meet these requirements. An EBIT-based charge breeder is presently under design and construction at the NSCL as part of the construction of a reaccelerator for stopped beams from projectile fragmentation. This new facility will have the potential to provide low-energy rare isotope beams not yet available elsewhere.

  13. Characterization of elliptic dark hollow beams

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Vega, Julio C.

    2008-08-01

    A dark hollow beam (DHB) is designed in general as a ringed shaped light beam with a null intensity center on the beam axis. DHBs have interesting physical properties such as a helical wavefront, a center vortex singularity, doughnut-shaped transverse intensity distribution, they may carry and transfer orbital and spin angular momentum, and may also exhibit a nondiffracting behavior upon propagation. Most of the known theoretical models to describe DHBs consider axially symmetric transverse intensity distributions. However, in recent years there has been an increasing interest in developing models to describe DHBs with elliptic symmetry. DHBs with elliptic symmetry can be regarded as transition beams between circular and rectangular DHBs. For example, the high-order modes emitted from resonators with neither completely rectangular nor completely circular symmetry, but in between them, cannot be described by the known HermiteGaussian or LaguerreGaussian beams. In this work, we review the current state of research on elliptic DHBs, with particular emphasis in Mathieu and Ince-Gauss beams.

  14. Experimental investigation of complex circular Airy beam characteristics

    NASA Astrophysics Data System (ADS)

    Porfirev, A. P.; Fomchenkov, S. A.; Khonina, S. N.

    2018-04-01

    We demonstrate a new type of circular Airy beams, the so-called azimuthally modulated circular Airy beams, generated by utilizing a diffraction element, whose transmission function is the sum of the transmission function of the element generating a "petal" pattern and the transmission function of the element generating a circular Airy beam. We experimentally investigate the propagation dynamics of such beams and demonstrate that their autofocusing and selfhealing properties are strongly dependent on the number of generated petals. These beams are a combination of a conventional circular Airy beam and vortex laser beams (or their superpositions). Using a spatial light modulator, we demonstrate that these beams have unique properties such as autofocusing, "nondiffractive" propagation and self-healing after passing through an obstacle. The experimental results are in good agreement with the simulation. We believe that these results can be very useful for lensless laser fabrication and laser manipulation techniques, as well as for development of new filament plasma multi-channel formation methods.

  15. Terahertz Free-Electron Laser Optical Design and Simulation

    DTIC Science & Technology

    2010-06-01

    Using this β i z in the relativistic limit and near resonance (the condition where optimum energy transfer occurs between the electron beam...is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and...B. HEAT TRANSFER OUT OF A LENS / WINDOW........... 32 C. LINEAR EXPANSION OF OPTICAL MATERIALS.......... 35 D. MAXIMUM ALLOWABLE POWER

  16. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca; Goussard, Yves, E-mail: yves.goussard@polymtl.ca

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numericalmore » simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.« less

  17. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    PubMed

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.

  18. Spot-welding solid targets for high current cyclotron irradiation.

    PubMed

    Ellison, Paul A; Valdovinos, Hector F; Graves, Stephen A; Barnhart, Todd E; Nickles, Robert J

    2016-12-01

    Zirconium-89 finds broad application for use in positron emission tomography. Its cyclotron production has been limited by the heat transfer from yttrium targets at high beam currents. A spot welding technique allows a three-fold increase in beam current, without affecting 89 Zr quality. An yttrium foil, welded to a jet-cooled tantalum support base accommodates a 50µA proton beam degraded to 14MeV. The resulting activity yield of 48±4 MBq/(μA∙hr) now extends the outreach of 89 Zr for a broader distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Extension of the BRYNTRN code to monoenergetic light ion beams

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.

    1994-01-01

    A monoenergetic version of the BRYNTRN transport code is extended to beam transport of light ions (H-2, H-3, He-3, and He-4) in shielding materials (thick targets). The redistribution of energy in nuclear reactions is included in transport solutions that use nuclear fragmentation models. We also consider an equilibrium target-fragment spectrum for nuclei with mass number greater than four to include target fragmentation effects in the linear energy transfer (LET) spectrum. Illustrative results for water and aluminum shielding, including energy and LET spectra, are discussed for high-energy beams of H-2 and He-4.

  20. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure - Application to solar cell interconnect welding

    NASA Astrophysics Data System (ADS)

    Oh, J. E.; Ianno, N. J.; Ahmed, A. U.

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO2 laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained.

  1. Communication using VCSEL laser array

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2008-01-01

    Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.

  2. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  3. Compact microwave ion source for industrial applications.

    PubMed

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-01

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  4. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  5. Experiment for transient effects of sudden catastrophic loss of vacuum on a scaled superconducting radio frequency cryomodule

    NASA Astrophysics Data System (ADS)

    Dalesandro, Andrew A.; Theilacker, Jay; Van Sciver, Steven

    2012-06-01

    Safe operation of superconducting radio frequency (SRF) cavities require design consideration of a sudden catastrophic loss of vacuum (SCLV) adjacent with liquid helium (LHe) vessels and subsequent dangers. An experiment is discussed to test the longitudinal effects of SCLV along the beam line of a string of scaled SRF cavities. Each scaled cavity includes one segment of beam tube within a LHe vessel containing 2 K saturated LHe, and a riser pipe connecting the LHe vessel to a common gas header. At the beam tube inlet is a fast acting solenoid valve to simulate SCLV and a high/low range orifice plate flow-meter to measure air influx to the cavity. The gas header exit also has an orifice plate flow-meter to measure helium venting the system at the relief pressure of 0.4 MPa. Each cavity is instrumented with Validyne pressure transducers and Cernox thermometers. The purpose of this experiment is to quantify the time required to spoil the beam vacuum and the effects of transient heat and mass transfer on the helium system. Heat transfer data is expected to reveal a longitudinal effect due to the geometry of the experiment. Details of the experimental design criteria and objectives are presented.

  6. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    PubMed Central

    Vutova, Katia; Donchev, Veliko

    2013-01-01

    Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials. PMID:28788351

  7. Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu

    The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less

  8. The structure of the Laser Entrance Hole in NIF Ignition gas-filled hohlraums

    NASA Astrophysics Data System (ADS)

    Schneider, M. B.; Doeppner, T.; Thomas, C. A.; Widmann, K.; MacLaren, S. A.; Meezan, N. B.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Eder, D.; Hammer, J. H.; Hinkel, D. E.; Jones, O. S.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. J.; Park, H. S.; Ralph, J. E.; Regan, S. E.; Strozzi, D. J.; Town, R. P.

    2014-10-01

    At the National Ignition Facility (NIF), the energy from 192 laser beams is converted to an x-ray drive in a gas-filled hohlraum. The drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH size decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma in the laser deposition region pushing radially outward. Compared to models, the LEH size is larger than predicted. In addition, the plasma in the LEH region is hotter than predicted. Instead of being at the radiation temperature of about 300 eV, it is at an electron temperature of 1 to a few keV. The experimental measurements for this conclusion are discussed. Data on the LEH as a function of laser pulse shape, gas fill, and energy transfer are presented. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source

    NASA Astrophysics Data System (ADS)

    Wei, LIU; Chundong, HU; Sheng, LIU; Shihua, SONG; Jinxin, WANG; Yan, WANG; Yuanzhe, ZHAO; Lizhen, LIANG

    2017-12-01

    Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinement-fusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI (PCI eXtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module, the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and over-current protection system has the advantages of setting forbidden time and isolation transmission.

  10. Planned Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2010-11-01

    The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.

  11. Beam-induced pressure gradients in the early phase of proton-heated solar flares

    NASA Technical Reports Server (NTRS)

    Tamres, David H.; Canfield, Richard C.; Mcclymont, A. N.

    1986-01-01

    The pressure gradient induced in a coronal loop by proton beam momentum deposition is calculated and compared with the thermal pressure gradient arising from nonuniform deposition of beam energy; it is assumed that the transfer of momentum and energy from beam to target occurs via the Coulomb interaciton. Results are presented for both a low mean energy and a high mean energy proton beam injected at the loop apex and characterized by a power-law energy spectrum. The present treatment takes account of the breakdown of the cold target approximation for the low-energy proton beam in the corona, where the thermal speed of target electrons exceeds the beam speed. It is found that proton beam momentum deposition plays a potentially significant role in flare dynamics only in the low mean energy case and only in the corona, where it may dominate the acceleration of target material for as long as several tens of seconds. This conclusion suggest that the presence of low-energy nonthermal protons may be inferred from velocity-sensitive coronal observations in the early impulsive phase.

  12. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  13. A binary-decision-diagram-based two-bit arithmetic logic unit on a GaAs-based regular nanowire network with hexagonal topology.

    PubMed

    Zhao, Hong-Quan; Kasai, Seiya; Shiratori, Yuta; Hashizume, Tamotsu

    2009-06-17

    A two-bit arithmetic logic unit (ALU) was successfully fabricated on a GaAs-based regular nanowire network with hexagonal topology. This fundamental building block of central processing units can be implemented on a regular nanowire network structure with simple circuit architecture based on graphical representation of logic functions using a binary decision diagram and topology control of the graph. The four-instruction ALU was designed by integrating subgraphs representing each instruction, and the circuitry was implemented by transferring the logical graph structure to a GaAs-based nanowire network formed by electron beam lithography and wet chemical etching. A path switching function was implemented in nodes by Schottky wrap gate control of nanowires. The fabricated circuit integrating 32 node devices exhibits the correct output waveforms at room temperature allowing for threshold voltage variation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvydky, Alex

    This volume of LLE Review, covering October–December 2011, features “Crossed-Beam Energy Transfer in Direct-Drive Implosions” by I. V. Igumenshchev, W. Seka, D. H. Edgell, D. T. Michel, D. H. Froula, R. S. Craxton, R. Follett, J. H. Kelly, T. Z. Kosc, J. F. Myatt, T. C. Sangster, A. Shvydky, S. Skupsky, and C. Stoeckl (LLE); V. N. Goncharov and A. V. Maximov (LLE and Department of Mechanical Engineering, U. of Rochester); L. Divol and P. Michel (LLNL); and R. L. McCrory and D. D. Meyerhofer (LLE and Departments of Mechanical Engineering and Physics, U. of Rochester). In this article (p.more » 1), direct-drive–implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] have shown discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicates the presence of a mechanism that reduces laser coupling efficiency by 10% to 20%. The authors attribute this degradation in laser coupling to crossed-beam energy transfer (CBET)— which is electromagnetically seeded—low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.« less

  15. Large-scale fluctuations in the cosmic ionizing background: the impact of beamed source emission

    NASA Astrophysics Data System (ADS)

    Suarez, Teresita; Pontzen, Andrew

    2017-12-01

    When modelling the ionization of gas in the intergalactic medium after reionization, it is standard practice to assume a uniform radiation background. This assumption is not always appropriate; models with radiative transfer show that large-scale ionization rate fluctuations can have an observable impact on statistics of the Lyman α forest. We extend such calculations to include beaming of sources, which has previously been neglected but which is expected to be important if quasars dominate the ionizing photon budget. Beaming has two effects: first, the physical number density of ionizing sources is enhanced relative to that directly observed; and secondly, the radiative transfer itself is altered. We calculate both effects in a hard-edged beaming model where each source has a random orientation, using an equilibrium Boltzmann hierarchy in terms of spherical harmonics. By studying the statistical properties of the resulting ionization rate and H I density fields at redshift z ∼ 2.3, we find that the two effects partially cancel each other; combined, they constitute a maximum 5 per cent correction to the power spectrum P_{H I}(k) at k = 0.04 h Mpc-1. On very large scales (k < 0.01 h Mpc-1) the source density renormalization dominates; it can reduce, by an order of magnitude, the contribution of ionizing shot noise to the intergalactic H I power spectrum. The effects of beaming should be considered when interpreting future observational data sets.

  16. One-Dimensional and Two-Dimensional Analytical Solutions for Functionally Graded Beams with Different Moduli in Tension and Compression

    PubMed Central

    Li, Xue; Dong, Jiao

    2018-01-01

    The material considered in this study not only has a functionally graded characteristic but also exhibits different tensile and compressive moduli of elasticity. One-dimensional and two-dimensional mechanical models for a functionally graded beam with a bimodular effect were established first. By taking the grade function as an exponential expression, the analytical solutions of a bimodular functionally graded beam under pure bending and lateral-force bending were obtained. The regression from a two-dimensional solution to a one-dimensional solution is verified. The physical quantities in a bimodular functionally graded beam are compared with their counterparts in a classical problem and a functionally graded beam without a bimodular effect. The validity of the plane section assumption under pure bending and lateral-force bending is analyzed. Three typical cases that the tensile modulus is greater than, equal to, or less than the compressive modulus are discussed. The result indicates that due to the introduction of the bimodular functionally graded effect of the materials, the maximum tensile and compressive bending stresses may not take place at the bottom and top of the beam. The real location at which the maximum bending stress takes place is determined via the extreme condition for the analytical solution. PMID:29772835

  17. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene.

    PubMed

    Hsu, Hsu Chen; Tsai, Ming-Tsang; Dyakov, Yuri; Ni, Chi-Kung

    2011-05-14

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.

  18. A vibration model for centrifugal contactors

    NASA Astrophysics Data System (ADS)

    Leonard, R. A.; Wasserman, M. O.; Wygmans, D. G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet 'Beam' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k(sub B)) of a motor after measuring the k(sub B) value for three different motors. The k(sub B) value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  19. Drag coefficients for spheres in free molecular flow in O at satellite velocities

    NASA Technical Reports Server (NTRS)

    Boring, J. W.; Humphris, R. R.

    1973-01-01

    The drag coefficients for the Echo 1 and Explorer 24 spherical surfaces in an O environment were experimentally determined over an energy range of 4 to 200 eV. The experiment was performed by generating a beam of atomic oxygen ions of the proper energy, neutralizing a portion of the beam, and then allowing only the neutral O particles to strike a very sensitive torsion balance. The momentum transferred to the surface was determined from the deflection of the torsion balance. At the lower energies, the more intense ion beam had to be used instead of the neutral beam. The drag coefficients are found to be slightly greater than 2 at energies corresponding to satellite velocities.

  20. Physics with heavy neutron-rich RIBs at the HRIBF

    NASA Astrophysics Data System (ADS)

    Radford, D. C.; Baktash, C.; Galindo-Uribarri, A.; Gross, C. J.; Lewis, T. A.; Mueller, P. E.; Hausladen, P. A.; Shapira, D.; Stracener, D. W.; Yu, C.-H.; Fuentes, B.; Padilla, E.; Hartley, D. J.; Barton, C. J.; Caprio, M.; Zamfir, N. V.

    The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory has recently produced the world's first post-accelerated beams of heavy neutron-rich nuclei. The first experiments with these beam are described, and the results discussed. B(E2;0+ --> 2+) values for neutron-rich 126,128Sn and 132,134,136Te isotopes have been measured by Coulomb excitation in inverse kinematics. The results for 132Te and 134Te (N = 80, 82) show excellent agreement with systematics of lighter Te isotopes, but the B(E2) value for 136Te (N = 84) is unexpectedly small. Single-neutron transfer reactions with a 134Te beam on natBe and 13C targets at energies just above the Coulomb barrier have also been studied.

  1. Intra-beam scattering and its application to ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov A. V.

    Treatment of Coulomb collisions within the beam requires consideration of both large and small angle scattering. Such collisions lead to the Touschek effect and Intrabeam Scattering (IBS). The Touschek effect refers to particle loss as a result of a single collision, where only transfer from the transverse direction into longitudinal plays a role. It is important to consider this effect for ERL design to have an appropriate choice of collimation system. The IBS is a diffusion process which leads to changes of beam distribution but does not necessarily result in a beam loss. Evaluation of IBS in ERLs, where beammore » distribution is non-Gaussian, requires special treatment. Here we describe the IBS and Touschek effects with application to ERLs.« less

  2. Reference dosimetry study for 3 MEV electron beam accelerator in malaysia

    NASA Astrophysics Data System (ADS)

    Ali, Noriah Mod; Sunaga, Hiromi; Tanaka, Ryuichi

    1995-09-01

    An effective quality assurance programme is initiated for the use of the electron beam with energies up to 3 MeV. The key element of the programme is the establishment of a relationship between the standardised beam to the routine technique which is employed to verify the beam parameter. A total absorbing calorimeter was adopted as a suitable reference system and when used in combination with the electron current densitymeter (ECD) will enable to determine the mean energy for electron with energies between 1 to 3 MeV. An appropriate method of transfering the standard parameter is studied and the work that is expected to optimise the accuracy attainable with routine check-up of the irradiation parameter are presented.

  3. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    NASA Astrophysics Data System (ADS)

    Eissa, Y.; Blanc, P.; Wald, L.; Ghedira, H.

    2015-12-01

    Routine measurements of the beam irradiance at normal incidence include the irradiance originating from within the extent of the solar disc only (DNIS), whose angular extent is 0.266° ± 1.7 %, and from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). This study investigates whether the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and the collocated Sun and Aureole Measurement instrument which offers reference measurements of the monochromatic profile of solar radiance were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE) of 6 % and a coefficient of determination greater than 0.96. The observed relative bias obtained with libRadtran is +2 %, while that obtained with SMARTS is -1 %. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a two-term Henyey-Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 27 and -24 % and a coefficient of determination of 0.882. Therefore, AERONET data may very well be used to model the monochromatic DNIS and the monochromatic CSNI. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard measurements of the beam irradiance.

  4. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat.

    PubMed

    Ohwatashi, Akihiko; Ikeda, Satoshi; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    Exercise has been considered to affect the functional recovery from central nervous damage. Neurotrophic factors have various effects on brain damage. However, the effects of exercise for expression of GDNF on functional recovery with brain damage are not well known. We investigated the difference in functional recovery between non-exercise and beam-walking exercise groups, and the expression of GDNF in both groups after photochemical infarction. Adult male Wistar rats (N = 64) were used. Animals were divided into two groups: non-exercise (N = 35), and beam-walking exercise (N = 29). All rats underwent surgical photochemical infarction. The rats of the beam-walking group were trained every day to walk on a narrow beam after a one-day recovery period and those of the non-exercise group were left to follow a natural course. Animals were evaluated for hind limb function every day using a beam-walking task with an elevated narrow beam. The number of GDNF-like immunoreactive cells in the temporal cortex surrounding the lesion was counted 1, 3, 5, and 7 days after the infarction. Functional recovery of the beam-walking exercise group was significantly earlier than that of the non-exercise group. At 3 days after infarction, the number of GDNF-positive cells in the temporal cortex surrounding the infarction was significantly increased in the beam-walking exercise group compared with that in the non-exercise group. In the exercise group, motor function was remarkably recovered with the increased expression of GDNF-like immunoreactive cells. Our results suggested that a rehabilitative approach increased the expression of GDNF and facilitated functional recovery from cerebral infarction.

  5. Multiphysics Modeling for Dimensional Analysis of a Self-Heated Molten Regolith Electrolysis Reactor for Oxygen and Metals Production on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Sibille, Laurent

    2010-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. In a first phase, a thermal analysis model was built to study the formation of a melt of lunar basaltic regolith irradiated by a focused solar beam This mode of heating was selected because it relies on radiative heat transfer, which is the dominant mode of transfer of energy in melts at 1600 C. Knowing and setting the Gaussian-type heat flux from the concentrated solar beam and the phase and temperature dependent thermal properties, the model predicts the dimensions and temperature profile of the melt. A validation of the model is presented in this paper through the experimental formation of a spherical cap melt realized by others. The Orbitec/PSI experimental setup uses an 3.6-cm diameter concentrated solar beam to create a hemispheric melt in a bed of lunar regolith simulant contained in a large pot. Upon cooling, the dimensions of the vitrified melt are measured to validate the thermal model. In a second phase, the model is augmented by multiphysics components to compute the passage of electrical currents between electrodes inserted in the molten regolith. The current through the melt generates Joule heating due to the high resistivity of the medium and this energy is transferred into the melt by conduction, convection and primarily by radiation. The model faces challenges in two major areas, the change of phase as temperature increases, and the dominance of radiative heat flux as heat transfer mechanism within the melt the change of phase concerns the regolith itself which is present in states ranging from a fine grain regolith with low thermal conductivity and low density to a vitrified melt with much higher thermal conductivity, and higher density. As the regolith is heated, it starts to soften around 1300 C the melt iS very viscous and evolving gas bubbles out in thick, lava-like fashion. By 1600 C the regolith is completely melted and the viscosity is low The second challenge resides in the proper modeling of the radiative heat flux requiring the addition of the computing-demanding radiative-heat-transfer function to the general heat transfer equation. The model Includes temperature-dependent properties (density, thermal conductivity, heat capacity, and viscosity, and absorption coefficients) and solves the radiative heat flux equation assuming gray (fine grains) and semi-transparent (melt) media and using an absorption coefficient spectral found in the literature for terrestrial minerals similar in composition to those of lunar regolith simulant

  6. Limiting factors in atomic resolution cryo electron microscopy: No simple tricks

    PubMed Central

    Zhang, Xing; Zhou, Z. Hong

    2013-01-01

    To bring cryo electron microscopy (cryoEM) of large biological complexes to atomic resolution, several factors – in both cryoEM image acquisition and 3D reconstruction – that may be neglected at low resolution become significantly limiting. Here we present thorough analyses of four limiting factors: (a) electron-beam tilt, (b) inaccurate determination of defocus values, (c) focus gradient through particles, and (d) particularly for large particles, dynamic (multiple) scattering of electrons. We also propose strategies to cope with these factors: (a) the divergence and direction tilt components of electron-beam tilt could be reduced by maintaining parallel illumination and by using a coma-free alignment procedure, respectively. Moreover, the effect of all beam tilt components, including spiral tilt, could be eliminated by use of a spherical aberration corrector. (b) More accurate measurement of defocus value could be obtained by imaging areas adjacent to the target area at high electron dose and by measuring the image shift induced by tilting the electron beam. (c) Each known Fourier coefficient in the Fourier transform of a cryoEM image is the sum of two Fourier coefficients of the 3D structure, one on each of two curved ‘characteristic surfaces’ in 3D Fourier space. We describe a simple model-based iterative method that could recover these two Fourier coefficients on the two characteristic surfaces. (d) The effect of dynamic scattering could be corrected by deconvolution of a transfer function. These analyses and our proposed strategies offer useful guidance for future experimental designs targeting atomic resolution cryoEM reconstruction. PMID:21627992

  7. Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap.

    PubMed

    Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E

    2018-04-30

    We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.

  8. Analysis and measurement of the modulation transfer function of harmonic shear wave induced phase encoding imaging.

    PubMed

    McAleavey, Stephen A

    2014-05-01

    Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.

  9. Modulation transfer function measurement of microbolometer focal plane array by Lloyd's mirror method

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; Rommeluere, Sylvain; Viale, Thibault; Guerineau, Nicolas; Ribet-Mohamed, Isabelle; Crastes, Arnaud; Durand, Alain; Taboury, Jean

    2014-05-01

    Today, both military and civilian applications require miniaturized and cheap optical systems. One way to achieve this trend consists in decreasing the pixel pitch of focal plane arrays (FPA). In order to evaluate the performance of the overall optical systems, it is necessary to measure the modulation transfer function (MTF) of these pixels. However, small pixels lead to higher cut-off frequencies and therefore, original MTF measurements that are able to extract frequencies up to these high cut-off frequencies, are needed. In this paper, we will present a way to extract 1D MTF at high frequencies by projecting fringes on the FPA. The device uses a Lloyd mirror placed near and perpendicular to the focal plane array. Consequently, an interference pattern of fringes can be projected on the detector. By varying the angle of incidence of the light beam, we can tune the period of the interference fringes and, thus, explore a wide range of spatial frequencies, and mainly around the cut-off frequency of the pixel which is one of the most interesting area. Illustration of this method will be applied to a 640×480 microbolometer focal plane array with a pixel pitch of 17µm in the LWIR spectral region.

  10. Effect of asymmetrical transfer coefficients of a non-polarizing beam splitter on the nonlinear error of the polarization interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao

    2010-09-01

    The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.

  11. Linear energy transfer in water phantom within SHIELD-HIT transport code

    NASA Astrophysics Data System (ADS)

    Ergun, A.; Sobolevsky, N.; Botvina, A. S.; Buyukcizmeci, N.; Latysheva, L.; Ogul, R.

    2017-02-01

    The effect of irradiation in tissue is important in hadron therapy for the dose measurement and treatment planning. This biological effect is defined by an equivalent dose H which depends on the Linear Energy Transfer (LET). Usually, H can be expressed in terms of the absorbed dose D and the quality factor K of the radiation under consideration. In literature, various types of transport codes have been used for modeling and simulation of the interaction of the beams of protons and heavier ions with tissue-equivalent materials. In this presentation we used SHIELD-HIT code to simulate decomposition of the absorbed dose by LET in water for 16O beams. A more detailed description of capabilities of the SHIELD-HIT code can be found in the literature.

  12. Transferring-free and large-area graphitic carbon film growth by using molecular beam epitaxy at low growth temperature

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Yu; Wang, Cheng-Hung; Pao, Chun-Wei; Lin, Shih-Yen

    2015-09-01

    Graphitic carbon films prepared by using molecular beam epitaxy (MBE) on metal templates with different thicknesses deposited on SiO2/Si substrates are investigated in this paper. With thick Cu templates, only graphitic carbon flakes are obtained near the Cu grain boundaries at low growth temperatures on metal/SiO2 interfaces. By replacing the Cu templates with thin Ni templates, complete graphitic carbon films with superior crystalline quality is obtained at 600 °C on SiO2/Si substrates after removing the Ni templates. The enhanced attachment of the graphitic carbon film to the SiO2/Si substrates with reduced Ni thickness makes the approach a promising approach for transferring-free graphene preparation at low temperature by using MBE.

  13. Early-Time Symmetry Tuning in the Presence of Cross-Beam Energy Transfer in ICF Experiments on the National Ignition Facility

    DOE PAGES

    Dewald, E. L.; Milovich, J. L.; Michel, P.; ...

    2013-12-01

    At the National Ignition Facility (NIF) we have successfully tuned the early time (~2 ns) lowest order Legendre mode (P 2) of the incoming radiation drive asymmetry of indirectly driven ignition capsule implosions by varying the inner power cone fraction. The measured P 2/P 0 sensitivity vs come fraction is similar to calculations, but a significant -15 to -20% P 2/P 0 offset was observed. This can be explained by a considerable early time laser energy transfer from the outer to the inner beams during the laser burn-through of the Laser Entrance Hole (LEH) windows and hohlraum fill gas whenmore » the LEH plasma is still dense and relatively cold.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.

    Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated pathsmore » of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.« less

  15. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  16. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  17. Compact setup for the production of {sup 87}Rb |F = 2, m{sub F} = + 2〉 Bose-Einstein condensates in a hybrid trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolli, Raffaele; Venturelli, Michela; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk

    We present a compact experimental apparatus for Bose-Einstein condensation of {sup 87}Rb in the |F  =  2, m{sub F} = + 2〉 state. A pre-cooled atomic beam of {sup 87}Rb is obtained by using an unbalanced magneto-optical trap, allowing controlled transfer of trapped atoms from the first vacuum chamber to the science chamber. Here, atoms are transferred to a hybrid trap, as produced by overlapping a magnetic quadrupole trap with a far-detuned optical trap with crossed beam configuration, where forced radiofrequency evaporation is realized. The final evaporation leading to Bose-Einstein condensation is then performed by exponentially lowering the optical trapmore » depth. Control and stabilization systems of the optical trap beams are discussed in detail. The setup reliably produces a pure condensate in the |F = 2, m{sub F} = + 2〉 state in 50 s, which includes 33 s loading of the science magneto-optical trap and 17 s forced evaporation.« less

  18. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Huschauer, A.; Blas, A.; Borburgh, J.; Damjanovic, S.; Gilardoni, S.; Giovannozzi, M.; Hourican, M.; Kahle, K.; Le Godec, G.; Michels, O.; Sterbini, G.; Hernalsteens, C.

    2017-06-01

    Following a successful commissioning period, the multiturn extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  19. Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Marozas, J. A.; Weaver, J.; Obenschain, S. P.; Schmitt, A. J.

    2015-11-01

    Cross-beam energy transfer (CBET) has become a serious threat to the overall success of direct-drive experiments, and especially for polar-direct-drive (PDD) ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly detrimental over the equator of the target, which is hydrodynamically very sensitive to such losses in the PDD configuration. A promising solution uses laser wavelength detuning between beams to shift the resonance, thereby reducing the interaction cross section between them. Testing this process for direct drive is now underway at the Nike laser at the Naval Research Laboratory. Calculations evaluating the effect CBET has on the scattered-light signals indicate such an experiment will demonstrate the benefits of wavelength detuning for direct-drive implosions. Two-dimensional simulation results will be presented, predicting the effect for both spherical and cylindrical experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. An investigation of the normal momentum transfer for gases on tungsten

    NASA Technical Reports Server (NTRS)

    Moskal, E. J.

    1971-01-01

    The near monoenergetic beam of neutral helium and argon atoms impinged on a single crystal tungsten target, with the (100) face exposed to the beam. The target was mounted on a torsion balance. The rotation of this torsion balance was monitored by an optical lever, and this reading was converted to a measurement of the momentum exchange between the beam and the target. The tungsten target was flashed to a temperature in excess of 2000 C before every clean run, and the vacuum levels in the final chamber were typically between 0.5 and 1 ntorr. The momentum exchange for the helium-tungsten surface and the argon-tungsten surface combination was obtained over approximately a decade of incoming energy (for the argon gas) at angles of incidence of 0, 30, and 41 deg on both clean and dirty (gas covered) surfaces. The results exhibited a significant variation in momentum transfer between the data obtained for the clean and dirty surfaces. The values of normal momentum accommodation coefficient for the clean surface were found to be lower than the values previously reported.

  1. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  2. Sparse decomposition of seismic data and migration using Gaussian beams with nonzero initial curvature

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Yanfei

    2018-04-01

    We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.

  3. A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects

    NASA Astrophysics Data System (ADS)

    Tian, Jiajin; Su, Jinpeng; Zhou, Kai; Hua, Hongxing

    2018-07-01

    This paper presents a general formulation for nonlinear vibration analysis of rotating beams. A modified variational method combined with a multi-segment partitioning technique is employed to derive the free and transient vibration behaviors of the rotating beams. The strain energy and kinetic energy functional are formulated based on the order truncation principle of the fully geometrically nonlinear beam theory. The Coriolis effects as well as nonlinear effects due to the coupling of bending-stretching, bending-twist and twist-stretching are taken into account. The present method relaxes the need to explicitly meet the requirements of the boundary conditions for the admissible functions, and allows the use of any linearly independent, complete basis functions as admissible functions for rotating beams. Moreover, the method is readily used to deal with the nonlinear transient vibration problems for rotating beams subjected to dynamic loads. The accuracy, convergence and efficiency of the proposed method are examined by numerical examples. The influences of Coriolis and centrifugal forces on the vibration behaviors of the beams with various hub radiuses and slenderness ratios and rotating at different angular velocities are also investigated.

  4. Near-surface energy transfers from internal tide beams to smaller vertical scale motions

    NASA Astrophysics Data System (ADS)

    Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.

    2016-02-01

    Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.

  5. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  6. A simultaneous multiple angle-wavelength dispersive X-ray reflectometer using a bent-twisted polychromator crystal

    PubMed Central

    Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.

    2013-01-01

    An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659

  7. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.

    PubMed

    Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana

    2010-10-01

    The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.

  8. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less

  9. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    NASA Technical Reports Server (NTRS)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  10. Atmospheric turbulence effects on the performance of the laser wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Kapranov, V. V.; Matsak, I. S.; Tugaenko, V. Yu.; Blank, A. V.; Suhareva, N. A.

    2017-02-01

    Application of adaptive correction is necessary to control wandering of the laser beam in wireless power transfer (WPT) system. In this paper we describe experimental results of using different adaptive correction techniques for both weak and strong turbulence conditions. All experiments were performed over a 1.5 km near-horizontal atmospheric path. Some criteria for choosing parameters of adaptive correction are given.

  11. Energy transfer of highly vibrationally excited biphenyl.

    PubMed

    Hsu, Hsu Chen; Dyakov, Yuri; Ni, Chi-Kung

    2010-11-07

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold biphenyl in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer of naphthalene, energy transfer of biphenyl shows more forward scattering, less complex formation, larger cross section for vibrational to translational (V→T) energy transfer, smaller cross section for translational to vibrational and rotational (T→VR) energy transfer, larger total collisional cross section, and more energy transferred from vibration to translation. Significant increase in the large V→T energy transfer probabilities, termed supercollisions, was observed. The difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally cold biphenyl is very similar to the difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally hot naphthalene. The low-frequency vibrational modes with out-of-plane motion and rotationlike wide-angle motion are attributed to make the energy transfer of biphenyl different from that of naphthalene.

  12. Space-Wave Routing via Surface Waves Using a Metasurface System.

    PubMed

    Achouri, Karim; Caloz, Christophe

    2018-05-15

    We introduce the concept of a metasurface system able to route space waves via surface waves. This concept may be used to laterally shift or modulate the beam width of scattered waves. The system is synthesized based on a momentum transfer approach using phase-gradient metasurfaces. The concept is experimentally verified in an "electromagnetic periscope". Additionally, we propose two other potential applications namely a beam expander and a multi-wave refractor.

  13. Relationships between the decoupled and coupled transfer functions: Theoretical studies and experimental validation

    NASA Astrophysics Data System (ADS)

    Wang, Zengwei; Zhu, Ping; Liu, Zhao

    2018-01-01

    A generalized method for predicting the decoupled transfer functions based on in-situ transfer functions is proposed. The method allows predicting the decoupled transfer functions using coupled transfer functions, without disassembling the system. Two ways to derive relationships between the decoupled and coupled transfer functions are presented. Issues related to immeasurability of coupled transfer functions are also discussed. The proposed method is validated by numerical and experimental case studies.

  14. Compact and portable X-ray imager system using Medipix3RX

    NASA Astrophysics Data System (ADS)

    Garcia-Nathan, T. B.; Kachatkou, A.; Jiang, C.; Omar, D.; Marchal, J.; Changani, H.; Tartoni, N.; van Silfhout, R. G.

    2017-10-01

    In this paper the design and implementation of a novel portable X-ray imager system is presented. The design features a direct X-ray detection scheme by making use of a hybrid detector (Medipix3RX). Taking advantages of the capabilities of the Medipix3RX, like a high resolution, zero dead-time, single photon detection and charge-sharing mode, the imager has a better resolution and higher sensitivity compared to using traditional indirect detection schemes. A detailed description of the system is presented, which consists of a vacuum chamber containing the sensor, an electronic board for temperature management, conditioning and readout of the sensor and a data processing unit which also handles network connection and allow communication with clients by acting as a server. A field programmable gate array (FPGA) device is used to implement the readout protocol for the Medipix3RX, apart from the readout the FPGA can perform complex image processing functions such as feature extraction, histogram, profiling and image compression at high speeds. The temperature of the sensor is monitored and controlled through a PID algorithm making use of a Peltier cooler, improving the energy resolution and response stability of the sensor. Without implementing data compression techniques, the system is capable of transferring 680 profiles/s or 240 images/s in a continuous mode. Implementation of equalization procedures and tests on colour mode are presented in this paper. For the experimental measurements the Medipix3RX sensor was used with a Silicon layer. One of the tested applications of the system is as an X-ray beam position monitor (XBPM) device for synchrotron applications. The XBPM allows a non-destructive real time measurement of the beam position, size and intensity. A Kapton foil is placed in the beam path scattering radiation towards a pinhole camera setup that allows the sensor to obtain an image of the beam. By using profiles of the synchrotron X-ray beam, high frequency movement of the beam position can be studied, up to 340 Hz. The system is capable of realizing an independent energy measure of the beam by using the Medipix3RX variable energy threshold feature.

  15. SIM PlanetQuest Spectral Calibration Development Unit Beam Combiner

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    The beam combiner of an astronomical long-baseline interferometer combines the two beams of starlight to form white-light fringes. We describe beam combiner in the SIM PlanetQuest Spectral Calibration Development Unit (SCDU). In addition to forming white light fringes, the beam combiner provides other functions such as separating the light for guiding, fringe tracking, and science measurement. It is designed to function over the optical bandpass 450-950 nm. Coating design is critical to beam combiner as residual dispersion and mismatches affect the ability to accurately measure the position of stars of varying spectral types.

  16. Continuous all-optical deceleration of molecular beams

    NASA Astrophysics Data System (ADS)

    Jayich, Andrew; Chen, Gary; Long, Xueping; Wang, Anna; Campbell, Wesley

    2014-05-01

    A significant impediment to generating ultracold molecules is slowing a molecular beam to velocities where the molecules can be cooled and trapped. We report on progress toward addressing this issue with a general optical deceleration technique for molecular and atomic beams. We propose addressing the molecular beam with a pump and dump pulse sequence from a mode-locked laser. The pump pulse counter-propagates with respect to the beam and drives the molecules to the excited state. The dump pulse co-propagates and stimulates emission, driving the molecules back to the ground state. This cycle transfers 2 ℏk of momentum and can generate very large optical forces, not limited by the spontaneous emission lifetime of the molecule or atom. Importantly, avoiding spontaneous emission limits the branching to dark states. This technique can later be augmented with cooling and trapping. We are working towards demonstrating this optical force by accelerating a cold atomic sample.

  17. SPS Beam Steering for LHC Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, Eliana; Bartosik, Hannes; Cornelis, Karel

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towardsmore » a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.« less

  18. Autonomous Laser-Powered Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, William C. (Inventor); Hogan, Bartholomew P. (Inventor)

    2017-01-01

    An autonomous laser-powered vehicle designed to autonomously penetrate through ice caps of substantial (e.g., kilometers) thickness by melting a path ahead of the vehicle as it descends. A high powered laser beam is transmitted to the vehicle via an onboard bare fiber spooler. After the beam enters through the dispersion optics, the beam expands into a cavity. A radiation shield limits backscatter radiation from heating the optics. The expanded beam enters the heat exchanger and is reflected by a dispersion mirror. Forward-facing beveled circular grooves absorb the reflected radiant energy preventing the energy from being reflected back towards the optics. Microchannels along the inner circumference of the beam dump heat exchanger maximize heat transfer. Sufficient amount of fiber is wound on the fiber spooler to permit not only a descent but also to permit a sample return mission by inverting the vehicle and melting its way back to the surface.

  19. Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Sands, O. Scott

    2003-01-01

    When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.

  20. Achieving highly efficient and broad-angle polarization beam filtering using epsilon-near-zero metamaterials mimicked by metal-dielectric multilayers

    NASA Astrophysics Data System (ADS)

    Wu, Feng

    2018-03-01

    We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.

  1. Aging of imaging properties of a CMOS flat-panel detector for dental cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; Han, J. C.; Yun, S.; Kim, H. K.

    2017-01-01

    We have experimentally investigated the long-term stability of imaging properties of a flat-panel detector in conditions used for dental x-ray imaging. The detector consists of a CsI:Tl layer and CMOS photodiode pixel arrays. Aging simulations were carried out using an 80-kVp x-ray beam at an air-kerma rate of approximately 5 mGy s-1 at the entrance surface of the detector with a total air kerma of up to 0.6 kGy. Dark and flood-field images were periodically obtained during irradiation, and the mean signal and noise levels were evaluated for each image. We also evaluated the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). The aging simulation showed a decrease in both the signal and noise of the gain-offset-corrected images, but there was negligible change in the signal-to-noise performance as a function of the accumulated dose. The gain-offset correction for analyzing images resulted in negligible changes in MTF, NPS, and DQE results over the total dose. Continuous x-ray exposure to a detector can cause degradation in the physical performance factors such the detector sensitivity, but linear analysis of the gain-offset-corrected images can assure integrity of the imaging properties of a detector during its lifetime.

  2. The PEPPo method for polarized positrons and PEPPo II

    DOE PAGES

    Cardman, Lawrence S.

    2018-05-01

    The Polarized Electrons for Polarized Positrons (PEPPo) experiment at the injector of the Continuous Electron Beam Accelerator Facility demonstrated for the first time the efficient transfer of polarization from electrons to positrons via a two-step process: polarized bremsstrahlung radiation is induced by a polarized electron beam in a high-Z target; then the polarized bremsstrahlung produces polarized positrons via the pair-production process in the same target. Positron polarization up to 82% was measured for an initial electron beam momentum of 8.19 MeV/c, limited only by the electron beam polarization of 85%. This technique extends polarized positron capabilities from GeV to MeVmore » electron beams, and opens access to polarized positron beam physics to a wide community. We present the results of the PEPPo experiment and outline tentative plans for a follow-up experiment that would investigate key aspects of an approach based on PEPPo as a polarized positron source for the 12 GeV Upgrade of CEBAF.« less

  3. Towards atomically precise manipulation of 2D nanostructures in the electron microscope

    NASA Astrophysics Data System (ADS)

    Susi, Toma; Kepaptsoglou, Demie; Lin, Yung-Chang; Ramasse, Quentin M.; Meyer, Jannik C.; Suenaga, Kazu; Kotakoski, Jani

    2017-12-01

    Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomic-resolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångström-sized electron beam. To truly enable control, however, it is vital to understand the relevant atomic-scale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward.

  4. Holographic Phase Correction.

    DTIC Science & Technology

    1987-06-01

    functions, so that, for example, the device could function as a.% combined beam splitter /multifocus lens/mirror. Offset against these advantages are...illustrated in Figure 7. Here the reconstructed, phase corrected wave, is interfered with a plane wave introduced ..- after the hologram, via a beam splitter ...the recording medium). c. The phase correction can be combined with other beam forming functions. This can result in further savings in size and weight

  5. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  6. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.

  7. Numerical study of the magnetized friction force

    NASA Astrophysics Data System (ADS)

    Fedotov, A. V.; Bruhwiler, D. L.; Sidorin, A. O.; Abell, D. T.; Ben-Zvi, I.; Busby, R.; Cary, J. R.; Litvinenko, V. N.

    2006-07-01

    Fundamental advances in experimental nuclear physics will require ion beams with orders of magnitude luminosity increase and temperature reduction. One of the most promising particle accelerator techniques for achieving these goals is electron cooling, where the ion beam repeatedly transfers thermal energy to a copropagating electron beam. The dynamical friction force on a fully ionized gold ion moving through magnetized and unmagnetized electron distributions has been simulated, using molecular dynamics techniques that resolve close binary collisions. We present a comprehensive examination of theoretical models in use by the electron cooling community. Differences in these models are clarified, enabling the accurate design of future electron cooling systems for relativistic ion accelerators.

  8. {omega} meson production in pp collisions with a polarized beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramanyam, J.; Venkataraya,; Ramachandran, G.

    2008-07-15

    Model independent formulas are derived for the beam analyzing power A{sub y} and beam to meson spin transfers in pp{yields}pp{omega}, taking into consideration all six threshold partial wave amplitudes f{sub 1},...,f{sub 6} covering the Ss, Sp, and Ps channels. It is shown that the lowest three partial wave amplitudes f{sub 1},f{sub 2},f{sub 3} can be determined empirically without any discrete ambiguities. Partial information with regard to the amplitudes f{sub 4},f{sub 5},f{sub 6} covering the Ps channel may be extracted, if the measurements are carried through at the double differential level.

  9. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Chuang, Kuo-Chih; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-01

    This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  10. Light Multi-Reflex Engine

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    The purpose of this article is to call attention to the revolutionary idea of multi-reflection. This idea allows the design of new engines, space propulsion systems, storage of a beam and solar energy, transmission of energy over millions of kilometers, a new weapon, etc. This method and its main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the huge possibilities of this idea in many fields such as space, aviation, energy, energy transmission, beam amplification, light transformation and so on. This article considers the direct transfer of light beam energy to mechanical energy and back.

  11. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  12. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  13. Snakes, rotators, serpents and the octahedral group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fieguth, T.

    1986-04-01

    Specific configurations of horizontal and vertical bending magnets are given that, when acting on the spin polarization vector of a particle beam, generate a group of 24 operators isomorphic to the group of rotational symmetries of a cube, known as the octahedral group. Some of these configurations have the feature of converting transversely polarized beams to longitudinally polarized beams (or vice versa) at the midpoint of the configuration for, in principle, all beam energies. Since the first order optical transfer matrix for each half of these configurations is nearly that of a drift region, the external geometry remains unchanged andmore » midpoint dispersion is not introduced. Changing field strengths and/or polarities allows a configuration to serve as either a Snake(1/sup st/ or 2/sup nd/ kind) or a Rotator, where in both cases the spin polarization is longitudinal at the midpoint. In this conceptualization, emphasis has been placed on electron beams and, indeed, for these beams some practical applications can be envisioned. However, due to the relatively high integrated field strengths required, application of these concepts to proton beams may be more promising.« less

  14. Experimental generation of tripartite polarization entangled states of bright optical beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less

  15. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-01

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  16. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Efficiency of passage of highly vibrationally excited CF3I molecules in a beam through a cooled converging hollow truncated cone

    NASA Astrophysics Data System (ADS)

    Makarov, Grigorii N.; Petin, A. N.

    2006-09-01

    The passage of CF3I molecules excited by high-intensity IR laser radiation to high vibrational states (with energy Ev >= 0.3-1.5 eV) and unexcited molecules in a pulsed beam through a converging truncated hollow metal cone cooled to Ts approx 80-85 K and mounted at an angle to the beam axis is studied. It is found that the excited molecules pass much more readily through the cone than the unexcited (vibrationally cold) molecules. This opens the possibility for studying the processes of energy transfer and redistribution over a cold surface covered by molecular (cluster) layers, and for separating excited and unexcited molecules in a beam.

  17. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    DOEpatents

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  18. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei

    NASA Astrophysics Data System (ADS)

    CLAS Collaboration; El Fassi, L.; Zana, L.; Hafidi, K.; Holtrop, M.; Mustapha, B.; Brooks, W. K.; Hakobyan, H.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Arrington, J.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hanretty, C.; Heddle, D.; Hicks, K.; Holt, R. J.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Laget, J. M.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Reimer, P. E.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2012-06-01

    We have measured the nuclear transparency of the incoherent diffractive A(e,e‧ρ0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0's on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (lc), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). While the transparency for both 12C and 56Fe showed no lc dependence, a significant Q2 dependence was measured, which is consistent with calculations that included the color transparency effects.

  19. On the resolution of a MIEZE spectrometer

    NASA Astrophysics Data System (ADS)

    Martin, N.

    2018-02-01

    We study the effect of a finite sample size, beam divergence and detector thickness on the resolution function of a MIEZE spectrometer. We provide a transparent analytical framework which can be used to determine the optimal trade-off between incoming flux and time-resolution for a given experimental configuration. The key result of our approach is that the usual limiting factor of MIEZE spectroscopy, namely neutron path length differences throughout the instrument, can be suppressed up to relatively large momentum transfers by using a proper small-angle (SANS) geometry. Under such configuration, the hitherto accepted limits of MIEZE spectroscopy in terms of time-resolution are pushed upwards by typically an order of magnitude, giving access to most of the topical fields in soft- and hard-condensed matter physics.

  20. Spot size measurement of a flash-radiography source using the pinhole imaging method

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Xie, Yu-Tong; Liu, Yun-Long; Long, Quan-Hong

    2016-07-01

    The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.

  1. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings.

    PubMed

    Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik

    2014-09-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.

  2. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    NASA Astrophysics Data System (ADS)

    Duris, Joseph Patrick

    Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used for acceleration in this experiment. By accounting for the evolving radiation field in the design of the undulator tapering, a large fraction of energy may be transferred between the electrons and laser, enabling compact, high-current GeV accelerators and various wavelength light-sources of unprecedented peak powers.

  3. Efficiency of ablative loading of material upon the fast-electron transfer of absorbed laser energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, Sergei Yu; Kasperczuk, A; Pisarczyk, T

    2006-05-31

    We present the results of experiments on the short-term irradiation of a solid material by a laser beam. The data testify to a rise in efficiency of the energy transfer from the laser pulse to a shock wave due to the fast-electron energy transfer. The experiments were performed with massive aluminium targets on the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the time of shock decay and crater formation in the target (50-200 ns). The irradiation experiments were carried out using the fundamental laser harmonic (1.315 {mu}m) with an energy of 360 J. The greatermore » part of the experiments were performed for the radiation intensity exceeding 10{sup 15} W cm{sup -2}, which corresponded to the efficient generation of fast electrons under the conditions where the relatively long-wavelength iodine-laser radiation was employed. The irradiation intensity was varied by varying the laser beam radius for a specified pulse energy. (interaction of laser radiation with matter. laser plasma)« less

  4. Measurements and calculations of the Coulomb cross section for the production of direct electron pairs by energetic heavy nuclei in nuclear track emulsion

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Eby, P. B.; Fountain, W. F.; Parnell, T. A.; Dong, B. L.; Gregory, J. C.; Takahashi, Y.; King, D. T.

    1988-01-01

    Measurements and theoretical predictions of the Coulomb cross section for the production of direct electron pairs by heavy ions in emulsion have been performed. Nuclear track emulsions were exposed to the 1.8 GeV/amu Fe-56 beam at the Lawrence Berkeley Laboratory bevalac and to the 60 and 200 GeV/amu O-16 and the 200 GeV/amu S-32 beam at the European Center for Nuclear Research Super Proton Synchrotron modified to accelerate heavy ions. The calculations combine the Weizsacker-Williams virtual quanta method applicable to the low-energy transfers and the Kelner-Kotov relativistic treatment for the high-energy transfers. Comparison of the measured total electron pair yield, the energy transfer distribution, and the emission angle distribution with theoretical predictions revealed a discrepancy in the frequency of occurrence of the low-energy pairs (less than or = 10 MeV). The microscope scanning criteria used to identify the direct electron pairs is described and efforts to improve the calculation of the cross section for pair production are also discussed.

  5. Modeling of trim panels in the energy finite element analysis

    NASA Astrophysics Data System (ADS)

    Moravaeji, Seyed-Javid

    Modeling a trim panel is divided into finding the power exchange through two different paths: (i) the connection of the outer and inner panels (ii) through the layers directly. The vibrational power exchanged through the mounts is modeled as the connection of two parallel plates connected via a beam. Wave matrices representing plates and beams are derived separately; then a matrix method is proposed to solve for the wave amplitudes and hence the vibrational power exchange between the plates accordingly. A closed form formula for the case of connection of two identical plates is derived. For the power transmission loss directly through the layers, first transfer matrices representing layers made of different materials is considered. New matrices for a porous layer are derived. A method of finding the layered structure transfer matrix is proposed. It is concluded that in general a single isotropic layer cannot replace a structure accurately. Finally, on the basis of an equivalent transfer matrix, an optimization process for is proposed to replace the panel by a suitable set of layers.

  6. Heat transfer modelling of pulsed laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuanfu; Kresin, Vitaly V., E-mail: kresin@usc.edu

    This note describes a system for transferring a load of high purity lithium metal into a molecular or cluster beam source. A hot loading vessel is thoroughly baked out while empty and overpressured with argon. A clean Li rod is then dropped in through a long narrow tube. The thoroughly degassed interior of the vessel and the rapid melting of the inserted rod facilitate contamination-free transfer of the highly reactive liquid metal into the source oven.

  8. Radiation-induced phenomena in ethylene-co-tetrafluoroethylene polymer. Temperature and LET effects

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Washio, Masakazu

    2003-08-01

    Irradiation temperature and linear energy transfer (LET) dependency on radiation-induced reactions of ethylene-co-tetrafluoroethylene polymer (ETFE) were investigated precisely by using low and high LET beams, and in a wide range of irradiation temperatures from 77 to 573 K including its melting temperature, respectively. At various temperatures irradiation by low LET beam such as γ-rays or electron beams, significant changes were observed in the photo-absorption spectra in the wavelength region between 200 and 500 nm. The general tendency is that the absorption band shifts to longer wavelengths with higher irradiation temperatures. The enhancement of the photo-absorption at 200-500 nm is due to the formation of conjugated double bonds in ETFE by irradiation. By high LET beam irradiation at room temperature such as ion beams, the photo-absorption spectra was different from those of low LET beams, i.e. the new absorption bands around 250-450 nm was appeared. It could be suggested that the high LET beams induced the production of intermediate species in a localized area such as track structure. As a result, reaction kinetics are different from low LET beams.

  9. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For conveniencemore » of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.« less

  10. Design study of the CEPC booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chuang

    2014-12-10

    Design study of the CEPC booster is reported. The booster provides 120 GeV beams for the collider with topup injection frequency of 0.1 Hz. To save cost, energy of the linac injector for the booster is chosen as 6GeV, corresponding to the magnetic field of 30 Gs. In this paper, lattice of the booster is described; the low injection energy issues are studied; beam transfer from linac to booster and from booster to collider are discussed.

  11. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, Philippe; Bracke, Adam; Demir, Veysel

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  12. A diffusion-free and linear-energy-transfer-independent nanocomposite Fricke gel dosimeter

    NASA Astrophysics Data System (ADS)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2014-03-01

    We report a new magnetic-resonance-imaging (MRI) based nanocomposite Fricke gel (NC-FG) dosimeter system, which is free from two main drawbacks of conventional Fricke gel dosimeters, namely, the diffusion of the radiation products and the linear-energy-transfer (LET) dependence of the radiation sensitivity when used for ion beams. The NC-FG dosimeter was prepared by incorporating 1% (w/w) clay nanoparticles into deaerated Fricke gel. We have dosimetrically characterized the NC-FG by using MRI measurements after irradiation with a monoenergetic 290 MeV/nucleon carbon beam. No diffusion of the radiation products was observed during nine days after the irradiation. Moreover, its response faithfully reproduced the depth-dose distribution measured by an ionization chamber, which indicates the absence of the LET dependence. Also, the NC-FG dosimeter exhibited a good linearity up to 800 Gy.

  13. Recent progress of the research work on frequency and time at the NIM. [China

    NASA Technical Reports Server (NTRS)

    Bingying, H.

    1979-01-01

    Chinese activities reported include (1) research and development on the primary cesium beam standard and the high precision crystal oscillator; (2) keeping the atomic time and calibrating frequency standards; (3) determining methods for transferring the standard frequency at the highest precision. The primary beam installation gives an accuracy of 1.2 x 10 to the minus 12 power (1 sigma). Improvements are being made to attain an uncertainity goal of the order of 10 to the minus 13 power. Two experiments conducted are described. One involved standard frequency transfer via TV color subcarrier; the other involved time synchronization via Symphonie satellite. The best results are the random fluctuation of direct measurement data is 1 sigma sub r (RMS) 10 ns, and the absolute error of clock synchronization is 1 sigma sub A (RMS) 30 ns.

  14. Modeling of a UV laser beam—silicon nitride interaction

    NASA Astrophysics Data System (ADS)

    Dgheim, J. A.

    2016-11-01

    A numerical model is developed to study heat and radiation transfers during the interaction between a UV laser beam and silicon nitride. The laser beam has temporal Gaussian or Gate shapes of a wavelength of 247 nm, with pulse duration of 27 ns. The mathematical model is based on the heat equation coupled to Lambert-Beer relationship by taking into account the conduction, convection and radiation phenomena. The resulting equations are schemed by the finite element method. Comparison with the literature shows qualitative and quantitative agreements. The investigated parameters are the temperature, the timing of the melting process and the melting phase thickness. The effects of the laser fluences, ranging from 500 to 16 000 J.m-2, the Gaussian and Gate shapes on the heat transfer, and the melting phenomenon are studied.

  15. Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip.

    PubMed

    Lentine, A L; Reiley, D J; Novotny, R A; Morrison, R L; Sasian, J M; Beckman, M G; Buchholz, D B; Hinterlong, S J; Cloonan, T J; Richards, G W; McCormick, F B

    1997-03-10

    We describe a new optoelectronic switching system demonstration that implements part of the distribution fabric for a large asynchronous transfer mode (ATM) switch. The system uses a single optoelectronic VLSI modulator-based switching chip with more than 4000 optical input-outputs. The optical system images the input fibers from a two-dimensional fiber bundle onto this chip. A new optomechanical design allows the system to be mounted in a standard electronic equipment frame. A large section of the switch was operated as a 208-Mbits/s time-multiplexed space switch, which can serve as part of an ATM switch by use of an appropriate out-of-band controller. A larger section with 896 input light beams and 256 output beams was operated at 160 Mbits/s as a slowly reconfigurable space switch.

  16. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Changhai; Tian, Ye; Li, Wentao

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside themore » overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.« less

  17. High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osaka, Keiichi, E-mail: k-osaka@spring8.or.jp; Inoue, Daisuke; Sato, Masugu

    A highly automated system combining a sample transfer robot with focused SR beam has been established for small-angle and ultra small-angle X-ray scattering (SAXS/USAXS) measurement at BL19B2 for industrial use of SPring-8. High-throughput data collection system can be realized by means of X-ray beam of high photon flux density concentrated by a cylindrical mirror, and a two-dimensional pixel detector PILATUS-2M. For SAXS measurement, we can obtain high-quality data within 1 minute for one exposure using this system. The sample transfer robot has a capacity of 90 samples with a large variety of shapes. The fusion of high-throughput and robotic systemmore » has enhanced the usability of SAXS/USAXS capability for industrial application.« less

  18. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skobelev, N. K., E-mail: skobelev@jinr.ru

    2016-07-15

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable ({sup 6}Li) and radioactive ({sup 6}He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and {sup 3}He beams of the U-120M cyclotron at themore » Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei ({sup 6}Li and {sup 3}He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.« less

  19. Improving the performance of auto-parametric pendulum absorbers by means of a flexural beam

    NASA Astrophysics Data System (ADS)

    Mahmoudkhani, S.

    2018-07-01

    Auto-parametric pendulum absorbers perform well only in a very limited range of excitation amplitudes, above which their efficiency would be substantially degraded as a consequence of spillover effects or appearance of quasi-periodic and chaotic responses. For improving the performance against this drawback, the rigid pendulum is replaced in the present study with a low-stiffness viscoelastic beam. An additional one-to-three internal resonance between the almost non-flexural rotational and the first flexural modes of the beam is also introduced. With the aid of this internal resonance, the energy that has been transferred to the absorber due to the one-to-two internal resonance would be avoided from being transferred back to the primary system by faster dissipation of vibrations at a higher-frequency mode thereby leading to lower spillover effects. For modeling purpose, the tracking frame with the rigid-body constraint and also the third-order nonlinear beam theory are employed to account for arbitrarily large rotation angles coupled to moderately large elastic deformations. The assumed-mode method is also used to obtain discretized equations of motion. The numerical continuation of periodic solution is performed and the bifurcations with detrimental effects on the performance are determined. Various parametric studies are also conducted which show that by proper setting of the system parameters, higher efficiencies at much wider range of excitation amplitudes could be achieved.

  20. An investigation of soil-structure interaction effects observed at the MIT Green Building

    USGS Publications Warehouse

    Taciroglu, Ertugrul; Çelebi, Mehmet; Ghahari, S. Farid; Abazarsa, Fariba

    2016-01-01

    The soil-foundation impedance function of the MIT Green Building is identified from its response signals recorded during an earthquake. Estimation of foundation impedance functions from seismic response signals is a challenging task, because: (1) the foundation input motions (FIMs) are not directly measurable, (2) the as-built properties of the super-structure are only approximately known, and (3) the soil-foundation impedance functions are inherently frequency-dependent. In the present study, aforementioned difficulties are circumvented by using, in succession, a blind modal identification (BMID) method, a simplified Timoshenko beam model (TBM), and a parametric updating of transfer functions (TFs). First, the flexible-base modal properties of the building are identified from response signals using the BMID method. Then, a flexible-base TBM is updated using the identified modal data. Finally, the frequency-dependent soil-foundation impedance function is estimated by minimizing the discrepancy between TFs (of pairs instrumented floors) that are (1) obtained experimentally from earthquake data and (2) analytically from the updated TBM. Using the fully identified flexible-base TBM, the FIMs as well as building responses at locations without instruments can be predicted, as demonstrated in the present study.

Top