Science.gov

Sample records for beam transfer lines

  1. Beam instrumentation for the BNL Heavy Ion Transfer Line

    SciTech Connect

    Witkover, R.L.; Buxton, W.; Castillo, V.; Feigenbaum, I.; Lazos, A.; Li, Z.G.; Smith, G.; Stoehr, R.

    1987-01-01

    The Heavy Ion Transfer Line (HITL) was constructed to transport beams from the BNL Tandem Van de Graaff (TVDG) to be injected into the AGS. Because the beam line is approximately 2000 feet long and the particle rigidity is so low, 20 beam monitor boxes were placed along the line. The intensity ranges from 1 to 100 nanoAmps for the dc trace beam used for line set-up, to over 100 ..mu..A for the pulsed beam to be injected into the AGS. Profiles are measured using multiwire arrays (HARPS) while Faraday cups and beam transformers monitor the intensity. The electronics stations are operated through 3 Instrumentation Controllers networked to Apollo workstations in the TVDG and AGS control rooms. Details of the detectors and electronics designs and performance will be given.

  2. Optics Studies of the LHC Beam Transfer Line TI8

    SciTech Connect

    J. Wenninger; G. Arduini; B. Goddard; D. Jacquet; V. Kain; M. Lamont; V. Mertens; J.A. Uythoven; Y.-C. Chao

    2005-05-16

    The optics of the newly commissioned LHC beam transfer line TI 8 was studied with beam trajectories, dispersion and profile measurements. Steering magnet response measurements were used to analyze the quality of the steering magnets and of the beam position monitors. A simultaneous fit of the quadrupole strengths was used to search for setting or calibration errors. Residual coupling between the planes was evaluated using high statistics samples of trajectories. Initial conditions for the optics at the entrance of the transfer line were reconstructed from beam profile measurements with Optical Transition Radiation monitors. The paper presents the various analysis methods and their errors. The expected emittance growth arising from optical mismatch into the LHC is evaluated.

  3. Beam profile monitor system for the Bevalac transfer line

    SciTech Connect

    Stover, G.

    1985-05-01

    Incorporated in the current Bevalac transfer line upgrade project is a proposal for a new electronic beam monitoring system. It will be designed to amplify, convert, and transmit the signals of twelve 16 by 16 multi-wire grids to a central computer located in the Bevatron control room. Each station will contain interface amplifiers and a local microprocessor to convert wire grid currents into digitized values which will then be transmitted via a serial data channel to the main computer. The system will have a large dynamic range (1 nano to 1 milli-ampere of beam current), be designed for distributed operation, and will be easily expandable. This paper describes the basic electronic hardware and software components of the proposed system. 10 refs., 3 figs.

  4. DESIGN OF BEAM TRANSFER LINES FOR THE NSLS II

    SciTech Connect

    TSOUPAS,N.; ROSE, J.; PINAYEV, I.; SHAFTAN, T.; STELMACH, C.

    2007-06-25

    The NSLS-II light source which is a proposed facility to be built at Brookhaven National Laboratory utilizes two synchrotron accelerator rings: the booster and the Storage ring (SR). Designing the NSLS-11 injector we considered two options for the booster layout, where the rings either (a) share the same tunnel, but placed at different horizontal planes or (b) booster is located in a separate building. The booster which accepts beam from the linac, accelerates the electron beam to an energy of 3.0 GeV and the beam is extracted to the Booster to Storage Ring (BtS) transport line which transports the beam and injects it into the SR ring. The design procedure for each of the two options of the BtS line and other details about the optics and the magnetic elements of the line are presented in this paper.

  5. Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams

    SciTech Connect

    Kain, V.; Aberle, O.; Bracco, C.; Fraser, M.; Galleazzi, F.; Gianfelice-Wendt, E.; Kosmicki, A.; Maciariello, F.; Meddahi, M.; Nuiry, F. X.; Steele, G.; Velotti, F.

    2015-06-01

    The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture.

  6. Machine Studies During Beam Commissioning of the SPS-to-LHC Transfer Lines

    SciTech Connect

    Meddahi, M.; Agapov, I.; Fuchsberger, K.; Goddard, B.; Herr, W.; Kain, V.; Mertens, V.; Missiaen, D.; Risselada, T.; Uythoven, J.; Wenninger, J.; /CERN /Fermilab

    2009-07-01

    Through May to September 2008, further beam commissioning of the SPS-to-LHC transfer lines was performed. For the first time, optics and dispersion measurements were also taken in the last part of the lines, and into the LHC. Extensive trajectory and optics studies were conducted, in parallel with hardware checks. In particular dispersion measurements and their comparison with the beam line model were analysed in detail and led to propose the addition of a dispersion-free steering algorithm in the existing trajectory correction program. Its effectiveness was simulated and is briefly discussed.

  7. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  8. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-12-31

    A beam position monitor system has been developed and used in the commissioning of Brookhaven`s Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  9. UNIFORM BEAM DISTRIBUTIONS AT THE TARGET OF THE NSRL BEAM TRANSFER LINE

    SciTech Connect

    TSOUPAS,N.; AHRENS, L.; BROWN, K. CHIANG, I-HUNG, GARDNER, C.J.; MACKAY, W.W.; PILE, P.; RUSEK, A.

    2007-06-25

    Uniform irradiation of biological or material samples with charged particle beams is desired by experimenters because it reduces radiation dose errors. In this paper we present results of uniform beams produced in the NASA SPACE RADIATION LABORATORY (NSRL) at the Brookhaven National Laboratory (BNL) by a method which was developed theoretically and was proven experimentally at BNL. A similar method which requires collimation of the beam, and also lacks the flexibility of the present method to produce beam various beam sizes at the target, was patented in the year 1988. The present method of producing uniform beam distributions on a plane transverse to the direction of the beam, is based on purely magnetic focusing of the beam and requires no collimation of the beam or any other type of beam interaction with materials. It can also generate uniform beam distributions of various sizes. The method is favorably compared with alternative methods of producing uniform beam distributions and can be applied to the whole energy spectrum of the charged particle beams that are delivered by the BNL Booster synchrotron.

  10. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line.

    PubMed

    Romano, F; Cirrone, G A P; Cuttone, G; Rosa, F Di; Mazzaglia, S E; Petrovic, I; Fira, A Ristic; Varisano, A

    2014-06-21

    Fluence, depth absorbed dose and linear energy transfer (LET) distributions of proton and carbon ion beams have been investigated using the Monte Carlo code Geant4 (GEometry ANd Tracking). An open source application was developed with the aim to simulate two typical transport beam lines, one used for ocular therapy and cell irradiations with protons and the other for cell irradiations with carbon ions. This tool allows evaluation of the primary and total dose averaged LET and predict their spatial distribution in voxelized or sliced geometries. In order to reproduce the LET distributions in a realistic way, and also the secondary particles' contributions due to nuclear interactions were considered in the computations. Pristine and spread-out Bragg peaks were taken into account both for proton and carbon ion beams, with the maximum energy of 62 MeV/n. Depth dose distributions were compared with experimental data, showing good agreement. Primary and total LET distributions were analysed in order to study the influence of contributions of secondary particles in regions at different depths. A non-negligible influence of high-LET components was found in the entrance channel for proton beams, determining the total dose averaged LET by the factor 3 higher than the primary one. A completely different situation was obtained for carbon ions. In this case, secondary particles mainly contributed in the tail that is after the peak. The results showed how the weight of light and heavy secondary ions can considerably influence the computation of LET depth distributions. This has an important role in the interpretation of results coming from radiobiological experiments and, therefore, in hadron treatment planning procedures.

  11. High beam current shut-off systems in the APS linac and low energy transfer line

    SciTech Connect

    Wang, X.; Knott, M.; Lumpkin, A.

    1994-11-01

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ``real`` beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS.

  12. High beam current shut-off systems in the APS linac and low energy transfer line

    SciTech Connect

    Wang, X.; Knott, M.; Lumpkin, A.

    1995-05-05

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ``real`` beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  14. PROCEDURE FOR SETTING UP THE TRANSFER LINES FOR THE SNS.

    SciTech Connect

    RAPARIA,D.; LEE,Y.Y.; WENG,W.T.; WEI,J.

    2002-08-19

    This paper describes the procedures for setting up the transfer lines for the Spallation Neutron Source (SNS). The High Energy Beam Transfer (HEBT) is about 170 meters long and has two achromat sections, an energy corrector cavity, energy spreader cavity, and transverse and longitudinal collimators. The Ring to Target Beam Transfer (RTBT) line is about 150 meters long has an achromat, transverse collimators and a beam spreader section. It will be shown that with the available diagnostics one can first characterize the incoming beam in both lines and then, with types and locations of the diagnostics and beam tuning ''knobs'', set up to deliver an output beam with the desired properties.

  15. Focusing and matching properties of the ATR transfer line

    SciTech Connect

    Tsoupas, N.; Fischer, W.; Kewisch, J.; MacKay, W.W.; Peggs, S.; Pilat, F.; Tepikian, S.; Wei, J.

    1997-07-01

    The AGS to RHIC (AtR) beam transfer line has been constructed and will be used to transfer beam bunches from the AGS machine into the RHIC machine which is presently under construction at BNL. The original design of the AtR line has been modified. This article will present the optics of the various sections of the existing AtR beam line, as well as the matching capabilities of the AtR line to the RHIC machine.

  16. The appearance of beam lines

    SciTech Connect

    Carey, D.C.

    1993-05-01

    The combination of an existing graphics package with a large program like TRANSPORT has often resulted in considerable modification to the large program. Use of other graphics package has resulted in essentially having to repeat the work. This difficulty has been avoided in a modification of TRANSPORT which produce layouts of beam lines. Drawings of the reference trajectory and three-dimensional images of all magnets are made by the graphics package TOP DRAWER. Nothing specific to TOP DRAWER or any other graphics has been incorporated into TRANSPORT. If a user is with a different graphics package he or she can then begin usage of this alternate package essentially immediately.

  17. The appearance of beam lines

    SciTech Connect

    Carey, D.C.

    1993-05-01

    The combination of an existing graphics package with a large program like TRANSPORT has often resulted in considerable modification to the large program. Use of other graphics package has resulted in essentially having to repeat the work. This difficulty has been avoided in a modification of TRANSPORT which produce layouts of beam lines. Drawings of the reference trajectory and three-dimensional images of all magnets are made by the graphics package TOP DRAWER. Nothing specific to TOP DRAWER or any other graphics has been incorporated into TRANSPORT. If a user is with a different graphics package he or she can then begin usage of this alternate package essentially immediately.

  18. Linearization algorithms for line transfer

    SciTech Connect

    Scott, H.A.

    1990-11-06

    Complete linearization is a very powerful technique for solving multi-line transfer problems that can be used efficiently with a variety of transfer formalisms. The linearization algorithm we describe is computationally very similar to ETLA, but allows an effective treatment of strongly-interacting lines. This algorithm has been implemented (in several codes) with two different transfer formalisms in all three one-dimensional geometries. We also describe a variation of the algorithm that handles saturable laser transport. Finally, we present a combination of linearization with a local approximate operator formalism, which has been implemented in two dimensions and is being developed in three dimensions. 11 refs.

  19. Auroral resonance line radiative transfer

    SciTech Connect

    Gladstone, G.R. )

    1992-02-01

    A model is developed for simulating the two-dimensional radiative transfer of resonance line emissions in auroras. The method of solution utilizes Fourier decomposition of the horizontal dependence in the intensity field so that the two-dimensional problem becomes a set of one-dimensional problems having different horizontal wavenumbers. The individual one-dimensional problems are solved for using a Feautrier-type solution of the differential-integral form of the radiative transfer equation. In the limit as the horizontal wavenumber becomes much larger than the local line-center extinction coefficient, the scattering integral becomes considerably simplified, and the final source function is evaluated in closed form. The two-dimensional aspects of the model are tested against results for nonresonance radiative transfer studies, and the resonance line part of the model is tested against results of existing plane-parallel resonance line radiative transfer codes. Finally, the model is used to simulate the intensity field of O{sub I} 1,304{angstrom} for hard and soft auroras of various Gaussian horizontal widths. The results demonstrate the importance of considering the effects of two-dimensional radiative transfer when analyzing auroral resonance line data.

  20. Physics of the AGS-to-RHIC transfer line commissioning

    SciTech Connect

    Satogata, T.; Ahrens, L.; Brennan, M.; Brown, K.; Clifford, T.; Connolly, R.; Dell, F.; Deng, D.P.; Hoff, L.; Kewisch, J.; MacKay, W.W.; Maldonado, G.; Martin, B.; Olsen, R.; Peggs, S.; Pilat, F.; Robinson, T.; Sathe, S.; Shea, D.; Shea, T.J.; Tanaka, M.; Thompson, P.; Tepikian, S.; Trahern, C.G.; Trbojevic, D.; Tsoupas, N.; Wei, J.; Witkover, R.; Zhou, P.

    1996-07-01

    This paper presents beam physics results from the fall 1995 AGS-to- RHIC (ATR) transfer line commissioning run with fully ionized gold nuclei. We first describe beam position monitors and transverse video profile monitors, instrumentation relevant to measurements performed during this commissioning. Measured and corrected beam trajectories demonstrate agreement with design optics to a few percent, including optical transfer functions and beamline dispersion. Digitized 2- dimensional video profile monitors were used to measure beam emittance, and beamline optics and AGS gold ion beam parameters are shown to be comparable to RHIC design requirements.

  1. BEAM TRANSPORT LINES FOR THE BSNS.

    SciTech Connect

    WEI, J.

    2006-06-26

    This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at the target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.

  2. Vortex-based line beam optical tweezers

    NASA Astrophysics Data System (ADS)

    Cheng, Shubo; Tao, Shaohua

    2016-10-01

    A vortex-based line beam, which has a straight-line shape of intensity and possesses phase gradient along the line trajectory is developed and applied for optical manipulation in this paper. The intensity and phase distributions of the beam in the imaging plane of the Fourier transform are analytically studied. Simulation results show that the length of the line and phase gradient possessed by a vortex-based line beam are dependent on the topological charge and the azimuthal proportional constant. A superposition of multiple phase-only holograms with elliptical azimuthal phases can be used to generate an array of vortex-based line beams. Optical trapping with the vortex-based line beams has been implemented. Furthermore, the automatic transportation of microparticles along the line trajectory perpendicular to the optical axis is realized with an array of the beams. The generation method for the vortex-based line beam is simple. The beam would have potential applications in fields such as optical trapping, laser machining, and so on.

  3. The collinear laser beam line at ISAC

    NASA Astrophysics Data System (ADS)

    Levy, C. D. P.; Baartman, R.; Behr, J. A.; Kiefl, R. F.; Pearson, M.; Poutissou, R.; Hatakeyama, A.; Hirayama, Y.

    2004-12-01

    The collinear laser beam line at ISAC is producing a range of highly polarized Li and Na isotopes with high beam transmission efficiency. Using a Ta production target, a 8Li rate of more than 10 8 atoms s -1 with 60% polarization at the user experiment is typical. The beam line is also used for laser induced fluorescence spectroscopy on heavy ions and atoms. A preliminary scheme for polarizing 20F is presented.

  4. FFAG Beam Line for nuPIL - Neutrinos from PIon Beam Line

    SciTech Connect

    Lagrange, Jean-Baptiste; Pasternak, Jaroslaw; Bross, Alan; Liu, Ao; Appleby, Robert; Tygier, Sam

    2016-06-01

    The Long Baseline Neutrino Facilities (LBNF) program aims to deliver a neutrino beam for the Deep Underground Neutrino Experiment (DUNE). The current baseline for LBNF is a conventional magnetic horn and decay pipe system. Neutrinos from PIon beam Line (nuPIL) is a part of the optimization effort to optimize the LBNF. It consists of a pion beam line after the horn to clean the beam of high energy protons and wrong-sign pions before transporting them into a decay beam line, where instrumentation could be implemented. This paper focuses on the FFAG solution for this pion beam line. The resulting neutrino flux is also presented.

  5. H line; a beam line for fundamental physics study

    NASA Astrophysics Data System (ADS)

    Kawamura, Naritoshi; Toyoda, Akihisa; Aoki, Masaharu; Shimomura, Koichiro; Mibe, Tsutomu; Nakatsugawa, Yohei; Otani, Masashi; Saito, Naohito; Miyake, Yasuhiro

    2014-12-01

    The muon facility, J-PARC (Muon Science Establishment; MUSE), has been operating since the first beam in 2008. Starting with a 200 kW proton beam, a beam intensity of 3 × 106 muons/s was reached in 2009 which was the most intense pulsed muon beam in the world. From the 2 cm thick graphite target, four secondary muon beam lines are designed to be extracted. Three beam lines currently exist, the first being operational and the other two undergoing commissioning. The fourth and the last beam line, the H line, is planned to be constructed. This new beam line is designed to have a large acceptance, provides the ability to tune the momentum, and use a kicker magnet and/or a Wien filter. The H line is designed to provide an intense beam of 108 surface muons/s for fundamental physics studies to observe new physics beyond the standard model. Such studies require high statistics and they need to occupy the experimental areas for a relatively long period.

  6. Single-knob beam line for transverse emittance partitioning

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Kester, O. K.; Groening, L.; Leibrock, H.; Maier, M.; Rottländer, P.

    2013-04-01

    Flat beams feature unequal emittances in the horizontal and vertical phase space. Such beams were created successfully in electron machines by applying effective stand-alone solenoid fringe fields in the electron gun. Extension of this method to ion beams was proposed conceptually. The present paper is on the decoupling capabilities of an ion beam emittance transfer line. The proposed beam line provides a single-knob tool to partition the horizontal and vertical rms emittances, while keeping the product of the two emittances constant as well as the transverse rms Twiss parameters (αx,y and βx,y) in both planes. It is shown that this single knob is the solenoid field strength.

  7. Schottky Noise and Beam Transfer Functions

    SciTech Connect

    Blaskiewicz, M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  8. In-line beam current monitor

    DOEpatents

    Ekdahl, C.A. Jr.; Frost, C.A.

    1984-11-13

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  9. In-line beam current monitor

    DOEpatents

    Ekdahl, Jr., Carl A.; Frost, Charles A.

    1986-01-01

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  10. Transfer of a polarized proton beam from AGS to RHIC

    SciTech Connect

    Tsoupas, N.; Roser, T.; Syphers, M.; Luccio, A.; Underwood, D.

    1997-07-01

    As part of the RHIC project, the RHIC machine will also be able to accelerate polarized proton beam bunches. The bunches will be extracted from the AGS machine, with kinetic energy T = 25 GeV, and transferred into RHIC via the AtR transfer line. When the RHIC machine accelerates polarized protons, it will operate with two full snakes, which define the stable spin direction of a polarized proton beam circulating in each ring, along the vertical. Therefore a polarized proton beam should be injected into the RHIC machine with the stable spin direction along the vertical in order to match that of the RHIC machine. The layout of the dipole magnets of the AtR line creates a dependence, on the injection energy, of the stable spin direction of a polarized proton beam injected into the RHIC machine. In this paper, the study of the stable spin direction (at the RHIC injection point) of a polarized proton beam as a function of the injection energy is presented. A modification of the AtR transfer line, which eliminates this energy dependence (within the range of proton injection energies) of the stable spin direction is also presented.

  11. Low gravity transfer line chilldown

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Collins, Frank G.; Kawaji, Masahiro

    1992-01-01

    The progress to date is presented in providing predictive capabilities for the transfer line chilldown problem in low gravity environment. A low gravity experimental set up was designed and flown onboard the NASA/KC-135 airplane. Some results of this experimental effort are presented. The cooling liquid for these experiments was liquid nitrogen. The boiling phenomenon was investigated in this case using flow visualization techniques as well as recording wall temperatures. The flow field was established by injecting cold liquid in a heated tube whose temperature was set above saturation values. The tubes were vertically supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.

  12. PIP-II Transfer Line Design

    SciTech Connect

    Vivoli, A.

    2016-10-15

    The U.S. Particle Physics Project Prioritization Panel (P5) report encouraged the realization of Fermilab's Proton Improvement Plan II (PIP-II) to support future neutrino programs in the United States. PIP-II aims at enhancing the capabilities of the Fermilab existing accelerator complex while simultaneously providing a flexible platform for its future upgrades. The central part of PIP-II project is the construction of a new 800 MeV H- Superconducting (SC) Linac together with upgrades of the Booster and Main Injector synchrotrons. New transfer lines will also be needed to deliver beam to the down-stream accelerators and facilities. In this paper we present the recent development of the design of the transfer lines discussing the principles that guided their design, the constraints and requirements imposed by the existing accelerator complex and the following modifications implemented to comply with a better understanding of the limitations and further requirements that emerged during the development of the project.

  13. Dipole Magnet for Beam Line Switching

    NASA Astrophysics Data System (ADS)

    Yoshida, Jun

    We are developing a Bi-2223 HTS dipole magnet for beam line switching for use in the cyclotron facility of RCNP, Osaka University. Exit beam lines are periodically switched by increasing and decreasing of the magnetic field between 0 T and 1.6 T with a switching time of 10 sec. A Bi-2223 coil assembly was designed with the electromagnetic force support and the suppression of temperature rise by AC loss and eddy current loss. In this chapter, we introduce this magnet as a practical example of conduction-cooled Bi-2223-HTS magnet for accelerator application.

  14. New wiggler beam line for SSRL

    SciTech Connect

    Hoyer, E.

    1982-08-01

    A new high-intensity-beam line with a wiggler magnet source is described. This project, in final stages of design, is a joint effort between Lawrence Berkeley Laboratory (LBL), the Exxon Research and Engineering Company (EXXON), and the Stanford Synchrotron Radiation Laboratory (SSRL). Installation at SSRL will begin in the summer of 1982. The goal of this project is to provide extremely high-brightness synchrotron radiation beams over a broad spectral range from 50 eV to 40 keV. The radiation source is a 27 period (i.e., 55 pole) permanent magnet wiggler of a new design. The wiggler utilizes rare-earth cobalt (REC) material in the steel hybrid configuration to achieve high magnetic fields with short periods. An analysis has been made of the polarization, angular distribution and power density of the radiation produced by the wiggler. Details of the wiggler design are presented. The magnet is outside a thin walled (1mm) variable gap stainless steel vacuum chamber. The chamber gap will be opened to 1.8 cm for beam injection into SPEAR and then closed to 1.0 cm (or less) for operation. Five remotely controlled drives are provided; to change the wiggler gap, to change the vacuum chamber aperture and to position the wiggler. Details of the beam line optics and end stations are presented. Thermal loading on beam line components is severe. The peak power density at 7.5 m is 5 kW/cm/sup 2/ for the nominal wiggler field and present SPEAR beam currents and will approach 20 kW/cm/sup 2/ with the maximum wiggler field and projected SPEAR beam currents.

  15. Beam manipulation and acceleration with Dielectric-Lined Waveguides

    SciTech Connect

    Lemery, Francois

    2015-06-01

    The development of next-generation TeV+ electron accelerators will require either immense footprints based on conventional acceleraton techniques or the development of new higher{gradient acceleration methods. One possible alternative is beam-driven acceleration in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a highcharge bunch passes through a DLW and can excite gradients on the order of GV/m. An important characteristic of this acceleration class is the transformer ratio which characterizes the energy transfer of the scheme. This dissertation discusses alternative methods to improve the transformer ratio for beam-driven acceleration and also considers the use of DLWs for beam manipulation at low energy.

  16. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-08-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  17. High spin isomer beam line at RIKEN

    SciTech Connect

    Kishida, T.; Ideguchi, E.; Wu, H.Y.

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  18. Ion optics of the Linac--LEB transfer line

    SciTech Connect

    Bhandari, R.K.; Penner, S.

    1990-12-01

    This report describes the ion optical properties of a proposed transfer line to inject a nominal 25 mA H{sup {minus}} beam at 600 MeV from the Linac into the Low Energy Booster (LEB) synchrotron. Ion optical investigations have been carried out in detail using the TRANSPORT, TURTLE and TRACE 3-D codes. The calculations take account of linear space charge effects of up to 50 mA average beam current. These effects have been found to be quite appreciable, especially on the longitudinal phase space. Procedure for their evaluation and optimization are described. Effects of some imperfections in the beam line magnets have been studied. 6 refs., 19 figs., 4 tabs.

  19. Multi-transmission-line-beam interactive system

    SciTech Connect

    Figotin, Alexander; Reyes, Guillermo

    2013-11-15

    We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube due to J. R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes.

  20. RI-induced reaction studies by new energy-degrading beam line, OEDO

    NASA Astrophysics Data System (ADS)

    Michimasa, Shin'ichiro

    2014-09-01

    The RI beam factory (RIBF) has expanded variety of accessible nuclei, and provides very intense RI beams. However, the beams are energy range of above 100 MeV/u, and are not necessarily suitable to some kinds of nuclear reactions. Therefore, deceleration of intense RI beams from RIBF open potentially new scientific opportunities to access various states in exotic nuclei by using characteristics probes, such as transfer reactions at several ten MeV/u and fusion reactions at several MeV/u. For energy degrading of nuclear beams, the degrader is generally used. This method easily controls beam energy, while multiple scattering effect and energy straggling in the material broaden the beam spot size at the downstream foci. Therefore, a key issue for reaction measurements is achievement of ion transport to reduce the beam emittance at the secondary target. For this purpose, CNS has set up OEDO (Optimized Energy Degrading Optics for RI beam) project for production of high-quality low energy RI beams. The OEDO beam line scheme is planned to be achieved by re-arrangement of magnets of the high-resolution beam line, where the SHARAQ spectrometer is useful as a spectrograph for low-energy reaction spectroscopy. In this presentation, I will discuss scientific opportunities in the OEDO beam line and the SHARAQ spectrometer.

  1. Design of the transfer line from booster to storage ring at 3 GeV

    SciTech Connect

    Bayar, C. Ciftci, A. K.

    2016-03-25

    The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matched in the exit of transfer line to the injection point of the storage ring.

  2. Shielding Analyses for VISION Beam Line at SNS

    SciTech Connect

    Popova, Irina; Gallmeier, Franz X

    2014-01-01

    Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.

  3. Comparison of beam-position-transfer functions using circular beam-position monitors

    SciTech Connect

    Gilpatrick, J.D.

    1997-10-01

    A cylindrical beam-position monitor (BPM) used in many accelerator facilities has four electrodes on which beam-image currents induce bunched-beam signals. These probe-electrode signals are geometrically configured to provide beam-position information about two orthogonal axes. An electronic processor performs a mathematical transfer function (TF) on these BPM-electrode signals to produce output signals whose time-varying amplitude is proportional to the beam`s vertical and horizontal position. This paper will compare various beam-position TFs using both pencil beams and will further discuss how diffuse beams interact with some of these TFs.

  4. Some New Approaches to Solving Constrained Transfer Line Matching Problems

    SciTech Connect

    Woodley, Mark D

    2001-01-22

    A common type of matching problem involves finding the strengths for four (4) quadrupoles in a transfer line, that will transport a particular beam at the entrance, to produce a beam at the exit of the line with a specified set of horizontal and vertical Twiss parameters. A number of optics programs may be used to find a solution to this type of problem, but the quadrupole strengths obtained are not always satisfactory or optimal with regard to other requirements. The non-uniqueness of the solutions (different solutions have different phase advances) offers the possibility that some of these other requirements could be used to differentiate between solutions. The constrained, nonlinear, optimization program NPSOL has been integrated into a software package that can use the outputs of various optics codes to formulate nonlinear constraints and objective (merit) functions. The package has been used to look for different solutions for the SLAC transfer lines between linac sectors 1 and 2 for three configurations involving (a) the electron damping ring, (b) the damping ring by-pass, and (c) the positron damping ring. The software is briefly described and a summary of selected results obtained to date is presented.

  5. BPM SYSTEM FOR THE SNS RING AND TRANSFER LINES.

    SciTech Connect

    DAWSON,W.C.; CAMERON,P.; CERNIGLIA,P.; CUPOLO,J.; DEGEN,C.; DELLAPENNA,A.; HUHN,A.; KESSELMAN,M.; MEAD,J.; SIKORA,R.

    2002-05-06

    The Spallation Neutron Source Ring accumulates about 1060 pulses of 38mA peak current IGeV H-minus particles from the Linac thru the HEBT line, then delivers this accumulated beam in a single pulse to the mercury target via the RTBT line. Bunching frequency of beam in the HEBT line is 402.5MHz, and about 1MHz in the Ring and RTBT. Position monitor electrodes in HEBT are of the shorted stripline type, with apertures of 12cm except in the dispersive bend, where the aperture is 21cm. Ring and RTBT electrodes are open striplines, with apertures of 21, 26, 30, and 36cm. All pickups are dual plane. The electronics will be PC-based with the Analog/Digital Front End passing data and receiving control and timing thru a custom PC1 interface developed by LANL[l]. LabVIEW will be used to direct the acquisition, process the data, and transfer results via Ethernet to the EPICS control system. To handle the dynamic range required with well over 60dB variation in signal size, the Ring and RTBT electronics will employ a fast gain switching technique that will take advantage of the 300ns tail-to-head gap to provide position measurement during the entire accumulation cycle. Beam-based alignment will be utilized as part of the system calibration.

  6. The new bern PET cyclotron, its research beam line, and the development of an innovative beam monitor detector

    NASA Astrophysics Data System (ADS)

    Braccini, Saverio

    2013-04-01

    The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.

  7. Diagnostic beam absorber in Mu2e beam line

    SciTech Connect

    Rakhno, Igor; /Fermilab

    2011-03-01

    Star density, hadron flux, and residual dose distributions are calculated around the {mu}2e diagnostic beam absorber. Corresponding surface and ground water activation, and air activation are presented as well.

  8. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  9. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    SciTech Connect

    Xiao, M.; Capista, D.; Adams, P.; Morris, D.; Yang, M. J.; Hazewood, K.

    2016-10-03

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summer Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.

  10. Neutrinos from PIon Beam Line, nuPIL

    SciTech Connect

    Lagrange, J. B.; Pasternak, J.; Bross, A.; Liu, A.

    2016-05-05

    LBNF-DUNE (Long Baseline Neutrino Facilities - Deep Underground Neutrino Experiment) is a project based at Fermilab to study neutrino oscillations. The current baseline regarding the neutrino production considers the conventional approach: a high energy proton beam hits a target, producing pions that are collected by a horn and that decay in a decay pipe. An alternative solution, called nuPIL (neutrinos from a Pion beam Line) consists of using a beam line to guide the pions to clean the beam and to put instrumentation to monitor it. This paper presents the concept and the first preliminary results.

  11. Low energy beam line at the AGOR facility

    SciTech Connect

    Toprek, Dragan; Formanoy, Iwo; Brandenburg, Sytze

    2005-01-01

    The origin of the low transmission through the low energy beam line between the electron cyclotron resonance source and the AGOR cyclotron has been investigated. Measurements of beam size and emittance, determined with the ''varying quadrupole method,'' are compared with calculations including fringe fields up to third order with the code COSY INFINITY. Calculations and measurements qualitatively agree; the calculations exhibit the large beam losses observed. On the basis of the calculations new settings have been determined, resulting in a significant increase of the transmission. To achieve full transmission a complete redesign of the beam line, in particular of the bending magnets, is needed.

  12. The New Transfer Line Collimation System for the LHC High Luminosity Era

    SciTech Connect

    Kain, Verena; Bracco, Chiara; Goddard, Brennan; Maciariello, Fausto; Meddahi, Malika; Mereghetti, Alessio; Steele, Genevieve; Velotti, Francesco; Gianfelice-Wendt, Eliana

    2014-07-01

    A set of passive absorbers is located at the end of each of the 3 km long injection lines to protect the LHC in case of failures during the extraction process from the LHC’s last pre-injector or the beam transfer itself. In case of an erroneous extraction, the absorbers have to attenuate the beam to a safe level and be robust enough themselves to survive the impact. These requirements are difficult to fulfil with the very bright and intense beams produced by the LHC injectors for the high luminosity era. This paper revisits the requirements for the SPS-to-LHC transfer line collimation system and the adapted strategy to fulfill these for the LHC high luminosity operation. A possible solution for the new transfer line collimation system is presented.

  13. Status of the proton and electron transfer lines for the AWAKE Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Schmidt, J. S.; Bauche, J.; Biskup, B.; Bracco, C.; Doebert, S.; Goddard, B.; Gschwendtner, E.; Jensen, L. K.; Jones, O. R.; Mazzoni, S.; Meddahi, M.; Pepitone, K.; Petrenko, A.; Velotti, F. M.; Vorozhtsov, A.

    2016-09-01

    The AWAKE project at CERN is planned to study proton driven plasma wakefield acceleration with an externally injected electron beam. Therefore two transfer lines are being designed in order to provide the proton beam from the SPS and the electron beam from an RF gun to the plasma cell. The commissioning of the proton line will take place in 2016 for the first phase of the experiment, which is focused on the self-modulation of a 12 cm long proton bunch in the plasma. The electron line will be added for the second phase of AWAKE in 2017, when the wakefield will be probed with an electron beam of 10-20 MeV/c. The challenge for these transfer lines lies in the parallel operation of the proton, electron and laser beam used to ionize the plasma and seed the self-modulation. These beams, of different characteristics, need to be synchronized and positioned for optimized injection conditions into the wakefield. This task requires great flexibility in the transfer line optics. The status of these designs will be presented in this paper.

  14. Beam Losses in the NLC Extraction Line for High Luminosity Beam Parameters (LCC-0049)

    SciTech Connect

    Nosochkov, Y

    2004-03-19

    In this note we present results of beam tracking in the NLC extraction line for the NLC option with high luminosity beam parameters (option H). Particle losses for 0.5 TeV and 1 TeV cms energy beams have been computed and examined as a function of beam offset at the interaction point (IP). Updated tracking results for the NLC option A are presented as well.

  15. Impact of Laser Beam Speckle Structure on Crossed Beam Energy Transfer via Beam Deflections and Ponderomotive Self-Focusing

    NASA Astrophysics Data System (ADS)

    Raj, G.; Hüller, S.

    2017-02-01

    The role of laser speckle structure (hot spots) and its ponderomotive self-focusing (PSF), in crossed beam energy transfer (CBET), of smoothed laser beams is investigated in an inhomogeneous expanding plasma. Numerical simulations using the code harmony in two spatial dimensions, demonstrate how self-focusing of laser hot spots in crossed beams can significantly affect the transfer of energy from one beam to the other in addition to the stimulated Brillouin scattering (SBS) process. It is shown that for sufficiently intense laser beams, when the laser hot spots exceed the criterion for self-focusing in a plasma with flow, the angular spread of transmitted light beams increases considerably with the intensity, which arises in particular, in expanding plasma where significant beam deflection is observed. It is shown for the first time that besides SBS, the contribution of speckle structure, PSF, and deflections of the intense hot spots in multiple speckle beams to CBET, therefore matters.

  16. Alignment Sensitivity Study of the St. ANA Beam Line

    NASA Astrophysics Data System (ADS)

    Gervais, Michelle; Couder, Manoel; Jung, Hyo Soon; Setoodehnia, Kiana

    2014-09-01

    The St. ANA (STable Accelerator for Nuclear Astrophysics) accelerator is being prepared for use with the St. George recoil mass separator. The accelerator is in working condition for use in direct kinematic experiments but the St. George separator works with inverse kinematics and requires a highly controlled beam restricted by severe position and divergence parameters that are not achieved at the present time. A systematic sensitivity study was conducted using a simulation of the beam line in order to assess the impact of a misalignment in each optical element or in the beam itself. Tests were done with the beam to analyze how the beam behaves at various points in the line and to compare this data with simulation results to determine possible causes of misalignment. The results of these tests and simulations are that the beam characteristics are now better understood and the possible causes of the limitations have been narrowed down. The St. ANA (STable Accelerator for Nuclear Astrophysics) accelerator is being prepared for use with the St. George recoil mass separator. The accelerator is in working condition for use in direct kinematic experiments but the St. George separator works with inverse kinematics and requires a highly controlled beam restricted by severe position and divergence parameters that are not achieved at the present time. A systematic sensitivity study was conducted using a simulation of the beam line in order to assess the impact of a misalignment in each optical element or in the beam itself. Tests were done with the beam to analyze how the beam behaves at various points in the line and to compare this data with simulation results to determine possible causes of misalignment. The results of these tests and simulations are that the beam characteristics are now better understood and the possible causes of the limitations have been narrowed down. Project advisor

  17. Momentum transfer using variable gaseous plasma ion beams and creation of high aspect ratio microstructures

    NASA Astrophysics Data System (ADS)

    Maurya, Sanjeev Kumar; Paul, Samit; Shah, Jay Kumar; Chatterjee, Sanghamitro; Bhattacharjee, Sudeep

    2017-03-01

    Intense gaseous ion beams are created from compact microwave plasmas confined in a multicusp magnetic field. The wave frequency (ω) is comparable to the electron plasma frequency (ωpe) and ≫ the ion plasma frequency (ωpi); therefore, the heavier plasma (ions) are least disturbed by the high frequency electromagnetic waves. By changing the experimental gas, ion beams of different species are obtained, which expands the applicability of the ion beams. For the same applied accelerating potential, the controllability of the beam current owing to different velocities for different ionic species adds to the enhanced functionality. The ion beams are utilized to create a variety of microstructures by direct writing on metallic substrates, and microstructures of a high aspect ratio (ar = line width/depth) in the range of 100-1000 are created by varying the ion species and writing speed. For fixed species (Ga) and low current (1 pA) focused ion beam systems, typically ar ˜ 2.0 to 9.3 may be realized in a single beam scan. A parameter called current normalized force, defined as the momentum transfer per unit time, normalized with the beam current helps in understanding the different momentum transferred to the target sample upon impact by the ion beams of variable species. A mathematical formulation is developed to demonstrate this aspect.

  18. An electromagnetically focused electron beam line source

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e.-

    2003-11-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180°, with cathode to work site distance of 130 mm. Dimensions of the beam (1.25×120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment.

  19. Realization of compact tractor beams using acoustic delay-lines

    NASA Astrophysics Data System (ADS)

    Marzo, A.; Ghobrial, A.; Cox, L.; Caleap, M.; Croxford, A.; Drinkwater, B. W.

    2017-01-01

    A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.

  20. Materials research and beam line operation utilizing NSLS. Progress report

    SciTech Connect

    Liedl, G.L.

    1993-06-01

    MATRIX, a participating research team of Midwest x-ray scattering specialists, continues to operate beam line X-18A at NSLS. Operations of this line now provides state-of-the-art capabilities to a wide range of people in the Materials Science and Engineering research community. Improvements of the beam line continue to be a focus of MATRIX. Throughout this past year the emphasis has been shifting towards improvement in ``user friendly`` aspects. Simplified control operations and a shift to single-user personal computer has been a major part of the effort. Over the past year all 232 operational days were fully utilized. Beam line tests coupled with MATRIX members combined to use 284 days. General user demand for use of the beam line continues to be strong and four groups were provided 48 operating days. Research production has been growing as NSLS and the beam line become a more stable type of operation. For 1992 the MATRIX group published six articles. To date, for 1993 the same group has published, submitted, or has in preparation nine articles. Recent research milestones include: the first quantitative structural information on the as-quenched and early stages of decomposition of supersaturated Al-Li alloys; the first quantitative diffuse scattering measurements on a complex system (Co substitute for Cu YBCO superconductor); demonstration of capabilities of a new UHV surface diffraction chamber with in-situ characterization and temperature control (30-1300K); feasibility of phasing structure factors in a quasicrystal using multiple Bragg scattering.

  1. Crossed Beam Energy Transfer in the NIF ICF Target Design

    SciTech Connect

    Williams, E A; Hinkel, D E; Hittinger, J A

    2003-08-27

    In the National Ignition Facility (NIF) ICF point design, the cylindrical hohlraum target is illuminated by multiple laser beams through two laser entrance holes on the ends. According to simulations by LASNEX and HYDRA plasma created inside the hohlraum will stream out of the LEH, accelerate to supersonic speeds and then fan out radially. Inside the hohlraum, flows are subsonic. Forward Brillouin scattering can transfer energy between pairs of laser beams (0 and 1) if the following frequency matching condition is satisfied: {omega}{sub 0} - {omega}{sub 1} = (k{sub 0} - k{sub 1}) {center_dot} V + |k{sub 0} - k{sub 1}| c{sub s} (1) where {omega}{sub 0.1} and k{sub 0.1} are the frequencies and wave-numbers of the two laser beams, V is the plasma flow velocity and c{sub s} is the local ion sound speed. In the nominal case of equal frequency beams, this requires the component of the plasma flow velocity transverse to the bisector of the beam directions to be sonic, with the resulting transfer being to the downstream beam. In the NIF beam geometry, this is from the outer to inner cones of beams. The physics of this transfer is the same as in beam bending; the difference being that in the case of beam bending the effect is to redistribute power to the downstream side of the single beam. Were significant power transfer to occur in the point design, the delicately tuned implosion symmetry would be spoiled. To directly compensate for the transfer, the incident beam powers would have to be adjusted. The greatest vulnerability in the point design thus occurs at 15.2ns, when the inner beams are at their peak power and are at their nominal design power limit. In this situation, some other means of symmetry control would be required, such as re-pointing. At 15.2ns, the envelope focal intensities of the outer and inner beams are approximately 10{sup 15} and 6.7 10{sup 14} W/cm{sup 2} respectively. There is little absorption or diffractive spreading of the beams in the crossing

  2. Note: Characteristic beam parameter for the line electron gun

    SciTech Connect

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  3. Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Borghesi, M.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Doria, D.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-02-01

    Laser-accelerated ion beams could represent the future of particle acceleration in several multidisciplinary applications, as for instance medical physics, hadrontherapy and imaging field, being a concrete alternative to old paradigm of acceleration, characterized by huge and complex machines. In this framework, following on from the ELIMED collaboration, launched in 2012 between INFN-LNS and ELI-Beamlines, in 2014 a three-years contract has been signed between the two institutions for the design and the development of a complete transport beam-line for high-energy ion beams (up to 60 MeV) coupled with innovative diagnostics and in-air dosimetry devices. The beam-line will be installed at the ELI-Beamlines facility and will be available for users. The measurement of the beam characteristics, such as energy spectra, angular distributions and dose-rate is mandatory to optimize the transport as well as the beam delivery at the irradiation point. In order to achieve this purpose, the development of appropriate on-line diagnostics devices capable to detect high-pulsed beams with high accuracy, represents a crucial point in the ELIMED beamline development. The diagnostics solution, based on the use of silicon carbide (SiC) and diamond detectors using TOF technique, will be presented together with the preliminary results obtained with laser-accelerated proton beams.

  4. Beam Profile Measurement in MTA Beam Line for High Pressure RF Cavity Beam Test

    SciTech Connect

    Jana, M.R.; Bross, A.; Chung, M.; Greer, S.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.; Leonova, M.; Moretti, A.; Popovic, M.; Schwartz, T.; /Fermilab /IIT, Chicago /PDT, Torino

    2012-05-15

    Recent High Pressure RF (HPRF) cavity experiment at MuCool Test Area (MTA) has used 400 MeV Linac proton beam to study the beam loading effect. When the energetic proton beam passes through the cavity, it ionizes the inside gas and produces the electrons. These electrons consume RF power inside the cavity. Number of electrons produced per cm inside the cavity (at 950 psi Hydrogen gas) per incident proton is {approx} 1200. The measurement of beam position and profile are necessary. MTA is flammable gas (Hydrogen) hazard zone so we have developed a passive beam diagnostic instrument using Chromox-6 scintillation screen and CCD camera. This paper presents quantitative information about beam position and beam profile. Neutral density filter was used to avoid saturation of CCD camera. Image data is filtered and fitted with Gaussian function to compute the beam size. The beam profile obtained from scintillation screen shall be compared with multi-wire beam profile.

  5. Thermohydraulic modelling of a transfer line for continuous flow cryostats

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Weisemann, A.; Haberstroh, Ch; Hesse, U.; Krzyzowski, M.

    2017-02-01

    Continuous flow cryostats have to be steadily supplied with the cryogenic cooling agent, e.g. liquid helium (LHe) via a transfer line. The overall setup has to be characterised by a low consumption of the cryogen, determined not only by the cryostat design, but also by the transfer line design. In order to improve the transfer line’s performance, i.e. reducing the evaporation losses a thermohydraulic model has been developed to evaluate different transfer line designs. The presented model is validated by experimental data achieved with a transfer line equipped with built-in pressure sensors. This transfer line has been designed in order to examine the related frictional pressure drop. The developed model allows to examine the impact of the hydraulic and the insulation design on the resulting evaporation losses.

  6. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    SciTech Connect

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  7. Nonlinear transmission line based electron beam driver

    SciTech Connect

    French, David M.; Hoff, Brad W.; Tang Wilkin; Heidger, Susan; Shiffler, Don; Allen-Flowers, Jordan

    2012-12-15

    Gated field emission cathodes can provide short electron pulses without the requirement of laser systems or cathode heating required by photoemission or thermionic cathodes. The large electric field requirement for field emission to take place can be achieved by using a high aspect ratio cathode with a large field enhancement factor which reduces the voltage requirement for emission. In this paper, a cathode gate driver based on the output pulse train from a nonlinear transmission line is experimentally demonstrated. The application of the pulse train to a tufted carbon fiber field emission cathode generates short electron pulses. The pulses are approximately 2 ns in duration with emission currents of several mA, and the train contains up to 6 pulses at a frequency of 100 MHz. Particle-in-cell simulation is used to predict the characteristic of the current pulse train generated from a single carbon fiber field emission cathode using the same technique.

  8. Polarized He3+2 ions in the Alternate Gradient Synchrotron to RHIC transfer line

    DOE PAGES

    Tsoupas, N.; Huang, H.; Méot, F.; ...

    2016-09-06

    The proposed electron-hadron collider (eRHIC) to be built at Brookhaven National Laboratory (BNL) will allow the collisions of 20 GeV polarized electrons with 250 GeV polarized protons, or 100 GeV/n polarized 3He+2 ions, or other unpolarized ion species. The large value of the anomalous magnetic moment of the 3He nucleus GHe=(g₋2)/2=₋4.184 (where g is the g-factor of the 3He nuclear spin) combined with the peculiar layout of the transfer line which transports the beam bunches from the Alternate Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) makes the transfer and injection of polarized 3He ions from AGS tomore » RHIC (AtR) a special case as we explain in the paper. Specifically in this paper we calculate the stable spin direction of a polarized 3He beam at the exit of the AtR line which is also the injection point of RHIC, and lastly, we discuss a simple modifications of the AtR beam-transfer-line, to perfectly match the stable spin direction of the injected polarized 3He beam to that of the circulating beam, at the injection point of RHIC.« less

  9. Beyond "Line by Line": Strategies for Performance and Learning Transfer

    ERIC Educational Resources Information Center

    Musco, Ann Marie

    2011-01-01

    A variety of excellent method books aim to help student musicians develop skills in music reading and instrumental technique, but sometimes the best approach is not simply to move ahead line by line through the book. Rather, teachers will find it beneficial to consider apposite strategies to be used before, during, and after rehearsing a line so…

  10. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    SciTech Connect

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×10{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  11. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    NASA Astrophysics Data System (ADS)

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×105 as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  12. Study of the neutron beam line shield design for JSNS.

    PubMed

    Kawai, M; Saito, K; Sanami, T; Nakao, N; Maekawa, F

    2005-01-01

    The JSNS, a spallation neutron source of J-PARC (JAERI-KEK Joint Project of the High Intensity Proton Accelerator) has 23 neutron beam lines. In the present study, a database was formulated for an optimum shielding design using the MCNP-X code. The calculations involved two steps. In the first step, the neutron distributions were created in the typical neutron beam line with a model that included the spallation neutron source target. The neutron currents evaluated flowed from the duct into the duct wall which was the boundary source for the bulk shield surrounding the beam line. In the second step, bulk-shield calculations were performed for the various shielding materials (iron, concrete, heavy concrete and so on) used and their composites up to thicknesses of 3 m. The results were compared with each other. Composite material shields of iron and such hydrogeneous materials as polyethylene or concrete were more effective. A typical design was prepared for a beam line within 25 m distance from a moderator, as a sample.

  13. Confining continuous manipulations of accelerator beam-line optics

    NASA Astrophysics Data System (ADS)

    Amstutz, Ph.; Plath, T.; Ackermann, S.; Bödewadt, J.; Lechner, C.; Vogt, M.

    2017-04-01

    Altering the optics in one section of a linear accelerator beam line will in general cause an alteration of the optics in all downstream sections. In circular accelerators, changing the optical properties of any beam-line element will have an impact on the optical functions throughout the whole machine. In many cases, however, it is desirable to change the optics in a certain beam-line section without disturbing any other parts of the machine. Such a local optics manipulation can be achieved by adjusting a number of additional corrector magnets that restore the initial optics after the manipulated section. In that case, the effect of the manipulation is confined in the region between the manipulated and the correcting beam-line elements. Introducing a manipulation continuously, while the machine is operating, therefore requires continuous correction functions to be applied to the correcting quadrupole magnets. In this paper, we present an approach to calculate such continuous correction functions for six quadrupole magnets by means of a homotopy method. Besides a detailed derivation of the method, we present its application to an algebraic example, as well as its demonstration at the seeding experiment sFLASH at the free-electron laser FLASH located at DESY in Hamburg.

  14. Preliminary design of electrostatic sensors for MITICA beam line components

    SciTech Connect

    Spagnolo, S. Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P.

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  15. An interactive beam line simulator module for RHIC

    SciTech Connect

    MacKay, W.W.

    1997-07-01

    This paper describes the interactive simulation engine, bl, designed for the RHIC project. The program tracks as output to shared memory the central orbit, Twiss and dispersion functions, as well as the 6 x 6 beam hyperellipsoid. Transfer matrices between elements are available via interactive requests. Using a 6-d model, optical elements are modeled with a linear transfer matrix and a vector. The vector allows simulation of misalignments, shifts in field strengths, and beam rigidity. Currently only a linear model is used for elements. In addition to the usual magnets, a foil element is included which can shift the beam`s rigidity (resulting from a change of charge and energy loss), as well as increase the momentum spread and emittance. Running as a Glish client, bl can be interfaced to other programs, such as an orbit plotter and a power supply application to give a quick prediction of the beam orbit from actual operating currents in the accelerator. Various strengths and offsets may be changed by sending Glish events to bl.

  16. Error analysis in post linac to driver linac transport beam line of RAON

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San

    2016-07-01

    We investigated the effects of magnet errors in the beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator in Korea (RAON). The P2DT beam line is bent by 180-degree to send the radioactive Isotope Separation On-line (ISOL) beams accelerated in Linac-3 to Linac-2. This beam line transports beams with multi-charge state 132Sn45,46,47. The P2DT beam line includes 42 quadrupole, 4 dipole and 10 sextupole magnets. We evaluate the effects of errors on the trajectory of the beam by using the TRACK code, which includes the translational and the rotational errors of the quadrupole, dipole and sextupole magnets in the beam line. The purpose of this error analysis is to reduce the rate of beam loss in the P2DT beam line. The distorted beam trajectories can be corrected by using six correctors and seven monitors.

  17. Micro-beam friction liner and method of transferring energy

    DOEpatents

    Mentesana, Charles

    2007-07-17

    A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.

  18. Converging beams for distortion-free imagery in transfer holograms

    NASA Astrophysics Data System (ADS)

    Waddell, Peter; Saxby, Graham

    1995-02-01

    In order to obtain a distortion-free image when a transfer hologram is replayed by a diverging beam, the original reference beam must be the precise conjugate of the replay beam, i.e., it must converge towards the future location of the replay source. Off-the-shelf collimating mirrors have too long a focal length to achieve this, and suitable custom-built mirrors are heavy and prohibitively expensive. Several methods are suggested for obtaining a suitable beam, including a new type of varifocal pellicular mirror made by stretching a metallized plastic membrane over a circular drumhead and creating a partial vacuum behind it, producing a concave mirror of high optical quality with adjustable focal length.

  19. Crossed-beam energy transfer in direct-drive implosions

    SciTech Connect

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S; Stoeckl, C

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  20. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    PubMed Central

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-01-01

    Abstract Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) PMID:22930653

  1. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams.

    PubMed

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-11-01

    Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements.

  2. Hypervelocity Impact Initiation of Explosive Transfer Lines

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Christiansen, Eric L.

    2012-01-01

    The Gemini, Apollo and Space Shuttle spacecraft utilized explosive transfer lines (ETL) in a number of applications. In each case the ETL was located behind substantial structure and the risk of impact initiation by micrometeoroids and orbital debris was negligible. A current NASA program is considering an ETL to synchronize the actuation of pyrobolts to release 12 capture latches in a contingency. The space constraints require placing the ETL 50 mm below the 1 mm thick 2024-T72 Whipple shield. The proximity of the ETL to the thin shield prompted analysts at NASA to perform a scoping analysis with a finite-difference hydrocode to calculate impact parameters that would initiate the ETL. The results suggest testing is required and a 12 shot test program with surplused Shuttle ETL is scheduled for February 2012 at the NASA White Sands Test Facility. Explosive initiation models are essential to the analysis and one exists in the CTH library for HNS I, but not the HNS II used in the Shuttle 2.5 gr/ft rigid shielded mild detonating cord (SMDC). HNS II is less sensitive than HNS I so it is anticipated that these results using the HNS I model are conservative. Until the hypervelocity impact test results are available, the only check on the analysis was comparison with the Shuttle qualification test result that a 22 long bullet would not initiate the SMDC. This result was reproduced by the hydrocode simulation. Simulations of the direct impact of a 7 km/s aluminum ball, impacting at 0 degree angle of incidence, onto the SMDC resulted in a 1.5 mm diameter ball initiating the SMDC and 1.0 mm ball failing to initiate it. Where one 1.0 mm ball could not initiate the SMDC, a cluster of six 1.0 mm diameter aluminum balls striking simultaneously could. Thus the impact parameters that will result in initiating SMDC located behind a Whipple shield will depend on how well the shield fragments the projectile and spreads the fragments. An end-to-end simulation of the impact of an

  3. G4beamline Particle Tracking in Matter Dominated Beam Lines

    SciTech Connect

    T.J. Roberts, K.B. Beard, S. Ahmed, D. Huang, D.M. Kaplan

    2011-03-01

    The G4beamline program is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available at http://g4beamline.muonsinc.com

  4. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  5. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    NASA Astrophysics Data System (ADS)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-01

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  6. Mathematical model of mass transfer at electron beam treatment

    NASA Astrophysics Data System (ADS)

    Konovalov, Sergey V.; Sarychev, Vladimir D.; Nevskii, Sergey A.; Kobzareva, Tatyana Yu.; Gromov, Victor E.; Semin, Alexander P.

    2017-01-01

    The paper proposes a model of convective mass transfer at electron beam treatment with beams in titanium alloys subjected to electro-explosion alloying by titanium diboride powder. The proposed model is based on the concept that treatment with concentrated flows of energy results in the initiation of vortices in the melted layer. The formation mechanism of these vortices rooted in the idea that the availability of temperature drop leads to the initiation of the thermo-capillary convection. For the melted layer of metal the equations of the convective heat transfer and boundary conditions in terms of the evaporated material are written. The finite element solution of these equations showed that electron-beam treatment results in the formation of multi-vortex structure that in developing captures all new areas of material. It leads to the fact that the strengthening particles are observed at the depth increasing many times the depth of their penetration according to the diffusion mechanism. The distribution of micro-hardness at depth and the thickness of strengthening zone determined from these data supported the view that proposed model of the convective mass transfer describes adequately the processes going on in the treatment with low-energy high-current electron beam.

  7. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    SciTech Connect

    Boles, J L; Reyes, S; Ahle, L E; Stein, W

    2005-05-13

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  8. Data transfer through beam steering using agile lensing

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad Assad; Reza, Syed Azer; Muhammad, Ahsan

    2016-04-01

    This paper presents a data transfer scheme using multi-focus tunable lenses. The design involves the use of a standard laser source and a variable focus agile lens to steer to the laser beam that passes through the lens. In our proposed system, the beam steer angle depends on an input electrical signal which drives the tunable lens. Therefore the beam steer angle is made to follow the variations in the input electrical drive signal. This is extremely interesting for data transfer applications as the data signal can be used as the input drive signal to the lens. The laser beam is steered according to the input data voltage levels and when the beam is incident on a photo-detector of a finite size, only a fraction of its total incident optical power is received by the photo-detector. This power contribution is proportional to the fraction of the total number of photons per unit area which are incident on the active area of the detector. The remaining photons which are not incident on the photo-detector do not contribute to the received power at the photo-detector. We present the theory of beam steering through a tunable lens and present a theoretical framework which governs data transfer through the proposed method. We also present the transfer function of the proposed system which helps us to calculate its essential theoretical performance parameters such as modulation depth and bit error rates. We also present experimental results to demonstrate efficient data transfer through the proposed method. As tunable lenses are primarily deployed in motion-free multi-focus cameras hence most of the modern portable devices such as cellphones and tablets use these lenses to operate the in-built variable focus cameras that are part of these devices. Because tunable lenses are commonly present in several different portable devices, the proposed method of data transfer between two devices is highly promising as it expands the use of the already deployed tunable lenses with

  9. Transport of intense ion beams and space charge compensation issues in low energy beam lines (invited).

    PubMed

    Chauvin, N; Delferrière, O; Duperrier, R; Gobin, R; Nghiem, P A P; Uriot, D

    2012-02-01

    Over the last few years, the interest of the international scientific community for high power accelerators in the megawatt range has been increasing. For such machines, the ion source has to deliver a beam intensity that ranges from several tens up to a hundred of mA. One of the major challenges is to extract and transport the beam while minimizing the emittance growth and optimizing its injection into the radio frequency quadrupole. Consequently, it is crucial to perform precise simulations and cautious design of the low energy beam transport (LEBT) line. In particular, the beam dynamics calculations have to take into account not only the space charge effects but also the space charge compensation of the beam induced by ionization of the residual gas. The physical phenomena occurring in a high intensity LEBT and their possible effects on the beam are presented, with a particular emphasis on space charge compensation. Then, beam transport issues in different kind of LEBTs are briefly reviewed. The SOLMAXP particle-in-cell code dedicated to the modeling of the transport of charge particles under a space charge compensation regime is described. Finally, beam dynamics simulations results obtained with SOLMAXP are presented in the case of international fusion materials irradiation facility injector.

  10. The Imaging and Medical Beam Line at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  11. Beam line design for synchrotron spectroscopy in the VUV

    SciTech Connect

    Howells, M R

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection.

  12. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    SciTech Connect

    Scisciò, M.; Antici, P.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.

    2016-03-07

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  13. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  14. SYNTHESIZER CONTROLLED BEAM TRANSFER FROM THE AGS TO RHIC.

    SciTech Connect

    DELONG,J.; BRENNAN,J.M.; FISCHER,W.; HAYES,T.; SMITH,K.; VALENTINO,S.

    2001-06-18

    To ensure minimal losses and to preserve longitudinal emittance, beam is transferred from the AGS to the RHIC bunch to bucket. This requires precision frequency and phase control for synchronization and kicker timing. The required precision is realized with a set of Direct Digital Synthesizers. Each synthesizer can be frequency and phase modulated to align the AGS bunch to the target bucket in the RHIC phase.

  15. A large-acceptance beam-deceleration module for retrofitting into ion-source beam lines

    SciTech Connect

    Hijazi, H.; Meyer, F. W.

    2013-03-15

    We describe a large-acceptance deceleration module capable of decelerating large-emittance full-intensity ion beams typical of ECR ion sources to very low energies with high efficiency. The deceleration module is designed to permit convenient retrofitting into an existing beam line to replace, e.g., the first Faraday cup after magnetic analysis of the beam extracted from the ion source. For starting energies of 10 keV, and incident ion currents as large as 300 {mu}A, deceleration efficiencies have been measured to be greater than 80% for final energies as low as 70 eV. The decelerated beam intensity can be monitored either by insertion of a beam catcher floating at the final deceleration voltage or from the current to the exit grid itself, with suitable correction applied for the grid transparency factor. The behavior of the deceleration optics was modeled using SIMION, incorporating the effects of intra-beam space charge repulsion. We describe a recent application of this deceleration module to study near-surface He bubble and blister formation of a W target heated to 1250 K and irradiated with a 98 eV He ion beam with a flux of {approx}10{sup 16} cm{sup -2} s{sup -1}.

  16. Thermal Stress Analysis for a Transfer Line of Hydrogen Moderator in J-Parc

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Teshigawara, M.; Aso, T.; Ohtsu, K.; Maekawa, F.; Kato, T.

    2008-03-01

    An intense spallation neutron source (JSNS) driven by a 1-MW proton beam was constructed, as one of the main experimental facilities in J-PARC. In JSNS, supercritical hydrogen (1.5 MPa, 20 K) was selected as a moderator material. Three kinds of hydrogen moderator are installed (coupled, decoupled, and poisoned) to provide pulsed neutron beam with higher neutronic performance. The moderators contain cryogenic hydrogen transfer lines located in a radioactive area. Therefore, the transfer lines should be designed to have minimum pipe size and elbow-type bend sections to reduce the potential for radiation dose by radiation streaming. The design should also consider mechanical stress concentrations, deformation, and touching between the pipes due to the thermal shrinkage at the cryogenic hydrogen temperature. A FEM code analysis determined the appropriate locations of piping supporting spacers to keep the thermal stress below the allowable stress and to also avoid touching between the pipes.

  17. Service life evaluation of rigid explosive transfer lines

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Kayser, E. G.; Schimmel, M. L.

    1983-01-01

    This paper describes a joint Army/NASA-sponsored research program on the service life evaluation of rigid explosive transfer lines. These transfer lines are used to initiate emergency crew escape functions on a wide variety of military and NASA aircraft. The purpose of this program was to determine quantitatively the effects of service, age, and degradation on rigid explosive transfer lines to allow responsible, conservative, service life determination. More than 800 transfer lines were removed from the U.S. Army AH-1G and AH-1S, the U.S. Air Force B-1 and F-111, and the U.S. Navy F-14 aircraft for testing. The results indicated that the lines were not adversely affected by age, service, or a repeat of the thermal qualification tests on full-service lines. Extension of the service life of rigid explosive transfer lines should be considered, since considerable cost savings could be realized with no measurable decrease in system reliability.

  18. Foam insulated transfer line test report

    SciTech Connect

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation`s resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system`s thermal behavior can be refined by data from the heated piping loop.

  19. Issues for Bringing Electron Beam Irradiators On-Line

    SciTech Connect

    Kaye, R.J.; Turman, B.N.

    1999-04-20

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined.

  20. Beam Line VI REC-steel hybrid wiggler for SSRL

    SciTech Connect

    Hoyer, E.; Chan, T.; Chin, J.W.G.; Halbach, K.; Kim, K.J.; Winick, H.; Yang, J.

    1983-03-01

    A wiggler magnet with 27 periods, each 7 cm long which reaches 1.21 T at a 1.2 cm gap and 1.64 T at 0.8 cm gap has been designed and is in fabrication. Installation in SPEAR is scheduled for mid 1983. This new wiggler will be the radiation source for a new high intensity synchrotron radiation beam line at SSRL. The magnet utilizes rare-earth cobalt (REC) material and steel in a hybrid configuration to achieve simultaneously a high magnetic field with a short period. The magnet is external to a thin walled variable gap stainless steel vacuum chamber which is opened to provide beam aperture of 1.8 cm gap at injection and then closed to a smaller aperture (< 1.0 cm). Five independent drive systems are provided to adjust the magnet and chamber gaps and alignment. Magnetic design, construction details and magnetic measurements are presented.

  1. Robust population transfer in atomic beams induced by Doppler shifts

    NASA Astrophysics Data System (ADS)

    Unanyan, R. G.

    2016-10-01

    The influence of photon momentum recoil on adiabatic population transfer in an atomic three-level lambda system is studied. It is shown that the Doppler frequency shifts, due to atomic motion, can play an important role in adiabatic population transfer processes of atomic internal states by a pair of laser fields. For the limiting case of slow atoms (Doppler shift much smaller than the photon recoil energy), the atoms occupy the same target state regardless of the order of switching of laser fields, while for the case of fast atoms interacting with the intuitive sequence of pulses, the target state is the intermediate atomic state. Furthermore, it is shown that this novel technique for adiabatic population transfer is related to a level crossing in the bright-intermediate state basis (rather than in the original atomic basis). It is shown that these processes are robust with respect to parameter fluctuations, such as the laser pulse area and the relative spatial offset (delay) of the laser beams. The obtained results can be used for the control of temporal evolution of atomic populations in cold atomic beams by externally adjustable Doppler shifts.

  2. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    SciTech Connect

    Gilpatrick, J.D.; Carter, H.; Plum, M.; Power, J.F.; Rose, C.R.; Shurter, R.B.

    1995-12-31

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design.

  3. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    SciTech Connect

    Gilpatrick, J.D.; Carter, H.; Plum, M.; Power, J.F.; Rose, C.R.; Shurter, R.B.

    1995-05-05

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    NASA Astrophysics Data System (ADS)

    Gilpatrick, J. D.; Carter, H.; Plum, M.; Power, J. F.; Rose, C. R.; Shurter, R. B.

    1995-05-01

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design.

  5. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  6. Evaluation of Hose in Hose transfer line service life

    SciTech Connect

    EAGLE, O.H.

    2003-05-30

    This document presents a determination for the amount of expected service life from Hose-in-Hose Transfer Lines based on vendor information and past HIHTL experience. Based on the information presented in this report and referenced documentation, we conclude the service life of the inner hose establishes the limits of service life for the finished assemblies. Since the process and environmental conditions to which the transfer line is subjected will not adversely affect the hose, the effective service life is that stated by the vendor--three years from the date of initial transfer. Transfer line assemblies have a shelf life of seven years from the date of hose manufacture, if stored in accordance with Section 2.1. This evaluation provides documentation showing that a three year service life has been justified. In the event that transfer lines are to be operated after three years from the date of initial transfer and within the shelf life of seven years, they must be reevaluated for their ability to perform intended functions.

  7. Three-dimensional particle trajectories and waste beam losses in injection dump beam line of SNS accumulator ring

    SciTech Connect

    Wang, Jian-Guang; Plum, Michael A

    2008-01-01

    The SNS ring injection dump beam line has been suffering high beam losses since its commissioning. In order to understand the mechanisms of the beam losses, we have performed 3D simulation studies of the beam line. The 3D models consist of three injection chicane dipoles and one injection dump septum magnet. 3D particle trajectories in the models are computed. We then extend particle optics calculations to the injection dump. Our studies have clearly shown some design and operation problems, that cause beam losses in the injection dump beam line. These include incorrect chicane dipole settings, incorrect position of a chicane dipole, too small aperture of injection dump septum, and inadequate focusing downstream. This paper reports our findings and the remedies to the injection beam loss problems.

  8. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    SciTech Connect

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures. (LEW)

  9. Beam Line Design of Compact Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Geng, Yi-Xing; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-05-01

    A compact laser plasma accelerator that is a novel accelerator based on the interaction of ultra-intense laser and plasmas is being built now at Peking University. According to the results of experiments and numerical simulations, a beam line combining the advantages of quadrupole and analyzing magnets is designed to deliver proton beams with energy ranging from 1 to 44 MeV, energy spread within ±5% and {10}6-8 protons per pulse. It turns out that the existence of space charge force of protons can be ignored for the increase of transverse and longitudinal envelopes even in the case of 10 {}9 protons in one pulse. To cope with the challenge to obtain a uniform distribution of protons at the final experiment target in laser acceleration, we manipulate the envelope beam waist in the Y direction to a proper position and obtain a relatively good distribution uniformity of protons with an energy spread of 0±5%. Supported by the National Natural Science Foundation of China under Grant No 11575011, and the National Grand Instrument Project under Grant No 2012YQ030142.

  10. The High Resolution Powder Diffraction Beam Line at ESRF

    PubMed Central

    Fitch, A. N.

    2004-01-01

    The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data. PMID:27366602

  11. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    SciTech Connect

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report the resulting neutron and photon dose fields.

  12. Transient analysis of chilldown in a cryogenic transfer line

    NASA Technical Reports Server (NTRS)

    Martin, T.

    1990-01-01

    A numerical model was developed, with the SINDA'85/FLUINT program, for calculating the thermal and hydrodynamic transients that occur during the chilldown of a cryogenic transfer line, using a well documented test case to validate the modeling process. Using this model, a total of ten cases were analyzed to evaluate the effects of variable inlet valve position, inlet pressures, and the use of an internal flow liner to promote nucleate boiling. It was found that an efficient transfer line cooldown can be achieved if the inlet flow is throttled, to reduce the flow rate and quality, and an internal flow liner such as Teflon is used.

  13. Radiation protection considerations along a radioactive ion beam transport line

    NASA Astrophysics Data System (ADS)

    Sarchiapone, Lucia; Zafiropoulos, Demetre

    2016-09-01

    The goal of the SPES project is to produce accelerated radioactive ion beams for Physics studies at “Laboratori Nazionali di Legnaro” (INFN, Italy). This accelerator complex is scheduled to be built by 2016 for an effective operation in 2017. Radioactive species are produced in a uranium carbide target, by the interaction of 200 μA of protons at 40 MeV. All of the ionized species in the 1+ state come out of the target (ISOL method), and pass through a Wien filter for a first selection and an HMRS (high mass resolution spectrometer). Then they are transported by an electrostatic beam line toward a charge state breeder (where the 1+ to n+ multi-ionization takes place) before selection and reacceleration at the already existing superconducting linac. The work concerning dose evaluations, activation calculation, and radiation protection constraints related to the transport of the radioactive ion beam (RIB) from the target to the mass separator will be described in this paper. The FLUKA code has been used as tool for those calculations needing Monte Carlo simulations, in particular for the evaluation of the dose rate due to the presence of the radioactive beam in the selection/interaction points. The time evolution of a radionuclide inventory can be computed online with FLUKA for arbitrary irradiation profiles and decay times. The activity evolution is analytically evaluated through the implementation of the Bateman equations. Furthermore, the generation and transport of decay radiation (limited to gamma, beta- and beta+ emissions) is possible, referring to a dedicated database of decay emissions using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency. When the use of Monte Carlo simulations was not feasible, the Bateman equations, or possible simplifications, have been used directly.

  14. Experimental Investigation of two-phase nitrogen Cryo transfer line

    NASA Astrophysics Data System (ADS)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  15. Construction of Superconducting Magnet System for the J-PARC Neutrino Beam Line

    SciTech Connect

    Nakamoto, T.; Wanderer, P.; Sasaki, K.; Ajima, Y.; Araoka, O.; Fujii, Y.; Hastings, N.; Higashi, N.; Iida, M.; Ishii, T.; Kimura, N.; Kobayashi, T.; Makida, Y.; Nakadaira, T.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Sakashita, K.; Sugawara, S.; Suzuki, S.; Tanaka, K.; Tomaru, T.; Terashima, A.; Yamamoto, A.; Ichikawa, A.; Kakuno, H.; Anerella, M.; Escallier, J.; Ganetis, G.; gupta, R.; Jain, A.; Muratore, J.; Parker, B.; Boussuge, T.; Charrier, J.-P.; Arakawa, M.; Ichihara, T.; Minato, T.; Okada, Y.; Itou, A.; Kumaki, T.; Nagami, M.; Takahashi, T.

    2009-10-18

    Following success of a prototype R&D, construction of a superconducting magnet system for J-PARC neutrino beam line has been carried out since 2005. A new conceptual beam line with the superconducting combined function magnets demonstrated the successful beam transport to the neutrino production target.

  16. Operating instructions for ORELA (Oak Ridge Electron Linear Accelerator) positron beam line

    SciTech Connect

    Donohue, D.L.; Hulett, L.D. Jr.; Lewis, T.A.

    1990-11-01

    This report will contain details of the construction and operation of the positron beam line. Special procedures which are performed on a less frequent basis will also be described. Appendices will contain operating instructions for experiments which make use of the positron beam and are connected to the beam line. Finally, a review of safety-related considerations will be presented.

  17. An Energy-Stabilized Varied-Line-Space-Monochromator UndulatorBeam Line for PEEM Illumination and Magnetic Circular Dichroism

    SciTech Connect

    Warwick, Tony; McKinney, Wayne; Domning, Ed; Doran, Andrew; Padmore, Howard

    2006-06-01

    A new undulator beam line has been built and commissioned at the Advanced Light Source for illumination of the PEEM3 microscope. The beam line delivers high flux beams over an energy range from C1s through the transition metals to include the M edges of the magnetic rare earth elements. We present details of the optical design, and data on the performance of the zero-order tracking of the photon energy.

  18. Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Quine, B. M.; Abrarov, S. M.

    2013-09-01

    We show that a new approach based on the spectrally integrated Voigt function (SIVF) enables the computation of line-by-line (LBL) radiative transfer at reduced spectral resolution without loss of accuracy. The algorithm provides rapid and accurate computation of area under the Voigt function in a way that preserves spectral radiance and, consequently, radiant intensity. The error analysis we provide shows the high-accuracy of the proposed SIVF approximations. A comparison of the performance of the method with that of the traditional LBL approach is presented. Motivations for the use and advantage of the SIVF as a replacement for conventional line function computations in radiative transfer are discussed.

  19. Development of a beam line for radio-isotope production at the KOMAC

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2016-09-01

    A new beam line of the 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex), aiming for RI (radioisotope) production has been constructed reflecting the increasing demands for various RIs (radioisotopes), such as Sr-82 and Cu-67 for medical applications. Proton beam with beam energy of 100 MeV and an average current of 0.6 mA is directed to the 100-mm-diameter production target through a beam window made of aluminum-beryllium alloy. Major components of the newly-installed beam line include electromagnets for bending and focusing, beam diagnostic systems such as a BPM (beam position monitor) and a BCM (beam current monitor), and a vacuum pumping system based on an ion pump. In this paper, the design features and the installation of the RI-production beam line at the KOMAC are given.

  20. Numerical Modelling of Intense Electron Beam Transport in the Spiral Line Induction Accelerator

    DTIC Science & Technology

    1992-08-28

    arising in the context of the spiral line induction accelerator (SLIA), a device in which the beam is transported along an open-ended beam pipe ...field. Because the field coils are wound directly onto the spiral beam pipe , and because each bend is magnetically shielded from its neighbors, each... Spiral Line Induction Accelerator J. KRALL, S. SLINKER, M. LAMPE AND G. JOYCE Beam Physics Branch Plasma Physics Division August 28, 1992 _pw DTIC U)lz E

  1. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications

    NASA Astrophysics Data System (ADS)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro

    2017-02-01

    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  2. Working group session report: Neutron beam line shielding.

    SciTech Connect

    Russell, G. J.; Ikedo, Y.

    2001-01-01

    We have examined the differences between a 2-D model and a 3-D model for designing the beam-line shield for the HIPPO instrument at the Lujan Center at the Los Alamos National Laboratory. We have calculated the total (neutron and gamma ray) dose equivalent rate coming out of the personal access ports from the HIPPO instrument experiment cave. In order to answer this question, we have investigated two possible worst-case scenarios: (a) failure of the T{sub 0}-chopper and no sample at the sample position; and (b) failure of the T{sub 0}-chopper with a thick sample (a piece of Inconel-718, 10 cm diam by 30 cm long) at the sample position.

  3. Optical substrate materials for synchrotron radiation beam lines

    NASA Astrophysics Data System (ADS)

    Howells, Malcolm R.; Paquin, Roger A.

    1997-09-01

    We consider the materials choices available for making optical substrates for synchrotron radiation beam lines. We find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors we explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. We conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. We then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, GlidcopTM, aluminum, precipitation- hardening stainless steel, mild steel, invar and superinvar. Finally we summarize conclusions and propose ideas for further research.

  4. Dipole corrector magnets for the LBNE beam line

    SciTech Connect

    Yu, M.; Velev, G.; Harding, D.; /Fermilab

    2011-03-01

    The conceptual design of a new dipole corrector magnet has been thoroughly studied. The planned Long-Baseline Neutrino Experiment (LBNE) beam line will require correctors capable of greater range and linearity than existing correctors, so a new design is proposed based on the horizontal trim dipole correctors built for the Main Injector synchrotron at Fermilab. The gap, pole shape, length, and number of conductor turns remain the same. To allow operation over a wider range of excitations without overheating, the conductor size is increased, and to maintain better linearity, the back leg thickness is increased. The magnetic simulation was done using ANSYS to optimize the shape and the size of the yoke. The thermal performance was also modeled and analyzed.

  5. Crossed-Beam Energy Transfer in Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.

    2011-10-01

    Direct-drive-implosion experiments on OMEGA have revealed the importance of crossed-beam energy transfer (CBET), which is caused by stimulated Brillouin scattering. The CBET reduces the laser absorption in a target corona by ~10% to 20% and, therefore, decreases the implosion performance. The signature of CBET is observed in time-resolved, reflected-light spectra as a suppression of red-shifted light during the main laser pulse. Simulations without CBET typically predict an earlier bang time and overestimate the laser absorption in high-compression, low-adiabat implosions. Simulations using a CBET model and a nonlocal heat-transport model explain well the scattered-light and bang-timing measurements. This talk will summarize the possible mitigation strategies for CBET required for robust ignition designs. CBET most effectively scatters incoming light that interacts with outgoing light originated from laser beam edges. This makes it possible to mitigate CBET by reducing the beam diameter with respect to the target diameter. Implosion experiments using large 1400- μm-diam plastic shells and in-focus and defocus laser beams have demonstrated the reduction of CBET in implosions with a smaller ratio of the beam-to-target diameters. Simulations predict the optimum range of this ratio to be 0.7 to 0.8. Another mitigation strategy involves splitting the incident light into two or more colors. This reduces CBET by shifting and suppressing the coupling resonances. The reduction in scattered light caused by CBET is predicted to be up to a factor of 2 when incident light colors are separated by δλ > 6 Ã. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302. In collaboration with W. Seka, D. H. Edgell, D. H. Froula, V. N. Goncharov, R. S. Craxton, R. L. McCrory, A. V. Maximov, D. D. Meyerhofer, J. F. Myatt, T. C. Sangster, A. Shvydky, S. Skupsky, and C. Stoeckl. I. V. Igumenshchevet

  6. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire

    NASA Astrophysics Data System (ADS)

    Ma, Guolong; Li, Liqun; Chen, Yanbin

    2017-06-01

    Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.

  7. Primary proton beam line at the J-PARC hadron experimental facility

    NASA Astrophysics Data System (ADS)

    Agari, Keizo; Hirose, Erina; Ieiri, Masaharu; Iio, Masami; Katoh, Yoji; Kiyomichi, Akio; Minakawa, Michifumi; Muto, Ryotaro; Naruki, Megumi; Noumi, Hiroyuki; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Takasaki, Minoru; Tanaka, Kazuhiro H.; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka

    2012-10-01

    A brief description of the primary beam line at the hadron experimental facility at the Japan Proton Accelerator Research Complex (J-PARC) is presented. The facility has been constructed in Tokai, Japan, and the first beam was successfully introduced into the experimental hall in January 2009. The facility utilizes a high-intensity proton beam with an energy of 50 GeV and a power of 750 kW and provides various secondary beams such as pions, kaons, and antiprotons for nuclear and particle physics experiments. We have developed beam-line components with sufficient radiation hardness and heat resistance to handle the high-power proton beam.

  8. A Simple beam line for the MuCool test area

    SciTech Connect

    Charles Ankenbrandt et al.

    2004-05-03

    This note describes a simple beam line to transport H{sup -} beam from the end of the Fermilab 400 MeV Linac to the MuCool Test Area (MTA). The design uses existing dipoles and quadrupoles and other equipment now available at Fermilab. Deflection of single 15 Hz beam pulses from the Linac to the MTA is accomplished using pulsed magnets that are essentially Main Injector trim dipoles with thinner laminations. The beam size is kept small to control beam losses and allow the use of existing surplus or spare equipment. An upgrade of the beam line to illuminate larger objects at high intensity is described.

  9. Beam dynamics and error study of the medium energy beam transport line in the Korea Heavy-Ion Medical Accelerator

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San; Hahn, Garam

    2016-11-01

    The Korea Heavy Ion Medical Accelerator consists of an injector and a synchrotron for an ion medical accelerator that is the first carbon-ion therapy system in Korea. The medium energy beam transport(MEBT) line connects the interdigital H-mode drift tube linac and the synchrotron. We investigated the beam conditions after the charge stripper by using the LISE++ and the SRIM codes. The beam was stripped from C4+ into C6+ by using the charge stripper. We investigated the performance of a de-buncher in optimizing the energy spread and the beam distribution in z-dW/W (direction of beam progress-beam and energy) phase. We obtained the results of the tracking simulation and the error analysis by using the TRACK code. Possible misalignments and rotations of the magnets were considered in the simulations. States of the beam were examined when errors occurred in the magnets by the applying analytic fringe field model in TRACK code. The condition for the beam orbit was optimized by using correctors and profile monitors to correct the orbit. In this paper, we focus on the beam dynamics and the error studies dedicated to the MEBT beam line and show the optimized beam parameters for the MEBT.

  10. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  11. Designing of the low energy beam lines with achromatic condition in the RAON accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O.

    2017-01-01

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the KOrea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  12. Design study on the beam line for radioisotope production at KOMAC

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung

    2015-10-01

    A beam line for radioisotope (RI) production was designed for the 100-MeV proton linear accelerator at Korea Multi-purpose Accelerator Complex (KOMAC). The specifications of the beam line are such that the energy is 100 MeV and the average current is 0.6 mA for a target size of 100 mm in diameter. The system consists of a beam transport system including a magnet, a vacuum system, beam diagnostics, power supplies and a control system. The key components of the system are the high-field 45 bending magnet, the beam scanning system and beam window. In this paper, the design of the beam line and its key components are presented.

  13. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  14. National Synchrotron Light Source VUV and soft x-ray beam lines: performance characteristics

    SciTech Connect

    Klaffky, R.W.; Howells, M.R.; Williams, G.P.; Takacs, P.Z.; Godel, J.B.

    1981-01-01

    A total of five beam lines are currently being constructed and commissioned at the NSLS. They involve a 2.75/sup 0/ toroidal grating monochromator, a plane grating grazing monochromator, a large aperture modified Wadsworth monochromator, a Seya-Namioka instrument and a Czerny-Turner instrument. We present details of these beam lines and their anticipated operational characteristics.

  15. Automatic sample Dewar for MX beam-line

    SciTech Connect

    Charignon, T.; Tanchon, J.; Trollier, T.; Ravex, A.; Theveneau, P.

    2014-01-29

    It is very common for crystals of large biological macromolecules to show considerable variation in quality of their diffraction. In order to increase the number of samples that are tested for diffraction quality before any full data collections at the ESRF*, an automatic sample Dewar has been implemented. Conception and performances of the Dewar are reported in this paper. The automatic sample Dewar has 240 samples capability with automatic loading/unloading ports. The storing Dewar is capable to work with robots and it can be integrated in a full automatic MX** beam-line. The samples are positioned in the front of the loading/unloading ports with and automatic rotating plate. A view port has been implemented for data matrix camera reading on each sample loaded in the Dewar. At last, the Dewar is insulated with polyurethane foam that keeps the liquid nitrogen consumption below 1.6 L/h. At last, the static insulation also makes vacuum equipment and maintenance unnecessary. This Dewar will be useful for increasing the number of samples tested in synchrotrons.

  16. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    NASA Astrophysics Data System (ADS)

    Zeng, Han; Xiong, Yongqian; Pei, Yuanji

    2014-11-01

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  17. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    DOE PAGES

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: thatmore » the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.« less

  18. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    SciTech Connect

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  19. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    SciTech Connect

    FOERSTER,C.

    1999-05-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front

  20. Beam chopper For the Low-Energy Undulator Test Line (LEUTL) in the APS

    SciTech Connect

    Kang, Y.; Wang, J.; Milton, S.; Teng, L.

    1997-08-01

    The low-energy undulator test line (LEUTL) is being built and will be tested with a short beam pulse from an rf gun in the Advanced Photon Source (APS) at the Argonne National Laboratory. In the LEUTL a beam chopper is used after the rf gun to deflect the unwanted beam to a beam dump. The beam chopper consists of a permanent magnet and an electric deflector that can compensate for the magnetic deflection. A 30-kV pulsed power supply is used for the electric deflector. The chopper subsystem was assembled and tested for beamline installation. The electrical and beam properties of the chopper assembly are presented.

  1. An after-market, five-port vertical beam line extension for the PETtrace

    NASA Astrophysics Data System (ADS)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.

    2012-12-01

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  2. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGES

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; ...

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  3. An after-market, five-port vertical beam line extension for the PETtrace

    SciTech Connect

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.

    2012-12-19

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  4. THE BOOSTER APPLICATION FACILITY (BAF) BEAM TRANSPORT LINE OF BNL-AGS BOOSTER.

    SciTech Connect

    TSOUPAS,N.; BROWN,K.A.; CULLEN,J.R.; LEE,Y.Y.; MCNERNEY,A.J.; PILE,P.H.; ROSER,T.; SOUKAS,A.; TUOZZOLO,J.E.

    1999-03-29

    An experimental facility, to irradiate materials with energetic ion beams, has been proposed to be built at the Brookhaven National Laboratory. The BAF facility will mainly consist of the AGS-Booster slow extraction, of a beam transport line, and a target room. The beam transport line will transport the slow extracted beam of the AGS-Booster to the target location for the irradiation of various materials and specimens. A variety of ion beams like (p, {sup 28}Si, {sup 56}Fe, {sup 63}Cu, {sup 197}Au) in the energy range of 0.04 to 3.07 GeV/nucleon will be transported by the BAF line which is designed to provide variable beam spot sizes on the BAF target with sizes varying from 2.0 cm to 20.0 cm in diameter. The beam spot sizes will include 95% of the beam intensity with the beam distributed normally (Gaussian) on the target area. It is also possible by introducing magnetic octupoles at specified locations along the beam transport line, to modify the distribution on the BAF target and provide well confined beams with rectangular cross section and with uniform distribution on the target.

  5. Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam

    SciTech Connect

    Taichenachev, A.V.; Yudin, V.I.; Wynands, R.; Kitching, J.; Hollberg, L.

    2004-02-01

    We analyze the line shape and width of atomic coherent-population-trapping (CPT) resonances excited by laser beams with different transverse intensity profiles. A dramatic difference in the resonance line shape is found when comparing a beam with a 'steplike' profile to a beam with a Gaussian profile. In particular, for nonuniform profiles, a non-Lorentzian functional form is given that is more appropriate for describing the nonlinear resonance line shape than is a conventional Lorentzian. Our analysis is supported by measurements of CPT line shapes in a thermal vapor of {sup 85}Rb.

  6. Line-by-line radiative transfer model for infrared spectrum of AERI

    NASA Astrophysics Data System (ADS)

    Lee, Kwang-Mog; Park, Joong-Hyun; Ahn, Myoung-Hwan; Ou, Mi-Lim; Kim, Yoonjae

    2012-05-01

    Infrared radiance spectra measured in space or on the ground have been used for many applications, such as the retrieval of atmospheric temperature and humidity profiles. The Korean Meteorological Administration (KMA) recently installed an Atmospheric Emitted Radiance Interferometer (AERI) system at the Korea Global Atmosphere Watch Center (36°32'N, 125°19'E) in Anmyondo to measure the downward radiance spectra on the ground. For further utilization of such interferometeric radiance measurements, an accurate line-by-line radiative transfer model is required. This study introduces a line-by-line radiative transfer model developed at Kyungpook National University (KNU_LBL) and presents comparisons of spectra simulated using the KNU_LBL model and measured by the AERI system, that is installed inside a secure container. When compared with the Atmospheric and Environmental Research (AER) radiative transfer codes, the KNU_LBL model provides nearly identical spectra for various model atmospheres. The simulated spectra are also in good agreement with the AERI spectra for clear sky conditions, and a further improvement is made when taking into account of the emissions and absorption by CO2 and H2O for the light path inside the container, even though the path is short.

  7. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    NASA Astrophysics Data System (ADS)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  8. Feedback phase correction of Bessel beams in confocal line light-sheet microscopy: a simulation study.

    PubMed

    Moosavi, S Hoda; Gohn-Kreuz, Cristian; Rohrbach, Alexander

    2013-08-10

    Confocal line detection has been shown to improve contrast in light-sheet-based microscopy especially when illuminating the sample by Bessel beams. Besides their self-reconstructing capability, the stability in propagation direction of Bessel beams allows to block the unwanted emission light from the Bessel beam's ring system. However, due to phase aberrations induced especially at the border of the specimen, Bessel beams may not propagate along lines parallel to the slit detector. Here we present a concept of how to correct the phase of each incident Bessel beam such that the efficiency of confocal line detection is improved by up to 200%-300%. The applicability of the method is verified by the results obtained from numerical simulations based on the beam propagation method.

  9. Chemical and Photographic Evaluation of Rigid Explosive Transfer Lines.

    DTIC Science & Technology

    1984-05-01

    01 SIAN1ARD 191 NSWC TR 84-66 * 0 CHEMICAL AND PHOTOGRAPHIC EVALUATION OF RIGID EXPLOSIVE TRANSFER LINES 0 0 BY ELEONORE G. KAYSER 0 0 RESEARCH AND... Eleonore G. Kayser j 9. PERFORMING ORGANIZATION NAME AN= ADDRESS 10. PROGRAM E-.EMENT. ’RCJECT, TASK AREA & WORK UNIT NUMBERSNaval Surface Weapons...J. Trom P.O. Box 5400 Dept. 529-165 Albuquerque, NM 87115 Mail Code AB37 6633 Canoga Ave. Space Ordnance Systems, Inc. Canoga Park , CA 91304 Attn

  10. Tomography and imaging at the PSICHE beam line of the SOLEIL synchrotron.

    PubMed

    King, A; Guignot, N; Zerbino, P; Boulard, E; Desjardins, K; Bordessoule, M; Leclerq, N; Le, S; Renaud, G; Cerato, M; Bornert, M; Lenoir, N; Delzon, S; Perrillat, J-P; Legodec, Y; Itié, J-P

    2016-09-01

    PSICHE (Pressure, Structure and Imaging by Contrast at High Energy) is the high-energy beam line of the SOLEIL synchrotron. The beam line is designed to study samples at extreme pressures, using diffraction, and to perform imaging and tomography for materials science and other diverse applications. This paper presents the tomograph and the use of the beam line for imaging, with emphasis on developments made with respect to existing instruments. Of particular note are the high load capacity rotation stage with free central aperture for installing large or complex samples and sample environments, x-ray mirror and filter optics for pink beam imaging, and multiple options for combining imaging and diffraction measurement. We describe how x-ray imaging techniques have been integrated into high-pressure experiments. The design and the specifications of the beam line are described, and several case studies drawn from the first user experiments are presented.

  11. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    SciTech Connect

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstration of particle beam profile diagnostics using fiber optic laser pulse transmission line.

  12. Tomography and imaging at the PSICHE beam line of the SOLEIL synchrotron

    NASA Astrophysics Data System (ADS)

    King, A.; Guignot, N.; Zerbino, P.; Boulard, E.; Desjardins, K.; Bordessoule, M.; Leclerq, N.; Le, S.; Renaud, G.; Cerato, M.; Bornert, M.; Lenoir, N.; Delzon, S.; Perrillat, J.-P.; Legodec, Y.; Itié, J.-P.

    2016-09-01

    PSICHE (Pressure, Structure and Imaging by Contrast at High Energy) is the high-energy beam line of the SOLEIL synchrotron. The beam line is designed to study samples at extreme pressures, using diffraction, and to perform imaging and tomography for materials science and other diverse applications. This paper presents the tomograph and the use of the beam line for imaging, with emphasis on developments made with respect to existing instruments. Of particular note are the high load capacity rotation stage with free central aperture for installing large or complex samples and sample environments, x-ray mirror and filter optics for pink beam imaging, and multiple options for combining imaging and diffraction measurement. We describe how x-ray imaging techniques have been integrated into high-pressure experiments. The design and the specifications of the beam line are described, and several case studies drawn from the first user experiments are presented.

  13. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  14. Upgrade of the beam transport lines and the beam-abort system and development of a tune compensator in KEKB

    NASA Astrophysics Data System (ADS)

    Iida, Naoko; Kikuchi, Mitsuo; Mimashi, Toshihiro; Nakayama, Hisayoshi; Sakamoto, Yutaka; Satoh, Kotaro; Takasaki, Seiji; Tawada, Masafumi

    2013-03-01

    The KEKB collider achieved a maximum peak luminosity of 2.1×1034 cm-2 s-1 and an integrated luminosity of 1 ab-1 in its ten-year operation. Behind these glorious records there have been uncountable improvements in every subsystem. This paper describes the improvements in the beam transport line, injection kickers, septum magnets, the beam-abort system, and a newly developed pulsed-quadrupole system in detail.

  15. Transfer Casting From Ion-Beam-Textured Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Sovey, J. S.

    1986-01-01

    Textured surfaces created on metals, ceramics, and polymers. Electron-bombardment ion thrustor used as neutralized-ion-beam source. Beam of directed, energetic ions alter surface chemistry and/or morphology of many materials. By adjusting ion energy and ion-beam current density impinging upon target, precise surface modifications obtained without risk of targetmaterial melting or bulk decomposition. Technique developed to generate precise, controllable, surface microstructures on metals, ceramics, and polymers.

  16. Transfer Casting From Ion-Beam-Textured Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Sovey, J. S.

    1986-01-01

    Textured surfaces created on metals, ceramics, and polymers. Electron-bombardment ion thrustor used as neutralized-ion-beam source. Beam of directed, energetic ions alter surface chemistry and/or morphology of many materials. By adjusting ion energy and ion-beam current density impinging upon target, precise surface modifications obtained without risk of targetmaterial melting or bulk decomposition. Technique developed to generate precise, controllable, surface microstructures on metals, ceramics, and polymers.

  17. In-line E-beam metrology and defect inspection: industry reflections, hybrid E-beam opportunities, recommendations and predictions

    NASA Astrophysics Data System (ADS)

    Solecky, Eric; Rasafar, Allen; Cantone, Jason; Bunday, Benjamin; Vaid, Alok; Patterson, Oliver; Stamper, Andrew; Wu, Kevin; Buengener, Ralf; Weng, Weihao; Dai, Xintuo

    2017-03-01

    At SPIE 2013 in Metrology, Inspection, and Process Control for Microlithography an invited paper was published titled "In-line E-beam wafer metrology and defect inspection: the end of an era for image-based critical dimensional metrology? New life for defect inspection". Three years have passed and numerous developments have occurred as predicted in this paper. The development of E-beam tools that can concurrently handle metrology and defect applications is one of the primary developments. In this paper, the capabilities of these new E-beam tools and their current use cases will be discussed in the areas of Critical Dimension Uniformity (CDU), In-die overlay, Hot spot and Physical defect inspection. Emphasis will be placed on use cases where "massive" CDU data is collected in order to increase yield learning for manufacturing (14nm) and decrease cycles of learning for development (7nm). Additionally, some of the other subject material from the previous publication will also be discussed such as the current state of E-beam critical dimension image fidelity and physical defect detection capabilities. Lastly, future directions and opportunities for In-line E-beam including Multi-beam and/or Multi-column E-beam will be discussed.

  18. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Cirrone, G. A. P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F.; Scuderi, V.

    2016-11-01

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  19. Compensation of Beam Line Polarizing Effects at UE112 of BESSY II

    SciTech Connect

    Bahrdt, J.; Follath, R.; Frentrup, W.; Gaupp, A.; Scheer, M.

    2010-06-23

    Reflections in synchrotron radiation beam lines tend to change the state of polarization of the radiation. This effect is more pronounced for steep angle of incidence, i.e. at low photon energy (say below 100 eV) beam lines. The APPLE II undulator UE112 at BESSY has all four magnetic rows shiftable and thus generates any state of polarization. To provide any intended polarization state at the sample we perform polarization measurements based on simple and fast linear polarization analysis that together with calculations of the undulator radiation predicts undulator settings that cancel beam line polarization effects.

  20. Design and initial tests of beam current monitoring systems for the APS transport lines

    SciTech Connect

    Wang, Xucheng

    1992-12-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included.

  1. Design and initial tests of beam current monitoring systems for the APS transport lines

    SciTech Connect

    Wang, Xucheng.

    1992-01-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included.

  2. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    SciTech Connect

    Wang, Guimei

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  3. Design of soft x-ray varied-line-spacing grating based on electron beam lithography-near field lithography

    NASA Astrophysics Data System (ADS)

    Lin, Dakui; Chen, Huoyao; Kroker, Stefanie; Käsebier, Thomas; Liu, Zhengkun; Qiu, Keqiang; Liu, Ying; Kley, Ernst-Bernhard; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2016-10-01

    Soft x-ray varied line spacing grating (VLSG), which is a vital optical element for laser plasma diagnosis and spectrometry analysis, is conventionally fabricated by holographic lithography or mechanical ruling. In order to overcome the issues of the above fabrication methods, a method based on electron beam lithography-near field lithography (EBL-NFH) is proposed to make good use of the flexibility of EBL and the high throughput of NFH. In this paper, we showed a newly designed soft x-ray VLSG with a central groove density of 3600 lines/mm, which is to be realized based on EBL-NFH. First, the optimization of the spatial distribution of line density and groove profile of the VLSG was shown. As an important element in NFH, a fused silica mask plays a key role during NFH in order to obtain a required line density of VLSG. Therefore, second, the transfer relationship of spatial distribution of line densities between fused silica mask and resist grating was investigated in different exposure modes during NFH. We proposed a formulation about the transfer of line density to design of the groove density distribution of a fused silica grating mask. Finally, the spatial distribution of line densities between the fused silica mask, which is to be fabrication by using EBL, was demonstrated.

  4. Observation of resonant energy transfer between identical-frequency laser beams

    SciTech Connect

    Afeyan, B. B.; Cohen, B. I.; Estabrook, K. G.; Glenzer, S. H.; Joshi, C.; Kirkwood, R. K.; Moody, J. D.; Wharton, K. B.

    1998-12-09

    Enhanced transmission of a low intensity laser beam is observed when crossed with an identical-frequency beam in a plasma with a flow velocity near the ion sound speed. The time history of the enhancement and the dependence on the flow velocity strongly suggest that this is due to energy transfer between the beams via a resonant ion wave with zero frequency in the laboratory frame. The maximum energy transfer has been observed when the beams cross in a region with Mach 1 flow. The addition of frequency modulation on the crossing beams is seen to reduce the energy transfer by a factor of two. Implications for indirect-drive fusion schemes are discussed.

  5. Transfer matrix of a Glaser magnet to study the dynamics of non-axisymmetric beam

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2012-06-01

    A Glaser magnet, having bell-shaped distribution of axial field, is often used to focus charged particle beams in the low energy section of accelerators and in many other devices. The transfer matrix of a Glaser magnet available in the literature is only for a rotationally axisymmetric beam. The objective of this paper is to obtain the 4D transfer matrix of a Glaser magnet for a non-axisymmetric beam having different emittances in the two transverse planes. Starting from the Hamiltonian of a single particle motion we have obtained the 4×4 linear transfer matrix of the Glaser magnet in symplectic form. The matrix so derived has been used to estimate the beam envelope through a Glaser magnet using the well known sigma matrix method. We have also studied the emittance growth that results from the coupling between the two transverse planes as the beam passes through the Glaser magnet.

  6. Transport line for beam generated by ITEP Bernas ion source

    SciTech Connect

    Petrenko, S.V.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Pershin, V.I.; Masunov, E.S.; Polozov, S.M.; Hershcovitch, A.; Johnson, B.M.; Poole, H.J.

    2006-03-15

    A joint research and development program is underway to investigate beam transport systems for intense steady-state ion sources for ion implanters. Two energy extremes of MeV and hundreds of eV are investigated using a modified Bernas ion source with an indirectly heated cathode. Results are presented for simulations of electrostatic systems performed to investigate the transportation of ion beams over a wide mass range: boron to decaborane.

  7. SterStar system: continuous sterile transfer by e-beam

    NASA Astrophysics Data System (ADS)

    Morisseau, Didier; Malcolm, Fiona

    2004-09-01

    The choice of isolator technology and the use of tubs in a filling line necessitate sterilization of the outer surface of the tub, provided that the inside has been sterilized by another method, prior to entry into the sterile zone. It is a well-known fact that there is a relation between the radiation dose applied to the product and the log reduction of bacteria activity. Electron beam generation technique for sterilization is also well known and widely used in the field of sterilization, e.g. of non-woven materials. This paper describes the electron sterilization transfer system developed by Linac Technologies for pharmaceutical filling lines. The system, called SterStar, takes charge of products placed at the entrance by an operator, and directs the flow through the machine, ejecting into the filling isolator tubs which have been completely surface sterilized. This entirely automatic system can supply the filling machine in terms of throughput. The sterilization heads have a capacity well beyond the maximum performances of the filling line. A number of other applications of this sterilization unit are mentioned.

  8. Modulation transfer function evaluation of cone beam computed tomography for dental use with the oversampling method

    PubMed Central

    Watanabe, H; Honda, E; Kurabayashi, T

    2010-01-01

    Objectives The aim was to investigate the possibility of evaluating the modulation transfer function (MTF) of cone beam CT (CBCT) for dental use using the oversampling method. Methods The CBCT apparatus (3D Accuitomo) with an image intensifier was used with a 100 μm tungsten wire placed inside the scanner at a slight angle to the plane perpendicular to the plane of interest and scanned. 200 contiguous reconstructed images were used to obtain the oversampling line-spread function (LSF). The MTF curve was obtained by computing the Fourier transformation from the oversampled LSF. Line pair tests were also performed using Catphan®. Results The oversampling method provided smooth and reproducible MTF curves. The MTF curves revealed that the spatial resolution in the z-axis direction was significantly higher than that in the axial direction. This result was also confirmed by the line pair test. Conclusions MTF analysis was performed successfully using the oversampling method. In addition, this study clarified that the 3D Accuitomo had high spatial resolution, especially in the z-axis direction. PMID:20089741

  9. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  10. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Romano, F.; Scuderi, V.; Amato, A.; Candiano, G.; Cuttone, G.; Giove, D.; Korn, G.; Krasa, J.; Leanza, R.; Manna, R.; Maggiore, M.; Marchese, V.; Margarone, D.; Milluzzo, G.; Petringa, G.; Sabini, M. G.; Schillaci, F.; Tramontana, A.; Valastro, L.; Velyhan, A.

    2015-10-01

    Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported.

  11. Status of Superconducting Magnet System for the J-PARC Neutrino Beam Line

    SciTech Connect

    Nakamoto, T.; Wanderer, P.; Sasaki, K.; Araoka, O.; Fugii, Y.; Higashi, N.; Iida, M.; Ishii, T.; Kimura, N.; Kobayashi, T.; Makida, Y.; Nakadaira, T.; Ogitsu, T.; Ohhata, H.; Olamura, T.; Sakashita, K.; Shibata, M.; Suzuki, S.; Yamamoto, A.; Ichikawa, A.; Kakuno, H.; Anerella, M.; Escallier, J.; Ganetis, G.; Ghosh, A.; Muratore, J.; Parker, B.; Wanderer, P.

    2011-08-03

    The superconducting magnet system for the J-PARC neutrino beam line for the T2K experiment has been served for the beam operation without serious disturbance since April 2009. Present most concern of the system is the operational current limit of superconducting corrector magnets for beam steering due to systematic quenches at lower currents. Operational experience of the magnet system and examples of troubleshoot including countermeasures against the corrector magnet quenches are presented.

  12. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    DOE PAGES

    Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.; ...

    2017-03-09

    Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less

  13. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    NASA Astrophysics Data System (ADS)

    Ha, G.; Cho, M. H.; Namkung, W.; Power, J. G.; Doran, D. S.; Wisniewski, E. E.; Conde, M.; Gai, W.; Liu, W.; Whiteford, C.; Gao, Q.; Kim, K.-J.; Zholents, A.; Sun, Y.-E.; Jing, C.; Piot, P.

    2017-03-01

    We report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch's horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shape is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.

  14. Database Applications to Integrate Beam Line Optics Changes with the Engineering Databases

    SciTech Connect

    Chan, A.; Bellomo, P.; Crane, G.R.; Emma, P.; Grunhaus, E.; Luchini, K.; MacGregor, I.A.; Marsh, D.S.; Pope, R.; Prickett, P.; Rago, C.; Ratcliffe, K.; Shab, T.; /SLAC

    2007-07-06

    The LCLS project databases provide key nomenclature information while integrating many engineering and physics processes in the building of an accelerator. Starting with the elements existing in the beam line optics files, the engineers add non-beam-line elements, and controls engineers assign ''Formal Device Names'' to these elements. Inventory, power supplies, racks, crates and cable plants are databases that are being integrated into the project database. This approach replaces individual spreadsheets and/or integrates standalone existing institutional databases.

  15. Faraday cup: absolute dosimetry for ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Leanza, R.; Romano, F.; Scuderi, V.; Amico, A. G.; Cuttone, G.; Larosa, G.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Schillaci, F.; Cirrone, G. A. P.

    2017-03-01

    The scientific community has shown a growing interest towards multidisciplinary applications of laser-driven beams. In this framework, the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline will be the first transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams. Detectors for dosimetry represent one of key-element of the ELIMED beamline, allowing a dose delivering with good result as required in the clinical applications. In this contribution, a Faraday Cup for absolute dosimetry, designed and realized at INFN-LNS, is described.

  16. A new criterion to describe crossed-beam energy transfer in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Trines, R.; Schmitz, H.; Alves, E. P.; Fiuza, F.; Vieira, J.; Silva, L. O.; Bingham, R.

    2016-10-01

    Crossed-beam energy transfer (CBET) between laser beams in underdense plasma is ubiquitous in both direct-drive and indirect-drive inertial confinement fusion. To understand the impact of this process on the final shape of the laser beams involved, as well as their imprint on either hohlraum walls or target surface, a detailed spatial and temporal description of the crossing beams is needed. We have developed an analytical model and derived new criteria describing both the spatial structure and temporal evolution of the beams after crossing. Numerical simulations have been carried out justifying the analytical model and confirming the criteria. The impact of our results on present and future multi-beam experiments in laser fusion and high-energy-density physics, in particular the ``bursty'' nature of beams predicted to occur in NIF experiments, will be discussed.

  17. Transfer reaction experiments with radioactive beams: from halos to the r-process

    SciTech Connect

    Jones, K. L.

    2013-01-01

    Transfer reactions are a powerful probe of the properties of atomic nuclei. When used in inverse kinematics with radioactive ion beams they can provide detailed information on the structure of exotic nuclei and can inform nucleosynthesis calculations. There are a number of groups around the world who use these reactions, usually with particle detection in large silicon arrays. Sometimes these arrays are coupled to gamma-ray detectors, and occasionally smaller arrays of silicon detectors are mounted within a solenoid magnet. Modern techniques using transfer reactions in inverse kinematics are covered, with specific examples, many from measurements made with beams from the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory.

  18. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status.

    PubMed

    Matsui, Yoshifumi; Asano, Takehide; Kenmochi, Takashi; Iwakawa, Mayumi; Imai, Takashi; Ochiai, Takenori

    2004-02-01

    The relative biologic effectiveness (RBE) of carbon-ion beams at 3 different linear energy transfer (LET) values (13, 50, and 80 keV/microm) accelerated by the Heavy Ion Medical Accelerator in Chiba on human pancreatic cancer cell lines differing in genetic status was determined. The RBE values were calculated as D10, the dose (Gy) required to reduce the surviving fraction to 10%, relative to X-rays. We also investigated apoptosis and the relationship between D10 and the cell cycle checkpoint using morphologic examination and flow cytometry analysis, respectively. The RBE values calculated by the D10 values ranged from 1.16 to 1.77 for the 13-keV/microm beam and from 1.83 to 2.46 for the 80-keV/microm beam. A correlation between the D10 values of each cell line and intensity of G2/M arrest was observed. In contrast, LET values did not clearly correlate with induction of apoptosis. These results suggest that carbon-ion beam therapy is a promising modality. Elucidation of the mechanisms of G2/M arrest and apoptosis may provide clues to enhancing the effects of radiation on pancreatic cancer.

  19. Status of the PXIE Low Energy Beam Transport Line

    SciTech Connect

    Prost, Lionel; Andrews, Richard; Chen, Alex; Hanna, Bruce; Scarpine, Victor; Shemyakin, Alexander; Steimel, Jim; D'Arcy, Richard

    2014-07-01

    A CW-compatible, pulsed H- superconducting RF linac (a.k.a. PIP-II) is envisaged as a possible path for upgrading Fermilab’s injection complex [1]. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) [2] is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a MEBT that feeds the first cryomodule. In addition to operating in the nominal CW mode, the LEBT should be able to produce a pulsed beam for both PXIE commissioning and modelling of the front-end nominal operation in the pulsed mode. Concurrently, it needs to provide effective means of inhibiting beam as part of the overall machine protection system. A peculiar feature of the present LEBT design is the capability of using the ~1m-long section immediately preceding the RFQ in two regimes of beam transport dynamics: neutralized and space charge dominated. This paper introduces the PXIE LEBT, reports on the status of the ion source and LEBT installation, and presents the first beam measurements.

  20. Neutron imaging experiments at E-12 beam-line of CIRUS

    SciTech Connect

    Agrawal, Ashish; Kashyap, Yogesh; Shukla, Mayank; Sarkar, P. S.; Sinha, Amar

    2013-02-05

    Neutron imaging beam-line at E-12 beam port of CIRUS reactor India has been developed to implement Neutron tomography, phase contrast imaging and dynamic imaging techniques for various applications. Several experiments on these techniques have been carried out successfully. Neutron radiography and tomography has been used to study blisters formation in pressure tube along with many other applications. Similarly phase contrast imaging has been used to study its feasibility for better contrast in radiographic images. Dynamic imaging has been applied to study the melting of pure and impure lead under heat. In this paper we report the details of various experiments performed at this beam-line.

  1. Neutron imaging experiments at E-12 beam-line of CIRUS

    NASA Astrophysics Data System (ADS)

    Agrawal, Ashish; Kashyap, Yogesh; Shukla, Mayank; Sarkar, P. S.; Sinha, Amar

    2013-02-01

    Neutron imaging beam-line at E-12 beam port of CIRUS reactor India has been developed to implement Neutron tomography, phase contrast imaging and dynamic imaging techniques for various applications. Several experiments on these techniques have been carried out successfully. Neutron radiography and tomography has been used to study blisters formation in pressure tube along with many other applications. Similarly phase contrast imaging has been used to study its feasibility for better contrast in radiographic images. Dynamic imaging has been applied to study the melting of pure and impure lead under heat. In this paper we report the details of various experiments performed at this beam-line.

  2. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    SciTech Connect

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-11-15

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd{sub 2}O{sub 2}S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision{sup TM} image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10{sup -8}), 1.64 (p < 10{sup -13}), 2.66 (p < 10{sup -9}), respectively. For all imaging

  3. Energy Amplification and Beam Bunching in a Pulse Line Ion Accelerator

    SciTech Connect

    Roy, P K; Waldron, W L; Yu, S S; Coleman, J E; Henestroza, E; Grote, D P; Baca, D; Bieniosek, F M; Briggs, R J; Davidson, R C; Eylon, S; Friedman, A; Greenway, W G; Leitner, M; Logan, G B; Reginato, L L; Seidl, P A

    2006-06-08

    In a first beam dynamics validation experiment for a new Pulse Line Ion Acceleration (PLIA) concept, the predicted energy amplification and beam bunching were experimentally observed. Beam energy modulation of -80 keV to +150 keV was measured using a PLIA input voltage waveform of -21 kV to +12 kV. Ion pulses accelerated by 150 keV, and bunching by a factor of four were simultaneously achieved. The measured longitudinal phase space and current waveform of the accelerated beam are in good agreement with 3-D particle-in-cell simulations.

  4. Crater Flux Transfer Events: Highroad to the X Line?

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Chen, Li-Jen; Torbert, R. B.; Southwood, D. J.; Cowley, S. W. H.; Vrublevskis, A.; Mouikis, C.; Vaivads, A.; Andre, M.; Decreau, P.; hide

    2011-01-01

    We examine Cluster observations of a so-called magnetosphere crater FTE, employing data from five instruments (FGM, CIS, EDI, EFW, and WHISPER), some at the highest resolution. The aim of doing this is to deepen our understanding of the reconnection nature of these events by applying recent advances in the theory of collisionless reconnection and in detailed observational work. Our data support the hypothesis of a stratified structure with regions which we show to be spatial structures. We support the bulge-like topology of the core region (R3) made up of plasma jetting transverse to reconnected field lines. We document encounters with a magnetic separatrix as a thin layer embedded in the region (R2) just outside the bulge, where the speed of the protons flowing approximately parallel to the field maximizes: (1) short (fraction of a sec) bursts of enhanced electric field strengths (up to approximately 30 mV/m) and (2) electrons flowing against the field toward the X line at approximately the same time as the bursts of intense electric fields. R2 also contains a density decrease concomitant with an enhanced magnetic field strength. At its interface with the core region, R3, electric field activity ceases abruptly. The accelerated plasma flow profile has a catenary shape consisting of beams parallel to the field in R2 close to the R2/R3 boundary and slower jets moving across the magnetic field within the bulge region. We detail commonalities our observations of crater FTEs have with reconnection structures in other scenarios. We suggest that in view of these properties and their frequency of occurrence, crater FTEs are ideal places to study processes at the separatrices, key regions in magnetic reconnection. This is a good preparation for the MMS mission.

  5. Status of the ELIMED multidisciplinary and medical beam-line at ELI-Beamlines

    NASA Astrophysics Data System (ADS)

    Romano, F.; Cirrone, G. A. P.; Cuttone, G.; Schillaci, F.; Scuderi, V.; Amico, A.; Candiano, G.; Giordanengo, S.; Guarachi, L. F.; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Sacchi, R.; Vignati, A.

    2017-01-01

    Nowadays, one of the biggest challenges consists in using high intensity laser-target interaction to generate high-energy ions for medical purposes, eventually replacing the old paradigm of acceleration characterized by huge and complex machines. In order to investigate the feasibility of using laser-driven ion beams for multidisciplinary application, a dedicated beam transport line will be installed at the ELI-Beamlines facility in Prague (CZ), as a part of the User-oriented ELIMAIA beam-line dedicated to ion acceleration and their potential applications. The beam-line section dedicated to transport and dosimetric endpoints is called ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) and will be developed by the INFN-LNS.

  6. A new low-energy radioactive beam line for nuclear astrophysics studies in China

    NASA Astrophysics Data System (ADS)

    He, J. J.; Xu, S. W.; Ma, P.; Wang, J. S.; Yang, Y. Y.; Ma, J. B.; Zhang, L. Y.; Li, L.; Yu, X. Q.; Jin, S. L.; Hu, J.; Kubono, S.; Chen, S. Z.; Zhang, N. T.; Liu, M. L.; Lei, X. G.; Sun, Z. Y.; Zhang, Y. H.; Zhou, X. H.; Xu, H. S.; Xiao, G. Q.

    2012-07-01

    A gas-target system has been newly developed and installed at a Radioactive Ion Beam Line in Lanzhou (RIBLL), which makes RIBLL capable of delivering intense, low-energy RIBs for nuclear astrophysics studies. A 1.7×104-pps intensity 22Na RI beam has been achieved in a commissioning run. With further improvements, a 105-pps intensity of some RI beams with mass A<30 (close to the line of β-stability) can be expected in the near future. Some detection equipment including Germanium and Silicon arrays (or balls) available (or to be constructed) at IMP are briefly introduced. A new low-energy radioactive beam line in China is now ready for nuclear astrophysics studies.

  7. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  8. Examination of the CLIC drive beam pipe design for thermal distortion caused by distributed beam line

    SciTech Connect

    C. Johnson; K. Kloeppel

    1997-01-01

    Beam transport programs are widely used to estimate the distribution of power deposited in accelerator structures by particle beams, either intentionally as for targets or beam dumps or accidentally owing the beam loss incidents. While this is usually adequate for considerations of radiation safety, it does not reveal the expected temperature rise and its effect on structural integrity. To find this, thermal diffusion must be taken into account, requiring another step in the analysis. The method that has been proposed is to use the output of a transport program, perhaps modified, as input for a finite element analysis program that can solve the thermal diffusion equation. At Cern, the design of the CLIC beam pipe has been treated in this fashion. The power distribution produced in the walls by a distributed beam loss was found according to the widely-used electron shower code EGS4. The distribution of power density was then used to form the input for the finite element analysis pro gram ANSYS, which was able to find the expected temperature rise and the resulting thermal distortion. As a result of these studies, the beam pipe design can be modified to include features that will counteract such distortion.

  9. Beam Line and Associated Work: Operational Phase 1985-1987

    DTIC Science & Technology

    1988-08-26

    ENEA FEL experiment. F. Cicci, E. Fiorentino. A. Ranieri, E. Sabie. Centro Ricerche Energia Frascati (Italy?. ....................... 169 582.25...C) knife-edge pinhole bracket (cf. Fig. 14); (D) beam stop; (E) calorimeter with an attached Si solar cell detector; (F) paddle with tilted platforms...used for T real-time signal pickup behind the slit was a standard Si solar cell, epoxied to the calorimeter case (detail . in Fig. 5). The experimental

  10. Further Analysis of Real Beam Line Optics From A Synthetic Beam

    SciTech Connect

    Ryan Bodenstein, Michael Tiefenback, Yves Roblin

    2012-07-01

    Standard closed-orbit techniques for Twiss parameter measurement are not applicable to the open-ended Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. The evolution of selected sets of real orbits in the accelerator models the behavior of a 'synthetic' beam. This process will be validated against beam profile-based Twiss parameter measurements and should provide the distributed optical information needed to optimize beamline tuning for an open-ended system. This work will discuss the current and future states of this technique, as well as an example of its use in the CEBAF machine.

  11. Determining the wavelength spectrum of neutrons on the NG6 beam line at NCNR

    NASA Astrophysics Data System (ADS)

    Ivanov, Juliet

    2016-09-01

    Historically, in-beam experiments and bottle experiments have been performed to determine the lifetime of a free neutron. However, these two different experimental techniques have provided conflicting results. It is crucial to precisely and accurately elucidate the neutron lifetime for Big Bang Nucleosynthesis calculations and to investigate physics beyond the Standard Model. Therefore, we aimed to understand and minimize systematic errors present in the neutron beam experiment at the NIST Center for Neutron Research (NCNR). In order to reduce the uncertainty related to wavelength dependent corrections present in previous beam experiments, the wavelength spectrum of the NCNR reactor cold neutron beam must be known. We utilized a beam chopper and lithium detector to characterize the wavelength spectrum on the NG6 beam line at the NCNR. The experimental design and techniques employed will be discussed, and our results will be presented. Future plans to utilize our findings to improve the neutron lifetime measurement at NCNR will also be described.

  12. Extension of service life of rigid transfer lines /SMDC/. [explosive components for aircraft escape systems

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Kayser, E. G.; Schimmel, M. L.

    1982-01-01

    The results of a life evaluation program on rigid explosive transfer lines, which are used to initiate aircraft emergency crew escape functions, are presented in order to provide quantitative information on rigid explosive transfer lines which can contribute to responsible, conservative, service life determinations. The program involved the development of a test methodology, testing of the three types of transfer lines in use in the U.S., testing of these lines following a repeat of the thermal test conducted in the original qualification, and conducting a degradation investigation. Results from the testing of more than 800 components showed that rigid explosive transfer lines were not affected by age, service, or a repeat of the thermal qualification tests on full-service lines. The explosive degradation limits were approximated and the mechanisms examined. It is concluded that the service lives of rigid explosive transfer lines should be considered for extension in order to provide cost savings and increased system reliability.

  13. Extension of service life of rigid transfer lines /SMDC/. [explosive components for aircraft escape systems

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Kayser, E. G.; Schimmel, M. L.

    1982-01-01

    The results of a life evaluation program on rigid explosive transfer lines, which are used to initiate aircraft emergency crew escape functions, are presented in order to provide quantitative information on rigid explosive transfer lines which can contribute to responsible, conservative, service life determinations. The program involved the development of a test methodology, testing of the three types of transfer lines in use in the U.S., testing of these lines following a repeat of the thermal test conducted in the original qualification, and conducting a degradation investigation. Results from the testing of more than 800 components showed that rigid explosive transfer lines were not affected by age, service, or a repeat of the thermal qualification tests on full-service lines. The explosive degradation limits were approximated and the mechanisms examined. It is concluded that the service lives of rigid explosive transfer lines should be considered for extension in order to provide cost savings and increased system reliability.

  14. Single step high-speed printing of continuous silver lines by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Puerto, D.; Biver, E.; Alloncle, A.-P.; Delaporte, Ph.

    2016-06-01

    The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.

  15. Evaluation of Hose in Hose Transfer Line Service Life for Hanford's Interim Stabilization Program

    SciTech Connect

    TORRES, T.D.

    2000-08-24

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program, defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program, has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will be exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning. Prudent engineering dictates that the equipment placed in service have a working life in excess of this forecasted time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer and published literature. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are process fluid characteristics, ambient environmental conditions, and the manufacturer's stated shelf life. This evaluation examines the manufacturer's certification of shelf life, the manufacturer's certifications of chemical compatibility with waste, and published literature on the effects of exposure to ionizing radiation on the mechanical properties of elastomeric materials to evaluate transfer line service life.

  16. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    SciTech Connect

    Haire, M.J.

    2003-06-30

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this

  17. Production of drip-line nuclei at RIKEN RI Beam Factory

    NASA Astrophysics Data System (ADS)

    Saito, Atsumi

    2014-09-01

    Production cross-sections and secondary-beam yields of very neutron rich nuclei near neutron drip-line at 200--250 MeV/u have been investigated at RIKEN RI Beam Factory (RIBF). RIBF is the next generation RI beam facility, which can produce a variety of exotic nuclei with high intensity. The measurement of production yields of 19B, 22C, which are located on the neutron drip-line, and neighboring isotopes was made on the occasion of the Coulomb and nuclear breakup experiments of these halo nuclei at SAMURAI (Superconducting Analyzer for MUlti-particle from RAdioIsotope beams) facility at RIBF. We used 345 MeV/u 48Ca beam as primary beam, which impinged on 30 mm-thick Be target, to obtain secondary beams by projectile fragmentation. The projectile fragments were then separated through Superconducting RI beam separator BigRIPS, and were identified by measuring time of flight (TOF), energy loss (ΔE), and magnetic rigidity (Bρ) by the standard detectors at 2nd stage of BigRIPS. We thus obtained production cross-sections and yields of carbon and boron isotopes. The production cross-sections and yields extracted were compared with the simulation code LISE using EPAX. We discuss these results and comparisons in this poster presentation.

  18. Modeling of Chill Down in Cryogenic Transfer Lines

    NASA Technical Reports Server (NTRS)

    Cross, Matthew F.; Majumdar, Alok K.; Bennett, John C., Jr.; Malla, Ramesh B.; Rodriquez, Pete (Technical Monitor)

    2001-01-01

    A numerical model to predict chill down in cryogenic transfer lines has been developed. Three chill down cases using hydrogen as the working fluid are solved: 1) a simplified model amenable to analytical solution, 2) a realistic model of superheated vapor flow, and 3) a realistic model of initially subcooled liquid flow. The first case compares a numerical model with an analytical solution with very good agreement between the two. Additionally, the analytical solution provides a convenient way to look at parametric effects on the chill down. The second and third cases are numerical models which provide temperature histories of the fluid and solid tube wall during chill down as well as several other quantities of interest such as pressure and mass flow rate. Of great interest is the ability to predict accurate values of chill down time (the time required to achieve steady-state cryogenic flow). The models predict that a 26 in. long, 3/16 in. ID aluminum tube has a shorter chill down time (approx. equal to 100 sec) and uses less hydrogen with superheated vapor flow than with initially subcooled liquid flow (greater than 200 sec for chill down).

  19. Satellite lines at the ionization threshold in charge transfer systems

    NASA Astrophysics Data System (ADS)

    Wardermann, W.; von Niessen, W.

    1992-01-01

    This article deals with the possibility of low-energy ionizations of reduced intensity for larger organic molecules. Possible mechanisms which may lead to this phenomenon are outlined and the necessary structural features are discussed. The lowest ionization energies of some organic unsaturated nitro and nitroso compounds are calculated by the ADC(3) ab initio many-body Green's function method. The π-electron system consists either of fused five- and six-membered rings or of two fused five-membered rings with a variable number of heteroatoms. Some of the molecules contain exocylic double bonds and some are substituted with the donor groups -NH 2, -OH and -NHOH. The strongest many-body effects are found for the nitroso compounds, where in one case the spectral line at the ionization threshold has lost more than 40% of its intensity to satellites. We study the many-body effects at or close to the ionization threshold for these compounds. A particular mechanism which involves the screening of localized valence holes by charge transfer excitations appears to be capable of influencing the profile and intensities of the ionization spectrum already at the ionization threshold. The effect leads to strongly reduced relative intensities of the bands and may cause the appearance of satellite bands nearly at the ionization threshold. The spectral changes in the outermost valence region are discussed by using a simple model calculation in terms of ground-state electronic properties of the molecules.

  20. Cross-beam energy transfer to a single f-20 beam: simulations of previous and upcoming experiments

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Turnbull, David; Kirkwood, Robert; Michel, Pierre; Wilks, Scott; Berger, Richard; Hinkel, Denise; Moody, John; Langer, Steve; Langdon, Bruce; Strozzi, David

    2016-10-01

    Motivated by materials research applications, cross-beam energy transfer can be used to transfer energy from one or more quads of beamlets at the NIF, which have an effective f-number of 8, to a single f-20 beam. Using plasma comprised of a preheated C5H12 gasbag, a preliminary experiment at the NIF demonstrated amplification of a 750 J f-20 beam by a factor of 2 in both power and energy. A witness plate providing gated x-ray images was used to obtain total energies and transmitted spot intensities for the pump quad, seed beamlet, and a calibration quad. These experimental diagnostics offer the opportunity to perform quantitative comparisons with simulations. We use the laser-plasma interaction code pF3D to simulate the energy transfer process, using plasma conditions obtained from the plasma hydrodynamics code HYDRA. Our simulations of the completed single-pump quad experiment recover the measured seed amplification and transmitted spot power distributions. We also show simulation results for the upcoming two-pump quad experiment.

  1. A new antiproton beam transfer scheme without coalescing

    SciTech Connect

    Weiren Chou et al.

    2003-06-04

    An effective way to increase the luminosity in the Fermilab Tevatron collider program Run2 is to improve the overall antiproton transfer efficiency. During antiproton coalescing in the Main Injector (MI), about 10-15% particles get lost. This loss could be avoided in a new antiproton transfer scheme that removes coalescing from the process. Moreover, this scheme would also eliminate emittance dilution due to coalescing. This scheme uses a 2.5 MHz RF system to transfer antiprotons from the Accumulator to the Main Injector. It is then followed by a bunch rotation in the MI to shorten the bunch length so that it can be captured by a 53 MHz RF bucket. Calculations and ESME simulations show that this scheme works. No new hardware is needed to implement this scheme.

  2. Pulse-by-pulse multi-beam-line operation for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Fukami, Kenji; Inagaki, Takahiro; Kawaguchi, Hideaki; Kinjo, Ryota; Kondo, Chikara; Otake, Yuji; Tajiri, Yasuyuki; Takebe, Hideki; Togawa, Kazuaki; Yoshino, Tatsuya; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2016-02-01

    The parallel operation of plural undulator beam lines is an important means of improving the efficiency and usability of x-ray free-electron laser facilities. After the installation of a second undulator beam line (BL2) at SPring-8 Angstrom compact free-electron laser (SACLA), pulse-by-pulse switching between two beam lines was tested using kicker and dc twin-septum magnets. To maintain a compact size, all undulator beam lines at SACLA are designed to be placed within the same undulator hall located downstream of the accelerator. In order to ensure broad tunability of the laser wavelength, the electron bunches are accelerated to different beam energies optimized for the wavelengths of each beam line. In the demonstration, the 30 Hz electron beam was alternately deflected to two beam lines and simultaneous lasing was achieved with 15 Hz at each beam line. Since the electron beam was deflected twice by 3° in a dogleg to BL2, the coherent synchrotron radiation (CSR) effects became non-negligible. Currently in a wavelength range of 4-10 keV, a laser pulse energy of 100 - 150 μ J can be obtained with a reduced peak current of around 1 kA by alleviating the CSR effects. This paper reports the results and operational issues related to the multi-beam-line operation of SACLA.

  3. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  4. Ionisation Chambers and Secondary Emission Monitors at the PROSCAN Beam Lines

    NASA Astrophysics Data System (ADS)

    Dölling, Rudolf

    2006-11-01

    PROSCAN, the dedicated new medical facility at PSI using proton beams for the treatment of deep seated tumours and eye melanoma, is now in the commissioning phase. Air filled ionisation chambers in several configurations are used as current monitors, profile monitors, halo, position and loss monitors at the PROSCAN beam lines. Similar monitors based on secondary emission are used for profile and current measurements in the regime where saturation deteriorates the accuracy of the ionisation chambers.

  5. Evaluation and Compensation of Detector Solenoid Effects on Disrupted Beam in the ILC 14 mrad Extraction Line

    SciTech Connect

    Toprek, Dragan; Nosochkov, Yuri; /SLAC

    2008-12-18

    This paper presents calculations of detector solenoid effects on disrupted primary beam in the ILC 14 mrad extraction line. Particle tracking simulations are performed for evaluation of primary beam loss along the line as well as of beam distribution and polarization at Compton Interaction Point. The calculations are done both without and with solenoid compensation. The results are obtained for the baseline ILC energy of 500 GeV center-of-mass and three options of beam parameters.

  6. LIFE ESTIMATION OF TRANSFER LINES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENT

    SciTech Connect

    Subramanian, K

    2007-10-01

    A performance assessment is being performed in support of closure of the F-Tank Farm. The performance assessment includes the life estimation of the transfer lines that are used to transport waste between tanks both within a facility (''intra-area'' transfer) and to other facilities (''inter-area'' transfers). The transfer line materials of construction will initially provide a barrier to contaminant escape. However, the materials will degrade over time, most likely due to corrosion, and will no longer provide a barrier to contaminant escape. The life estimation considered the corrosion of the core pipe under exposure to soil, estimated the thickness loss due to general corrosion, and the percentage of wall area breached due to localized corrosion mechanisms. There are three types of transfer lines that are to be addressed within the performance assessment: Type I, Type II/IIA and Type III. The life of the transfer lines were estimated as exposed to soil. Localized and general corrosion of the transfer lines exposed to soil was estimated to provide input to the fate and transport modeling of the performance assessment. Pitting corrosion was found to be the controlling mechanism for the degradation of the transfer lines and their consequent ability to maintain confinement of contaminants. It is assumed that 75% of the transfer line is needed intact to provide this confinement function, i.e. once 25% of the line wall is breached, the lines are considered incapable of confining contaminants. It is recommended that the percentage breached curves be utilized for each transfer line as shown in Figure 1 for the various stainless steel transfer lines.

  7. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Phipps, Mary E.; Goodwin, Peter M.; Werner, James H.

    2016-10-01

    We have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the "on" state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as many photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.

  8. The instrumentation of X-ray beam lines with PIN diode detectors

    NASA Astrophysics Data System (ADS)

    Jach, Terrence

    1990-12-01

    Much of the X-ray work on synchrotron-radiation beam lines is still done using ion chambers as detectors. Silicon PIN photodiodes offer considerable advantages over ion chambers for many applications. In addition to greater efficiency over a wide energy range (1-20 keV), they possess a flat configuration, large areas, an absence of bias requirements, high dynamic range, and compatability with ultrahigh vacuum. We have characterized the properties of several commercial PIN photodiodes at X-ray energies, have had diodes commercially produced which were specialized for use in synchrotron beam lines, and have produced new photodiode devices for synchrotron-radiation applications. We review the performance of these devices over extended periods of time in beam-line control and as detectors in experiments.

  9. 1 to 2 GeV/c beam line for hypernuclear and kaon research

    SciTech Connect

    Chrien, R.E.

    1985-02-15

    A kaon beam line operating in the range from 1.0 to 2.0 GeV/c is proposed. The line is meant for kaon and pion research in a region hitherto inaccessible to experimenters. Topics in hypernuclear and kaon physics of high current interest include the investigation of doubly strange nuclear systems with the K/sup -/,K/sup +/ reaction, searching for dibaryon resonances, hyperon-nucleon interactions, hypernuclear ..gamma.. rays, and associated production of excited hypernuclei. The beam line would provide separated beams of momentum analyzed kaons at intensities greater than 10/sup 6/ particles per spill with a momentum determined to one part in a thousand. This intensity is an order of magnitude greater than that currently available. 63 references.

  10. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  11. High power coatings for line beam laser optics of up to 2-meter in length

    NASA Astrophysics Data System (ADS)

    Mende, Mathias; Kohlhaas, Jürgen; Ebert, Wolfgang

    2016-03-01

    Laser material processing plays an important role in the fabrication of the crucial parts for state-of-the-art smartphones and tablets. With industrial line beam systems a line shaped beam with a length above one meter and an average power of several thousand watts can be realized. To ensure excellent long axis beam homogeneity, demanding specifications regarding the substrate surface form tolerances and the coating uniformity have to be achieved for each line beam optic. In addition, a high laser damage threshold and a low defect density are required for the coatings. In order to meet these requirements, the MAXIMA ion beam sputtering machine was developed and built by LASEROPTIK. This contribution describes the functional principle of MAXIMA deposition machine, which adapts the ion beam sputtering technology with its highest coating quality to the field of large area deposition. Furthermore, recent developments regarding the process control by optical broadband monitoring are discussed. Finally experimental results on different thin film characteristics as for example the coating uniformity, the microstructure and the laser damage resistance of multilayers are presented.

  12. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  13. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line.

    SciTech Connect

    Waldschmidt, G. J.

    1998-10-27

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1].

  14. Neutron beam line design of a white neutron source at CSNS

    NASA Astrophysics Data System (ADS)

    Jing, Hantao; Zhang, Liying; Tang, Jingyu; Ruan, Xichao; Ning, Changjun; Yu, Yongji; Wang, Pengcheng; Li, Qiang; Ren, Jie; Tang, Hongqing; Wang, Xiangqi

    2017-09-01

    China Spallation Neutron Source (CSNS), which is under construction, is a large scientific facility dedicated mainly for multi-disciplinary research on material characterization using neutron scattering techniques. The CSNS Phase-I accelerator will deliver a proton beam with an energy of 1.6 GeV and a pulse repetition rate of 25 Hz to a tungsten target, and the beam power is 100 kW. A white neutron source using the back-streaming neutrons through the incoming proton beam channel was proposed and is under construction. The back-streaming neutrons which are very intense and have good time structure are very suitable for nuclear data measurements. The white neutron source includes an 80-m neutron beam line, two experimental halls, and also six different types of spectrometers. The physics design of the beam line is presented in this paper, which includes beam optics and beam characterization simulations, with the emphasis on obtaining extremely low background. The first-batch experiments on nuclear data measurements are expected to be conducted in late 2017.

  15. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    SciTech Connect

    Macek, R.J.

    1994-07-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

  16. Ion-beam-irradiated CYTOP-transferred graphene for liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Oh, Jeong Hyeon; Choi, Gyu Jin; Kwon, Ki Chang; Bae, Sa-Rang; Jang, Ho Won; Gwag, Jin Seog; Kim, Soo Young

    2017-05-01

    The twisted nematic liquid crystal cell was developed by using a CYTOP-transferred graphene sheet as an electrode and an alignment layer. A graphene layer was synthesized by chemical vapor deposition and transferred onto a plastic substrate using a fluoropolymer known as CYTOP. As the ion-beam treatment time increased, the sheet resistance increased from 500 to 1100 Ω/sq., while the water contact angle decreased from 110.5° to 69.7°. The increased intensities of the D and G' bands and the appearance of D + D″ and D + G' bands in the Raman spectra indicated the formation of defects because of the ion-beam treatment. An ion-beam exposure time of 15 s was found to be the most effective for the production of CYTOP-transferred graphene and for achieving high contrast in operating cells. The ion beam detached F from the CYTOP-transferred graphene layer, and the resulting exposure of the C=C bond on the graphene surface affected the alignment of liquid crystal molecules. Based on these results, the technique described here has applications in novel, high-performance liquid crystal displays that do not require indium-tin-oxide electrodes and polyimide alignment layers. Sheets synthesized by chemical vapor deposition were transferred and simultaneously doped using fluoropolymer supporting layers. [Figure not available: see fulltext.

  17. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  18. Optical design and performance of the X25 hybrid wiggler beam line at the NSLS

    SciTech Connect

    Berman, L.E.; Hastings, J.B.; Oversluizen, T.; Woodle, M.

    1991-01-01

    The X25 beam line at the National Synchrotron Light Source (NSLS) began full-power commissioning in 1990. It extracts radiation from a 27 pole hybrid wiggler, which produces up to 1.8 kW of total power with a peak horizontal density of 450 W/mrad and critical energy of 4.6 keV. The design and performance of the beam line optics are described, in particular the cooling of the first monochromator crystal. 28 refs., 5 figs.

  19. One-dimensional reflective diffuser for line beam shaper with microlens array homogenizer

    NASA Astrophysics Data System (ADS)

    Hsiao, Yung-Neng; Wu, Hau-Ping; Chen, Cheng-Huan; Lin, Yu-Chung; Lee, Min-Kai; Liu, Sung-Ho

    2014-09-01

    A laser beam shaping architecture based on a microlens array homogenizer has been exploited, in which the interference effect due to the coherency of the laser source deteriorates the uniformity. Moving diffusers have been considered as an effective way of averaging out the interference pattern. Because the uniformity is required in the line direction only, a one-dimensional reflective-type diffuser with a well-controlled diffusion angle has been proposed and prototyped. The diffuser is attached onto a rotating cylinder for movement in operation. The experiment demonstrates the effectiveness of the scheme, and a line beam with a uniformity of up to 92% has been achieved.

  20. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    SciTech Connect

    Bambade, P.; Alabau Pons, M.; Amann, J.; Angal-Kalinin, D.; Apsimon, R.; Araki, S.; Aryshev, A.; Bai, S.; Bellomo, P.; Bett, D.; Blair, G.; Bolzon, B.; Boogert, S.; Boorman, G.; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; Delahaye, Jean-Pierre; Deacon, L.; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

    2011-11-11

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  1. Emission-Line Intensity Ratios in Fe XVII Observed with a Microcalorimeter on an Electron Beam Ion Trap

    NASA Astrophysics Data System (ADS)

    Laming, J. M.; Kink, I.; Takacs, E.; Porto, J. V.; Gillaspy, J. D.; Silver, E. H.; Schnopper, H. W.; Bandler, S. R.; Brickhouse, N. S.; Murray, S. S.; Barbera, M.; Bhatia, A. K.; Doschek, G. A.; Madden, N.; Landis, D.; Beeman, J.; Haller, E. E.

    2000-12-01

    We report new observations of emission line intensity ratios of Fe XVII under controlled experimental conditions, using the National Institute of Standards and Technology electron beam ion trap (EBIT) with a microcalorimeter detector. We compare our observations with collisional-radiative models using atomic data computed in distorted wave and R-matrix approximations, which follow the transfer of the polarization of level populations through radiative cascades. Our results for the intensity ratio of the 2p61S0- 2p53d1P1 15.014 Å line to the 2p61S0- 2p53d3D1 15.265 Å line are 2.94+/-0.18 and 2.50+/-0.13 at beam energies of 900 and 1250 eV, respectively. These results are not consistent with collisional-radiative models and support conclusions from earlier EBIT work at the Lawrence Livermore National Laboratory that the degree of resonance scattering in the solar 15.014 Å line has been overestimated in previous analyses. Further observations assess the intensity ratio of the three lines between the 2p6-2p53s configurations to the three lines between the 2p6-2p53d configurations. Both R-matrix and distorted wave approximations agree with each other and our experimental results much better than most solar and stellar observations, suggesting that other processes not present in our experiment must play a role in forming the Fe XVII spectrum in solar and astrophysical plasmas.

  2. Maximum power transfer in A.C. transmission lines limited by voltage stability

    SciTech Connect

    Raviprakasha, M.S.; Ramar, K.

    1995-12-31

    Closed form expressions for maximum power transfer limited by voltage stability and the corresponding voltage in AC transmission lines for constant power and constant impedance type loads are derived. The transmission line is represented by its n-equivalent model. It is shown that the maximum power transfer point is independent of the type of load.

  3. Remote Electric Power Transfer Between Spacecrafts by Infrared Beamed Energy

    NASA Astrophysics Data System (ADS)

    Chertok, Boris E.; Evdokimov, Roman A.; Legostaev, Victor P.; Lopota, Vitaliy A.; Sokolov, Boris A.; Tugaenko, Vjacheslav Yu.

    2011-11-01

    High efficient wireless electric energy transmission (WET) technology between spacecrafts by laser channel is proposed. WET systems could be used for remote power supplying of different consumers in space. First of all, there are autonomous technology modules for microgravity experiments, micro and nano satellites, different equipment for explorations of planetary surfaces, space transport vehicles with electric rocket propulsion systems. The main components of the WET technology consist of radiation sources on the base of semiconductor IR laser diodes; systems for narrow laser beam creation; special photovoltaic receivers for conversion of monochromatic IR radiation with high energy density to electric power. The multistage space experiment for WET technology testing is described. During this experiment energy will be transmitted from International Space Station to another spacecrafts like cargo transport vehicles (Progress or/and ATV) and micro satellites.

  4. A very sensitive nonintercepting beam average velocity monitoring system for the TRIUMF 300-keV injection line

    SciTech Connect

    Yin, Y.; Laxdal, R.E.; Zelenski, A.; Ostroumov, P.

    1997-01-01

    A nonintercepting beam velocity monitoring system has been installed in the 300-keV injection line of the TRIUMF cyclotron to reproduce the injection energy for beam from different ion sources and to monitor any beam energy fluctuations. By using a programmable beam signal leveling method the system can work with a beam current dynamic range of 50 dB. Using synchronous detection, the system can detect 0.5 eV peak-to-peak energy modulation of the beam, sensitivity is 1.7{times}10{sup {minus}6}. The paper will describe the principle and beam measurement results. {copyright} {ital 1997 American Institute of Physics.}

  5. In-line e-beam inspection with optimized sampling and newly developed ADC

    NASA Astrophysics Data System (ADS)

    Ikota, Masami; Miura, Akihiro; Fukunishi, Munenori; Hiroi, Takashi; Sugimoto, Aritoshi

    2003-07-01

    An electron beam inspection is strongly required for HARI to detect contact and via defects that an optical inspection cannot detect. Conventionally, an e-beam inspection system is used as an analytical tool for checking the process margin. Due to its low throughput speed, it has not been used for in-line QC. Therefore, we optimized the inspection area and developed a new auto defect classification (ADC) to use with e-beam inspection as an in-line inspection tool. A 10% interval scan sampling proved able to estimate defect densities. Inspection could be completed within 1 hour. We specifically adapted the developed ADC for use with e-beam inspection because the voltage contrast images were not sufficiently clear so that classifications could not be made with conventional ADC based on defect geometry. The new ADC used the off-pattern area of the defect to discriminate particles from other voltage contrast defects with an accuracy of greater than 90%. Using sampling optimization and the new ADC, we achieved inspection and auto defect review with throughput of less than 1 and one-half hours. We implemented the system as a procedure for product defect QC and proved its effectiveness for in-line e-beam inspection.

  6. Validation of Monte-Carlo simulations with measurements at the ICON beam-line at SINQ

    NASA Astrophysics Data System (ADS)

    Giller, L.; Filges, U.; Kühne, G.; Wohlmuther, M.; Zanini, L.

    2008-02-01

    ICON is the new cold neutron imaging facility at the neutron spallation source SINQ. The ICON facility is placed at beam-line S52 with direct view to the cold liquid D 2 moderator. The beam-line includes a 4.4 m long collimation section followed by a 11 m long flight path to the imaging system. The essential part of the collimation section is composed of six revolving drums and a variable aperture wheel. Depending on the investigated object, different apertures are used. Measurements have shown that each setup has a different spatial neutron flux distribution and specific beam profiles. Measured beam profiles have been used to validate results of simulations coupling the Monte-Carlo program MCNPX with the neutron ray-tracing program McStas. In a first step, MCNPX was used to calculate neutron spectra closed to the SINQ target, at the entrance of the collimation section. These results served as an input for McStas where the beam-line itself was simulated. In the present paper, experimental and theoretical results will be compared and discussed.

  7. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    SciTech Connect

    Olivas, Eric Richard

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  8. Application of an electron beam facility for heat transfer measurements in capillary tubes

    NASA Technical Reports Server (NTRS)

    Lunde, A. R.; Kramer, T.

    1977-01-01

    A unique method was developed for the determination of heat transfer coefficients for water flowing through capillary tubes using a rastered electron beam heater. Heat flux levels of 150 and 500 watts/sq cm were provided on the top surface of four square tubes. Temperature gradient along the tube length and mass flow rates versus pressure drop were measured.

  9. Comparing Ray-Based and Wave-Based Models of Cross-Beam Energy Transfer

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Edgell, D. H.; Shaw, J. G.; Froula, D. H.; Myatt, J. F.

    2016-10-01

    Ray-based models of cross-beam energy transfer (CBET) are used in radiation-hydrodynamics codes to calculate laser-energy deposition. The accuracy of ray-based CBET models is limited by assumptions about the polarization and phase of the interacting laser beams and by the use of a paraxial Wentzel-Kramers-Brillouin (WKB) approximation. A 3-D wave-based solver (LPSE-CBET) is used to study the nonlinear interaction between overlapping laser beams in underdense plasma. A ray-based CBET model is compared to the wave-based model and shows good agreement in simple geometries where the assumptions of the ray-based model are satisfied. Near caustic surfaces, the assumptions of the ray-based model break down and the calculated energy transfer deviates from wave-based calculations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Achieving Stability Requirements for Nanoprobe and Long Beam Lines at NSLS II. A Comprehensive Study

    SciTech Connect

    Simos,N.; Fallier, M.; Hill, J.; Berman, L.; Evans-Lutterodt, K.; Broadbent, A.

    2008-06-23

    Driven by beam stability requirements at the NSLS II synchrotron, such that the desired small beam sizes and high brightness are both realized and stable, a comprehensive study has been launched seeking to provide assurances that stability at the nanometer level at critical x-ray beam-lines, is achievable, given the natural and cultural vibration environment at the selected site. The study consists of (a) an extensive investigation of the site to evaluate the existing ground vibration, in terms of amplitude, frequency content and coherence, and (b) of a numerical study of wave propagation and interaction with the infrastructure of the sensitive lines. The paper presents results from both aspects of the study.

  11. Delayed and In-beam Spectroscopy on Francium and Astatine Nuclei at the Proton Drip Line

    NASA Astrophysics Data System (ADS)

    Uusitalo, J.; Jakobsson, U.

    2011-11-01

    Delayed and in-beam spectroscopy on francium and astatine nuclei at and beyond the proton drip line has been performed. In neutron deficient astatine nuclei a shift to deformed shapes as a function of decreasing neutron has been obtained. In neutron deficient francium isotope the same shift is evident.

  12. Delayed and In-beam Spectroscopy on Francium and Astatine Nuclei at the Proton Drip Line

    SciTech Connect

    Uusitalo, J.; Jakobsson, U.; Collaboration: RITU-Gamma Gollaboration

    2011-11-30

    Delayed and in-beam spectroscopy on francium and astatine nuclei at and beyond the proton drip line has been performed. In neutron deficient astatine nuclei a shift to deformed shapes as a function of decreasing neutron has been obtained. In neutron deficient francium isotope the same shift is evident.

  13. The status of beam lines for macromolecular crystallography at the Siberia-2 storage ring

    SciTech Connect

    Kusev, S.V.; Raiko, V.I.; Skuratovskii, I.Y. )

    1992-01-01

    An overview is presented of the x-ray optics of the four macromolecular crystallography beam lines under construction at the storage ring SIBERIA-2, Moscow. The four workstations are to utilize isomorphous replacement, anomalous dispersion, reflections energy profile, and the Laue technique. The instrumentation details, the results of ray-tracing analysis, and the use of an area detector are discussed.

  14. In situ baking method for degassing of a kicker magnet in accelerator beam line

    SciTech Connect

    Kamiya, Junichiro Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu; Yasuda, Yuichi

    2016-03-15

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.

  15. Characterization of the laser cleaving on glass sheets with a line-shape laser beam

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Zan; Lin, Jehnming

    2007-07-01

    A CO 2 laser with a line-shape beam was used to cleave a soda-lime glass substrate at various beam-rotation angles to the cutting direction. The stress distribution on the glass substrate cleaved by the laser beam has been analyzed in this study. An uncoupled thermal-elastic analysis was achieved by the ABAQUS software based on the finite element method. The numerical results show that the stress field of the fracture is caused by a complex stress state and the cleavages are significantly affected by the heat diffusion and beam rotation angle. At the rotation angle of zero degree to the cleaving direction, the phenomena of the chip formation have been found due to a large temperature gradient at the cleaving depth of the glass substrate.

  16. Design of the e-beam transport line for the AFEL

    SciTech Connect

    Wang, T.F.; Chan, K.C.D.; Sheffield, R.L.; Wilson, W.L.

    1991-01-01

    The Advanced Free-Electron Laser (AFEL) currently construction at Los Alamos National Laboratory is a compact high-performance free- electron laser (FE). The design of the AFEL integrates our most advanced accelerator and wiggler components. The 1.2-m-long accelerator produces a high-brightness electron-beam (e-beam) of 200- to 300-A peak current with an energy of 20 MeV. The beamline incorporates variable permanent-magnet quadrupoles and dipoles for electron beam transport. The AFEL will ultimately use 10- to 20-cm-long slotted-tube pulsed microwigglers having a period of 3-mm to 1-cm. In this paper, we shall present the design of the e-beam transport line and discuss the various design considerations involved. 7 refs., 5 figs., 3 tabs.

  17. Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beam-line

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Andó, L.; Cirrone, G. A. P.; Cuttone, G.; Romano, F.; Scuderi, V.; Allegra, L.; Amato, A.; Gallo, G.; Korn, G.; Leanza, R.; Margarone, D.; Milluzzo, G.; Petringa, G.

    2016-08-01

    A magnetic chicane based on four electromagnetic dipoles is going to be realized by INFN-LNS to be used as an Energy Selection System (ESS) for laser driven proton beams up to 300 MeV and C6+ up to 70 MeV/u. The system will provide, as output, ion beams with a contrallable energy spread varying from 5% up to 20% according to the aperture slit size. Moreover, it has a very wide acceptance in order to ensure a very high transmission efficiency and, in principle, it has been designed to be used also as an active energy modulator. This system is the core element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first user's open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary research. The definition of well specified characteristics, both in terms of performance and field quality, of the magnetic chicane is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the Permanent Magnet Quadrupoles (PMQs) used as a collection system already designed. Here, the design of the magnetic chicane is described in details together with the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described showing the good performance of the whole beam line (PMQs+ESS).

  18. Transferring Electron Beam Welding Parameters Between DIfferent Machines and Facilities Using Advanced Diagnostics

    SciTech Connect

    Elmer, J W; Palmer, T A; Terrill, P; Knicklas, K D; Mustaleski, T M; Burgardt, P

    2004-06-17

    Transferring electron beam (EB) welding parameters between different welders can be a costly and time consuming process requiring the completion of expensive weld parameter studies. In order to modernize and streamline this process, the LLNL Beam Profiler diagnostic tool, which has been developed and tested at Lawrence Livermore National Laboratory (LLNL) to measure the size, shape, and power density distribution of electron beams, is currently being used to characterize the performance of EB machines at several U.S. Department of Energy facilities. The characterization of these machines involves performing defocus studies on each welder to measure the properties of 1 kW beams made at constant current, voltage, and work distance settings. Using these carefully characterized beams, autogenous welds on 304L stainless steel were then made at LLNL and replicated on the other machines. A key finding from these studies was that the widespread use of work distance values measured from the surface of the part being welded to the top of the EB vacuum chamber are suitable only for machines with a similar upper column design. Otherwise, the focus-lens to part distance must be determined and controlled. A simple method for determining the focus-lens to part distance with the LLNL Beam Profiler diagnostic tool is presented. The ability to transfer EB welds between machines represents a major accomplishment in the development and more widespread use of this diagnostic tool. This work also serves as a basis for the continuing development of procedures and equipment for characterizing electron beams and as a precursor to the development of a modern weld transfer procedure.

  19. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  20. Beam emittance measurements and simulations of injector line for radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Mathew, Jose V.; Rao, S. V. L. S.; Pande, Rajni; Singh, P.

    2015-07-01

    A 400 keV deuteron (D+) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H+ and D+ beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D+ beam through the RFQ, while 95% transmission has been measured experimentally.

  1. Beam emittance measurements and simulations of injector line for radio frequency quadrupole.

    PubMed

    Mathew, Jose V; Rao, S V L S; Pande, Rajni; Singh, P

    2015-07-01

    A 400 keV deuteron (D(+)) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H(+) and D(+) beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D(+) beam through the RFQ, while 95% transmission has been measured experimentally.

  2. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    SciTech Connect

    Stein, W; Ahle, L E; Conner, D L

    2005-04-28

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 70 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an adjacent air space. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 15% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 3 ksi. Rotating the wheel also results in low radiation damage levels by spreading the damage out over the whole perimeter of the wheel. For some of the other beams, a stationary dump consisting of a thin aluminum window with water acting as a coolant and absorber appears to be feasible.

  3. Beam imaging in the injection line of the INFN-LNS superconducting cyclotron

    SciTech Connect

    Nicolosi, Dario Cosentino, Luigi; Mascali, David; Pappalardo, Alfio; Castro, Maurizio; Celona, Luigi; Marchetta, Carmelo; Marletta, Salvatore; Maugeri, Antonio; Rifuggiato, Danilo; Seminara, Angelo; Gammino, Santo

    2016-02-15

    A cheap and efficient diagnostic system for beam monitoring has been recently developed at INFN-LNS in Catania. It consists of a high sensitivity CCD camera detecting the light produced by an ion beam hitting the surface of a scintillating screen and a frame grabber for image acquisition. A scintillating screen, developed at INFN-LNS and consisting of a 2 μm BaF{sub 2} layer evaporated on an aluminium plate, has been tested by using {sup 20}Ne and {sup 40}Ar beams in the keV energy range. The CAESAR ECR ion source has been used for investigating the influence of the frequency and magnetic field tuning effects, the impact of the microwave injected power, and of the focusing solenoids along the low energy beam transport on the beam shape and current. These tests will allow to better understand the interplay between the plasma and beam dynamics and, moreover, to improve the transport efficiency along the low energy beam line and the matching with the superconducting cyclotron, particularly relevant in view of the expected upgrade of the machine.

  4. Evaluation of in-line electron beam system requirements and capabilities

    NASA Astrophysics Data System (ADS)

    Smith, M.; Galloway, R.

    2004-09-01

    Medical device manufacturers have recently began to study and implement in-line electron beam irradiators for device sterilization instead of relying heavily on centralized locations serving multiple manufacturing sites. Before deciding to install such a system, the sterilization needs should be systematically considered. The evaluation includes Technical specifications for in-line systems, including energy requirements balanced against size and shielding requirements. Economics of in-line systems, balancing capital expenditure and increased operational costs at a single location versus costs of transporting products to the central location and the operational costs, including institutional and quality assurance requirements on operating a system.

  5. Study on an azimuthal line cusp ion source for the KSTAR neutral beam injector.

    PubMed

    Jeong, Seung Ho; Chang, Doo-Hee; In, Sang Ryul; Lee, Kwang Won; Oh, Byung-Hoon; Yoon, Byung-Joo; Song, Woo Sob; Kim, Jinchoon; Kim, Tae Seong

    2008-02-01

    In this study it is found that the cusp magnetic field configuration of an anode bucket influences the primary electron behavior. An electron orbit code (ELEORBIT code) showed that an azimuthal line cusp (cusp lines run azimuthally with respect to the beam extraction direction) provides a longer primary electron confinement time than an axial line cusp configuration. Experimentally higher plasma densities were obtained under the same arc power when the azimuthal cusp chamber was used. The newly designed azimuthal cusp bucket has been investigated in an effort to increase the plasma density in its plasma generator per arc power.

  6. Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning

    DOE PAGES

    Edgell, D. H.; Follett, R. K.; Igumenshchev, I. V.; ...

    2017-06-13

    The effects of frequency detuning laser beams in direct-drive symmetric implosions were investigated with a 3-D cross-beam energy transfer (CBET) model. Our model shows that interactions between beams with relative angles between 45° and 90° are most significant for CBET in OMEGA direct-drive implosions. There is no net exchange in power between beams but there is significant redistribution of power from the ingoing central portion of the beam profile to the outgoing edge as it is exiting the plasma, reducing the total absorbed power. Furthermore, redistribution of laser power because of CBET increases the root-mean-square (rms) absorption nonuniformity by anmore » order of magnitude. CBET mitigation by shifting relative wavelengths of three groups of laser beams fed by each of the different beamlines was modeled. At an on-target wavelength shift of Δλ ~ 10 Å, the total laser absorption was maximized, and the rms absorption nonuniformity was near minimum. In order to completely decouple the three groups of beams from each other requires wavelength shifts Δλ > 30 Å.« less

  7. Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning

    NASA Astrophysics Data System (ADS)

    Edgell, D. H.; Follett, R. K.; Igumenshchev, I. V.; Myatt, J. F.; Shaw, J. G.; Froula, D. H.

    2017-06-01

    The effects of frequency detuning laser beams in direct-drive symmetric implosions were investigated with a 3-D cross-beam energy transfer (CBET) model. The model shows that interactions between beams with relative angles between 45° and 90° are most significant for CBET in OMEGA direct-drive implosions. There is no net exchange in power between beams, but there is significant redistribution of power from the ingoing central portion of the beam profile to the outgoing edge as it is exiting the plasma, reducing the total absorbed power. Redistribution of laser power because of CBET increased the root-mean-square (rms) absorption nonuniformity by an order of magnitude. CBET mitigation by shifting relative wavelengths of three groups of laser beams fed by each of the different beamlines was modeled. At an on-target wavelength shift of Δλ ˜ 10 Å, the total laser absorption was maximized, and the rms absorption nonuniformity was near minimum. To completely decouple the three groups of beams from each other requires wavelength shifts Δλ > 30 Å.

  8. Three-Dimensional Modeling of Polarization Effects on Cross-Beam Energy Transfer in OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J.; Froula, D. H.

    2016-10-01

    Beamlet spot images are used to diagnose cross-beam energy transfer (CBET) during OMEGA direct-drive implosions. The spots are, in essence, the end point of beamlets of light originating from different regions of each beam profile and following paths determined by refraction. The intensity of each spot varies because of absorption and CBET along that path. When each beam is linearly polarized, the image is asymmetric in terms of spot intensities. A 3-D CBET postprocessor for hydrodynamics codes is used to model the intensity, wavelength, and polarization of light from each beam. Rotation of polarization caused by CBET is tracked. The model is benchmarked using a 3-D wave-based solver for simplified CBET geometries. For linearly polarized beams in OMEGA implosions, the model predicts that polarization effects will result in asymmetric polarization and unabsorbed light profiles that are different for each beam. An asymmetric beamlet spot image similar to that recorded is predicted by the CBET model for linearly polarized beams. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    SciTech Connect

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J.; Dlougach, E.; Krylov, A.

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  10. Line end shortening and application of novel correction algorithms in e-beam direct write

    NASA Astrophysics Data System (ADS)

    Freitag, Martin; Choi, Kang-Hoon; Gutsch, Manuela; Hohle, Christoph

    2011-03-01

    For the manufacturing of semiconductor technologies following the ITRS roadmap, we will face the nodes well below 32nm half pitch in the next 2~3 years. Despite being able to achieve the required resolution, which is now possible with electron beam direct write variable shaped beam (EBDW VSB) equipment and resists, it becomes critical to precisely reproduce dense line space patterns onto a wafer. This exposed pattern must meet the targets from the layout in both dimensions (horizontally and vertically). For instance, the end of a line must be printed in its entire length to allow a later placed contact to be able to land on it. Up to now, the control of printed patterns such as line ends is achieved by a proximity effect correction (PEC) which is mostly based on a dose modulation. This investigation of the line end shortening (LES) includes multiple novel approaches, also containing an additional geometrical correction, to push the limits of the available data preparation algorithms and the measurement. The designed LES test patterns, which aim to characterize the status of LES in a quick and easy way, were exposed and measured at Fraunhofer Center Nanoelectronic Technologies (CNT) using its state of the art electron beam direct writer and CD-SEM. Simulation and exposure results with the novel LES correction algorithms applied to the test pattern and a large production like pattern in the range of our target CDs in dense line space features smaller than 40nm will be shown.

  11. In vitro study for laser gene transfer in BHK-21 fibroblast cell line

    NASA Astrophysics Data System (ADS)

    Abdel Aziz, M.; Salem, D. S.; Salama, M. S.; Badr, Y.

    2009-02-01

    Modifications to our previously introduced system for laser microbeam cell surgery were carried out in the present work to match animal cells. These modifications included: 1- Using other laser system that used before, Excimer laser with 193 and 308 nm wavelengths. The used laser here, is He-Cd with low power and 441.5 nm wavelength in the visible region. 2- Instead of using pulsed laser, we used here CW He-Cd chopped by electrical chopper, which is synchronized with the mechanical motion of the mobile stage with step 40 microns, according to cell dimensions to avoid puncturing the same cell twice. The advantages of the modified here laser setup for gene transfer is: it is less damaging to the sensitive animal cell which has thin cell membrane. The present work aimed to: 1- Design a modified laser microbeam cell surgery, applicable to animal cells, such as fibroblast cells 2- To examine the efficiency of such system. 3- To assure gene transfer and its expression in the used cells. 4- To evaluate the ultra damages produced from using the laser beam as a modality for gene transfer. On the other wards, to introduce: safe, efficient and less damaging modality for gene transfer in animal cells. To achieve these goals, we applied the introduced here home-made laser setup with its synchronized parameters to introduce pBK-CMV phagemid, containing LacZ and neomycin resistance (neor )genes into BHK-21 fibroblast cell line. The results of the present work showed that: 1- Our modified laser microbeam cell surgery setup proved to be useful and efficient tool for gene transfer into fibroblast cells. 2- The presence and expression of LacZ gene was achieved using histochemical LacZ assay. 3- Selection of G418 antibiotic sensitivity assay confirmed the presence and expression towards stability of neor gene with time. 4- Presence of LacZ and neor genes in the genomic DNA of transfected fibroblast cells was indicated using PCR analysis. 5- Transmission electron microscopy indicated

  12. Beam line 4: A dedicated surface science facility at Daresbury Laboratory

    SciTech Connect

    Dhanak, V.R. IRC in Surface Science, Liverpool University, P.O. Box 147, Liverpool L69 3BX ); Robinson, A.W.; van der Laan, G. ); Thornton, G. )

    1992-01-01

    We describe a beam line currently under construction at the Daresbury Laboratory which forms part of a surface science research facility for the Interdisciplinary Research Centre in Surface Science. The beam line has three branches, two of which are described here. The first branch covers the high-energy range 640 eV{le}{ital h}{nu}{le}10 keV, being equipped with a double-crystal monochromator and a novel multicoated premirror system. The second branch line is optimized for the energy range 15{le}{ital h}{nu}{le}250 eV, using cylindrical focusing mirrors, a spherical diffraction grating and an ellipsoidal refocusing mirror to achieve high resolution with a small spot size.

  13. An ion-beam injection line for the ELASR storage ring at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Almalki, M. H.; Alshammari, S. M.; Alrashdi, A. O.; Alamer, H. S.; Jabr, A. S.; Lanazi, A. Z.

    2016-01-01

    A versatile ion injector beam-line has been developed for the specific use in the multi-purpose low-energy, storage ring facility at the King Abdulaziz City for Sciences and Technology (KACST) in Riyadh, Saudi Arabia. It incorporates a purpose-developed, high-resolution mass analyzing magnet and it is thereby dedicated to provide the ELASR storage ring with beams of ions of specific mass. It is also intended to operate independently as a single-pass experiment. This versatile ion-injection line was constructed in a staged approach, in which an axial injection version was built first, commissioned and is currently operating. The injection line in its final design is now being assembled and commissioned at KACST.

  14. A beam monitoring and validation system for continuous line scanning in proton therapy

    NASA Astrophysics Data System (ADS)

    Klimpki, G.; Psoroulas, S.; Bula, C.; Rechsteiner, U.; Eichin, M.; Weber, D. C.; Lomax, A.; Meer, D.

    2017-08-01

    Line scanning represents a faster and potentially more flexible form of pencil beam scanning than conventional step-and-shoot irradiations. It seeks to minimize dead times in beam delivery whilst preserving the possibility of modulating the dose at any point in the target volume. Our second generation proton gantry features irradiations in line scanning mode, but it still lacks a dedicated monitoring and validation system that guarantees patient safety throughout the irradiation. We report on its design and implementation in this paper. In line scanning, we steer the proton beam continuously along straight lines while adapting the speed and/or current frequently to modulate the delivered dose. We intend to prevent delivery errors that could be clinically relevant through a two-stage system: safety level 1 monitors the beam current and position every 10 μs. We demonstrate that direct readings from ionization chambers in the gantry nozzle and Hall probes in the scanner magnets provide required information on current and position, respectively. Interlocks will be raised when measured signals exceed their predefined tolerance bands. Even in case of an erroneous delivery, safety level 1 restricts hot and cold spots of the physically delivered fraction dose to  ±36~mGy (±2% of 2~Gy biologically). In safety level 2—an additional, partly redundant validation step—we compare the integral line profile measured with a strip monitor in the nozzle to a forward-calculated prediction. The comparison is performed between two line applications to detect amplifying inaccuracies in speed and current modulation. This level can be regarded as an online quality assurance of the machine. Both safety levels use devices and functionalities already installed along the beamline. Hence, the presented monitoring and validation system preserves full compatibility of discrete and continuous delivery mode on a single gantry, with the possibility of switching between modes during the

  15. POLARIZED PARTIAL FREQUENCY REDISTRIBUTION IN SUBORDINATE LINES. II. SOLUTION OF THE TRANSFER EQUATION WITH RAYLEIGH SCATTERING

    SciTech Connect

    Nagendra, K. N.; Sampoorna, M. E-mail: sampoorna@iiap.res.in

    2012-09-20

    It is quite common in line formation theory to treat scattering in subordinate lines under the assumption of complete frequency redistribution (CRD). The partial frequency redistribution (PRD) in subordinate lines cannot always be approximated by CRD, especially when the polarization state of the line radiation is taken into account. Here we investigate the PRD effects in subordinate lines including scattering polarization. The line formation is described by a polarized non-LTE line transfer equation based on a two-level atom model. We use the recently derived subordinate line redistribution matrix. We devise polarized approximate lambda iteration methods to solve the concerned transfer problem. The linear polarization profiles of subordinate lines formed in non-magnetic (Rayleigh) scattering atmospheres are discussed. We consider one-dimensional isothermal planar model atmospheres. We show that in the polarized line transfer calculations of subordinate lines, PRD plays as important of a role as it does in the case of resonance lines. We also study the effect of collisions on linear polarization profiles of subordinate lines.

  16. Wind speed measurements of Doppler-shifted absorption lines using two-beam interferometry.

    PubMed

    Pierce, Robert M; Roark, Shane E

    2012-04-20

    Wind speed can be measured remotely, with varying degrees of success, using interferometry of Doppler-shifted optical spectra. Under favorable conditions, active systems using laser pulse backscatter are capable of high resolution; passive systems, which measure Doppler shifts of atmospheric emission lines in the mesosphere, have also been shown. Two-beam interferometry of Doppler-shifted absorption lines has not been previously investigated; we describe such an effort here. Even in a well-defined environment, measuring absorption line Doppler shifts requires overcoming several technical hurdles in order to obtain sensitivity to wind speeds on the order of 10 m/s. These hurdles include precise knowledge of the shape of the absorption line, tight, stable filtering, and understanding precisely how an interferometer phase should respond to a change in the absorption profile. We discuss the instrument design, a Michelson interferometer and Fabry-Perot filter, and include an analysis of how to choose the optimal optical path difference of the two beams for a given spectrum and filter. We discuss two beam interferometric measurements of emission line and absorption line Doppler shifts, and include an illustration of the effects of filtering on LIDAR Doppler interferometry. Finally, we discuss the construction and implementation of a Michelson interferometer used to measure Doppler shifts of oxygen absorption lines and present results obtained with 5 m/s wind speed measurement precision. Although the theoretical shot noise limited Doppler wind speed measurement of the system described can be less than 1 m/s, the instrument's resolution limit is dominated by residual filter instability. Application of absorption line interferometry to determine atmospheric wind speeds remains problematic.

  17. Design method for a laser line beam shaper of a general 1D angular power distribution

    NASA Astrophysics Data System (ADS)

    Oved, E.; Oved, A.

    2016-05-01

    Laser line is a beam of laser, spanned in one direction using a beam shaper to form a fan of light. This illumination tool is important in laser aided machine vision, 3D scanners, and remote sensing. For some applications the laser line should have a specific angular power distribution. If the distribution is nonsymmetrical, the beam shaper is required to be nonsymmetrical freeform, and its design process using optical design software is time consuming due to the long optimization process which usually converges to some local minimum. In this paper we introduce a new design method of a single element refractive beam shaper of any predefined general 1D angular power distribution. The method makes use of a notion of "prism space", a geometrical representation of all double refraction prisms, and any 1D beam shaper can be described by a continuous curve in this space. It is shown that infinitely many different designs are possible for any given power distribution, and it is explained how an optimal design is selected among them, based on criteria such as high transmission, low surface slopes, robustness to manufacturing errors etc. The method is non-parametric and hence does not require initial guess of a functional form, and the resultant optical surfaces are described by a sequence of points, rather than by an analytic function.

  18. X-ray beam transfer between hollow fibers for long-distance transport

    SciTech Connect

    Tanaka, Yoshihito Matsushita, Ryuki; Shiraishi, Ryutaro; Hasegawa, Takayuki; Ishikawa, Kiyoshi; Sawada, Kei; Kohmura, Yoshiki; Takahashi, Isao

    2016-07-27

    Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined the connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.

  19. Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System

    SciTech Connect

    White, Glen R.; Molloy, S.; Woodley, M.; /SLAC

    2008-07-25

    Using a new extraction line currently under construction, the ATF2 experiment plans to test the novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. With a 1.3 GeV design beam of 30nm normalized vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical spot-size at the IP waist of 37nm. We discuss our planned strategy for tuning the ATF2 beam to meet the primary goal. Simulation studies have been performed to asses the effectiveness of the strategy, including 'static' (installation) errors and dynamical effects (ground-motion, mechanical vibration, ring extraction jitter etc.). We have simulated all steps in the tuning procedure, from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within {approx}10% of the design optics value in at least 75% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks.

  20. Design and thermodynamic performance analysis of multichannel cryogenic transfer line for XFEL AMTF

    NASA Astrophysics Data System (ADS)

    Duda, P.; Chorowski, M.; Polinski, J.

    2017-02-01

    The XATL1 cryogenic transfer line for XFEL/AMTF is dedicated for transferring cryogenic cooling power from helium refrigerators to a cryogenic test facility by means of the continuous flows of cold helium in supercritical and gaseous state. The external envelope of the transfer line contains 4 cold process lines and a common radiation shield, as well as the system of supports and thermal contraction compensators. The XATL1 was designed and manufactured within the Polish in-kind contribution to the XFEL project. The line has been under operation since year 2012. The paper presents a design, including supporting and thermal compensation systems, of the XATL1 line. The line performance analysis based on the Second Law of Thermodynamics has been done, and the output has been compared with the design assumptions.

  1. Performance of the double multilayer monochromator on the NSLS wiggler beam line X25

    SciTech Connect

    Berman, Lonny E.; Yin Zhijian; Dierker, Steven B.; Dufresne, Eric; Mochrie, Simon G. J.; Tsui, Ophelia K. C.; Burley, Stephen K.; Shu Fong; Xie Xiaoling; Capel, Malcolm S.; Sweet, Robert M.

    1997-07-01

    A tunable, double multilayer x-ray monochromator has recently been implemented on the National Synchrotron Light Source (NSLS) X25 wiggler beam line. It is based on a parallel pair of tungsten-boron-carbide multilayer films grown on silicon substrates and purchased from Osmic, Inc. of Troy, Michigan, USA. It acts as an optional alternative to the conventional double silicon crystal monochromator, and uses the same alignment mechanism. Two other NSLS beam lines also have had this kind of monochromator installed recently, following the lead of the NSLS X20C IBM/MIT beam line which has used a double multilayer monochromator for several years. Owing to the 100 times broader bandwidth of a multilayer x-ray monochromator, compared with a silicon monochromator, the multilayer monochromator has the obvious advantage of delivering 100 times the flux of a silicon monochromator, and thereby makes more efficient use of the continuous synchrotron radiation spectrum, yet preserves the narrow collimation of the incident synchrotron beam. In particular, multilayer x-ray bandwidths, on the order of 1%, are well-matched to x-ray undulator linewidths. Performance results for the X25 multilayer monochromator are presented, comparing it with the silicon monochromator. Of note is its short- and long-term performance as an x-ray monochromator delivering the brightness of the wiggler source in the presence of the high-power white beam. Detailed measurements of its spatial beam profile and wavelength dispersion have been made, and it is shown how its resolution could be improved when desired. Finally, its peculiar, anisotropic resolution function in reciprocal space, and its bearing upon x-ray crystallography and scattering experiments, will be discussed, and highlighted by the results of a protein crystallography experiment.

  2. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  3. Atom Interferometry with up to 24-Photon-Momentum-Transfer Beam Splitters

    SciTech Connect

    Mueller, Holger; Chiow, Sheng-wey; Long, Quan; Herrmann, Sven; Chu, Steven

    2008-05-09

    We present up to 24-photon Bragg diffraction as a beam splitter in light-pulse atom interferometers to achieve the largest splitting in momentum space so far. Relative to the 2-photon processes used in the most sensitive present interferometers, these large momentum transfer beam splitters increase the phase shift 12-fold for Mach-Zehnder (MZ) and 144-fold for Ramsey-Borde (RB) geometries. We achieve a high visibility of the interference fringes (up to 52% for MZ or 36% for RB) and long pulse separation times that are possible only in atomic fountain setups. As the atom's internal state is not changed, important systematic effects can cancel.

  4. Radiative Transfer Effects in He I Emission Lines

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.; Skillman, Evan D.; Smits, Derck P.

    2002-04-01

    We consider the effect of optical depth of the 23S level on the nebular recombination spectrum of He I for a spherically symmetric nebula with no systematic velocity gradients. These calculations, using many improvements in atomic data, can be used in place of the earlier calculations of Robbins. We give representative Case B line fluxes for UV, optical, and IR emission lines over a range of physical conditions: T=5000-20,000 K, ne=1-108 cm-3, and τ3889=0-100. A FORTRAN program for calculating emissivities for all lines arising from quantum levels with n<=10 is also available from the authors. We present a special set of fitting formulae for the physical conditions relevant to low-metallicity extragalactic H II regions: T=12,000-20,000 K, ne=1-300 cm-3, and τ3889<2.0). For this range of physical conditions, the Case B line fluxes of the bright optical lines 4471 Å, 5876 Å, and 6678 Å, are changed less than 1%, in agreement with previous studies. However, the 7065 Å corrections are much smaller than those calculated by Izotov & Thuan based on the earlier calculations by Robbins. This means that the 7065 Å line is a better density diagnostic than previously thought. Two corrections to the fitting functions calculated in our previous work are also given.

  5. SIMULATION OF NEUTRON BACKGROUNDS FROM THE ILC EXTRACTION LINE BEAM DUMP

    SciTech Connect

    Darbha, S; Keller, L.; Maruyama, T.

    2008-01-01

    The operation of the International Linear Collider (ILC) as a precision measurement machine is dependent upon the quality of the charge-coupled device (CCD) silicon vertex detector. An integrated fl ux of 1010 neutrons/cm2 incident upon the vertex detector will degrade its performance by causing displacement damage in the silicon. One source of the neutron background arises from the dumping of the spent electron and positron beams into the extraction line beam dumps. The Monte Carlo program FLUKA was used to simulate the collision of the electron beam with the dump and to determine the resulting neutron fl ux at the interaction point (IP). A collimator and tunnel were added and their effect on the fl ux was analyzed. A neutron source was then generated and directed along the extraction line towards a model of the vertex detector to determine the neutron fl ux in its silicon layers. Models of the beampipe and BeamCal, a silicon-tungsten electromagnetic calorimeter in the very forward region of the detector, were placed in the extraction line and their effects on scattering were studied. The IP fl uence was determined to be 3.7x1010 +/- 2.3x1010 neutrons/cm2/year when the tunnel and collimator were in place, with no appreciable increase in statistics when the tunnel was removed. The BeamCal was discovered to act as a collimator by signifi cantly impeding the fl ow of neutrons towards the detector. The majority of damage done to the fi rst layer of the detector was found to come from neutrons with a direct line of sight from the fi rst extraction line quadrupole QDEX1, with only a small fraction scattering off of the beampipe and into the detector. The 1 MeV equivalent neutron fl uence was determined to be 9.3x108 neutrons/cm2/year from the electron beam alone. The two beams collectively contribute double to this fl uence, which is 19% of the threshold value in one year. Future work will improve the detector model and other sources of neutron backgrounds will be

  6. Beam Transport of 4 GeV Protons from AGS to the Proton Interrogation Target of the Neutrino Line (Z_line) and Effect of the Air on the Transported Beam

    SciTech Connect

    Tsoupas,N.; Ahrens, L.; Pile, P.; Thieberger, P.; Murray, M.M.

    2008-10-01

    As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along the drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.

  7. Generation of electron vortex beams using line charges via the electrostatic Aharonov-Bohm effect.

    PubMed

    Pozzi, Giulio; Lu, Peng-Han; Tavabi, Amir H; Duchamp, Martial; Dunin-Borkowski, Rafal E

    2017-10-01

    It has recently been shown that an electron vortex beam can be generated by the magnetic field surrounding the tip of a dipole-like magnet. This approach can be described using the magnetic Aharonov-Bohm effect and is associated with the fact that the end of a long magnetic rod can be treated approximately as a magnetic monopole. However, it is difficult to vary the magnetisation of the rod in such a setup and the electron beam vorticity is fixed for a given tip shape. Here, we show how a similar behaviour, which has the advantage of easy tuneability, can be achieved by making use of the electrostatic Aharonov-Bohm effect associated with an electrostatic dipole line. We highlight the analogies between the magnetic and electrostatic cases and use simulations of in-focus, Fresnel and Fraunhofer images to show that a device based on two parallel, oppositely charged lines that each have a constant charge density can be used to generate a tuneable electron vortex beam. We assess the effect of using a dipole line that has a finite length and show that if the charge densities on the two lines are different then an additional biprism-like effect is superimposed on the electron-optical phase. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Laser-line scanning speckle reduction based on a one-dimensional beam homogenizer

    NASA Astrophysics Data System (ADS)

    Nelsen, B.; Jacobs, P.; Hartmann, P.

    2017-06-01

    Laser-line scanners have become ubiquitous in many forms of automation and measurement systems. Despite this fact, these systems are still susceptible to speckle or interference on rough scattering surfaces. Many scanning systems must be calibrated to the material being analyzed to obtain their full potential. In general, post-processing algorithms are used in most modern line-scanning devices in order to smooth out speckle and enhance the resolution through sub-pixel interpolation. However, these post-processing techniques come at a cost of increased CPU time and a subsequent decrease in bandwidth and resolution. in this paper, a low-cost, high-resolution solution to generating speckle-free sharply focused laser lines is presented. The key to this technique relies on only removing the spatial coherence in one dimension using a 1-D cylindrical lens array as a beam homogenizer. This beam homogenizer is then wrapped around and rotated about a central axis in order to remove the temporal component on the laser's coherence. Since the plane-wave-like behavior is maintained along one dimension, this beam can still be sharply focused to a line. however, the spatial coherence and temporal coherence are reduced to the point that speckle is minimally visible.

  9. Automated defect cross-sectioning with an in-line DualBeam

    NASA Astrophysics Data System (ADS)

    Blanc-Coquand, Stephanie; Hinschberger, Benoit; Rouchouze, Eric; Sicurani, Emmanuel; Castagna, Marc; Weschler, Matthew; Dworkin, Larry; Renard, Didier; Panyasak, Atsavinn

    2004-05-01

    Shrinking design rules and the introduction of new materials and processes in the formation of Cu interconnects in damascene modules have given rise to new and previously unknown killer defect mechanisms. These failure mechanisms are very challenging to detect, identify, and eliminate. The ability to characterize buried defects, such as defective vias, previous layer defects, or integration issues detected by optical defect inspection tools as well as electron-beam inspection tools has become mandatory. Out of the several cross-section tools available to the lab, the one that best addresses the in-line applications requirements is known as the DualBeam (FIB/SEM). The ion beam allows cross-sectioning while a coincident electron beam allows for high resolution imaging of the cross-section. Using the FEI Defect Analyzer 300 DualBeam system, this process has been automated for in-line usage. Defects can be navigated to using defect files generated by the inspection tools. The wafer production line is now enabled to easily mill cross sections in-line and determine root causes, something that is often not possible from top down information alone. For volume in-line use on defects, additional requirements must also be met: compatibility with clean room environment, navigation on full wafers to relocate the defects detected by the inspection tools, throughput, ease of use, low impact on wafers so that they can be returned to the line. All of this must allow the gathering of data at numerous cross-sections on buried defects in order to perform the same type of Pareto analysis as is traditionally done after defect review of top-down visible defects. Example use cases will be presented to demonstrate how this methodology is being developed in a manufacturing environment to help understand previously unexplained yield losses and to deliver results with a rapid response time. Applications on defects detected with electron beam inspection in copper or tungsten interconnects

  10. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Usero, Antonio; Schruba, Andreas; Bigiel, Frank; Kruijssen, J. M. Diederik; Kepley, Amanda; Blanc, Guillermo A.; Bolatto, Alberto D.; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jiménez-Donaire, Maria J.; Rosolowsky, Erik; Schinnerer, Eva

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz & Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  11. Diagnosing Cross-Beam Energy Transfer Using Beamlets of Unabsorbed Light from Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Edgell, D. H.; Follett, R. K.; Goncharov, V. N.; Igumenshchev, I. V.; Katz, J.; Myatt, J. F.; Seka, W.; Froula, D. H.

    2015-11-01

    A new diagnostic is now being fielded to record the unabsorbed laser light from implosions on OMEGA. Unabsorbed light from each OMEGA beam is imaged as a distinct ``spot'' in time-integrated images. Each spot is, in essence, the end point of a beamlet of light that originates from a specific region of a beam profile and follows a path determined by refraction. The intensity of light in the beamlet varies along that path because of absorption and cross-beam energy transfer (CBET) with other beamlets. This diagnostic allows for the detailed investigation of the effects of CBET on specific locations of the beam profile. A pinhole can be used to isolate specific spots, allowing the time-resolved spectrum of the beamlet to be measured. A fully 3-D CBET hydrodynamics code postprocessor is used to model the intensity and wavelength of each beamlet as it traverses the coronal plasma to the diagnostic. The model predicts that if a single beam in a symmetric implosion is turned off, the recorded intensity of nearby spots will decrease by ~ 15% as a result of loss of CBET from the dropped beam. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Bottoni, S.; Leoni, S.; Fornal, B.; Raabe, R.; Rusek, K.; Benzoni, G.; Bracco, A.; Crespi, F. C. L.; Morales, A. I.; Bednarczyk, P.; Cieplicka-Oryńczak, N.; Królas, W.; Maj, A.; Szpak, B.; Callens, M.; Bouma, J.; Elseviers, J.; De Witte, H.; Flavigny, F.; Orlandi, R.; Reiter, P.; Seidlitz, M.; Warr, N.; Siebeck, B.; Hellgartner, S.; Mücher, D.; Pakarinen, J.; Vermeulen, M.; Bauer, C.; Georgiev, G.; Janssens, R. V. F.; Balabanski, D.; Sferrazza, M.; Kowalska, M.; Rapisarda, E.; Voulot, D.; Lozano Benito, M.; Wenander, F.

    2015-08-01

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li(98Rb,α xn ) and 7Li(98Rb,t xn ) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.

  13. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    DOE PAGES

    Bottoni, S.; Leoni, S.; Fornal, B.; ...

    2015-08-27

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li(98Rb,αxn) and 7Li(98Rb,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be describedmore » well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.« less

  14. Digitral Down Conversion Technology for Tevatron Beam Line Tuner at FNAL

    SciTech Connect

    Schappert, W.; Lorman, E.; Scarpine, V.; Ross, M.C.; Sebek, J.; Straumann, T.; /Fermilab /SLAC

    2008-03-17

    Fermilab is presently in Run II collider operations and is developing instrumentation to improve luminosity. Improving the orbit matching between accelerator components using a Beam Line Tuner (BLT) can improve the luminosity. Digital Down Conversion (DDC) has been proposed as a method for making more accurate beam position measurements. Fermilab has implemented a BLT system using a DDC technique to measure orbit oscillations during injections from the Main Injector to the Tevatron. The output of a fast ADC is downconverted and filtered in software. The system measures the x and y positions, the intensity, and the time of arrival for each proton or antiproton bunch, on a turn-by-turn basis, during the first 1024 turns immediately following injection. We present results showing position, intensity, and time of arrival for both injected and coasting beam. Initial results indicate a position resolution of {approx}20 to 40 microns and a phase resolution of {approx}25 ps.

  15. Optical Design of High-Performance Beam Lines for X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Toyota, Eijiro

    1999-06-01

    In this paper is presented an optical design of high-performance beam lines for synchrotron-radiation-based X-ray lithography. The optical system is composed of a single toroidal scanning mirror and a movable beryllium window whose motions are synchronized. The use of a toroidal scanning mirror is thought to cause excessive deformation of beam shape during scanning and to suppress the light-condensing capacity. This problem has been solved by placing the rotating center of the mirror near the light source point. Thus, intense illumination power can be obtained. A beam reflected by the toroidal mirror forms an arc-shaped section, which causes nonuniformity in the exposure intensity. A beryllium window foil with a specific curvature can compensate the nonuniformity. A series of analytical studies and computer simulations have proven the performance of the optical design.

  16. A new medium energy beam transport line for the proton injector of AGS-RHIC

    SciTech Connect

    Okamura, M.; Briscoe, B.; Fite, J.; LoDestro, V.; Raparia, D.; Ritter, J.; Hayashizaki, N.

    2010-09-12

    In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupole magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.

  17. Confocal line scanning of a Bessel beam for fast 3D imaging.

    PubMed

    Zhang, P; Phipps, M E; Goodwin, P M; Werner, J H

    2014-06-15

    We have developed a light-sheet illumination microscope that can perform fast 3D imaging of transparent biological samples with inexpensive visible lasers and a single galvo mirror (GM). The light-sheet is created by raster scanning a Bessel beam with a GM, with this same GM also being used to rescan the fluorescence across a chip of a camera to construct an image in real time. A slit is used to reject out-of-focus fluorescence such that the image formed in real time has minimal contribution from the sidelobes of the Bessel beam. Compared with two-photon Bessel beam excitation or other confocal line-scanning approaches, our method is of lower cost, is simpler, and does not require calibration and synchronization of multiple GMs. We demonstrated the optical sectioning and out-of-focus background rejection capabilities of this microscope by imaging fluorescently labeled actin filaments in fixed 3T3 cells.

  18. Temporal evolution of the chemical structure during the pattern transfer by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Ha, N.-B.; Jeong, S.; Yu, S.; Ihm, H.-I.; Kim, J.-S.

    2015-01-01

    Ru films patterned by ion-beam sputtering (IBS) serve as sacrificial masks for the transfer of the patterns to Si(1 0 0) and metallic glass substrates by continued IBS. Under the same sputter condition, however, both bare substrates remain featureless. Chemical analyses of the individual nano structures simultaneously with the investigation of their morphological evolution reveal that the pattern transfer, despite its apparent success, suffers from premature degradation before the mask is fully removed by IBS. Moreover, the residue of the mask or Ru atoms stubbornly remains near the surface, resulting in unintended doping or alloying of both patterned substrates.

  19. Transferring Gus gene into intact rice cells by low energy ion beam

    NASA Astrophysics Data System (ADS)

    Zengliang, Yu; Jianbo, Yang; Yuejin, Wu; Beijiu, Cheng; Jianjun, He; Yuping, Huo

    1993-06-01

    A new technique of transferring genes by low energy ion beam has been reported in this paper. The Gus and CAT (chloramphenicol acetyltransferase) genes, as "foreign" genetic materials, were introduced into the suspension cells and ripe embryos or rice by implantation of 20-30 keV Ar + at doses ranging from 1 × 10 15 to 4 × 10 15 ions/cm 2. The activities of CAT and Gus were detected in the cells and embryos after several weeks. The results indicate that the transfer was a success.

  20. The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance

    NASA Astrophysics Data System (ADS)

    Weiß, C.; Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O.; Barros, S.; Bergström, I.; Berthoumieux, E.; Calviani, M.; Guerrero, C.; Sabaté-Gilarte, M.; Tsinganis, A.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Bécares, V.; Beinrucker, C.; Belloni, F.; Bečvář, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Cano-Ott, D.; Cerutti, F.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Dressler, R.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R.; Furman, V.; Ganesan, S.; Gheorghe, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; López, D.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Matteucci, F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Palomo Pinto, R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rubbia, C.; Ryan, J.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, G.; Stamatopoulos, A.; Steinegger, P.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wright, T.; Žugec, P.

    2015-11-01

    At the neutron time-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  1. Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA

    SciTech Connect

    Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.; Betti, R.; Goncharov, V. N.; Huang, H.; Hu, S. X.; Hill, E.; Kelly, J. H.; Meyerhofer, D. D.; Shvydky, A.; Zuegel, J. D.

    2013-08-15

    Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by ∼35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5× increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-drive–ignition implosions by increasing the ablation pressure (1.6×), which will allow for more stable implosions at ignition-relevant velocities.

  2. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  3. The HEB at flat top: Arranging for the HEB to collider beam transfer

    SciTech Connect

    Larson, D.J.

    1994-03-01

    The flat top for the High Energy Booster (HEB) is planned to last for only 6.5 seconds, yet during this time the beam must be made to: (1) have the correct central momentum; (2) have the correct bunch-to-bunch spacing; (3) have the correct central phase; and (4) have the correct momentum spread and longitudinal length. All of these attributes must match what the Collider expects or unwanted emittance growth will occur. This paper outlines the techniques necessary to achieve a proper HEB-to-Collider beam transfer within the 6.5 s time constraint. A novel means for cogging is proposed and evaluated. The hardware necessary to implement the beam manipulation and to achieve the four goals is specified, and tolerances on the hardware are evaluated.

  4. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    NASA Astrophysics Data System (ADS)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  5. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    NASA Astrophysics Data System (ADS)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  6. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  7. XAFS beam lines at Aichi Synchrotron Radiation Center dedicated to industrial use

    NASA Astrophysics Data System (ADS)

    Takeda, Yoshikazu

    2016-05-01

    Aichi Synchrotron Radiation Center was designed for industrial use following five years of discussion among academia, industry and local government in the Aichi area. Among the six beam lines constructed, those that facilitated X-ray absorption fine structure (XAFS) analysis were given first priority. In addition to the hardware, attention was given to the development of operating procedures that were quick and user-friendly. The facility entered public service in March 2013. In the year 2013, 55% of the experiments involved XAFS analysis (hard X-ray, soft X-ray and vacuum ultraviolet regions) and in 2014 it was 57%. The range of research fields is very broad, emphasizing the importance of the XAFS beam lines.

  8. Automated Sample Exchange Robots for the Structural Biology Beam Lines at the Photon Factory

    SciTech Connect

    Hiraki, Masahiko; Watanabe, Shokei; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Gaponov, Yurii; Wakatsuki, Soichi

    2007-01-19

    We are now developing automated sample exchange robots for high-throughput protein crystallographic experiments for onsite use at synchrotron beam lines. It is part of the fully automated robotics systems being developed at the Photon Factory, for the purposes of protein crystallization, monitoring crystal growth, harvesting and freezing crystals, mounting the crystals inside a hutch and for data collection. We have already installed the sample exchange robots based on the SSRL automated mounting system at our insertion device beam lines BL-5A and AR-NW12A at the Photon Factory. In order to reduce the time required for sample exchange further, a prototype of a double-tonged system was developed. As a result of preliminary experiments with double-tonged robots, the sample exchange time was successfully reduced from 70 seconds to 10 seconds with the exception of the time required for pre-cooling and warming up the tongs.

  9. Applications to cultural heritage diagnostics at the new nuclear microprobe beam line at CEDAD

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.; Demortier, G.; Maruccio, L.; D'Elia, M.

    2009-06-01

    A nuclear microprobe beam line has been installed at CEDAD (Centre for Dating and Diagnostics), University of Salento, Lecce, Italy. The beam line is connected to the -30° port of the high energy switching magnet of a 3 MV HVEE 4130HC Tandetron accelerator. It is based on an Oxford Microbeam magnetic quadrupole triplet and its general features are presented. The results of functional tests are presented showing how a lateral spatial resolution as low as ˜2 μm has been achieved in vacuum by analysing standard reference material. The results obtained in the analysis of ancient radiocarbon dated biological tissues are presented for the identification and distribution of toxic elements such as Pb.

  10. The Advanced Light Source U8 beam line, 20--300 eV

    SciTech Connect

    Heimann, P.; Warwick, T.; Howells, M.; McKinney, W.; Digennaro, D.; Gee, B.; Yee, D.; Kincaid, B.

    1991-10-01

    The U8 is a beam line under construction at the Advanced Light Source (ALS). The beam line will be described along with calculations of its performance and its current status. An 8 cm period undulator is followed by two spherical collecting mirrors, an entrance slit, spherical gratings having a 15{degree} deviation angle, a moveable exit slit, and refocusing and branching mirrors. Internal water cooling is provided to the metal M1 and M2 mirrors as well as to the gratings. Calculations have been made of both the flux output and the resolution over its photon energy range of 20--300 eV. The design goal was to achieve high intensity, 10{sup 12} photons/sec, at a high resolving power of 10,000. The U8 Participating Research Team (PRT) is planning experiments involving the photoelectron spectroscopy of gaseous atoms and molecules, the spectroscopy of ions and actinide spectroscopy.

  11. The Beam Line X NdFe-steel hybrid wiggler for SSRL

    SciTech Connect

    Hoyer, E.; Halbach, K.; Humphries, D.; Marks, S.; Plate, D.; Shuman, D.; Karpenko, V.P.; Kulkarni, S.; Tirsell, K.G.

    1987-03-10

    A wiggler magnet with 15 periods, each 12.85 cm long, which achieves 1.40 T at a 2.1 cm gap (2.26T at 0.8 cm) has been designed and is now in fabrication at LBL. This wiggler will be the radiation source of the high intensity synchrotron radiation beam line for the Beam Line X PRT facility at SSRL. The magnet utilizes Neodymium-Iron (NdFe) material and Vanadium Permendur (steel) in the hybrid configuration to achieve simultaneously a high magnetic field and short period. Magnetic field adjustment is with a driven chain and ball screw drive system. The magnetic structure is external to an s.s. vacuum chamber which has thin walls, 0.76 mm thickness, at each pole tip for higher field operation. Magnetic design, construction details and magnetic measurements are presented.

  12. Transfer reactions using a low-energy {sup 11}Be beam

    SciTech Connect

    Johansen, Jacob

    2011-10-28

    A series of experiments have been performed to investigate neutron rich beryllium isotopes. Scattering as well as one neutron transfer reactions have been studied using a {sup 11}Be beam on deuteron targets. Bound states of {sup 10,11,12}Be have been studied and reaction cross sections have been calculated. The elastic scattering cross section has shown remarkable structure due to the halo structure of {sup 11}Be.

  13. Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372

  14. The Application of the Principal Curve Analysis Technique to Smooth Beam Lines

    SciTech Connect

    Friedsam, H.; Oren, W.; /SLAC

    2005-08-12

    The smoothness of a beam line refers to the quality of the relative positioning of a number of adjacent beam guiding components. The fact that smoothness is of highest priority when positioning magnets can be seen in the local tolerances imposed by the beam optics. In the past, smoothing has been done by separating horizontal and vertical misalignments and then applying some sort of analytical or manual ''feathering'' technique. The Stanford Linear Collider (SLC) did not easily lend itself to this sort of smoothing because of the highly coupled nature of its pitched and rolled beam line. This paper will discuss an attempt to develop a repeatable method which is independent of the inconsistencies of human judgment and can simultaneously smooth in two or more dimensions. Four major goals were defined for the smoothing algorithm used on the SLC alignment. The first, was to simultaneously model errors for both horizontal and vertical directions. Secondly, a smooth curve whose shape was suggested by the data and not by a predetermined model was implied by the fact that unknown systematic errors were being eliminated. Thirdly, this curve must be a reproducibly fit, independent of the inconsistent nature of human judgment. Fourth, the result of the procedure was to minimize the number and size of magnet movements to reach the final alignment criteria.

  15. Effects of Cross-Beam Transfer on the Competition between Stimulated Brillouin and Raman Scatter

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Moody, J.; Michel, P.; Town, R.; Thomas, C.; Divol, L.; Callahan, D.; Meezan, N.; Glenzer, S.; Williams, E.; Strozzi, D.; Kline, J.

    2011-10-01

    Stimulated Brillouin backcatter (SBS) measurements in NIF hohlraum targets are shown to scale with the calculated SBS gain with a threshold for significant SBS from the 30° beam for a gain of about 20 or a laser intensity of 6-7 x1014 W/cm2 for the simulated plasma conditions. This SBS gain threshold is consistent with previous measurements of SBS from laser beams that had polarization smoothing and SSD. The SBS measurements are interpreted as scatter from the slow ion-acoustic mode in the CH-capsule-ablator plasma. Previous experiments with similar laser intensity and plasma parameters but lower ion temperature generated SBS from the fast ion-acoustic mode. (Froula PRL 101, 115002 (2008), Neumayer PRL 100 105001 (2008)). We will review and interpret the dependence of SBS on gas-fill density, air condensation on the laser entrance hole, peak laser power, and cross-beam power transfer. This last process (Michel, PRL 102, 025004 (2009)) causes the power at focus to have large scale nonuniformity that favors stimulated Raman scatter over SBS. F3D simulations will be presented with models of cross beam power transfer that affect the relative amounts of SRS and SBS.

  16. Use of object-oriented techniques in a beam-line control system

    SciTech Connect

    Myers, D.R.; Rueden, W. von; Butler, H.; Yang, J.

    1994-12-31

    The authors describe the use of object-oriented programming in the control and data-acquisition system for the upgraded CERN neutrino beam-line. C++ in conjunction with Posix threads running under Lynx-OS have been used in several front-end PCs. These communicate using Remote Procedure Calls over ethernet with a workstation running the commercial supervisory package, FactoryLink.

  17. Ambient beam motion and its excitation by ghost lines in the Tevatron

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2011-03-01

    Transverse betatron motion of the Tevatron proton beam is measured and analyzed. It is shown that the motion is coherent and excited by external sources of unknown origins. Observations of the time-varying 'ghost lines' in the betatron spectrum are reported. The direct measurement of the rms betatron oscillations amplitude estimates it at about 110 nm at {beta}{sub y} {approx} 900 m. Correspondingly, at the amplitudes at the average beta function location with {beta}{sub y} {approx} 50 m is about 25 nm. Given that such direct measurements with clearly observable betatron peak were not repeatedly reproducible, one can conclude that well know 'ghost lines' are the reason for that - as they are come and go without any obvious regularity. Our analysis of these 'ghost lines' shows that (a) besides slow motion across frequencies, they also exhibit oscillatory movements with period varying from 15-20 min to few hours; (b) for the stores analysed, the lines add about factor of 2 to average - over colliding store duration - Schottky power in the betatron bands. The latter allows to estimate that they contribute about half to the previously determined the rms normalized emittance growth rate of some 0.06 {pi} mm mrad/hr. The Tevatron 'ghost lines' look very similar to infamous 'humps' recently observed in the LHC. Those 'humps' are unwanted oscillations seen repeatedly in the LHC beams (mostly in the vertical plane) and also believed to be caused by external excitations.

  18. Continuous Beam Steering Through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas.

    PubMed

    Tang, Xiao-Lan; Zhang, Qingfeng; Hu, Sanming; Zhuang, Yaqiang; Kandwal, Abhishek; Zhang, Ge; Chen, Yifan

    2017-09-15

    Goubau line is a single-conductor transmission line, featuring easy integration and low-loss transmission properties. Here, we propose a periodic leaky-wave antenna (LWA) based on planar Goubau transmission line on a thin dielectric substrate. The leaky-wave radiations are generated by introducing periodic modulations along the Goubau line. In this way, the surface wave, which is slow-wave mode supported by the Goubau line, achieves an additional momentum and hence enters the fast-wave region for radiations. By employing the periodic modulations, the proposed Goubau line LWAs are able to continuously steer the main beam from backward to forward within the operational frequency range. However, the LWAs usually suffer from a low radiation efficiency at the broadside direction. To overcome this drawback, we explore both transversally and longitudinally asymmetrical modulations to the Goubau line. Theoretical analysis, numerical simulations and experimental results are given in comparison with the symmetrical LWAs. It is demonstrated that the asymmetrical modulations significantly improve the radiation efficiency of LWAs at the broadside. Furthermore, the measurement results agree well with the numerical ones, which experimentally validates the proposed LWA structures. These novel Goubau line LWAs, experimentally demonstrated and validated at microwave frequencies, show also great potential for millimeter-wave and terahertz systems.

  19. Improved design of proton source and low energy beam transport line for European Spallation Source

    NASA Astrophysics Data System (ADS)

    Neri, L.; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.; Ciavola, G.

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  20. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect

    Neri, L. Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  1. Improved design of proton source and low energy beam transport line for European Spallation Source.

    PubMed

    Neri, L; Celona, L; Gammino, S; Mascali, D; Castro, G; Torrisi, G; Cheymol, B; Ponton, A; Galatà, A; Patti, G; Gozzo, A; Lega, L; Ciavola, G

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  2. Design of x-ray diagnostic beam line for a synchrotron radiation source and measurement results

    NASA Astrophysics Data System (ADS)

    Garg, Akash Deep; Karnewar, A. K.; Ojha, A.; Shrivastava, B. B.; Holikatti, A. C.; Puntambekar, T. A.; Navathe, C. P.

    2014-08-01

    Indus-2 is a 2.5 GeV synchrotron radiation source (SRS) operational at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We have designed, developed and commissioned x-ray diagnostic beam line (X-DBL) at the Indus-2. It is based on pinhole array imaging (8-18 keV). We have derived new equations for online measurements of source position and emission angle with pinhole array optics. Measured values are compared with the measurements at an independent x-ray beam position monitor (staggered pair blade monitor) installed in the X-DBL. The measured values are close to the theoretical expected values within ±12 μm (or ±1.5 μrad) for sufficiently wide range of the beam movements. So, beside the beam size and the beam emittance, online information for the vertical position and angle is also used in the orbit steering. In this paper, the various design considerations of the X-DBL and online measurement results are presented.

  3. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    SciTech Connect

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin; Werner, James H.

    2016-10-25

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as many photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.

  4. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE PAGES

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin; ...

    2016-10-25

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  5. Light-sheet microscopy by confocal line scanning of dual-Bessel beams.

    PubMed

    Zhang, Pengfei; Phipps, Mary E; Goodwin, Peter M; Werner, James H

    2016-10-01

    We have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as many photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.

  6. Submicron Co(TaC) line array produced by electron-beam direct writing

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhou, T. J.; Wang, J. P.; Thong, J. T. L.; Yao, X. F.; Chong, T. C.

    2003-05-01

    (Co60C40)97Ta3 and Co60C40 films with thickness 30 nm were prepared by cosputtering Co, Ta, and C onto C-buffered glass substrates. The as-deposited (Co60C40)97Ta3 and Co60C40 films were amorphous and nonferromagnetic. These films became magnetic upon annealing and the magnetic performance of annealed (Co60C40)97Ta3 films are better than that of annealed Co60C40 films at the same annealing condition. Magnetic patterning (line array) of the as-deposited (Co60C40)97Ta3 films was realized by subjecting it to electron-beam radiation using a focused 30 keV beam with a current of 7.1 nA and a dwell time per line of 0.75 s and longer. By increasing the dwell time, the whole region where an electron beam was scanned became magnetic with clear domain structures because of thermally activated diffusion. The required dwell time of magnetically patterning nonmagnetic (Co60C40)97Ta3 thin films (0.75 s) is much shorter than that of Co60C40 films (3.8 s). The magnetic measurements show that the lines [(Co60C40)97Ta3] and dots (Co60C40) are magnetically soft. The present method of magnetically patterning a nonmagnetic film has potential application for nanoscale solid magnetic devices.

  7. 47 CFR 54.902 - Calculation of Interstate Common Line Support for transferred exchanges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Calculation of Interstate Common Line Support for transferred exchanges. 54.902 Section 54.902 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Interstate Common Line Support...

  8. Slope and Line of Best Fit: A Transfer of Knowledge Case Study

    ERIC Educational Resources Information Center

    Nagle, Courtney; Casey, Stephanie; Moore-Russo, Deborah

    2017-01-01

    This paper brings together research on slope from mathematics education and research on line of best fit from statistics education by considering what knowledge of slope students transfer to a novel task involving determining the placement of an informal line of best fit. This study focuses on two students who transitioned from placing inaccurate…

  9. Slope and Line of Best Fit: A Transfer of Knowledge Case Study

    ERIC Educational Resources Information Center

    Nagle, Courtney; Casey, Stephanie; Moore-Russo, Deborah

    2017-01-01

    This paper brings together research on slope from mathematics education and research on line of best fit from statistics education by considering what knowledge of slope students transfer to a novel task involving determining the placement of an informal line of best fit. This study focuses on two students who transitioned from placing inaccurate…

  10. No Vent Tank Fill and Transfer Line Chilldown Analysis by Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2013-01-01

    The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.

  11. Dynamic Response of Acoustic Delay Line for Beam Lines of Synchrotron Radiation Lithography System

    NASA Astrophysics Data System (ADS)

    Toyota, Eijiro

    1998-12-01

    Protecting against the sudden rupture of a beryllium window foilhas been a concern in synchrotron radiation lithography. This paperpresents a design study of a new acoustic delay line (ADL) for beamline protection. The ADL consists of a stationary outer tube and amovable inner tube. Between the outer tube and the inner tube, aseries of partitions consisting of stationary and floating platesfunctions as a buffer against invading gas. The inner tube connectsthe floating plates and the beryllium window and maintains aninternal narrow light path by moving synchronously with the scanningmirror.BLVAC, a computer program, has been developed to assist in the design and to simulate the dynamic response. The calculation results provide us with satisfactory design parameters to ensure that the closing time of the shut-off valve is within 30 milliseconds.

  12. An automated system to mount cryo-cooled protein crystals on a synchrotron beam line, using compact sample cassettes and a small-scale robot

    PubMed Central

    Cohen, Aina E.; Ellis, Paul J.; Miller, Mitchell D.; Deacon, Ashley M.; Phizackerley, R. Paul

    2014-01-01

    An automated system for mounting and dismounting pre-frozen crystals has been implemented at the Stanford Synchrotron Radiation Laboratory (SSRL). It is based on a small industrial robot and compact cylindrical cassettes, each holding up to 96 crystals mounted on Hampton Research sample pins. For easy shipping and storage, the cassette fits inside several popular dry-shippers and long-term storage Dewars. A dispensing Dewar holds up to three cassettes in liquid nitrogen adjacent to the beam line goniometer. The robot uses a permanent magnet tool to extract samples from, and insert samples into a cassette, and a cryo-tong tool to transfer them to and from the beam line goniometer. The system is simple, with few moving parts, reliable in operation and convenient to use. PMID:24899734

  13. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study.

    PubMed

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-07

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ∼50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A (22)Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  14. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    NASA Astrophysics Data System (ADS)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  15. R_transport_matrices of the Fast Extraction Beam (FEB) of the AGS, and Beam Parameters at the Starting point of the AtR Line

    SciTech Connect

    Tsoupas,N.; MacKay, W.W.; Satogata, T.; Glenn, W.; Ahrens, L.; Brown, K.; Gardner, C.; Tanaka, S.

    2008-01-01

    As part of the task to improve and further automate the 'AtR BPM Application' we provide the theoretically calculated R-transport-matrices for the following beam line sections, which are shown schematically in Figure 1: (a) the Fast Extraction Beam section (FEB) of the AGS synchrotron. The FEB section starts at the middle of the GlO-kicker and ends at the middle of the H1 0{_}septum. (b) the Drift Extraction Channel (DEC) section of the AGS synchrotron. The DEC section starts at the middle of the H10{_}septum, continues along the fringe field region of the H11,H12, and H13 AGS main magnets, and ends at the starting point of the AtR line. The knowledge of these R-transport-matrices are needed in order to calculate the beam parameters at the beginning of the AtR line, which in turn, are required to calculate the magnet settings of the U{_}line, that match the U{_}line into the W{_}line. Also by incorporating these R{_}matrices into the model of the AtR line, the G10 kicker and the H10 septum are included in the AtR model therefore one can investigate any 'jitter' of either the GlO{_}kicker or HlO{_}septum by looking at the trajectory of the beam in the AtR line.

  16. Development of an Energy Efficient Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Susta, Joseph T.; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.; Werfel, Frank; Bonnema, Edward C.

    2006-04-01

    In a conventional vacuum-jacketed cryogen transfer line, the major heat transfer is dominated by two modes: i) radiation between the warm outer pipe and the cold inner pipe and ii) thermal conduction through support members and penetrations. Magnetic levitation makes it possible to eliminate the conduction portion by use of non-contact support, consisting of high temperature superconductor (HTS) and permanent magnet (PM). Several transfer line prototypes (including a 6-meter prototype) have been designed and constructed to optimized the levitation and thermal performance. This paper reviews the key design/fabrication issues, such as levitation configuration, levitation force measurement, warm-support design using smart materials, fabrication process, and technical milestones throughout a 3-year period. This novel transfer line offers the potential of significant savings of cryogens and hence reduces the cost of crygon use.

  17. Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.

    PubMed Central

    Riedlinger, J; Grencis, R K; Wakelin, D

    1986-01-01

    T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438

  18. Beam transport radiation shielding for branch lines 2-ID-B and 2-ID-C

    SciTech Connect

    Feng, Y.P.; Lai, B.; McNulty, I.; Dejus, R.J.; Randall, K.J.; Yun, W.

    1995-08-01

    The x-ray radiation shielding requirements beyond the first optics enclosure have been considered for the beam transport of the 2-ID-B and 2-ID-C branch lines of Sector 2 (SRI-CAT) of the APS. The first three optical components (mirrors) of the 2-ID-B branch are contained within the shielded first optics enclosure. Calculations indicate that scattering of the primary synchrotron beam by beamline components outside the enclosure, such as apertures and monochromators, or by gas particles in case of vacuum failure is within safe limits for this branch. A standard 2.5-inch-diameter stainless steel pipe with 1/16-inch-thick walls provides adequate shielding to reduce the radiation dose equivalent rate to human tissue to below the maximum permissible limit of 0.25 mrem/hr. The 2-ID-C branch requires, between the first optics enclosure where only two mirrors are used and the housing for the third mirror, additional lead shielding (0.75 mm) and a minimum approach distance of 2.6 cm. A direct beam stop consisting of at least 4.5 mm of lead is also required immediately downstream of the third mirror for 2-ID-C. Finally, to stop the direct beam from escaping the experimental station, a beam stop consisting of at least 4-mm or 2.5-mm steel is required for the 2-ID-B or 2-ID-C branches, respectively. This final requirement can be met by the vacuum chambers used to house the experiments for both branch lines.

  19. On-line neutron beam monitoring of the Finnish BNCT facility

    NASA Astrophysics Data System (ADS)

    Tanner, Vesa; Auterinen, Iiro; Helin, Jori; Kosunen, Antti; Savolainen, Sauli

    1999-02-01

    A Boron Neutron Capture Therapy (BNCT) facility has been built at the FiR 1 research reactor of VTT Chemical Technology in Espoo, Finland. The facility is currently undergoing dosimetry characterisation and neutron beam operation research for clinical trials. The healthy tissue tolerance study, which was carried out in the new facility during spring 1998, demonstrated the reliability and user-friendliness of the new on-line beam monitoring system designed and constructed for BNCT by VTT Chemical Technology. The epithermal neutron beam is monitored at a bismuth gamma shield after an aluminiumfluoride-aluminium moderator. The detectors are three pulse mode U 235-fission chambers for epithermal neutron fluence rate and one current mode ionisation chamber for gamma dose rate. By using different detector sensitivities the beam intensity can be measured over a wide range of reactor power levels (0.001-250 kW). The detector signals are monitored on-line with a virtual instrumentation (LabView) based PC-program, which records and displays the actual count rates and total counts of the detectors in the beam. Also reactor in-core power instrumentation and control rod positions can be monitored via another LabView application. The main purpose of the monitoring system is to provide a dosimetric link to the dose in a patient during the treatment, as the fission chamber count rates have been calibrated to the induced thermal neutron fluence rate and to the absorbed dose rate at reference conditions in a tissue substitute phantom.

  20. The energy transfer in the TEMP-4M pulsed ion beam accelerator.

    PubMed

    Isakova, Y I; Pushkarev, A I; Khaylov, I P

    2013-07-01

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%-12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%-9% for a planar strip self-magnetic MID, 12%-15% for focusing diode and 20% for a spiral self-magnetic MID.

  1. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  2. Construction and commissioning of direct beam transport line for PF-AR

    NASA Astrophysics Data System (ADS)

    Higashi, Nao; Asaoka, Seiji; Furukawa, Kazuro; Haga, Kaiichi; Harada, Kentaro; Higo, Toshiyasu; Honda, Tohru; Honma, Hiroyuki; Iida, Naoko; Iwase, Hiroshi; Kakihara, Kazuhisa; Kamitani, Takuya; Kikuchi, Mitsuo; Kishimoto, Yuji; Kobayashi, Yukinori; Kodama, Kota; Kudo, Kikuo; Kume, Tatsuya; Mikawa, Katsuhiko; Mimashi, Toshihiro; Miyahara, Fusashi; Miyauchi, Hiroshi; Nagahashi, Shinya; Nakamura, Hajime; Nakamura, Norio; Natsui, Takuya; Nigorikawa, Kazuyuki; Niwa, Yasuhiro; Nogami, Takashi; Obina, Takashi; Ogawa, Yujiro; Ono, Masaaki; Ozaki, Toshiyuki; Sagehashi, Hidenori; Sanami, Toshiya; Sato, Masayuki; Satoh, Masanori; Suwada, Tsuyoshi; Tadano, Mikito; Tahara, Toshihiro; Takai, Ryota; Takaki, Hiroyuki; Takasaki, Seiji; Tanaka, Madoka; Tanimoto, Yasunori; Tawada, Masafumi; Toge, Nobu; Uchiyama, Takashi; Ueda, Akira; Yamada, Yusuke; Yamamoto, Masahiro; Yoshida, Mitsuhiro

    2017-07-01

    PF-AR was constructed as an accumulator ring for TRISTAN, and in the KEKB era it has been revitalized as a 6.5 GeV synchrotron radiation source. The injection energy was 3 GeV and the beam was accelerated to 6.5 GeV prior to the user run. The original beam transport line (BT) from the LINAC to the PF-AR shared its upstream part with the the BT line of KEKB High Energy Ring (HER). The injection-mode change from PF-AR to HER or vice versa needs about 10 minutes for the magnet cycling procedure of the shared part. In SuperKEKB, the upgrade of KEKB, the lifetime of HER is about 10 minutes. The mode-switch operation of the BT is, therefore, not allowed for maintaining the highest luminosity of the SuperKEKB. In order to avoid this problem, a new 6.5 GeV BT line dedicated to PF-AR has been constructed. This also enables the top-up injection for the user run. The commissioning of the new BT line has been completed in this March, and now the first user run has been operated successfully.

  3. Push beam spot-size dependence of atom transfer in a double magneto-optical trap setup.

    PubMed

    Ram, S P; Tiwari, S K; Mishra, S R; Rawat, H S

    2013-07-01

    We have studied the dependence of atom transfer between two magneto-optical traps (MOTs) on the spot-size of a push laser beam in a double magneto-optical trap setup. It was observed that the spot-size of the push beam at vapor-chamber MOT (VC-MOT) affects significantly the transfer of atoms from the VC-MOT to an ultrahigh vacuum MOT (UHV-MOT). The number of atoms accumulated in the UHV-MOT first increases with the push beam spot-size and then decreases with it after attaining a maximum value, for a given power of the push beam. Our results show that the number of atoms accumulated in the UHV-MOT is dependent on the push beam spot-size, push beam power, and capture speed of the UHV-MOT.

  4. In - line determination of heat transfer coefficients in a plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Sotelo, S. Silva; Domínguez, R. J. Romero

    This paper shows an in - line determination of heat transfer coefficients in a plate heat exchanger. Water and aqueous working solution of lithium bromide + ethylene glycol are considered. Heat transfer coefficients are calculated for both fluids. "Type T" thermocouples were used for monitoring the wall temperature in a plate heat exchanger, which is one of the main components in an absorption system. Commercial software Agilent HP Vee Pro 7.5 was used for monitoring the temperatures and for the determination of the heat transfer coefficients. There are not previous works for heat transfer coefficients for the working solution used in this work.

  5. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures.

    PubMed

    Wu, Xiaofei; Geisler, Peter; Krauss, Enno; Kullock, René; Hecht, Bert

    2015-10-21

    The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex situ transfer, a spin-coated poly(methyl methacrylate) film is used to carry the nanostructures so that the bilayer can be etched away after being peeled off. For the in situ transfer, using a micro-manipulator inside the FIB machine, a cut-out piece of silica on which a nanostructure has been fabricated is peeled off from the bulk substrate and thus carries the nanostructure to a target substrate. We demonstrate the performance of both methods by transferring plasmonic nano-antennas fabricated from single-crystalline gold flakes by FIB milling to a silicon wafer and to a scanning probe tip.

  6. Design study on a medium-energy beam-transport line for the JHF proton linac

    NASA Astrophysics Data System (ADS)

    Fu, Shinian; Kato, Takao

    2001-01-01

    The JHF/JAERI linac is an injector of a 3-GeV ring. It consists of an H - ion source, a 3-MeV radio-frequency quadrupole linac, a 50-MeV drift-tube linac, a 200-MeV separated-type drift-tube linac and a 400-MeV ACS accelerator in its normal conducting section. As an intense beam linac with an average current of 0.2 mA (first stage) and higher in the second stage, the issue of decreasing beam losses is of prime importance. The MEBT between the RFQ and the DTL has been designed with a modified TRACE3-D code, aimed at perfect matching, clear chopping, a small emittance growth and sufficient space for beam measurements. The line consists of eight quadrupoles, two bunchers and two choppers with a total length of about 3 m. Multiparticle codes PARMILA and LINSAC were used to check the beam dynamics of the design. Mismatch due to errors in the elements of the MEBT or the input beam was also studied. A radio-frequency deflector (RFD) is adopted in the chopper. It is characterized by a high deflecting field and compactness. The RF-deflector cavity was designed using the MAFIA code and the electromagnetic field distribution, including fringe field, is applied in TRACE3-D simulation. It illustrates the effect of the beam tube in the cavity on large deflection. A deflection initiated by the RF-deflector is amplified more than twice by the following quadrupole. Owing to this merit, the required RF field of 1.6 MV/m is rather low to generate an adequate separation of 4.3 mm between chopped and unchopped beams at the beam stopper. By means of rapid changes in the RF amplitude and phase during the rise and fall time, the chopper has an equivalent rise and fall time of less than 3.1 ns. Beam losses during the transient time of the chopper are less than 0.08% at the exit of the 50-MeV DTL. An analysis of unstable particles in the coupled RF-deflectors shows no obvious difference from the case of an independent cavity.

  7. Note: Investigation of atom transfer using a red-detuned push beam in a double magneto-optical trap setup.

    PubMed

    Ram, S P; Mishra, S R; Tiwari, S K; Mehendale, S C

    2011-12-01

    We present our results on transfer of cold (87)Rb atoms from a vapor cell magneto-optical trap to ultrahigh vacuum magneto-optical trap (UHV-MOT) using a red-detuned continuous wave push beam in a double-magneto-optical trap setup. We find that use of retro-reflected red-detuned push laser beam results in higher number in UHV-MOT than the number obtained without retro-reflection of push beam.

  8. Mathematical modeling of moving contact lines in heat transfer applications

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir S.; Klentzman, J.; Sodtke, C.; Stephan, P.

    2007-10-01

    We provide an overview of research on the mathematical modeling of apparent contact lines in non-isothermal systems conducted over the past several decades and report a number of recent developments in the field. The latter involve developing mathematical models of evaporating liquid droplets that account not only for liquid flow and evaporation, but also for unsteady heat conduction in the substrate. The droplet is placed on a flat heated solid substrate and is assumed to be in contact with a saturated vapor. Furthermore, we discuss a careful comparison between mathematical models and experimental work that involves simultaneous measurement of shapes of evaporating droplets and temperature profiles in the solid substrate. The latter is accomplished using thermochromic liquid crystals. Applications to new research areas, such as studies of the effect of evaporation on fingering instabilities in gravity-driven liquid films, are also discussed.

  9. Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.

    2004-06-01

    An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.

  10. Energy Efficient Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.

    2003-07-01

    An energy efficient, cost effective cryogenic distribution system (up to several miles) has been identified as important for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the lines cold mass to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass to accomplish a given mission.

  11. PERFORMING DIAGNOSTICS ON THE SPALLATION NEUTRON SOURCE VISION BEAM LINE TO ELIMINATE HIGH VIBRATION LEVELS AND PROVIDE A SUSTAINABLE OPERATION

    SciTech Connect

    Van Hoy, Blake W

    2014-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had been addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was

  12. Extensions to the integral line-beam method for gamma-ray skyshine analyses

    SciTech Connect

    Shultis, J.K.; Faw, R.E.

    1995-08-01

    A computationally simple method for estimating gamma-ray skyshine dose rates has been developed on the basis of the line-beam response function. Both Monte Carlo and pointkernel calculations that account for both annihilation and bremsstrahlung were used in the generation of line beam response functions (LBRF) for gamma-ray energies between 10 and 100 MeV. The LBRF is approximated by a three-parameter formula. By combining results with those obtained in an earlier study for gamma energies below 10 MeV, LBRF values are readily and accurately evaluated for source energies between 0.02 and 100 MeV, for source-to-detector distances between 1 and 3000 m, and beam angles as great as 180 degrees. Tables of the parameters for the approximate LBRF are presented. The new response functions are then applied to three simple skyshine geometries, an open silo geometry, an infinite wall, and a rectangular four-wall building. Results are compared to those of previous calculations and to benchmark measurements. A new approach is introduced to account for overhead shielding of the skyshine source and compared to the simplistic exponential-attenuation method used in earlier studies. The effect of the air-ground interface, usually neglected in gamma skyshine studies, is also examined and an empirical correction factor is introduced. Finally, a revised code based on the improved LBRF approximations and the treatment of the overhead shielding is presented, and results shown for several benchmark problems.

  13. Orbit error correction on the high energy beam transport line at the KHIMA accelerator system

    NASA Astrophysics Data System (ADS)

    Park, Chawon; Yim, Heejoong; Hahn, Garam; An, Dong Hyun

    2016-09-01

    For the purpose of treatment of various cancers and medical research, a synchrotron based medical machine has been developed under the Korea Heavy Ion Medical Accelerator (KHIMA) project and is scheduled for use to treat patient at the beginning of 2018. The KHIMA synchrotron is designed to accelerate and extract carbon ion (proton) beams with various energies from 110 to 430 MeV/u (60 to 230 MeV). Studies on the lattice design and beam optics for the High Energy Beam Transport (HEBT) line at the KHIMA accelerator system have been carried out using the WinAgile and the MAD-X codes. Because magnetic field errors and misalignments introduce deviations from the design parameters, these error sources should be treated explicitly, and the sensitivity of the machine's lattice to different individual error sources should be considered. Various types of errors, both static and dynamic, have been taken into account and have been consequentially corrected with a dedicated correction algorithm by using the MAD-X program. Based on the error analysis, the optimized correction setup is decided, and the specifications for the correcting magnets of the HEBT lines are determined.

  14. Optimization of Extinction Efficiency in the 8-GeV Mu2e Beam Line

    SciTech Connect

    Rakhno, I.L.; Drozhdin, A.I.; Johnstone, C.; Mokhov, N.V.; Prebys, E.; /Fermilab

    2012-05-11

    A muon-to-electron conversion experiment at Fermilab, Mu2e, is being designed to probe for new physics beyond the standard model at mass scales up to 10{sup 4} TeV. For this experiment, the advance in experimental sensitivity will be four orders of magnitude when compared to existing data on charged lepton flavor violation. The muon beam will be produced by delivering a proton beam contained in short 100-ns bunches onto a muon production target, with an inter-bunch separation of about 1700 ns. A critical requirement of the experiment is to ensure a low level of background at the muon detector consistent with the required sensitivity. To meet the sensitivity requirement, protons that reach the target between bunches must be suppressed by an enormous factor, so that an extinction factor, defined as a number of background protons between main bunches per proton in such a bunch, should not exceed 10{sup -9}. This paper describes the advanced beam optics and results of numerical modeling with STRUCT and MARS codes for a beam line with a collimation system that allows us to achieve the experimental extinction factor of one per billion.

  15. Dose-volume delivery guided proton therapy using beam on-line PET system

    SciTech Connect

    Nishio, Teiji; Ogino, Takashi; Nomura, Kazuhiro; Uchida, Hiroshi

    2006-11-15

    Proton therapy is one form of radiotherapy in which the irradiation can be concentrated on a tumor using a scanned or modulated Bragg peak. Therefore, it is very important to evaluate the proton-irradiated volume accurately. The proton-irradiated volume can be confirmed by detection of pair annihilation gamma rays from positron emitter nuclei generated by the target nuclear fragment reaction of irradiated proton nuclei and nuclei in the irradiation target using a positron emission tomography (PET) apparatus, and dose-volume delivery guided proton therapy (DGPT) can thereby be achieved using PET images. In the proton treatment room, a beam ON-LINE PET system (BOLPs) was constructed so that a PET apparatus of the planar-type with a high spatial resolution of about 2 mm was mounted with the field of view covering the isocenter of the beam irradiation system. The position and intensity of activity were measured using the BOLPs immediately after the proton irradiation of a gelatinous water target containing {sup 16}O nuclei at different proton irradiation energy levels. The change of the activity-distribution range against the change of the physical range was observed within 2 mm. The experiments of proton irradiation to a rabbit and the imaging of the activity were performed. In addition, the proton beam energy used to irradiate the rabbit was changed. When the beam condition was changed, the difference between the two images acquired from the measurement of the BOLPs was confirmed to clearly identify the proton-irradiated volume.

  16. Numerical and theoretical analysis of beam vibration induced acoustic streaming and the associated heat transfer

    NASA Astrophysics Data System (ADS)

    Wan, Qun

    The purpose of this research is to numerically and analytically investigate the acoustic streaming and the associated heat transfer, which are induced by a beam vibrating in either standing or traveling waveforms. Analytical results show that the beam vibrating in standing waveforms scatters the acoustic waves into the free space, which have a larger attenuation coefficient and longer propagating traveling wavelength than those of the plane wave. In contrast to a constant Reynolds stress in the plane wave, the Reynolds stress generated by such acoustic wave is expected to drive the free space streaming away from the anti-nodes and towards nodes of the standing wave vibration. The sonic and ultrasonic streamings within the channel between the vibrating beam and a parallel stationary beam are also investigated. The acoustic streaming is utilized to cool the stationary beam, which has either a heat source attached to it or subjected to a uniform heat flux. The sonic streaming is found to be mainly the boundary layer streaming dominating the whole channel while the ultrasonic streaming is clearly composed of two boundary layer streamings near both beams and a core region streaming, which is driven by the streaming velocity at the edge of the boundary layer near the vibrating beam. The standing wave vibration of the beam induces acoustic streaming in a series of counterclockwise eddies, which is directed away from the anti-nodes and towards the nodes. The magnitude of the sonic streaming is proportional to o2A 2 while that of the ultrasonic streaming is proportional to o 3/2A2. Numerical results show that the acoustic streaming induced by the beam vibrating in either standing or traveling waveforms has almost the same cooling efficiency for the heat source and the heat flux cases although the flow and temperature fields within the channel are different. The hysteresis of the ultrasonic streaming flow patterns associated with the change of the aspect ratio of the channel

  17. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  18. Expanded beam spectro-ellipsometry for big area on-line monitoring

    NASA Astrophysics Data System (ADS)

    Fried, M.; Major, C.; Juhasz, G.; Petrik, P.; Horvath, Z.

    2015-05-01

    Non-destructive analysing tools are needed at all stages of thin film process-development, especially photovoltaic (PV) development, and on production lines. In the case of thin films, layer thicknesses, micro-structure, composition, layer optical properties, and their uniformity are important parameters. An important focus is to express the dielectric functions of each component material in terms of a handful of wavelength independent parameters whose variation can cover all process variants of that material. With the resulting database, spectroscopic ellipsometry coupled with multilayer analysis can be developed for on-line point-by-point mapping and on-line line-by-line imaging. Off-line point-by-point mapping can be effective for characterization of non-uniformities in full scale PV panels or big area (even 450 mm diameter) Si-wafers in developing labs but it is slow in the on-line mode when only 15 points can be obtained (within 1 min) as a 120 cm long panel moves by the mapping station. Last years [M. Fried et al, Thin Solid Films 519, 2730 (2011)], a new instrumentation was developed that provides a line image of spectroscopic ellipsometry (wl=350- 1000 nm) data. Earlier a single 30 point line image could be collected in 10 s over a 15 cm width of PV material. Recent years we have built a 30, a 45 and a 60 cm width expanded beam ellipsometer which speed is increased by 10x. Now, 1800 points can be mapped in a 1 min traverse of a 60*120 cm PV panel or flexible roll-to-roll substrate.

  19. GARLIC - A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-04-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.

  20. Portable reconfigurable line sensor (PRLS) and technology transfer

    SciTech Connect

    MacKenzie, D.P.; Buckle, T.H.; Blattman, D.A.

    1993-12-31

    The Portable Reconfigurable Line Sensor (PRLS) is a bistatic, pulsed-Doppler, microwave intrusion detection system developed at Sandia National Laboratories for the US Air Force. The PRLS is rapidly and easily deployed, and can detect intruders ranging from a slow creeping intruder to a high speed vehicle. The system has a sharply defined detection zone and will not falsely alarm on nearby traffic. Unlike most microwave sensors, the PRLS requires no alignment or calibration. Its portability, battery operation, ease of setup, and RF alarm reporting capability make it an excellent choice for perimeter, portal, and gap-filler applications in the important new field of rapidly-deployable sensor systems. In October 1992, the US Air Force and Racon, Inc., entered into a Cooperative Research and Development Agreement (CRADA) to commercialize the PRLS, jointly sharing government and industry resources. The Air Force brings the user`s perspective and requirements to the cooperative effort. Sandia, serving as the technical arm of the Air Force, adds the actual PRLS technology to the joint effort, and provides security systems and radar development expertise. Racon puts the Air Force requirements and Sandia technology together into a commercial product, making the system meet important commercial manufacturing constraints. The result is a true ``win-win`` situation, with reduced government investment during the commercial development of the PRLS, and industry access to technology not otherwise available.

  1. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

    2014-05-15

    Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3

  2. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    PubMed

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of

  3. Simulating Time-Dependent Energy Transfer Between Crossed Laser Beams in an Expanding Plasma

    SciTech Connect

    Hittinger, J F; Dorr, M R; Berger, R L; Williams, E A

    2004-10-11

    A coupled mode system is derived to investigate a three-wave parametric instability leading to energy transfer between co-propagating laser beams crossing in a plasma flow. The model includes beams of finite width refracting in a prescribed transverse plasma flow with spatial and temporal gradients in velocity and density. The resulting paraxial light equations are discretized spatially with a Crank-Nicholson-type scheme, and these algebraic constraints are nonlinearly coupled with ordinary differential equations in time that describe the ion acoustic response. The entire nonlinear differential-algebraic system is solved using an adaptive, backward-differencing method coupled with Newton's method. A numerical study is conducted in two dimensions that compares the intensity gain of the fully time-dependent coupled mode system with the gain computed under the further assumption of a strongly-damped ion acoustic response. The results demonstrate a time-dependent gain suppression when the beam diameter is commensurate with the velocity gradient scale length. The gain suppression is shown to depend on time-dependent beam refraction and is interpreted as a time-dependent frequency shift.

  4. Los Alamos Neutron Science Center Area-A beam window heat transfer alalysis

    SciTech Connect

    Poston, D.

    1997-07-01

    Several analyses that investigate heat transfer in the Area-A beam window were conducted. It was found that the Area-A window should be able to withstand the 1-mA, 3-cm beam of the accelerator production of tritium materials test, but that the margins to failure are small. It was also determined that when the window is subjected to the 1-mA, 3-cm beam, the inner window thermocouples should read higher than the current temperature limit of 900{degrees}C, although it is possible that the thermocouples may fail before they reach these temperatures. Another finding of this study was that the actual beam width before April 1997 was 20 to 25% greater than the harp-wire printout indicated. Finally, the effect of a copper-oxide layer on the window coolant passage was studied. The results did not indicate the presence of a large copper-oxide layer; however, the results were not conclusive.

  5. Target and orbit feedback simulations of a muSR beam line at BNL

    SciTech Connect

    MacKay, W.; Blaskiewicz, M.; Fischer, W.; Pile, P.

    2015-07-28

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ+ should be about 40 kHz/mm2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.

  6. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Romanchenko, I. V.; Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-01

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  7. Scientific potential and design considerations for an undulator beam line on Aladdin storage ring

    SciTech Connect

    Arko, A. J.; Bader, S. D.; Dehmer, Joseph L.; Kim, S. H.; Knapp, G. S.; Shenoy, G. K.; Veal, B. W.; Young, C. E.; Brown, F. C.; Weaver, J. W.

    1985-04-08

    The unique features of undulator radiation, i.e., high photon flux and brightness, partial coherence, small beam divergence, spectral tunability, etc., mandate that undulators be included in the future plans for Aladdin. This will make it possible to perform the next generation of experiments in photon-stimulated spectroscopies. A team of scientists (see Appendix) has now been assembled to build an insertion device (ID) and the associated beam line at Aladdin. In considering the specifications for the ID, it was assumed that the ID beamline will be an SRC user facility. Consequently, design parameters were chosen with the intent of maximizing experimental flexibility consistent with a conservative design approach. A tunable ''clamshell'' undulator device was Chosen with a first harmonic tunable from 35 to 110 eV to operate on a 1 GeV storage ring. Higher harmonics will be utilized for experiments needing higher photon energies.

  8. Shot noise in electron-beam lithography and line-width measurements.

    PubMed

    Kruit, P; Steenbrink, S W H K

    2006-01-01

    Electron-beam lithography is used extensively in nanoscience and technology for making masks for the semiconductor industry and, on a limited scale, for maskless lithography: that is, writing the patterns directly on the chip. We expect the latter application to extend in the years to come. Control of the dimensions of the written structures is essential in the semiconductor industry. For 45 nm generation, which is presently under development and should reach production at the end of the decade, the required control over the line width is between 1.5 and 5 nm, depending on the application. One of the factors of influence on the line-width control is the statistics in the number of electrons illuminating the resist. This effect gives line edge roughness, or in other words a lack of control over the local position of a resist edge. This has long been recognized and often discussed. Recently, we developed an analytic model for the line edge position variation, which we shall illustrate and expand in this paper. The model, supported by Monte Carlo simulations, demonstrates that the line-width variation is inversely proportional to the dose used for the illumination of the resist. This makes it impossible to increase the lithography throughput by developing ultrasensitive resists. For 45 nm features written with a typical resolution of 30 nm, a 30 microC/cm2 resist gives 3 nm line-width variation over line segments of 45 nm long. The line width is usually measured in an adapted critical dimension scanning electron microscope (CD-SEM). This measurement needs to be more precise than the result of the lithography step, so the requirements are typically sub-nm. Apart from all the problems to avoid systematic errors, this measurement also suffers from statistical variations, resulting from the finite number of electrons used for the measurement. In this paper we shall derive an estimate for that variation with a similar model as used for the shot noise effect in the

  9. Doppler-shift spectra of Hα lines from negative-ion-based neutral beams for large helical device neutral beam injection

    NASA Astrophysics Data System (ADS)

    Oka, Y.; Ikeda, K.; Takeiri, Y.; Tsumori, K.; Kaneko, O.; Nagaoka, K.; Osakabe, M.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Grisham, L.; Umeda, N.; Honda, A.; Ikeda, Y.; Yamamoto, T.

    2006-03-01

    The velocity spectra of the negative-ion-(H-) based neutral beams are studied in high-performance large-area ion sources during injection into large helical device fusion plasmas. We are conducting systematic observations in standard neutral beam injection to correlate beam spectra with source operating conditions. Almost all of the transmitted beam power was at full acceleration energy (˜170keV). The small stripping beam component which was produced in the extraction gap was evaluated to be about 9%-22% by amplitude of the measured spectra for the sources in beam lines 1 and 2. H- production uniformity from the spectrum profile was 86%-90% for three sources. For the longest pulse injection during 74 and 128 s, a full energy component tended to decrease with time, while the accelerator gap stripping tail tended to increase slightly with time, which is attributed to beam-induced outgassing in the accelerator. A higher conductance multislot ground grid accelerator appeared to show little growth in the accelerator gap beam stripping during long pulses compared to the conventional multiaperture ground grid. The beam uniformity appeared to vary in part with the Cs uniformity on the plasma grid.

  10. Production of neutron deficient rare isotope beams at IGISOL; on-line and off-line studies

    NASA Astrophysics Data System (ADS)

    Huikari, J.; Dendooven, P.; Jokinen, A.; Nieminen, A.; Penttilä, H.; Peräjärvi, K.; Popov, A.; Rinta-Antila, S.; Äystö, J.

    2004-08-01

    This article reports on recent on-line yield measurements employing the light-ion and heavy-ion reaction-based ion guide systems and new results on α-recoil ion transport properties in ion guides with and without electric fields. In addition, the presently used ion guide designs for fusion evaporation reactions are introduced. The present study investigated different schemes for ion extraction from the gas cell. The addition of an extra ring electrode between the traditional skimmer electrode and the exit hole led to transmission independent of the primary beam intensity as opposed to strong intensity dependence observed earlier with the plain skimmer only. Furthermore, the mass resolving power of the IGISOL mass separator was increased to 1100 as compared to 250 with the skimmer system when using the RF-sextupole for the extraction from the heavy-ion ion guide. As a new method, the possibility to increase the ion guide efficiency by injecting electrons into the stopping volume is introduced. The efficiency of the electron emitter ion guide was a factor of ten higher in off-line conditions. Also, the influence of the buffer gas purity on the ion survival is discussed.

  11. Analysis of dewar and transfer line cooldown in Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT)

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.; Lee, J. H.

    1989-01-01

    The Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT) is designed to demonstrate the techniques and components required for orbital superfluid (He II) replenishment of observatories and satellites. One of the tasks planned in the experiment is to cool a warm cryogen tank and a warm transfer line to liquid helium temperature. A math model, based on single-phase vapor flow heat transfer, has been developed to predict the cooldown time, component temperature histories, and helium consumption rate, for various initial conditions of the components and for the thermomechanical pump heater powers of 2 W and 0.5 W. This paper discusses the model and the analytical results, which can be used for planning the experiment operations and determining the pump heater power required for the cooldown operation.

  12. Analysis of dewar and transfer line cooldown in Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT)

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.; Lee, J. H.

    1989-01-01

    The Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT) is designed to demonstrate the techniques and components required for orbital superfluid (He II) replenishment of observatories and satellites. One of the tasks planned in the experiment is to cool a warm cryogen tank and a warm transfer line to liquid helium temperature. A math model, based on single-phase vapor flow heat transfer, has been developed to predict the cooldown time, component temperature histories, and helium consumption rate, for various initial conditions of the components and for the thermomechanical pump heater powers of 2 W and 0.5 W. This paper discusses the model and the analytical results, which can be used for planning the experiment operations and determining the pump heater power required for the cooldown operation.

  13. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    PubMed

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  14. Modeling of the cross-beam energy transfer with realistic inertial-confinement-fusion beams in a large-scale hydrocode.

    PubMed

    Colaïtis, A; Duchateau, G; Ribeyre, X; Tikhonchuk, V

    2015-01-01

    A method for modeling realistic laser beams smoothed by kinoform phase plates is presented. The ray-based paraxial complex geometrical optics (PCGO) model with Gaussian thick rays allows one to create intensity variations, or pseudospeckles, that reproduce the beam envelope, contrast, and high-intensity statistics predicted by paraxial laser propagation codes. A steady-state cross-beam energy-transfer (CBET) model is implemented in a large-scale radiative hydrocode based on the PCGO model. It is used in conjunction with the realistic beam modeling technique to study the effects of CBET between coplanar laser beams on the target implosion. The pseudospeckle pattern imposed by PCGO produces modulations in the irradiation field and the shell implosion pressure. Cross-beam energy transfer between beams at 20(∘) and 40(∘) significantly degrades the irradiation symmetry by amplifying low-frequency modes and reducing the laser-capsule coupling efficiency, ultimately leading to large modulations of the shell areal density and lower convergence ratios. These results highlight the role of laser-plasma interaction and its influence on the implosion dynamics.

  15. The high altitude SSMIS channels: Validation of fast radiative transfer simulations by comparison with line-by-line simulations

    NASA Astrophysics Data System (ADS)

    Larsson, Richard; Rayer, Peter; Saunders, Roger; Bell, William; Booton, Anna; Buehler, Stefan A.; Eriksson, Patrick; John, Viju

    2015-04-01

    Channels 19-22 of the Special Sensor Microwave Imager/Sounder (SSMIS) on the DMSP satellite are simulated using a diverse atmospheric temperature profile dataset. These channels all measure the absorption spectra of the main isotope of molecular oxygen, and have pass-bands that are close in frequency to the center frequencies of four of the spectral lines. As a consequence, the channels measure high up in the atmosphere. The sensitivity of some channels even peak above the present upper levels of numerical weather prediction models at 80 km. The high altitude of the measurements in turn means that the molecular oxygen spectroscopy is noticeably affected by the Zeeman effect; this splits a line into frequency-separated polarized components as a function of the external magnetic field. The simulations have been performed using both ARTS and RTTOV as forward radiative transfer simulators. ARTS uses a line-by-line approach to radiative transfer. For the Zeeman effect calculations, ARTS can read line data and 3D magnetism directly from databases and then performs the splitting and polarization for each finite layer to calculate polarized absorption that is input to the radiative transfer equation. RTTOV uses a fast approach to radiative transfer, pre-calculating scalar effective transmission predictors for a set of atmospheric scenarios for each channel. For the Zeeman effect calculations, an altitude independent magnetic field is required as input for the layered transmission for the radiative transfer equation. Our results show that the differences between the models are small compared to sensor noise for all channels. The mean difference between models is larger for the lower altitude channels 21 and 22, but the standard deviation is small between the models. The mean simulated brightness temperatures of ARTS are closer to SSMIS than the RTTOV values, but it is not possible to tell which model is more accurate as temperature errors in the profiles are expected to be

  16. 100 years of Elementary Particles [Beam Line, vol. 27, issue 1, Spring 1997

    DOE R&D Accomplishments Database

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K. H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  17. 100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997

    SciTech Connect

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  18. Thermal performance of the SSRL beam line 6-2 upstream beryllium window

    NASA Astrophysics Data System (ADS)

    Youngman, B. P.; Arthur, J.

    1988-09-01

    This paper describes results of an infra-red measurement of the temperature distribution on the upstream, 0.254 millimeter thick beryllium window on SSRL Beam Line 6-2, illuminated by a 1.89 meter long 54 pole wiggler. The temperature field observed in the test was analyzed using finite element analysis and the total absorbed power determined. The analysis technique was verified by calculating the temperature field produced by a known heat load in a test conducted at the Lawerence Livermore National Laboratory.

  19. Projection phase contrast microscopy with a hard x-ray nanofocused beam: Defocus and contrast transfer

    SciTech Connect

    Salditt, T.; Giewekemeyer, K.; Fuhse, C.; Krueger, S. P.; Tucoulou, R.; Cloetens, P.

    2009-05-01

    We report a projection phase contrast microscopy experiment using hard x-ray pink beam undulator radiation focused by an adaptive mirror system to 100-200 nm spot size. This source is used to illuminate a lithographic test pattern with a well-controlled range of spatial frequencies. The oscillatory nature of the contrast transfer function with source-to-sample distance in this holographic imaging scheme is quantified and the validity of the weak phase object approximation is confirmed for the experimental conditions.

  20. Line-by-line transport calculations for Jupiter entry probes. [of radiative transfer

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Cooper, D. M.; Park, C.; Prakash, S. G.

    1979-01-01

    Line-by-line calculations of the radiative transport for a condition near peak heating for entry of the Galileo probe into the Jovian atmosphere are described. The discussion includes a thorough specification of the atomic and molecular input data used in the calculations that could be useful to others working in the field. The results show that the use of spectrally averaged cross sections for diatomic absorbers such as CO and C2 in the boundary layer can lead to an underestimation (by as much as 29%) of the spectral flux at the stagnation point. On the other hand, for the turbulent region near the cone frustum on the probe, the flow tends to be optically thin, and the spectrally averaged results commonly used in coupled radiative transport-flow field calculations are in good agreement with the present line-by-line results. It is recommended that these results be taken into account in sizing the final thickness of the Galileo's heat shield.

  1. Low-energy ion beam bombardment effect on the plant-cell-envelope mimetic membrane for DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-09-01

    This study is a systematic analysis of the mechanisms involved in ion-beam induced DNA transfer, an important application of ion beam biotechnology. Cellulose membranes were used to mimic the plant cell envelope. Ion beams of argon (Ar) or nitrogen (N) at an energy of 25 keV bombarded the cellulose membranes at fluences ranging from 1015 to 1016 ions/cm2. The damage to the ion-beam-bombarded membranes was characterized using infrared spectroscopy, a micro tensile test and scanning electron microscopy (SEM). Chain scission was the dominant radiation damage type in the membrane. DNA diffusion across the membrane was significantly increased after ion beam bombardment. The increase in DNA transfer is therefore attributed to chain scission, which increases the permeability by increasing the number of pores in the membrane.

  2. Line edge roughness frequency analysis during pattern transfer in semiconductor fabrication

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Wang, Wenhui; Beique, Genevieve; Sung, Min Gyu; Wood, Obert R.; Kim, Ryoung-Han

    2015-07-01

    Line edge roughness (LER) and line width roughness (LWR) are analyzed based on the frequency domain 3σ LER characterization methodology during pattern transfer in a self-aligned double patterning (SADP) process. The power spectrum of the LER/LWR is divided into three regions: low frequency, middle frequency, and high frequency regions. Three standard deviation numbers are used to characterize the LER/LWR in the three frequency regions. Pattern wiggling is also detected quantitatively during LER/LWR transfer in the SADP process.

  3. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Xiaofei; Geisler, Peter; Krauss, Enno; Kullock, René; Hecht, Bert

    2015-10-01

    The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex situ transfer, a spin-coated poly(methyl methacrylate) film is used to carry the nanostructures so that the bilayer can be etched away after being peeled off. For the in situ transfer, using a micro-manipulator inside the FIB machine, a cut-out piece of silica on which a nanostructure has been fabricated is peeled off from the bulk substrate and thus carries the nanostructure to a target substrate. We demonstrate the performance of both methods by transferring plasmonic nano-antennas fabricated from single-crystalline gold flakes by FIB milling to a silicon wafer and to a scanning probe tip.The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex

  4. The charge breeder beam line for the selective production of exotic species project at INFN-Legnaro National Laboratories

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Comunian, M.; Maggiore, M.; Manzolaro, M.; Angot, J.; Lamy, T.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an INFN (Istituto Nazionale di Fisica Nucleare) project with the aim at producing and post-accelerating exotic beams to perform forefront research in nuclear physics. To allow post-acceleration of the radioactive ions, an ECR-based Charge Breeder (CB) developed on the basis of the Phoenix booster was chosen. The design of the complete beam line for the SPES-CB will be described: a system for stable 1+ beams production was included; special attention was paid to the medium resolution mass spectrometer after the CB to limit possible superposition of the exotic beams with the impurities present in the ECR plasma.

  5. The charge breeder beam line for the selective production of exotic species project at INFN-Legnaro National Laboratories.

    PubMed

    Galatà, A; Comunian, M; Maggiore, M; Manzolaro, M; Angot, J; Lamy, T

    2014-02-01

    SPES (Selective Production of Exotic Species) is an INFN (Istituto Nazionale di Fisica Nucleare) project with the aim at producing and post-accelerating exotic beams to perform forefront research in nuclear physics. To allow post-acceleration of the radioactive ions, an ECR-based Charge Breeder (CB) developed on the basis of the Phoenix booster was chosen. The design of the complete beam line for the SPES-CB will be described: a system for stable 1+ beams production was included; special attention was paid to the medium resolution mass spectrometer after the CB to limit possible superposition of the exotic beams with the impurities present in the ECR plasma.

  6. Line of Sight: A process for transferring science from the laboratory to the market place

    SciTech Connect

    LINTON,JONATHAN; WALSH,STEVEN; LOMBANA,CESAR A.; HUNTER,WILLARD B.; ROMIG JR.,ALTON D.

    2000-02-14

    Commercialization and transfer of technology from laboratories in academia, government, and industry has only met a fraction of its potential and is currently an art not a science. The line of sight approach developed and in use at Sandia National Laboratories, is used to better understand commercialization and transfer of technology. The line of sight process integrates technology description, the dual process model of innovation and the product introduction model. The model, that the line of sight is based OR is presented and the application of the model to both disruptive and sustaining technologies is illustrated. Work to date suggests that the differences between disruptive and sustaining technologies are critical to quantifying the level of risk and choosing the commercialization path. The applicability of the line of sight to both disruptive and sustaining technologies is key to the success of the model and approach.

  7. Directionality effects in the transfer of X-rays from a magnetized atmosphere: Beam pulse shape

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Bonazzola, S.

    1981-01-01

    A formalism is presented for radiation transfer in two normal polarization modes in finite and semiinfinite plane parallel uniform atmospheres with a magnetic field perpendicular to the surface and arbitrary propagation angles. This method is based on the coupled integral equations of transfer, including emission, absorption, and scattering. Calculations are performed for atmosphere parameters typical of X-ray pulsars. The directionality of the escaping radiation is investigated for several cases, varying the input distributions. Theoretical pencil beam profiles and X-ray pulse shapes are obtained assuming the radiation is emitted from the polar caps of spinning neutron stars. Implications for realistic models of accreting magnetized X-ray sources are briefly discussed.

  8. Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Li, Wenlong; Ching, T. W.

    2015-05-01

    This paper presents a new idea of wireless power transfer (WPT) and fault diagnosis (FD) of high-voltage power line via robotic bird. The key is to present the conceptual robotic bird with WPT coupling coil for detecting and capturing the energy from the high-voltage power line. If the power line works in normal condition, the robotic bird is able to stand on the power line and extract energy from it. If fault occurs on the power line, the corresponding magnetic field distribution will become different from that in the normal situation. By analyzing the magnetic field distribution of the power line, the WPT to the robotic bird and the FD by the robotic bird are performed and verified.

  9. Transfer and redistribution of polarized light in resonance lines. I - Quantum formulation with collisions

    NASA Technical Reports Server (NTRS)

    Streater, A.; Cooper, J.; Rees, D. E.

    1988-01-01

    Equations are derived quantum mechanically for the radiative transfer of polarized light and statistical equilibrium governing the formation of resonance lines in nonhydrogenic species. Redistribution due to collisions is specifically included, but magnetic fields are neglected. The formulation accounts for excited level interference and optical pumping and is applicable to solar resonance lines such as Ca II H and K and Mg II h and k.

  10. W-320 waste retrieval sluicing system transfer line flushing volume and frequency calculation

    SciTech Connect

    Bailey, J.W.

    1997-11-05

    The calculations contained in this analysis document establish the technical basis for the volume, frequency, and flushing fluid to be utilized for routine Waste Retrieval Sluicing System (WRSS) process line flushes. The WRSS was installed by Project W-320, Tank 24 I-C-106 Sluicing. The double contained pipelines being flushed have 4 inch stainless steel primary pipes. The flushes are intended to prevent hydrogen build up in the transfer lines and to provide ALARA conditions for maintenance personnel.

  11. DESIGN AND SHIELDING OF A BEAM LINE FROM ELENA TO ATRAP USING ELECTROSTATIC QUADRUPOLE LENSES AND BENDS

    SciTech Connect

    Yuri, Yosuke; Lee, Edward P.

    2010-09-01

    The construction of the Extra Low ENergy Antiprotons (ELENA) upgrade to the Antiproton Decelerator (AD) ring has been proposed at CERN to produce a greatly increased current of low-energy antiprotons for various experiments including anti-hydrogen studies. This upgrade involves the addition of a small storage ring and electrostatic beam lines. The 5.3-MeV antiproton beams from AD are decelerated down to 100 keV in the compact ring and transported to each experimental apparatus. In this paper, we describe an electrostatic beam line from the ELENA ring to the ATRAP experimental apparatus and magnetic shielding of the low-energy beam line against the ATRAP superconducting solenoid magnet. A possible rough conceptual design of this system is displayed.

  12. Evaluation of Hose in Hose Transfer Line Service Life for Hanfords Interim Stabilization Program

    SciTech Connect

    TORRES, T.D.

    2001-03-23

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program (Torres, 2000a), defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of waste transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program (Torres, 2000b), has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications associated with Interim Stabilization. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will be exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning, RPP-6028 Section 3.2.7. Performance Incentive Number ORP-05 requires that all the Single Shell Tanks be Interim Stabilized by September 30, 2003. The Tri-Party Agreement (TPA) milestone M-41-00, enforced by a federal consent decree, requires all the Single Shell Tanks to be Interim stabilized by September 30, 2004. By meeting the Performance Incentive the TPA milestone is met. Prudent engineering dictates that the equipment used to transfer waste have a life in excess of the forecasted operational time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer, published literature and calculations. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are the hose material's resistance to the harmful effects of process fluid characteristics, ambient environmental conditions, exposure to ionizing radiation and the

  13. An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.

    2017-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.

  14. Dual Laser Beam Attenuation Processing: A Method for Line-averaging of Air Temperature

    NASA Astrophysics Data System (ADS)

    Afsharnaderi, H. R.; Pishvaei, M. R.

    2009-04-01

    In local scale there is a demand to measure horizontal air temperature averaged over farming and horticulture plots for frost point monitoring and evapotranspiration calculations. Using several dry bulb thermometers is problematic. This work then attends to laser instrumentation of air thermometry. The attenuation of laser beams from Rayleigh scattering has been applied for this purpose. The ratio of attenuation quantity for two isosceles parallel laser beams (850nm and 1064nm with 5W output) led to independent line-averaging of air temperature from transmission path-lengths. Typical measurements have been executed over 400x200 m2 garden. Digital resolution is 0.1°C but spatial resolution is quite fine. One of the advantages of dual signal processing is the filtration of ambiguities caused by beam scintillations. Usage of this instrument is recommended over plane area or in green-houses and limited by topography. Applicability may be extended to other studies such as micrometeorology and propagation experiments.

  15. Multiple Scattering in Beam-line Detectors of the MUSE Experiment

    NASA Astrophysics Data System (ADS)

    Garland, Heather; Robinette, Clay; Strauch, Steffen; MUon Scattering Experiment (MUSE) Collaboration

    2015-10-01

    The charge radius of the proton has been obtained precisely from elastic electron-scattering data and spectroscopy of atomic hydrogen. However, a recent experiment using muonic hydrogen, designed for high-precision, presented a charge radius significantly smaller than the accepted value. This discrepancy certainly prompts a discussion of topics ranging from experimental methods to physics beyond the Standard Model. The MUon Scattering Experiment (MUSE) collaboration at the Paul Scherrer Institute, Switzerland, is planning an experiment to measure the charge radius of the proton in elastic scattering of electrons and muons of positive and negative charge off protons. In the layout for the proposed experiment, detectors will be placed in the beam line upstream of a hydrogen target. Using Geant4 simulations, we studied the effect of multiple scattering due to these detectors and determined the fraction of primary particles that hit the target for a muon beam at each beam momentum. Of the studied detectors, a quartz Cherenkov detector caused the largest multiple scattering. Our results will guide further optimization of the detector setup. Supported in parts by the U.S. National Science Foundation: NSF PHY-1205782.

  16. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    SciTech Connect

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  17. Calculating the Loss factor of the LCLS Beam Line Elements for Ultra-Shrot Bunches

    SciTech Connect

    Novokhatski, A.; /SLAC

    2009-10-17

    The Linac Coherent Light Source (LCLS) is a SASE 1.5-15 {angstrom} x-ray Free-Electron Laser (FEL) facility. Since an ultra-short intense bunch is used in the LCLS operation one might suggest that wake fields, generated in the vacuum chamber, may have an effect on the x-ray production because these fields can change the beam particle energies thereby increasing the energy spread in a bunch. At LCLS a feedback system precisely controls the bunch energy before it enters a beam transport line after the linac. However, in the transport line and later in the undulator section the bunch energy and energy spread are not under feedback control and may change due to wake field radiation, which depends upon the bunch current or on a bunch length. The linear part of the energy spread can be compensated in the upstream linac; the energy loss in the undulator section can be compensated by varying the K-parameter of the undulators, however we need a precise knowledge of the wake fields in this part of the machine. Resistive wake fields are known and well calculated. We discuss an additional part of the wake fields, which comes from the different vacuum elements like bellows, BPMs, transitions, vacuum ports, vacuum valves and others. We use the code 'NOVO' together with analytical estimations for the wake potential calculations.

  18. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    NASA Astrophysics Data System (ADS)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan

    2016-09-01

    We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  19. Range-dependent geoacoustic inversion of vertical line array data using matched beam processing.

    PubMed

    Kim, Kyungseop; Seong, Woojae; Lee, Keunhwa; Kim, Seongil; Shim, Taebo

    2009-02-01

    This paper describes the results of range-dependent geoacoustic inversion using vertical line array data obtained from the 4th Matched Acoustic Properties and Localization Experiment conducted in the East Sea of Korea. The narrowband multitone continuous-wave signal from the towed source was analyzed to estimate the range-dependent geoacoustic properties along the radial track. The primary approach is based on the sectorwise inversion scheme. The inversion region up to 7.5 km from the vertical line array was divided into several segments, and the subinversions for each segment were performed sequentially. To reduce the dominance of low-angle arrivals, which bears little information for the bottom segment in question, matched beam processing with beam filtering was used for the cost function. The performance of proposed algorithm was tested using simulated data for an environment representative of the experimental site. The inversion results for the experimental data were consistent with the geophysical database and were validated from matched-field source localization using frequencies different from those used in the inversion.

  20. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r{sub {rho}} < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v{perpendicular}/c = {beta}{perpendicular} {le} 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs.

  1. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-12-31

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r{sub {rho}} < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v{perpendicular}/c = {beta}{perpendicular} {le} 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs.

  2. Theoretical evaluation of thermal imaging for detection of erosive wear of internally refractory-lined transfer lines

    SciTech Connect

    Hsieh, C. K.; Ellingson, W. A.; Su, K. C.

    1980-05-01

    Infrared scanning has potential use in detecting erosive wear (thickness change) of the refractory surface of large-diameter steel pipes internally lined with refractory concrete, which are typical of those used in coal-conversion processes. An analytical study was conducted to determine the viability of this method. Heat-transfer models were developed to predict surface-temperature distributions on the outer metal surface for various erosive-wear conditions on the inner surface, assuming uniform inner-surface temperature. Variables investigated included thermal conductivity of the refractory concrete, thermal contact resistance between the steel shell and the refractory, outer-surface convective coefficient, outer-surface radiative properties, and refractory-lining thickness and composition. The study used two- and three-dimensional heat-transfer models and various well-defined rectangular cavities on the inner surface. Temperature resolution, and thus calculation of cavity sizes from surface-temperature profiles, is better when the convective coefficient is small and the interfacial contact resistance is uniformly low. The presence of dual refractory-concrete liners using a layer of insulating concrete between the hot-face lining and the steel shell, together with thick steel (t > 25 mm), tends to smear temperature patterns and reduce the temperature gradient so that calculation of cavity shapes becomes impractical. 44 figures, 15 tables.

  3. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  4. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  5. Comparison of linear energy transfer scoring techniques in Monte Carlo simulations of proton beams.

    PubMed

    Granville, Dal A; Sawakuchi, Gabriel O

    2015-07-21

    Monte Carlo (MC) simulations are commonly used to study linear energy transfer (LET) distributions in therapeutic proton beams. Various techniques have been used to score LET in MC simulations. The goal of this work was to compare LET distributions obtained using different LET scoring techniques and examine the sensitivity of these distributions to changes in commonly adjusted simulation parameters. We used three different techniques to score average proton LET in TOPAS, which is a MC platform based on the Geant4 simulation toolkit. We determined the sensitivity of each scoring technique to variations in the range production thresholds for secondary electrons and protons. We also compared the depth-LET distributions that we acquired using each technique in a simple monoenergetic proton beam and in a more clinically relevant modulated proton therapy beam. Distributions of both fluence-averaged LET (LETΦ) and dose-averaged LET (LETD) were studied. We found that LETD values varied more between different scoring techniques than the LETΦ values did, and different LET scoring techniques showed different sensitivities to changes in simulation parameters.

  6. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    SciTech Connect

    Winklehner, D.; Leitner, D. Cole, D.; Machicoane, G.; Tobos, L.

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beam plasma model as well as simulations.

  7. An effusive molecular beam technique for studies of polyatomic gas-surface reactivity and energy transfer.

    PubMed

    Cushing, G W; Navin, J K; Valadez, L; Johánek, V; Harrison, I

    2011-04-01

    An effusive molecular beam technique is described to measure alkane dissociative sticking coefficients, S(T(g), T(s); ϑ), on metal surfaces for which the impinging gas temperature, T(g), and surface temperature, T(s), can be independently varied, along with the angle of incidence, ϑ, of the impinging gas. Effusive beam experiments with T(g) = T(s) = T allow for determination of angle-resolved dissociative sticking coefficients, S(T; ϑ), which when averaged over the cos (ϑ)/π angular distribution appropriate to the impinging flux from a thermal ambient gas yield the thermal dissociative sticking coefficient, S(T). Nonequilibrium S(T(g), T(s); ϑ) measurements for which T(g) ≠ T(s) provide additional opportunities to characterize the transition state and gas-surface energy transfer at reactive energies. A resistively heated effusive molecular beam doser controls the T(g) of the impinging gas striking the surface. The flux of molecules striking the surface from the effusive beam is determined from knowledge of the dosing geometry, chamber pressure, and pumping speed. Separate experiments with a calibrated leak serve to fix the chamber pumping speed. Postdosing Auger electron spectroscopy is used to measure the carbon of the alkyl radical reaction product that is deposited on the surface as a result of alkane dissociative sticking. As implemented in a typical ultrahigh vacuum chamber for surface analysis, the technique has provided access to a dynamic range of roughly 6 orders of magnitude in the initial dissociative sticking coefficient for small alkanes on Pt(111).

  8. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    SciTech Connect

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).

  9. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  10. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  11. Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating.

    PubMed

    Kriminski, S; Kazmierczak, M; Thorne, R E

    2003-04-01

    Three problems involving heat transfer from a protein crystal to a cooling agent are analyzed: flash-cooling in a cold nitrogen- or helium-gas stream, plunge-cooling into liquid nitrogen, propane or ethane and crystal heating in a cold gas stream owing to X-ray absorption. Heat transfer occurs by conduction inside the crystal and by convection from the crystal's outer surface to the cooling fluid. For flash-cooling in cold gas streams, heat transfer is limited by the rate of external convection; internal temperature gradients and crystal strains during cooling are very small. Helium gas provides only a threefold improvement in cooling rates relative to nitrogen because its much larger thermal conductivity is offset by its larger kinematic viscosity. Characteristic cooling times vary with crystal size L as L(3/2) and theoretical estimates of these times are consistent with experiments. Plunge-cooling into liquid cryogens, which can give much smaller convective thermal resistances provided that surface boiling is eliminated, can increase cooling rates by more than an order of magnitude. However, the internal conduction resistance is no longer negligible, producing much larger internal temperature gradients and strains that may damage larger crystals. Based on this analysis, factors affecting the success of flash-cooling experiments can be ordered from most to least important as follows: (1) crystal solvent content and solvent composition, (2) crystal size and shape, (3) amount of residual liquid around the crystal, (4) cooling method (liquid plunge versus gas stream), (5) choice of gas/liquid and (6) relative speed between cooling fluid and crystal. Crystal heating by X-ray absorption on present high-flux beamlines should be small. For a fixed flux and illuminated area, heating can be reduced by using crystals with areas normal to the beam that are much larger than the beam area.

  12. Line width roughness accuracy analysis during pattern transfer in self-aligned quadruple patterning process

    NASA Astrophysics Data System (ADS)

    Lorusso, Gian Francesco; Inoue, Osamu; Ohashi, Takeyoshi; Altamirano Sanchez, Efrain; Constantoudis, Vassilios; Koshihara, Shunsuke

    2016-03-01

    Line edge roughness (LER) and line width roughness (LWR) are analyzed during pattern transfer in a self-aligned quadruple patterning (SAQP) process. This patterning process leads to a final pitch of 22.5nm, relevant for N7/N5 technologies. Measurements performed by CD SEM (Critical Dimension Scanning Electron Microscope) using different settings in terms of averaging, field of view, and pixel size are compared with reference metrology performed by planar TEM and three-Dimensional Atomic Force Microscope (3D AFM) for each patterning process step in order to investigate the optimal condition for an in-line LWR characterization. Pattern wiggling is als0 quantitatively analyzed during LER/LWR transfer in the SAQP process.

  13. Institut d'Astrophysique Spatiale (IAS) 0.1- to 15-keV Synchrotron Radiation Facility beam lines

    NASA Astrophysics Data System (ADS)

    Dhez, Pierre; Jourdain, Erick; Hainaut, Olivier; Hochedez, Jean-Francois E.; Labeque, Alain; Salvetat, Philippe; Song, Xue Yan

    1997-10-01

    Two beam lines have been built at the Institute d'Astrophysique Spatiale (IAS) d'Orsay to perform absolute calibration of the EPIC (European photon imaging camera). EPIC consists of three x-ray charge coupled device (CCD) cameras having imaging and spectroscopic performances set at the Wolter telescope focal planes on board the x-ray multi mirror mission (XMM) planned to be launched by ESA in August 1999. To cover the desired 0.1 - 15 keV range a dedicated beam line has been built on each synchrotron sources of the Laboratoire pour l'Utilisation du Rayonnement Synchrotron (LURE): SACO (0.8 GeV) and DCI (1.5 GeV). Both beam lines are merging in a clean 23 m(superscript 3) vacuum tank containing the camera to calibrate. (1) The SACO windowless beam line is equipped with a grating monochromator. Four plane VLS gratings are used to cover the low energy range (0.1 - 1.2 keV). A triple grazing incidence mirror system set in front of the entrance slit removes the overlapping orders. (2) The high energy beam line on DCI has a 50 micrometer beryllium window and a double flat crystals monochromator equipped with four different crystal pairs. A double grazing incidence mirror system set close to the source absorbs the high energy photon spectra. CCD calibrations will be performed during 1997 second semester and years 1998.

  14. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. M.; McNicholas, K. M.; Zeng, Zhaoquan; Brillson, L. J.

    2013-06-01

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (˜1 eV) in the core level binding energies was observed.

  15. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system.

    PubMed

    Rutkowski, M M; McNicholas, K M; Zeng, Zhaoquan; Brillson, L J

    2013-06-01

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (~1 eV) in the core level binding energies was observed.

  16. A simulation of liquid motion and heat transfer near the triple contact line

    SciTech Connect

    Haramura, Yoshihiko

    1999-07-01

    This is part of the study to reveal the mechanism of boiling heat transfer especially on high heat flux nucleate boiling. Among various heat transfer mechanisms, heat transfer near triple (three phases of solid, liquid and vapor) contact line draws attention these days. However heat transfer model not including liquid motion does not explain high critical heat flux for well wetting liquid-solid combination. On the other hand, measured macrolayer thickness is so thick that the heat transfer through stationary macrolayer does not explain critical heat flux, either. So, the author has to consider the convection of liquid. The effect of Marangoni convection is examined in this study that induced by local temperature gradient along liquid-vapor interface near the triple contact line. The calculation was carried out for the vicinity of the triple contact line, which includes wedge shaped liquid and solid. The coordinates that translates at the retreating velocity of the contact line was used to simulate the situation without unsteady terms. Since the liquid near the contact line retreats faster by evaporation than the surroundings, the calculation was carried out for a wide range of contact angle. Strong convection induced by the Marangoni effect is observed especially for obtuse contact angles. The enhancement of heat transfer rate at the liquid-vapor interface is plotted in Fig. A-2 compared with that calculated when {sigma}{sub T} (temperature coefficient of surface tension) is forced to be zero. When contact angle is less than 90{degree}, the enhancement is negligible. As it increases beyond 90{degree}, the enhancement increases linearly. Heat transfer rate is doubled or more by the Marangoni effect for a contact angle of 135. {sigma}{sub T}h{sub lg}/{nu}{alpha} (h{sub lg}: latent heat, {nu}: kinetic viscosity of liquid, and {alpha}: heat transfer coefficient at liquid-vapor interface) and the ratio of sensitive to latent heats c(T{sub w}-T{sub s})/h{sub lg} are

  17. Restoration of the normal squamous lining in Barrett's esophagus by argon beam plasma coagulation.

    PubMed

    Byrne, J P; Armstrong, G R; Attwood, S E

    1998-10-01

    Barrett's esophagus is associated with significantly increased risk of development of esophageal adenocarcinoma. Replacing columnar epithelium with the normal squamous lining in this condition offers the possibility of decreasing the risk of degeneration to invasive adenocarcinoma. This study aimed to establish the feasibility of argon beam plasma coagulation (ABPC), in conjunction with control of gastroesophageal reflux, to restore the squamous lining. Thirty patients with Barrett's esophagus (four low-grade dysplasia, three high-grade) were recruited from our surveillance program, and underwent endoscopic ABPC. Twenty-seven patients completed treatment, with macroscopic replacement of their columnar lining by squamous epithelium, histologically confirmed in all 27, and followed up for a median of 9 months (range, 6-18 months). Two patterns of squamous replacement were identified: 70% of patients showed squamous epithelium with no persistent intestinal metaplasia, and in 30% the new squamous epithelium covered areas of underlying intestinal metaplasia. One patient has withdrawn from the study. Two esophageal perforations, with one death, occurred early in the study. ABPC, in conjunction with control of gastroesophageal reflux, allows squamous regrowth in both benign and dysplastic Barrett's esophagus. Despite the theoretical safety advantages of ABPC over techniques such as laser, esophageal perforation may occur with this technique. It is too soon to recommend ABPC for dysplastic or nondysplastic Barrett's because follow-up is too short to show a decreased incidence of and mortality from adenocarcinoma.

  18. The Nexawatt: A Strategy for Exawatt Peak Power Lasers Based on NIF and NIF-like Beam Lines

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2016-05-01

    An exawatt-scale, short-pulse amplification architecture based upon a novel pulse compressor arrangement and amplification of long-duration chirped beam pulses is described. This architecture is capable of extracting the full, stored energy of a NIF or NIF-like beam line and in doing so produce from one beam line a near-diffraction-limited, laser pulse whose peak power would exceed 0.2 EW. The architecture is well suited to either low-f-number focusing or to multi-beam, dipole focusing concepts that in principle enable focused intensities in the range of 1026 W/cm2 or 5 orders of magnitude beyond that possible from present PW systems based on chirped pulse amplification.

  19. Study of condensation heat transfer following a main steam line break inside containment

    SciTech Connect

    Cho, J.H.; Elia, F.A. Jr.; Lischer, D.J.

    1995-09-01

    An alternative model for calculating condensation heat transfer following a main stream line break (MSLB) accident is proposed. The proposed model predictions and the current regulatory model predictions are compared to the results of the Carolinas Virginia Tube Reactor (CVTR) test. The very conservative results predicted by the current regulatory model result from: (1) low estimate of the condensation heat transfer coefficient by the Uchida correlation and (2) neglecting the convective contribution to the overall heat transfer. Neglecting the convection overestimates the mass of steam being condensed and does not permit the calculation of additional convective heat transfer resulting from superheated conditions. In this study, the Uchida correlation is used, but correction factors for the effects of convection an superheat are derived. The proposed model uses heat and mass transfer analogy methods to estimate to convective fraction of the total heat transfer and bases the steam removal rate on the condensation heat transfer portion only. The results predicted by the proposed model are shown to be conservative and more accurate than those predicted by the current regulatory model when compared with the results of the CVTR test. Results for typical pressurized water reactors indicate that the proposed model provides a basis for lowering the equipment qualification temperature envelope, particularly at later times following the accident.

  20. Radiative transfer of emission lines with non-Maxwellian velocity distribution function: Application to Mercury D2 sodium lines

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Leblanc, F.

    2013-04-01

    We describe the theory and the numerical model used to simulate Doppler-broadened resonant emission lines for any type of velocity function distribution. The field of application of this theoretical model of radiative transfer is particularly well suited for the study of weakly dense atmospheres which are far from local thermodynamic equilibrium (as is the case for most planetary upper atmospheres/exospheres). This model is applied to study the potential effects of radiative transfer and non-Maxwellian distributions on the spectral shape of the D2 sodium emission line in Mercury's exosphere. The small (but not negligible) optical thickness of the D2 sodium emission of an exosphere like Mercury's (with a peak optical thickness of ˜2) can result in an increase of the observed spectral width by up to a few tens of percent. Combined with the non-Maxwellian nature of the exospheric velocity distribution, it may lead to an increase in the spectral width by a factor of up to 2 with respect to the width of an optically thin emission and a Maxwellian distribution. This model has been used to analyze new THEMIS observations of Mercury's exosphere obtained at very high spectral resolution in a companion paper (Leblanc, F., Chaufray, J.-Y., Doressoundiram, A., Berthelier, J.-J., Mangano, V., Lopez-Ariste, A., Borin, P. [2013]).

  1. Gene transfer in hepatocarcinoma cell lines: in vitro optimization of a virus-free system.

    PubMed

    Ghoumari, A M; Rixe, O; Yarovoi, S V; Zerrouqi, A; Mouawad, R; Poynard, T; Opolon, P; Khayat, D; Soubrane, C

    1996-06-01

    Many approaches exist for hepatic gene delivery, including viral vectors and non-viral vectors. In this study, we tested a panel of liposomes to transfer pAGO, a plasmid containing one copy of herpes simplex virus (HSVtk) gene, and pYED11, a plasmid containing two copies of the HSVtk gene, into a murine hepatocarcinoma cell line (Hepa 1-6) and a human hepatocarcinoma cell line (Hep-G2). The efficiency of gene delivery and expression was characterized by beta-galactosidase staining, flow cytometric analysis and quantitative lacZ activity. Different combinations of liposomes and DNA and the ratio of the concentration of liposome to DNA were tested. The efficient transfer was shown with DOTAP followed by transfectam and lipofectamine. Under these conditions, we tested the cytotoxicity of ganciclovir (GCV) exposure on Hepa 1-6 and Hep-G2 transfected separately with liposome-pAGO and liposome-pYED11 complexes. This study demonstrates the in vitro efficacy of each liposome tested to transduce the HSVtk gene into hepatocarcinoma cell lines. The transfer of two copies of the HSVtk gene rendered cells 1.5 times more sensitive to GCV than cells transduced by pAGO as compared to controls. This was achieved most efficiently by the DOTAP-pYED11 complex. Thus, pYED11 may be considered as an alternative to pAGO as a gene transfer vector.

  2. A Study of Spectral Lines in Plasmas Heated by Neutral Beam Injection in the TJ-II Stellarator

    SciTech Connect

    McCarthy, Kieran J.; Carmona, J. M.; Balbin, R.

    2008-10-22

    We summarize the TJ-II stellarator device give an outline of a vacuum ultraviolet spectrometer used for performing spectral surveys specialized plasma studies. Next, we report the main impurities observed in hot plasmas created maintained by electron cyclotron resonance neutral beam injection heating with lithium coated wall conditioning. Finally, we report broad emission structures that have been observed close to strong oxygen emission lines during neutral beam injection heating phases we elucidate their possible origin.

  3. Multiobjective optimization design of an rf gun based electron diffraction beam line

    NASA Astrophysics Data System (ADS)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan; Maxson, Jared

    2017-03-01

    Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100 MV /m 1.6-cell normal conducting rf (NCRF) gun, as well as a nine-cell 2 π /3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 1 06 electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 1 06 electrons and final beam sizes of σx≥25 μ m and σt≈5 fs , we found a relative coherence length of Lc ,x/σx≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2 nm /μ m , respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 1 05 electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92 nm /μ m for final bunch lengths of 5, 30 and 100 fs, respectively.

  4. Numerical Modeling of the Chilldown of Cryogenic Transfer Lines Using a Sinda/GFSSP Integrated Solver

    NASA Technical Reports Server (NTRS)

    LeClair, Andre

    2011-01-01

    An important first step in cryogenic propellant loading is the chilldown of transfer lines. During the chilldown of the transfer line, the flow is two-phase and unsteady, with solid to fluid heat transfer and therefore a coupled thermo-fluid analysis is necessary to model the system. This paper describes a numerical model of pipe chilldown that utilizes the Sinda/GFSSP Conjugate Integrator (SGCI). SGCI is a new analysis tool developed at NASA's Marshall Space Flight Center (MSFC). SGCI facilitates the solution of thermofluid problems in interconnected solid-fluid systems. The solid component of the system is modeled in MSC Patran and translated into an MSC Sinda thermal network model. The fluid component is modeled in GFSSP, the Generalized Fluid System Simulation Program. GFSSP is a general network flow solver developed at NASA/MSFC. GFSSP uses a finite-volume approach to model fluid systems that can include phase change, multiple species, fluid transients, and heat transfer to simple solid networks. SGCI combines the GFSSP Fortran code with the Sinda input file and compiles the integrated model. Sinda solves for the temperatures of the solid network, while GFSSP simultaneously solves the fluid network for pressure, temperature, and flow rate. The two networks are coupled by convection heat transfer from the solid wall to the cryogenic fluid. The model presented here is based on a series of experiments conducted in 1966 by the National Bureau of Standards (NBS). A vacuum-jacketed, 200 ft copper transfer line was chilled by liquid nitrogen and liquid hydrogen. The predictions of transient temperature profiles and chilldown time of the integrated Sinda/GFSSP model will be compared to the experimental measurements.

  5. Digital in-line holography on amplitude and phase objects prepared with electron beam lithography.

    PubMed

    Schwenke, J; Lorek, E; Rakowski, R; He, X; Kvennefors, A; Mikkelsen, A; Rudawski, P; Heyl, C M; Maximov, I; Pettersson, S-G; Persson, A; L'Huillier, A

    2012-08-01

    We report on the fabrication and characterization of amplitude and phase samples consisting of well defined Au or Al features formed on ultrathin silicon nitride membranes. The samples were manufactured using electron beam lithography, metallization and a lift-off technique, which allow precise lateral control and thickness of the metal features. The fabricated specimens were evaluated by conventional microscopy, atomic force microscopy and with the digital in-line holography set-up at the Lund Laser Centre. The latter uses high-order harmonic generation as a light source, and is capable of recovering both the shape and phase shifting properties of the samples. We report on the details of the sample production and on the imaging tests with the holography set-up. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  6. On line Release Simulator of Radioactive Beams produced by ISOL technique

    SciTech Connect

    Turrion, Manuela; Tengblad, Olof; Borge, Maria J. G.; Reillo, Eva; Morrissey, Edward R.; Santana, Mario

    2007-02-12

    Target and ion source constitute the heart for the production of radioactive ion beams, RIBs. The goal of this work is to help in the development of reliable and efficient target and ion source systems for production of short-lived isotopes of a wide range of elements by the ISOL method. With this aim an oracle database of diffusion and desorption parameters with more than 10.000 entries has been built. The database is accessible on line and a web application has been developed allowing the retrieval of information from the database in order to assist in the configuration of the input parameters for a Monte Carlo code, RIBO, for the simulation of target-ion source systems.

  7. On line Release Simulator of Radioactive Beams produced by ISOL technique

    NASA Astrophysics Data System (ADS)

    Turrión, Manuela; Tengblad, Olof; Borge, María J. G.; Reillo, Eva; Morrissey, Edward R.; Santana, Mario

    2007-02-01

    Target and ion source constitute the heart for the production of radioactive ion beams, RIBs. The goal of this work is to help in the development of reliable and efficient target and ion source systems for production of short-lived isotopes of a wide range of elements by the ISOL method. With this aim an oracle database of diffusion and desorption parameters with more than 10.000 entries has been built. The database is accessible on line and a web application has been developed allowing the retrieval of information from the database in order to assist in the configuration of the input parameters for a Monte Carlo code, RIBO, for the simulation of target-ion source systems.

  8. Simulation of amine concentration dependence on line edge roughness after development in electron beam lithography

    NASA Astrophysics Data System (ADS)

    Saeki, Akinori; Kozawa, Takahiro; Tagawa, Seiichi; Cao, Heidi B.; Deng, Hai; Leeson, Michael J.

    2008-07-01

    Line edge roughness (LER) of chemically amplified (CA) resist has evolved as a major class of issues when the required fabrication accuracy of future nanolithography gets close to the limit of materials. Near the material limit, processes have a significant impact on the limit of resist performance. In order to provide an insight into the mechanism of LER formation and survey the performance limit of CA resists, the LERs after development in positive-tone CA resist for electron beam lithography were investigated in terms of their dependences on the amine (quencher of proton/acid) concentration and exposure dose. The latent images formed during the acid formation and diffusion processes were simulated by a Monte Carlo technique. The development process described by Mack's dissolution model was incorporated into the simulation. The LERs (high frequency) after development are discussed from the aspects of image contrast, acid diffusion length, and topography of developed pattern.

  9. Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF

    SciTech Connect

    Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki

    2012-11-12

    An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

  10. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    NASA Astrophysics Data System (ADS)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  11. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Qi, Yan; Wang, Yanwei

    2016-10-01

    Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.

  12. Generation of a twin beam at the cesium line and telecom wavelength by cavity phase matching.

    PubMed

    Liu, Y H; Xie, Z D; Ling, W; Lv, X J; Zhu, S N

    2011-08-15

    Cavity phase matching has been recently demonstrated as a phase-matching method for efficient nonlinear frequency conversion in a microcavity. Here we extend it to the Type I configuration using a sub-coherent-length optical parametric oscillator consisting of an MgO-doped lithium niobate crystal sheet. It generates a tunable single-longitudinal-mode twin beam, which covers the cesium D2 line of 852.1 nm and the extended band of optical communication. This microcavity is capable of peak output power of 58 kW with a maximum conversion efficiency of 18.5%. Broad applications in the areas of light-atom interaction, spectroscopy, optical telecommunication, and quantum optics can be expected. © 2011 Optical Society of America

  13. Aberrations of varied line-space grazing incidence gratings in converging light beams

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.

    1984-01-01

    Analyses of the imaging properties of several designs for varied-line space gratings in converging beams of light in grazing-incidence spectrometers are presented. An explicit model is defined for the case of a plane-reflection grating intercepting light that converges and is reflected to a stigmatic point associated with the zero-order image of the grating. Smooth spatial variation of the grating constant then permits aberration correction. The aberrations are expressed as polynomials in the grating lens coordinates using power series expansions. Application of the model is illustrated in terms of aberrations experienced with the short wavelength spectrometer on the EUVE satellite. Attention is given to straight and parallel in-plane grooves, curved groove in-plane designs and off-plane grooves. Aberrations due to dispersions and misalignment are also considered.

  14. Artificial intelligence research in particle accelerator control systems for beam line tuning

    SciTech Connect

    Pieck, Martin

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  15. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    SciTech Connect

    Romanchenko, I. V. Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-07

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  16. An x-ray microprobe beam line for trace element analysis

    SciTech Connect

    Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Schidlovsky, G.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1987-01-01

    The application of synchrotron radiation to an x-ray microprobe for trace element analysis is a complementary and natural extension of existing microprobe techniques using electrons, protons, and heavier ions as excitation sources for x-ray fluorescence. The ability to focus charged particles leads to electron microprobes with spatial resolutions in the sub-micrometer range and down to 100 ppM detection limits and proton microprobes with micrometer resolution and ppM detection limits. The characteristics of synchrotron radiation that prove useful for microprobe analysis include a broad and continuous energy spectrum, a relatively small amount of radiation damage compared to that deposited by charged particles, a highly polarized source which reduces background scattered radiation in an appropriate counting geometry, and a small vertical divergence angle of approx.0.2 mrad which allows for focussing of the light beam into a small spot with high flux. The features of a dedicated x-ray microprobe beam line developed at the National Synchrotron Light Source (NSLS) are described. 4 refs., 3 figs.

  17. Spatial distribution of radiation from the Beam Line VIII-W 15-period wiggler

    SciTech Connect

    Lent, E.M.; Dickinson, W.C.

    1985-05-13

    We have written a computer program to calculate the spatial distribution of the radiation from insertion devices operating in nominal wiggler mode (K = 15.6), for which the incoherent emission dominates, and our assumption of negligible coherent emission is valid. This program has been applied to the 15-period wiggler now being designed by the Lawrence Berkeley Laboratory for Beam Line VIII-W on the Stanford Positron-Electron Accumulation Ring (SPEAR). An approximate spreading function has been applied at each photon energy to account for the intrinsic photon divergence. The effects of the finite wiggler length and the spatial and angular spread of the electron beam have been included. Graphical plots are provided for three different electron energies, 1.8 GeV, 3.0 GeV, and 3.4 GeV, and for a range of photon energies. Separate plots are provided for total radiation, parallel polarization component, and perpendicular polarization component. 3 refs., 71 figs., 63 tabs.

  18. Research for the calculation of the potential transfer energy on ±800kV DC Transmission Lines

    NASA Astrophysics Data System (ADS)

    Ren, Huisong; Wang, Hui; Gao, Liyuan; Li, Jinliang

    2017-07-01

    It would be hard to be repaired in the case of a power outage if the ±800kV ultra high voltage DC (UHVDC) transmission line was put into operation, so live working is the guarantee for its security and stability. It’s necessary to calculate potential transfer energy to ensure the safety of the live working personnel. The transfer energy can be calculated by establishing the equivalent model of the process of potential transfer. Potential differences and capacitance parameters can be calculated by the finite element method, thereby transfer energy in different transfer distances can be worked out. The results show that the transfer energy increases with the increase of the transfer distance and the transfer energy reaches to 1.0 J when the distance is 0.5 m. So the potential transfer rod is necessary for the security of the live working personnel on ±800kV DC transmission lines.

  19. Synchrotron radiation beam line for photons in the 700 eV - 7000 eV energy range

    SciTech Connect

    Ebert, P.J.; Anderson, C.J.

    1985-04-01

    The design of a beam line for synchrotron radiation research is described. The 700 to 7000 eV energy range to be covered is determined at low energy by the 2d spacing of easily obtainable diffraction crystals and at high energy by the cutoff of specular reflection of a Pt mirror. Two mirrors are used, the first to collimate the x-ray beam through a double crystal monochromator and the second to focus the collimated monochromatic beam on target. In this way, high monochromatic x-ray throughput is achieved with energy resolution limited by crystal diffraction properties.

  20. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    PubMed

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  1. X-ray micro-beam study of reliability in aluminum-copper interconnect lines

    NASA Astrophysics Data System (ADS)

    Solak, Harun Hadi

    X-ray photoemission spectroscopy and x-ray diffraction are powerful techniques widely used in materials research. The advent of synchrotron radiation facilities as high brightness x-ray sources and recent advances in x-ray optics have extended these techniques to spatially resolved measurements with sub-micron resolution. We have used two such facilities to study two major reliability problems in integrated circuit interconnect technology: electromigration and mechanical stress induced problems. MAXIMUM at the Advanced Light Source (ALS) is a scanning photoemission microscope based on multilayer coated normal incidence optics. It acquires images of surfaces that map chosen spectral features from photoelectron emission spectra. In situ electromigration experiments were performed in the ultra high vacuum chamber of MAXIMUM on patterned Al-Cu lines. The results demonstrate a Cu rich surface precipitation, changes in Cu distribution as a result of the electromigration process and the detection of shallow voids under the surface oxide layer. The X-ray micro-beam facility at the Advanced Photon Source (APS) uses diffractive Fresnel Zone Plates to focus intense undulator light into a sub-micron size beam. Microdiffraction experiments were performed to map the stress distribution along patterned Al-Cu lines with a ˜1 μm resolution for the first time. Diffraction patterns from single grains were recorded on an x-ray CCD camera and techniques developed to analyze the two dimensional micro-diffraction data for strain-stress analysis. An increase of grain to grain and intra-grain stress variation was found after accelerated electromigration testing. Contrary to predictions, no long range variation of stress due to electromigration was observed. These observations demonstrate the usefulness and potential of x-ray micro-characterization techniques in the electronic materials area.

  2. Small-angle approximation to the transfer of narrow laser beams in anisotropic scattering media

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1981-01-01

    The broadening and the signal power detected of a laser beam traversing an anisotropic scattering medium were examined using the small-angle approximation to the radiative transfer equation in which photons suffering large-angle deflections are neglected. To obtain tractable answers, simple Gaussian and non-Gaussian functions for the scattering phase functions are assumed. Two other approximate approaches employed in the field to further simplify the small-angle approximation solutions are described, and the results obtained by one of them are compared with those obtained using small-angle approximation. An exact method for obtaining the contribution of each higher order scattering to the radiance field is examined but no results are presented.

  3. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    NASA Astrophysics Data System (ADS)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  4. Wavelength Detuning Cross-Beam Energy Transfer Mitigation for Polar Direct Drive and Symmetric Direct Drive

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Collins, T. J. B.; McKenty, P. W.; Radha, P. B.; Hohenberger, M.; Rosenberg, M. J.

    2016-10-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via stimulated Brillouin scattering, which reduces absorbed light and implosion velocity, alters time-resolved scattered-light spectra, and redistributes absorbed and scattered light. These effects reduce target performance in polar direct drive (PDD) and symmetric direct drive (SDD) at the National Ignition Facility (NIF) and on the OMEGA Laser System. The CBET package (Adaawam) incorporated into the 2-D hydrodynamics code DRACO is an integral part of the 3-D ray-trace package (Mazinisin). Detuning the initial laser wavelength (dλ0) reduces the CBET interaction volume, which can be combined with other mitigation domains (e.g., spatial and temporal). Recent PDD experiments on the NIF explored this option using a cone-swapping technique with dλ0 = +/- 2.34 Å UV, which are compared with DRACO simulations. DRACO simulations of wavelength detuning in SDD on OMEGA predict the expected mitigation using OMEGA's three main amplifier chains in both near-term dλ0 = { - 3 , 0 , + 3 } -Å and long-term dλ0 = { - 6 , 0 , + 6 } -Å UV configurations. The detuning simulations predict improved performance and changes in 2-D and 3-D morphology in both PDD and SDD. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Composite modulation transfer function evaluation of a cone beam computed tomography breast imaging system

    NASA Astrophysics Data System (ADS)

    Betancourt-Benítez, Ricardo; Ning, Ruola; Liu, Shaohua

    2009-11-01

    Several factors during the scanning process, image reconstruction and geometry of an imaging system, influence the spatial resolution of a computed tomography imaging system. In this work, the spatial resolution of a state of the art flat panel detector-based cone beam computed tomography breast imaging system is evaluated. First, scattering, exposure level, voltage, voxel size, pixel size, back-projection filter, reconstruction algorithm, and number of projections are varied to evaluate their effect on spatial resolution. Second, its uniformity throughout the whole field of view is evaluated as a function of radius along the x-y plane and as a function of z at the center of rotation. The results of the study suggest that the modulation transfer function is mainly influenced by the pixel, back-projection filter, and number of projections used. The evaluation of spatial resolution throughout the field of view also suggests that this imaging system does have a 3-D quasi-isotropic spatial resolution in a cylindrical region of radius equal to 40 mm centered at the axis of rotation. Overall, this study provides a useful tool to determine the optimal parameters for the best possible use of this cone beam computed tomography breast imaging system.

  6. Model of convection mass transfer in titanium alloy at low energy high current electron beam action

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.

    2017-01-01

    The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.

  7. A SEMI-ANALYTICAL LINE TRANSFER MODEL TO INTERPRET THE SPECTRA OF GALAXY OUTFLOWS

    SciTech Connect

    Scarlata, C.; Panagia, N.

    2015-03-01

    We present a semi-analytical line transfer model, (SALT), to study the absorption and re-emission line profiles from expanding galactic envelopes. The envelopes are described as a superposition of shells with density and velocity varying with the distance from the center. We adopt the Sobolev approximation to describe the interaction between the photons escaping from each shell and the remainder of the envelope. We include the effect of multiple scatterings within each shell, properly accounting for the atomic structure of the scattering ions. We also account for the effect of a finite circular aperture on actual observations. For equal geometries and density distributions, our models reproduce the main features of the profiles generated with more complicated transfer codes. Also, our SALT line profiles nicely reproduce the typical asymmetric resonant absorption line profiles observed in starforming/starburst galaxies whereas these absorption profiles cannot be reproduced with thin shells moving at a fixed outflow velocity. We show that scattered resonant emission fills in the resonant absorption profiles, with a strength that is different for each transition. Observationally, the effect of resonant filling depends on both the outflow geometry and the size of the outflow relative to the spectroscopic aperture. Neglecting these effects will lead to incorrect values of gas covering fraction and column density. When a fluorescent channel is available, the resonant profiles alone cannot be used to infer the presence of scattered re-emission. Conversely, the presence of emission lines of fluorescent transitions reveals that emission filling cannot be neglected.

  8. Radiative Transfer Modeling of the Enigmatic Scattering Polarization in the Solar Na I D1 Line

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D1 line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D1 line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D1 line without the need for ground-level polarization.

  9. Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells.

    PubMed

    Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko

    2016-04-01

    Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38-77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal.

  10. Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells

    PubMed Central

    Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko

    2016-01-01

    Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38–77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal. PMID:27033801

  11. A Positional X-ray Instrumentation Test Stand For Beam-Line Experiments

    NASA Astrophysics Data System (ADS)

    Nikoleyczik, Jonathan; Prieskorn, Z.; Burrows, D. N.; Falcone, A.

    2014-01-01

    A multi-axis, motion controlled test stand has been built in the PSU 47 m X-ray beam-line for the purpose of testing X-ray instrumentation and mirrors using parallel rays. The test stand is capable of translation along two axes and rotation about two axes with motorized fine position control. The translation stages have a range of motion of 200 mm with a movement accuracy of ± 2.5 microns. Rotation is accomplished with a two-axis gimbal which can rotate 360° about one axis and 240° about another; movement with ± 35 arcsecond accuracy are achieved in both axes. The position and status are monitored using a LabView program. An XCalibr source with multiple target materials is used as an X-ray source and can produce multiple lines between 0.8 and 8 keV. Some sample spectra are shown from a Si-PIN diode detector. This system is well suited for testing X-ray mirror segments which are currently being developed.

  12. Magnet power supply control of the NSLS VUV and x-ray storage rings transfer lines

    SciTech Connect

    Klein, J.D.; Ramamoorthy, S.; Singh, O.; Smith, J.D.

    1985-01-01

    The transfer lines for NSLS VUV and x-ray storage rings have been split. New power supplies have been incorporated with existing ones. The existing microprocessor system has been upgraded in order to control the additional functions. This system expands the input/output port of the microprocessor to an addressable serial/parallel link to each magnet power supply. The implementation of this system will be discussed.

  13. Heat transfer resistances in the measurements of cold helium vapour temperature in a subatmospheric process line

    NASA Astrophysics Data System (ADS)

    Adamczyk, A.; Pietrowicz, S.; Fydrych, J.

    2017-02-01

    The superfluid helium technology, which is essentially used in particle accelerators, requires complex cryogenic systems that include long lines transferring cold helium vapours at a subathmospheric pressure below 50 mbar. Usually in large systems the subatmospheric pressure is generated by a set of warm and cold compressors. In consequence, the heat loads to the line and especially the helium temperature in the inlet to the cold compressors are crucial parameters. In order to measure the helium temperature the temperature sensors are usually fixed to the external surface of the process lines. However, this technique can lead to unwanted measurement errors and affect the temperature measurement dynamics mainly due to low thermal conductivity of the pipe wall material, large pipe diameters and low helium density. Assembling a temperature sensor in a well (cold finger) reaching the centerline of the flowing helium is a technique that can improve the measurement quality and dynamics (response time). The paper presents the numerical simulations of heat transfers occurring in the both measurement techniques and discusses the impacts of the heat transfer resistances on the temperature measurement dynamics.

  14. Microcontact patterning of conductive silver lines by contact inking and its layer-transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Nomura, Ken-ichi; Fukuda, Nobuko; Ushijima, Hirobumi

    2015-05-01

    We developed a contact inking technique for microcontact printing aiming at the fabrication of conductive silver-nanoparticle (Ag NP) lines with rectangular cross section and constant layer thickness, irrespective of pattern size and shape. In the proposed process, Ag NP ink was first coated on a blanket and then inking was carried out by a contact with a microcontact stamp. The ink transferred onto the top of the stamp was finally settled on a workpiece by pressing to complete the printing process. To achieve robust inking to the stamp, the peel strengths between the Ag NP layer and the blankets and between the Ag NP layer and the stamp were investigated using poly (dimethylsiloxane) (PDMS) materials with different surface energies. Interestingly, it was revealed that the transferability of Ag NP from the blanket toward the stamp was not solely determined by the surface energy difference but also by the extent of solvent uptake by the PDMS blanket during inking. The solvent-containing PDMS significantly lowered its adhesion strength against adjacent ink layers and, as a consequence, the ink transfer was successfully achieved even if the ink passed from a higher to a lower energy surface. Furthermore, by the solvent-vapour annealing of contact-inked semi-dried patterns, arbitrarily iterated transfers between PDMS surfaces became possible. With the contact-inking process developed here, we demonstrate a finely defined printed structure of Ag NP conductive lines with widths of up to 1 μm.

  15. Broadening of fast-beam spectral lines due to diffraction at the entrance slit of a spectrometer.

    NASA Technical Reports Server (NTRS)

    Leavitt, J. A.; Stoner, J. O., Jr.

    1972-01-01

    Experimental and theoretical demonstration of the necessity to take into account the effects of diffraction at a spectrometer's entrance slit in adjusting the spectrometer for observation of fast-beam spectral lines under conditions of minimum linewidth. An approximate expression is obtained for the optimum entrance slit width to be used in order to avoid the pronounced broadening of the spectral lines that occurs for very narrow entrance slits.

  16. Upgrade of the thirty-meter x-ray pencil beam line at the Institute of Space and Astronautical Science

    NASA Astrophysics Data System (ADS)

    Hayashi, Takayuki; Sato, Toshiki; Tomikawa, Kazuki; Kikuchi, Naomichi; Sato, Takuro; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu

    2014-07-01

    The thirty-meter X-ray pencil beam line at the Institute of Space and Astronautical Science (ISAS) was utilized for ground-based calibrations of X-ray telescopes (XRTs) onboard the ASTRO-D, the ASTRO-E and the ASTRO- E2 satellites. Recent upsizing or downsizing of XRT required upgrade of the ISAS beam line. We replaced a vacuum chamber in which the stages had been installed by a new cylindrical chamber whose diameter and length are 1.8 m and 11.3 m, respectively. Stages on which a telescope and detectors had been mounted were also replaced. At same time, a new CCD consists of 1240×1152 pixels whose size are 22.5×22.5 μm was introduced. The detector stage can be moved along the X-ray beam in the vacuum chamber, which allows us to change the distance between the sample and the detectors from 0.7 m to 9 m. The two stages can move in at least 500×500 mm2 of square in the plane normal to the X-ray beam. The pitching of some moving axes are measured at 60 arcsec at most. The others are no more than about 30 arcsec. From April 2013, the ASTRO-H Soft X-ray telescopes (SXTs) have been calibrated at the new ISAS beam line.

  17. Electron stripping processes of H{sup −} ion beam in the 80 kV high voltage extraction column and low energy beam transport line at LANSCE

    SciTech Connect

    Draganic, I. N.

    2016-02-15

    Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H{sup −} Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H{sup −} ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure were estimated for the injected hydrogen gas. The attenuation of H{sup −} beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H{sup −} ions on molecular hydrogen (H{sub 2}) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H{sup −} ion beam in the ISTS beam transport line.

  18. Electron stripping processes of H- ion beam in the 80 kV high voltage extraction column and low energy beam transport line at LANSCE

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.

    2016-02-01

    Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H- Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H- ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure were estimated for the injected hydrogen gas. The attenuation of H- beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H- ions on molecular hydrogen (H2) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H- ion beam in the ISTS beam transport line.

  19. Fraction transfer process in on-line comprehensive two-dimensional liquid-phase separations.

    PubMed

    Česla, Petr; Křenková, Jana

    2017-01-01

    Two-dimensional liquid-phase separations have gained increasing attention for their ability to separate complex sample mixtures. Among the experimental setups used, an on-line approach is preferred to reduce the probability of sample contamination, for easier automation and high-sample throughput. The interfacing of the separation techniques in the on-line mode brings additional demands on proper optimization of the two-dimensional system. In this review, the possibilities of the on-line coupling of liquid chromatography and liquid chromatography with capillary electrophoresis in two-dimensional systems are discussed. Special attention is paid to the fraction transfer process, which includes an overview of interfaces and experimental setups applied, the compatibility issues of separation systems, and instrumental parameters. The benefits and drawbacks of using electromigration separations in combination with liquid chromatography are presented as well.

  20. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  1. Analysis of the eigenvalue equation of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    The paper presents analysis of the eigenvalue problem of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line. An FEL model is discussed wherein diffraction effects, space charge fields and energy spread of electrons in the beam are taken into account. To take into account diffraction effects at the diaphragms we apply the rigorous impedance boundary conditions proposed by Veinstein. The rigorous solutions of the eigenvalue problem leave been found for the stepped and bounded parabolic electron beam profiles. Analytical expressions for eigenfunctions of active open waveguide and formulae of their expansion in eigenfunctions of passive open waveguide, are derived, too. Asymptotic behaviour of the obtained solutions is studied in details. The multilayer approximation method has been used to solve the eigenvalue problem for the beams with an arbitrary gradient profile of current density. This novel type of an FEL amplifier has perspective to be used for applications where high average and peak radiation power is required.

  2. Upgrade of the 30-m x-ray pencil beam line at the Institute of Space and Astronautical Science

    NASA Astrophysics Data System (ADS)

    Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Sato, Takuro; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu

    2015-10-01

    The 30-m x-ray pencil beam line at the Institute of Space and Astronautical Science has been upgraded. The vacuum chamber has been replaced by a new cylindrical chamber of diameter 1.8μm and length 11.3μm. Stages on which a telescope and detectors had been mounted were also replaced. At the same time, a new charge-coupled device consisting of 1240×1152 pixels of size 22.5×22.5 μm2 was introduced. The detector stage can be moved along the x-ray beam in the vacuum chamber, which enables us to vary the distance between the sample and the detectors from 0.7 to 9μm. The two stages can be moved in a square region 500×500 mm2 in the plane normal to the x-ray beam. The pitching of moving axes of Y direction (horizontal and normal to the beam) of the sample and the detector stages is somewhat large, but does not exceed 60 arc sec. The pitching of the other axes and the yawing of all the axes are less than 30 arc sec. As for rolling, we could obtain only the upper limits because of the difficulty in measuring them. The upper limit of the Z direction (vertical and normal to the beam) of the detector stage moving axis is somewhat large and is about 60 arc sec, and those of the other axes are less than 30 arc sec. A summary of the beam line performance is presented. Soon after the upgrade, the ASTRO-H Soft X-ray telescopes were calibrated in this beam line.

  3. Detachment factors for enhanced carrier to carrier transfer of CHO cell lines on macroporous microcarriers.

    PubMed

    Landauer, K; Dürrschmid, M; Klug, H; Wiederkum, S; Blüml, G; Doblhoff-Dier, O

    2002-05-01

    In this publication different detachment factors were tested for enhancing carrier to carrier transfer for scale-up of macroporous microcarrier based bioprocesses. Two Chinese hamster ovary cell lines, CHO-K1 and a genetically engineered CHO-K1 derived cell line (CHO-MPS), producing recombinant human Arylsulfatase B, were examined. The cells were grown on Cytoline 1microcarriers (Amersham Biosciences, Uppsala, Sweden) in protein-free and chemically defined medium respectively. Fully colonised microcarriers were used at passage ratios of approximately 1:10 for carrier to carrier transfer experiments. To accelerate the colonisation of the non-colonised, freshly added microcarriers the detachment reagents trypsin, papain, Accutasetrade mark (PAA, Linz, Austria), heparin and dextransulphate were used. Both cell lines showed good results with trypsin, Accutase and dextransulphate (Amersham Biosciences, Uppsala, Sweden), while papain failed to enhance carrier to carrier transfer in comparison to the non-treated reference. The maximum growth rate of cells on microcarriers with 2% dextransulphate in the medium was 0.25 +/- 0.02d(-1) and 0.27 +/- 0.03d(-1) for the CHO-MPS and CHO-K1, respectively. TheCHO-K1 grew best after detachment with trypsin (mu = 0.36 +/- 0.03d(-1)). This indicates, that one of the key parameters for carrier to carrier transfer is the uniform distribution of cells on the individual carriers during the initial phase. When this distribution can be improved, growth rate increases, resulting in a faster and more stable process.

  4. Theoretical study on production of heavy neutron-rich isotopes around the N = 126 shell closure in radioactive beam induced transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2017-04-01

    In order to produce more unknown neutron-rich nuclei around N = 126, the transfer reactions 136Xe + 198Pt, 136-144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS) model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z = 72- 77 are predicted in the reactions 136-144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line) project as well, for production of neutron-rich nuclei around the N = 126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N = 126 and the advantages get more obvious for producing nuclei with less charge number.

  5. Image quality & dosimetric property of an investigational imaging beam line MV-CBCT.

    PubMed

    Beltran, Chris; Lukose, Renin; Gangadharan, B; Bani-Hashemi, A; Faddegon, Bruce A

    2009-06-17

    To measure and compare the contrast to noise ratio (CNR) as a function of dose for the CBCTs produced by the mega-voltage (MV) imaging beam line (IBL) and the treatment beam line (TBL), and to compare the dose to target and various critical structures of pediatric patients for the IBL CBCT versus standard TBL orthogonal port films. Two Siemens Oncor linear accelerators were modified at our institution such that the MV-CBCT would operate under an investigational IBL rather than the standard 6MV TBL. Prior to the modification, several CBCTs of an electron density phantom were acquired with the TBL at various dose values. After the modification, another set of CBCTs of the electron density phantom were acquired for various doses using the IBL. The Contrast to Noise Ratio (CNR) for each tissue equivalent insert was calculated. In addition, a dosimetric study of pediatric patients was conducted comparing the 1 cGy IBL CBCT and conventional TBL orthogonal pair port films. The CNR for eight tissue equivalent inserts at five different dose settings for each type of CBCT was measured. The CNR of the muscle insert was 0.8 for a 5 cGy TBL CBCT, 1.1 for a 1.5 cGy IBL CBCT and 2.8 for a conventional CT. The CNR of the trabecular bone insert was 2.9 for a 5 cGy TBL CBCT, 5.5 for a 1.5 cGy IBL CBCT and 14.8 for a conventional CT. The IBL CBCT delivered approximately one-fourth the dose to the target and critical structures of the patients as compared to the TBL orthogonal pair port films. The IBL CBCT improves image quality while simultaneously reducing the dose to the patient as compared to the TBL CBCT. A 1 cGy IBL CBCT, which is used for boney anatomy localization, delivers one-fourth the dose as compared to conventional ortho-pair films.

  6. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    SciTech Connect

    Viezzer, E. E-mail: eviezzer@us.es; Dux, R.; Dunne, M. G.

    2016-11-15

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  7. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    PubMed

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line Dα. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  8. A transverse emittance and acceptance measurement system in a low-energy beam transport line

    SciTech Connect

    Kashiwagi, H. Miyawaki, N.; Kurashima, S.; Okumura, S.

    2014-02-15

    A transverse beam emittance and acceptance measurement system has been developed to visualize the relationship between the injected beam emittance and the acceptance of a cyclotron. The system is composed of a steering magnet, two pairs of slits to limit the horizontal and vertical phase-space, a beam intensity detector just behind the slits for the emittance measurement, and a beam intensity detector in the cyclotron for the acceptance measurement. The emittance is obtained by scanning the slits and measuring the beam intensity distribution. The acceptance is obtained by measuring the distribution of relative beam transmission by injecting small emittance beams at various positions in a transverse phase-space using the slits. In the acceptance measurement, the beam from an ion source is deflected to the defined region by the slits using the steering magnet so that measurable acceptance area covers a region outside the injection beam emittance. Measurement tests were carried out under the condition of accelerating a beam of {sup 16}O{sup 6+} from 50.2 keV to 160 MeV. The emittance of the injected beam and the acceptance for accelerating and transporting the beam to the entrance of the extraction deflector were successfully measured. The relationship between the emittance and acceptance is visualized by displaying the results in the same phase-plane.

  9. Fast characterization of line-end shortening and application of novel correction algorithms in e-beam direct write

    NASA Astrophysics Data System (ADS)

    Freitag, Martin; Choi, Kang-Hoon; Gutsch, Manuela; Hohle, Christoph; Galler, Reinhard; Krüger, Michael; Weidenmueller, Ulf

    2011-04-01

    For the manufacturing of semiconductor technologies following the ITRS roadmap, we will face the nodes well below 32nm half pitch in the next 2~3 years. Despite being able to achieve the required resolution, which is now possible with electron beam direct write variable shaped beam (EBDW VSB) equipment and resists, it becomes critical to precisely reproduce dense line space patterns onto a wafer. This exposed pattern must meet the targets from the layout in both dimensions (horizontally and vertically). For instance, the end of a line must be printed in its entire length to allow a later placed contact to be able to land on it. Up to now, the control of printed patterns such as line ends is achieved by a proximity effect correction (PEC) which is mostly based on a dose modulation. This investigation of the line end shortening (LES) includes multiple novel approaches, also containing an additional geometrical correction, to push the limits of the available data preparation algorithms and the measurement. The designed LES test patterns, which aim to characterize the status of LES in a quick and easy way, were exposed and measured at Fraunhofer Center Nanoelectronic Technologies (CNT) using its state of the art electron beam direct writer and CD-SEM. Simulation and exposure results with the novel LES correction algorithms applied to the test pattern and a large production like pattern in the range of our target CDs in dense line space features smaller than 40nm will be shown.

  10. Optical pumping spectroscopy of Rb vapour with co-propagating laser beams: line identification by a simple theoretical model

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Rabasović, Mihailo D.; Jelenković, Branislav M.

    2010-07-01

    In this paper the saturation spectra of rubidium vapour at room temperature, obtained with overlapped co-propagating laser beams, were examined. Unlike the standard saturation spectroscopy, here the transmission of the pump laser beam was detected. The pump laser was locked to an atomic transition of the D2 line, while the probe laser frequency was scanned in a wide frequency range. The pump and probe beams had approximately the same intensities; thus the probe laser can saturate transitions and contribute to optical pumping. This, together with Doppler broadening, leads to rich pump transmission spectra, with many lines appearing due to the interaction of lasers with atoms in different velocity groups. The advantages of this method are well-resolved structures and appearance of spectral lines on a flat, Doppler-free background. Agreement between experimental and theoretical results shows the usefulness of this simple model, based on the rate equations, for identification of lines and determination of relative contribution to the observed line intensity from atoms with different velocities. Theoretical spectra are a useful tool for the calibration of experimental spectra obtained by a nonlinear dependence of the laser frequency on the voltage applied to the piezo used for the laser diode frequency scanning.

  11. Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Vera, Jerry

    2015-01-01

    Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.

  12. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    SciTech Connect

    Dahl, Megan M.; Pikas, Joseph; Edgemon, Glenn L.; Philo, Sarah

    2013-01-22

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines.

  13. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Knopf, A.; Tanner, C.; Boye, D.; Lomax, A. J.

    2013-12-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At PSI, our new Gantry is equipped with a Beams Eye View (BEV) imaging system which will be able to acquire 2D x-ray images in fluoroscopy mode during treatment delivery. However, besides precisely tracking motion from BEVs, it is also essential to obtain information on the 3D motion vector throughout the whole region of interest, and any sparsely acquired surrogate motion is generally not sufficient to describe the deformable behaviour of the whole volume in three dimensions. In this study, we propose a method by which 3D deformable motions can be estimated from surrogate motions obtained using this monoscopic imaging system. The method assumes that example motions over a number of breathing cycles can be acquired before treatment for each patient using 4DMRI. In this study, for each of 11 different subjects, 100 continuous breathing cycles have been extracted from extended 4DMRI studies in the liver and then subject specific motion models have been built using principle component analysis (PCA). To simulate treatment conditions, a different set of 30 continuous breathing cycles from the same subjects have then been used to generate a set of simulated 4DCT data sets (so-called 4DCT(MRI) data sets), from which time-resolved digitally reconstructed radiographs (DRRs) were calculated using the BEV geometry for three treatment fields respectively. From these DRRs, surrogate motions from fiducial markers or the diaphragm have been used as a predictor to estimate 3D motions in the liver region for each subject. The prediction results have been directly compared to the ‘ground truth’ motions extracted from the same 30 breath cycles of the originating 4DMRI data set. Averaged

  14. Discrimination of charged particles in a neutral beam line by using a solid scintillation detector

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Kwan; Ko, Jewou; Liu, Dong

    2017-01-01

    In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles originate from various sources, such as cosmic rays and laboratory materials surrounding the main detector. Therefore, a veto that discriminates charged particles can improve the particle-detection efficiency of the entire experiment for detecting WIMPs. Here, we investigate in the thickness range of 1 mm to 5 mm, the optimal thickness of a polystyrene scintillator as a chargedparticle veto detector. We found that 3-mm-thick polystyrene provides the best performance to veto charged particles and the charged-particle background in the search for the WIMP signal. Furthermore, we fabricated 3-mm-thick and 5-mm-thick polystyrene charged particle veto detectors that will be used in an underground laboratory in the search for WIMP dark matter. After exposing those detectors are the actual beam line, we compared the rate of charged particles measured using those detectors and the rate simulated through a Monte Carlo simulation.

  15. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Romanchenko, I. V.; Ulmaskulov, M. R.; Sharypov, K. A.; Shunailov, S. A.; Shpak, V. G.; Yalandin, M. I.; Pedos, M. S.; Rukin, S. N.; Konev, V. Yu.; Rostov, V. V.

    2017-05-01

    The synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ˜5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ˜10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.1 GHz. The relative delay between channels reached the half-period of the center frequency of oscillations. The associated beam steering by four element array of conical helical antennas was demonstrated in a horizontal plane at 17°. The effective potential of radiation reached 360 kV at the radiation axis. The effect of ferrite temperature on the shock wave velocity in gyromagnetic NLTL is observed.

  16. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines.

    PubMed

    Romanchenko, I V; Ulmaskulov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N; Konev, V Yu; Rostov, V V

    2017-05-01

    The synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ∼5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ∼10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.1 GHz. The relative delay between channels reached the half-period of the center frequency of oscillations. The associated beam steering by four element array of conical helical antennas was demonstrated in a horizontal plane at 17°. The effective potential of radiation reached 360 kV at the radiation axis. The effect of ferrite temperature on the shock wave velocity in gyromagnetic NLTL is observed.

  17. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  18. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  19. Design of Main Control Console Software in EAST Neutral Beam Injector's Control System for the First Beam Line

    NASA Astrophysics Data System (ADS)

    Wu, De-Yun; Hu, Chun-Dong; Sheng, Peng; Zhao, Yuan-Zhe; Zhang, Xiao-Dan; Cui, Qing-Long

    2013-10-01

    Neutral beam injector is one of the main plasma heating and plasma current driving methods for experimental advanced superconducting tokomaks (EAST). In order to realize visual operation of EAST neutral beam injector's control system (NBICS), main control console (MCC) is developed to work as the human-machine interface between the NBICS and physical operator. It can meet the requirements of visual control of NBICS by providing a user graphic interface. With the specific algorithms, the setup of power supply sequence is relatively independent and simple. Displaying the real-time feedback of the subsystems provides a reference for operators to monitor the status of the system. The MCC software runs on a Windows system and uses C++ language code while using client/server (C/S) mode, multithreading and cyclic redundancy check technology. The experimental results have proved that MCC provides a stability and reliability operation of NBICS and works as an effective man-machine interface at the same time.

  20. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    PubMed

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  1. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  2. Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W.

    1995-11-01

    A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.

  3. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    PubMed Central

    Wang, Andrew; Butte, Manish J.

    2014-01-01

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished. PMID:25161320

  4. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    SciTech Connect

    Wang, Andrew; Butte, Manish J.

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  5. Status of the SPES-charge breeder (SPES-CB) and its beam line at INFN-LNL

    NASA Astrophysics Data System (ADS)

    Galatá, Àlessio; Comunian, M.; Bellan, L.; Maggiore, M.; Patti, G.; Roncolato, C.; Bisoffi, G.; Russo, A. D.; Calabretta, L.; Angot, J.; Lamy, T.

    2016-06-01

    The Selective Production of Exotic Species (SPES) facility is under construction at INFN-LNL: aim of this project is the production, ionization and post-acceleration of radioactive ions to perform forefront research in nuclear physics. Radioactive species will be produced by fissions induced by a proton beam impinging on an UCx target: the proton beam will be delivered by a room temperature cyclotron (built by the Best Company) with a maximum energy of 40 MeV and 0.25 mA of maximum current. The radioactive species produced in the Target-Ion-Source system, extracted as a 1+ beam, cooled in a RFQ-cooler and purified from the isobars contaminants through a High Resolution Mass Spectrometer (HRMS). In order to allow post acceleration with the superconducting linac ALPI at INFN-LNL (up to 10 MeV/A for A/q = 7), an ECR-based charge breeding technique (ECR-CB) was chosen: in particular the SPES-CB was developed by the LPSC Grenoble on the basis of the Phoenix booster. The SPES-CB will be equipped with a complete test bench, totally integrated with the SPES beam line: in particular, in order to avoid beam contaminations induced by the impurities present inside the SPES-CB, and to have high transmission for a beam of very low intensity, special attention was paid not only to the transport efficiency but also to the resolution of the spectrometer downstream the charge breeder, with the design of a Medium Resolution Mass Spectrometer (MRMS). In the following paper the technical aspects connected with SPES-CB, its beam line and the transport of highly charged radioactive ions will be described.

  6. Dynamics of Rovibrational Energy Transfer from Excited Molecular - Crossed Beam Studies

    NASA Astrophysics Data System (ADS)

    Du, Hong

    1990-01-01

    Rovibrational inelastic scattering has been studied for the collisions between helium and excited molecular iodine (I_2) in a crossed beam apparatus. I _2 was initially prepared in two vibrational states, upsilon' = 15 and 35, in the B O_{rm u }^ + electronic state. Dispersed single vibrational level fluorescence spectra revealed the vibrational inelastic scattering. The collision energy (Ecm) was varied from 35meV to 190meV. Vibrational state changes up to | Deltaupsilon| = 6 in upsilon' = 35 and | Deltaupsilon| = 3 in upsilon' = 15 were observed. Nearly 200 relative vibrational state-to-state inelastic scattering cross sections were measured. At each Ecm, all the cross sections for both upsilon' = 15 and 35 can be fitted by a single exponential function sigma ~ exp(-| Delta rm E|/beta). At high Ecm, beta_{rm Vto T} is equal to beta_{rm Tto V}. At low ECM, beta _{rm Vto T} is larger than beta_{rm Tto V}. However, all beta's are linear functions of Ecm. Also the cross sections for the Deltaupsilon = +/-1 scattering are nearly independent of Ecm. Considering that the collisions are not adiabatic, these results are not consistent with the well-known Landau-Teller theory. Using the empirical dependence of the cross sections on Ecm, we calculated the thermal rate constants. The calculation at 300K agrees with the bulb experiment for V to T but not for T to V transitions. The calculation also shows that the bulb energy transfer is mainly induced by collisions with velocities ~2 times larger than the most probable velocity. From the cross sections, mean energy transfer per vibrationally inelastic collision, < Deltarm E>, was also obtained. The results show that < Deltarm E> increases linearly with Ecm and levels off to near-zero at high collision energy. At low Ecm, < Deltarm E> in upsilon' = 15 is larger than that in upsilon' = 35. The average rotational energy transfered increases almost linearly with Ecm but is small, only ~ 2% of the Ecm. This is a direct result of

  7. Optimizing A Lipocomplex-Based Gene Transfer Method into HeLa Cell Line

    PubMed Central

    Asgharian, Alimohammad; Banan, Mehdi; Najmabadi, Hossein

    2014-01-01

    One of the most significant steps in gene expression studies is transferring genes into cell cultures. Despite there are different methods for gene delivery such as viral and non-viral producers, some cationic lipid reagents have recently developed to transfect into mam- malian cell lines. The main aim of this study was optimizing and improving lipocomplex based transient transfection procedures into HeLa cell line which is being used widely as a typical cell in biological studies. This study was an experimental research. In this work, pCMV β-Gal DNA plasmid was used as a reporter DNA for determining the rate of gene transfection into HeLa cells. To accomplish the highest gene delivery into HeLa cells, optimizing experiments were carried out in different volumes of FuGENE-HD, LipofectamineTM2000 and X-tremeGENE. Also, we investigated tranasfection efficiency in presence of various cell densities of HeLa cells. Then, transfection efficiency and cell toxicity were measured by beta gal staining and trypan blue methods, respectively. Using FuGENE-HD in volume of 4µl along with 105 HeLa cells, transfection efficiency was higher (43.66 ± 1.52%) in comparison with the cationic lipids LipofectamineTM2000 and X-tremeGENE. In addition, the rate of cell toxicity in presence of FuGENE-HD was less than 5%. In summary, the cationic lipid FuGENE-HD indicates a suitable potential to transfer DNA into HeLa cells and it can be an efficient reagent for gene delivery for HeLa cells in vitro. Moreover, it is worth designing and optimizing gene transfer experiments for other cell lines with FuGENE-HD due to its low toxicity and high efficiency. PMID:24381863

  8. Optimizing A Lipocomplex-Based Gene Transfer Method into HeLa Cell Line.

    PubMed

    Asgharian, Alimohammad; Banan, Mehdi; Najmabadi, Hossein

    2014-01-01

    One of the most significant steps in gene expression studies is transferring genes into cell cultures. Despite there are different methods for gene delivery such as viral and non-viral producers, some cationic lipid reagents have recently developed to transfect into mam- malian cell lines. The main aim of this study was optimizing and improving lipocomplex based transient transfection procedures into HeLa cell line which is being used widely as a typical cell in biological studies. This study was an experimental research. In this work, pCMV β-Gal DNA plasmid was used as a reporter DNA for determining the rate of gene transfection into HeLa cells. To accomplish the highest gene delivery into HeLa cells, optimizing experiments were car- ried out in different volumes of FuGENE-HD, Lipofectamine(TM)2000 and X-tremeGENE. Also, we investigated tranasfection efficiency in presence of various cell densities of HeLa cells. Then, transfection efficiency and cell toxicity were measured by beta gal staining and trypan blue methods, respectively. Using FuGENE-HD in volume of 4µl along with 10(5) HeLa cells, transfection efficiency was higher (43.66 ± 1.52%) in comparison with the cationic lipids Lipofectamine(TM)2000 and X-tremeGENE. In addition, the rate of cell toxicity in presence of FuGENE-HD was less than 5%. In summary, the cationic lipid FuGENE-HD indicates a suitable potential to transfer DNA into HeLa cells and it can be an efficient reagent for gene delivery for HeLa cells in vitro. Moreover, it is worth designing and optimizing gene transfer experiments for other cell lines with FuGENE-HD due to its low toxicity and high efficiency.

  9. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    SciTech Connect

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.

  10. Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies

    NASA Astrophysics Data System (ADS)

    Mendaza, Teresa; Martin-Torres, Javier

    2016-04-01

    We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of

  11. Alpha particle diagnostic beam line system to generate an intense Li/sup 0/ beam with an ORNL SITEX source

    SciTech Connect

    Dagenhart, W.K.; Stirling, W.L.; Tsai, C.C.; Whealton, J.H.

    1985-01-01

    The Oak Ridge National Laboratory (ORNL) SITEX (Surface Ionization with Transverse Extraction) negative ion source utilizes a 100-V/20-A reflex arc discharge in a 1300-gauss magnetic field to generate Cs+ ions and H+ or D+ ions, depending on the beam required. A shaped molybdenum plate is placed directly behind the arc column. Cesium coverage on this plate is used to minimize the surface work function, which requires two-thirds of a monolayer coverage. Cesium coverage ia adjusted both by cesium flow control into the arc discharge chamber and by temperature control of the converter using gaseous-helium cooling channels in the converter plate. Normal converter operational temperatures are 300/sup 0/ to 500/sup 0/C H/sup -//D/sup -/ beams are generated at the biased converter surface (-150 V with respect to the anode) by Cs/sup +/ sputtering of absorbed hydrogen or deuterium and by the reflection-conversion mechanism of H/sup +//D/sup +/ ions which strike the converter surface at 150 eV. The negative ions are accelerated through the 150-V plasma sheath at the converter surface and are focused by the converter geometry and magnetic field so as to pass through the exit aperture with minimum angular divergence. The ion optics of the SITEX accelerator has been calculated using the ORNL 3-D optics code and results in a divergence perpendicular to the slot of theta/sub perpendicular rms/ = 0.35/sup 0/ and parallel to the slot of theta/sub parallel rms/ = 0.18/sup 0/. This beam divergence should be adequate for injection into a radio frequency quadrupole (RFQ) for further acceleration.

  12. Simulation and beam line experiments for the superconducting ECRion source VENUS

    SciTech Connect

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-09-10

    The particle-in-cell code Warp has been enhanced toincorporate both two- and three-dimensional sheath extraction modelsgiving Warp the capability of simulating entire ion beam transportsystems including the extraction of beams from plasma sources. In thisarticle we describe a method of producing initial ion distributions forplasma extraction simulations in electron cyclotron resonance (ECR) ionsources based on experimentally measured sputtering on the source biaseddisc. Using this initialization method, we present preliminary resultsfor extraction and transport simulations of an oxygen beam and comparethem with experimental beam imaging on a quartz viewing plate for thesuperconducting ECR ion source VENUS.

  13. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam.

    PubMed

    Marsolat, F; De Marzi, L; Pouzoulet, F; Mazal, A

    2016-01-21

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens' model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens' model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens' model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm(-1). These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.

  14. Absolute line strengths in nu(4), (12)CH(4): a dual-beam diode laser spectrometer with sweep integration.

    PubMed

    Jennings, D E

    1980-08-15

    A tunable diode laser spectrometer with several unique features has been developed for use in the middle IR. The all-reflective optical system has a dual-beam configuration before the dispersive mode selector to eliminate transit-angle errors at the calibration etalon. By maintaining separated beams through the mode selector, beam combiner losses are avoided. Averaging successive sweeps of the current-modulated laser permits stable reproducible spectral integrations, eliminating etalon thermal errors and producing high photometric sensitivity. Line strengths have been measured using this instrument for eleven transitions in nu(4) of (12)CH(4). These include R0 and R1 and nine P-branch transitions in the 1202-1263-cm(-1) range. Techniques for measuring strengths with a diode laser are discussed.

  15. SUPERCONDUCTING MAGNET SYSTEM AT THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    A neutrino oscillation experiment using the J-PARC SO GeV 0.75 MW proton beam is planned as a successor to the K2K project currently being operated at KEK. A superconducting magnet system is required for the arc section of the primary proton beam line to be within the space available at the site. A system with 28 combined function magnets is proposed to simplify the system and optimize the cost. The required fields for the magnets are 2.6 T dipole and 19 T/m quadrupole. The magnets are also required to have a large aperture, 173.4 mm diameter, to accommodate the large beam emittance. The magnets will be protected by cold diodes and cooled by forced flow supercritical helium produced by a 4.5 K, 2 {approx} 2.5 kW refrigerator. This paper reports the system overview and the design status.

  16. High-radiance LDP source for mask inspection and beam line applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Teramoto, Yusuke; Santos, Bárbara; Mertens, Guido; Kops, Ralf; Kops, Margarete; von Wezyk, Alexander; Bergmann, Klaus; Yabuta, Hironobu; Nagano, Akihisa; Ashizawa, Noritaka; Taniguchi, Yuta; Yamatani, Daiki; Shirai, Takahiro; Kasama, Kunihiko

    2017-04-01

    High-throughput actinic mask inspection tools are needed as EUVL begins to enter into volume production phase. One of the key technologies to realize such inspection tools is a high-radiance EUV source of which radiance is supposed to be as high as 100 W/mm2/sr. Ushio is developing laser-assisted discharge-produced plasma (LDP) sources. Ushio's LDP source is able to provide sufficient radiance as well as cleanliness, stability and reliability. Radiance behind the debris mitigation system was confirmed to be 120 W/mm2/sr at 9 kHz and peak radiance at the plasma was increased to over 200 W/mm2/sr in the recent development which supports high-throughput, high-precision mask inspection in the current and future technology nodes. One of the unique features of Ushio's LDP source is cleanliness. Cleanliness evaluation using both grazing-incidence Ru mirrors and normal-incidence Mo/Si mirrors showed no considerable damage to the mirrors other than smooth sputtering of the surface at the pace of a few nm per Gpulse. In order to prove the system reliability, several long-term tests were performed. Data recorded during the tests was analyzed to assess two-dimensional radiance stability. In addition, several operating parameters were monitored to figure out which contributes to the radiance stability. The latest model that features a large opening angle was recently developed so that the tool can utilize a large number of debris-free photons behind the debris shield. The model was designed both for beam line application and high-throughput mask inspection application. At the time of publication, the first product is supposed to be in use at the customer site.

  17. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  18. Single molecule studies of a ladder type conjugated polymer: vibronic spectra, line widths, and energy transfer.

    PubMed

    Zickler, Martin F; Feist, Florian A; Jacob, Josemon; Müllen, Klaus; Basché, Thomas

    2015-06-01

    Confocal fluorescence microscopy and spectroscopy are employed to investigate single poly(ladder-type pentaphenylene) (LPPentP) molecules dispersed in thin poly(methyl methacrylate) (PMMA) films at 1.2 K. Emission spectra of single chains show single as well as multi-chromophore emission indicating variegated communication along the chains. The vibronic structure in the emission spectra resembles the one found for other ladder-type polymers. Purely electronic zero-phonon lines in emission are substantially broadened, most probably due to fast spectral diffusion. By surmounting the limitations of emission spectroscopy, nonemitting donor chromophores, which transfer their excitation energy in a radiationless manner to emitting chromophores, are accessed by excitation spectroscopy. Remarkably, by comparing the data of emitting and nonemitting chromophores a contribution to the zero-phonon excitation line width has to be considered which places a lower limit on the estimated energy transfer time of several picoseconds between adjacent chromophores. Finally, the data indicate qualitatively a restricted flexibility of LPPentP compared to poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV).

  19. Design study of beam transport lines for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Ghithan, S.; Roy, G.; Schuh, S.

    2017-09-01

    The biomedical community has asked CERN to investigate the possibility to transform the Low Energy Ion Ring (LEIR) accelerator into a multidisciplinary, biomedical research facility (BioLEIR) that could provide ample, high-quality beams of a range of light ions suitable for clinically oriented, fundamental research on cell cultures and for radiation instrumentation development. The present LEIR machine uses fast beam extraction to the next accelerator in the chain, eventually leading to the Large Hadron Collider (LHC) . To provide beam for a biomedical research facility, a new slow extraction system must be installed. Two horizontal and one vertical experimental beamlines were designed for transporting the extracted beam to three experimental end-stations. The vertical beamline (pencil beam) was designed for a maximum energy of 75 MeV/u for low-energy radiobiological research, while the two horizontal beamlines could deliver up to 440 MeV/u. One horizontal beamline shall be used preferentially for biomedical experiments and shall provide pencil beam and a homogeneous broad beam, covering an area of 5 × 5 cm2 with a beam homogeneity of ±5%. The second horizontal beamline will have pencil beam only and is intended for hardware developments in the fields of (micro-)dosimetry and detector development. The minimum full aperture of the beamlines is approximately 100 mm at all magnetic elements, to accommodate the expected beam envelopes. Seven dipoles and twenty quadrupoles are needed for a total of 65 m of beamlines to provide the specified beams. In this paper we present the optical design for the three beamlines.

  20. Design study of the ESS-Bilbao 50 MeV proton beam line for radiobiological studies

    NASA Astrophysics Data System (ADS)

    Huerta-Parajon, M.; Martinez-Ballarin, R.; Abad, E.

    2015-02-01

    The ESS-Bilbao proton accelerator facility has been designed fulfilling the European Spallation Source (ESS) specifications to serve as the Spanish contribution to the ESS construction. Furthermore, several applications of the ESS-Bilbao proton beam are being considered in order to contribute to the knowledge in the field of radiobiology, materials and aerospace components. Understanding of the interaction of radiation with biological systems is of vital importance as it affects important applications such as cancer treatment with ion beam therapy among others. ESS-Bilbao plans to house a facility exclusively dedicated to radiobiological experiments with protons up to 50 MeV. Beam line design, optimisation and initial calculations of flux densities and absorbed doses were undertaken using the Monte Carlo simulation package FLUKA. A proton beam with a flux density of about 106 protons/cm2 s reaches the water sample with a flat lateral distribution of the dose. The absorbed dose at the pristine Bragg peak calculated with FLUKA is 2.4 ± 0.1 Gy in 1 min of irradiation time. This value agrees with the clinically meaningful dose rates, i.e. around 2 Gy/min, used in hadrontherapy. Optimisation and validation studies in the ESS-Bilbao line for radiobiological experiments are detailed in this article.

  1. Radiation-hard beam position detector for use in the accelerator dump lines

    SciTech Connect

    Pavel Degtiarenko; Danny Dotson; Arne Freyberger; Vladimir Popov

    2005-06-01

    A new method of beam position measurement suitable for monitoring high energy and high power charged particle beams in the vicinity of high power beam dumps is presented. We have found that a plate made of Chemical Vapor Deposition (CVD) Silicon Carbide (SiC) has physical properties that make it suitable for such an application. CVD SiC material is a chemically inert, extremely radiation-hard, thermo-resistive semiconductor capable of withstanding working temperatures over 1500 C. It has good thermal conductivity comparable to that of Aluminum, which makes it possible to use it in high-current particle beams. High electrical resistivity of the material, and its semiconductor properties allow characterization of the position of a particle beam crossing such a plate by measuring the balance of electrical currents at the plate ends. The design of a test device, and first results are presented in the report.

  2. Experimental and analytical studies on a foam insulated rigid type transfer line for use with liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Patidar, Jyotish; Sumanth, R. A.; Behera, Upendra; Kasthurirengan, Srinivasan

    2017-02-01

    The transfer line is one of the important components of any cryogenic system needed to transport the cryogenic fluid from one location to another. Towards our efforts to develop a long rigid-type transfer line for liquid nitrogen (LN2) to transfer this fluid from a 5000 litre capacity vertical storage tank to the Helium liquefier (Linde Model 1610) located at a distance of nearly 50 m, we designed and fabricated several units of straight section transfer lines of length ≈ 6.5 m and they were integrated to make the long length transfer line. Each unit was fabricated with 0.5 inch dia. copper inner tube supported by spacers within 2 inch dia. PVC outer tube. Each section was foam insulated after the necessary instrumentation for temperature measurements. The individual sub units were integrated together with a small bellow section in between to take care of thermal contraction during use. We present here the analytical and experimental studies of the cool down and mass flow characteristics of a single foam insulated unit. These experimental studies are representative results of the performances of the long length rigid foam insulated transfer line.

  3. An improved pulse-line accelerator-driven, intense current-density, and high-brightness pseudospark electron beam

    SciTech Connect

    Zhu, J.; Wang, Z.; Zhang, L.; Wang, M.

    1996-02-01

    A high-voltage (200 kV), high current-density, low-emittance (23 {pi}{center_dot}mm mrd), high-brightness (8 {times} 10{sup 10} A/(mrd){sup 2}) electron beam was generated in a pseudospark chamber filled with 15 Pa nitrogen and driven by a modified pulse line accelerator. The beam ejected with {le}1-mm diameter, 2.2-kA beam current, 400-ns pulse length, and about 20 cm propagation distance. Exposure of 10 shots on the same film produced a hole of 1.6-mm diameter at 7 cm downstream of the anode, and showed its good reproducibility. After 60 shots, it was observed that almost no destructive damage traces were left on the surfaces of the various electrodes and insulators of the pseudospark discharge chamber. It was experimentally found that the quality of the pseudospark electron beam remains very high, even at high voltages (of several hundred kilovolts), similar to low voltages, and is much better than the quality of the cold-cathode electron beams.

  4. Effects of proton beam irradiation on mitochondrial biogenesis in a human colorectal adenocarcinoma cell line.

    PubMed

    Ha, Byung Geun; Jung, Sung Suk; Shon, Yun Hee

    2017-09-01

    Proton beam therapy has recently been used to improve local control of tumor growth and reduce side-effects by decreasing the global dose to normal tissue. However, the regulatory mechanisms underlying the physiological role of proton beam radiation are not well understood, and many studies are still being conducted regarding these mechanisms. To determine the effects of proton beams on mitochondrial biogenesis, we investigated: mitochondrial DNA (mtDNA) mass; the gene expression of mitochondrial transcription factors, functional regulators, and dynamic-related regulators; and the phosphorylation of the signaling molecules that participate in mitochondrial biogenesis. Both the mtDNA/nuclear DNA (nDNA) ratio and the mitochondria staining assays showed that proton beam irradiation increases mitochondrial biogenesis in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced aggressive HT-29 cells. Simultaneously, proton beam irradiation increases the gene expression of the mitochondrial transcription factors PGC-1α, NRF1, ERRα, and mtTFA, the dynamic regulators DRP1, OPA1, TIMM44, and TOM40, and the functional regulators CytC, ATP5B and CPT1-α. Furthermore, proton beam irradiation increases the phosphorylation of AMPK, an important molecule involved in mitochondrial biogenesis that is an energy sensor and is regulated by the AMP/ATP ratio. Based on these findings, we suggest that proton beam irradiation inhibits metastatic potential by increasing mitochondrial biogenesis and function in TPA-induced aggressive HT-29 cells.

  5. Transfer efficiency of angular momentum in sum-frequency generation and control of its spin and orbital parts by varying polarization and frequency of fundamental beams

    NASA Astrophysics Data System (ADS)

    Perezhogin, I. A.; Grigoriev, K. S.; Potravkin, N. N.; Cherepetskaya, E. B.; Makarov, V. A.

    2017-08-01

    Considering sum-frequency generation in an isotropic chiral nonlinear medium, we analyze the transfer of the spin angular momentum of fundamental elliptically polarized Gaussian light beams to the signal beam, which appears as the superposition of two Laguerre-Gaussian modes with both spin and orbital angular momentum. Only for the circular polarization of the fundamental radiation is its angular momentum fully transferred to the sum-frequency beam; otherwise, part of it can be transferred to the medium. Its value, as well as the ratio of spin and orbital contributions in the signal beam, depends on the fundamental frequency ratio and the polarization of the incident beams. Higher energy conversion efficiency in sum-frequency generation does not always correspond to higher angular momentum conversion efficiency.

  6. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  7. Theoretical study of fabrication of line-and-space patterns with 7 nm quarter-pitch using electron beam lithography with chemically amplified resist process: V. Optimum beam size

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2016-10-01

    The high-volume production of semiconductor devices with sub-10 nm critical dimensions is challenging. We have investigated the feasibility of the fabrication of line-and-space patterns with a 7 nm quarter-pitch (7 nm space width and 21 nm line width) by electron beam (EB) lithography. In this study, the optimum beam size for the fabrication of line-and-space patterns with a 7 nm quarter-pitch was investigated from the viewpoint of the trade-off relationship between line edge roughness (LER) and sensitivity. When the peak charge was constant, the optimum beam size depended on the required sensitivity. When the total charge was constant, the beam size was required to be less than 1.6 nm for minimizing LER.

  8. LCLS Spontaneous Radiation with Reflection along the Beam Line in the Undulator Pipes

    SciTech Connect

    Not Available

    2010-12-07

    Monte Carlo simulations of the spontaneous radiation at low and high energies up to the Near Experimental Hall entrance yield beam widths for use in the design of transport and diagnostic instruments in the Front End Enclosure.

  9. Commissioning of BL 7.2, the new diagnostic beam line at the ALS

    SciTech Connect

    Sannibale, Fernando; Baum, Dennis; Biocca, Alan; Kelez, Nicholas; Nishimura, Toshiro; Scarvie, Tom; Williams, Eric; Holldack, Karsten

    2004-06-29

    BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.

  10. Upgrade to a programmable timing system for the KOMAC proton linac and multi-purpose beam lines

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2016-09-01

    The KOMAC facility consists of low-energy components, including a 50-keV ion source, a lowenergy beam transport (LEBT), a 3-MeV radio-frequency quadrupole (RFQ), and a 20-MeV drift tube linac (DTL), as well as high-energy components, including seven DTL tanks for the 100-MeV proton beam. The KOMAC includes ten beam lines, five for 20-MeV beams and five for 100-MeV beams. The peak beam current and the maximum beam duty are 20 mA and 24% for the 20-MeV linac and 20 mA and 8% for the 100-MeV linac, respectively. Four high-voltage convertor modulators are used. Each modulator drives two or three klystrons. The peak output power is 5.8 MW, and the average power is 520 kW with a duty of 9%. The pulse width and repetition rate are 1.5 ms and 60 Hz, respectively. Each component of the pulsed operation mode has a timing trigger signal with precision synchronization. A timing system for beam extraction and for diagnostic components is required to provide precise pulse signals synchronized with a 300-MHz RF reference frequency. In addition, the timing parameters should be capable of real-time changes in accordance with the beam power. The KOMAC timing system has been upgraded to a programmable Micro Research Finland (MRF) event timing system that is synchronized with the RF, AC main frequency and with the global positioning system (GPS) 1-PPS signal. The event timing system consists of an event generator (EVG) and an event receiver (EVR). The event timing system is integrated with the KOMAC control system by using experimental physics and industrial control system (EPICS) software. For preliminary hardware and software testing, a long operation test with a synchronization of 300-MHz RF reference and 60-Hz AC has been completed successfully. In this paper, we will describe the software implementation, the testing, and the installation of the new timing system.

  11. Gas Transport and Density Control in the HYLIFE Heavy-Ion Beam Lines

    SciTech Connect

    Debonnel, Christophe S.; Welch, Dale R.; Rose, David V.; Lawrence, Simon S.Yu; Peterson, Per F

    2003-05-15

    The effective propagation and focusing of heavy-ion beams in the final-focus magnet region of inertial fusion target chambers require controlling the background gas density and pressure in the beam tubes. Liquid vortexes will coat the inside of the tubes next to the beam ports and will help eliminate the need for mechanical shutters to mitigate the venting of target chamber background gas into the final-focus magnet region. Before the neutralizing region, the beam space charge is high, and ablation and target debris deposition in the final-focus magnet region may cause voltage breakdown. Previous studies focused on evaluating the amount of target chamber debris reaching the entrance of the beam ports. The TSUNAMI code has now been used to assess the density, temperature, and velocity of the vortex debris transported {approx}3 m up the beam tubes and reaching the final-focus magnet region, assuming that the liquid vortexes are perfectly absorbing surfaces. To further mitigate debris deposition in the final-focus magnet region, and prevent voltage breakdown, a 'magnetic shutter' has been envisaged to divert the debris out of the final-focus region. This shutter will prevent the hot ablation debris from reaching the magnet region and, coupled to some ionizing scheme, will conveniently suppress early ingression of debris into the final-focus magnet region.

  12. Line-focus solar central power system, phase I. Subsystem experiment: receiver heat transfer

    SciTech Connect

    Slemmons, A J

    1980-04-01

    Wind-tunnel tests confirmed that heat losses due to natural convection are negligible in the line-focus, solar-powered receiver. Anomalies in the forced-convection tests prevented definitive conclusions regarding the more important forced convection. Flow-visualization tests using a water table show much lower velocities inside the receiver cavity than outside, supporting the supposition that the forced-heat transfer should be less than that from a standard exposed cylinder. Furthermore, the water-table tests showed ways to decrease the low velocities in the cavity should this be desired. Further wind-tunnel testing should be done to confirm estimates and to support advanced design. This testing can be done in standard wind tunnels since only the forced convection is of concern.

  13. Variations in propagation delay times for line ten (TV) based time transfers

    NASA Technical Reports Server (NTRS)

    Chiu, M. C.; Shaw, B. W.

    1982-01-01

    Variation in the propagation delay for a 30 km TV (Line Ten) radio link was evaluated for a series of 30 independent measurements. Time marks from TV Channel 5 WTTG in Washington, D.C. were simultaneously measured at the Johns Hopkins University Applied Physics Laboratory and at the United States Naval Observatory against each stations' local cesium standard clocks. Differences in the stations' cesium clocks were determined by portable cesium clock transfers. Thirty independent timing determinations were made. The root mean square deviation in the propagation delay calculated from the timing determinations was 11 ns. The variations seen in the propagation delays are believed to be caused by environmental factors and by errors in the portable clock timing measurements. In correlating the propagation delay variations with local weather conditions, only a moderate dependence on air temperature and absolute humidity was found.

  14. Development of R. I. Soloukhin's scientific line of investigations at the heat and mass transfer institute

    NASA Astrophysics Data System (ADS)

    Zhdanok, S. A.; Penyazkov, O. G.; Fomin, N. A.

    2010-12-01

    The history of development of works on physical gasdynamics and high-temperature thermal physics that were initiated by the outstanding scientist, Corresponding Member of the USSR Academy of Sciences, Academician of the BSSR Academy of Sciences, Lenin Prize Winner Rem Ivanovich Soloukhin at the A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus is described. Particular emphasis is placed on investigations into physicochemical kinetics under nonequilibrium conditions, combustion, detonation, and the gasdynamics of explosions and reactive systems; these investigations have been carried out at the Institute during the last three decades. Also, R. I. Soloukhin's works at the Siberian Branch of the USSR Academy of Sciences, where the foundations of this scientific line of investigations were laid, are briefly described.

  15. Dual-band periodic beam scanning antenna using eighth mode substrate integrated waveguide based metamaterial transmission line

    NASA Astrophysics Data System (ADS)

    Wu, Guo-cheng; Wang, Guang-ming; Liang, Jian-gang; Gao, Xiang-jun

    2017-05-01

    In this paper, a novel dual-band periodic metamaterial antenna with a continuous beam scanning property from backward to forward directions is first proposed by using an eighth mode substrate integrated waveguide (EMSIW) based metamaterial transmission line (MTM TL). The proposed beam scanning antenna consists of 11 unit cells of the EMSIW based MTM TL, and the unit cell of MTM TL is designed by etching two different interdigital fingers on the upper ground of EMSIW. The MTM TL has two balanced composite right/left-handed (CRLH) passbands, and exhibits a continuous phase constant changing from negative to positive values within the two passbands. For verification, the proposed dual-band periodic beam scanning antenna is fabricated and measured. The measured results show that the fabricated beam scanning antenna has two operating frequency bands of 4.2-6.2 GHz (38.5%) and 10.2-11.1 GHz (8.5%), with a return loss better than 10 dB, and achieving a continuous beam scanning property from backward  -62° to forward  +55°and backward  -27° to forward  +18° within the two operating frequency bands, respectively. The measured peak antenna gain is 14.7 and 11.7 dB in the first and second operating frequency band. Moreover, the proposed antenna has a filtering capability in the two operating frequency bands. Besides, the measured and simulated results of the proposed dual-band periodic antenna are in good agreement with each other, indicating that the significance and effectiveness of this method to design beam scanning antenna.

  16. A safe packaging line for gene transfer: separating viral genes on two different plasmids.

    PubMed Central

    Markowitz, D; Goff, S; Bank, A

    1988-01-01

    A retrovirus packaging cell line was constructed by using portions of the Moloney murine leukemia virus in which the gag, pol, and env genes of the helper virus were separated onto two different plasmids and in which the psi packaging signal and 3' long terminal repeat were removed. The plasmid containing the gag and pol genes and the plasmid containing the env gene were cotransfected into NIH 3T3 cells. Clones that produced high levels of reverse transcriptase and env protein were tested for their ability to package the replication-defective retrovirus vectors delta neo and N2. One of the gag-pol and env clones (GP+E-86) was able to transfer G418 resistance to recipient cells at a titer of as high as 1.7 X 10(5) when it was used to package delta neo and as high as 4 X 10(6) when it was used to package N2. Supernatants of clones transfected with the intact parent gag-pol-env plasmid 3P0 had comparable titers (as high as 6.5 X 10(4) with delta neo; as high as 1.7 X 10(5) with N2). Tests for recombination events that might result in intact retrovirus showed no evidence for the generation of replication-competent virus. These results suggest that gag, pol, and env, when present on different plasmids, may provide an efficient and safe packaging line for use in retroviral gene transfer. Images PMID:2831375

  17. The beam lines design for the CERN neutrino platform in the CERN north area and an outlook on their expected performance

    NASA Astrophysics Data System (ADS)

    Charitonidis, N.; Brugger, M.; Efthymiopoulos, I.; Gatignon, L.; Karyotakis, Y.; Sala, P. R.; Nowak, E.; Ortega-Ruiz, I.

    2017-07-01

    In the framework of the CERN Neutrino Platform project, extensions to the existing SPS North Area secondary beam lines “H2” and “H4”, able to provide low-energy charged particles in the momentum range from 0.4 to 12 GeV/c, have been designed. The parameters of these “very low energy” beam lines, the expected beam composition as seen by the experiments as well as an outlook on their expected performance are summarized in this paper. Results from Monte-Carlo simulations, important for the optimization of the future instrumentation of the beam lines (serving both the purpose of beam tuning and the experiments’ needs for particle identification and momentum measurements), are also presented.

  18. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    SciTech Connect

    Fang, Zhen F.; Gai, Hui; Huang, You Z.; Li, Shan G.; Chen, Xue J.; Shi, Jian J.; Wu, Li; Liu, Ailian; Xu, Ping; Sheng, Hui Z. . E-mail: hzsheng2003@yahoo.com

    2006-11-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.

  19. Tetrahedral node for Transmission-Line Modeling (TLM) applied to Bio-heat Transfer.

    PubMed

    Milan, Hugo F M; Gebremedhin, Kifle G

    2016-12-01

    Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, parallelepipeds are used to discretize three-dimensional problems. The drawback in using parallelepiped shapes is that instead of refining only the domain of interest, a large additional domain would also have to be refined, which results in increased computational time and memory space. In this paper, we developed a tetrahedral node for TLM applied to bio-heat transfer that does not have the drawback associated with the parallelepiped node. The model includes heat source, blood perfusion, boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. The predicted temperature and heat flux were compared against results from an analytical solution and the results agreed within 2% for a mesh size of 69,941 nodes and a time step of 5ms. The method was further validated against published results of maximum skin-surface temperature difference in a breast with and without tumor and the results agreed within 6%. The published results were obtained from a model that used parallelepiped TLM node. An open source software, TLMBHT, was written using the theory developed herein and is available for download free-of-charge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Triangular node for Transmission-Line Modeling (TLM) applied to bio-heat transfer.

    PubMed

    Milan, Hugo F M; Gebremedhin, Kifle G

    2016-12-01

    Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, rectangles are used to discretize two-dimensional problems. The drawback in using rectangular shapes is that instead of refining only the domain of interest, a large additional domain will also be refined in the x and y axes, which results in increased computational time and memory space. In this paper, we developed a triangular node for TLM applied to bio-heat transfer that does not have the drawback associated with the rectangular nodes. The model includes heat source, blood perfusion (advection), boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. A matrix equation for TLM, which simplifies the solution of time-domain problems or solves steady-state problems, was also developed. The predicted results were compared against results obtained from the solution of a simplified two-dimensional problem, and they agreed within 1% for a mesh length of triangular faces of 59µm±9µm (mean±standard deviation) and a time step of 1ms. Copyright © 2016 Elsevier Ltd. All rights reserved.