Science.gov

Sample records for beam vacuum overpressure

  1. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.20... SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... psig; (3) Prevent a vacuum in the cargo tank vapor space, whether generated by withdrawal of cargo...

  2. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.20... SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... psig; (3) Prevent a vacuum in the cargo tank vapor space, whether generated by withdrawal of cargo...

  3. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.20... SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... psig; (3) Prevent a vacuum in the cargo tank vapor space, whether generated by withdrawal of cargo...

  4. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum...

  5. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum...

  6. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum...

  7. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum...

  8. 46 CFR 39.2011 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...). (b) Each pressure-vacuum relief valve must— (1) Be of a type approved under 46 CFR 162.017, for the... venting system required by 46 CFR 32.55 must— (1) Be capable of discharging cargo vapor at the maximum... 1.5.1.3 of API 2000 (incorporated by reference, see 46 CFR 39.1005). The test must be carried...

  9. 46 CFR 39.2011 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...). (b) Each pressure-vacuum relief valve must— (1) Be of a type approved under 46 CFR 162.017, for the... venting system required by 46 CFR 32.55 must— (1) Be capable of discharging cargo vapor at the maximum... 1.5.1.3 of API 2000 (incorporated by reference, see 46 CFR 39.1005). The test must be carried...

  10. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  11. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, Alexander

    1987-01-01

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer, such as nickel can be coated on the inside of the pipe.

  12. Vacuum straw tracker test beam run

    SciTech Connect

    Wah, Yau; /Chicago U.

    2005-08-01

    This memorandum of understanding requests beam time at Fermilab during the 2005 Meson Test Beam run to measure the detection inefficiency of vacuum straw tubes. One of the future kaon experiments at J-PARC has the goal to measure the branching ratio of the neutral kaon ''Golden Mode'' K{sub L} {yields} {pi}{sup 0} with a few hundred event sensitivity. This future J-PARC experiment is a follow up of a current KEK experiment, E391a which has been taking data since February 2004. E391a is a collaboration of five countries (Japan, United States, Russia, Korea, and Taiwan) with ten institutions (KEK, Saga U, Yamagata U, Osaka U, U of Chicago, Pusan U, JINR, NDA, Kyoto U, National Taiwan U, and RCNP). The branching ratio of K{sub L} {yields} {pi}{sup 0} {nu} {nu} is small, about 3 x 10{sup -11}. To first order, all kaon decays with final states with charged particles need to be vetoed, and those include K{sub e3}, K{sub {mu}3}, and K{sub {+-}0} (about 80% of all neutral kaon decay). The standard and typical veto power comes from sheet scintillator and may not be adequate. Vacuum straw tubes provides additional, independent and orthogonal veto power, but the detection inefficiency has not been known or measured in a detail way. The inefficiency of the straw has three sources, the electronics, the straw wall/wire, and the gas. We like to perform beam test to measure all three sources. There is much experience in straw detector technology, and some in vacuum straw technology (CKM R&D effort). The possible use of straws in the future K{sub L} {yields} {pi}{sup 0} {nu} {nu} experiment will allow absolute photon/electron energy calibration (via K{sub {+-}0} decays), possible measurement of photon inefficiencies (via K{sub 000} with {pi}{sup 0} Dalitz), and as mentioned, charged particle veto. The results of this proposed beam test will provide new knowledge on the absorption cross section and will direct us on design issues for future neutral kaon decay experiments. Regarding

  13. Beam tube vacuum in future superconducting proton colliders

    SciTech Connect

    Turner, W.

    1994-10-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature -- SSC, LHC, and ELN -- are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and 0, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H{sub 2}. Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorpiion experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits.

  14. Vacuum microelectronics for beam power and rectennas

    NASA Technical Reports Server (NTRS)

    Gray, Henry F.

    1989-01-01

    Vacuum Microelectronic devices can be described as vacuum transistors or micro-miniature vacuum tubes, as one chooses. The fundamental reason behind this new technology is the very large current densities available from field emitters, namely as high as 10(8) A/sq cm. Array current densities as high as 1000 A/sq cm have been measured. Total electron transit times from source to drain for 1 micron feature size devices have been predicted to be about 150fs. This very short transit time implies the possibility of submillimeter wave transmitters and rectennas in devices which can operate with reasonably high voltages and which are small in size and are lightweight. In addition, they are expected to be extremely radiation hard and very temperature insensitive. That is, they are expected to have radiation hardness characteristics similar to vacuum tubes, and both the high temperature and low temperature limits should be determined by the package. That is, there should be no practical intrinsic temperature or carrier freezeout problems for devices based on metals or composites. But the technology is difficult to implement at the present time because it is based on 300 to 500 angstrom radius field emitters which must be relatively uniform. There is also the need to understand the non-equilibrium transport physics in the near-surface regions of the field emitters.

  15. Nonlinear Self-Similar Beams of Electromagnetic Waves in Vacuum

    NASA Astrophysics Data System (ADS)

    Vlasov, S. N.

    2015-12-01

    We study nonlinear beams of electromagnetic waves in vacuum. Within the lowest approximation, their structure is determined by the cubic self-focusing nonlinearity, which manifests itself with the maximum intensity in the presence of counterpropagating waves. It is shown that the fields in the beams have no singularities if their power is less than the critical power of the self-focusing. The dependences of the eigenfrequencies of the modes of the quasioptical resonator on the beam power are found. The structure of the fields of these modes corresponds to self-similar wave beams.

  16. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-02-24

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  17. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  18. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  19. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    SciTech Connect

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures. (LEW)

  20. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, Gilbert E.; Edwards, William F.

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  1. Silicon nanowires prepared by electron beam evaporation in ultrahigh vacuum

    PubMed Central

    2012-01-01

    One-dimensional silicon nanowires (SiNWs) were prepared by electron beam evaporation in ultrahigh vacuum (UHV). The SiNWs can be grown through either vapor–liquid-solid (VLS) or oxide-assisted growth (OAG) mechanism. In VLS growth, SiNWs can be formed on Si surface, not on SiO2 surfaces. Moreover, low deposition rate is helpful for producing lateral SiNWs by VLS. But in OAG process, SiNWs can be grown on SiO2 surfaces, not on Si surfaces. This work reveals the methods of producing large-scale SiNWs in UHV. PMID:22559207

  2. Conditional generation scheme for entangled vacuum evacuated coherent states by mixing two coherent beams with a squeezed vacuum state

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2016-08-01

    Conditions to generate high-purity entangled vacuum-evacuated coherent states (| 0 > | α>0 - | - α>0 | 0 >) were studied for two cascade-placed beam splitters, with one squeezed state input and two coherent state inputs whenever a single photon is detected. Controlling the amplitudes and the phases of the beams allows for various amplitudes of the vacuum-evacuated coherent states (| α>0 = | α > -e - | α|2 | 0 >) up to α = 2.160 to be manipulated with high-purity.

  3. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    SciTech Connect

    FOERSTER,C.

    1999-05-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front

  4. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    NASA Astrophysics Data System (ADS)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  5. Vacuum system of the 3MeV industrial electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  6. Beam induced vacuum measurement error in BEPC II

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Xiao, Qiong; Peng, XiaoHua; Wang, HaiJing

    2011-12-01

    When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.

  7. Synchrotron radiation vacuum chamber installation and beam size

    SciTech Connect

    Shleifer, M.

    1985-01-01

    In this paper we address the question of storage ring vacuum chamber placement and its effect on the synchrotron radiation fan obtainable. We consider only horizonal errors and thus treat the problem two-dimensionally. Specifically, we describe the correlation between the parameters of the chamber and its position in the magnet and the size of the fan of radiation emerging from a port.

  8. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  9. Energy-angle correlation of electrons accelerated by laser beam in vacuum

    SciTech Connect

    Chen, Z.; Ho, Y.K.; Xie, Y.J.; Zhang, S.Y.; Yan, Z.; Xu, J.J.; Lin, Y.Z.; Hua, J.F.

    2004-09-27

    The correlation between the outgoing energy and the scattering angle of electrons accelerated by a laser beam in vacuum has been investigated. Essentially, the single-valued function of the correlation, derived from classical electrodynamics Compton scattering for a plane wave, is broadened to a band. It means electrons with the same outgoing energy will have an angular spread. An equation to describe this correlation has been derived. Dependence of the spread width of scattering angle on laser beam parameters is examined, and physical explanations of these features are given. The results are found to be consistent with the simulation results for a proposed vacuum laser acceleration scheme: the capture and acceleration scenario.

  10. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    NASA Astrophysics Data System (ADS)

    Ranjit, Gambhir; Atherton, David P.; Stutz, Jordan H.; Cunningham, Mark; Geraci, Andrew A.

    2015-05-01

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual-beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum optomechanics.

  11. A vacuum spark ion source: High charge state metal ion beams

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  12. Performance of the beam chamber vacuum system of K = 500 cyclotron at Variable Energy Cyclotron Centre Kolkata

    SciTech Connect

    Pal, Gautam DuttaGupta, Anjan; Chakrabarti, Alok

    2014-07-15

    The beam chamber of Variable Energy Cyclotron Centre, Kolkata's K = 500 superconducting cyclotron is pumped by liquid helium cooled cryopanel with liquid nitrogen cooled radiation shield. Performance of the vacuum system was evaluated by cooling the cryopanel assembly with liquid nitrogen and liquid helium. Direct measurement of beam chamber pressure is quite difficult because of space restrictions and the presence of high magnetic field. Pressure gauges were placed away from the beam chamber. The beam chamber pressure was evaluated using a Monte Carlo simulation software for vacuum system and compared with measurements. The details of the vacuum system, measurements, and estimation of pressure of the beam chamber are described in this paper.

  13. Toxicology of blast overpressure.

    PubMed

    Elsayed, N M

    1997-07-25

    Blast overpressure (BOP) or high energy impulse noise, is the sharp instantaneous rise in ambient atmospheric pressure resulting from explosive detonation or firing of weapons. Blasts that were once confined to military and to a lesser extent, occupational settings, are becoming more universal as the civilian population is now increasingly at risk of exposure to BOP from terrorist bombings that are occurring worldwide with greater frequency. Exposure to incident BOP waves can cause auditory and non-auditory damage. The primary targets for BOP damage are the hollow organs, ear, lung and gastrointestinal tract. In addition, solid organs such as heart, spleen and brain can also be injured upon exposure. However, the lung is more sensitive to damage and its injury can lead to death. The pathophysiological responses, and mortality have been extensively studied, but little attention, was given to the biochemical manifestations, and molecular mechanism(s) of injury. The injury from BOP has been, generally, attributed to its external physical impact on the body causing internal mechanical damage. However, a new hypothesis has been proposed based on experiments conducted in the Department of Respiratory Research, Walter Reed Army Institute of Research, and later in the Department of Occupational Health, University of Pittsburgh. This hypothesis suggests that subtle biochemical changes namely, free radical-mediated oxidative stress occur and contribute to BOP-induced injury. Understanding the etiology of these changes may shed new light on the molecular mechanism(s) of injury, and can potentially offer new strategies for treatment. In this symposium. BOP research involving auditory, non-auditory, physiological, pathological, behavioral, and biochemical manifestations as well as predictive modeling and current treatment modalities of BOP-induced injury are discussed.

  14. Toxicology of blast overpressure.

    PubMed

    Elsayed, N M

    1997-07-25

    Blast overpressure (BOP) or high energy impulse noise, is the sharp instantaneous rise in ambient atmospheric pressure resulting from explosive detonation or firing of weapons. Blasts that were once confined to military and to a lesser extent, occupational settings, are becoming more universal as the civilian population is now increasingly at risk of exposure to BOP from terrorist bombings that are occurring worldwide with greater frequency. Exposure to incident BOP waves can cause auditory and non-auditory damage. The primary targets for BOP damage are the hollow organs, ear, lung and gastrointestinal tract. In addition, solid organs such as heart, spleen and brain can also be injured upon exposure. However, the lung is more sensitive to damage and its injury can lead to death. The pathophysiological responses, and mortality have been extensively studied, but little attention, was given to the biochemical manifestations, and molecular mechanism(s) of injury. The injury from BOP has been, generally, attributed to its external physical impact on the body causing internal mechanical damage. However, a new hypothesis has been proposed based on experiments conducted in the Department of Respiratory Research, Walter Reed Army Institute of Research, and later in the Department of Occupational Health, University of Pittsburgh. This hypothesis suggests that subtle biochemical changes namely, free radical-mediated oxidative stress occur and contribute to BOP-induced injury. Understanding the etiology of these changes may shed new light on the molecular mechanism(s) of injury, and can potentially offer new strategies for treatment. In this symposium. BOP research involving auditory, non-auditory, physiological, pathological, behavioral, and biochemical manifestations as well as predictive modeling and current treatment modalities of BOP-induced injury are discussed. PMID:9217311

  15. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  16. Generation of uniform electron beam plasma in a dielectric flask at fore-vacuum pressures

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D. B.; Burdovitsin, V. A.; Oks, E. M.

    2016-02-01

    We describe a system for the generation of spatially uniform and homogeneous dense plasma in a dielectric flask using a forevacuum-pressure plasma-cathode electron beam source. At optimum beam energy and gas pressure, the non-uniformity in plasma density distribution along the length of the flask is less than 10%, and the plasma density and electron temperature in the flask are greater than for the plasma produced in the vacuum chamber with no flask. The measured parameters of the beam plasma in the flask are compared to the predictions of a model based on balance equations.

  17. Vacuum laser-driven acceleration by two slits-truncated Bessel beams

    SciTech Connect

    Li, D.; Imasaki, K.

    2005-08-29

    An approach of vacuum acceleration by two laser Bessel beams is presented in this letter. With elaborate arrangement, the two Bessel beams are truncated by a set of special annular slits to form consecutive acceleration field in the electron traveling direction. Therefore, the electron of a certain initial energy can be accelerated in the whole interaction region without experiencing deceleration even though the phase-slippage occurs. Furthermore, the Bessel beam can provide a rather long distance for the effective interaction between the electron and the laser field due to its 'diffraction-free' property, resulting in improvement of the energy exchange.

  18. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOEpatents

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  19. Pulsed-ion-beam nitriding and smoothing of titanium surface in a vacuum

    SciTech Connect

    Zhu, X.P.; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi; Lei, M.K.

    2005-08-29

    Both nitriding and smoothing of titanium have been achieved under irradiation of intense pulsed ion beam in a vacuum of 2x10{sup -2} Pa. Applying a screening method, we find that medium ion-beam intensity and multi-shot irradiation are effective for the processing, where repetitive surface melting with limited ablation favored Ti nitride formation as well as surface smoothing. The present results demonstrate that ambient gas atoms/molecules can be efficiently incorporated in metal matrices to form compounds under the ion-beam irradiation. The finding is of great significance for extending application scope of the ion-beam technique in materials research and processing, combined with the recent success in introducing ambient gas into the processing chamber.

  20. Design of large vacuum chamber for VEC superconducting cyclotron beam line switching magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumantra; Nandi, Chinmoy; Gayen, Subhasis; Roy, Suvadeep; Mishra, Santosh Kumar; Ramrao Bajirao, Sanjay; Pal, Gautam; Mallik, C.

    2012-11-01

    VEC K500 superconducting cyclotron will be used to accelerate heavy ion. The accelerated beam will be transported to different beam halls by using large switching magnets. The vacuum chamber for the switching magnet is around 1000 mm long. It has a height of 85 mm and width varying from 100 mm to 360 mm. The material for the chamber has been chosen as SS304.The material for the vacuum chamber for the switching magnet has been chosen as SS304. Design of the vessel was done as per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. It was observed that primary stress values exceed the allowable limit. Since, the magnet was already designed with a fixed pole gap; increase of the vacuum chamber plate thickness restricts the space for beam transport. Design was optimized using stress analysis software ANSYS. Analysis was started using plate thickness of 4 mm. The stress was found higher than the allowable level. The analysis was repeated by increasing plate thickness to 6 mm, resulting in the reduction of stress level below the allowable level. In order to reduce the stress concentration due to sharp bend, chamfering was done at the corner, where the stress level was higher. The thickness of the plate at the corner was increased from 6 mm to 10 mm. These measures resulted in reduction of localized stress.

  1. Characteristics of a vacuum spark triggered by the transient hollow cathode discharge electron beam

    SciTech Connect

    Wong, C.S.; Ong, C.X.; Moo, S.P.; Choi, P.

    1995-06-01

    The discharge characteristics of a vacuum spark triggered by the transient hollow cathode discharge (THCD) electron beam is investigated over a wide variety of discharge conditions. Two systems of the vacuum spark device have been considered--the first system powered by eight 2,700-pF doorknob capacitors charged to a voltage of 40 kV (input energy of 17.6 J); while the second system employs a single 1.85-{micro}F Maxwell capacitor discharged at a voltage of 20 kV (input energy of 370 J). The operating pressure of these systems has been varied over the range of 10{sup {minus}2} to 10{sup {minus}5} mbar in order to examine the effect of the operating pressure on the plasma formation of the vacuum spark discharge. The effectiveness of plasma heating has been found to be significantly enhanced in the two vacuum spark systems studied here. In particular, the plasma of the 17.6 J system has been observed to be heated to a condition hot enough to emit in the X-ray region when the operating pressure is reduced from 10{sup {minus}2} to 10{sup {minus}5} mbar. Similarly, in the case of the 370 J system, hot spot formation is also observed to occur only at a low operating pressure of 10{sup {minus}4} mbar.

  2. New type of capillary for use as ion beam collimator and air-vacuum interface

    NASA Astrophysics Data System (ADS)

    Stoytschew, V.; Schulte-Borchers, M.; Božičević Mihalića, Iva; Perez, R. D.

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  3. Photon reflectivity distributions from the LHC beam screen and their implications on the arc beam vacuum system

    NASA Astrophysics Data System (ADS)

    Mahne, N.; Baglin, V.; Collins, I. R.; Giglia, A.; Pasquali, L.; Pedio, M.; Nannarone, S.; Cimino, R.

    2004-07-01

    In particle accelerators with intense positively charged bunched beams, an electron cloud may induce beam instabilities and the related beam induced electron multipacting (BIEM) can result in an undesired pressure rise. In a cryogenic machine such as the large hadron collider (LHC), the BIEM will introduce additional heat load. When present, synchrotron radiation (SR) may generate a significant number of photoelectrons, that may play a role in determining the onset and the detailed properties of the electron cloud related instability. Since electrons are constrained to move along field lines, those created on the accelerator equator in a strong vertical (dipole) field cannot participate in the e-cloud build-up. Therefore, for the LHC there has been a continuous effort to find solutions to absorb the photons on the equator. The solution adopted for the LHC dipole beam screens is a saw-tooth structure on the illuminated equator. SR from a bending magnet beamline at ELETTRA, Italy (BEAR) has been used to measure the reflectivities (forward, back-scattered and diffuse), for a flat and a saw-tooth structured Cu co-laminated surface using both white light SR, similar to the one emitted by LHC, and monochromatic light. Our data show that the saw-tooth structure does reduce the total reflectivity and modifies the photon energy distribution of the reflected photons. The implications of these results on the LHC arc vacuum system are discussed.

  4. Concentrated atmospheric nanoparticle beams in vacuum for X-ray and optical spectroscopy.

    NASA Astrophysics Data System (ADS)

    Meinen, J.; Khasminskaya, S.; Leisner, T.

    2009-04-01

    The IPCC AR4 points out the important role of aerosol in the radiation budget of the earth. In the model prediction, direct and indirect contribution of the atmospheric aerosol causes a net cooling of the earth. Understanding the fundamental physical and chemical processes of heterogeneous nucleation of water on nanoparticles could help improving the models. On our poster we present the first stage of the TRAPS apparatus (Trapped Reactive Atmospheric Particle Spectrometer). The apparatus comprises as nanoparticle sources atomizers, electrospray and plasma reactors in order to produce nanoparticle sizes from 20-50nm, 10-20nm and 5-10nm respectively. The nanoparticles are dispersed in helium as carrier gas at high pressure. After passing a critical orifice into rough vacuum a tunable aerodynamic lens is used to focus the particles into a differential pumping stage. We put high effort in optimizing the aerodynamic lens for particle beams close to the diffusion limit by CFD calculations. Downstream the differential pumping the particle beam is used to continuously refill a linear ion trap. For the trapping of particles in the size range of several kDa to MDa, a radio frequency from 10-150 kHz is. In contrast to the work of other groups, which are using digital ion traps, we developed an amplifier capable to provide an appropriate sinusoidal voltage with amplitude up to 3kV. This assembly is capable to inject nanoparticles into vacuum chambers in a highly efficient way. The dilution of the particle number concentration arising from the gas expansion from room pressure into vacuum is compensated by concentrating the particles in a small cylindrical volume by electrodynamic trapping. The enlargement of the target density compared to a free molecular beam provides a tool for various techniques of spectroscopy used on smaller ions by routine.

  5. Improving ion beam injector performance by augmenting capacitance of vacuum diode

    SciTech Connect

    Goerz, D. A., LLNL

    1998-06-24

    The recirculating induction accelerator is a new class of particle accelerator being developed at LLNL as a reduced-cost driver for heavy-ion beam driven inertial fusion energy. Ongoing research and development of advanced beam control technologies for the recirculator system requires a very stable and reproducible ion beam source. The injector pulse modulator must be capable of producing very precise high-voltage pulses in order to reduce the current modulation instability and achieve the required beam reproducibility. Computer modeled simulations of beam dynamics have established that errors greater than 0.1 percent in the flatness of the 120 kV injector pulse can create intolerable energy deviations. The pulse modulator that was developed to satisfy the stringent requirements is described in the accompanying paper by Wilson [1]. A crucial aspect of the overall solution is a modification made to the vacuum diode apparatus, whereby high-voltage capacitors were added in close proximity to the thermionic potassium-ion emitter. This paper discusses the rationale for augmenting the normally small capacitance of the injector diode, and presents design information, including an illustrated layout, electrostatic field modeling results, and data on ceramic capacitors operating at elevated levels.

  6. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    SciTech Connect

    Das, Sadhan Chandra; Majumdar, Abhijit E-mail: majumdar@uni-greifswald.de; Hippler, R.; Katiyal, Sumant; Shripathi, T.

    2014-02-15

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10{sup −6} mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  7. A Plasma Window for Transmission of Radiation and Particle Beams from Vacuum to Atmosphere for Various Applications

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    1997-11-01

    Many industrial and scientific processes like electron beam melting and welding, material modification by ion implantation, dry etching, and micro-fabrication, as well as generation of synchrotron radiation are performed almost exclusively in vacuum nowadays, since the electron and ion guns and their extractors must be kept at a reasonably high vacuum. Consequently, there are numerous drawbacks, among which are low production rates due to required pumping time, limits the vacuum volume sets on the size of target objects. In a small number of applications like non-vacuum electron beam welding, and various processes involving UV and x-ray radiation, thin vacuum walls or long stages of differential pumping are used. But, the resultant degradations of particle and radiation beams severely limit those applications. A novel apparatus, which utilized a short plasma arc, was successfully used to maintain a pressure of 7.6 x exp(-6) Torr in a vacuum chamber with a 2.36mm aperture to atmosphere, i.e., a plasma was successfully used to "plug" a hole to atmosphere while maintaining a reasonably high vacuum in the chamber. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. More details can be found in A. Hershcovitch, J. Appl. Physics 78, p. 5283 (1995). In addition to sustaining a vacuum atmosphere interface, the plasma has very strong lensing effect on charged particles. The plasma current generates an azimuthal magnetic field which exerts a radial Lorentz on charged particles moving parallel to the current channel. With proper orientation of the current direction, the Lorentz force is radially inward. This feature can be used to focus in beams to a very small spot size, and to overcome beam dispersion due to scattering by atmospheric atoms and molecules. Relatively hot plasma at the atmosphere boundary rarefies the atmospheric gases to further enhance particle beam propagation to the materials to target. Recent

  8. Combined electron beam and vacuum ARC melting for barrier tube shell material

    SciTech Connect

    Worcester, S.A.; Woods, C.R.

    1989-07-18

    This patent describes a process of the type wherein zirconium tetrachloride is reduced to produce a metallic zirconium sponge. The sponge is distilled to generally remove residual magnesium and magnesium chloride, and the distilled sponge is melted to produce an ingot, the improvement for making a non-crystal bar material for use in lining the interior of zirconium alloy fuel element cladding which comprises: a. forming the distilled sponge into a consumable electrode; b. melting the consumable electrode in a multiple swept beam electron furnace with a feed rate between 1 and 20 inches per hour to form an intermediate ingot; and c. vacuum arc melting the intermediate ingot to produce a homogeneous final ingot, having 50-500 ppm iron.

  9. A plastic scintillating fiber position detector in vacuum for the test beam facility at BEPC II -LINAC

    NASA Astrophysics Data System (ADS)

    Ke, Zun-Jian; Li, Jia-Cai; Zhang, Shao-Ping; An, Guang-Peng; Tang, Xing-Hua; Yang, Tao

    2012-01-01

    Two plastic scintillating fiber position detectors for charged particles have been designed, built and installed inside the vacuum tube near two sides of the DM2 deflection magnet on the E3 beam line of the test beam facility at the BEPC-LINAC. A one-dimensional position resolution of ~1 mm with a sensitive area of 60 mm×60 mm has been obtained for this detector.

  10. Obtaining a proton beam with 5-mA current in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Kasatov, D. A.; Koshkarev, A. M.; Makarov, A. N.; Ostreinov, Yu. M.; Sorokin, I. N.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-06-01

    Suppression of parasitic electron flows and positive ions formed in the beam tract of a tandem accelerator with vacuum insulation allowed a more than threefold increase (from 1.6 to 5 mA) in the current of accelerated 2-MeV protons. Details of the modification are described. Results of experimental investigation of the suppression of secondary charged particles and data on the characteristics of accelerated proton beam with increased current are presented.

  11. TATRA: a versatile high-vacuum tape transportation system for decay studies at radioactive-ion beam facilities

    NASA Astrophysics Data System (ADS)

    Matoušek, V.; Sedlák, M.; Venhart, M.; Janičkovič, D.; Kliman, J.; Petrík, K.; Švec, P.; Švec, , P.; Veselský, M.

    2016-03-01

    A compact and versatile tape transport system for the collection and counting of radioactive samples from radioactive ion beam facilities has been developed. It uses an amorphous metallic tape for transportation of the activity. Because of this material, the system can hold very good vacuum, typically below 10-7 mbar.

  12. Modeling of a plasma vacuum window for high power beam applications

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Beckwith, Kristian; Kundrapu, Madhusudhan; Marti, Felix

    2015-11-01

    A major new facility for the Department of Energy (DOE) Office of Nuclear Physics is the Facility for Rare Isotope Beams (FRIB). FRIB will accelerate heavy ion beams (up to uranium) to energies as high as 200 MeV/u and with powers as high as 400 kW in a few mm diameter. Due to the limited lifetime at these high powers of solid foil strippers, FRIB researchers are pursuing gas jet strippers as a new approach. By exciting an arc discharge across the gas jet, the resulting plasma can act as a vacuum window. We are developing models of these plasma windows, including the complex geometry of the nozzle, including viscosity effects, and including a temperature dependent air conductivity. We present here results for the flow velocity as a function of the pressure drop, and for the temperature as a function of discharge current. We compare these results with recent experiments performed at FRIB. The work of Tech-X personnel supported by DoE project #DE-SC0013189.

  13. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  14. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-10-21

    The design is given of an apparatus for reducing shock and overpressure particularly useful in connection with the sequential detonation of a series of nuclear explosives underground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accommodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure.

  15. SPEAKING IN LIGHT - Jupiter radio signals as deflections of light-emitting electron beams in a vacuum chamber

    NASA Astrophysics Data System (ADS)

    Petrovic, K.

    2015-10-01

    Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.

  16. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  17. Leak Rate Test for a Fiber Beam Monitor Contained in a Vacuum for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    O'Mara, Bridget; Lane, Noel; Gross, Eisen; Gray, Frederick; Muon g-2 Collaboration

    2014-09-01

    The muon g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment with a precision of 0.14 parts per million (ppm). The measurement will build on the Brookhaven-based E821 experiment, which yielded results suggesting new physics such as supersymmetry. The Fiber Beam Monitors (FBMs) are used in the experiment to determine the position and observe the motion of a muon beam and monitor the properties of the beam over time. The FBMs support a 9 cm × 8 cm ``harp'' with 7 scintillating fibers separated from each other by 13 mm, each with a diameter of 0.5 mm. The experiment requires a vacuum of less than 1 ×10-6 Torr to prevent trapping of electrons ionized from the residual gas by the electrostatic quadrupoles. To meet this requirement the FBMs must have a leak rate of less than 5 ×10-5 Torr L/s. We have constructed a vacuum system to simulate these conditions and have determined the leak rate of the FBMs within the constructed vacuum apparatus. This leak rate will be reported, along with preliminary results from tests of the light output from the scintillating fibers. The muon g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment with a precision of 0.14 parts per million (ppm). The measurement will build on the Brookhaven-based E821 experiment, which yielded results suggesting new physics such as supersymmetry. The Fiber Beam Monitors (FBMs) are used in the experiment to determine the position and observe the motion of a muon beam and monitor the properties of the beam over time. The FBMs support a 9 cm × 8 cm ``harp'' with 7 scintillating fibers separated from each other by 13 mm, each with a diameter of 0.5 mm. The experiment requires a vacuum of less than 1 ×10-6 Torr to prevent trapping of electrons ionized from the residual gas by the electrostatic quadrupoles. To meet this requirement the FBMs must have a leak rate of less than 5 ×10-5 Torr L/s. We have constructed a vacuum system to simulate these conditions

  18. Vacuum tube operation analysis under multi-harmonic driving and heavy beam loading effect in J-PARC RCS

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Nomura, M.; Shimada, T.; Tamura, F.; Hara, K.; Hasegawa, K.; Ohmori, C.; Toda, M.; Yoshii, M.; Schnase, A.

    2016-11-01

    An rf cavity in the J-PARC RCS not only covers the frequency range of a fundamental acceleration pattern but also generates multi-harmonic rf voltage because it has a broadband impedance. However, analyzing the vacuum tube operation in the case of multi-harmonics is very complicated because many variables must be solved in a self-consistent manner. We developed a method to analyze the vacuum tube operation using a well-known formula and which includes the dependence on anode current for some variables. The calculation method is verified with beam tests, and the results indicate that it is efficient under condition of multi-harmonics with a heavy beam loading effect.

  19. An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms

    SciTech Connect

    Fuezesi, F.; Jornod, A.; Thomann, P.; Plimmer, M. D.; Dudle, G.; Moser, R.; Sache, L.; Bleuler, H.

    2007-10-15

    This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10{sup -8} mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.

  20. An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    Füzesi, F.; Jornod, A.; Thomann, P.; Plimmer, M. D.; Dudle, G.; Moser, R.; Sache, L.; Bleuler, H.

    2007-10-01

    This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10-8mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.

  1. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    NASA Astrophysics Data System (ADS)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  2. Controlled fabrication of Si nanostructures by high vacuum electron beam annealing

    NASA Astrophysics Data System (ADS)

    Fang, F.; Markwitz, A.

    2009-10-01

    Silicon nanostructures, called Si nanowhiskers, have been successfully synthesized on Si(1 0 0) substrate by high vacuum electron beam annealing (EBA). Detailed analysis of the Si nanowhisker morphology depending on annealing temperature, duration and the temperature gradients applied in the annealing cycle is presented. A correlation was found between the variation in annealing temperature and the nanowhisker height and density. Annealing at 935 °C for 0 s, the density of nanowhiskers is about 0.2 μm -2 with average height of 2.4 nm grow on a surface area of 5×5 μm, whereas more than 500 nanowhiskers (density up to 28 μm -2) with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 °C for 0 s. At a cooling rate of -50 °C s -1 during the annealing cycle, 10-12 nanowhiskers grew on a surface area of 5×5 μm, whereas close to 500 nanowhiskers grew on the same surface area for samples annealed at the cooling rate of -5 °C s -1. An exponential dependence between the density of Si nanowhiskers and the cooling rate has been found. At 950 °C, the average height of Si nanowhiskers increased from 4.0 to 6.3 nm with an increase of annealing duration from 10 to 180 s. A linear dependence exists between the average height of Si nanowhiskers and annealing duration. Selected results are presented showing the possibility of controlling the density and the height of Si nanowhiskers for improved field emission properties by applying different annealing temperatures, durations and cooling rates.

  3. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    NASA Astrophysics Data System (ADS)

    Manova, D.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-01

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton® windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  4. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    SciTech Connect

    Manova, D.; Bergmann, A.; Maendl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-15

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton{sup Registered-Sign} windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  5. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    SciTech Connect

    Pratt, A.; Graziosi, P.; Bergenti, I.; Dediu, A.; Prezioso, M.; Yamauchi, Y.

    2014-07-15

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy and Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.

  6. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Finger, Martin A.; Iskhakov, Timur Sh.; Joly, Nicolas Y.; Chekhova, Maria V.; Russell, Philip St. J.

    2015-10-01

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ˜2500 photons per mode. The ultra-broadband (˜50 THz ) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

  7. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum.

    PubMed

    Finger, Martin A; Iskhakov, Timur Sh; Joly, Nicolas Y; Chekhova, Maria V; Russell, Philip St J

    2015-10-01

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ∼2500 photons per mode. The ultra-broadband (∼50  THz) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

  8. Visual system degeneration induced by blast overpressure.

    PubMed

    Petras, J M; Bauman, R A; Elsayed, N M

    1997-07-25

    The effect of blast overpressure on visual system pathology was studied in 14 male Sprague-Dawley rats weighing 360-432 g. Blast overpressure was simulated using a compressed-air driven shock tube, with the aim of studying a range of overpressures causing sublethal injury. Neither control (unexposed) rats nor rats exposed to 83 kiloPascals (kPa) overpressure showed evidence of visual system pathology. Neurological injury to brain visual pathways was observed in male rats surviving blast overpressure exposures of 104-110 kPa and 129-173 kPa. Optic nerve fiber degeneration was ipsilateral to the blast pressure wave. The optic chiasm contained small numbers of degenerated fibers. Optic tract fiber degeneration was present bilaterally, but was predominantly ipsilateral. Optic tract fiber degeneration was followed to nuclear groups at the level of the midbrain, midbrain-diencephalic junction, and the thalamus where degenerated fibers arborized among the neurons of: (i) the superior colliculus, (ii) pretectal region, and (iii) the lateral geniculate body. The superior colliculus contained fiber degeneration localized principally to two superficial layers (i) the stratum opticum (layer III) and (ii) stratum cinereum (layer II). The pretectal area contained degenerated fibers which were widespread in (i) the nucleus of the optic tract, (ii) olivary pretectal nucleus, (iii) anterior pretectal nucleus, and (iv) the posterior pretectal nucleus. Degenerated fibers in the lateral geniculate body were not universally distributed. They appeared to arborize among neurons of the dorsal and ventral nuclei: the ventral lateral geniculate nucleus (parvocellular and magnocellular parts); and the dorsal lateral geniculate nucleus. The axonopathy observed in the central visual pathways and nuclei of the rat brain are consistent with the presence of blast overpressure induced injury to the retina. The orbital cavities of the human skull contain frontally-directed eyeballs for binocular

  9. Effects of vacuum annealing and oxygen ion beam bombarding on the electrical and optical properties of ITO films deposited by E-beam evaporation

    NASA Astrophysics Data System (ADS)

    Pan, Yongqiang; Hang, Lingxia

    2012-10-01

    Tin doped indium oxide (ITO) transparent conductive thin films with composition of 10 wt% SnO2 and 89.8 wt% In2O3 have been deposited by electron beam evaporation technique on K9 glass substrates at room temperature. The post annealing processes are done in vacuum with different annealing temperature at 100, 200, 300 and 350 ° for 1 hour, respectively. The oxygen ion energy is 800 eV; oxygen ion beam bombarding time is 10,20,30,40 and 50min, respectively. The results show that conductivity of ITO thin films are improved by increasing annealing temperature. The resistivity of the ITO thin films decrease from 5.2×10-3Ω •cm at room temperature to 1.3×10-3Ω •cm(350 °C). The transmittance values of all samples in the visible range have been increased. As the oxygen ion beam bombarding time increases the resistivity reduce from 5.2×10-3Ω •cm to 9×10-4Ω •cm, the transmittance value improve from 66% to 82% at 550nm. Finally, the vacuum annealing and oxygen ion beam bombarding are done simultaneously, at temperature of 350 °C for 1 hours, ion bombardment time for 40 min. The resistivity of obtained ITO thin film is 7×10-4Ω •cm. The maximum transmittance value is above 89% in the visible wavelength region.

  10. Heavy ion beam degradation from stripping in near vacuum reactor chambers

    SciTech Connect

    Barletta, W.A.

    1981-07-21

    With the use of a particle simulation code we have investigated the ballistic transport of heavy ion beams through a gas-filled reactor for inertial confinement fusion. The background gas pressure has been taken to be 10/sup -4/ torr - 10/sup -3/ torr of Lithium vapor as is appropriate to the HYLIFE reactor concept. During transport to the pellet, Coulomb collisions of beam particles with the background gas will convert a fraction of the beam to charges states higher than the initial value. Collisons will also produce an associated swarm of knock-on electrons. As the beam approaches the pellet, anharmonic components of the space charges forces will lead to a distortion of the phase space of the beam and a consequent degradation of the focal properties of the beam. This degradation can be described in terms of an increase in the rms emittance of the beam. The degree of emittance growth depends sensitivity upon the initial spatial distribution of particles in the beam. For this study we have modified a single-disk particle simulation code, DESTIN (2), to follow two species of particles, the number of which varies in a prescribed fashion dependent upon reactor temperature as the beam converges toward the pellet.

  11. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  12. Elastic properties of overpressured and unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2003-01-01

    Differential pressure affects elastic velocities and Poisson?s ratio of sediments in such a way that velocities increase as differential pressure increases. Overpressured zones in sediments can be detected by observing an increase in Poisson?s ratio with a corresponding drop in elastic velocities. In highly overpressured sands, such as shallow water flow sands, the P-to S-wave velocity ratio (Vp/Vs) is very high, on the order of 10 or higher, due to the unconsolidated and uncemented nature of sediments. In order to predict elastic characteristics of highly overpressured sands, Biot-Gassmann theory by Lee (BGTL) is used with a variable exponent n that depends on differential pressure and the degree of consolidation/compaction. The exponent n decreases as differential pressure and the degree of consolidation increases, and, as n decreases, velocity increases and Vp/Vs decreases. The predicted velocity ratio by BGTL agrees well with the measured velocity ratio at low differential pressure for unconsolidated sediments.

  13. Measuring of plasma properties induced by non-vacuum electron beam welding

    SciTech Connect

    Reisgen, U.; Schleser, M.; Abdurakhmanov, A.; Gumenyuk, A.

    2012-01-15

    Electron beam plasma measurement was realised by means of DIABEAM system invented by ISF RWTH Aachen. The Langmuir probe method is used for measurement. The relative simplicity of the method and the possibility of dispersion of high power on the probe allow its application for the investigation of high-power electron beams. The key element of the method is a rotating thin tungsten wire, which intersects the beam transversely on its axis and collects part of the current by itself. The signals, which are registered in the DIABEAM as a voltage, were taken in the form of amplitude. The conversion of the probe current into the distribution along the beam radius was realised using the Abel's method. A voltage-current characteristic was built for the beam current. The local electron density as well as the electron temperature, the floating potential and the plasma potential were measured and calculated by means of this characteristic.

  14. Measuring of plasma properties induced by non-vacuum electron beam welding

    NASA Astrophysics Data System (ADS)

    Reisgen, U.; Schleser, M.; Abdurakhmanov, A.; Gumenyuk, A.

    2012-01-01

    Electron beam plasma measurement was realised by means of DIABEAM system invented by ISF RWTH Aachen. The Langmuir probe method is used for measurement. The relative simplicity of the method and the possibility of dispersion of high power on the probe allow its application for the investigation of high-power electron beams. The key element of the method is a rotating thin tungsten wire, which intersects the beam transversely on its axis and collects part of the current by itself. The signals, which are registered in the DIABEAM as a voltage, were taken in the form of amplitude. The conversion of the probe current into the distribution along the beam radius was realised using the Abel's method. A voltage-current characteristic was built for the beam current. The local electron density as well as the electron temperature, the floating potential and the plasma potential were measured and calculated by means of this characteristic.

  15. Increasing the electric strength of vacuum insulation by treating the electrodes with a low-energy, high-current electron beam

    SciTech Connect

    Batrakov, A.V.; Nazarov, D.S.; Ozur, G.E.

    1996-12-31

    The paper is devoted to the study of how the irradiation of the electrode surface with a low-energy, high-current electron beam affects the prebreakdown current and the electric strength of the vacuum insulation. This study is an extension of the work whose results were presented at the XVI ISDEIV. Experiments have been performed for 0.1-mm vacuum gaps formed by refractory-metal electrodes and for millimeter vacuum gaps with a pulsed voltage of amplitude 250 kV and duration 30-100 ns.

  16. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    NASA Astrophysics Data System (ADS)

    Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Spagnolo, S.; Spolaore, M.; Veltri, P.

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  17. Non-vacuum electron-beam carburizing and surface hardening of mild steel

    NASA Astrophysics Data System (ADS)

    Bataev, I. A.; Golkovskii, M. G.; Losinskaya, A. A.; Bataev, A. A.; Popelyukh, A. I.; Hassel, T.; Golovin, D. D.

    2014-12-01

    In this paper, we study the structure, microhardness, and tribological properties of surface layers of mild (0.19% C) steel, which was formed by electron-beam cladding with an iron-graphite powder mixture followed by quenching and tempering. A 1.4 MeV electron beam that was extracted into air was used. Cladding of steel with the iron-graphite mixture at a beam current of 24 and 26 mA formed a hypoeutectic cast iron layer (2.19% C) and a hypereutectoid steel (1.57% C) layer, which were 2.0 and 2.6 mm thick, respectively. The microhardness of the surface-quenched and tempered steel and cast iron layers was 7 and 8 GPa, respectively. Electron-beam quenching of the surface layers of hypoeutectic cast iron was accompanied with multiple cracking. During the quenching of the 1.57% C steel layer, crack formation was not observed. In friction tests against fixed and loose abrasive particles, the surface layers of hypereutectoid steel and hypoeutectic cast iron that were produced by electron-beam cladding and quenching had lower wear rates than mild steel after pack carburizing, quenching, and tempering. In the sliding wear tests, the cast iron clad layer, which was subjected to electron-beam quenching and tempering, exhibited the highest wear resistance. Electron-beam treatment can be used to harden local areas of large workpieces. It is reasonable to treat clad layers of high-carbon steel with electron-beam quenching and tempering. To prevent multiple cracking, white cast iron layers should not be quenched.

  18. The pathology of primary blast overpressure injury.

    PubMed

    Mayorga, M A

    1997-07-25

    Primary blast injury occurs in civilian and military detonations and from the firing of weapon systems. The pathology of primary blast injury has been reported for the last 70 years and has primarily been limited to descriptions of gross pathology and histology. Commonly accepted tenets have not been confirmed as blast overpressure experiments in enclosures and with multiple detonations have been conducted. Organ systems other than the ear and the lung are playing a greater role in injury definition and research importance. This paper is an overview and update of the current understanding of the pathology of primary blast injury.

  19. Signal generator exciting an electromagnetic field for ion beam transport to the vacuum chamber of a mass spectrometer

    NASA Astrophysics Data System (ADS)

    Tubol'tsev, Yu. V.; Kogan, V. T.; Bogdanov, A. A.; Chichagov, Yu. V.; Antonov, A. S.

    2015-02-01

    A high-voltage high-frequency signal generator is described that excites an electric field for ion beam transport from an ion source to the vacuum chamber of a mass spectrometer. Excitation signals to the number of two are high-frequency sine-wave out-of-phase signals with the same amplitudes. The amplitude and phase of the signals vary from 20 to 100 V and from 10 kHz to 1 MHz, respectively. The generator also produces a controlled bias voltage in the interval 50-200 V. The frequency and amplitude of the signals, as well as the bias voltage, are computer-controlled via the USB interface.

  20. Elimination of Listeria monocytogenes from vacuum-packed dry-cured ham by E-beam radiation.

    PubMed

    Hoz, L; Cambero, M I; Cabeza, M C; Herrero, A M; Ordónez, J A

    2008-10-01

    The inactivation kinetics for Listeria monocytogenes Scott A (CIP 103575, serotype 4b) and Listeria innocua (NTC 11288) after E-beam radiation were studied in vacuum-packed ready-to-eat dry-cured ham to optimize the sanitation treatment of this product. A treatment of 1.12 kGy was calculated to reach the food safety objective according to the U.S. Department of Agriculture criterion. No irradiation treatment is necessary to meet the European Union microbiological criterion for this bacterium. No changes (at doses < or =4 kGy) in the 2-thiobarbituric acid reactive substances values and texture were observed. Dry-cured hams treated with 1 and 2 kGy had negligible sensory modifications (appearance, odor, and flavor). However, the application of 3 and 4 kGy resulted in an increase in the intensity of off-odors and off-flavors. Despite these effects, all irradiated vacuum-packed dry-cured hams treated at < or =4 kGy were deemed acceptable for trading.

  1. A ceramic radial insulation structure for a relativistic electron beam vacuum diode.

    PubMed

    Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong

    2008-06-01

    For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results.

  2. Note: A cryogenic, ultra-high-vacuum, microwave filter which passes a narrow beam

    SciTech Connect

    Evetts, N. Dosanjh, P.; Hardy, W. N.; Zvyagintsev, V.

    2015-12-15

    We report on a device which filters microwave radiation prone to heating cryogenic experiments while at the same time allowing large apertures which will not disturb a propagating beam. A method for evaporating thin films onto the inner face of a narrow tube is also described.

  3. Note: A cryogenic, ultra-high-vacuum, microwave filter which passes a narrow beam.

    PubMed

    Evetts, N; Dosanjh, P; Zvyagintsev, V; Hardy, W N

    2015-12-01

    We report on a device which filters microwave radiation prone to heating cryogenic experiments while at the same time allowing large apertures which will not disturb a propagating beam. A method for evaporating thin films onto the inner face of a narrow tube is also described. PMID:26724082

  4. Earthquake Rupturing in Fluid-Overpressured Crust: How Common?

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2014-11-01

    Whether or not ruptures nucleate in fluid-overpressured crust ( λ v = P f/ σ v > 0.4) is important because pore-fluids overpressured above hydrostatic lower fault frictional strength and may also vary through the earthquake cycle, acting as an independent variable affecting fault failure. Containment of fluid overpressure is precarious because pressure-dependent activation of faults and fractures allows drainage from overpressured portions of the crust. Discharge of fluids through activated fault-fracture permeability (fault-valve action) decreases overpressure so that subsequent failure depends on the cycling of both overpressure and frictional strength as well as tectonic stress. Geometric and mechanical considerations suggest that fluid overpressures are more likely to develop and be sustained in compressional/transpressional regimes as opposed to extensional/transtensional tectonic settings. On the basis of geophysical observations and force-balance analyses, subduction interface shear zones appear to be strongly but variably overpressured to near-lithostatic levels ( λ v > 0.9) over the full depth range of seismogenic megathrusts. Strong overpressuring at seismogenic depths is also documented in active fold-thrust belts and in areas of ongoing compressional inversion (e.g., northern Honshu) where inherited normal faults are reactivated as steep reverse faults, requiring near-lithostatic overpressures ( λ v → 1.0) at depths of rupture initiation. Evidence for overpressuring around strike-slip faults is less clear but tends to be strongest in areas of transpression. In areas of extensional tectonics coincident with particularly high fluid discharge, there is some evidence of overpressuring concentrated towards the base of the seismogenic zone. In general, because of the limited resolution of geophysical techniques, it is easier to make the case for rupture propagation through overpressured crust than to make a definitive case for the direct involvement of

  5. Vacuum-arc plasma-beam motion in curved magnetic fields

    NASA Astrophysics Data System (ADS)

    Gidalevich, Evgeny; Goldsmith, Samuel; Boxman, Raymond

    1994-05-01

    A theoretical model is presented for transport of vacuum arc generated metal vapor plasma through a magnetized quarter-tours duct used for filtering out macroparticles in order to deposit high quality thin films. The model utilizes a two fluid approximation which takes into account collisions among the plasma particles. It is found that centrifugal forces must lead to a charge separation generated field, that determines plasma drift in the centrifugal force direction to the duct wall and give rise to ion loss. Another cause for plasma is the plasma pressure gradient. The plasma output flux is an increasing function of the magnetic field strength. The plasma flux in the output plane is asymmetrically skewed to favor the outside half. A further asymmetry in the flux distribution in the direction of the torroidal axis of symmetry is introduced if ions of different charge states are present in the plasma.

  6. Slow down of a globally neutral relativistic e‑e+ beam shearing the vacuum

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Silveirinha, M. G.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    The microphysics of relativistic collisionless shear flows is investigated in a configuration consisting of a globally neutral, relativistic {{e}-}{{e}+} beam streaming through a hollow plasma/dielectric channel. We show through multidimensional particle-in-cell simulations that this scenario excites the mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the {{e}-}{{e}+} beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam’s kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable.

  7. Slow down of a globally neutral relativistic e-e+ beam shearing the vacuum

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Silveirinha, M. G.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    The microphysics of relativistic collisionless shear flows is investigated in a configuration consisting of a globally neutral, relativistic {{e}-}{{e}+} beam streaming through a hollow plasma/dielectric channel. We show through multidimensional particle-in-cell simulations that this scenario excites the mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the {{e}-}{{e}+} beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam’s kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable.

  8. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    SciTech Connect

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain

  9. 46 CFR 153.365 - Liquid overpressurization protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid overpressurization protection. 153.365 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.365 Liquid overpressurization protection. (a) Except as noted...

  10. 46 CFR 153.365 - Liquid overpressurization protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid overpressurization protection. 153.365 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.365 Liquid overpressurization protection. (a) Except as noted...

  11. 46 CFR 153.365 - Liquid overpressurization protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid overpressurization protection. 153.365 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.365 Liquid overpressurization protection. (a) Except as noted...

  12. 46 CFR 153.365 - Liquid overpressurization protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid overpressurization protection. 153.365 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.365 Liquid overpressurization protection. (a) Except as noted...

  13. 46 CFR 153.365 - Liquid overpressurization protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid overpressurization protection. 153.365 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.365 Liquid overpressurization protection. (a) Except as noted...

  14. Structure and Properties of Ti-Nb-C Coatings Obtained by Non-vacuum Electron Beam Cladding

    NASA Astrophysics Data System (ADS)

    Lenivtseva, O. G.; Polyakov, I. A.; Lazurenko, D. V.; Lozhkin, V. S.

    2015-10-01

    In this study the structure and properties of surface-alloyed cp-titanium layers obtained by non-vacuum electron beam cladding of niobium carbide powders were analyzed. A thickness of coatings fabricated by single-layer cladding was 1.3 mm. Cladding of the second layer led to an increase in the thickness by 0.8 mm. It was found that titanium carbide particles of different morphology acted as strengthening structural elements. The X-ray diffraction (XRD) analysis revealed the presence of α-Ti (α'-Ti), β-Ti, and TiC in the cladded layer. The results of the energy dispersive X-ray (EDX) analysis indicated the presence of Nb in the titanium matrix as well as in the carbide phase. However, such phases as NbC and (Nb, Ti)C were not identified by the XRD analysis. Transmission electron microscopy (TEM) revealed zones containing an increased amount of Nb. The structure of these zones was represented by the β-Ti and ω-Ti precipitation. An average microhardness value of cladded layers was approximately 330 HV.

  15. Propulsion system ignition overpressure for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Jones, J. H.; Guest, S. H.; Struck, H. G.; Rheinfurth, M. H.; Verferaime, V. S.

    1981-01-01

    Liquid and solid rocket motor propulsion systems create an overpressure wave during ignition, caused by the accelerating gas particles pushing against or displacing the air contained in the launch pad or launch facility and by the afterburning of the fuel-rich gases. This wave behaves as a blast or shock wave characterized by a positive triangular-shaped first pulse and a negative half-sine wave second pulse. The pulse travels up the space vehicle and has the potential of either overloading individual elements or exciting overall vehicle dynamics. The latter effect results from the phasing difference of the wave from one side of the vehicle to the other. This overpressure phasing, or delta P environment, because of its frequency content as well as amplitude, becomes a design driver for certain panels (e.g., thermal shields) and payloads for the Space Shuttle. The history of overpressure effects on the Space Shuttle, the basic overpressure phenomenon, Space Shuttle overpressure environment, scale model overpressure testing, and techniques for suppressing the overpressure environments are considered.

  16. Non-reclosing pressure relief device for vacuum systems

    DOEpatents

    Swansiger, William A.

    1994-01-01

    A non-reclosing overpressure protection device such as a rupture disc provides a non-reclosing opening upon forcible contact with a knife blade. A bellows, having an inlet capable of being sealably connected to a source of pressure (the vacuum system) and an outlet containing the rupture disc, transmits the pressure in the system to the disc. The bellows maintains the disc away from the knife when the pressure is below an overpressure amount, and carries the disc to a position when the pressure is above an overpressure amount where the disc is ruptured by the knife.

  17. Non-reclosing pressure relief device for vacuum systems

    DOEpatents

    Swansiger, W.A.

    1994-02-08

    A non-reclosing overpressure protection device such as a rupture disc provides a non-reclosing opening upon forcible contact with a knife blade. A bellows, having an inlet capable of being sealably connected to a source of pressure (the vacuum system) and an outlet containing the rupture disc, transmits the pressure in the system to the disc. The bellows maintains the disc away from the knife when the pressure is below an overpressure amount, and carries the disc to a position when the pressure is above an overpressure amount where the disc is ruptured by the knife. 6 figures.

  18. Calculation of the electron-optical characteristics of electron beams transmitted into vacuum from a sharp tip-thin foil junction

    NASA Astrophysics Data System (ADS)

    van Bakel, G. P. E. M.; Borgonjen, E. G.; Hagen, C. W.; Kruit, P.

    1998-04-01

    The electron-optical characteristics of a novel electron source consisting of a sharp tip-thin foil tunnel junction are calculated, taking into account the tunnel junction, electron transport through the freestanding metal foil, and transmission across the opposing vacuum emission surface. A tunable high-pass energy filter is obtained, via adjustment of the tunnel bias voltage, enabling monochromatization of the electron beam. The dependence of the vacuum emission current, energy spread, reduced brightness, and virtual source size on the tunnel bias voltage are evaluated for a constant tunnel junction current of 10 nA and a foil thickness of 5 nm. Because the dimensions of the tunnel junction are comparable to the electron wavelength, diffraction plays an important role. As a result, the reduced brightness and vacuum emission current are related via the expression B=Iemission (2 me/h2). First, the source may be operated at a tunnel bias voltage for which the energy spread approaches the value for a room-temperature field-emission source (0.2 eV), with a vacuum emission current of 1 nA and a reduced brightness of 7×108A m-2 sr-1 V-1. By careful adjustment of the tunnel bias voltage to the foil work function value it is possible, in principle, to contain 50% of the beam current within an energy spread of 100 meV at a total vacuum emission current of 0.1 nA and a reduced brightness of 7×107A m-2 sr-1 V-1. The virtual source size in this case is approximately 1.4 nm. The energy spread may be decreased even further, down to the room-temperature thermionic limit, at the expense of vacuum emission current and, consequently, reduced brightness.

  19. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    SciTech Connect

    Stachiv, Ivo; Fang, Te-Hua; Chen, Tao-Hsing

    2015-11-15

    Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  20. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    NASA Astrophysics Data System (ADS)

    Stachiv, Ivo; Fang, Te-Hua; Chen, Tao-Hsing

    2015-11-01

    Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  1. Over-Pressurized Drums: Their Causes and Mitigation

    SciTech Connect

    Simmons, Fred; Kuntamukkula, Murty; Quigley, David; Robertson, Janeen; Freshwater, David

    2009-07-10

    Having to contend with bulging or over-pressurized drums is, unfortunately, a common event for people storing chemicals and chemical wastes. (Figure 1) The Department of Energy alone reported over 120 incidents of bulging drums between 1992 and 1999 (1). Bulging drums can be caused by many different mechanisms, represent a number of significant hazards and can be tricky to mitigate. In this article, we will discuss reasons or mechanisms by which drums can become over-pressurized, recognition of the hazards associated with and mitigation of over-pressurized drums, and methods that can be used to prevent drum over-pressurization from ever occurring. Drum pressurization can represent a significant safety hazard. Unless recognized and properly mitigated, improperly manipulated pressurized drums can result in employee exposure, employee injury, and environmental contamination. Therefore, recognition of when a drum is pressurized and knowledge of pressurized drum mitigation techniques is essential.

  2. NSLS II Vacuum System

    SciTech Connect

    Ferreira, M.; Doom, L.; Hseuh, H.; Longo, C.; Settepani, P.; Wilson, K.; Hu, J.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning and mounting the chambers are given.

  3. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  4. Influence of 700 °C vacuum annealing on fracture behavior of micro/nanoscale focused ion beam fabricated silicon structures

    NASA Astrophysics Data System (ADS)

    Goshima, Yoshiharu; Fujii, Tatsuya; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    In this paper, we describe the influence of 700 °C vacuum annealing on strength and fracture behavior of micro- and nano-scale Si structures fabricated by focused ion beam (FIB). Si nanowires (NWs) made from silicon-on-nothing (SON) membrane are fabricated using FIB. Microscale Si specimens are fabricated by conventional micromachining technologies and FIB. These specimens are tensioned to failure using specially developed microelectromechanical systems (MEMS) device and thin-film tensile tester, respectively. The mean fracture strengths of the nano- and microscale specimens are 5.6 and 1.6 GPa, respectively, which decrease to 2.9 and 0.9 GPa after vacuum annealing at 700 °C for only 10 s. These strength values do not vary with increasing annealing time. Fracture origin and its behavior are discussed in the light of fracture surface and FIB damage layer observations.

  5. Chemical dry etching of GaAs and InP by Cl2 using a new ultrahigh-vacuum dry-etching molecular-beam-epitaxy system

    NASA Astrophysics Data System (ADS)

    Furuhata, N.; Miyamoto, H.; Okamoto, A.; Ohata, K.

    1989-01-01

    Damage and contamination-free chemical dry etching of (100)GaAs and (100)InP by Cl2 was demonstrated using a new ultrahigh-vacuum dry-etching molecular-beam-epitaxy (BME) system. This system consists of a combined etching chamber, an MBE chamber, and a sample preparation chamber, all at ultrahigh vacuum. A mirrorlike surface was obtained after etching at substrate temperatures ranging from 300 to 400 C for GaAs, and from 200 to 400 C for InP. In situ reflection high-energy electron diffraction observations were accomplished for GaAs, with a mirrorlike surface after etching, and (2 x 4) surface reconstruction was observed. Results show that a smooth surface was formed at an atomic level.

  6. Measurements of the Propagation of EM Waves through the Vacuum Chamber of the PEP-II Low Energy Ring for Beam Diagnostics

    SciTech Connect

    Byrd, John Michael; De Santis, S.; Pivi, MTF; /SLAC

    2008-01-23

    We present the results of our measurements of the electron cloud density in the PEP-II low energy ring (LER) by propagating a TE wave into the beam pipe. By connecting a signal generator to a beam position monitor button we can excite a signal above the vacuum chamber cut-off frequency and measure its propagation through the beam pipe with a spectrum analyzer connected to another button about 50 meters away. The measurement can be performed with different beam conditions and also at different settings of the solenoids used to reduce the build up of electrons. The presence of a modulation in the TE wave transmission, synchronous with the beam revolution frequency, which appear to increase in depth when the solenoids are switched off, seem to be directly correlated to the electron cloud density in the region between the two BPM's. In this paper we present and discuss the measurements taken in the Interaction Region 12 straight of the LER during 2006 and the first part of 2007.

  7. Impact of overpressures on subsurface exploration and reservoir management

    NASA Astrophysics Data System (ADS)

    Kukla, P.

    2009-04-01

    The presence of overpressures in the subsurface poses major problems for safety and cost efficient well design, but less well known is their importance for exploration and reservoir development. Overpressures reduce the vertical effective stress (VES, the difference between the vertical stress and fluid pressure) experienced by the sediment. As sediment compaction is primarily an irreversible function of VES, a reduction in VES will halt compaction. Similarly, a reduction in its rate of increase will reduce the rate of porosity loss. Porosity and other key rock properties will therefore reflect changes in vertical effective stress. Any measurement that senses porosity, or seismic velocity (e.g. sonic, density or resistivity logs) will provide a means of estimating overpressures. The reduction of porosity with vertical effective stress is exponential in nature. Consequently, overpressures generated early in the burial history, such as those generated by disequilibrium compaction, will have a greater impact on rock properties than those generated or emplaced during late burial. Indeed, late overpressuring, so-called inflation, may have little or no impact on rock properties and therefore methods for the prediction of overpressures from properties such as seismic velocity will not provide reliable pressure estimates. In order for fluid pressures to rise in a basin, the pressures have to be contained by rocks with sufficiently low permeability. Overpressures are transient and gradually leak away when the generation mechanism ceases to operate. In some areas, such as in parts of the central North Sea and the Middle East, fluid pressures have built up until the failure envelope of the seal is reached, leading to a subsequent loss of the sealing capacity. The failure envelope is usually considered to be determined by the minimum horizontal stress. The failure pressure for the seal systematically increases with depth and this variation will control the maximum pressures

  8. Ares I Scale Model Acoustic Test Overpressure Results

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Alvord, D. A.; McDaniels, D. M.

    2011-01-01

    A summary of the overpressure environment from the 5% Ares I Scale Model Acoustic Test (ASMAT) and the implications to the full-scale Ares I are presented in this Technical Memorandum. These include the scaled environment that would be used for assessing the full-scale Ares I configuration, observations, and team recommendations. The ignition transient is first characterized and described, the overpressure suppression system configuration is then examined, and the final environment characteristics are detailed. The recommendation for Ares I is to keep the space shuttle heritage ignition overpressure (IOP) suppression system (below-deck IOP water in the launch mount and mobile launcher and also the crest water on the main flame deflector) and the water bags.

  9. Quantum Monte Carlo Simulation of Overpressurized Liquid {sup 4}He

    SciTech Connect

    Vranjes, L.; Boronat, J.; Casulleras, J.; Cazorla, C.

    2005-09-30

    A diffusion Monte Carlo simulation of superfluid {sup 4}He at zero temperature and pressures up to 275 bar is presented. Increasing the pressure beyond freezing ({approx}25 bar), the liquid enters the overpressurized phase in a metastable state. In this regime, we report results of the equation of state and the pressure dependence of the static structure factor, the condensate fraction, and the excited-state energy corresponding to the roton. Along this large pressure range, both the condensate fraction and the roton energy decrease but do not become zero. The roton energies obtained are compared with recent experimental data in the overpressurized regime.

  10. Characterization of ignition overpressure using band limited temporal moments

    SciTech Connect

    Cap, J.S.

    1994-11-01

    The ignition overpressure event is a transient vibroacoustic environment which occurs when a missile is launched. The environment is often too short to obtain a good estimate of the event using Power Spectral Densities, and Shock Response Spectra are limited in their ability to fully describe the nature of the environment. Sandia National Laboratories has employed band limited temporal moments in an effort to characterize the acceleration response of the components and payloads to the ignition overpressure environment and the related laboratory test inputs. The purpose of this paper will be to show the results of that study.

  11. Effects of Filtering on Experimental Blast Overpressure Measurements.

    PubMed

    Alphonse, Vanessa D; Kemper, Andrew R; Duma, Stefan M

    2015-01-01

    When access to live-fire test facilities is limited, experimental studies of blast-related injuries necessitate the use of a shock tube or Advanced Blast Simulator (ABS) to mimic free-field blast overpressure. However, modeling blast overpressure in a laboratory setting potentially introduces experimental artifacts in measured responses. Due to the high sampling rates required to capture a blast overpressure event, proximity to alternating current (AC-powered electronics) and poorly strain-relieved or unshielded wires can result in artifacts in the recorded overpressure trace. Data in this study were collected for tests conducted on an empty ABS (“Empty Tube”) using high frequency pressure sensors specifically designed for blast loading rates (n=5). Additionally, intraocular overpressure data (“IOP”) were collected for porcine eyes potted inside synthetic orbits located inside the ABS using an unshielded miniature pressure sensor (n=3). All tests were conducted at a 30 psi static overpressure level. A 4th order phaseless low pass Butterworth software filter was applied to the data. Various cutoff frequencies were examined to determine if the raw shock wave parameters values could be preserved while eliminating noise and artifacts. A Fast Fourier Transform (FFT) was applied to each test to examine the frequency spectra of the raw and filtered signals. Shock wave parameters (time of arrival, peak overpressure, positive duration, and positive impulse) were quantified using a custom MATLAB® script. Lower cutoff frequencies attenuated the raw signal, effectively decreasing the peak overpressure and increasing the positive duration. Rise time was not preserved the filtered data. A CFC 6000 filter preserved the remaining shock wave parameters within ±2.5% of the average raw values for the Empty Tube test data. A CFC 7000 filter removed experimental high-frequency artifacts and preserved the remaining shock wave parameters within ±2.5% of the average raw values for

  12. Modular ultrahigh vacuum-compatible gas-injection system with an adjustable gas flow for focused particle beam-induced deposition

    SciTech Connect

    Klingenberger, D.; Huth, M.

    2009-09-15

    A gas-injection system (GIS) heats up a powdery substance and transports the resulting gas through a capillary into a vacuum chamber. Such a system can be used to guide a (metal)organic precursor gas very close to the focal area of an electron or ion beam, where a permanent deposit is created and adheres to the substrate. This process is known as focused particle beam-induced deposition. The authors present design principles and give construction details of a GIS suitable for ultrahigh vacuum usage. The GIS is composed of several self-contained components which can be customized rather independently. It allows for a continuously adjustable gas-flow rate. The GIS was attached to a standard scanning electron microscope (JEOL 6100) and tested with the tungsten precursor W(CO){sub 6}. The analysis of the deposits by means of atomic force microscopy and energy dispersive x-ray spectroscopy provides clear evidence that excellent gas-flow-rate stability and ensuing growth rate and metal-content reproducibility are experienced.

  13. Generation of a quasi-monoenergetic high energy proton beam from a vacuum-sandwiched double layer target irradiated by an ultraintense laser pulse

    SciTech Connect

    Nam Kim, Kyung; Lee, Kitae Hee Park, Seong; Young Lee, Ji; Uk Jeong, Young; Vinokurov, Nikolay; Gi Kim, Yong

    2014-04-15

    An acceleration mechanism to generate a high energy proton beam with a narrow energy spread in the laser-induced plasma acceleration of a proton beam is proposed; this mechanism employs two thin foils separated by a narrow vacuum gap. Instead of a thin sheath field at the plasma surfaces, it utilizes an electrostatic field formed in the bulk of the plasma. From a one-dimensional fluid analysis, it has been found that with an appropriate target thickness, protons on the front surface of the second layer can be fed into the plasma, in which the protons are accelerated by an electrostatic field built into the bulk of the plasma. This leads to a proton beam with higher energy and a narrower energy spread than those accelerated at the rear surface of the second layer. The acceleration mechanism is also verified by a two-dimensional particle-in-cell simulation. With a 27-fs long and 2×10{sup 19} W/cm{sup 2} intense laser pulse, a proton beam with an 18-MeV peak energy and a 35% energy spread is generated. The peak energy is higher than that from the rear surface of the second layer by a factor of 3.

  14. Design of a vacuum-compatible high-precision monochromatic beam-position monitor for use with synchrotron radiation from 5 to 25 keV.

    PubMed

    Alkire, R W; Rosenbaum, G; Evans, G

    2000-03-01

    The Structural Biology Center beamline, 19ID, has been designed to take full advantage of the highly intense undulator radiation and very low source emittance available at the Advanced Photon Source. In order to keep the X-ray beam focused onto the pre-sample slits, a novel position-sensitive PIN diode array has been developed. The array consists of four PIN diodes positioned upstream of a 0.5 microm-thick metal foil placed in the X-ray beam. Using conventional difference-over-the-sum techniques, two-dimensional position information is obtained from the metal foil fluorescence. Because the full X-ray beam passes through the metal foil, the true beam center-of-mass is measured. The device is compact, inexpensive to construct, operates in a vacuum and has a working range of 8 mm x 10 mm that can be expanded with design modifications. Measured position sensitivity is 1-2 microm. Although optimized for use in the 5-25 keV energy range, the upper limit can be extended by changing metals or adjusting foil thickness. PMID:16609175

  15. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  16. Prediction of Launch Vehicle Ignition Overpressure and Liftoff Acoustics

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew

    2009-01-01

    The LAIOP (Launch Vehicle Ignition Overpressure and Liftoff Acoustic Environments) program predicts the external pressure environment generated during liftoff for a large variety of rocket types. These environments include ignition overpressure, produced by the rapid acceleration of exhaust gases during rocket-engine start transient, and launch acoustics, produced by turbulence in the rocket plume. The ignition overpressure predictions are time-based, and the launch acoustic predictions are frequency-based. Additionally, the software can predict ignition overpressure mitigation, using water-spray injection into the rocket exhaust stream, for a limited number of configurations. The framework developed for these predictions is extensive, though some options require additional relevant data and development time. Once these options are enabled, the already extensively capable code will be further enhanced. The rockets, or launch vehicles, can either be elliptically or cylindrically shaped, and up to eight strap-on structures (boosters or tanks) are allowed. Up to four engines are allowed for the core launch vehicle, which can be of two different types. Also, two different sizes of strap-on structures can be used, and two different types of booster engines are allowed. Both tabular and graphical presentations of the predicted environments at the selected locations can be reviewed by the user. The output includes summaries of rocket-engine operation, ignition overpressure time histories, and one-third octave sound pressure spectra of the predicted launch acoustics. Also, documentation is available to the user to help him or her understand the various aspects of the graphical user interface and the required input parameters.

  17. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Far-field overpressure blast effects... overpressure blast effects analysis. (a) General. A flight safety analysis must establish flight commit criteria that protect the public from any hazard associated with far field blast overpressure effects...

  18. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Far-field overpressure blast effects... overpressure blast effects analysis. (a) General. A flight safety analysis must establish flight commit criteria that protect the public from any hazard associated with far field blast overpressure effects...

  19. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Far-field overpressure blast effects... overpressure blast effects analysis. (a) General. A flight safety analysis must establish flight commit criteria that protect the public from any hazard associated with far field blast overpressure effects...

  20. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Far-field overpressure blast effects... overpressure blast effects analysis. (a) General. A flight safety analysis must establish flight commit criteria that protect the public from any hazard associated with far field blast overpressure effects...

  1. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10{sup 11} and 5.0 × 10{sup 11} molecule s{sup −1} cm{sup −3} of C{sub 2}H{sub 5}{sup •} (ethyl) and t-C{sub 4}H{sub 9}{sup •} (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  2. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source.

    PubMed

    Leplat, N; Rossi, M J

    2013-11-01

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300-630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10(11) and 5.0 × 10(11) molecule s(-1) cm(-3) of C2H5(●) (ethyl) and t-C4H9(●) (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  3. Overpressure Prediction From Seismic Data: Implications on Drilling Safety

    NASA Astrophysics Data System (ADS)

    Osinowo, O. O.; Oladunjoye, M. A.; Olayinka, A. I.

    2007-12-01

    High rate of sediment influx into the Niger Delta via river Niger coupled with high rate of basin subsidence, very thick clayey members of Agbada and Akata Formations as well as prevailing presence of growth faults had been identified as the main factors responsible for overpressure generation and preservation in the Niger Delta basin. Analysis of porosity dependent parameters such as interval transit times and interval velocities derived from the seismic records of a field in the Western Niger Delta revealed the presence of overpressured formation at depth of 8670 feet, which is the top of the overpressured zone. The plot of interval transit times against depth gave a positive deflection from normal at the region of overpressure while interval velocity plot gave negative deflection; the ratio of this deviation in both cases is as high as 1.52. Pressure gradient in the upper, normally pressured part of the field was determined to be 0.465 psi/ft., which is within the established normal pressure gradient range in Niger Delta, while the abnormal formation pressure gradient in the overpressured region was determined to be 0.96 psi/ft., and this is also within the published abnormal pressure gradient range of 0.71 to 1.1 psi/ft. in Niger Delta. Formation fracture pressure gradients were determined from the formation pressure information to be 0.66psi/ft. in the upper part of the field and 1.2psi/ft. in the overpressured horizon. Mud weight window (MWW); mud density range necessary to prevent formation kick without initiating hydraulic fracturing was determined to be 10.2 to 12.5lbm/gal in the upper part of the field and 22.1 to 22.63lbm/gal in the overpressured horizon. MWW is indispensable for the selection of the mud pump type, capacity, pumping rate and mud densities at different formation pressure regimes. Overpressure prediction is also requisite for drilling program design, casing design as well as rig capacity choice before spudding. It is necessary to reduce

  4. Preparation of PbTiO3 Films Utilizing Self-Control Mechanism of Stoichiometric Composition in Dual-Beam Vacuum Evaporation Method

    NASA Astrophysics Data System (ADS)

    Ueno, Satoshi; Ishiwara, Hiroshi

    1992-09-01

    Optimum conditions for preparing PbTiO3 films on Si and SrTiO3 substrates are investigated in the dual-beam vacuum evaporation method using PbO and TiO2. It has been found that tetragonal PbTiO3 films are formed on Si substrates at temperatures ranging from 550°C to 600°C, and that the stoichiometric composition of the films is easily obtained at 600°C by supplying excess PbO molecules to the substrate. It has also been found that PbTiO3 films grow epitaxially on SrTiO3 substrates at temperatures around 550°C.

  5. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    SciTech Connect

    Rutkowski, M. M.; Zeng Zhaoquan; McNicholas, K. M.; Brillson, L. J.

    2013-06-15

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift ({approx}1 eV) in the core level binding energies was observed.

  6. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. M.; McNicholas, K. M.; Zeng, Zhaoquan; Brillson, L. J.

    2013-06-01

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (˜1 eV) in the core level binding energies was observed.

  7. Thermodynamically consistent model of brittle oil shales under overpressure

    NASA Astrophysics Data System (ADS)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  8. Overpressure and Its Relation to Petroleum Accumulation in Southern Edge of Junggar Basin

    NASA Astrophysics Data System (ADS)

    Zhao, G.

    2014-12-01

    Abstract: Measured formation pressure, well- log and mud weight data show that there are overpressures in the southern edge of Junggar basin. Vertically, overpressure distribution is not direct ly related to the burial depth, it is mainly controlled by stratigraphic horizons, especially the lower Tertiary Anjihaihe Formation has the most evident control over the overpressures. Horizontally, overpressure occur in the 3 structural belts in southern edge of the basin, but there are differences in the east and in the west : in the eastern part overpressures occur in the Anjihaihe Formation only, while in the western part, they occur not only in the Anjihaihe Formation, but also in the Shawan and Ziniguanzi Formation. Analyzing the relationship between the well test data and overpressures in the southern edge of Junggar basin, it can be found that the distribution of oil and gas reservoirs are closely related to the overpressures. Being affected by faulting, and due to the differences in mechanism of relationship between overpressures and preservation of oil and gas reservoirs, the distribution of overpressures and oil and gas reservoirs cannot be corresponding to one another. As a whole, however, oil and gas would be ready to be reservoired in the normally pressured zone below the moderately abnormal pressured or overpressures zone, which would, therefore, be the favorable target of petroleum exploration; while the overpressured zone with relatively high formation pressure coefficient is unfavorable for oil/ gas reservoiring.

  9. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  10. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  11. Multimode quantum properties of a self-imaging optical parametric oscillator: Squeezed vacuum and Einstein-Podolsky-Rosen-beams generation

    SciTech Connect

    Lopez, L.; Chalopin, B.; Riviere de la Souchere, A.; Fabre, C.; Treps, N.; Maitre, A.

    2009-10-15

    We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical parametric oscillator (self-imaging optical parametric oscillator). We show that this device produces local squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it is highly multimode for realistic experimental parameters.

  12. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  13. METHOD FOR PUMPING GASES AT LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-01

    A method is given for pumping overpressure "pulses" or "bursts" of gases without a significant rise in base pressure within a "gettering-type" vacuum pump having surfaces within the pumping cavity coated with or comprising clean gettering metal, e.g., Mo or Ta. The cavity is first pumped down by any convenient means to an equilibrium base pressure in the range desired, generally below 10/sup -6/ mm Hg. At this pressure, the metal immediately adsorbs overpressures or "bursts" of gases striking same with thermal motion without raising the base pressure significantiy. Desorption takes place at an equilibrium rate which, of course, is dependent upon the equilibrium pressure, and such desorbed gases are continuously removed by diffuaion pump or other pumping, whereby said overpressures or "bursts" of gases are removed without a rise in the equilibrium pressure and/or back diffusion of the gaseous pulse from the pumping cavity. (AEC)

  14. 33 CFR 154.2203 - Facility requirements for barge vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equal to the maximum gas-freeing rate determined by the requirements in 46 CFR 39.6007(c). (c) A fluid... requirements of 33 CFR 154.2100(e) when the pressure at the fluid injection connection exceeds either the... shutoff valve required by 33 CFR 154.2101(a). It must also close the remotely operated shutoff...

  15. 33 CFR 154.2103 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this section, which activates an alarm that meets 33 CFR 154.2100(e) when the pressure at the facility... pressure-sensing device, which activates an alarm meeting 33 CFR 154.2100(e) when the pressure at the... requirements of paragraph (h) of this section, which activates the emergency shutdown system required by 33...

  16. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  17. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  18. Global variation of sonic boom overpressure due to seasonal changes in atmosphere

    NASA Astrophysics Data System (ADS)

    Yamashita, Hiroshi; Obayashi, Shigeru

    2012-09-01

    Global variation of sonic boom overpressures with the realistic atmospheric gradients was discussed. The atmospheric gradients were estimated by upper-air observational radiosonde data and a simple N-wave was extrapolated through all seasonal atmospheric gradients without winds around the world. Results demonstrated that sonic boom overpressure varies widely with season and geographic position compared to that of the standard atmospheric condition. The results also showed the tendencies of the global variation in overpressure.

  19. Overpressure history of fractures, West Maracaibo Basin, Venezuela

    SciTech Connect

    Vrolijk, P.J.; Pottorf, R.J.; Maze, W.B.

    1996-08-01

    Prediction of density of natural fractures in reservoir rocks requires evaluation of many factors, including the effective stress and thus fluid pressure conditions through time. In this study we use analyses of fluid inclusions in calcite-filled fractures with burial and thermal history models to assess the fluid pressure history and the causes of overpressure in the West Maracaibo Basin. We analyzed abundant oil-filled and rare aqueous fluid inclusions in calcite-filled fractures in the La Luna Formation source rock and in the underlying Cogollo Gp. carbonate reservoir. Our analyses of fluid inclusion homogenization temperatures and fluorescence properties lead us to the interpretation of near-lithostatic paleo-fluid pressures in La Luna Formation and near-lithostatic to hydrostatic fluid pressures in the Cogollo, Gp. fractures. Maturation and expulsion of oil from the La Luna Formation source rock is required to generate the large inferred excess pressures as compaction disequilibrium and thermal expansion of pore fluids from rapid Miocene burial are insufficient to achieve near-lithostatic conditions. This hypothesis is supported by the observation of decreasing paleo- and modern fluid pressures with depth beneath the La Luna Formation. Thus based on the wide occurrence of oil-filled inclusions in calcite-filled fractures and the high fluid pressures associated with trapped oils, we infer extensive rock fracture under overpressured conditions near maximum Miocene burial, during inferred late source rock yield, and during Miocene growth of structural traps.

  20. Membrane characteristics for biological blast overpressure testing using blast simulators.

    PubMed

    Alphonse, Vanessa D; Siva Sai Sujith Sajja, Venkata; Kemper, Andrew R; Rizel, Dave V; Duma, Stefan M; VandeVord, Pamela J

    2014-01-01

    Blast simulators often use passive-rupture membranes to generate shock waves similar to free-field blasts. The purpose of this study was to compare rupture patterns and pressure traces of three distinct membrane materials for biological and biomechanical blast studies. An Advanced Blast Simulator (ABS) located at the Center for Injury Biomechanics at Virginia Tech was used to test membrane characteristics. Acetate, Mylar, and aluminum sheets with different thicknesses were used to obtain pressures between 70–210 kPa. Static pressure was measured inside the tube at the test section using piezoelectric pressure sensors. Peak overpressure, positive duration, and positive impulse were calculated for each test. Rupture patterns and characteristic pressure traces were unique to each membrane type and thickness. Shock wave speed ranged between 1.2-1.8 Mach for static overpressures of 70–210 kPa. Acetate membranes fragmented sending pieces down the tube, but produced ideal (Friedlander) pressure traces. Mylar membranes bulged without fragmenting, but produced less-than-ideal pressure traces. Aluminum membranes did not fragment and produced ideal pressure traces. However, the cost of manufacturing and characterizing aluminum membranes should be considered during membrane selection. This study illustrates the advantages and disadvantages of using Mylar, acetate, and aluminum for passive rupture membranes for blast simulators. PMID:25405432

  1. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility

    PubMed Central

    2011-01-01

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature. PMID:21892938

  2. Modeling and optimization of sensory changes and shelf-life in vacuum-packaged cooked ham treated by E-beam irradiation

    NASA Astrophysics Data System (ADS)

    Benedito, J.; Cambero, M. I.; Ortuño, C.; Cabeza, M. C.; Ordoñez, J. A.; de la Hoz, L.

    2011-03-01

    The E-beam irradiation of vacuum-packaged RTE cooked ham was carried out to establish the dose required to achieve the food safety objective (FSO) and to minimize changes in selected sensory attributes. Cooked ham was irradiated with doses ranging 1-4 kGy. After the treatment, the microbial inactivation of Listeria monocytogenes, the shelf-life of the product and some sensory attributes (appearance, odor, and flavor) were determined. The inactivation of L. monocytogenes was satisfactorily described by a first-order kinetics equation ( R2=0.99). The influence of the irradiation dose on appearance, odor, and flavor was modeled through Gompertz ( R2=0.99, for appearance) and Activation/Inactivation ( R2=0.99, for odor and flavor) equations. A model was also developed to determine the shelf-life of irradiated cooked ham depending on the irradiation dose ( R2>0.91). The dose that maximized the scores of the sensory attributes was 0.96 kGy resulting in an acceptable sensory quality for 80 days. It is possible to apply up to 2 kGy to ensure microbial safety, while provoking no significant changes in the above mentioned sensory attributes.

  3. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  4. Growth of CdZnTe Crystals the Bridgman Technique with Controlled Overpressures of Cd

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hu; Lehoczky, S. L.

    2008-01-01

    Cd(1-x)Zn(x)Te crystals with x = 0.15 and 0.20, were grown in this study by closed-ampoule directional solidification (Bridgman) technique with a controlled Cd overpressure. The growth ampoule was made of quartz with inner diameter from 20 to 40 mm and a tapered length of 2.5 cm at the growth tip. Both unseeded and seeded growths were performed with total material charges up to 400 g. After the loading of starting CdZnTe material, a typical amount of 2 g of Cd was also loaded inside a Cd reservoir basket, which was attached beneath the seal-off cup. The ampoule was sealed off under a vacuum below lxl0(exp -5) Torr. The sealed ampoule was placed inside a 4-zone Bridgman furnace - a Cd reservoir zone with a heat-pipe furnace liner on the top, followed by a hot zone, a booster heating zone and a cold zone at the bottom. The Cd zone was typically 300 to 400 C below the hot zone setting. High resistivity material has been obtained without any intentional dopants but has been reproducibly obtained with In doping. The crystalline and the electrical properties of the crystals will be reported.

  5. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  6. APS storage ring vacuum system

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1990-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

  7. Experimental study of near-field entrainment of moderately overpressured jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.; Saffaraval, F.

    2011-01-01

    Particle image velocimetry (PIV) experiments have been conducted to study the velocity flow fields in the developing flow region of high-speed jets. These velocity distributions were examined to determine the entrained mass flow over a range of geometric and flow conditions, including overpressured cases up to an overpressure ratio of 2.83. In the region near the jet exit, all measured flows exhibited the same entrainment up until the location of the first shock when overpressured. Beyond this location, the entrainment was reduced with increasing overpressure ratio, falling to approximately 60 of the magnitudes seen when subsonic. Since entrainment ratios based on lower speed, subsonic results are typically used in one-dimensional volcanological models of plume development, the current analytical methods will underestimate the likelihood of column collapse. In addition, the concept of the entrainment ratio normalization is examined in detail, as several key assumptions in this methodology do not apply when overpressured.

  8. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  9. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  10. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum

    NASA Astrophysics Data System (ADS)

    de Oliveira, N.; Joyeux, D.; Phalippou, D.; Rodier, J. C.; Polack, F.; Vervloet, M.; Nahon, L.

    2009-04-01

    We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of δσ =0.33 cm-1 (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to λ&dotbelow;>=58 nm with an ultimate resolving power of 500 000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He-Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator

  11. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  12. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  13. Design and construction of vacuum systems for large colliders using superconducting magnets

    SciTech Connect

    Halama, H.J.

    1983-01-01

    Vacuum system requirements for proton accelerators and colliders with superconducting megnets are discussed. The vacuum systems for the colliding beam accelerator and the Tevatron are described. (WHK)

  14. Electron-configuration-reset time-differential recoil-in-vacuum technique for excited-state g-factor measurements on fast exotic beams

    SciTech Connect

    Stuchbery, Andrew E.; Mantica, Paul F.; Wilson, Anna N.

    2005-04-01

    A modified version of the time-differential recoil-in-vacuum (or plunger) technique is proposed as a method for measuring the g factors of excited states in rapidly moving exotic nuclei with Z < or approx. 20.

  15. Nonintrusive FBG tube pressure transducers with high overpressure ability

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.; Hui, Kaleonui J.

    2010-04-01

    Fiber optic sensors offer several advantages over their electrical counterparts, especially for applications in hostile, spark-sensitive environments, because no electrical power is required at the sensors. In addition, the installation of fiber sensors external to fluid carrying conduits facilitates access for troubleshooting and replacement, unlike in-line diaphragm-based sensors. Furthermore, glass fiber pressure sensors have a much higher operating temperature range, which makes them more practical for flammability-prone environments. Multiple fiber Bragg grating (FBG) sensors can be multiplexed along a single fiber optic cable, as opposed to traditional resistive strain gauges, which require individual shielded metal cabling. Applications for such fiber-optic pressure detection systems include the pressure monitoring of flow in fuel lines and their pressure valves. This paper characterizes the application of FBG sensors, with remote access capability, for the nonintrusive pressure monitoring of different types of metallic pipes. We show that pressure changes smaller than one psi can be detected with a tunable diode laser-based detection system. Standard metal pipes of steel, inconel, copper-nickel alloy and titanium are characterized, and the resilience of FBG sensors to an overpressure of up to 1500 psi is demonstrated.

  16. The development of a cryogenic over-pressure pump

    SciTech Connect

    Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Lathrop, A.; Garcia, J.; Ruiz, F.

    2014-01-29

    A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL)

  17. Coupled Eulerian/Lagrangian Simulation for Overpressure Structural Response

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew; Pan, Hua; Miller, David; Cogar, John

    2011-06-01

    Accurately modeling blast dynamics is critical in the assessment of structures subjected to blast loading. The current industry standard for modeling blast effects in Lagrangian based Finite Element simulations is CONWEP; tabulated pressure data taken directly from blast events. CONWEP is limited, however, and may not always be physically representative of the blast/structural interaction that occurs in the field. Eulerian hydrocodes provide advantages over CONWEP in that they can capture shock front interaction and model blast surface interfaces with fidelity due to the presence of the working fluid. Eulerian codes, however, break down over larger time scales; whereas, Lagrangian modeling allows for discrete finite elements with definable boundary interfaces that can be tracked out to longer time scales. Hence, a hybrid approach that couples the Eulerian blast modeling with Lagrangian system dynamics is necessary. The objective of this paper is to demonstrate improvements in overpressure structural response modeling using a Coupled Eulerian/Lagrangian algorithm implemented in VelodyneTM. Velodyne results using the Coupled Eulerian/Lagrangian algorithm are compared to results from Eulerian hydrocode simulations and Velodyne simulations using the CONWEP algorithm.

  18. Coupled Euler-La Grange simulation for overpressure structural response

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew N.; Miller, David K.; Pan, Hua; Cogar, John

    2012-03-01

    Accurately modeling blast dynamics is critical in the assessment of structures subjected to blast loading. The current industry standard for modeling blast effects in La Grange based finite element simulations is CONWEP; tabulated pressure data taken directly from blast events. CONWEP is limited, however, and may not always be physically representative of the blast/structural interaction that occurs in the field. Euler hydrocodes provide advantages over CONWEP in that they can capture shock front interaction and model blast surface interfaces with fidelity due to the presence of the working fluid. Euler codes, however, break down over larger time scales due to advection; whereas, Lagrange modeling allows for discrete finite elements with definable boundary interfaces that can be tracked out to longer time scales. Hence, a hybrid approach that couples the Euler blast modeling with La Grange system dynamics is necessary. The objective of this paper is to demonstrate improvements for high explosive overpressure structural response modeling specifically with respect COMP-B high explosive acting upon blasted fragments using a Coupled Euler-La Grange algorithm implemented in VelodyneTM. Velodyne results using the Coupled Euler-La Grange algorithm are compared to results from an Euler hydrocode simulation (CTH) and Velodyne simulations using the CONWEP algorithm.

  19. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  20. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2014-01-01

    At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center’s (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  1. NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures

    NASA Technical Reports Server (NTRS)

    Wheless, T. K.

    1985-01-01

    This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.

  2. Overpressure and noise due to multiple airbag systems in a passenger car

    NASA Astrophysics Data System (ADS)

    Hickling, Robert; Henning, Peter J.; Newton, Gary, Jr.

    2002-11-01

    Multiple airbag systems in passenger cars can generate overpressure and noise that may be hazardous to human hearing. Overpressure is compression of the air inside a closed compartment caused by deployment of the bags. Noise results from the action of the gas inflating the bags. SAE J247 provides a standard for measuring the combination of overpressure and noise in a passenger compartment. A special microphone has recently been developed that meets this standard, which operates down to a fraction of a hertz. Details of the microphone are given. Little appears to have been published on the overpressure and noise of modern multiple airbag systems, but early results [R. Hickling, ''The noise of the automotive safety air cushion,'' Noise Control Eng., May-June, 110-121 (1976)] provide a basic understanding of the phenomenon. Spectral data shows that peak overpressure occurs at about 2 to 3 Hz. A significant reduction in overpressure and noise can be achieved with an aspirating airbag, originally developed at General Motors, whose outer structure is inflated with gas from the inflator, and whose inner structure draws in air from the passenger compartment through one-way cloth valves. Tests have shown that such bags function well when impacted.

  3. Fluid overpressure estimates from the aspect ratios of mineral veins

    NASA Astrophysics Data System (ADS)

    Philipp, Sonja L.

    2012-12-01

    Several hundred calcite veins and (mostly) normal faults were studied in limestone and shale layers of a Mesozoic sedimentary basin next to the village of Kilve at the Bristol Channel (SW-England). The veins strike mostly E-W (239 measurements), that is, parallel with the associated normal faults. The mean vein dip is 73°N (44 measurements). Field observations indicate that these faults transported the fluids up into the limestone layers. The vein outcrop (trace) length (0.025-10.3 m) and thickness (0.1-28 mm) size distributions are log-normal. Taking the thickness as the dependent variable and the outcrop length as the independent variable, linear regression gives a coefficient of determination (goodness of fit) of R2 = 0.74 (significant with 99% confidence), but natural logarithmic transformation of the thickness-length data increases the coefficient of determination to R2 = 0.98, indicating that nearly all the variation in thickness can be explained in terms of variation in trace length. The geometric mean of the aspect (length/thickness) ratio, 451, gives the best representation of the data set. With 95% confidence, the true geometric mean of the aspect ratios of the veins lies in the interval 409-497. Using elastic crack theory, appropriate elastic properties of the host rock, and the mean aspect ratio, the fluid overpressure (that is, the total fluid pressure minus the normal stress on the fracture plane) at the time of vein formation is estimated at around 18 MPa. From these results, and using the average host rock and water densities, the depth to the sources of the fluids (below the present exposures) forming the veins is estimated at between around 300 m and 1200 m. These results are in agreement to those obtained by independent isotopic studies and indicate that the fluids were of rather local origin, probably injected from sill-like sources (water sills) inside the sedimentary basin.

  4. Development of a multifunctional surface analysis system based on a nanometer scale scanning electron beam: Combination of ultrahigh vacuum-scanning electron microscopy, scanning reflection electron microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Heiji; Ichikawa, Masakazu

    1996-12-01

    We have developed a multifunctional surface analysis system based on a scanning electron beam for nanofabrication and characterization of surface reactions for fabrication processes. The system performs scanning electron microscopy (SEM), scanning reflection electron microscopy (SREM), Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy. Nanometer scale resolution is obtained for ultrahigh vacuum (UHV)-SEM while the mechanical pumping instruments are operated. Single atomic steps on Si(111) surfaces are observed through SREM. Surface sensitive AES measurement is achieved with SREM geometry; this has a great advantage for investigating atomic step related surface reactions. High spatial resolution AES analysis is also achieved by using a nanometer scale probe beam. Auger electron signals from a hundred Ag atoms on a Si(111) surface are successfully detected with high sensitivity.

  5. In-vacuum exposure shutter

    DOEpatents

    Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.

    2004-06-01

    An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.

  6. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  7. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  8. Fluid Overpressure Distribution and Permeability Structure in the Cascadia Subduction Zone Under Southern Vancouver Island

    NASA Astrophysics Data System (ADS)

    Spinelli, G. A.; Wada, I.

    2012-12-01

    We develop hydrogeologic models to examine the fluid overpressure distribution in the northern Cascadia subduction zone resulting from dewatering of the subducting Juan de Fuca slab. Anomalous seismic velocities indicative of relatively high Poisson's ratios observed in the subducting crust at subduction zones, such as Cascadia and Nankai, have been interpreted to indicate fluid overpressure (Shelly et al., 2006; Audet et al., 2009; Peacock et al., 2011). In northern Cascadia, the inferred fluid overpressure beneath Vancouver Island disappears farther landward. One of the proposed mechanisms for the distribution of fluid overpressure is the down-dip change in the permeability of the plate boundary fault. In this scenario, permeability is low under Vancouver Island, limiting fluid escape from the slab; permeability increases farther landward, allowing more efficient fluid migration out of the subducting slab (Audet et al., 2009). We test this conceptual hydrogeologic model with numerical models of fluid transport. Our models include fluid sources from porosity loss and mineral dehydration reactions. The volume of dehydration-derived fluid release from the subducting crust is calculated using a thermal model for Cascadia and the thermodynamic calculation code Perple_X. Modeled fluid source magnitudes are highest in a ~50 km wide region of upper oceanic crust under Vancouver Island. The cessation of these fluid sources in the subducting slab further landward combined with fluid flow from the slab contribute to the landward dissipation of fluid overpressure, even in the absence of enhanced fault zone permeability landward of Vancouver Island.

  9. Modeling overpressures in sedimentary basins: Consequences for permeability and rheology of shales, and petroleum expulsion efficiency

    SciTech Connect

    Burrus, J.; Schneider, F.; Wolf, S. )

    1994-07-01

    The prediction of overpressures using Institut Francais du Petrole's 2-D numerical model TEMISPACK is applied to several provinces of the world. In the Paris basin, France, normally pressured Liassic shales are shown to have permeabilities around a microdarcy, independently confirmed by laboratory measurements. In contrast, in the Norway section of the North Sea, Williston Basin, Canada, Gulf Coast, and in the Mahakam delta, observed overpressures of 10-50 MPa are consistently modeled with shale permeabilities around 1-10 nanodarcys. This theoretical value fits well with the lowest permeability measured in compacted shales. For these basins, compaction disequilibrium was found to explain most (>85%) of the overpressures. The only exception was the Williston basin in which overpressures observed in the organic-rich Bakken shales are entirely due to hydrocarbon generation. In Mahakam delta, the rheology of shales is nonlinear, i.e., the strength of shales increases rapidly with death. Consequently, shale compaction cannot be described by the linear behavior often assumed in hydrology. In the absence of fault barriers, numerical simulations and geological evidence suggest that overpressured source rocks have low or very low expulsion efficiency, irrespective of their organic content. However, shales with a permeability on the order of a microdarcy do not hinder petroleum migration.

  10. 2-D modeling of gas and overpressure generation in the Venture field (Canada)

    SciTech Connect

    Forbes, P.L.; Ungerer, P. ); Mudford, S. )

    1990-05-01

    Venture field is located in an overpressured zone of gas accumulations in a region that had low sedimentation rates over the last 80 m.y. This could support the hydrocarbon generation, rather than compaction disequilibrium, as the main cause for overpressuring. Study of these accumulations can be done using the IFP (Institut Francais du Petrole) THEMIS model, which integrates compactions, hydraulic fracturation, fluid flows, heat transfer, and formation and migration of hydrocarbons. A single phase basin scale model is constructed first to assess the input parameters related to the fluid-flow reconstruction. The permeability of faults is calibrated to fit the actual pressure distribution through the field. Permeability is found to be very low and allows a fit to the regional distribution of overpressuring. In a second step, a two-phase model, restricted to the field itself, is used to test parameters related to hydrocarbon and source rocks. Gas accumulations are effectively obtained in the reservoir units. Finally, the two-phase model is extended to the regional scale to check the parameters previously assessed. At this scale, the gas and overpressure distributions are found to fit those actually observed. Gas accumulations contribute slightly to overpressuring, which is better accounted for by compaction disequilibrium despite the low sedimentation rates. Generation in or close to the reservoir unit does not contribute significantly to the gas accumulations. However, gas sources are found in the underlying formations.

  11. A study of sonic boom overpressure trends with respect to weight, altitude, Mach number, and vehicle shaping

    NASA Technical Reports Server (NTRS)

    Needleman, Kathy E.; Mack, Robert J.

    1990-01-01

    This paper presents and discusses trends in nose shock overpressure generated by two conceptual Mach 2.0 configurations. One configuration was designed for high aerodynamic efficiency, while the other was designed to produce a low boom, shaped-overpressure signature. Aerodynamic lift, sonic boom minimization, and Mach-sliced/area-rule codes were used to analyze and compute the sonic boom characteristics of both configurations with respect to cruise Mach number, weight, and altitude. The influence of these parameters on the overpressure and the overpressure trends are discussed and conclusions are given.

  12. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  13. Time-resolved HAXPES using a microfocused XFEL beam: From vacuum space-charge effects to intrinsic charge-carrier recombination dynamics

    NASA Astrophysics Data System (ADS)

    Oloff, Lars-Philip; Chainani, Ashish; Matsunami, Masaharu; Takahashi, Kazutoshi; Togashi, Tadashi; Osawa, Hitoshi; Hanff, Kerstin; Quer, Arndt; Matsushita, Ryuki; Shiraishi, Ryutaro; Nagashima, Maki; Kimura, Ayato; Matsuishi, Kotaro; Yabashi, Makina; Tanaka, Yoshihito; Rossi, Giorgio; Ishikawa, Tetsuya; Rossnagel, Kai; Oura, Masaki

    2016-10-01

    Time-resolved hard X-ray photoelectron spectroscopy (trHAXPES) using microfocused X-ray free-electron laser (XFEL, hν = 8 keV) pulses as a probe and infrared laser pulses (hν = 1.55 eV) as a pump is employed to determine intrinsic charge-carrier recombination dynamics in La:SrTiO3. By means of a combination of experiments and numerical N-body simulations, we first develop a simple approach to characterize and decrease XFEL-induced vacuum space-charge effects, which otherwise pose a serious limitation to spectroscopy experiments. We then show that, using an analytical mean-field model, vacuum space-charge effects can be counteracted by pump laser-induced photoholes at high excitation densities. This provides us a method to separate vacuum space-charge effects from the intrinsic charge-carrier recombination dynamics in the time domain. Our trHAXPES results thus open a route to studies of intrinsic charge-carrier dynamics on picosecond time scales with lateral spatial resolution on the micrometer scale.

  14. Time-resolved HAXPES using a microfocused XFEL beam: From vacuum space-charge effects to intrinsic charge-carrier recombination dynamics

    PubMed Central

    Oloff, Lars-Philip; Chainani, Ashish; Matsunami, Masaharu; Takahashi, Kazutoshi; Togashi, Tadashi; Osawa, Hitoshi; Hanff, Kerstin; Quer, Arndt; Matsushita, Ryuki; Shiraishi, Ryutaro; Nagashima, Maki; Kimura, Ayato; Matsuishi, Kotaro; Yabashi, Makina; Tanaka, Yoshihito; Rossi, Giorgio; Ishikawa, Tetsuya; Rossnagel, Kai; Oura, Masaki

    2016-01-01

    Time-resolved hard X-ray photoelectron spectroscopy (trHAXPES) using microfocused X-ray free-electron laser (XFEL, hν = 8 keV) pulses as a probe and infrared laser pulses (hν = 1.55 eV) as a pump is employed to determine intrinsic charge-carrier recombination dynamics in La:SrTiO3. By means of a combination of experiments and numerical N-body simulations, we first develop a simple approach to characterize and decrease XFEL-induced vacuum space-charge effects, which otherwise pose a serious limitation to spectroscopy experiments. We then show that, using an analytical mean-field model, vacuum space-charge effects can be counteracted by pump laser-induced photoholes at high excitation densities. This provides us a method to separate vacuum space-charge effects from the intrinsic charge-carrier recombination dynamics in the time domain. Our trHAXPES results thus open a route to studies of intrinsic charge-carrier dynamics on picosecond time scales with lateral spatial resolution on the micrometer scale. PMID:27731408

  15. Conditional generation scheme for high-fidelity Yurke-Stoler states by mixing two coherent beams with a squeezed vacuum state

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2015-01-01

    The numerical conditions to generate high-fidelity Yurke-Stoler states (| α > + e iψ | - α >)were found for two cascade-placed beam splitters with one squeezed state input and two coherent state inputs. Controlling the amplitudes and the phases of beams allows for various Yurke-Stoler states to be manipulated with ultra-high fidelity, and the expected theoretical fidelity is more than 0.9999.

  16. Charts for determining potential minimum sonic-boom overpressures for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1981-01-01

    Charts which give an estimation of minimum achievable sonic-boom levels for supersonic cruise aircraft are presented. A minimization method based on modified linear theory was analyzed. Results show several combinations of Mach number, altitude, and aircraft length and weight. Overpressure and impulse values are given for two types of sonic boom signatures for each of these conditions: (1) a flat top or minimum overpressure signature which has a pressure plateau behind the initial shock, and (2) a minimum shock signature which allows a pressure rise after the initial shock. Results are given for the effects of nose shape.

  17. Vacuum system for the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  18. Report of the Synchrotron Radiation Vacuum Workshop

    SciTech Connect

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  19. LHC World Largest Vacuum Systems Being Commissioned at CERN

    NASA Astrophysics Data System (ADS)

    Jimenez, Jose Miguel

    The CERN Large Hadron Collider (LHC) with its 26.7 km of circumference and three different vacuum systems for the beams and insulation vacuum for magnets and liquid helium transfer lines, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for “cleaning” the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings. The noble gases and methane is pumped out by 780 ion pumps. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani and cold cathode Penning). The cryogenic insulation vacuums while technically less demanding, impress by their size (50 km) and volume (15000 m3). Once roughed using mechanical pumps, the vacuum relies on the cryopumping which allows reaching pressure in the 10-4 Pa range.

  20. Technical specification for vacuum systems

    SciTech Connect

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  1. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.229 Far-field overpressure blast effects analysis. (a) General. A flight safety analysis must establish flight commit... to potential explosions during launch vehicle flight and demonstrate compliance with the public...

  2. Prediction of sonic boom from experimental near-field overpressure data. Volume 2: Data base construction

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Reiners, S. J.; Hague, D. S.

    1975-01-01

    A computerized method for storing, updating and augmenting experimentally determined overpressure signatures has been developed. A data base of pressure signatures for a shuttle type vehicle has been stored. The data base has been used for the prediction of sonic boom with the program described in Volume I.

  3. An analysis of the response of Sooty Tern eggs to sonic boom overpressures.

    PubMed

    Ting, Carina; Garrelick, Joel; Bowles, Ann

    2002-01-01

    It has been proposed that sonic booms caused a mass hatching failure of Sooty Terns in the Dry Tortugas in Florida by cracking the eggshells. This paper investigates this possibility analytically, complementing previous empirical studies. The sonic boom is represented as a plane-wave excitation with an N-wave time signature. Two models for the egg are employed. The first model, intended to provide insight, consists of a spherical shell, with the embryo represented as a rigid, concentric sphere and the albumen as an acoustic fluid filling the intervening volume. The substrate is modeled as a doubling of the incident pressure. The second, numerical model includes the egg-shape geometry and air sac. More importantly, the substrate is modeled as a rigid boundary of infinite extent with acoustic diffraction included. The peak shell stress, embryo acceleration, and reactive force are predicted as a function of the peak sonic boom overpressure and compared with damage criteria from the literature. The predicted peak sonic boom overpressure necessary for egg damage is much higher than documented sonic boom overpressures, even for extraordinary operational conditions. Therefore, as with previous empirical studies, it is concluded that it is unlikely that sonic boom overpressures damage avian eggs. PMID:11837961

  4. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOEpatents

    Benjamin, Robert F.; Mitchell, Kenneth B.

    1980-01-01

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  5. Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy

    NASA Astrophysics Data System (ADS)

    Schmalholz, Stefan M.; Medvedev, Sergei; Lechmann, Sarah M.; Podladchikov, Yuri

    2014-05-01

    We present analytical derivations and 2-D numerical simulations that quantify magnitudes of deviatoric stress and tectonic overpressure (i.e. difference between the pressure, or mean stress, and the lithostatic pressure) by relating them to lateral variations in the gravitational potential energy (GPE). These predictions of tectonic overpressure and deviatoric stress associated with GPE differences are independent of rock rheology (e.g. viscous or elastic) and rock strength. We consider a simple situation with lowlands and mountains (plateau). We use a numerical two-layer model consisting of a crust with higher Newtonian viscosity than that in the mantle, and also a three-layer model in which the two-layer lithosphere overlies a much less viscous asthenosphere. Our results (1) explain why estimates for the magnitude of stresses in Tibet, previously published by different authors, vary by a factor of two, (2) are applied to test the validity of the thin sheet approximation, (3) show that the magnitude of the depth-integrated tectonic overpressure is equal to the magnitude of the depth-integrated deviatoric stress if depth-integrated shear stresses on vertical and horizontal planes within the lithosphere are negligible (the thin sheet approximation) and (4) show that under thin sheet approximation tectonic overpressure is required to build and support continental plateaus, such as in Tibet or in the Andes, even if the topography and the crustal root are in isostatic equilibrium. Under thin sheet approximation, the magnitude of the depth-integrated tectonic overpressure is equal to the depth-integrated horizontal deviatoric stress, and both are approximately 3.5 × 1012 N m-1 for Tibet. The horizontal driving force per unit length related to lateral GPE variations around Tibet is composed of the sum of both tectonic overpressure and deviatoric stress, and is approximately 7 × 1012 N m-1. This magnitude exceeds previously published estimates for the force per unit

  6. Evolution of overpressured and underpressured oil and gas reservoirs, Anadarko Basin of Oklahoma, Texas, and Kansas

    USGS Publications Warehouse

    Nelson, Phillip H.; Gianoutsos, Nicholas J.

    2011-01-01

    Departures of resistivity logs from a normal compaction gradient indicate that overpressure previously extended north of the present-day overpressured zone. These indicators of paleopressure, which are strongest in the deep basin, are mapped to the Kansas-Oklahoma border in shales of Desmoinesian age. The broad area of paleopressure has contracted to the deep basin, and today the overpressured deep basin, as determined from drillstem tests, is bounded on the north by strata with near normal pressures (hydrostatic), grading to the northwest to pressures that are less than hydrostatic (underpressured). Thus the pressure regime in the northwest portion of the Anadarko Basin has evolved from paleo-overpressure to present-day underpressure. Using pressure data from drillstem tests, we constructed cross sections and potentiometric maps that illustrate the extent and nature of present-day underpressuring. Downcutting and exposure of Lower Permian and Pennsylvanian strata along, and east of, the Nemaha fault zone in central Oklahoma form the discharge locus where pressure reaches near atmospheric. From east to west, hydraulic head increases by several hundred feet in each rock formation, whereas elevation increases by thousands of feet. The resulting underpressuring of the aquifer-supported oil and gas fields, which also increases from east to west, is a consequence of the vertical separation between surface elevation and hydraulic head. A 1,000-ft thick cap of Permian evaporites and shales isolates the underlying strata from the surface, preventing re-establishment of a normal hydrostatic gradient. Thus, the present-day pressure regime of oil and gas reservoirs, overpressured in the deep basin and underpressured on the northwest flank of the basin, is the result of two distinct geologic events-rapid burial and uplift/erosion-widely separated in time.

  7. Structural levels of deformation and failure of heat-resistant 12Cr1MoV steel modified by vacuum arc treatment by Zr{sup +} ion beam

    SciTech Connect

    Vlasov, I. V. E-mail: svp@ispms.tsc.ru; Panin, S. V. E-mail: svp@ispms.tsc.ru; Ovechkin, B. B.; Sergeev, V. P.

    2014-11-14

    Study of structural changes occurring in the surface layer modified by ion-beam irradiation was carried out by means of optical, scanning and transmission electron microscopy. It was shown that irradiation induces the structure modification not only in the surface layer, but along the entire cross section of 1 mm thick specimens. It was elucidated that the complex pattern of structural changes is responsible for the pronounced variation of mechanical properties taking place under static tension and cyclic alternating bending.

  8. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  9. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    SciTech Connect

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  10. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome. PMID:27147527

  11. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome.

  12. Generation of tectonic over-pressure inside subducting oceanic lithosphere involving phase-loop of olivine-wadsleyite transition

    NASA Astrophysics Data System (ADS)

    So, Byung-Dal; Yuen, David A.

    2015-03-01

    We conducted a two-dimensional numerical model to analyze the generation of tectonic over-pressure, which is a positive deviation from lithostatic pressure, for deep slabs which are anchored at the 660 km phase boundary. The formation of the ductile shear zone under a compressional tectonic setting induces tectonic over-pressure. We first propose that an apparent shear zone originated from an elastic heterogeneity in the phase loop, which is the two-phase (i.e., olivine and wadsleyite) coexistence interval around the 410 km boundary within subducting oceanic lithospheres, can cause tectonic over-pressure with a range from 0.3 to 1.5 GPa. This over-pressure significantly impacts the formation of the olivine-wadsleyite phase transition. The flattening of the olivine-wadsleyite interface by over-pressure is well-resolved. Therefore, we argue that the over-pressure should be applied when analyzing the phase boundary within the subducting lithosphere. Our results provide a new insight on the interplay among the phase transition, shear zone formation and tectonic over-pressure.

  13. Generation of Tectonic Over-pressure inside Subducting Slab Involving Phase-Loop of Olivine-Spinel Transition

    NASA Astrophysics Data System (ADS)

    So, B. D.; Yuen, D. A.

    2014-12-01

    We conducted a two-dimensional numerical model to analyze the generation of tectonic over-pressure, which is a positive deviation from lithostatic pressure, for deep slabs which are anchored at the 660 km phase boundary. The formation of the ductile shear zone under a compressional tectonic setting induces tectonic over-pressure. We first propose that an apparent shear zone originated from an elastic heterogeneity in the phase loop, which is the two-phase (i.e., olivine and spinel) coexistence interval around the 410 km boundary within subducting slabs, can cause tectonic over-pressure with a range from 0.3 to 1.5 GPa. This over-pressure significantly impacts the formation of the olivine-spinel phase transition. The flattening of the olivine-spinel interface by over-pressures are well-resolved. Therefore, we argue that the over-pressure should be applied when analyzing the phase boundary within the subducting slab. Our results provide a new insight on the interplay among the phase transition, shear zone formation and tectonic over-pressure. * The draft including the abstract above was submitted on 3rd Aug, 2014 with slight modification.

  14. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: Application to low-temperature kinetics and product detection

    NASA Astrophysics Data System (ADS)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D.; Ferrell, Sarah J.; Leone, Stephen R.; Wilson, Kevin R.

    2011-12-01

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.

  15. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: application to low-temperature kinetics and product detection.

    PubMed

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-12-01

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C(2)H with C(2)H(2) is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.

  16. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet (VUV) synchrotron ionization quadrupole mass spectrometry: Application to low--temperature kinetics and product detection

    SciTech Connect

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-10-12

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radicalneutralchemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has beendeveloped that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion withexcellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by theairfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification basedon the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic ratesclose to the collision-determined limit.

  17. Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO Multi-Energy model.

    PubMed

    Díaz Alonso, Fernando; González Ferradás, Enrique; Sánchez Pérez, Juan Francisco; Miñana Aznar, Agustín; Ruiz Gimeno, José; Martínez Alonso, Jesús

    2006-09-21

    A number of models have been proposed to calculate overpressure and impulse from accidental industrial explosions. When the blast is produced by ignition of a vapour cloud, the TNO Multi-Energy model is widely used. From the curves given by this model, data are fitted to obtain equations showing the relationship between overpressure, impulse and distance. These equations, referred herein as characteristic curves, can be fitted by means of power equations, which depend on explosion energy and charge strength. Characteristic curves allow the determination of overpressure and impulse at each distance.

  18. Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO Multi-Energy model.

    PubMed

    Díaz Alonso, Fernando; González Ferradás, Enrique; Sánchez Pérez, Juan Francisco; Miñana Aznar, Agustín; Ruiz Gimeno, José; Martínez Alonso, Jesús

    2006-09-21

    A number of models have been proposed to calculate overpressure and impulse from accidental industrial explosions. When the blast is produced by ignition of a vapour cloud, the TNO Multi-Energy model is widely used. From the curves given by this model, data are fitted to obtain equations showing the relationship between overpressure, impulse and distance. These equations, referred herein as characteristic curves, can be fitted by means of power equations, which depend on explosion energy and charge strength. Characteristic curves allow the determination of overpressure and impulse at each distance. PMID:16704903

  19. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2005-01-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  20. Minimization of sonic-boom parameters in real and isothermal atmospheres. [overpressure and acoustic impedance

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1975-01-01

    The procedure for sonic-boom minimization introduced by Seebass and George for an isothermal atmosphere was converted for use in the real atmosphere by means of the appropriate equations for sonic-boom pressure signature advance, ray-tube area, and acoustic impedance. Results of calculations using both atmospheres indicate that except for low Mach numbers or high altitudes, the isothermal atmosphere with a scale height of 7620 m (25 000 ft) gives a reasonable estimate of the values of overpressure, impulse, and characteristic overpressure obtained by using the real atmosphere. The results also show that for aircraft design studies, propagation of a known F-function, or minimization studies at low supersonic Mach numbers, the isothermal approximation is not adequate.

  1. The quantitative assessment of domino effects caused by overpressure. Part I. Probit models.

    PubMed

    Cozzani, Valerio; Salzano, Ernesto

    2004-03-19

    Accidents caused by domino effect are among the more severe that took place in the chemical and process industry. However, a well established and widely accepted methodology for the quantitative assessment of domino accidents contribution to industrial risk is still missing. Hence, available data on damage to process equipment caused by blast waves were revised in the framework of quantitative risk analysis, aiming at the quantitative assessment of domino effects caused by overpressure. Specific probit models were derived for several categories of process equipment and were compared to other literature approaches for the prediction of probability of damage of equipment loaded by overpressure. The results evidence the importance of using equipment-specific models for the probability of damage and equipment-specific damage threshold values, rather than general equipment correlation, which may lead to errors up to 500%. PMID:15072815

  2. Structural consequences of cohesion in gravitational instabilities triggered by fluid overpressure: Analytical derivation and experimental testing

    NASA Astrophysics Data System (ADS)

    Mourgues, R.; Costa, A. C. G.; Marques, F. O.; Lacoste, A.; Hildenbrand, A.

    2016-06-01

    The critical taper theory of Coulomb wedges has been classically applied to compressive regimes (accretionary prisms/fold-and-thrust belts), and more recently to gravitational instabilities. Following the initial hypothesis of the theory, we provide an alternative expression of the exact solution for a non-cohesive wedge by considering the balance of forces applied to the external surfaces. Then, we use this approach to derive a solution for the case of cohesive wedges. We show that cohesion has conspicuous structural effects, including a minimum length required for sliding and the formation of listric faults. The stabilizing effect of cohesion is accentuated in the foremost thin domain of the wedge, defining a required Minimum Failure Length (MFL), and producing sliding of a rigid mass above the detachment. This MFL decreases with less cohesion, a smaller coefficient of internal friction, larger fluid overpressure ratio, and steeper upper and basal surfaces for the wedge. Listricity of the normal faults depends on the fluid overpressure magnitude within the wedge. For moderate fluid overpressure, normal faults are curved close to the surface, and become straight at depth. In contrast, where fluid overpressure exceeds a critical value corresponding to the fluid pressure required to destabilize the surface of a noncohesive wedge, the state of stress changes and rotates at depth. The faults are straight close to the surface and listric at depth, becoming parallel to the upper surface if the wedge is thick enough. We tested some of these structural effects of a cohesive wedge on gravitational instabilities using analogue models where cohesive material was subjected to pore-fluid pressure. The shape of the faults obtained in the models is consistent with the predictions of the theory.

  3. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  4. Fluid Overpressure and Connections to Seismicity, Cascadia Tertiary Accretionary Prism, Olympic Peninsula

    NASA Astrophysics Data System (ADS)

    Rotman, H.; Mattinson, C. G.

    2010-12-01

    Metamorphic dehydration reactions and fluid movement in accretionary prisms have been linked to the recently discovered episodic tremor and slip (ETS) earthquake events along subduction zones, but prior studies lack the detail to effectively test the hypothesis that fluid flow triggers ETS events. I conducted field work along a 52.5 km transect on the Olympic Peninsula metasedimentary accretionary prism of the Cascadia subduction zone, and collected approximately 40 representative samples of sandstone and mudrock that were buried to 6-15 km. This depth range intersects the 10-50 km depth range of ETS events. My objectives are to quantify the water flow recorded in rocks of the Olympic Peninsula via petrographic, whole rock, and isotopic analyses to test the prediction that water release increases at ~10 km depth, creating fluid overpressure needed to trigger seismicity. I calculated that on the Olympic Peninsula 1 km3 of 50% sandstone and 50% mudrock loses ~105 kg H2O/yr during burial from 6-14 km depth, comparable to the values expected from large-scale fluid budget models. Quartz veins that compose 0.5-1% of the Obstruction Peak site (~14 km burial depth) are important records of fluid flow quantity and origin. δ18O values of +11.8‰ to +15.2‰ indicate that vein H2O originated from metamorphic reactions. Flow recorded by 1 km3 of rock containing 0.5-1% quartz veins is >106 kg H2O/yr, comparable to the values 2 × 107 to 2 × 108 kg H2O/yr modeled at compositionally similar subduction zones to produce fluid overpressure conditions. I observed fibrous quartz veins, which also indicate fluid overpressure conditions were reached and support my H2O flow estimates. Therefore, Olympic Peninsula rocks at depths of ~10-14 km record dehydration and fluid overpressure large enough to trigger subduction zone seismicity.

  5. Role of fluid overpressures in crustal strength and the form of the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Suppe, J.

    2014-12-01

    The classic crustal strength-depth model of Brace and Kolhstedt (1980) (see figure) based on experimental rock mechanics depends in the brittle regime on the critical assumption of linearly increasing hydrostatic pore-fluid pressures. This leads to a predicted linearly increasing brittle strength that is well established based on deep borehole stress measurements in crystalline crust. In contrast, fluid overpressures are widely documented in orogenic belts based on borehole data, seismic velocity analysis and analysis of veins, in some cases showing complex fault-valve pressure fluctuations between lithostatic and hydrostatic. Typical observed overpressure-depth relationships predict a brittle crustal strength that is approximately constant with depth in contrast with the classic model. This constant-strength behavior below the fluid-retention depth (ZFRD in figure) has been confirmed using deep borehole stress and fluid-pressure measurements (Suppe, 2014). Recent ductile-plastic modeling of disequilibrium compaction suggests that pressure solution promotes further increases in overpressure and weakening, promoting a very prolonged low-strength brittle-ductile transition. Overpressured conditions can be inferred to exist over a substantial fraction of crustal thickness, spanning the brittle-ductile transition, in several tectonic environments, most straightforwardly in shale-rich clastic sedimentary basins built to sea level on oceanic or highly thinned continental crust such as the US Gulf Coast and Niger Delta. These thick accumulations commonly deform into shale-rich plate boundary mountain belts (e.g. Bangladesh/Miyanmar, Makran, Trinidad/Barbados, Gulf of Alaska, southern Taiwan and New Zealand). There is deep geophysical evidence for near lithostatic pore-fluid pressures existing to depths of 20-30km based on Vp, Vs, Vp/Vs and Q observations. We present active examples from Taiwan and New Zealand, combining borehole data and seismic tomography.

  6. Overpressure protection of multiphase oil and gas production flowlines in flat or hilly terrain

    SciTech Connect

    Greaney, P.K.

    1997-05-01

    Long flowlines networking multiple wells to a central facility require overpressure protection if they are incapable of withstanding the maximum shut-in wellhead pressure and if a flowline valve at the central facility can be closed. A main component of this overpressure protection system is a relief valve or set of relief valves on the flowline at the central facility. The relief valves should have set pressures and large enough orifice areas so that no section of the flowline network becomes overpressured, especially the section most remote from the central facility. At the remote section, the pressure is significantly higher than the pressure at the relief valves at the central production facility. Proper application of multiphase hydraulic calculations is critical in determining the relationship between the central facility pressure (relief valve pressure) and the pressure at the remote well during a relief situation. Horizontal flowlines are relatively easy to analyze, but long flowlines in hilly terrain with significant upflow and downflow sections complicate the hydraulic analysis. This paper presents a methodology for determining the relief valve set pressure and orifice area for both flat horizontal flowlines and flowlines in hilly terrain. The methodology consists of simplifying the analysis by substituting worst case steady-state solutions for full transient solutions and by demonstrating that the steady-state solutions are more conservative than the transient ones.

  7. Development of a multimodal blast sensor for measurement of head impact and over-pressurization exposure.

    PubMed

    Chu, Jeffrey J; Beckwith, Jonathan G; Leonard, Daniel S; Paye, Corey M; Greenwald, Richard M

    2012-01-01

    It is estimated that 10-20% of United States soldiers returning from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) have suffered at least one instance of blast-induced traumatic brain injury (bTBI) with many reporting persistent symptomology and long-term effects. This variation in blast response may be related to the complexity of blast waves and the many mechanisms of injury, including over-pressurization due to the shock wave and potential for blunt impacts to the head from shrapnel or from other indirect impacts (e.g., building, ground, and vehicle). To help differentiate the effects of primary, secondary, and tertiary effects of blast, a custom sensor was developed to simultaneously measure over-pressurization and blunt impact. Moreover, a custom, complementary filter was designed to differentiate the measurements of blunt (low-frequency bandwidth) from over-pressurization (high-frequency bandwidth). The custom sensor was evaluated in the laboratory using a shock tube to simulate shock waves and a drop fixture to simulate head impacts. Both bare sensors and sensor embedded within an ACH helmet coupon were compared to laboratory reference transducers under multiple loading conditions (n = 5) and trials at each condition (n = 3). For all comparative measures, peak magnitude, peak impulse, and cross-correlation measures, R (2) values, were greater than 0.900 indicating excellent agreement of peak measurements and time-series comparisons with laboratory measures. PMID:21994064

  8. Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.

    2011-04-01

    Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.

  9. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures

  10. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  11. Two-color bright squeezed vacuum

    SciTech Connect

    Agafonov, Ivan N.; Chekhova, Maria V.

    2010-07-15

    In a strongly pumped nondegenerate traveling-wave optical parametric amplifier, we produce a two-color squeezed vacuum with up to millions of photons per pulse. Our approach to registering this macroscopic quantum state is direct detection of a large number of transverse and longitudinal modes, which is achieved by making the detection time and area much larger than the coherence time and area, respectively. Using this approach, we obtain a record value of twin-beam squeezing for direct detection of bright squeezed vacuum. This makes direct detection of macroscopic squeezed vacuum a practical tool for quantum information applications.

  12. Beam diagnostics

    SciTech Connect

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-08-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the {open_quotes}Booster{close_quotes} and {open_quotes}ATLAS{close_quotes} linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates.

  13. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  14. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  15. Laser acceleration in vacuum

    SciTech Connect

    Hsu, J.L.; Katsouleas, T.; Mori, W.B.; Schroeder, C.B.; Wurtele, J.S.

    1997-02-01

    This paper explores the use of the large electric fields of high-brightness lasers (e.g., up to order TV/cm) to accelerate particles. Unfortunately, as is well known, it is difficult to couple the vacuum field of the laser to particles so as to achieve a net energy gain. In principle, the energy gain near the focus of the laser can be quite high, i.e., on the order of the work done in crossing the focus {Delta}{gamma}={radical}({pi})eEw{approximately}30MeV{radical}(P/1TW), where P is the laser power. In order to retain this energy, the particles must be in the highly nonlinear regime (Vosc/c{gt}1) or must be separated from the laser within a distance on the order of a Rayleigh length from the focus. In this work, we explore the acceleration and output energy distribution of an electron beam injected at various angles and injection energies into a focused laser beam. Insight into the physical mechanism of energy gain is obtained by separating the contributions from the longitudinal and transverse laser field components. {copyright} {ital 1997 American Institute of Physics.}

  16. The role of pore fluid overpressure in the substrates of advancing salt sheets, ice glaciers, and critical-state wedges

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Flemings, Peter B.; Hudec, Michael R.; Nikolinakou, Maria A.

    2015-01-01

    Critical-state wedges, ice glaciers, and salt sheets have many geometric and mechanical similarities. Each has a tapering geometry and moves along a basal detachment. Their motions result from the combined effects of internal deformation and basal sliding. Wedge deformation and geometry, basal conditions, and overpressure (pore fluid pressure less hydrostatic pore fluid pressure) development within the substrate interact with each other in this mechanically coupled system. However, the nature of this interaction is poorly understood. In order to investigate this coupled system, we have developed two-dimensional poromechanical finite-element models with porous fluid flow in sediments. We have simulated the advance of a salt sheet wedge across poroelastic sediments in this study. We emphasize that our results have applications beyond salt wedges to both critical-state wedges and ice glaciers. Overpressure develops within the substrate over time during the advance of the wedge. The magnitude of the overpressure influences the wedge geometry and the wedge advance rate. Lower overpressure results in a thicker and steeper wedge geometry, and a slower advance rate, while higher overpressure favors a thinner, wider, and more flattened wedge geometry and a faster advance rate. This study provides key insights into the links between wedge geometry, basal shear stress, and overpressure in substrates.

  17. How can fluid overpressures be developed and maintained in crustal fault zones ?

    NASA Astrophysics Data System (ADS)

    LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.

    2013-12-01

    The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50

  18. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  19. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N2+(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar

    NASA Astrophysics Data System (ADS)

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C. Y.

    2012-09-01

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N2+(v+, N+) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N2+(X 2Σg+, v+ = 0-2, N+ = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N2+ PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔElab = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (Ecm's) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v+ = 0-2, N+ = 0-9) for the N2+(X 2Σg+; v+ = 0-2, N+ = 0-9) + Ar CT reaction have been measured in the Ecm range of 0.04-10.0 eV, revealing strong vibrational enhancements and Ecm-dependencies of σ(v+ = 0-2, N+ = 0-9). The thermochemical threshold at Ecm = 0.179 eV for the formation of Ar+ from N2+(X; v+ = 0, N+) + Ar was observed by the measured σ(v+ = 0), confirming the narrow ΔEcm spread achieved in the present study. The σ(v+ = 0-2; N+) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions calculated based on the Landau-Zener-Stückelberg formulism are found to be in fair

  20. Investigating the QED vacuum with ultra-intense laser fields

    NASA Astrophysics Data System (ADS)

    King, B.; Di Piazza, A.

    2014-05-01

    In view of the increasingly stronger available laser fields it is becoming feasible to employ them to probe the nonlinear dielectric properties of the vacuum as predicted by quantum electrodynamics (QED) and to test QED in the presence of intense laser beams. First, we discuss vacuum-polarization effects that arise in the collision of a high-energy proton beam with a strong laser field. In addition, we investigate the process of light-by-light diffraction mediated by the virtual electron-positrons of the vacuum. A strong laser beam "diffracts" a probe laser field due to vacuum polarization effects, and changes its polarization. This change of the polarization is shown to be in principle measurable. Also, the possibility of generating harmonics by exploiting vacuum-polarization effects in the collision in vacuum of two ultra-strong laser beams is discussed. Moreover, when two strong parallel laser beams collide with a probe electromagnetic field, each photon of the probe may interact through the "polarized" quantum vacuum with the photons of the other two fields. Analogously to "ordinary" double-slit set-ups involving matter, the vacuum-scattered probe photons produce a diffraction pattern, which is the envisaged observable to measure the quantum interaction between the probe and strong field photons. We have shown that the diffraction pattern becomes visible in a few operating hours, if the strong fields have an intensity exceeding 1024W/cm2.

  1. Large high-vacuum systems for CERN accelerators

    NASA Astrophysics Data System (ADS)

    Strubin, P.

    2008-05-01

    CERN operated over the more than 50 years of its existence particle accelerators and storage rings ranging from a few tens of metre to 27 km, the size of its latest project, the Large Hadron Collider (LHC) which is under construction and will be started in 2008. The challenges began with the Intersection Storage Rings (ISR) in the seventies. With a beam pipe length of 2 × 1 km, this accelerator required innovative solutions like bake-out and glow discharge to achieve the required static vacuum level, fight against beam-induced pressure increases and cancel beam neutralisation by trapped electrons. The vacuum system of the Large Electron Positron (LEP) storage ring (in operation between 1989 and 2001) of a total length of 27 km had to cope with very high levels of synchrotron power. The beam vacuum system of LHC (2 × 27 km) integrates some parts at 1.9 K and others at room temperature and will also have to cope with dynamic effects. In addition to the beam vacuum system, LHC requires insulation vacuum for the superconducting magnets and the helium distribution line. Whereas the required pressure is not very low, the leak detection and localisation is significantly more demanding for the insulation vacuum than for the beam vacuum because of the large volumes and the thermal insulation. When the size of an accelerator grows, the difficulties are not only to get a clean and leak tight vacuum system, but also to be able to measure reliably pressure or gas composition over long distances. Furthermore, in the case of LHC the integration of the beam vacuum system was particularly difficult because of the complexity induced by a superconducting magnet scheme and the reduced space available for the beam pipes. Planning and logistics aspects during installation, including the usage of mobile pumping and diagnostic means, were much more difficult to manage in LHC than in previous projects.

  2. Mirror fusion vacuum technology developments

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1983-11-21

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10/sup 7/ to 10/sup 8/ l/s for D/sub 2/, T/sub 2/ and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility.

  3. Characterization of the Scale Model Acoustic Test Overpressure Environment using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.

  4. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  5. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  6. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    PubMed

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  7. Separation, quantitation and isolation of cannabinoids from Cannabis sativa L. by overpressured layer chromatography.

    PubMed

    Oroszlán, P; Verzár-Petri, G; Mincsovics, E; Székely, T

    1987-02-01

    Two overpressured layer chromatography (OPLC) methods have been developed for the separation of neutral and acidic cannabinoids. The first is an adaptation of Korte's well known method to the OPLC system, which improves its reproducibility. The second one is a new technique based on the phenomenon of chromatographic solvent demixing. The eluent itself is also divided into zones. In the alpha-zone the neutral cannabinoids and in the beta-zone the acidic ones are separated. As a result of the good and reproducible separation, there is a possibility to quantitate cannabinoids by densitometry. The on-line version of OPLC proved suitable for the isolation of hemp constituents.

  8. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  9. APT/LEDA RFQ vacuum pumping system

    SciTech Connect

    Shen, S., LLNL

    1997-07-21

    This paper describes the design and fabrication of a vacuum pumping system for the ATP/LEDA (Low Energy Demonstration Accelerator) RFQ (Radio Frequency Quadrupole) linac. Resulted from the lost proton beam, gas streaming from the LEBT (Low Energy Beam Transport) and out-gassing from the surfaces of the RFQ cavity and vacuum plumbing, the total gas load will be on the order of 7.2 x 10{sup -4} Torr-liters/sec, consisting mainly of hydrogen. The system is designed to pump on a continual basis with redundancy to ensure that the minimal operating vacuum level of 1 x 10{sup -6} Torr is maintained even under abnormal conditions. Details of the design, performance analysis and the preliminary test results of the cryogenic pumps are presented.

  10. Miniature self-contained vacuum compatible electronic imaging microscope

    DOEpatents

    Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.

    2001-01-01

    A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.

  11. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  12. Laser-triggered vacuum switch

    DOEpatents

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  13. Vacuum requirements for heavy ion recirculating induction linacs

    SciTech Connect

    Barnard, J.J.; Yu, S.S. ); Faltens, A. )

    1990-12-01

    We examine the requirements of the vacuum system for the LLNL/LBL recirculating induction linac concept. We reexamine processes, including beam stripping, background gas ionization, intra-beam charge exchange and desorption of gas molecules from the wall due to the incident ionized gas molecules and stripped ions, in the context of the proposed recirculator. We discuss implications for the vacuum system layout and estimate the cost of such a system. 18 refs., 2 figs., 1 tab.

  14. Identifying potential gas accumulation sites from Oligocene overpressure data in the Qiongdongnan basin, offshore South China

    SciTech Connect

    Liu Funing )

    1993-05-01

    Overpressure in Oligocene formations in southern Qiongdongnan basin, offshore China, can be determined either by actual measurements in wells or by calculations using data derived from well logs and seismic surveys. The overpressure is mainly the result of undercompaction of Oligocene rocks during rapid loading by Pliocene and Quaternary sedimentation and of the subsequent thermal expansion of fluids in the Oligocene strata. Every formation possesses its own normal compaction trend (plot of shale-interval acoustic transit times vs. depth). The actual fluid pressures and potential pressures can be computed by the equilibrium-depth method. This method must be corrected for the thermal expansion of fluid. The pressure corrections are based on shale-interval transit times from well logs, interval velocities interpreted from vertical seismic profile (VSP) surveys, and stacking velocity from sonic log data of nearby wells. Gas generated from source rocks is assumed to have moved vertically from strata of higher hydraulic pressure potential to those of lower potentials and to have moved laterally and accumulated within areas where the contour closures of a gas equipotential hydraulic-pressure surface (U curves) have lower values. In the study area, the vicinity of the Yacheng gas field, the potential maps (U, gas, and V, water, maps) and hydraulic head profiles can be plotted from values derived either from actual pressure measurements or from calculations. These maps and profiles show prospective areas of gas accumulation. 5 refs., 10 figs., 1 tab.

  15. Evaluation of overpressure prediction models for air blast above the triple point.

    PubMed

    Ehrhardt, L; Boutillier, J; Magnan, P; Deck, C; De Mezzo, S; Willinger, R; Cheinet, S

    2016-07-01

    The increase of blast exposures leads to the need for better assessment of the blast threat. Empirical models describing the blast propagation in ideal conditions as free-field or surface detonations are commonly employed, but in some configurations the ground-reflected shock should be treated explicitly. Empirical models permit the prediction of the blast characteristics with the ground-reflected shock. The present study uses some original experimental data to evaluate the accuracy of the predicted overpressure with time regarding the reflected shock characteristics. Three methods are tested. The first method, called method of images (MOI) and linearly adding a virtual ground-symmetrical source blast to the free-field blast, is quick but lacks accuracy regarding the reflected shock characteristics. The second method, based on the LOAD_BLAST_ENHANCED function of the commercial LS-DYNA framework, better captures the reflected shock compared to the MOI, but the overall differences with experimental data are of the same order of magnitude as for the MOI. An original fit is introduced, based on standard physical parameters. The accuracy of this fit on the reflected shock characteristics, and the better match with the overall overpressure time series, shows its potential as a new empirical blast predicting tool.

  16. Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program

    SciTech Connect

    Cull, T.A.; George, T.G.; Pavone, D.

    1986-09-01

    The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO/sub 2/ as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel.

  17. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  18. Development of sediment overpressure and its effect on thermal maturation: Application to the Gulf of Mexico basin

    SciTech Connect

    Mello, U.T.; Karner, G.D.

    1996-09-01

    High sedimentation rates can potentially lead to overpressuring and sediment undercompaction within basins. Sediments with anomalously high porosity, in turn, induce low thermal conductivities and so tend to act as a thermal insulator to the flow of heat. In the Gulf of Mexico basin (Gulf basin), the generation of overpressure is caused mainly by the inability of pore pressure fluids to escape at a rate commensurate with sedimentation. We modeled the generation and dissipation of abnormal sediment pore pressure due to variations in sedimentation rate, facies, formation porosity, and permeability within the Gulf basin using finite-element techniques to solve the differential equations of both heat and fluid transport within compacting sediments. We assume that the porosity-effective stress relationship within the sediment follows a negative exponential steady-state form when the pore pressure is hydrostatic. An important feature of our modeling approach is the assumption that sediments are incapable of significant expansion in response to increasing pore pressure. Sediments are assumed to hydrofracture when the pore pressure approaches the lithostatic pressure, rather than a common assumption of porosity expansion even in lithified sediments. From our modeling, we conclude that significant overpressures have been created (and dissipated) at various times within the Gulf basin and track, in general, the west to east migration of sediment loads deposited since the Cretaceous. Although predicted overpressures of more than 0.75 kpsi (i.e., an equivalent excess hydraulic head of 500 in) of Campanian-Maastrichtian age remain to the present day, the main phase of overpressure development in the Gulf basin is predicted to have occurred during the Miocene-Holocene. Maximum overpressures ({approximately}13.6 kpsi; excess hydraulic head of 9.4 km) are predicted for the present day.

  19. High throughput vacuum chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.

    1990-10-01

    We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The Al

  20. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  1. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  2. Resonant Circuits and Introduction to Vacuum Tubes, Industrial Electronics 2: 9325.03. Course Outline.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The 135 clock-hour course for the 11th year consists of outlines for blocks of instruction on series resonant circuits, parallel resonant circuits, transformer theory and application, vacuum tube fundamentals, diode vacuum tubes, triode tube construction and parameters, vacuum tube tetrodes and pentodes, beam-power and multisection tubes, and…

  3. [Vertebral vacuum phenomena].

    PubMed

    Hamzé, B; Leaute, F; Wybier, M; Laredo, J D

    1995-01-01

    The spinal vacuum phenomenon is a collection of gas within the disk space, the vertebral body, the apophyseal joint or the spinal canal. The intradiscal vacuum phenomenon is frequently observed in degenerative disk disease and crystal-induced diskopathy. This has obvious significance to the radiologist, who, on observing a narrowed disk space or collapsed vertebral body, might otherwise consider infectious or neoplastic spondylitis, a likely possibility. The presence of vacuum phenomenon militates against the diagnosis of infection or tumor.

  4. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  5. Upgraded vacuum arc ion source for metal ion implantation

    SciTech Connect

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-02-15

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  6. Catalysis of Schwinger vacuum pair production

    SciTech Connect

    Dunne, Gerald V.; Gies, Holger; Schuetzhold, Ralf

    2009-12-01

    We propose a new catalysis mechanism for nonperturbative vacuum electron-positron pair production, by superimposing a plane-wave x-ray probe beam with a strongly focused optical laser pulse, such as is planned at the Extreme Light Infrastructure (ELI) facility. We compute the absorption coefficient arising from vacuum polarization effects for photons below threshold in a strong electric field. This setup should facilitate the (first) observation of this nonperturbative QED effect with planned light sources such as ELI yielding an envisioned intensity of order 10{sup 26} W/cm{sup 2}.

  7. Overpressure isoflurane at caesarean section: a study of arterial isoflurane concentrations.

    PubMed

    McCrirrick, A; Evans, G H; Thomas, T A

    1994-01-01

    In this study we have measured arterial concentrations of isoflurane obtained during Caesarean section in two groups of patients. Patients in group 1 received 1% isoflurane throughout operation, whilst those in group 2 received 2% isoflurane for the first 5 min, 1.5% for the next 5 min and 0.8% thereafter. We found that arterial isoflurane concentrations were significantly greater in group 2 than in group 1 (ANOVA, P < 0.05). Isoflurane concentrations greater than 30 micrograms ml-1 were achieved rapidly in most patients in both groups, but there was a large scatter of results. The isoflurane concentration at which awareness or recall may occur is not known, but an "overpressure" technique as described for patients in group 2 may result in fewer patients being at risk of awareness.

  8. Tectonic overpressure may reconcile the structural and petrological records of the Adula nappe (Central Alps)

    NASA Astrophysics Data System (ADS)

    Pleuger, Jan; Podladchikov, Yuri

    2014-05-01

    accordance with the structural record, the Adula nappe can be restored to maximum depths of up to ca. 60 km. For individual points of the Adula nappe in the restored cross section, corresponding to the sporadic occurences of (ultra)high-pressure rocks, lithostatic pressures are exceeded by petrological peak-pressure data by about 40% to 80%. Such amounts of tectonic overpressure are within the limits of theoretical considerations and numerical modelling results. For the other units comprised in the cross section, and for subsequent tectono-metamorphic stages of the Adula nappe, negligible amounts of overpressure (around 10%) are determined from the restoration. We conclude that (1) the NFP20-East cross section can be kinematically restored by using only structural data, (2) the dilemma mentioned above can be solved by admitting realisting amounts of tectonic overpressure, and (3) significant amounts of overpressure were established only locally and episodically.

  9. Blast traumatic brain injury in the rat using a blast overpressure model.

    PubMed

    Yarnell, Angela M; Shaughness, Michael C; Barry, Erin S; Ahlers, Stephen T; McCarron, Richard M; Grunberg, Neil E

    2013-01-01

    Traumatic brain injury (TBI) is a serious health concern for civilians and military populations, and blast-induced TBI (bTBI) has become an increasing problem for military personnel over the past 10 years. To understand the biological and psychological effects of blast-induced injuries and to examine potential interventions that may help to prevent, attenuate, and treat effects of bTBI, it is valuable to conduct controlled animal experiments. This unit discusses available paradigms to model traumatic brain injury in animals, with an emphasis on the relevance of these various models to study blast-induced traumatic brain injury (bTBI). This paper describes the detailed methods of a blast overpressure (BOP) paradigm that has been used to conduct experiments with rats to model blast exposure. This particular paradigm models the pressure wave created by explosions, including improvised explosive devices (IEDs).

  10. Simultaneous determination of water-soluble vitamins by over-pressure layer chromatography and photodensitometric detection.

    PubMed

    Postaire, E; Cisse, M; Le Hoang, M D; Pradeau, D

    1991-04-01

    An over-pressure layer chromatographic procedure with photodensitometric detection for the simultaneous determination of water-soluble vitamins in multivitamin pharmaceutical preparations was developed and evaluated. The method uses high-performance TLC (HPTLC) plates with silica gel as the thin-layer, and an n-butanol:pyridine:water mixture (50:35:15, v/v/v) as mobile phase at a rate of 0.25 mL/min for baseline separation. The quantitation was carried out without derivatization (vitamin B1, vitamin B2, vitamin B6, folic acid, nicotinamide, vitamin C) or after spraying ninhydrin reagent (calcium pantothenate) or 4-dimethylaminocinnamaldehyde (vitamin B12, biotin). This was applied to the analysis of multivitamin solutions. Satisfactory relative standard deviations and good recovery were obtained for all the vitamins examined. It was concluded that this method is fast, accurate, specific, and suitable for routine quality control use. PMID:1865338

  11. Suppressed vitrinite reflectance in the Ferron coalbed gas fairway, central Utah: Possible influence of overpressure

    USGS Publications Warehouse

    Quick, J.C.; Tabet, D.E.

    2003-01-01

    Chemical and thermoplastic properties of coals in the Ferron coalbed methane fairway indicate that coals in the north are of higher rank than coals in the south. Measured vitrinite reflectance does not accurately show this variation of coal rank. Although vitrinite reflectance in the southern and central part of the fairway is consistent with other measures of coal rank, suppressed vitrinite reflectance is observed in the north where methane contents are relatively high. This coincidence of suppressed reflectance and relatively high coalbed methane yields may be significant. We speculate that the suppressed reflectance values result from a burial history where overpressure developed during the early stages of coalification and persisted until recent uplift and cooling; such instances may be diagnostic of prospective coalbed methane targets elsewhere. ?? 2003 Published by Elsevier B.V.

  12. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Malinverno, Alberto

    2016-09-01

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein, we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Short-range advective migration can increase the amount of methane delivered to sands as compared to the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.

  13. Overpressure isoflurane at caesarean section: a study of arterial isoflurane concentrations.

    PubMed

    McCrirrick, A; Evans, G H; Thomas, T A

    1994-01-01

    In this study we have measured arterial concentrations of isoflurane obtained during Caesarean section in two groups of patients. Patients in group 1 received 1% isoflurane throughout operation, whilst those in group 2 received 2% isoflurane for the first 5 min, 1.5% for the next 5 min and 0.8% thereafter. We found that arterial isoflurane concentrations were significantly greater in group 2 than in group 1 (ANOVA, P < 0.05). Isoflurane concentrations greater than 30 micrograms ml-1 were achieved rapidly in most patients in both groups, but there was a large scatter of results. The isoflurane concentration at which awareness or recall may occur is not known, but an "overpressure" technique as described for patients in group 2 may result in fewer patients being at risk of awareness. PMID:8110537

  14. Development of fluid overpressures in crustal faults and implications for earthquakes mechanics

    NASA Astrophysics Data System (ADS)

    Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Armitage, Peter; Blake, Oshaine; Fabbri, Olivier

    2013-04-01

    The development and maintenance of fluid overpressures strongly influence the mechanical behavior of the crust and especially crustal fault zones. The mechanisms allowing fluid pressure build-up are still open questions, and their influence on tectonic and fault weakening processes remain unclear. The determination of the hydraulic and mechanical properties of crustal fault zone elements is a key aspect to improve our understanding of the fluid-tectonic interactions and more particularly the role of fluids in fault mechanics and earthquake triggering. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault-zone in the Ubaye-Argentera area (southeastern France). Previous studies showed that the fluids located in the fault zone developed overpressures between 7 and 26 MPa, that triggered intense seismic swarms (i.e. 16,000 events in 2003-2004) (Jenatton et al., 2007; Daniel et al., 2011; Leclère et al., 2012). The fault-zone studied here is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and minor muscovite. It exposes several anastomosed core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The permeability and elastic moduli of the host rock, damage zone and fault core were measured from plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a variation of the

  15. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE PAGES

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Malinverno, Alberto

    2016-08-31

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  16. Transverse Beam Size Effects in Beam Position Monitors

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  17. Overpressure and hydrocarbon accumulations in Tertiary strata, Gulf Coast of Louisiana

    USGS Publications Warehouse

    Nelson, Philip H.

    2012-01-01

    Many oil and gas reservoirs in Tertiary strata of southern Louisiana are located close to the interface between a sand-rich, normally pressured sequence and an underlying sand-poor, overpressured sequence. This association, recognized for many years by Gulf Coast explorationists, is revisited here because of its relevance to an assessment of undiscovered oil and gas potential in the Gulf Coast of Louisiana. The transition from normally pressured to highly overpressured sediments is documented by converting mud weights to pressure, plotting all pressure data from an individual field as a function of depth, and selecting a top and base of the pressure transition zone. Vertical extents of pressure transition zones in 34 fields across southern onshore Louisiana range from 300 to 9000 ft and are greatest in younger strata and in the larger fields. Display of pressure transition zones on geologic cross sections illustrates the relative independence of the depth of the pressure transition zone and geologic age. Comparison of the depth distribution of pressure transition zones with production intervals confirms previous findings that production intervals generally overlap the pressure transition zone in depth and that the median production depth lies above the base of the pressure transition zone in most fields. However, in 11 of 55 fields with deep drilling, substantial amounts of oil and gas have been produced from depths deeper than 2000 ft below the base of the pressure transition zone. Mud-weight data in 7 fields show that "local" pressure gradients range from 0.91 to 1.26 psi/ft below the base of the pressure transition zone. Pressure gradients are higher and computed effective stress gradients are negative in younger strata in coastal areas, indicating that a greater potential for fluid and sediment movement exists there than in older Tertiary strata.

  18. Blast induced neurotrauma causes overpressure dependent changes to the DNA methylation equilibrium.

    PubMed

    Bailey, Zachary S; Grinter, Michael B; De La Torre Campos, Diego; VandeVord, Pamela J

    2015-09-14

    Traumatic brain injury (TBI) has a high prevalence in our society and often leads to morbidity and mortality. TBI also occurs frequently in a military setting where exposure to blast waves is common. Abnormal gene expression involved with oxidative stress, inflammation and neuronal apoptosis has been well documented following blast induced neurotrauma (BINT). Altered epigenetic transcriptional regulation through DNA methylation has been implicated in the pathology of the injury. Imbalance between DNA methylation and DNA demethylation may lead to altered methylation patterns and subsequent changes in gene transcription. DNA methyltransferase enzymes (DNMT1, DNMT3a, and DNMT3b) are responsible for the addition of methyl groups to DNA, DNA methylation. Whereas the combined function of ten-eleven translocation enzymes (TET1, TET2, and TET3) and thymine-DNA glycosylase (TDG) result in the removal of methyl groups from DNA, DNA demethylation. We used an established rodent model of BINT to assess changes in DNA methylation and demethylation enzymes following injury. Three different blast overpressures were investigated (10, 17 and 23psi). Gene expression was investigated in the prefrontal cortex and hippocampus two weeks following injury. We observed DNMT, TET and TDG expression changes between pressure groups and brain regions. The hippocampus was more vulnerable to enzyme expression changes than the prefrontal cortex, which correlated with aberrant DNA methylation. A significant negative correlation was found between global DNA methylation and the magnitude of blast overpressure exposure. Through transcriptional regulation, altered DNA methylation patterns may offer insight into the characteristic outcomes associated with the injury pathology including inflammation, oxidative stress and apoptosis. As such, these enzymes may be important targets to future therapeutic intervention strategies. PMID:26232681

  19. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  20. Altered Gene Expression in Cultured Microglia in Response to Simulated Blast Overpressure: Possible Role of Pulse Duration

    PubMed Central

    Kane, Michael J.; Angoa-Pérez, Mariana; Francescutti, Dina M.; Sykes, Catherine E.; Briggs, Denise I.; Leung, Lai Yee; VandeVord, Pamela J.; Kuhn, Donald M.

    2012-01-01

    Blast overpressure has long been known to cause barotrauma to air-filled organs such as lung and middle ear. However, experience in Iraq and Afghanistan is revealing that individuals exposed to explosive munitions can also suffer traumatic brain injury (TBI) even in the absence of obvious external injury. The interaction of a blast shock wave with the brain in the intact cranial vault is extremely complex making it difficult to conclude that a blast wave interacts in a direct manner with the brain to cause injury. In an attempt to “isolate” the shock wave and test its primary effects on cells, we exposed cultured microglia to simulated blast overpressure in a barochamber. Overpressures ranging from 15–45 psi did not change microglial Cox-2 levels or TNF-α secretion nor did they cause cell damage. Microarray analysis revealed increases in expression of a number of microglial genes relating to immune function and inflammatory responses to include Saa3, Irg1, Fas and CxCl10. All changes in gene expression were dependent on pulse duration and were independent of pressure. These results indicate that microglia are mildly activated by blast overpressure and uncover a heretofore undocumented role for pulse duration in this process. PMID:22698585

  1. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  2. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  3. ELETTRA vacuum system

    NASA Astrophysics Data System (ADS)

    Bernardini, M.

    1991-08-01

    A status report of the vacuum system of ELETTRA, the 2 GeV, 400 mA light source under construction in Trieste, will be described. The Vacuum project, presented at ``Synchrotron Radiation Vacuum Workshop'' at Riken (Japan 22-24 March 1990) and more recently at EVC-2, the European Vacuum Conference at Trieste (Italy 21-26 May 1990), is now in the phase of testing a prototype sector, which is 1/24 of the ring circumference. Details and some technological aspects of the fabrication will be reviewed together with the vacuum performances. Results of laboratory experiments on components, standard or not, allowed us to finalize the main choices in light of the general philosophy of the project and will be properly summarized.

  4. Inverse modeling of the overpressure distribution in an extension fracture with an arbitrary aperture variation: application to non-feeder dikes in the Miyake-jima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Kusumoto, Shigekazu; Geshi, Nobuo; Gudmundsson, Agust

    2010-05-01

    We derived a solution for the overpressure distribution acting on the walls (surfaces) of an extension fracture (a hydrofracture) with an arbitrary opening-displacement (or aperture) variation. In the proposed model, we assume that the overpressure distribution can be described by Fourier cosine series. We at first present a solution for the forward model giving the fracture aperture when it is opened by an irregular overpressure variation obtained using the Fourier cosine series. Next, by changing the form of the solution for the forward model, we obtain a matrix equation that can be used to estimate the Fourier coefficients to obtain the overpressure distribution from the fracture aperture variation. As simple examples of this inverse analysis, we estimate the overpressure conditions from crack apertures given analytically for two cases, namely, 1) the overpressure in the crack is constant, and 2) the overpressure variation in the crack varies linearly from its center. The estimated overpressure distributions were found to be correct, although a small 'noise' was present. Since the method presented here gives the overpressure distribution as a Fourier series by the aperture data measured at a finite number of points, the overpressure conditions for forming the fracture can be determined for each wavelength. The Fourier coefficient of n = 0 is an important coefficient that gives the average value of the overpressure acting inside the crack. With the exception of n = 0, the Fourier coefficient of n = 1 expresses the longest wavelength component of the irregular overpressure. Thus, because this coefficient including the coefficient of n = 0 gives the longest wavelength component in the irregular overpressure, the component may be an important indicator of the overpressure condition that decides the basic form of the crack. We applied the solution for the inverse analysis to the thickness data of 19 non-feeder dikes exposed in the caldera wall of the Miyake

  5. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Gies, Holger; Reuter, Maria; Zepf, Matt

    2015-10-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  6. Coherent instabilities of a relativistic bunched beam

    SciTech Connect

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  7. Design of the EBIS vacuum system

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.

    2011-03-28

    At Brookhaven National Laboratory the Electron Beam Ion Source (EBIS) is presently being commissioned. The EBIS will be a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC). The new preinjector has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium. The background pressure in the ionization region of the EBIS required to be low enough that it does not produce a significant number of ions from background gas. The pressure in the regions of the electron gun and electron collector can be higher than in the ionization region provided there is efficient vacuum separation between the sections. For injection the ions must be accelerated to 100KV by pulsing the EBIS platform. All associated equipment including the vacuum equipment on the platform is at a 100KV potential. The vacuum system design and the vacuum controls for the EBIS platform and transport system will be presented as well as the interface with the Booster Ring which has a pressure 10-11 Torr.

  8. Stimulated photon emission from the vacuum

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Shaisultanov, Rashid

    2015-06-01

    We study the effect of stimulated photon emission from the vacuum in strong space-time-dependent electromagnetic fields. We emphasize the viewpoint that the vacuum subjected to macroscopic electromagnetic fields with at least one nonzero electromagnetic field invariant, as, e.g., attainable by superimposing two laser beams, can represent a source term for outgoing photons. We believe that this view is particularly intuitive and allows for a straightforward and intuitive study of optical signatures of quantum vacuum nonlinearity in realistic experiments involving the collision of high-intensity laser pulses, and exemplify this view for the vacuum subjected to a strong standing electromagnetic wave as generated in the focal spot of two counterpropagating, linearly polarized, high-intensity laser pulses. Focusing on a comparably simple electromagnetic field profile, which should nevertheless capture the essential features of the electromagnetic fields generated in the focal spots of real high-intensity laser beams, we provide estimates for emission characteristics and the numbers of emitted photons attainable with present and near future high-intensity laser facilities.

  9. Overpressure retardation of organic-matter maturation and petroleum generation: A case study from the Yinggehai and Qiongdongnan Basins, South China Sea

    SciTech Connect

    Hao Fang; Sun Yongchuan; Li Sitian; Zhang Qiming

    1995-04-01

    Three superimposed pressure systems developed in the Yinggehai Basin, South China Sea, as indicated by seismic data, well logs, and direct pressure measurements. The organic maturation profile is nonlinear, with three nonparallel segments that correspond to the shallow, normal-pressured system; the intermediate, overpressured system; and the deep, strongly overpressured system respectively. The intermediate and deep overpressured systems have abnormally low R{sub 0} gradients. The organic maturity of these overpressured rocks is significantly lower than the maturity of normal-pressured source rocks in nearby wells with similar thermal histories and does not math the thermal histories of the rocks. Such an organic maturity anomaly is distinctly different from those caused by variation in activation energies, conductivity contrasts, and hydrologic effects, and is confirmed to be the result of overpressure retardation. The degree to which the organi-matter maturation is retarded, expressed as the difference between predicted and measured vitrinite reflectance, increases exponentially with increasing fluid pressure, confirming that pressure increases the activation energies of organi-matter maturation reactions. Overpressure retardation has been proven to be conditional and quite important for clearly understanding petroleum generation, migration, and accumulation in overpressured sedimentary basins.

  10. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  11. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2001-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  12. An integrated wire harp and readout electronics inside vacuum

    SciTech Connect

    Chatterjee, Mou; Nabhiraj, P. Y.

    2015-03-15

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10{sup −7} Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  13. An integrated wire harp and readout electronics inside vacuum

    NASA Astrophysics Data System (ADS)

    Chatterjee, Mou; Nabhiraj, P. Y.

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10-7 Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  14. An integrated wire harp and readout electronics inside vacuum.

    PubMed

    Chatterjee, Mou; Nabhiraj, P Y

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10(-7) Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation. PMID:25832261

  15. An integrated wire harp and readout electronics inside vacuum.

    PubMed

    Chatterjee, Mou; Nabhiraj, P Y

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10(-7) Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  16. APS storage ring vacuum system performance

    SciTech Connect

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-06-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented.

  17. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  18. Laser sealed vacuum insulation window

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  19. Laser sealed vacuum insulating window

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  20. Prevention of Over-Pressurization During Combustion in a Sealed Chamber

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Niehaus, Justin E.; Olson, Sandra L.; Dietrich, Daniel L.; Ruff, Gary A.; Johnston, Michael C.

    2012-01-01

    The combustion of flammable material in a sealed chamber invariably leads to an initial pressure rise in the volume. The pressure rise is due to the increase in the total number of gaseous moles (condensed fuel plus chamber oxygen combining to form gaseous carbon dioxide and water vapor) and, most importantly, the temperature rise of the gas in the chamber. Though the rise in temperature and pressure would reduce with time after flame extinguishment due to the absorption of heat by the walls and contents of the sealed spacecraft, the initial pressure rise from a fire, if large enough, could lead to a vehicle over-pressure and the release of gas through the pressure relief valve. This paper presents a simple lumped-parameter model of the pressure rise in a sealed chamber resulting from the heat release during combustion. The transient model considers the increase in gaseous moles due to combustion, and heat transfer to the chamber walls by convection and radiation and to the fuel-sample holder by conduction, as a function of the burning rate of the material. The results of the model are compared to the pressure rise in an experimental chamber during flame spread tests as well as to the pressure falloff after flame extinguishment. The experiments involve flame spread over thin solid fuel samples. Estimates of the heat release rate profiles for input to the model come from the assumed stoichiometric burning of the fuel along with the observed flame spread behavior. The sensitivity of the model to predict maximum chamber pressure is determined with respect to the uncertainties in input parameters. Model predictions are also presented for the pressure profile anticipated in the Fire Safety-1 experiment, a material flammability and fire safety experiment proposed for the European Space Agency (ESA) Automated Transfer Vehicle (ATV). Computations are done for a range of scenarios including various initial pressures and sample sizes. Based on these results, various

  1. Vacuum mechatronics first international workshop

    SciTech Connect

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. )

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  2. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  3. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  4. Alignment sensing and control for squeezed vacuum states of light.

    PubMed

    Schreiber, E; Dooley, K L; Vahlbruch, H; Affeldt, C; Bisht, A; Leong, J R; Lough, J; Prijatelj, M; Slutsky, J; Was, M; Wittel, H; Danzmann, K; Grote, H

    2016-01-11

    Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that contain only very few photons, special measures must be taken in order to sense and control the alignment of the essentially dark beam. The GEO 600 gravitational wave detector employs a squeezed vacuum source to improve its detection sensitivity beyond the limits set by classical quantum shot noise. Here, we present our design and implementation of an alignment sensing and control scheme that ensures continuous optimal alignment of the squeezed vacuum field at GEO 600 on long time scales in the presence of free-swinging optics. This first demonstration of a squeezed light automatic alignment system will be of particular interest for future long-term applications of squeezed vacuum states of light. PMID:26832246

  5. Alignment sensing and control for squeezed vacuum states of light.

    PubMed

    Schreiber, E; Dooley, K L; Vahlbruch, H; Affeldt, C; Bisht, A; Leong, J R; Lough, J; Prijatelj, M; Slutsky, J; Was, M; Wittel, H; Danzmann, K; Grote, H

    2016-01-11

    Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that contain only very few photons, special measures must be taken in order to sense and control the alignment of the essentially dark beam. The GEO 600 gravitational wave detector employs a squeezed vacuum source to improve its detection sensitivity beyond the limits set by classical quantum shot noise. Here, we present our design and implementation of an alignment sensing and control scheme that ensures continuous optimal alignment of the squeezed vacuum field at GEO 600 on long time scales in the presence of free-swinging optics. This first demonstration of a squeezed light automatic alignment system will be of particular interest for future long-term applications of squeezed vacuum states of light.

  6. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques. PMID:26433903

  7. Delineating Area of Review in a System with Pre-injection Relative Overpressure

    SciTech Connect

    Oldenburg, Curtis M.; Cihan, Abdullah; Zhou, Quanlin; Fairweather, Stacey; Spangler, Lee H.

    2014-12-31

    The Class VI permit application for geologic carbon sequestration (GCS) requires delineation of an area of review (AoR), defined as the region surrounding the (GCS) project where underground sources of drinking water (USDWs) may be endangered. The methods for estimating AoR under the Class VI regulation were developed assuming that GCS reservoirs would be in hydrostatic equilibrium with overlying aquifers. Here we develop and apply an approach to estimating AoR for sites with preinjection relative overpressure for which standard AoR estimation methods produces an infinite AoR. The approach we take is to compare brine leakage through a hypothetical open flow path in the base-case scenario (no-injection) to the incrementally larger leakage that would occur in the CO2-injection case. To estimate AoR by this method, we used semi-analytical solutions to single-phase flow equations to model reservoir pressurization and flow up (single) leaky wells located at progressively greater distances from the injection well. We found that the incrementally larger flow rates for hypothetical leaky wells located 6 km and 4 km from the injection well are ~20% and 30% greater, respectively, than hypothetical baseline leakage rates. If total brine leakage is considered, the results depend strongly on how the incremental increase in total leakage is calculated, varying from a few percent to up to 40% greater (at most at early time) than base-case total leakage.

  8. Delineating Area of Review in a System with Pre-injection Relative Overpressure

    DOE PAGES

    Oldenburg, Curtis M.; Cihan, Abdullah; Zhou, Quanlin; Fairweather, Stacey; Spangler, Lee H.

    2014-12-31

    The Class VI permit application for geologic carbon sequestration (GCS) requires delineation of an area of review (AoR), defined as the region surrounding the (GCS) project where underground sources of drinking water (USDWs) may be endangered. The methods for estimating AoR under the Class VI regulation were developed assuming that GCS reservoirs would be in hydrostatic equilibrium with overlying aquifers. Here we develop and apply an approach to estimating AoR for sites with preinjection relative overpressure for which standard AoR estimation methods produces an infinite AoR. The approach we take is to compare brine leakage through a hypothetical open flowmore » path in the base-case scenario (no-injection) to the incrementally larger leakage that would occur in the CO2-injection case. To estimate AoR by this method, we used semi-analytical solutions to single-phase flow equations to model reservoir pressurization and flow up (single) leaky wells located at progressively greater distances from the injection well. We found that the incrementally larger flow rates for hypothetical leaky wells located 6 km and 4 km from the injection well are ~20% and 30% greater, respectively, than hypothetical baseline leakage rates. If total brine leakage is considered, the results depend strongly on how the incremental increase in total leakage is calculated, varying from a few percent to up to 40% greater (at most at early time) than base-case total leakage.« less

  9. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    PubMed Central

    Kallakuri, Srinivasu; Purkait, Heena S.; Dalavayi, Satya; VandeVord, Pamela; Cavanaugh, John M.

    2015-01-01

    Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s) of blast overpressure (OP) induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM) tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L) chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury. PMID:26752889

  10. Impact of reduced near-field entrainment of overpressured volcanic jets on plume development

    USGS Publications Warehouse

    Saffaraval, Farhad; Solovitz, Stephen A.; Ogden, Darcy E.; Mastin, Larry G.

    2012-01-01

    Volcanic plumes are often studied using one-dimensional analytical models, which use an empirical entrainment ratio to close the equations. Although this ratio is typically treated as constant, its value near the vent is significantly reduced due to flow development and overpressured conditions. To improve the accuracy of these models, a series of experiments was performed using particle image velocimetry, a high-accuracy, full-field velocity measurement technique. Experiments considered a high-speed jet with Reynolds numbers up to 467,000 and exit pressures up to 2.93 times atmospheric. Exit gas densities were also varied from 0.18 to 1.4 times that of air. The measured velocity was integrated to determine entrainment directly. For jets with exit pressures near atmospheric, entrainment was approximately 30% less than the fully developed level at 20 diameters from the exit. At pressures nearly three times that of the atmosphere, entrainment was 60% less. These results were introduced into Plumeria, a one-dimensional plume model, to examine the impact of reduced entrainment. The maximum column height was only slightly modified, but the critical radius for collapse was significantly reduced, decreasing by nearly a factor of two at moderate eruptive pressures.

  11. A proposed biochemical mechanism involving hemoglobin for blast overpressure-induced injury.

    PubMed

    Elsayed, N M; Gorbunov, N V; Kagan, V E

    1997-07-25

    Blast overpressure (BOP) is the abrupt, rapid, rise in atmospheric pressure resulting from explosive detonation, firing of large-caliber weapons, and accidental occupational explosions. Exposure to incident BOP waves causes internal injuries, mostly to the hollow organs, particularly the ears, lungs and gastrointestinal tract. BOP-induced injury used to be considered of military concern because it occurred mostly in military environments during military actions or training, and to a lesser extent during civilian occupational accidents. However, in recent years with the proliferation of indiscriminate terrorist bombings worldwide involving civilians, blast injury has become a societal concern, and the need to understand the biochemical and molecular mechanism(s) of injury, and to find new and effective methods for treatment gained importance. In general, past BOP research has focused on the physiological and pathological manifestations of incapacitation, thresholds of safety, and on predictive modeling. However, we have been studying the molecular mechanism of BOP-induced injury, and recently began to have an insight into that mechanism, and recognize the role of hemoglobin released during hemorrhage in catalyzing free radical reactions leading to oxidative stress. In this report we discuss the biochemical changes observed after BOP exposure in rat blood and lung tissue, and propose a biochemical mechanism for free radical-induced oxidative stress that can potentially complicate the injury. Moreover, we observed that some antioxidants can interact with Hb oxidation products (oxy-, met- and oxoferrylHb) and act as prooxidants that can increase the damage rather than decrease it.

  12. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.

  13. Petroleum and aqueous inclusions from deeply buried reservoirs: Experimental simulations and consequences for overpressure estimates

    NASA Astrophysics Data System (ADS)

    Pironon, Jacques; Bourdet, Julien

    2008-10-01

    Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C 14H 30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.

  14. A proposed biochemical mechanism involving hemoglobin for blast overpressure-induced injury.

    PubMed

    Elsayed, N M; Gorbunov, N V; Kagan, V E

    1997-07-25

    Blast overpressure (BOP) is the abrupt, rapid, rise in atmospheric pressure resulting from explosive detonation, firing of large-caliber weapons, and accidental occupational explosions. Exposure to incident BOP waves causes internal injuries, mostly to the hollow organs, particularly the ears, lungs and gastrointestinal tract. BOP-induced injury used to be considered of military concern because it occurred mostly in military environments during military actions or training, and to a lesser extent during civilian occupational accidents. However, in recent years with the proliferation of indiscriminate terrorist bombings worldwide involving civilians, blast injury has become a societal concern, and the need to understand the biochemical and molecular mechanism(s) of injury, and to find new and effective methods for treatment gained importance. In general, past BOP research has focused on the physiological and pathological manifestations of incapacitation, thresholds of safety, and on predictive modeling. However, we have been studying the molecular mechanism of BOP-induced injury, and recently began to have an insight into that mechanism, and recognize the role of hemoglobin released during hemorrhage in catalyzing free radical reactions leading to oxidative stress. In this report we discuss the biochemical changes observed after BOP exposure in rat blood and lung tissue, and propose a biochemical mechanism for free radical-induced oxidative stress that can potentially complicate the injury. Moreover, we observed that some antioxidants can interact with Hb oxidation products (oxy-, met- and oxoferrylHb) and act as prooxidants that can increase the damage rather than decrease it. PMID:9217317

  15. Experiments on Dynamic Overpressure Stabilization of Ablative Richtmyer--Meshkov Growth in ICF Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Goncharov, V. N.; Jaanimagi, P. A.; Knauer, J. P.; Meyerhofer, D. D.

    2002-11-01

    Dynamic overpressure sets the growth rate of the ablative Richtmyer--Meshkov (RM) instability and the late-time imprint levels in directly driven ICF targets. It leads to temporal oscillations of the perturbed ablation front, which have been predicted analytically and observed experimentally,(Y. Aglitskiy et al.), Phys. Plasmas 9, 2264 (2002). and in 2-D ORCHID simulations. These predictions were verified on OMEGA by measuring the perturbation amplitudes and frequencies directly with an x-ray framing camera through face-on x-ray radiography. Planar plastic targets with variable thickness (20 to 60 μm) and single-mode (λ = 10 to 30 μm) ripples on the front surface were irradiated with 1.5-ns square UV laser pulses at maximum energy. Results clearly indicate a phase reversal in the evolution of the target areal density perturbations, in good agreement with theory and simulation. Nonlinearity in the evolution of the preimposed mode, resulting in an enriched spectrum, was observed for initial amplitudes previously believed to develop linearly with time. Upcoming experiments with a high-resolution, streaked imager, will allow for the detailed recording of the evolution of the RM instability and the competing stabilization effect. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  16. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis

    USGS Publications Warehouse

    Lahann, R.W.; Swarbrick, R.E.

    2011-01-01

    Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.

  17. Evidence of muonium formation using thin gold foils in vacuum

    NASA Technical Reports Server (NTRS)

    Barnett, B. A.; Chang, C. Y.; Steinberg, P.; Yodh, G. B.; Orr, H. D.; Carroll, J. B.; Eckhause, M.; Kane, J. R.; Spence, C. B.; Hsieh, C. S.

    1977-01-01

    The production of thermal muonium in a vacuum region has been investigated using an array of 200 thin (about 1000 A thick) gold foils exposed to a stopping positive-muon beam. By examining the observed time dependence of the positive-muon decay spectra in various transverse magnetic field, it is estimated that the lower limit of the probability of muonium formation by these gold foils placed in vacuum was 0.28 plus or minus 0.05.

  18. PEP-II vacuum system pressure profile modeling using EXCEL

    SciTech Connect

    Nordby, M.; Perkins, C.

    1994-06-01

    A generic, adaptable Microsoft EXCEL program to simulate molecular flow in beam line vacuum systems is introduced. Modeling using finite-element approximation of the governing differential equation is discussed, as well as error estimation and program capabilities. The ease of use and flexibility of the spreadsheet-based program is demonstrated. PEP-II vacuum system models are reviewed and compared with analytical models.

  19. Vacuum ARC ion sources - activities & developments at LBL

    SciTech Connect

    Brown, I.

    1996-08-01

    The author describes work at LBL on the development and application of vacuum arc ion sources. Work has been done on vacuum spark sources - to produce very high charge states, studies of high charge states in magnetic field, hybrid ion source operation on metal/gas plasma, multipole operation, work on MEVVA V for implantation applications, development of broad beam sources, and removal of particles from the output of the source.

  20. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  1. CFD Assessment of Forward Booster Separation Motor Ignition Overpressure on ET XT 718 Ice/Frost Ramp

    NASA Technical Reports Server (NTRS)

    Tejnil, Edward; Rogers, Stuart E.

    2012-01-01

    Computational fluid dynamics assessment of the forward booster separation motor ignition over-pressure was performed on the space shuttle external tank X(sub T) 718 ice/frost ramp using the flow solver OVERFLOW. The main objective of this study was the investigation of the over-pressure during solid rocket booster separation and its affect on the local pressure and air-load environments. Delta pressure and plume impingement were investigated as a possible contributing factor to the cause of the debris loss on shuttle missions STS-125 and STS-127. A simplified computational model of the Space Shuttle Launch Vehicle was developed consisting of just the external tank and the solid rocket boosters with separation motor nozzles and plumes. The simplified model was validated by comparison to full fidelity computational model of the Space Shuttle without the separation motors. Quasi steady-state plume solutions were used to calibrate the thrust of the separation motors. Time-accurate simulations of the firing of the booster-separation motors were performed. Parametric studies of the time-step size and the number of sub-iterations were used to find the best converged solution. The computed solutions were compared to previous OVERFLOW steady-state runs of the separation motors with reaction control system jets and to ground test data. The results indicated that delta pressure from the overpressure was small and within design limits, and thus was unlikely to have contributed to the foam losses.

  2. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  3. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    PubMed

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  4. Laser driven electron acceleration in vacuum, gases and plasmas

    SciTech Connect

    Sprangle, P.; Esarey, E.; Krall, J.

    1996-04-19

    This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

  5. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  6. Vaccum and beam diagnostic controls for ORIC beam lines

    SciTech Connect

    Tatum, B.A.

    1991-01-01

    Vacuum and beam diagnostic equipment on beam lines from the Oak Ridge Isochronous Cyclotron, ORIC, is now controlled by a new dedicated system. The new system is based on an industrial programmable logic controller with an IBM AT personal computer providing control room operator interface. Expansion of this system requires minimal reconfiguration and programming, thus facilitating the construction of additional beam lines. Details of the implementation, operation, and performance of the system are discussed. 2 refs., 2 figs.

  7. Realistic Probability Estimates For Destructive Overpressure Events In Heated Center Wing Tanks Of Commercial Jet Aircraft

    SciTech Connect

    Alvares, N; Lambert, H

    2007-02-07

    The Federal Aviation Administration (FAA) identified 17 accidents that may have resulted from fuel tank explosions on commercial aircraft from 1959 to 2001. Seven events involved JP 4 or JP 4/Jet A mixtures that are no longer used for commercial aircraft fuel. The remaining 10 events involved Jet A or Jet A1 fuels that are in current use by the commercial aircraft industry. Four fuel tank explosions occurred in center wing tanks (CWTs) where on-board appliances can potentially transfer heat to the tank. These tanks are designated as ''Heated Center Wing Tanks'' (HCWT). Since 1996, the FAA has significantly increased the rate at which it has mandated airworthiness directives (ADs) directed at elimination of ignition sources. This effort includes the adoption, in 2001, of Special Federal Aviation Regulation 88 of 14 CFR part 21 (SFAR 88 ''Fuel Tank System Fault Tolerance Evaluation Requirements''). This paper addresses SFAR 88 effectiveness in reducing HCWT ignition source probability. Our statistical analysis, relating the occurrence of both on-ground and in-flight HCWT explosions to the cumulative flight hours of commercial passenger aircraft containing HCWT's reveals that the best estimate of HCWT explosion rate is 1 explosion in 1.4 x 10{sup 8} flight hours. Based on an analysis of SFAR 88 by Sandia National Laboratories and our independent analysis, SFAR 88 reduces current risk of historical HCWT explosion by at least a factor of 10, thus meeting an FAA risk criteria of 1 accident in billion flight hours. This paper also surveys and analyzes parameters for Jet A fuel ignition in HCWT's. Because of the paucity of in-flight HCWT explosions, we conclude that the intersection of the parameters necessary and sufficient to result in an HCWT explosion with sufficient overpressure to rupture the HCWT is extremely rare.

  8. Fluid overpressure along an Oligocene out-of-sequence thrust in the Shimanto Belt, SW Japan

    NASA Astrophysics Data System (ADS)

    Passelègue, François X.; Fabbri, Olivier; Dubois, Michel; Ventalon, Sandra

    2014-06-01

    Out-of-sequence thrusts (OSTs) exposed in ancient accretionary prisms are considered as fossil analogs of present-day megasplay faults in subduction margins and can provide direct information about the conditions of deformation during thrust activity. In modern as well as in ancient accretionary prisms, first-order megasplay faults or OSTs truncate or merge with faults of lesser importance called second-order OSTs. Structural analysis of the Makinokuchi fault, a branch of an Oligocene to lower Miocene second-order OST in the Tertiary Shimanto Belt of central Kyushu, SW Japan, brings information about the conditions of deformation at the time of thrusting. The studied exposure shows that the fault footwall and, to a much lesser extent, the fault hanging-wall, consist of quartz-cemented syntectonic dilatant hydraulic breccias testifying to pore fluid pressures larger than the least principal stress component. The footwall sandstones are crossed by several centimeters thick quartz veins that merge with the footwall breccias. The continuity between the veins and the breccias suggest that the veins acted as conduits which likely collected fluids from the footwall side sandstones upward and toward the fault. Fluid inclusions indicate that the quartz cementing the breccias and that filling the feeder veins crystallized from similar fluids and under similar pressure and temperature conditions (245-285 °C and 5-8 km depth). These similarities suggest that the fluids responsible for syn-tectonic hydraulic brecciation were collected from the footwall through the conduits. The fluid inclusion trapping temperatures are close to the temperatures expected to be reached along the seismogenic zone. Our analysis shows that fluid overpressures can play a key role in the growth and activity of second-order OSTs in accretionary prisms and suggests that fluids collected along second-order OSTs or splay faults may flow upward along first-order OSTs or megasplay faults.

  9. Pulmonary biochemical and histological alterations after repeated low-level blast overpressure exposures.

    PubMed

    Elsayed, Nabil M; Gorbunov, Nikolai V

    2007-01-01

    Blast overpressure (BOP), also known as high energy impulse noise, is a damaging outcome of explosive detonations and firing of weapons. Exposure to BOP shock waves alone results in injury predominantly to the hollow organ systems such as auditory, respiratory, and gastrointestinal systems. In recent years, the hazards of BOP that once were confined to military and professional settings have become a global societal problem as terrorist bombings and armed conflicts involving both military and civilian populations increased significantly. We have previously investigated the effects of single BOP exposures at different peak pressures. In this study, we examined the effects of repeated exposure to a low-level BOP and whether the number of exposures or time after exposure would alter the injury outcome. We exposed deeply anesthetized rats to simulated BOP at 62 +/- 2 kPa peak pressure. The lungs were examined immediately after one exposure (1 + 0), or 1 h after one (1 + 1), two (2 + 1), or three (3 + 1) consecutive exposures at 3-min interval. In one group of animals, we examined the effects of repeated exposure on lung weight, methemoglobin, transferrin, antioxidants, and lipid peroxidation. In a second group, the lungs were fixed inflated at 25 cm water, sectioned, and examined histologically after one to three repeated exposures, or after one exposure at 1, 6, and 24 h. We found that single BOP exposure causes notable changes after 1 h, and that repeating BOP exposure did not add markedly to the effect of the first one. However, the effects increased significantly with time from 1 to 24 h. These observations have biological and occupational implications, and emphasize the need for protection from low-level BOP, and for prompt treatment within the first hour following BOP exposure. PMID:17060374

  10. The vacuum system for the PEP II high energy ring straight sections

    SciTech Connect

    Wienands, U.; Daly, E.; Kulikov, A.; Kurita, N.; Nordby, M.; Perkins, C.; Reuter, E.; Seeman, J. T.

    1995-01-01

    The six straight sections of the PEP II High Energy Ring (HER) serve various functions: lattice tuning, beam injection and abort, providing space for rf cavities, longitudinal and transverse feedback, beam diagnostics and the interaction point. A stainless steel vacuum system has been designed; prototypes are currently being built. Cooling is required due to radiation coming from the last arc dipole and resistive losses in the vacuum chamber. Although the nominal beam current of the HER is 1 A the vacuum system is designed for 3 A to provide margin and an upgrade path. 5 refs., 7 figs.

  11. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  12. Vacuum outgassing of artificial dielectric ceramics

    SciTech Connect

    Viet Nguyen-Tuong

    1994-05-01

    A special aluminum nitride (AlN)-glassy carbon artificial dielectric ceramic for microwave absorption at low temperature has been developed at the Continuous Electron Beam Accelerator Facility to manufacture the higher order mode (HOM) loads used in the superconducting cavities of the machine. As the HOM loads share the same ultrahigh vacuum as the superconducting cavities, very tight vacuum requirements are imposed on the HOM load's material. Vacuum outgassing rates have been measured and compared for AlN-15% glassy carbon artificial ceramic in fully degassed condition produced by heating to high temperature in a vacuum furnace. In addition, the effect of exposure to air, nitrogen gas, and isopropanol is discussed. A typical outgassing rate at room temperature is 2.5 x 10{sup -11} Torr l/s/cm{sup 2}, 24 h after initial pump down. Baking 24 h at 150 C was sufficient to attain an outgassing rate of less than 4 x 10{sup -12} Torr l/s/cm2. However, when the ceramic has a lower bulk density or a higher apparent porosity, the outgassing rates can be two orders of magnitude higher.

  13. Vacuum outgassing of artificial dielectric ceramics

    SciTech Connect

    Nguyen-Tuong, V. )

    1994-07-01

    A special aluminum nitride (AlN)--glassy carbon artificial dielectric ceramic for microwave absorption at low temperature has been developed at the Continuous Electron Beam Accelerator Facility to manufacture the higher order mode (HOM) loads used in the superconducting cavities of the machine. As the HOM loads share the same ultrahigh vacuum as the superconducting cavities, very tight vacuum requirements are imposed on the HOM load's material. Vacuum outgassing rates have been measured and compared for AlN--15% glassy carbon artificial ceramic in fully degassed condition produced by heating to high temperature in a vacuum furnace. In addition, the effect of exposure to air, nitrogen gas, and isopropanol is discussed. A typical outgassing rate at room temperature is 2.5[times]10[sup [minus]11] Torr l/s/cm[sup 2], 24 h after initial pump down. Baking 24 h at 150 [degree]C was sufficient to attain an outgassing rate of less than 4[times]10[sup [minus]12] Torr l/s/cm[sup 2]. However, when the ceramic has a lower bulk density or a higher apparent porosity, the outgassing rates can be two orders of magnitude higher.

  14. VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-12

    S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)

  15. Vacuum arc deposition devices

    NASA Astrophysics Data System (ADS)

    Boxman, R. L.; Zhitomirsky, V. N.

    2006-02-01

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  16. Gas injected vacuum switch

    DOEpatents

    Hardin, K. Dan

    1977-01-01

    The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.

  17. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    The authors report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182 A radiation. The holograms were recorded in polymethyl methacrylate and read out with an electron microscope. A holographic grating with a fringe spacing of 836 A was produced and far-field Fraunhofer holograms of sub-micron particles were recorded.

  18. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  19. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  20. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  1. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  2. Design, Installation and Commissioning of new Vacuum chamber for Analysing Magnet of K-130 Cyclotron

    NASA Astrophysics Data System (ADS)

    Mandal, Bidhan Chandra; Saha, S.; Sarkar, S. C.; Adak, D.; Viswanathan, T.; Hemram, B.; Chakraborty, P. S.; Yadav, R. C.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    In view of up-gradation of K-130 Cyclotron at VECC, Kolkata, we have designed a new Vacuum chamber to modify the existing vacuum chamber system. This new chamber is meant for C-shaped 1T dipole type 159.5° Analysing Magnet of 4710 OD × 2750 ID × 1075 mm tall in the RIB feeder beam-line. The welded type vacuum chamber is made of SS-304. The chamber with trapezoidal cross-section is of 4447 OD × 4057 ID × 61.5 mm average height. Pumping ports and modules are selected accordingly to ensure the required high vacuum for beam transport. The chamber improves the base vacuum and reduces the complicated O-ring replacement mandatory for existing chamber made of aluminium alloy. The new chamber is installed at site along with all the pumping module and beam line components. This paper presents the detailed design, installation and commissioning results.

  3. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  4. TMX-Upgrade vacuum-system design and analysis

    SciTech Connect

    Simonen, T.C.; Chargin, A.K.; Drake, R.P.; Nexsen, W.E.; Pickles, W.L.; Poulsen, P.; Stack, T.P.; Wong, R.L.

    1981-10-01

    This paper describes the design and analysis of the TMX Upgrade Vacuum System. TMX Upgrade is a modification of the TMX tandem mirror device. It will employ thermal barriers to further improve plasma confinement. Thermal barriers are produced by microwave heating and neutral-beam pumping. They increase the feasibility of tandem-mirror reactors by reducing both the required magnetic field strengths and the neutral-beam injection voltages.

  5. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  6. Vacuum Pickup for Solar Cells

    NASA Technical Reports Server (NTRS)

    Frasch, W.

    1982-01-01

    Flexible vacuum cups that handle solar cells conform to shape or cell back surfaces. Cups lift vertically, without tilt that might cause stress on interconnections, inaccurate placement, or damage to cells. Vacuum source is venturi valve mounted on air manifold.

  7. APPARATUS FOR VACUUM DEPOSITION OF METALS

    DOEpatents

    Milleron, N.

    1962-03-13

    An apparatus and a method are described for continuous vacuum deposition of metals for metallic coatings, for ultra-high vacuum work, for purification of metals, for maintaining high-density electron currents, and for other uses. The apparatus comprises an externally cooled feeder tube extending into a container and adapted to feed metal wire or strip so that it emerges in a generally vertical position therein. The tube also provides shielding from the heat produced by an electron beam therein focused to impinge from a vertical direction upon the tip of the emerging wire. By proper control of the wire feed, coolant feed, and electron beam intensity, a molten ball of metal forms upon the emerging tip and remains self-supported thereon by the interaction of various forces. The metal is vaporized and travels in a line of sight direction, while additional wire is fed from the tube, so that the size of the molten ball remains constant. In the preferred embodiments, the wire is selected from a number of gettering metals and is degassed by electrical resistance in an adjacent chamber which is also partially evacuated. The wire is then fed through the feed tube into the electron beam and vaporizes and adsorbs gases to provide pumping action while being continuously deposited upon surfaces within the chamber. Ion pump electrodes may also be provided within line of sight of the vaporizing metal source to enhance the pumping action. (AEC)

  8. Laser driven acceleration in vacuum and gases

    SciTech Connect

    Sprangle, P.; Esarey, E.; Hafizi, B.; Hubbard, R.; Krall, J.; Ting, A.

    1997-03-01

    Several important issues pertaining to particle acceleration in vacuum and gases are discussed. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage, and electron aperture effects are presented. Limitations on the laser intensity and particle self-fields due to material breakdown are quantified. In addition, the reflection of the self-fields associated with the accelerated particles places a limit on the number of particles. Two configurations for the inverse Cherenkov accelerator (ICA) are considered, in which the electromagnetic driver is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. The acceleration gradient in the ICA is limited by tunneling and collisional ionization in the dielectric liner or gas. Ionization can lead to significant modification of the optical properties of the waveguide, altering the phase velocity and causing particle slippage, thus disrupting the acceleration process. Maximum accelerating gradients and pulse durations are presented for a 10 {mu}m and a 1 mm wavelength driver. We show that the use of an unguided Bessel (axicon) beam can enhance the energy gain compared to a higher order Gaussian beam. The enhancement factor is N{sup 1/2}, where N is the number of lobes in the Bessel beam. {copyright} {ital 1997 American Institute of Physics.}

  9. Titanium alloy as a potential low radioactivation vacuum material

    SciTech Connect

    Kamiya, Junichiro Hikichi, Yusuke; Kinsho, Michikazu; Ogiwara, Norio; Fukuda, Mitsuhiro; Hamatani, Noriaki; Hatanaka, Kichiji; Kamakura, Keita; Takahisa, Keiji

    2015-05-15

    For the vacuum systems of high-intensity beam accelerators, low radioactivation materials with good vacuum characteristics and high mechanical strength are required. The titanium alloy Ti-6Al-4V was investigated as a potential low activation vacuum material with high mechanical strength for the fabrication of vacuum components, particularly the flanges of beam pipes, in the J-PARC 3 GeV synchrotron. The dose rate of Ti-6Al-4V when irradiated by a 400 MeV proton was observed to decrease more rapidly than that of stainless steel. Furthermore, the generated radioactive isotopes were nuclides with relatively short half-lives. The outgassing rate per unit area of Ti-6Al-4V was approximately 10{sup −8 }Pa m{sup 3}/s m{sup 2} after pumping for 100 h, which is the same as the typical value for stainless steel. Additionally, the hydrogen concentration in bulk Ti-6Al-4V was reduced to approximately 1 ppm by vacuum firing at 700 °C for 9 h; the mechanical strength was not reduced by this process. These results indicate that Ti-6Al-4V is a good candidate for use as a low activation vacuum material with high mechanical strength.

  10. Effects of Blast Overpressure on Neurons and Glial Cells in Rat Organotypic Hippocampal Slice Cultures

    PubMed Central

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Budde, Matthew D.; Pintar, Frank A.; Tarima, Sergey; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2015-01-01

    Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure. PMID:25729377

  11. Dyke thicknesses follow a Weibull distribution controlled by host-rock strength and magmatic overpressure

    NASA Astrophysics Data System (ADS)

    Krumbholz, M.; Hieronymus, C.; Burchardt, S.; Troll, V. R.; Tanner, D. C.; Friese, N.

    2012-04-01

    thickness, irrespective of the tectonic setting, type of magmatic sheet intrusion (e.g. regional dykes and inclined sheets), or magma type. Moreover, the Weibull distribution of dyke thickness can be easily explained by the interplay of host-rock strength (i.e. the distribution of weaknesses) and magmatic overpressure.

  12. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  13. Beam director design report

    SciTech Connect

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  14. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    SciTech Connect

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  15. Effects of transverse beam size in beam position monitors.

    SciTech Connect

    Kurennoy, S.

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  16. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  17. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  18. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  19. Rat Injury Model under Controlled Field-Relevant Primary Blast Conditions: Acute Response to a Wide Range of Peak Overpressures

    PubMed Central

    Skotak, Maciej; Wang, Fang; Alai, Aaron; Holmberg, Aaron; Harris, Seth; Switzer, Robert C.

    2013-01-01

    Abstract We evaluated the acute (up to 24 h) pathophysiological response to primary blast using a rat model and helium driven shock tube. The shock tube generates animal loadings with controlled pure primary blast parameters over a wide range and field-relevant conditions. We studied the biomechanical loading with a set of pressure gauges mounted on the surface of the nose, in the cranial space, and in the thoracic cavity of cadaver rats. Anesthetized rats were exposed to a single blast at precisely controlled five peak overpressures over a wide range (130, 190, 230, 250, and 290 kPa). We observed 0% mortality rates in 130 and 230 kPa groups, and 30%, 24%, and 100% mortality rates in 190, 250, and 290 kPa groups, respectively. The body weight loss was statistically significant in 190 and 250 kPa groups 24 h after exposure. The data analysis showed the magnitude of peak-to-peak amplitude of intracranial pressure (ICP) fluctuations correlates well with mortality rates. The ICP oscillations recorded for 190, 250, and 290 kPa are characterized by higher frequency (10–20 kHz) than in other two groups (7–8 kHz). We noted acute bradycardia and lung hemorrhage in all groups of rats subjected to the blast. We established the onset of both corresponds to 110 kPa peak overpressure. The immunostaining against immunoglobulin G (IgG) of brain sections of rats sacrificed 24-h post-exposure indicated the diffuse blood-brain barrier breakdown in the brain parenchyma. At high blast intensities (peak overpressure of 190 kPa or more), the IgG uptake by neurons was evident, but there was no evidence of neurodegeneration after 24 h post-exposure, as indicated by cupric silver staining. We observed that the acute response as well as mortality is a non-linear function over the peak overpressure and impulse ranges explored in this work. PMID:23362798

  20. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  1. Technical Seminar: Electron Beam Forming Fabrication

    NASA Video Gallery

    EBF³ uses a focused electron beam in a vacuum environment to create a molten pool on a metallic substrate. This layer-additive process enables fabrication of parts directly from CAD drawings. The ...

  2. Solar heated vacuum flask

    SciTech Connect

    Posnansky, M.

    1980-04-08

    The wall of a protective jacket of a vacuum flask, containing a double-walled vessel whose walls are permeable to solar radiation , includes parts capable of being swung open. These parts and a wall part situated between them each have a reflective coating. The reflective surfaces of these coatings, viewed in crosssection, extend along a parabola when the movable wall parts are opened out, so that incident solar radiation is collected in the core zone of the vessel. A solar-radiation absorbing member may be disposed in this core zone, E.G., a metal tube having a black outer surface. Liquid contents of such a vacuum flask can be heated by means of solar energy.

  3. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  4. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T.

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  5. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  7. Edison's vacuum technology patents

    NASA Astrophysics Data System (ADS)

    Waits, Robert K.

    2003-07-01

    During 1879 Thomas Edison's Menlo Park, New Jersey laboratory developed the means to evacuate glass lamp globes to less than a mTorr in 20 min and in mid-1880 began production of carbon-filament incandescent lamps. Among Edison's nearly 1100 U.S. patents are five for vacuum pump improvements, and at least eight others that are vacuum-related; all applied for between 1880 and 1886. Inspired by an 1878 article by De La Rue and Müller [Philos. Trans. R. Soc. London, Ser. A 169, 155 (1878)] on studies of glow discharges, Edison devised a combination pump using the Geissler pump as a rough pump and the Sprengel pump for continuous exhaustion. Edison's patents described means to control the mercury flow and automate the delivery of the mercury to banks of up to a hundred pumps. Other patents described various means to remove residual gases during lamp processing.

  8. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  9. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  10. Testing of vacuum pumps for APT/LEDA RFQ

    SciTech Connect

    Kishiyama, K.; Shen, S.; Behne, D.; Wilson, N.G.; Schrage, D.; Valdiviez, R.

    1998-12-31

    Two vacuum systems were designed and built for the RFQ (Radio Frequency Quadrupole) cavity in the APT/LEDA (Low Energy Demonstration Accelerator) linac. The gas load from the proton beam required very high hydrogen pump speed and capacity, The gas load from the high power RF windows also required very high hydrogen pump speed for the RF window vacuum system. Cryopumps were chosen for the RFQ vacuum system and ST185 sintered nonevaporable getter (NEG) cartridges were chosen for the RF window vacuum system. Hydrogen pump speed and capacity measurements were carried out for a commercial cryopump and a NEG pump. This paper will discuss the test procedures and the results of the measurements.

  11. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  12. Jonah field, sublette county, Wyoming: Gas production from overpressured Upper Cretaceous Lance sandstones of the Green River basin

    USGS Publications Warehouse

    Montgomery, S.L.; Robinson, J.W.

    1997-01-01

    Jonah field, located in the northwestern Green River basin, Wyoming, produces gas from overpressured fluvial channel sandstones of the Upper Cretaceous Lance Formation. Reservoirs exist in isolated and amalgamated channel facies 10-100 ft (3-30 m) thick and 150-4000 ft (45-1210 m) wide, deposited by meandering and braided streams. Compositional and paleocurrent studies indicate these streams flowed eastward and had their source area in highlands associated with the Wyoming-Idaho thrust belt to the west. Productive sandstones at Jonah have been divided into five pay intervals, only one of which (Jonah interval) displays continuity across most of the field. Porosities in clean, productive sandstones range from 8 to 12%, with core permeabilities of .01-0.9 md (millidarcys) and in-situ permeabilities as low as 3-20 ??d (microdarcys), as determined by pressure buildup analyses. Structurally, the field is bounded by faults that have partly controlled the level of overpressuring. This level is 2500 ft (758 m) higher at Jonah field than in surrounding parts of the basin, extending to the top part of the Lance Formation. The field was discovered in 1975, but only in the 1990s did the area become fully commercial, due to improvements in fracture stimulation techniques. Recent advances in this area have further increased recoverable reserves and serve as a potential example for future development of tight gas sands elsewhere in the Rocky Mountain region.

  13. Optimal Control of Shock Tube Flow via Water Addition with Application to Ignition Overpressure Mitigation in Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Moshman, Nathan

    2009-11-01

    Ignition Overpressure (IOP) in launch vehicles occurs at the start of ignition when a steep rise in pressure propagates outward from the rocket nozzle. It is crucial to minimize the overpressure so as to decrease risk of damage to the rocket body. Currently, CFD studies exist on this situation but there are no optimization studies of the water addition as a means to suppress the IOP. The proposed dissertation will use a numerical method to compute an approximate solution for an optimal control problem constrained by the one-dimensional Euler PDEs of fluid dynamics as well as volume fraction conservation. A model for inter-phase transport of mass momentum and energy and fluid interface quantities will be given. The control will be water addition from external nozzles. The adjoint system of equations will be derived and discretized. Necessary optimal conditions will be derived. An SQP method will solve an optimal situation. Predictions will be validated against shock tube experiments at the NPS rocket lab.

  14. Evaluation and detection of overpressures in a Deltaic Basin: The Sisi Field case history, offshore Mahakam, Kutei Basin, Indonesia

    SciTech Connect

    Grosjean, Y. ); Bois, M.; De Pazzis, L. ); Burrus, J. )

    1994-07-01

    Widespread overpressure occurrences in the Mahakama delta area have caused a number of kicks and several blow-outs during earlier exploration. A review of pore pressure indications was conducted in conjunction with an extensive reinterpretation of seismic and well data basin wide. The iso-pressure lines were found to be broadly parallel to the facies change from sandy, delta-front deposits to outer shelf and slope shales, and are not associated with organic matter maturation or clay diagenesis. Overpressures are reached at depths ranging from 1000 m to more than 4000 m, depending on the facies. A 2-D numerical basin model calibrated on observed pressure profiles at wells indicated that the excess pressures were a direct function of the variable drainage efficiency of the formations by interbedded sands. The Sisi discovery located at the eastern, distal extremity of the upper Miocene deltaic sands provided a unique opportunity for a more detailed analysis. A hypothesis of widespread decoupling between reservoir and shale pore pressures was tested against well data during appraisal drilling. D-exponent plots and gas shows were carefully monitored to assess the excess pressures, and quantitative estimates of the shale pore pressures were computed from sonic logs. A regionally consistent calibration was achieved, which confirmed very large discrepancies compared to the pressures measured in interbedded permeable reservoirs. These conclusions have since been generalized to other areas of the basin, where they allowed safer drilling practices to be established as demonstrated by the observed reduction of lost time.

  15. Alteration Behavior of High Burnup Spent Fuel in Salt Brine Under Hydrogen Overpressure and in Presence of Bromide

    SciTech Connect

    Loida, Andreas; Metz, Volker; Kienzler, Bernhard

    2007-07-01

    Recent studies have shown that in the presence of H2 overpressure, which forms due to the corrosion of the Fe based container, the dissolution rate of the spent fuel matrix is slowed down by a factor of about 10, associated with a distinct decrease of concentrations of important radionuclides. However, in a natural salt environment as well as in geological formations with chloride rich groundwater the presence of radiation chemically active impurities such as bromide must be taken in consideration. Bromide is known to react with {beta}/{gamma} radiolysis products, thus counteracting the protective H{sub 2} effect. In the present experiments using high burnup spent fuel, it is observed that during 212 days the matrix dissolution rate was enhanced by a factor of about 10 in the presence of up to 10{sup -3} M bromide and 3.2 bar H{sub 2} overpressure. However, concentrations of matrix bound actinides were found at the same level or below as found under identical conditions, but in the absence of bromide. In the long-term it is expected that the effect of bromide becomes less important, because the decrease of {beta}/{gamma}-activity results in a decrease of oxidative radicals, which react with bromide, while a-activity will dominate the radiation field. (authors)

  16. Long Pulse Vacuum Hohlraum Performance on NIF

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Suter, L. J.; Dewald, E.; Turner, R. E.; Campbell, K. M.; McDonald, J. W.; Holder, J.; Schein, J.; Glenzer, S. H.; MacKinnon, A. J.; Froula, D.; Niemann, C.; Schneider, M. S.; Wallace, R. J.; Manes, K.; Kauffman, R. L.; Kalantar, D. H.; Stevenson, M.; Foster, J.; Monteil, M. C.

    2004-11-01

    We report on the design and performance of the first hohlraums on NIF. Gold vacuum hohlraums will be irradiated with the first four beams of NIF with up to 7 TW / 16 kJ in pulse lengths ranging from 2-9 ns, the longest pulses representing a new regime for single beam irradiation of hohlraums. The hohlraums will be diagnosed by multiple, newly activated optical, soft and hard x-ray diagnostics, including a soft x-ray power diagnostic, hard x-ray spectrometer for hot electron inference, coronal plasma imager and energy, time, and spectrally-resolved laser backscatter and near-backscatter detectors. We will compare the radiation temperature, hot electron flux and imaging results with various radiation-hydrodynamic simulations.

  17. Development of a piezoelectric vacuum sensing component for a wide pressure range.

    PubMed

    Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che

    2014-11-21

    In this study, we develop a clamped-clamped beam-type piezoelectric vacuum pressure sensing element. The clamped-clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10(-6) to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage.

  18. Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range

    PubMed Central

    Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che

    2014-01-01

    In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage. PMID:25421736

  19. Scheme for the detection of mixing processes in vacuum

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Lefebvre, Catherine; MacLean, Steve

    2015-03-01

    A scheme for the detection of photons generated by vacuum mixing processes is proposed to observe the quantum electrodynamic photon-photon interaction. The strategy consists in the utilization of a high numerical aperture parabolic mirror that tightly focuses two copropagating laser beams with different frequencies. This produces a very-high-intensity region in the vicinity of the focus, where the photon-photon nonlinear interaction can then induce new electromagnetic radiation by wave-mixing processes. These processes are investigated theoretically. The field at the focus is obtained from the Stratton-Chu vector diffraction theory, which can accommodate any configuration of an incoming laser beam. The number of photons generated is evaluated for an incident radially polarized beam. It is demonstrated that using this field configuration, vacuum mixing processes could be detected with envisaged laser technologies.

  20. Vacuum deposited polymer/silver reflector material

    SciTech Connect

    Affinito, J.; Martin, P.; Gross, M.; Bennett, W.

    1994-07-01

    Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less than 50 cents per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 {mu}m to .8 {mu}m. It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process - for Polymer Multi-Layer.

  1. Effect of 10 MeV E-beam irradiation combined with vacuum-packaging on the shelf life of Atlantic salmon fillets during storage at 4 °C.

    PubMed

    Yang, Zhen; Wang, Haiyan; Wang, Wei; Qi, Wenyuan; Yue, Ling; Ye, Qingfu

    2014-02-15

    Biochemical properties and gel-forming ability were investigated as a function of storage time to understand the effect of 10 MeV electron linear accelerator irradiation, combined with vacuum-packaging changes, on Atlantic salmon fillets during cold storage at 4 °C. The results showed that compared with those of the control samples, pH, water soluble protein and extractable protein were not significantly altered by irradiation. However, pH, water soluble protein and extractable protein changed notably as storage time increased. While salt soluble protein (SSP), total volatile base nitrogen (TVB-N), a(*) values, 2-thiobarbituric acid (TBA) and total viable counts (TVC) were significantly (p<0.05) affected by different irradiation doses, which inhibited the increase in TVB-N but promoted TBA values during the storage period. Moreover, irradiation up to 3 kGy did not significantly change the gel patterns, while the MHC patterns were slightly reduced with the increasing of the storage time. PMID:24128511

  2. Vacuum bell therapy

    PubMed Central

    Sesia, Sergio

    2016-01-01

    Background For specific therapy to correct pectus excavatum (PE), conservative treatment with the vacuum bell (VB) was introduced more than 10 years ago in addition to surgical repair. Preliminary results using the VB were encouraging. We report on our 13-year experience with the VB treatment including the intraoperative use during the Nuss procedure and present some technical innovations. Methods A VB with a patient-activated hand pump is used to create a vacuum at the anterior chest wall. Three different sizes of vacuum bells, as well as a model fitted for young women, exist. The appropriate size is selected according to the individual patient’s age and ventral surface. The device should be used at home for a minimum of 30 minutes (twice a day), and may be used up to a maximum of several hours daily. The intensity of the applied negative pressure can be evaluated with an integrated pressure gauge during follow-up visits. A prototype of an electronic model enables us to measure the correlation between the applied negative pressure and the elevation of the anterior chest wall. Results Since 2003, approx. 450 patients between 2 to 61 years of age started the VB therapy. Age and gender specific differences, depth of PE, symmetry or asymmetry, and concomitant malformations such as scoliosis and/or kyphosis influence the clinical course and success of VB therapy. According to our experience, we see three different groups of patients. Immediate elevation of the sternum was confirmed thoracoscopically during the Nuss procedure in every patient. Conclusions The VB therapy has been established as an alternative therapeutic option in selected patients suffering from PE. The initial results up to now are encouraging, but long-term results comprising more than 15 years are so far lacking, and further evaluation and follow-up studies are necessary. PMID:27747177

  3. Plasmons in QED vacuum

    NASA Astrophysics Data System (ADS)

    Petrov, E. Yu.; Kudrin, A. V.

    2016-09-01

    The problem of longitudinal oscillations of an electric field and a charge polarization density in a quantum electrodynamics (QED) vacuum is considered. Within the framework of semiclassical analysis, we calculate time-periodic solutions of bosonized (1 +1 )-dimensional QED (massive Schwinger model). Applying the Bohr-Sommerfeld quantization condition, we determine the mass spectrum of charge-zero bound states (plasmons) which correspond in quantum theory to the found classical solutions. We show that the existence of such plasmons does not contradict any fundamental physical laws and study qualitatively their excitation in a (3 +1 )-dimensional real world.

  4. Ion beam generating apparatus

    DOEpatents

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  5. Beam-Beam Interactions

    SciTech Connect

    Sramek, Christopher

    2003-09-05

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea-Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. Finally, a study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam spotsizes.

  6. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  7. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  8. Betatrons with kiloampere beams

    SciTech Connect

    Peterson, J.M.

    1982-11-01

    Although the magnetic-induction method of acceleration used in the betatron is inherently capable of accelerating intense particle beams to high energy, many beam-instability questions arise when beams in the kilo-ampere range are considered. The intense electromagnetic fields produced by the beam, and by the image currents and charges induced in the surrounding walls, can produce very disruptive effects. Several unstable modes of collective oscillation are possible; the suppression of any one of them usually involves energy spread for Landau damping and careful design of the electrical character of the vacuum chamber. The various design criteria are often mutually incompatible. Space-charge detuning can be severe unless large beam apertures and high-energy injection are used. In order to have an acceptably low degree of space-charge detuning in the acceleration of a 10-kilo-ampere electron beam, for example, an injection energy on the order of 50 MeV seems necessary, in which case the forces due to nearby wall images can have a larger effect than the internal forces of the beam. A method of image compensation was invented for reducing the net image forces; it serves also to decrease the longitudinal beam impedance and thus helps alleviate the longitudinal instability as well. In order to avoid the ion-electron collective instability a vacuum in the range of 10/sup -8/ torr is required for an acceleration time of 1 millisecond. A multi-ring betatron system using the 50-MeV Advanced Test Accelerator at LLNL as an injector was conceptually designed.

  9. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  10. BEAM-BEAM 2003 SUMMARY.

    SciTech Connect

    FISCHER,W.SEN,T.

    2003-05-19

    This paper summarizes the presentations and discussions of the Beam-Beam'03 workshop, held in Montauk, Long Island, from May 19 to 23, 2003. Presentations and discussions focused on halo generation from beam-beam interactions; beam-beam limits, especially coherent limits and their effects on existing and future hadron colliders; beam-beam compensation techniques, particularly for long-range interactions; and beam-beam study tools in theory, simulation, and experiment.

  11. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    SciTech Connect

    Adonin, A. A. Hollinger, R.

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  12. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  13. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  14. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  15. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  16. Vacuum and magnetic field constraints in a H -/light ion synchrotron

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Martin, R. L.; Rossi, S.; Silari, M.

    1994-08-01

    Acceleration of H - ions in a synchrotron imposes severe restrictions on the level of residual pressure in the vacuum chamber and the maximum magnetic field in the magnets of the ring. Significant vacuum requirements are also imposed by the acceleration of ions. This paper discusses these two aspects of the design of a combined H -/light ion synchrotron for radiation therapy. The fractional loss of the accelerated beam induced by the two processes is evaluated on the basis of a general treatment of the physics of these phenomena. The values of the vacuum and magnetic field necessary for normal operation of the machine are specified and a discussion is given of the behaviour of the above quantities as a function of several parameters such as beam energy, composition and pressure of the residual gas in the vacuum chamber and beam extraction time.

  17. Vacuum Insulator Development for the Dielectric Wall Accelerator

    SciTech Connect

    Harris, J R; Blackfield, D; Caporaso, G J; Chen, Y; Hawkins, S; Kendig, M; Poole, B; Sanders, D M; Krogh, M; Managan, J E

    2008-03-17

    At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.

  18. Vacuum window glazings for energy-efficient buildings

    SciTech Connect

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. ); Soule, D.E. )

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  19. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  20. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  1. Pseudoredundant vacuum energy

    SciTech Connect

    Batra, Puneet; Hinterbichler, Kurt; Hui, Lam; Kabat, Daniel

    2008-08-15

    We discuss models that can account for today's dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a nonminimal coupling to curvature. We give a recipe for constructing models, including R+1/R-type models, that realize this mechanism and satisfy all solar system constraints on gravity. A similar model, based on Gauss-Bonnet gravity, provides a technically natural explanation for dark energy and exhibits an interesting seesaw behavior: a large underlying cosmological constant gives rise to both low- and high-curvature solutions. Such models could be statistically favored in the string landscape.

  2. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  3. Breather cloth for vacuum curing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1979-01-01

    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  4. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  5. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  6. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  7. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  8. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  9. Vacuum Enhanced Cutaneous Biopsy Instrument

    SciTech Connect

    Collins, Joseph

    1999-06-25

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  10. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  11. Design for ANL 7 GeV storage ring vacuum system

    SciTech Connect

    Wehrle, R.B.; Nielsen, R.W.

    1988-01-01

    The 7-GeV Advanced Photon Source (APS) design includes a storage ring having a 1060-m circumference with the capability of accommodating 34 insertion devices (ID) and their associated photon beam lines. An additional 35 photon lines can be provided from bending magnets. The vacuum system for the storage ring is designed to maintain a beam-on operating pressure of 1n Torr or less to achieve a positron beam lifetime of approximately 20 hours. The vacuum system and it's current developmental status are described.

  12. A Low Impedance Marx Generator as a Test bed for Vacuum Diodes

    NASA Astrophysics Data System (ADS)

    Adhikary, Biswajit; Deb, P.; Verma, R.; Shukla, R.; Sharma, S. K.; Banerjee, P.; Das, R.; Prabaharan, T.; Das, B. K.; Shyam, Anurag

    2012-11-01

    A low impedance Marx generator was developed, which will serve as a test bed for Vacuum diodes of various electrode materials and geometries. The vacuum diodes will be used for high power microwave generation. The generator is capable to supply ~3GW of pulsed power to the vacuum diodes which is sufficient enough to produce plasma within the diode for electron beam generation. A vacuum of 10-5Torr is required for virtual cathode formation within the diode, when the beam current exceeds the space charge limiting current. A vacuum diode of reflex triode geometry has been designed and vacuum of 10-5 Torr has been achieved. The repetitive operation of the vacuum diode depends upon the recovery of the diode, the importance of the vacuum system on the recovery of the diode will be explained. A vacuum system with high voltage isolator has been installed for getting the desired vacuum within the diode. The design criterion of the vacuum system will be discussed. The 300kV/1.8kJ Marx generator which will power the vacuum diode has six stages with stage capacitance and voltage of 240nF and 50kV respectively. It has an impedance of ~7 ohm and can deliver 200kV voltage across the diode in critically damped load condition. The generator has a very fast rise time of 200ns.The operational characteristics of the Marx generator are determined experimentally. The results have been analyzed and compared to an equivalent circuit model of the system.

  13. Hadron Contribution to Vacuum Polarisation

    NASA Astrophysics Data System (ADS)

    Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.

    2016-10-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.

  14. Vacuum Consideration Pertaining to Bellows Changes on Debuncher Tanks

    SciTech Connect

    Klen, J.

    1985-11-13

    It has been proposed that the stochastic cooling tanks in the Debuncher be modified so that their position can be changed remotely by installing motor driven stands. The present bellows that connect the tanks to the beam pipe vacuum chamber does not have enough radial movement to allow the movement required of the tanks. In order for this proposal to be enacted, the existing bellows will have to be replaced. The present bellows is a formed bellows 5 1/2-inch I.D. x 2-inch long, it will be replaced by a welded bellows 4-inch I.D. x 4-inch long. Due to the smaller size of the replacement bellows, its effect on the performance of the Debuncher Vacuum System must be examined. The areas of concern are: pumpdown time, pressure attained by turbos, and pressure in the high vacuum range.

  15. An interchangeable-cathode vacuum arc plasma source.

    PubMed

    Olson, David K; Peterson, Bryan G; Hart, Grant W

    2010-01-01

    A simplified vacuum arc design [based on metal vapor vacuum arc (MeVVA) concepts] is employed as a plasma source for a study of a (7)Be non-neutral plasma. The design includes a mechanism for interchanging the cathode source. Testing of the plasma source showed that it is capable of producing on the order of 10(12) charges at confinable energies using a boron-carbide disk as the cathode target. The design is simplified from typical designs for lower energy and lower density applications by using only the trigger spark rather than the full vacuum arc in high current ion beam designs. The interchangeability of the cathode design gives the source the ability to replace only the source sample, simplifying use of radioactive materials in the plasma source. The sample can also be replaced with a completely different conductive material. The design can be easily modified for use in other plasma confinement or full MeVVA applications.

  16. Scattering of electrons by vacuum fluctuations of plasma waves

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.; Afanas'ev, V. P.; Lubenchenko, A. V.

    2014-04-01

    Interaction between a probe electron beam and longitudinal electromagnetic oscillations of the Fermi plasma in metals (plasmons) is investigated by the methods of quantum electrodynamics. The quantum description of plasmons allows one to construct a consistent theory of the scattering process and point out the applicability limits of the existing semiclassical theories. The quantum description of plasmons leads to the concept of electromagnetic vacuum of longitudinal waves, which is the subject of the present study. The vacuum of longitudinal waves significantly deforms the shape of plasma dielectric permittivity, thus leading to the broadening of Langmuir peaks of scattered electrons, which has so far resisted theoretical analysis. The presence of the electromagnetic vacuum of longitudinal plasma waves has a considerable effect on the integral scattering probability of electrons by plasmons.

  17. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  18. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  19. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  20. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  1. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  2. Vacuum type D initial data

    NASA Astrophysics Data System (ADS)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space-time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  3. Vacuum type D initial data

    NASA Astrophysics Data System (ADS)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  4. Changing MFTF vacuum environment

    SciTech Connect

    Margolies, D.; Valby, L.

    1982-08-19

    The Mirror Fusion Test Facility (MFTF) vaccum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10/sup 9/ to 5 x 10/sup 10/ particles per cc. The maximum leak rate of 10/sup -6/ tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorbtion pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described.

  5. NCSX Vacuum Vessel Fabrication

    SciTech Connect

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02μ, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  6. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  7. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  8. Photoelectron photoion molecular beam spectroscopy

    SciTech Connect

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  9. Macroscopic vacuum effects in an inhomogeneous and nonstationary electromagnetic field

    SciTech Connect

    Gal'tsov, D.V.; Nikitina, N.S.

    1983-04-01

    Macroscopic effects of vacuum polarization by a strong nonuniform and nonstationary fields, which are kinematically forbidden in the case of a uniform magnetic field, are considered. Calculations are perfomed for the deflection of a light beam in the field of a magnetic dipole, for the production of photon pairs by an inclined rotator, and for doubling and modulation of the frequency in scattering of low-frequency electromagnetic waves by the magnetic field of an inclined rotator.

  10. Blast overpressure in rats: recreating a battlefield injury in the laboratory.

    PubMed

    Long, Joseph B; Bentley, Timothy L; Wessner, Keith A; Cerone, Carolyn; Sweeney, Sheena; Bauman, Richard A

    2009-06-01

    Blast injury to the brain is the predominant cause of neurotrauma in current military conflicts, and its etiology is largely undefined. Using a compression-driven shock tube to simulate blast effects, we assessed the physiological, neuropathological, and neurobehavioral consequences of airblast exposure, and also evaluated the effect of a Kevlar protective vest on acute mortality in rats and on the occurrence of traumatic brain injury (TBI) in those that survived. This approach provides survivable blast conditions under which TBI can be studied. Striking neuropathological changes were caused by both 126- and 147-kPa airblast exposures. The Kevlar vest, which encased the thorax and part of the abdomen, greatly reduced airblast mortality, and also ameliorated the widespread fiber degeneration that was prominent in brains of rats not protected by a vest during exposure to a 126-kPa airblast. This finding points to a significant contribution of the systemic effects of airblast to its brain injury pathophysiology. Airblast of this intensity also disrupted neurologic and neurobehavioral performance (e.g., beam walking and spatial navigation acquisition in the Morris water maze). When immediately followed by hemorrhagic hypotension, with MAP maintained at 30 mm Hg, airblast disrupted cardiocompensatory resilience, as reflected by reduced peak shed blood volume, time to peak shed blood volume, and time to death. These findings demonstrate that shock tube-generated airblast can cause TBI in rats, in part through systemic mediation, and that the resulting brain injury significantly impacts acute cardiovascular homeostatic mechanisms as well as neurobehavioral function.

  11. EM Structure Based and Vacuum Acceleration

    SciTech Connect

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  12. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  13. Self-neutralized ion beam

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Nikolaev, A.; Savkin, K. P.; Oks, E. M.; Spaedtke, P.; Yu, K. M.; Brown, I. G.

    2011-10-15

    A vacuum arc ion source provides high current beams of metal ions that have been used both for accelerator injection and for ion implantation, and in both of these applications the degree of space charge neutralization of the beam is important. In accelerator injection application, the beam from the ion source may be accelerated further (post-acceleration), redirected by a bending magnet(s), or focused with magnetic or electrostatic lenses, and knowledge of the beam space charge is needed for optimal design of the optical elements. In ion implantation application, any build-up of positive charge in the insulating targets must be compensated by a simultaneous flux of cold electrons so as to provide overall charge neutrality of the target. We show that in line-of-sight ion implantation using a vacuum arc ion source, the high current ion beam carries along its own background sea of cold electrons, and this copious source of electrons provides a ''self-neutralizing'' feature to the beam. Here we describe experiments carried out in order to demonstrate this effect, and we provide an analysis showing that the beam is space-charge-neutralized to a very high degree.

  14. Ion Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Yamada, I.

    The following sections are included: * FILM FORMATION BY ION BEAMS * Fundamental Processes in Film Formation by Low Energy Ion Beams * Comparison of ICB with Other Physical Vapor Deposition Methods * Vacuum Deposition * Sputter Deposition * Ion Plating * Ion Beam Deposition * Simultaneous Deposition and Implantation * Plasma Enhanced Deposition * Section I References * ION CLUSTER BEAM DEPOSITION AND CLUSTER BEAM FORMATION * Nucleation Process * Growth and Condensation Process * Section II References * CHARACTERISTICS OF THE CLUSTER * Velocity of Clusters * Energy of Clusters * TEM Observation of Clusters * Structural Properties * Section III References * IONIZED CLUSTER BEAM DEPOSITION SYSTEM * Section IV References * FILM DEPOSITION PROCESS BY ICB * Fundamental Process * Effects of Kinetic Energy on the Film Properties * Epitaxial phenomena * Crystallographic Structure * Physical Structure of Films * Effects of the Electric Charge on the Film Properties * Section V References * APPLICATIONS * Silicon and Silicon Alloy Films * Low Temperature Epitaxy of Silicon Films * Thermally Stable a-Si Film Growth * High Quality SiO2 Film Deposition * Epitaxial A1 Films * Electromigration Resistant A1 Film * Thermally Stable Al/Si Contact * II-VI and III-V Compound Films * Thin Multiple Layered Film * CONCLUSIONS * Acknowledgements * Section VI References

  15. The vacuum system for the Munich fission fragment accelerator

    NASA Astrophysics Data System (ADS)

    Maier-Komor, P.; Faestermann, T.; Krücken, R.; Nebel, F.; Winkler, S.; Groß, M.; Habs, D.; Kester, O.; Szerypo, J.; Thirolf, P. G.

    2006-05-01

    The Munich Accelerator for Fission Fragments (MAFF) is a radioactive ion beam facility which will be installed at the new research reactor FRM-II. This new reactor became critical in Spring 2004. The heart of MAFF, the target-ion source unit will be placed in the through-going beam tube of the FRM-II. This beam tube has been installed, tested and filled with helium in 2001. The cogent authorization procedures and safety levels developed for nuclear power plants are applied for this research reactor also. Therefore, MAFF also has to obey these very strict rules, because the typical 1 g load of 235U in the MAFF source creates a fission product activity of several 10 14 Bq after one reactor cycle of 52 days. All vacuum components must withstand a pressure of 6×10 5 Pa in addition to their UHV acceptability. Even dynamic gaskets must be strictly metallic, because organic compounds would not withstand the radioactive irradiation during the design lifetime of 30 years. Only dry vacuum pumps are suitable: refrigerator cryopumps for the high-vacuum part and five stages of roots pumps for roughing and regeneration.

  16. Influence of fluid overpressure on sliding with or without frontal buttress. Insights from analytical and experimental modeling

    NASA Astrophysics Data System (ADS)

    Lacoste, A.; Vendeville, B.; Mourgues, R.; Loncke, L.

    2009-12-01

    Hydrocarbon cracking can generate gases that migrate upward and may be trapped beneath low-permeability strata. The resulting fluid overpressure reduces shear strength, allowing gravitational sliding of the overlying cover. The driving force is the slope-parallel component of the weight of the cover, whereas the resisting forces are the friction at the base of the cover and the buttressing resistance to shortening downslope. Typically, a slide is bounded by normal faults upslope and thrusts downslope. But, sometimes, the slide is bounded downslope by a creek incision, and no compressional structures are found. We show how these two types of slides markedly differ in terms of mechanics, geometry, and kinematics using both analytical and experimental models. Mourgues et al. (2009) proposed an analytical model for gravity sliding of a laterally continuous sedimentary pile overlying an overpressured horizon. There, sliding can occur only if the driving force can overcome the buttressing resistance downslope, i.e., if the slide has a minimum required length, which depends on the thickness and rheological properties of the cover, and fluid pressure. The predicted length of the slide decreases with increasing pore pressure and decreasing cover thickness (Fig.1A). We ran the same calculation for a set up in which the base of the slope is incised, hence there is no downslope buttress. Unlike the first set up, the sliding sheet length increases with increasing fluid pressure (Fig.1B). We also tested the influence of varying slope angles, cover thicknesses and permeabilities of the décollement layer. The fluid pressure required to trigger sliding decreases where the basal slope and the cover thickness increase. Changes in décollement permeability have only a minor influence. We undertook a series of analogue experiments to check the evolution predicted by the analytical models. Fluids were simulated by compressed air applied at the base of models made of sand and low

  17. Can we infer the magma overpressure threshold before an eruption? Insights from ground deformation time series and numerical modeling of reservoir failure.

    NASA Astrophysics Data System (ADS)

    Albino, F.; Gregg, P. M.; Amelug, F.

    2015-12-01

    Overpressure within a magma chamber is a key parameter to understanding the onset of an eruption. Recent investigations indicate that surface inflation at a volcanic edifice does not always precede eruption (Chaussard and Amelung, 2012; Biggs et al., 2014), suggesting that the overpressure threshold may differ between volcanoes. To understand the failure conditions of a magma reservoir, mechanical models were developed to quantify the range of overpressure affordable in a reservoir for a given situation. Even if the choice of the failure criterion is still debated, most investigators agree that the overpressure required to fail the magma reservoir is at first order a function of the crustal stress field and the shape of the magma reservoir. Radar interferometry (InSAR) provides a large dataset of ground deformation worldwide, but many of these InSAR studies continue to use point or dislocation sources (Mogi, Okada) to explain deformation on volcanoes. Even if these simple solutions often fit the data and estimate the depth and the volume change of the source of deformation, key parameters such as the magma overpressure or the mechanical properties of the rocks cannot be derived. We use mechanical numerical models of reservoir failure combined with ground deformation data. It has been observed that volume change before an eruption can easily range one or two order of magnitude from 1-100x106 m3. The first goal of this study is to understand which parameter(s) control the critical volume changes just before the failure of the reservoir. First, a parametric study is performed to quantify the effect of the geometry of the reservoir (radius, depth), the local stress (compressive/extensive) and even the crust rheology (elastic/viscoelastic). We then compare modeling results with several active volcanoes where long time series of volume change are available: Okmok and Westdahl in Alaska, Sinabung and Agung in Indonesia and Galapagos. For each case, the maximum

  18. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  19. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  20. Silicon source for vacuum deposition

    NASA Technical Reports Server (NTRS)

    Racette, G. W.; Rutecki, D. J.

    1979-01-01

    Device using two independent silicon sources for ultra-high-vacuum deposition on large substrates can deposit P and N types of silicon simultaneously. Efficient water cooled copper shield supports and cools structure and isolates two filaments.

  1. Observation of Beam ION Instability in Spear3

    SciTech Connect

    Teytelman, D.; Cai, Y.; Corbett, W.J.; Raubenheimer, T.O.; Safranek, J.A.; Schmerge, J.F.; Sebek, J.J.; Wang, L.; /SLAC

    2011-12-14

    Weak vertical coupled bunch instability with oscillation amplitude at {mu}m level has been observed in SPEAR3. The instability becomes stronger when there is a vacuum pressure rise by partially turning off vacuum pumps and it becomes weaker when the vertical beam emittance is increased by turning off the skew quadrupole magnets. These confirmed that the instability was driven by ions in the vacuum. The threshold of the beam ion instability when running with a single bunch train is just under 200 mA. This paper presents the comprehensive observations of the beam ion instability in SPEAR3. The effects of vacuum pressure, beam current, beam filling pattern, chromaticity, beam emittance and bunch-by-bunch feedback are investigated in great detail. In an electron accelerator, ions generated from the residual gas molecules can be trapped by the beam. Then these trapped ions interact resonantly with the beam and cause beam instability and emittance blow-up. Most existing light sources use a long single bunch train filling pattern, followed by a long gap to avoid multi-turn ion trapping. However, such a gap does not preclude ions from accumulating during one passage of the single bunch train beam, and those ions can still cause a Fast Ion Instability (FII) as predicted by Raubenheimer and Zimmermann. FII has been observed in ALS, and PLS by artificially increasing the vacuum pressure by injecting helium gas into the vacuum chamber or by turning off the ion pumps in order to observe the beam ion instability. In some existing rings, for instance B factory, the beam ion instability was observed at the beginning of the machine operation after a long period of shutdown and then it automatically disappeared when the vacuum was better. However, when the beam emittance becomes smaller, the FII can occur at nominal conditions as observed in PLS, SOLEIL and SSRF. This paper reports the observations of beam ion instabilities in SPEAR3 under different condition during a period of one

  2. DESIGN AND DEVELOPMENT OF THE SNS RING VACUUM INSTRUMENTATION AND CONTROL SYSTEMS.

    SciTech Connect

    HSEUH,H.C.; SMART,L.A.; TANG,J.Y.

    2001-06-18

    BNL is undertaking the design, construction and commissioning of the Spallation Neutron Source (SNS) accumulator ring and the beam transport lines [l]. Ultrahigh vacuum of 10{sup {minus}9} Torr is required in the accumulator ring to minimize beam-gas ionization, a contributing factor to the e-p instability observed in a few high-intensity proton storage rings. All vacuum instrumentation must be capable of local and remote operation to achieve a reliable vacuum system, especially in this extremely high intensity accelerator. The design and development of the SNS ring vacuum instrumentation and control through the Experimental Physics and Industrial Control System (EPICS) distributed real-time software tools are presented.

  3. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  4. Edge conduction in vacuum glazing

    SciTech Connect

    Simko, T.M.; Collins, R.E.; Beck, F.A.; Arasteh, D.

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  5. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  6. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-06-24

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  7. Test of Thermal Transport Models through Dynamic Overpressure Stabilization of Ablation-Front Perturbation Growth in Laser-Driven CH Foils

    SciTech Connect

    Gotchev, O.V.; Goncharov, V.N.; Knauer, J.P.; Boehly, T.R.; Collins, T.J.B.; Epstein, R.; Jaanimagi, P.A.; Meyerhofer, D.D.

    2006-03-24

    Heat-flow-induced dynamic overpressure at the perturbed ablation front of an ICF target can stabilize the ablative Richtmyer/Meshkov-like instability and mitigate the subsequent ablative Rayleigh/Taylor (RT) instability. A series of experiments was performed on the OMEGA laser to quantify the dynamic overpressure stabilization during the shock transit. Analysis of the experimental data using hydrocode simulations shows that the observed oscillatory evolution of the ablation-front perturbations depends on Dc, the size of the thermal conduction zone, and the fluid velocity in the blowoff region Vbl that are sensitive to the thermal transport model used. We show that the simulations match the experiment well when the time dependence of the heat-flux inhibition is taken into account using a recently developed nonlocal heat transport model.

  8. The design and structure of the ultra-high vacuum system of HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Yang, Xiaotian; Zhang, Junhui; Zhang, Xinjun; Meng, Jun; Zhan, Wenlong

    2001-12-01

    To minimize the beam loss due to charge exchange of very heavy ions with the residual gas molecules, ultra-high vacuum of 6×10-9 Pa is required for the HIRFL-CSR facility, which is the lowest pressure in a large vacuum system in China up to now. The total length of the system is about 450 meters and the total inner surface is about 263 square meters. More than 500 standard vacuum components are needed and more than 400 different chambers have to be manufactured. A lot of researches have been down to try to find out the experiences to obtain the required pressure. In this article the following contents are described: the layout of the system; the structure of main vacuum chambers; the treatment metherd to reduce the outgassing rate of the chamber wall surfaces; vacuum equipment; pressure distribution and the progress of the system.

  9. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Chang, O.; Wang, J.

    2011-05-20

    Full particle PIC simulations are performed to study the neutralization of an ion beam in the cohesionless, mesothermal regime. Simulations further confirmed that neutralization is achieved through interactions between the trapped electrons and the potential well established by the propagation of the beam front along the beam direction and is not through plasma instabilities as previous studies suggested. In the transverse direction, the process is similar to that of the expansion of mesothermal plasma into vacuum. Parametric simulations are also performed to investigate the effects of beam radius and domain boundary condition on the neutralization process. The results suggests that, while the qualitative behavior may be similar in ground tests, quantitative parameters such as the beam potential will be affected significantly by the vacuum chamber because of the limits imposed on the expansion process by the finite chamber space.

  10. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    SciTech Connect

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. . Space Systems Div.)

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.

  11. A purely structural restoration of the NFP20-East cross section and potential tectonic overpressure in the Adula nappe (central Alps)

    NASA Astrophysics Data System (ADS)

    Pleuger, Jan; Podladchikov, Yuri Y.

    2014-05-01

    Common extrusion-type models for the high- to ultrahigh-pressure Adula nappe require a major normal fault along the top of this unit which is not conveyed in the structural record. This implies that such a normal fault existed but was completely erased during later deformational stages. However, there is evidence that decompression occurred during top-to-the-foreland thrusting. We performed a new, purely structural kinematic restoration of the central part of the NFP20-East cross section in order to estimate the burial depths of individual units without converting petrological pressure data into depth under the assumption that pressures were lithostatic. The results show that pressures within most of the units were close to but somewhat higher than lithostatic for several stages of the tectono-metamorphic history. Only for the maximum burial stage of the Adula nappe, we estimate local tectonic overpressures of 40 to 80% of the lithostatic pressures. Accepting such an amount of overpressure, which is moderate compared to values theoretically possible, the Adula nappe was probably not subducted to subcrustal depth. We propose that the structural record of the Penninic nappe stack is quite complete and suggest that the decay of tectonic overpressure is a feasible explanation for decompression from eclogite- to amphibolite-facies conditions during thrusting. Consequently, exhumation and convergence rates of the Eocene to Oligocene Alps may be smaller than previously assumed.

  12. Probability distribution of the vacuum energy density

    SciTech Connect

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  13. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  14. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  15. Reduce costs with vacuum excavation

    SciTech Connect

    Vitale, S.A.

    1983-09-01

    Although vacuum excavation equipment and methods are in their infancy, this developing technology offers tremendous promise for the future. The author explains Brooklyn Union Gas Co.'s experience with five vacuum trucks and the procedures that are used. In recent years, the higher cost of natural gas has increased the need for gas utilities to reduce their operating expenses. One way, which has been successful at Brooklyn Union Gas, is the use of vacuum excavation. Although vacuum excavation equipment and techniques are in their infancy, this developing technology offers substantial savings today and tremendous promise for the future. Brooklyn Union started its vacuum digging program by locating keyhole cutoffs--small surface openings ranging from 1 ft by 1 ft to 1 1/2 ft by 1 1/2 ft (0.3 m to 0.45 m square). It is no easy task to accurately locate a service that was installed 60 years ago. Reading the street indications, locating an existing curb valve or repair opening, gaining access to the building, making a physical lineup, and using an M-scope, plus any other tools available, have produced a high success rate.

  16. Vacuum Refining of Molten Silicon

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Tangstad, Merete

    2012-12-01

    Metallurgical fundamentals for vacuum refining of molten silicon and the behavior of different impurities in this process are studied. A novel mass transfer model for the removal of volatile impurities from silicon in vacuum induction refining is developed. The boundary conditions for vacuum refining system—the equilibrium partial pressures of the dissolved elements and their actual partial pressures under vacuum—are determined through thermodynamic and kinetic approaches. It is indicated that the vacuum removal kinetics of the impurities is different, and it is controlled by one, two, or all the three subsequent reaction mechanisms—mass transfer in a melt boundary layer, chemical evaporation on the melt surface, and mass transfer in the gas phase. Vacuum refining experimental results of this study and literature data are used to study the model validation. The model provides reliable results and shows correlation with the experimental data for many volatile elements. Kinetics of phosphorus removal, which is an important impurity in the production of solar grade silicon, is properly predicted by the model, and it is observed that phosphorus elimination from silicon is significantly increased with increasing process temperature.

  17. Gravity-Induced Vacuum Dominance

    SciTech Connect

    Lima, William C. C.; Vanzella, Daniel A. T.

    2010-04-23

    It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.

  18. Microscale Digital Vacuum Electronic Gates

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  19. Gas-fired vacuum technology

    SciTech Connect

    Schultz, T.J.; Bender, J.W.

    2000-04-01

    The modern phase of gas-fired vacuum furnace development began in 1986 under two programs sponsored by the Gas Research Institute . Since then, a tremendous amount of gas industry and private money and time have been spent on the development of this important technology. A key barrier has been the temperature capability of gas-fired designs. Recognizing this, Surface Combustion first began commercial development for low temperature applications and designs. This work resulted in several US patents and ultimately the VacuDraw vacuum tempering furnace. Other commercial configurations and larger sizes subsequently evolved from this successful effort. The most recent development in gas-fired vacuum furnace technology, and perhaps the most significant to date, is the installation and operation of the first multichamber, 1,065 C (1,950 F) system designed for tool steel heat treatment. This article provides an overview of this equipment and describes its key design and performance features.

  20. D-Zero Vacuum System

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1986-04-07

    The system pumping speed was calculated by taking the reciprocal of the sum of the reciprocal pump speed and the reciprocal line conductances. The conductances of the pipe were calculated from the following formulas taken from the Varian vacuum manual. This report updates the original to reflect the pumping curves and basic vacuum system characteristics for the purchased components and installed piping of the D-Zero vacuum system. The system consists of two Edward's E2M275 two stage mechanical pumps, a Leybold-Heraeus WSU2000 Blower and three Varian 4' diffusion pumps (one for each cryostat). Individual pump and system pumping speed curves and a diagram of the system is included.

  1. In vacuum undulator task force report

    SciTech Connect

    Hastings, J.B.; Kao, C.C.; Stefan, P.

    1998-06-01

    Historically the NSLS has been active in R&D for state-of-the-art electron beams, photon beams and x-ray optics. One of the available straight sections has therefore been dedicated to insertion device R&D. Over the past five to seven years a program aimed at exploiting the very small vertical {beta} function in the straight sections has yielded first a prototype small gap undulator (PSGU) and then an in-vacuum undulator (IVUN). The IVUN sources attain a brightness similar to the existing hybrid wigglers in X21 and X25. They radiate significantly lower total power than the wigglers but produce higher power densities. They provide undulator rather than wiggler spectra. Because of the small gaps and small periods there is not much tunability in these devices and they will have to be purpose-built for a specific scientific program. The original IVUN parameters were chosen for in-elastic x-ray scattering, similar to the scientific program on X21. This put the fundamental at 4.6 keV and the third harmonic at 13.8 keV. The question that this new possible insertion device poses is what science programs can best take advantage of this new insertion device source? To answer this, a task force was formed by M. Hart, NSLS Department Chair and charged with identifying viable scientific programs that could seek outside funding to construct IVUN beamlines. The task force concentrated on experimental programs that are presently being pursued on new insertion devices worldwide. For example, x-ray photon correlation spectroscopy, which takes advantage of the large coherent flux from undulator sources, was considered. However, this program was not considered as the highest priority. The general area of protein crystallography, however, is ideal for the IVUN source. The unique electron beam optics that makes the IVUN possible in the first place also makes the IVUN ideal as a source for microdiffraction.

  2. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  3. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  4. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model

    PubMed Central

    Mishra, Vikas; Skotak, Maciej; Schuetz, Heather; Heller, Abi; Haorah, James; Chandra, Namas

    2016-01-01

    Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa. PMID:27270403

  5. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model

    NASA Astrophysics Data System (ADS)

    Mishra, Vikas; Skotak, Maciej; Schuetz, Heather; Heller, Abi; Haorah, James; Chandra, Namas

    2016-06-01

    Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa•s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa.

  6. Development and maintenance of fluid overpressures in crustal fault zones by elastic compaction and implications for earthquake swarms

    NASA Astrophysics Data System (ADS)

    Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Fabbri, Olivier; Armitage, Peter; Blake, Oshaine

    2015-06-01

    The ability of crustal faults to compact and to pressurize pore fluids is examined by combining geological observations, petrophysical measurements (permeability, P and S wave velocities, and porosity), and fully coupled hydromechanical modeling. A strike-slip fault located in the Argentera-Mercantour crystalline massif (southwestern French-Italian Alps) was analyzed in the field. This mature fault belongs to a large active fault system characterized by a recurrent seismic swarm activity (Mw < 4) between 2 and 12 km depth. The studied exposure corresponds to a 50 m thick anastomosing fault composed of three types of rock: host-rock gneiss, damage-zone phyllonite, and core zone gouge. Laboratory measurements made at effective pressures ranging from 10 to 190 MPa show that the studied fault differs from the classical model and has a high-porosity, high-permeability, and low-rigidity core zone surrounded by a low-porosity, low-permeability, and high-rigidity damage zone with respect to the host rock. The hydraulic and elastic properties are controlled by different microstructures such as foliation, microcracks, and pores developed during the exhumation history of the massif and the reactivation of inherited low-friction mylonitic foliation. Hydromechanical modeling is then used to investigate the spatio-temporal evolution of the fluid overpressures across the fault zone elements in response to elastic compaction. Models demonstrate that fluid pressure can be developed and maintained temporally in the studied fault zone. This study concludes on the key role played by the hydromechanical properties of faults during compaction and provides an explanation for seismic swarm triggering and maintenance.

  7. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model.

    PubMed

    Mishra, Vikas; Skotak, Maciej; Schuetz, Heather; Heller, Abi; Haorah, James; Chandra, Namas

    2016-01-01

    Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0-450 kPa (0-800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146-220 kPa and 221-290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0-145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85-145 kPa. PMID:27270403

  8. Microfractures due to overpressures caused by thermal cracking in well-sealed upper Devonian reservoirs, deep Alberta basin

    SciTech Connect

    Marquez, X.M.; Mountjoy, E.W.

    1996-04-01

    Microfractures (<1 mm in width) filled with reservoir bitumen occur and crosscut all sedimentary and diagenetic phases in the upper 200 m of the partially to completely dolomitized Upper Devonian (Leduc Formation) Strachan buildup and other buildups in the deep Alberta basin. They display three patterns: (1) subhorizontal, extending from intraskeletal pores and subvertical fractures, (2) radial around vugs and molds, and (3) random in the matrix. Subhorizontal microfracturing is the most common, and radial is the least common. Overpressuring by thermal cracking of crude oil to gas during burial can produce most of the characteristics exhibited by these microfractures: their association with all pore types, bitumen fillings, and relatively late diagenetic timing. Microfractures are restricted to isolated buildups below depths of about 3800 m in the Alberta basin. The lack of microfractures in adjacent gas-bearing and updip buildups along the Rimbey-Meadowbrook reef trend is likely because of the connection of these buildups to a regional conduit system in the underlying Cooking Lake platform, preventing them from developing sufficient pressures. Thermal cracking of crude oil to gas during burial is also indicated by finely and coarsely deformed lamellar textures of the reservoir bitumen that fills the microfractures in the Strachan buildup. This thermal cracking took place during the Late Cretaceous when the buildup was buried deeper than about 3500 m; however, tectonic compression occurred immediately west of these areas during the Late Cretaceous and early Tertiary Laramide orogeny, modifying the stress field. Suprahydrostatic (abnormal) pressures generated during thermal cracking of oil in conjunction with Laramide tectonic compression probably created the microfractures in isolated and effectively scaled reservoirs.

  9. Observation of Live Ticks (Haemaphysalis flava) by Scanning Electron Microscopy under High Vacuum Pressure

    PubMed Central

    Ishigaki, Yasuhito; Nakamura, Yuka; Oikawa, Yosaburo; Yano, Yasuhiro; Kuwabata, Susumu; Nakagawa, Hideaki; Tomosugi, Naohisa; Takegami, Tsutomu

    2012-01-01

    Scanning electron microscopes (SEM), which image sample surfaces by scanning with an electron beam, are widely used for steric observations of resting samples in basic and applied biology. Various conventional methods exist for SEM sample preparation. However, conventional SEM is not a good tool to observe living organisms because of the associated exposure to high vacuum pressure and electron beam radiation. Here we attempted SEM observations of live ticks. During 1.5×10−3 Pa vacuum pressure and electron beam irradiation with accelerated voltages (2–5 kV), many ticks remained alive and moved their legs. After 30-min observation, we removed the ticks from the SEM stage; they could walk actively under atmospheric pressure. When we tested 20 ticks (8 female adults and 12 nymphs), they survived for two days after SEM observation. These results indicate the resistance of ticks against SEM observation. Our second survival test showed that the electron beam, not vacuum conditions, results in tick death. Moreover, we describe the reaction of their legs to electron beam exposure. These findings open the new possibility of SEM observation of living organisms and showed the resistance of living ticks to vacuum condition in SEM. These data also indicate, for the first time, the usefulness of tick as a model system for biology under extreme condition. PMID:22431980

  10. Vacuum Arc Ion Sources: Recent Developments and Applications

    SciTech Connect

    Brown, Ian; Oks, Efim

    2005-05-01

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used.

  11. Beam coupling impedances of obstacles protruding into a beam pipe

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    1997-03-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities.

  12. Vacuum deposited polymer/metal films for optical applications

    SciTech Connect

    Affinito, J.D.; Martin, P.M.; Gross, M.E.; Coronado, C.; Greenwell, E.

    1995-04-01

    Vacuum deposited Polymer/Silver/Polymer reflectors and Tantalum/Polymer/Aluminum Fabry-Perot interference filters were fabricated in a vacuun web coating operation on polyester substrates with a new, high speed deposition process. Reflectivities were measured in the wavelength range from 0.3 to 0.8{mu}m. This new vacuum processing technique has been shown to be capable of deposition line speeds in excess of 500 linear meters/minute. Central to this technique is a new position process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process -- for Polymer Multi-Layer. Also, vacuum deposited, index matched, polymer/CaF{sub 2} composites were fabricated from monomer slurries that were subsequently cured with LTV light. This second technique is called the Liquid Multi-Layer (or LML) process. Each of these polymer processes is compatible with each other and with conventional vacuum deposition processes such as sputtering or evaporation.

  13. Vacuum arc deposition as a complementary technology to laser processing

    NASA Astrophysics Data System (ADS)

    Vershinin, N. F.; Glebovsky, V. G.; Straumal, B. B.; Gust, W.; Brongersma, H.

    1997-02-01

    Vacuum arc deposition unifies the advantages of laser ablation and magnetron sputtering. The evaporation of the target in the arc discharge permits to deposit the refractory materials with a high rate. The evaporation products are highly ionized and the possibility exists to control the discharge with a magnetic field. The deposition rate, Rd, of Mo films produced by vacuum arc deposition on Cu and silica glass substrates has been studied. The target of purified Mo has been made by high-vacuum electron beam melting. Rd depends critically on the angle between the substrate and the cathode surfaces being maximal when they are parallel. The adhesion of the Mo coating to Cu is much higher than to silica glass substrate. Rd as high as 15 nm/s has been reached. Rd increases with increasing deposition power. It decreases with increasing distance from the cathode slower than in the case of magnetron sputtering. The microparticles forming by the vacuum arc evaporation incorporate in the layer during the deposition procedure increasing the deposition rate.

  14. Vacuum simulation and characterization for the Linac4 H- source

    NASA Astrophysics Data System (ADS)

    Pasquino, C.; Chiggiato, P.; Michet, A.; Hansen, J.; Lettry, J.

    2013-02-01

    At CERN, the 160 MeV H- Linac4 will soon replace the 50 MeV proton Linac2. In the H- source two major sources of gas are identified. The first is the pulsed injection at about 0.1 mbar in the plasma chamber. The second is the constant H2 injection up to 10-5 mbar in the LEBT for beam space charge compensation. In addition, the outgassing of materials exposed to vacuum can play an important role in contamination control and global gas balance. To evaluate the time dependent partial pressure profiles in the H- ion source and the RFQ, electrical network - vacuum analogy and test particle Monte Carlo simulation have been used. The simulation outcome indicates that the pressure requirements are in the reach of the proposed vacuum pumping system. Preliminary results show good agreement between the experimental and the simulated pressure profiles; a calibration campaign is in progress to fully benchmark the implemented calculations. Systematic outgassing rate measurements are on-going for critical components in the ion source and RFQ. Amongst them those for the Cu-coated SmCo magnet located in the vacuum system of the biased electron dump electrode, show results lower to stainless steel at room temperature.

  15. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  16. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  17. IBEX - annular beam propagation experiment

    SciTech Connect

    Mazarakis, M G; Miller, R B; Shope, S L; Poukey, J W; Ramirez, J J; Ekdahl, C A; Adler, R J

    1983-01-01

    IBEX is a 4-MV, 100-kA, 20-ns cylindrical isolated Blumlein accelerator. In the experiments reported here, the accelerator is fitted with a specially designed foilless diode which is completely immersed in a uniform magnetic field. Several diode geometries have been studied as a function of magnetic field strength. The beam propagates a distance of 50 cm (approx. 10 cyclotron wavelengths) in vacuum before either striking a beam stop or being extracted through a thin foil. The extracted beam was successfully transported 60 cm downstream into a drift pipe filled either with 80 or 640 torr air. The main objectives of this experiment were to establish the proper parameters for the most quiescent 4 MV, 20 to 40 kA annular beam, and to compare the results with available theory and numerical code simulations.

  18. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  19. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  20. Cleaner Vacuum-Bag Curing

    NASA Technical Reports Server (NTRS)

    Clemons, J. M.; Penn, B. G.; Ledbetter, Frank E., III; Daniels, J. G.

    1987-01-01

    Improvement upon recommended procedures saves time and expense. Autoclave molding in vacuum bag cleaner if adhesive-backed covering placed around caul plate as well as on mold plate. Covering easy to remove after curing and leaves caul plate free of resin deposits.

  1. Plates for vacuum thermal fusion

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  2. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  3. Degassing procedure for ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Moore, B. C.

    1979-01-01

    Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.

  4. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    Dr. M.A. Ebadian

    2000-01-13

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

  5. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  6. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  7. Quantum Vacuum Structure and Cosmology

    SciTech Connect

    Rafelski, Johann; Labun, Lance; Hadad, Yaron; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2011-12-05

    Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.

  8. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  9. Advanced neutral-beam technology

    SciTech Connect

    Berkner, K.H.

    1980-09-01

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described.

  10. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    1999-05-31

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  11. Sterilization of dielectric containers using a fore-vacuum pressure plasma-cathode electron source

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D.; Burdovitsini, V.; Oks, E.; Tyunkov, A.; Yushkov, Yu

    2015-11-01

    We describe our work on sterilization of 10 ml glass and 60 ml plastic cylindrical containers using a fore-vacuum pressure, plasma-cathode, electron beam source. Beam plasma is formed inside the vessel by injection of a low-energy electron beam at 3 - 6 keV energy and current of 50 mA, at a working gas (air) pressure of 8 Pa. The gas composition was tracked by a quadrupole gas analyzer type RGA-100. As a test biological object for sterilization we used E. coli ATCC 25922 bacteria, the inner surface of each vessel was inoculated with a bacterial suspension. We find a smooth dependence of the degree of sterilization on the total energy density injected into the vessel. The efficacy of sterilization of container inner surfaces using a fore-vacuum pressure, plasma-cathode e-beam source of relatively low energy (a few keV) electrons is thus demonstrated.

  12. Triple ion beam irradiation facility

    SciTech Connect

    Lewis, M.B.; Allen, W.R.; Buhl, R.A.; Packan, N.H.; Cook, S.W.; Mansur, L.K.

    1988-12-01

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm/sup 2/ in area. Typical depth ranges are 0.1 to 1.0 ..mu..m. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab.

  13. Vacuum polarization and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  14. Vacuum Chamber Design of NSLS-II Storage Ring

    SciTech Connect

    Doom,L.; Ferreira, M.; Hseuh, H. C.; Lincoln, F.; Longo, C.; Ravindranath, V.; Sharma, S.

    2008-06-11

    National Synchrotron Light Source II (NSLS II) will be a 3-GeV, 792-meter circumference, 3rd generation synchrotron radiation facility, with ultra low emittance and extremely high brightness. the storage ring has 30 Double-Bend-Achromatic (DBA) cells. in each cell, there are five magnets and chamber girders, and one straight section for insertion devices or Radio Frequency (RF) cavities or injection. Most vacuum chambers are made from extruded aluminum with two different cross sections: one fitted in the dipole magnets, and the other surrounded by multipole magnets. They discuss the layout of the DBA cells, the detailed design of the cell's vacuum chambers, the mounting of the Beam-Position-Monitor (BPM) buttons, discrete absorbers, lumped pumps and the distributed Non-Evaporable Getter (NEG) strips, and describe the fabrication and testing of these prototype cell chambers. The account also details the development of the chamber bakeout process, the NEG stri's supports, and the RF shielded bellows.

  15. THE SNS VACUUM CONTROL SYSTEM UPGRADE FOR THE SUPERCONDUCTING LINAC

    SciTech Connect

    Williams, Derrick C

    2009-01-01

    The superconducting linac of the Spallation Neutron Source (SNS) has 23 cryomodules whose vacuum system is monitored and controlled by custom built hardware. The original control hardware was provided by Thomas Jefferson National Accelerator Facility (JLab) and contained a variety of custom boards utilizing integrated circuits to perform logic. The need for control logic changes, a desire to increase maintainability, and a desire to increase flexibility to adapt for the future has led to a Programmable Logic Controller (PLC) based upgrade. This paper provides an overview of the commercial off-the-shelf (COTS) hardware being used in the superconducting vacuum control system. Details of the design and challenges to convert a control system during small windows of maintenance periods without disrupting beam operation will be covered in this paper.

  16. Space-Charge Modulation in Vacuum Microdiodes at THz Frequencies

    SciTech Connect

    Pedersen, Andreas; Manolescu, Andrei; Valfells, Agust

    2010-04-30

    We investigate the dynamics of a space-charge limited, photoinjected, electron beam in a microscopic vacuum diode. Because of the small nature of the system it is possible to conduct high-resolution simulations where the number of simulated particles is equal to the number of electrons within the system. In a series of simulations of molecular dynamics type, where electrons are treated as point charges, we address and analyze space-charge effects in a micrometer-scale vacuum diode. We have been able to reproduce breakup of a single pulse injected with a current density beyond the Child-Langmuir limit, and we find that continuous injection of current into the diode gap results in a well-defined train of electron bunches corresponding to THz frequency. A simple analytical explanation of this behavior is given.

  17. Nonlinearities and effects of transverse beam size in beam position monitors

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    2001-09-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The nonlinearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  18. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  19. Overpressure Contact Printing

    SciTech Connect

    Guo,Q.; Teng,X.; Yang,H.

    2004-09-15

    This paper describes a new method of using elastometric stamps in the fabrication of patterned self-assembled monolayers and nanoparticles. By applying load on top of poly(dimethylsiloxane) (PDMS) stamps, we showed that new structure arrays of various materials could be generated on silicon wafer and metal substrates through the controlled deformation of elastometric stamps. The feature sizes of the patterns generated by this technique have been shown to be up to an order of a magnitude smaller than those on the stamps. The created patterns also may not exist on the original masters; thus, this approah can be unique in making patterns at a reduced size that can sometimes be hard to fabricate otherwise.

  20. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  1. Vacuum mechatronic laser alignment system on the Nova laser

    SciTech Connect

    Holliday, M.; Wong, K.; Shelton, R.

    1991-11-01

    The experiments conducted on NOVA are done to investigate inertially confined laser fusion reactions. To this end, the ten beams of the laser are aligned to within 30mm. The target chamber employs a vacuum mechatronic based reticle/target positioning system to accomplish this. It is a five degree-of-freedom chamber resident system, known as the Alignment Aids Positioner or AAP. The AAP aids in beam and diagnostic alignment by accurately positioning a reticle at target chamber center to with 7mm. The AAP system increases target positioning and alignment flexibility and accuracy through the use of a computer controlled multi degree-of-freedom stage assembly. This device uses microstepping DC stepper motors with encoders to achieve closed loop control in a 10{sup {minus}6} torr vacuum. The AAP has two positioning regimes to move the alignment reticle and do beam alignment. One is course positioning in the Y-Z plane that moves a high resolution stage assembly to target chamber center. The other regime is high resolution movement in the X,Y,Z and q directions. 5 refs., 9 figs.

  2. Silicon Holder For Molecular-Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  3. Effects of mild TBI from repeated blast overpressure on the expression and extinction of conditioned fear in rats.

    PubMed

    Genovese, R F; Simmons, L P; Ahlers, S T; Maudlin-Jeronimo, E; Dave, J R; Boutte, A M

    2013-12-19

    Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) are pressing medical issues for the Warfighter. Symptoms of mTBI can overlap with those of PTSD, suggesting the possibility of a causal or mediating role of mTBI in PTSD. To address whether mTBI can exacerbate the neurobiological processes associated with traumatic stress, we evaluated the impact of mTBI from a blast overpressure (BOP) on the expression of a conditioned fear. In the rat, conditioned fear models are used to evaluate the emotional conditioning processes that are known to become dysfunctional in PTSD. Rats were first trained on a variable interval (VI), food maintained, operant conditioning task that established a general measure of performance. Inescapable electric shock (IES) was paired with an audio-visual conditioned stimulus (CS) and followed 1day later by three daily exposures to BOP (75kPa). Subsequently, the CS alone was presented once every 7days for 2months, beginning 4days following the last BOP. The CS was presented during the VI sessions allowing a concurrent measure of performance. Treatment groups (n=10, each group) received IES+BOP, IES+sham-BOP, sham-IES+BOP or sham-IES+sham-BOP. As expected, pairing the CS with IES produced a robust conditioned fear that was quantified by a suppression of responding on the VI. BOP significantly decreased the expression of the conditioned fear. No systematic short- or long-term performance deficits were observed on the VI from BOP. These results show that mTBI from BOP can affect the expression of a conditioned fear and suggests that BOP caused a decrease in inhibitory behavioral control. Continued presentation of the CS produced progressively less response suppression in both fear conditioned treatments, consistent with extinction of the conditioned fear. Taken together, these results show that mTBI from BOP can affect the expression of a conditioned fear but not necessarily in a manner that increases the conditioned fear or

  4. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  5. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  6. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  7. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  8. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  9. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  10. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  11. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  12. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  13. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  14. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  15. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  16. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  17. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  18. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  19. Utilize Vacuum Forming to Make Interdisciplinary Connections

    ERIC Educational Resources Information Center

    Love, Tyler S.; Valenza, Frank

    2011-01-01

    The concept of vacuum forming has been around since the 19th century, despite not being fully utilized in industry until the 1950s. In the past, industrial arts classes have used vacuum-forming projects to concentrate solely on the manufacturing process and the final product. However, vacuum forming is not just an old industrial arts activity; it…

  20. The APS beamline front end vacuum system

    SciTech Connect

    Nielsen, R.W.

    1993-10-15

    This report discusses the design of the vacuum system for the advanced photon source beamline front ends. Included in this report are discussions on: vacuum calculations, the differential pump; front end vacuum set points; cleaning methods and agents; and continuing and completed research and development.