Sample records for beam vectoring trigger

  1. Searching for Dark Photons with the SeaQuest Spectrometer

    NASA Astrophysics Data System (ADS)

    Uemura, Sho; SeaQuest Collaboration

    2017-09-01

    The existence of a dark sector, containing families of particles that do not couple directly to the Standard Model, is motivated as a possible model for dark matter. A ``dark photon'' - a massive vector boson that couples weakly to electric charge - is a common component of dark sector models. The SeaQuest spectrometer at Fermilab is designed to detect dimuon pairs produced by the interaction of a 120 GeV proton beam with a rotating set of thin fixed targets. An iron-filled magnet downstream of the target, 5 meters in length, serves as a beam dump. The SeaQuest spectrometer is sensitive to dark photons that are mostly produced in the beam dump and decay to dimuons, and a SeaQuest search for dark sector particles was approved as Fermilab experiment E1067. As part of E1067, a displaced-vertex trigger was built, installed and commissioned this year. This trigger uses two planes of extruded scintillators to identify dimuons originating far downstream of the target, and is sensitive to dark photons that travel deep inside the beam dump before decaying to dimuons. This trigger will be used to take data parasitically with the primary SeaQuest physics program. In this talk I will present the displaced-vertex trigger and its performance, and projected sensitivity from future running.

  2. Filamentation instability in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2007-08-15

    The growth rate of the filamentation instability triggered when a diluted cold electron beam passes through a cold plasma is evaluated using the quantum hydrodynamic equations. Compared with a cold fluid model, quantum effects reduce both the unstable wave vector domain and the maximum growth rate. Stabilization of large wave vector modes is always achieved, but significant reduction of the maximum growth rate depends on a dimensionless parameter that is provided. Although calculations are extended to the relativistic regime, they are mostly relevant to the nonrelativistic one.

  3. 2005 6th Annual Science and Engineering Technology Conference

    DTIC Science & Technology

    2005-04-21

    BioFAC VBAIDS Hybrid: PCR/Immuno Fast PCR Fast Immunoassay Mass Spec (Pyrolysis) SIBS UV -LIF IR Fluorochrome Charge Detect. BioCADS Trigger Advanced...Weights Beam forming Signal Processing mapped to GPU architecture Vector Processor STAP (STAP-BOY) GaN High Frequency Transistor (WBG-RF) UV Laser...Service anti- counterfeiting • Embedded security strips Technology Limitations and Barriers • Training and cost (training intensive) Land Borders North Land

  4. Integral transformation solution of free-space cylindrical vector beams and prediction of modified Bessel-Gaussian vector beams.

    PubMed

    Li, Chun-Fang

    2007-12-15

    A unified description of free-space cylindrical vector beams is presented that is an integral transformation solution to the vector Helmholtz equation and the transversality condition. In the paraxial condition, this solution not only includes the known J(1) Bessel-Gaussian vector beam and the axisymmetric Laguerre-Gaussian vector beam that were obtained by solving the paraxial wave equations but also predicts two kinds of vector beam, called a modified Bessel-Gaussian vector beam.

  5. Non-coaxial superposition of vector vortex beams.

    PubMed

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  6. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    PubMed

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  7. Demonstration of a terahertz pure vector beam by tailoring geometric phase.

    PubMed

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Otani, Yukitoshi

    2018-06-06

    We demonstrate the creation of a vector beam by tailoring geometric phase of left- and right- circularly polarized beams. Such a vector beam with a uniform phase has not been demonstrated before because a vortex phase remains in the beam. We focus on vortex phase cancellation to generate vector beams in terahertz regions, and measure the geometric phase of the beam and its spatial distribution of polarization. We conduct proof-of-principle experiments for producing a vector beam with radial polarization and uniform phase at 0.36 THz. We determine the vortex phase of the vector beam to be below 4%, thus highlighting the extendibility and availability of the proposed concept to the super broadband spectral region from ultraviolet to terahertz. The extended range of our proposed techniques could lead to breakthroughs in the fields of microscopy, chiral nano-materials, and quantum information science.

  8. Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Haiyan; Tang, Lei

    2018-01-01

    A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.

  9. Investigation of propagation dynamics of truncated vector vortex beams.

    PubMed

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  10. Higher-order vector beams produced by photonic-crystal lasers.

    PubMed

    Iwahashi, Seita; Kurosaka, Yoshitaka; Sakai, Kyosuke; Kitamura, Kyoko; Takayama, Naoki; Noda, Susumu

    2011-06-20

    We have successfully generated vector beams with higher-order polarization states using photonic-crystal lasers. We have analyzed and designed lattice structures that provide cavity modes with different symmetries. Fabricated devices based on these lattice structures produced doughnut-shaped vector beams, with symmetries corresponding to the cavity modes. Our study enables the systematic analysis of vector beams, which we expect will lead to applications such as high-resolution microscopy, laser processing, and optical trapping.

  11. Vector-beam solutions of Maxwell's wave equation.

    PubMed

    Hall, D G

    1996-01-01

    The Hermite-Gauss and Laguerre-Gauss modes are well-known beam solutions of the scalar Helmholtz equation in the paraxial limit. As such, they describe linearly polarized fields or single Cartesian components of vector fields. The vector wave equation admits, in the paraxial limit, of a family of localized Bessel-Gauss beam solutions that can describe the entire transverse electric field. Two recently reported solutions are members of this family of vector Bessel-Gauss beam modes.

  12. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    PubMed

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  13. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less

  14. Topological features of vector vortex beams perturbed with uniformly polarized light

    PubMed Central

    D’Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-01

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams. PMID:28079134

  15. Topological features of vector vortex beams perturbed with uniformly polarized light

    NASA Astrophysics Data System (ADS)

    D'Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-01

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.

  16. Topological features of vector vortex beams perturbed with uniformly polarized light.

    PubMed

    D'Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-12

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell's equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.

  17. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  18. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams

    NASA Astrophysics Data System (ADS)

    Singh, Ankit Kumar; Saha, Sudipta; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2018-04-01

    We study the effect of focusing of the radially and azimuthally polarized vector beams on the spin angular momentum (SAM) density and Poynting vector of scattered waves from a Mie particle. Remarkably, the study reveals that the SAM density of the scattered field is solely transverse in nature for radially and azimuthally polarized incident vector beams; however, the Poynting vector shows the usual longitudinal character. We also demonstrate that the transverse SAM density can further be tuned with wavelength and focusing of the incident beam by exploiting the interference of different scattering modes. These results may stimulate further experimental techniques to detect the transverse spin and Belinfante's spin-momentum densities.

  19. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  20. Thrust vectoring of broad ion beams for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Collett, C. R.; King, H. J.

    1973-01-01

    Thrust vectoring is shown to increase the attractiveness of ion thrusters for satellite control applications. Incorporating beam deflection into ion thrusters makes it possible to achieve attitude control without adding any thrusters. Two beam vectoring systems are described that can provide up to 10-deg beam deflection in any azimuth. Both systems have been subjected to extended life tests on a 5-cm thruster which resulted in projected life times of from 7500 to 20,000 hours.

  1. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Lei; Liu, Weiwei; Wang, Meng

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves themore » way for optical microscopy, trapping, and communication.« less

  2. Microchip solid-state cylindrical vector lasers with orthogonally polarized dual laser-diode end pumping.

    PubMed

    Otsuka, Kenju; Chu, Shu-Chun

    2013-05-01

    We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.

  3. Polarization pattern of vector vortex beams generated by q-plates with different topological charges.

    PubMed

    Cardano, Filippo; Karimi, Ebrahim; Slussarenko, Sergei; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2012-04-01

    We describe the polarization topology of the vector beams emerging from a patterned birefringent liquid crystal plate with a topological charge q at its center (q-plate). The polarization topological structures for different q-plates and different input polarization states have been studied experimentally by measuring the Stokes parameters point-by-point in the beam transverse plane. Furthermore, we used a tuned q=1/2-plate to generate cylindrical vector beams with radial or azimuthal polarizations, with the possibility of switching dynamically between these two cases by simply changing the linear polarization of the input beam.

  4. Purity of Vector Vortex Beams through a Birefringent Amplifier

    NASA Astrophysics Data System (ADS)

    Sroor, Hend; Lisa, Nyameko; Naidoo, Darryl; Litvin, Igor; Forbes, Andrew

    2018-04-01

    Creating high-quality vector vortex (VV) beams is possible with a myriad of techniques at low power, and while a few studies have produced such beams at high power, none have considered the impact of amplification on the vector purity. Here we employ tools to study the amplification of VV beams and, in particular, the purity of such modes. We outline a versatile toolbox for such investigations and demonstrate its use in the general case of VV beams through a birefringent gain medium. Intriguingly, we show that it is possible to enhance the purity of such beams during amplification, paving the way for high-brightness VV beams, a requirement for their use in high-power applications such as optical communication and laser-enabled manufacturing.

  5. Propagation and scattering of vector light beam in turbid scattering medium

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Milione, Giovanni; Meglinski, Igor; Alfano, Robert R.

    2014-03-01

    Due to its high sensitivity to subtle alterations in medium morphology the vector light beams have recently gained much attention in the area of photonics. This leads to development of a new non-invasive optical technique for tissue diagnostics. Conceptual design of the particular experimental systems requires careful selection of various technical parameters, including beam structure, polarization, coherence, wavelength of incident optical radiation, as well as an estimation of how the spatial and temporal structural alterations in biological tissues can be distinguished by variations of these parameters. Therefore, an accurate realistic description of vector light beams propagation within tissue-like media is required. To simulate and mimic the propagation of vector light beams within the turbid scattering media the stochastic Monte Carlo (MC) technique has been used. In current report we present the developed MC model and the results of simulation of different vector light beams propagation in turbid tissue-like scattering media. The developed MC model takes into account the coherent properties of light, the influence of reflection and refraction at the medium boundary, helicity flip of vortexes and their mutual interference. Finally, similar to the concept of higher order Poincaŕe sphere (HOPS), to link the spatial distribution of the intensity of the backscattered vector light beam and its state of polarization on the medium surface we introduced the color-coded HOPS.

  6. Optical cage generated by azimuthal- and radial-variant vector beams.

    PubMed

    Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui

    2018-05-01

    We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.

  7. Method and apparatus for second-rank tensor generation

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1991-01-01

    A method and apparatus are disclosed for generation of second-rank tensors using a photorefractive crystal to perform the outer-product between two vectors via four-wave mixing, thereby taking 2n input data to a control n squared output data points. Two orthogonal amplitude modulated coherent vector beams x and y are expanded and then parallel sides of the photorefractive crystal in exact opposition. A beamsplitter is used to direct a coherent pumping beam onto the crystal at an appropriate angle so as to produce a conjugate beam that is the matrix product of the vector beam that propagates in the exact opposite direction from the pumping beam. The conjugate beam thus separated is the tensor output xy (sup T).

  8. Managing focal fields of vector beams with multiple polarization singularities.

    PubMed

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  9. Investigation on partially coherent vector beams and their propagation and focusing properties.

    PubMed

    Hu, Kelei; Chen, Ziyang; Pu, Jixiong

    2012-11-01

    The propagation and focusing properties of partially coherent vector beams including radially polarized and azimuthally polarized (AP) beams are theoretically and experimentally investigated. The beam profile of a partially coherent radially or AP beam can be shaped by adjusting the initial spatial coherence length. The dark hollow, flat-topped, and Gaussian beam spots can be obtained, which will be useful in trapping particles. The experimental observations are consistent with the theoretical results.

  10. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOEpatents

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2007-07-17

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  11. A Real-Time Phase Vector Display for EEG Monitoring

    NASA Technical Reports Server (NTRS)

    Finger, Herbert J.; Anliker, James E.; Rimmer, Tamara

    1973-01-01

    A real-time, computer-based, phase vector display system has been developed which will output a vector whose phase is equal to the delay between a trigger and the peak of a function which is quasi-coherent with respect to the trigger. The system also contains a sliding averager which enables the operator to average successive trials before calculating the phase vector. Data collection, averaging and display generation are performed on a LINC-8 computer. Output displays appear on several X-Y CRT display units and on a kymograph camera/oscilloscope unit which is used to generate photographs of time-varying phase vectors or contourograms of time-varying averages of input functions.

  12. Sequentially pulsed traveling wave accelerator

    DOEpatents

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  13. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  14. Understanding Beam Alignment in a Coherent Lidar System

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2015-01-01

    Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.

  15. Video-rate terahertz electric-field vector imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu

    We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less

  16. Orion Exploration Flight Test-1 Contingency Drogue Deploy Velocity Trigger

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.; Stochowiak, Susan; Smith, Kelly

    2013-01-01

    As a backup to the GPS-aided Kalman filter and the Barometric altimeter, an "adjusted" velocity trigger is used during entry to trigger the chain of events that leads to drogue chute deploy for the Orion Multi-Purpose Crew Vehicle (MPCV) Exploration Flight Test-1 (EFT-1). Even though this scenario is multiple failures deep, the Orion Guidance, Navigation, and Control (GN&C) software makes use of a clever technique that was taken from the Mars Science Laboratory (MSL) program, which recently successfully landing the Curiosity rover on Mars. MSL used this technique to jettison the heat shield at the proper time during descent. Originally, Orion use the un-adjusted navigated velocity, but the removal of the Star Tracker to save costs for EFT-1, increased attitude errors which increased inertial propagation errors to the point where the un-adjusted velocity caused altitude dispersions at drogue deploy to be too large. Thus, to reduce dispersions, the velocity vector is projected onto a "reference" vector that represents the nominal "truth" vector at the desired point in the trajectory. Because the navigation errors are largely perpendicular to the truth vector, this projection significantly reduces dispersions in the velocity magnitude. This paper will detail the evolution of this trigger method for the Orion project and cover the various methods tested to determine the reference "truth" vector; and at what point in the trajectory it should be computed.

  17. Optical Bench Interferometer - From LISA Pathfinder to NGO/eLISA

    NASA Astrophysics Data System (ADS)

    Taylor, A.; d'Arcio, L.; Bogenstahl, J.; Danzmann, K.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Hennig, J.-S.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Tröbs, M.; Ward, H.; Weise, D.

    2013-01-01

    We present a short summary of some optical bench construction and alignment developments that build on experience gained during the LISA Pathfinder optical bench assembly. These include evolved fibre injectors, a new beam vector measurement system, and thermally stable mounting hardware. The beam vector measurement techniques allow the alignment of beams to targets with absolute accuracy of a few microns and 20 microradians. We also describe a newly designed ultra-low-return beam dump that is expected to be a crucial element in the control of ghost beams on the optical benches.

  18. A succinct method to generate multi-type HCV beams with a spatial spiral varying retardation-plate

    NASA Astrophysics Data System (ADS)

    Qi, Junli; Zhang, Hui; Pan, Baoguo; Deng, Haifei; Yang, Jinhong; Shi, Bo; Wang, Hui; Du, Ang; Wang, Weihua; Li, Xiujian

    2018-03-01

    A simple novel and practical scheme is presented to generate high-power cylindrical vector (HCV) beams with a 36-segment spiral varying retardation-plate sandwiched between two quarter-wave plates (QWPs). Four kinds of HCV beams, such as radially polarized beam and azimuthally polarized beam, are formed by simply rotating two QWPs. A segmented spiral varying phase-plate with isotropy is used to modulate spatial phase distribution to generate in-phase HCV beams. The intensity distributions and polarizing properties of HCV beams are investigated and analyzed in detail. It is demonstrated experimentally that the system can effectively generate multi-type HCV beams with high purity up to 99%, and it can be manufactured as cylindrical vector beam converter commercially.

  19. Focusing of concentric piecewise vector Bessel-Gaussian beam

    NASA Astrophysics Data System (ADS)

    Li, Jinsong; Fang, Ying; Zhou, Shenghua; Ye, Youxiang

    2010-12-01

    The focusing properties of a concentric piecewise vector Bessel-Gaussian beam are investigated in this paper. The beam consists of three portions: the center circular portion and outer annular portion are radially polarized, while the inner annular portion is generalized polarized with tunable polarized angle. Numerical simulations show that the evolution of focal pattern is altered considerably with different Bessel parameters in the Bessel term of the vector Bessel-Gaussian beam. The polarized angle also affects the focal pattern remarkably. Some interesting focal patterns may appear, such as two-peak, dark hollow focus; ring focus; spherical shell focus; cylindrical shell focus; and multi-ring-peak focus, and transverse focal switch occurs with increasing polarized angle of the inner annular portion, which may be used in optical manipulation.

  20. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Min-Cheng; Gong, Lei; Li, Di

    2014-11-03

    Optical trapping of core-shell magnetic microparticles is experimentally demonstrated by using cylindrical vector beams. Second, we investigate the optical trapping efficiencies. The results show that radially and azimuthally polarized beams exhibit higher axial trapping efficiencies than the Gaussian beam. Finally, a trapped particle is manipulated to kill a cancer cell. The results make possible utilizing magnetic particles for optical manipulation, which is an important advantage for magnetic particles as labeling agent in targeted medicine and biological analysis.

  1. Vector spherical quasi-Gaussian vortex beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-02-01

    Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.

  2. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  3. System and method for optically locating microchannel positions

    DOEpatents

    Brewer, Laurence R.; Kimbrough, Joseph; Balch, Joseph; Davidson, J. Courtney

    2001-01-01

    A system and method is disclosed for optically locating a microchannel position. A laser source generates a primary laser beam which is directed at a microchannel plate. The microchannel plates include microchannels at various locations. A back-reflectance beam detector receives a back-reflected beam from the plate. The back-reflected beam is generated when the primary beam reflects off of the plate. A photodiode circuit generates a trigger signal when the back-reflected beam exceeds a predetermined threshold, indicating a presence of the microchannel. The method of the present invention includes the steps of generating a primary beam, directing the primary beam to a plate containing a microchannel, receiving from the plate a back-reflected beam generated in response to the primary beam, and generating a trigger signal when the back-reflected beam exceeds a predetermined threshold which corresponds to a presence of the microchannel.

  4. Ultrafast Imaging of Electronic Motion in Atoms and Molecules

    DTIC Science & Technology

    2016-01-12

    pulses were measured with a home-made faraday cup and laser-triggered streak camera, respectively. Both are retractable and can measure the beam in...100 fs. The charge and duration of the electron pulses were measured with a home-made faraday cup and laser-triggered streak camera, respectively... faraday cup and laser-triggered streak camera, respectively. Both are retractable and can measure the beam in-situ. The gun was shown to generate pulses

  5. Vector Beam Polarization State Spectrum Analyzer.

    PubMed

    Moreno, Ignacio; Davis, Jeffrey A; Badham, Katherine; Sánchez-López, María M; Holland, Joseph E; Cottrell, Don M

    2017-05-22

    We present a proof of concept for a vector beam polarization state spectrum analyzer based on the combination of a polarization diffraction grating (PDG) and an encoded harmonic q-plate grating (QPG). As a result, a two-dimensional polarization diffraction grating is formed that generates six different q-plate channels with topological charges from -3 to +3 in the horizontal direction, and each is split in the vertical direction into the six polarization channels at the cardinal points of the corresponding higher-order Poincaré sphere. Consequently, 36 different channels are generated in parallel. This special polarization diffractive element is experimentally demonstrated using a single phase-only spatial light modulator in a reflective optical architecture. Finally, we show that this system can be used as a vector beam polarization state spectrum analyzer, where both the topological charge and the state of polarization of an input vector beam can be simultaneously determined in a single experiment. We expect that these results would be useful for applications in optical communications.

  6. Optical image security using Stokes polarimetry of spatially variant polarized beam

    NASA Astrophysics Data System (ADS)

    Fatima, Areeba; Nishchal, Naveen K.

    2018-06-01

    We propose a novel security scheme that uses vector beam characterized by the spatially variant polarization distribution. A vector beam is so generated that its helical components carry tailored phases corresponding to the image/images that is/are to be encrypted. The tailoring of phase has been done by employing the modified Gerchberg-Saxton algorithm for phase retrieval. Stokes parameters for the final vector beam is evaluated and is used to construct the ciphertext and one of the keys. The advantage of the proposed scheme is that it generates real ciphertext and keys which are easier to transmit and store than complex quantities. Moreover, the known plaintext attack is not applicable to this system. As a proof-of-concept, simulation results have been presented for securing single and double gray-scale images.

  7. Vector vortex beam generation with dolphin-shaped cell meta-surface.

    PubMed

    Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang

    2017-09-18

    We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.

  8. Nonparaxial and paraxial focusing of azimuthal-variant vector beams.

    PubMed

    Gu, Bing; Cui, Yiping

    2012-07-30

    Based on the vectorial Rayleigh-Sommerfeld formulas under the weak nonparaxial approximation, we investigate the propagation behavior of a lowest-order Laguerre-Gaussian beam with azimuthal-variant states of polarization. We present the analytical expressions for the radial, azimuthal, and longitudinal components of the electric field with an arbitrary integer topological charge m focused by a nonaperturing thin lens. We illustrate the three-dimensional optical intensities, energy flux distributions, beam waists, and focal shifts of the focused azimuthal-variant vector beams under the nonparaxial and paraxial approximations.

  9. Direct generation of vector vortex beams with switchable radial and azimuthal polarizations in a monolithic Nd:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Chen, Zhen; Dong, Jun

    2017-05-01

    A hollow focus lens (HFL) has been designed to effectively produce a focused annular beam for high-intensity pumping. By applying the central-dark pump beam, a monolithic Nd:YAG microchip laser without any extra optical elements is demonstrated to generate vector vortex beams with switchable radially polarized (RP) and azimuthally polarized (AP) states by easily controlling the pump power. The order and handedness of the output vortex beam remain stable during the switching of the RP and AP states. The monolithic Nd:YAG microchip laser provides a new laser source for applications such as material processing and optical manipulation.

  10. Spatially varying geometric phase in classically entangled vector beams of light

    NASA Astrophysics Data System (ADS)

    King-Smith, Andrew; Leary, Cody

    We present theoretical results describing a spatially varying geometric (Pancharatnam) phase present in vector modes of light, in which the polarization and transverse spatial mode degrees of freedom exhibit classical entanglement. We propose an experimental setup capable of characterizing this effect, in which a vector mode propagates through a Mach-Zehnder interferometer with a birefringent phase retarder present in one arm. Since the polarization state of a classically entangled light beam exhibits spatial variation across the transverse mode profile, the phase retarder gives rise to a spatially varying geometric phase in the beam propagating through it. When recombined with the reference beam from the other interferometer arm, the presence of the geometric phase is exhibited in the resulting interference pattern. We acknowledge funding from the Research Corporation for Science Advancement by means of a Cottrell College Science Award.

  11. A method for generating double-ring-shaped vector beams

    NASA Astrophysics Data System (ADS)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  12. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  13. Proof of concept demonstration for coherent beam pattern measurements of KID detectors

    NASA Astrophysics Data System (ADS)

    Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.

    2016-07-01

    Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.

  14. Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Imig, Astrid; Stephenson, Edward

    2009-10-01

    The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.

  15. Simple method for the characterization of intense Laguerre-Gauss vector vortex beams

    NASA Astrophysics Data System (ADS)

    Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.

    2018-05-01

    We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.

  16. Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival.

    PubMed

    Hulden, Lena; Hulden, Larry

    2011-04-16

    Plasmodium vivax is the most widespread malaria parasite. It has a dormant stage in the human liver, which makes it difficult to eradicate. It is proposed that a relapse of vivax malaria, besides being genetically determined by the specific strain, is induced by the bites of uninfected vectors. The dormant stage maximizes the possibility for the parasite to reach the vector for sexual reproduction. The advantage would increase if the parasite was able to detect the presence of a new generation of vectors. The sporozoites function both in the vector and in the human hosts. They invade the cells of the salivary gland in the vector and the hepatocytes in the human. Some of the sporozoites develop into hypnozoites in the human liver. It is suggested that the hypnozoite activates when it recognizes the same Anopheles specific protein, which it had previously recognized as a sporozoite to invade the salivary gland in the vector. Another possibility is that the hypnozoite activates upon the bodily reaction by the human on a bite by an Anopheles female. The connection between the relapse and a new generation of vectors can be documented by simultaneous monitoring of both parasitaemia in humans and the presence of uninfective/infective vectors in the same area with seasonal malaria transmission. Experimental studies are needed to find the saliva components, which trigger the relapse. Although P. cynomolgi in monkeys also has hypnozoites and relapses, testing with monkeys might be problematical. These live in a reasonably stable tropical environment where relapses cannot easily be linked to vectors. The importance of the trigger increases in unpredictable variations in the vector season. Artificial triggering of hypnozoites would make the medication more effective and resistance against a protein that the parasite itself uses during its life cycle would not develop. In areas with seasonal vivax malaria it could be used locally for eradication.

  17. An improved exact inversion formula for solenoidal fields in cone beam vector tomography

    NASA Astrophysics Data System (ADS)

    Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas

    2017-06-01

    In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.

  18. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.

    PubMed

    Man, Zhongsheng; Bai, Zhidong; Zhang, Shuoshuo; Li, Jinjian; Li, Xiaoyu; Ge, Xiaolu; Zhang, Yuquan; Fu, Shenggui

    2018-06-01

    The tight focusing properties of optical fields combining a spiral phase and cylindrically symmetric state of polarization are presented. First, we theoretically analyze the mathematical characterization, Stokes parameters, and Poincaré sphere representations of arbitrary cylindrical vector (CV) vortex beams. Then, based on the vector diffraction theory, we derive and build an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input CV vortex beams. The calculations reveal that a generalized CV vortex beam can generate a sharper focal spot than that of a radially polarized (RP) plane beam in the focal plane. Besides, the focal size decrease accompanies its elongation along the optical axis. Hence, it seems that there is a trade-off between the transverse and axial resolutions. In addition, under the precondition that the absolute values between polarization order and topological charge are equal, a higher-order CV vortex can also achieve a smaller focal size than an RP plane beam. Further, the intensity for the sidelobe admits a significant suppression. To give a deep understanding of the peculiar focusing properties, the magnetic field and Poynting vector distributions are also demonstrated in detail. These properties may be helpful in applications such as optical trapping and manipulation of particles and superresolution microscopy imaging.

  19. Guided Radiation Beams in Free Electron Lasers.

    DTIC Science & Technology

    1988-05-19

    the electron beam in an FEL that the radiation beam will remain guided. 0 20 II. Refractive Index Associated with FELs In our model, the vector ...eIAw/ymOc(exp(ikwz) + c.c.) ex/2 , is the wiggle velocity, y is the Lorentz factor, Aw is the vector potential amplitude of the planar wiggler...Balboa Avenue Palo Alto, CA 94303 San Diego, CA 92123 38 Dr. S. Krinsky Nat. Synchrotron Light Source Dr. Michael Lavan Brookhaven National Laboratory U.S

  20. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    NASA Astrophysics Data System (ADS)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  1. Vector fields in a tight laser focus: comparison of models.

    PubMed

    Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael

    2017-06-26

    We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.

  2. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, R.; Lorentz, B.; Prasuhn, D.

    2008-02-06

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE in summer 2005. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate themore » beam heating by the target gas. The analysis of the d-vector p-vector {yields}dp and d-vector p-vector{yields}(dp{sub sp}){pi}{sup 0} reactions showed that events from the extended target can be clearly identified in the ANKE detector system.The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np{yields}d{pi}{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79{+-}0.07 in the vertical stray field of the D2 magnet acting as a holding field. The achieved target thickness was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.« less

  3. Replicating viral vector platform exploits alarmin signals for potent CD8+ T cell-mediated tumour immunotherapy

    PubMed Central

    Kallert, Sandra M.; Darbre, Stephanie; Bonilla, Weldy V.; Kreutzfeldt, Mario; Page, Nicolas; Müller, Philipp; Kreuzaler, Matthias; Lu, Min; Favre, Stéphanie; Kreppel, Florian; Löhning, Max; Luther, Sanjiv A.; Zippelius, Alfred; Merkler, Doron; Pinschewer, Daniel D.

    2017-01-01

    Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTLeff) responses. Conversely, the induction of protective tumour-specific CTLeff and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTLeff responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTLeff influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy. PMID:28548102

  4. General description of circularly symmetric Bessel beams of arbitrary order

    NASA Astrophysics Data System (ADS)

    Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Mädler, Lutz

    2016-11-01

    A general description of circularly symmetric Bessel beams of arbitrary order is derived in this paper. This is achieved by analyzing the relationship between different descriptions of polarized Bessel beams obtained using different approaches. It is shown that a class of circularly symmetric Davis Bessel beams derived using the Hertz vector potentials possesses the same general functional dependence as the aplanatic Bessel beams generated using the angular spectrum representation (ASR). This result bridges the gap between different descriptions of Bessel beams and leads to a general description of circularly symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams are merely the two simplest cases of an infinite number of possible circularly symmetric Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the energy density and the Poynting vector are displayed for Bessel beams in both paraxial and nonparaxial cases. The results presented in this paper provide a fresh perspective on the description of Bessel beams and cast some insights into the light scattering and light-matter interactions problems in practice.

  5. Wave-vector and polarization dependence of conical refraction.

    PubMed

    Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2013-02-25

    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.

  6. Photorefractive Tungsten Bronze Crystals for Optical Limiters and Filters.

    DTIC Science & Technology

    1996-01-01

    vector , X is the laser light wavelength, 0 is the half- angle between the two crossing laser beams, and k0 is the Debye screening wave vector given by...between the grating and the dielectric constant E’ = 950) such that the grating’ vector is interference pattern, the intensities of the output beams from...substituting Io, I, and Id into expression 0 ple d 2o0o 25i00 (8), we can calculate the phase shift between the grating and Applied Electric Feild in V

  7. Spin Resonances for Stored Deuteron Beams in COSY. Vector Polarization. Tracking with Spink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luccio,A.; Lehrach, A.

    2008-04-01

    Results of measurements of vector and tensor polarization of a deuteron beam in the storage ring COSY have been published by the SPIN{at}COSY collaboration. In this experiment a RF Dipole was used that produced spin flip. The strength of the RFD-induced depolarizing resonance was calculated from the amount of spin flipping and the results shown in the figures of the cited paper. In this note we present the simulation of the experimental data (vector polarization) with the spin tracking code Spink.

  8. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    PubMed

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  9. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams

    NASA Astrophysics Data System (ADS)

    Milione, Giovanni; Dudley, Angela; Nguyen, Thien An; Chakraborty, Ougni; Karimi, Ebrahim; Forbes, Andrew; Alfano, Robert R.

    2015-03-01

    We experimentally measured the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. Radially and azimuthally polarized vector Bessel beams were experimentally generated via a digital version of Durnin's method, using a spatial light modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and spatially inhomogeneous states of polarization were experimentally measured using Stokes polarimetry as they propagated through two disparate obstructions. It was found, similar to their intensities, that their spatially inhomogeneous states of polarization self-healed. The self-healing can be understood via geometric optics, i.e., the interference of the unobstructed conical rays in the shadow region of the obstruction, and may have applications in, for example, optical trapping.

  10. Studies on fast triggering and high precision tracking with Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Ball, R.; Bilki, B.; Chapman, J. W.; Cardarelli, R.; Dai, T.; Diehl, E.; Dubbert, J.; Ferretti, C.; Feng, H.; Francis, K.; Guan, L.; Han, L.; Hou, S.; Levin, D.; Li, B.; Liu, L.; Paolozzi, L.; Repond, J.; Roloff, J.; Santonico, R.; Song, H. Y.; Wang, X. L.; Wu, Y.; Xia, L.; Xu, L.; Zhao, T.; Zhao, Z.; Zhou, B.; Zhu, J.

    2013-06-01

    We report on studies of fast triggering and high precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV/c muon beam at CERN using glass RPCs with gas gaps of 1.15 mm and equipped with readout strips with 1.27 mm pitch. This is the first beam test of RPCs with fine-pitch readout strips that explores precision tracking and triggering capabilities. RPC signals were acquired with precision timing and charge integrating readout electronics at both ends of the strips. The time resolution was measured to be better than 600 ps and the average spatial resolution was found to be 220 μm using charge information and 287 μm only using signal arrival time information. The dual-ended readout allows the determination of the average and the difference of the signal arrival times. The average time was found to be independent of the incident particle position along the strip and is useful for triggering purposes. The time difference yielded a determination of the hit position with a precision of 7.5 mm along the strip. These results demonstrate the feasibility using RPCs for fast and high-resolution triggering and tracking.

  11. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    PubMed

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  12. Experiments on Ion Beam Deflection Using Ion Optics with Slit Apertures

    NASA Astrophysics Data System (ADS)

    Okawa, Yasushi; Hayakawa, Yukio; Kitamura, Shoji

    2004-03-01

    An experimental investigation on ion beam deflection by grid translation was performed. The ion beam deflection in ion optics is a desired technology for ion thrusters because thrust vector control utilizing this technique can eliminate the need for conventional gimbaling devices and thus reduce propulsion system mass. A grid translation mechanism consisting of a piezoelectric motor, a ceramic lever, and carbon-based grids with slit apertures was fabricated and high repeatability in beam deflection characteristics was obtained using this mechanism. Results showed that the beam deflection angle was proportional to the grid translation distance and independent of slit width and grid voltage. A numerical simulation successfully reproduced the beam deflection characteristics in a qualitative and quantitative sense. A maximum beam deflection angle of approximately plus or minus 6 degrees, which was comparable to that of the ordinary gimbaling devices used in space, was obtained without a severe drain current. Therefore, the beam deflection by grid translation is promising as a thrust vectoring method in ion thrusters.

  13. Wavefront Engineering with Phase Discontinuities: Designer Interfaces for High Performance Planar Optical Components

    DTIC Science & Technology

    2015-08-27

    ABSTRACT The PI and his group opened up new directions of research: the generation of vector beams with metasurfaces that control amplitude, phase...and polarization of wavefronts, the detection of wavefronts using metasurfaces , new metasurfaces for controlling surface plasmon wavefronts and high...performance device applications of metasurfaces on graphene. In the vector beam area they generated radially polarized light with a single

  14. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.; Yan, K.; Zhou, Y.

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  15. Design and simulation of MEMS vector hydrophone with reduced cross section based meander beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Manoj; Dutta, S.; Pal, Ramjay

    MEMS based vector hydrophone is being one of the key device in the underwater communications. In this paper, we presented a bio-inspired MEMS vector hydrophone. The hydrophone structure consists of a proof mass suspended by four meander type beams with reduced cross-section. Modal patterns of the structure were studied. First three modal frequencies of the hydrophone structure were found to be 420 Hz, 420 Hz and 1646 Hz respectively. The deflection and stress of the hydrophone is found have linear behavior in the 1 µPa – 1Pa pressure range.

  16. Spontaneous generation of vortex and coherent vector beams from a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping: application to highly sensitive rotational and translational Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Chu, Shu-Chun

    2017-07-01

    Selective excitation of Laguerre-Gauss modes (optical vortices: helical LG0,2 and LG0,1), reflecting their weak transverse cross-saturation of population inversions against a preceding higher-order Ince-Gauss (IG0,2) or Hermite-Gauss (HG2,1) mode, was observed in a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping. Single-frequency coherent vector beams were generated through the transverse mode locking of a pair of orthogonally polarized IG2,0 and LG0,2 or HG2,1 and LG0,1 modes. Highly sensitive self-mixing rotational and translational Doppler velocimetry is demonstrated by using vortex and coherent vector beams.

  17. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    PubMed

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  18. pHg/pSILBAγ vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA – triggering in the mycorrhizal fungus Laccaria bicolor

    PubMed Central

    Kemppainen, Minna J.; Pardo, Alejandro G.

    2010-01-01

    Summary pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two‐step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300‐based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium‐mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T‐DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65–76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T‐DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T‐DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol‐1,4,5‐triphosphate 5‐phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other homobasidiomycetes, group of fungi currently lacking molecular tools for RNA silencing. PMID:21255319

  19. Trigger and data acquisition system for the N- N experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldo-Ceolin, M.; Bobisut, F.; Bonaiti, V.

    1991-04-01

    In this paper the Trigger and Data Acquisition system of the N-{bar N} experiment at the Institute Laue-Langevin at Grenoble is presented, together with CAMAC modules especially designed for this experiment. The trigger system is organized on three logical levels; it works in the presence of a high level of beam induced noise, without beam pulse synchronization, looking for a very rare signal. The data acquisition is based on a MicroVax II computer, in a cluster with 4 VaxStations, the DAQP software developed at CERN. The system has been working for a year with high efficiency and reliability.

  20. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.

    PubMed

    Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele

    2011-02-01

    We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.

  1. Analysis of the far-field characteristics of hybridly polarized vector beams from the vectorial structure

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2016-01-01

    Based on the angular spectrum representation of electromagnetic beams, analytical expressions are derived for the TE term, TM term and the whole energy fluxes of a hybridly polarized vector (HPV) beam propagating in the far field. It is shown that both the TE and TM terms of the energy fluxes are strongly dependent of the truncation radius of the circular aperture. By choosing the truncation radius as a certain value, it is found that the far-zone distributions of TE and TM terms exhibit four-petal patterns with surrounding side-lobes displaying oscillating intensities. Interestingly, such phenomenon becomes extremely obvious particularly when the truncation radius is comparable with the wavelength of the propagating beam.

  2. Beam-based compensation of extracted-beam displacement caused by field ringing of pulsed kicker magnets in the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Harada, Hiroyuki; Saha, Pranab Kumar; Tamura, Fumihiko; Meigo, Shin-ichiro; Hotchi, Hideaki; Hayashi, Naoki; Kinsho, Michikazu; Hasegawa, Kazuo

    2017-09-01

    Commissioned in October 2007, the 3 GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex was designed for a high-intensity output beam power of 1 MW. The RCS extracts 3 GeV proton beams of two bunches by using eight pulsed kicker magnets and three DC septum magnets with 25 Hz repetition. These beams are delivered to a materials and life science experimental facility (MLF) and a 50 GeV main ring synchrotron (MR). However, the flat-top fields of the kicker magnets experience ringing that displaces the position of the extracted beam. This displacement is a major issue from the viewpoint of target integrity at the MLF and emittance growth at MR injection. To understand the flat-top uniformity of the total field of all the kickers, the uniformity was measured as the displacement of the extracted beams by using a shorter bunched beam and scanning the entire trigger timing of the kickers. The beam displacement of the first bunch exceeded the required range. Therefore, we performed beam-based measurements kicker by kicker to understand each field-ringing effect, and then we understood the characteristics (strength and temporal structure) of each ringing field. We managed to cancel out the ringing by using all the beam-based measurement data and optimizing each trigger timing. As a result, the field-ringing effect of the kickers was successfully compensated by optimizing the trigger timing of each kicker without hardware upgrades or improvements to the kicker system. By developing an automatic monitoring and correction system, we now have a higher stability of extracted beams during routine user operation. In this paper, we report our procedure for ringing compensation and present supporting experimental results.

  3. Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam.

    PubMed

    Qu, Tan; Wu, Zhen-Sen; Shang, Qing-Chao; Li, Zheng-Jun; Bai, Lu

    2013-08-01

    Electromagnetic scattering of a zero-order Bessel beam by an anisotropic spherical particle in the off-axis configuration is investigated. Based on the spherical vector wave functions, the expansion expression of the zero-order Bessel beam is derived, and its convergence is numerically discussed in detail. Utilizing the tangential continuity of the electromagnetic fields, the expressions of scattering coefficients are given. The effects of the conical angle of the wave vector components of the zero-order Bessel beam, the ratio of the radius of the sphere to the central spot radius of the zero-order Bessel beam, the shift of the beam waist center position along both the x and y axes, the permittivity and permeability tensor elements, and the loss of the sphere on the radar cross section (RCS) are numerically analyzed. It is revealed that the maximum RCS appears in the conical direction or neighboring direction when the sphere is illuminated by a zero-order Bessel beam. Furthermore, the RCS will decrease and the symmetry is broken with the shift of the beam waist center.

  4. g8: Physics with Linearly-Polarized Photons in Hall B of JLab

    NASA Astrophysics Data System (ADS)

    Cole, Philip L.

    2001-11-01

    The set of experiments forming the g8 run in Hall B took place this past summer (6/4/01-8/13/01) in Hall B of Jefferson Lab. These experiments make use of a beam of linearly-polarized photons produced through coherent bremsstrahlung and represent the first time such a probe has been employed at Jefferson Lab. Several new and upgraded Hall-B beamline devices were commissioned prior to the production running of g8. The scientific purpose of g8 is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. With the high-quality beam of the tagged and collimated linearly-polarized photons and the nearly complete angular coverage of the Hall-B spectrometer, we will extract the differential cross sections and polarization observables for the photoproduction of vector mesons and kaons at photon energies ranging between 1.9 and 2.1 GeV. We collected over 1.2 trillion triggers. After data cuts, we expect to have 500 times the world's data set on rhos and omegas produced via a beam of linearly-polarized photons. A report on the results of the commissioning of the beamline devices and the progress of the analysis of the g8 run will be presented.

  5. High-order optical vortex position detection using a Shack-Hartmann wavefront sensor.

    PubMed

    Luo, Jia; Huang, Hongxin; Matsui, Yoshinori; Toyoda, Haruyoshi; Inoue, Takashi; Bai, Jian

    2015-04-06

    Optical vortex (OV) beams have null-intensity singular points, and the intensities in the region surrounding the singular point are quite low. This low intensity region influences the position detection accuracy of phase singular point, especially for high-order OV beam. In this paper, we propose a new method for solving this problem, called the phase-slope-combining correlation matching method. A Shack-Hartmann wavefront sensor (SH-WFS) is used to measure phase slope vectors at lenslet positions of the SH-WFS. Several phase slope vectors are combined into one to reduce the influence of low-intensity regions around the singular point, and the combined phase slope vectors are used to determine the OV position with the aid of correlation matching with a pre-calculated database. Experimental results showed that the proposed method works with high accuracy, even when detecting an OV beam with a topological charge larger than six. The estimated precision was about 0.15 in units of lenslet size when detecting an OV beam with a topological charge of up to 20.

  6. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    PubMed

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  7. Proof-of-principle experiment of measurement-device-independent quantum key distribution with vector vortex beams

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Zhao, Shang-Hong; Li, Wei; Yang, Jian

    2018-03-01

    In this paper, by combining measurement-device-independent quantum key distribution (MDI-QKD) scheme with entangled photon sources, we present a modified MDI-QKD scheme with pairs of vector vortex(VV) beams, which shows a structure of hybrid entangled entanglement corresponding to intrasystem entanglement and intersystem entanglement. The former entanglement, which is entangled between polarization and orbit angular momentum within each VV beam, is adopted to overcome the polarization misalignment associated with random rotations in quantum key distribution. The latter entanglement, which is entangled between the two VV beams, is used to perform entangled-based MDI-QKD protocol with pair of VV beams to inherit the merit of long distance. The numerical simulations show that our modified scheme can tolerate 97dB with practical detectors. Furthermore, our modified protocol only needs to insert q-plates in practical experiment.

  8. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  9. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate

    PubMed Central

    Nivas, Jijil JJ; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-01-01

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams. PMID:28169342

  10. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate.

    PubMed

    Nivas, Jijil Jj; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-02-07

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

  11. Surface Structuring with Polarization-Singular Femtosecond Laser Beams Generated by a q-plate

    NASA Astrophysics Data System (ADS)

    Nivas, Jijil Jj; Cardano, Filippo; Song, Zhenming; Rubano, Andrea; Fittipaldi, Rosalba; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2017-02-01

    In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

  12. Propagation and wavefront ambiguity of linear nondiffracting beams

    NASA Astrophysics Data System (ADS)

    Grunwald, R.; Bock, M.

    2014-02-01

    Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.

  13. Eight cm technology thruster development. [structurally integrated ion thruster for attitude control and stationkeeping of synchronous satellites

    NASA Technical Reports Server (NTRS)

    Hyman, J., Jr.

    1974-01-01

    A structural integrated ion thruster with 8-cm beam diameter (SIT-8) was developed for attitude control and stationkeeping of synchronous satellites. As optimized, the system demonstrates a thrust T=1.14 mlb (not corrected for beam V sub B = 1200 V (I sub sp = 2200 sec) total propellant utilization efficiency nu sub u = 59.8% (is approximately 72% without auxiliary pulse-igniter electrode), and electrical efficiency n sub E 61.9%. The thruster incorporates a wire-mesh anode and tantalum cover surfaces to control discharge chamber flake formation and employs an auxiliary pulse-igniter electrode for hollow-cathode ignition. When the SIT-8 is integrated with the compatible SIT-5 propellant tankage, the system envelope is 35 cm long by 13 cm flange bolt circle with a mass of 9.8 kg including 6.8 kg of mercury propellant. Two thrust vectoring systems which generate beam deflections in two orthogonal directions were also developed under the program and tested with the 8-cm thruster. One system vectors the beam over + or - 10 degrees by gimbaling of the entire thruster (not including tankage), while the other system vectors the beam over + or - 7 degrees by translating the accel electrode relative to the screen electrode.

  14. Triggering on New Physics with the CMS Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Tulika

    The BU CMS group led by PI Tulika Bose has made several significant contributions to the CMS trigger and to the analysis of the data collected by the CMS experiment. Group members have played a leading role in the optimization of trigger algorithms, the development of trigger menus, and the online operation of the CMS High-Level Trigger. The group’s data analysis projects have concentrated on a broad spectrum of topics that take full advantage of their strengths in jets and calorimetry, trigger, lepton identification as well as their considerable experience in hadron collider physics. Their publications cover several searches formore » new heavy gauge bosons, vector-like quarks as well as diboson resonances.« less

  15. Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery.

    PubMed

    Liu, Xin; Xiang, Jiajia; Zhu, Dingcheng; Jiang, Liming; Zhou, Zhuxian; Tang, Jianbin; Liu, Xiangrui; Huang, Yongzhuo; Shen, Youqing

    2016-03-02

    A novel fusogenic lipidic polyplex (FLPP) vector is designed to fuse with cell membranes, mimicking viropexis, and eject the polyplex into the cytosol, where the cationic polymer is subsequently oxidized by intracellular reactive oxygen species and converts to being negatively charged, efficiently releasing the DNA. The vector delivering suicide gene achieves significantly better inhibition of tumor growth than doxorubicin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Creation of vector beams from a polarization diffraction grating using a programmable liquid crystal spatial light modulator and a q-plate

    NASA Astrophysics Data System (ADS)

    Badham, Katherine Emily

    This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.

  17. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.AHRENS,L.MI,J.OERTER,B.SANDBERG,J.WARBURTON,D.

    2003-05-12

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved moremore » than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge.« less

  18. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peng; Ji, Wei; Wei, Bing-Yan

    Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promisingmore » optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices.« less

  19. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization.

    PubMed

    Lerman, Gilad M; Levy, Uriel

    2007-08-01

    We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.

  20. Support vector machine incremental learning triggered by wrongly predicted samples

    NASA Astrophysics Data System (ADS)

    Tang, Ting-long; Guan, Qiu; Wu, Yi-rong

    2018-05-01

    According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.

  1. Development of a beam test telescope based on the Alibava readout system

    NASA Astrophysics Data System (ADS)

    Marco-Hernández, R.

    2011-01-01

    A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectrónica (CNM) of Barcelona and Instituto de Física Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.

  2. Balancing Beams--For a Few Moments

    ERIC Educational Resources Information Center

    Kibble, Bob

    2008-01-01

    A 2 m long wooden beam provides an ideal demonstration tool for exploring moments. A class set is cheap and can be used at introductory and advanced levels. This article explores how such beams can be used to support learning about moments, equilibrium, vectors, and simultaneous equations. (Contains 7 figures.)

  3. Interaction of upgoing auroral H(+) and O(+) beams

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Ludlow, G. R.; Collin, H. L.; Peterson, W. K.; Burch, J. L.

    1986-01-01

    Data from the S3-3 and DE 1 satellites are analyzed to study the interaction between H(+) and O(+) ions in upgoing auroral beams. Every data set analyzed showed some evidence of an interaction. The measured plasma was found to be unstable to a low-frequency electrostatic wave that propagates at an oblique angle to vector-B(0). A second wave, which can propagate parallel to vector-B(0), is weakly damped in the plasma studied in most detail. It is likely that the upgoing ion beams generate this parallel wave at lower altitudes. The resulting wave-particle interactions qualitatively can explain most of the features observed in ion distribution functions.

  4. Exact nonparaxial beams of the scalar Helmholtz equation.

    PubMed

    Rodríguez-Morales, Gustavo; Chávez-Cerda, Sabino

    2004-03-01

    It is shown that three-dimensional nonparaxial beams are described by the oblate spheroidal exact solutions of the Helmholtz equation. For what is believed to be the first time, their beam behavior is investigated and their corresponding parameters are defined. Using the fact that the beam width of the family of paraxial Gaussian beams is described by a hyperbola, we formally establish the connection between the physical parameters of nonparaxial spheroidal beam solutions and those of paraxial beams. These results are also helpful for investigating exact vector nonparaxial beams.

  5. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser tweezers, tractor beams, optical spanners, arbitrary scattering, radiation force, angular momentum, and torque in particle manipulation, and other related topics.

  6. Excitation of high density surface plasmon polariton vortex array

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  7. Effects of the injected trigger pulse focusing and timing on the ignition and gain of dense static, or imploding DT fuel

    NASA Astrophysics Data System (ADS)

    Caruso, Angelo; Pais, Vicente A.

    1998-07-01

    We discuss two issues relevant for the feasibility of the scheme in which a heavy ion pulse is used to ignite a DT fuel spherically compressed, by laser induced ablation, along a low adiabat (no self-ignition). The discussed issues are (i) the degree of synchronism between the laser driven implosion and the trigger pulse; (ii) the requirements on focusing for the trigger beam. The numerical simulation have been made by using cylindrical heavy ion beams with gaussian radial distribution, truncated where the intensity is {1}/{e-4} of the maximum. The parameter ( dbeam), used to measure the focusing, is the diameter of the circle where the intensity is {1}/{e} of the maximum (energy content ≈ 64% of the total energy). Requirements on focusing have been first explored by simulating (2D) the irradiation of static DT cylinders at 200 g/cm 3 by coaxially impinging 15 GeV Bi ions. The ignition conditions have been studied for pulses having 10 ps or 50 ps duration. For both the cases, the ignition energy ( Emin) is constant for spot radii smaller than 50 μm. In the range 50-140 μm the ignition energy increases linearly (3 × Emin at 140 μm, with Emin = 40 kJ for 10 ps pulses, Emin = 100 kJ for 50 ps pulses). The study on synchronism has been performed by simulating (2D) the irradiation, by a heavy ion beam, of a laser imploded spherical DT shell (initial aspect ratio 10). The trigger beam was started at different times near the stagnation, and the initial fuel state (field of velocity, density, temperature, etc.) was that computed by a 1D simulation. It has been found that ignition, and almost constant thermonuclear energy release, can be obtained by triggering within a temporal window of the order of 1 ns, around the stagnation. The interplay between focusing and synchronization for the ignition of the spherical imploding fuel has also been studied. The heavy ion pulse duration was maintained constant at 50 ps (FWHM). Ignition conditions have been studied for trigger energies below 38% of the laser energy used to compress the target (1 MJ), for focusing spot diameters ranging from 30 to 150 μm (full beam diameter, 60 and 300 μm respectively). Useful timing ranges of 400-900 ps in which the overall gain (that is, thermonuclear energy /(laser energy + trigger energy) is greater than 200 have been found.

  8. Minimum Variance Distortionless Response Beamformer with Enhanced Nulling Level Control via Dynamic Mutated Artificial Immune System

    PubMed Central

    Kiong, Tiong Sieh; Salem, S. Balasem; Paw, Johnny Koh Siaw; Sankar, K. Prajindra

    2014-01-01

    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals. PMID:25003136

  9. Minimum variance distortionless response beamformer with enhanced nulling level control via dynamic mutated artificial immune system.

    PubMed

    Kiong, Tiong Sieh; Salem, S Balasem; Paw, Johnny Koh Siaw; Sankar, K Prajindra; Darzi, Soodabeh

    2014-01-01

    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals.

  10. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner

    NASA Astrophysics Data System (ADS)

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.

  11. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner.

    PubMed

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.

  12. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei; Atlas Collaboration

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  13. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    PubMed Central

    Persson, Henrik; Købler, Carsten; Mølhave, Kristian; Samuelson, Lars; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N

    2013-01-01

    Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells. PMID:23813871

  14. Photon Tagger Timing Calibration for the Rad Phi Experiment

    NASA Astrophysics Data System (ADS)

    Russell, Mammei; Smith, Elton

    2000-10-01

    Vector mesons provide a rich laboratory for the study of fundamental physics and radiative decays probe the very nature of the internal structure of these mesons, which possess the same quantum numbers of photons. Experiment E94-016, which collected data this past summer in Hall B of the Thomas Jefferson National Accelerator Facility (JLab), has measured the the branching ratios for rare radiative decays of the phi meson, i.e. φarrow f_0(975)γ arrow π^0π^0γ, φ arrow a_0(980)γ arrow π0 η γ, and φ arrow η'γ. A lead glass calorimeter, in concert with several detectors, measured these decays. A tagged beam of bremsstrahlung photons was directed upon a solid Beryllium target. A three-level trigger was then employed to preferentially select radiative decays of the φ meson. We calibrated timing of each detector by referencing individual detectors to one another. Tight timing will enhance signal relative to background.

  15. Diffraction measurements using the LHC Beam Loss Monitoring System

    NASA Astrophysics Data System (ADS)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  16. Adjustable vector Airy light-sheet single optical tweezers: negative radiation forces on a subwavelength spheroid and spin torque reversal

    NASA Astrophysics Data System (ADS)

    Mitri, Farid G.

    2018-01-01

    Generalized solutions of vector Airy light-sheets, adjustable per their derivative order m, are introduced stemming from the Lorenz gauge condition and Maxwell's equations using the angular spectrum decomposition method. The Cartesian components of the incident radiated electric, magnetic and time-averaged Poynting vector fields in free space (excluding evanescent waves) are determined and computed with particular emphasis on the derivative order of the Airy light-sheet and the polarization on the magnetic vector potential forming the beam. Negative transverse time-averaged Poynting vector components can arise, while the longitudinal counterparts are always positive. Moreover, the analysis is extended to compute the optical radiation force and spin torque vector components on a lossless dielectric prolate subwavelength spheroid in the framework of the electric dipole approximation. The results show that negative forces and spin torques sign reversal arise depending on the derivative order of the beam, the polarization of the magnetic vector potential, and the orientation of the subwavelength prolate spheroid in space. The spin torque sign reversal suggests that counter-clockwise or clockwise rotations around the center of mass of the subwavelength spheroid can occur. The results find useful applications in single Airy light-sheet tweezers, particle manipulation, handling, and rotation applications to name a few examples.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.T.

    Linear and nonlinear photochemistries of 1,4-diazabicyclo(2.2.2)octane (DABCO) are investigated at room temperature by using ArF (193 nm) and KrF (248 nm) lasers. With an unfocused beam geometry, DABCO vapor displays a strong fluorescence when excited at 248 nm, but it shows no detectable emission with 193-nm excitation. The linear photochemistry quantum yield for DABCO is determined as phi/sub p/(248nm) approx. 0.1 and phi/sub p/(193 nm) approx. 0.3. The main stable photochemical products are analyzed as C/sub 2/H/sub 4/ and C/sub 2/H/sub 2/ for 248- and 193-nm excitation, respectively. When focused beam excitation is used, both ArF and KrF lasers dissociatemore » DABCO molecules and give three strong radical emissions of CN*(B vector /sup 2/..sigma.. ..-->.. X vector /sup 2/ ..sigma../sup +/), CH*(A vector /sup 2/..delta.. ..-->.. X vector /sup 2/II), and C/sub 2/*(D vector /sup 3/II/sub g/ ..-->.. a vector /sup 3/II/sub u/). The time behavior, the laser power dependence, and the sample pressure dependence of these emissive radicals are examined. The possible mechanisms for the Rydberg state photochemistry of DABCO are discussed.« less

  18. High intensity multi beam design of SANS instrument for Dhruva reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K.; Désert, S.

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies ofmore » agglomerates larger than few tens of nm.« less

  19. Focusing properties of cylindrical vector vortex beams

    NASA Astrophysics Data System (ADS)

    Xiaoqiang, Zhang; Ruishan, Chen; Anting, Wang

    2018-05-01

    In this paper, following Richards and Wolf vectorial diffraction theory, the focusing properties of cylindrical vector vortex beams (CVVB) are investigated, and a diffractive optical element (DOE) is designed to spatially modulate the amplitude of the CVVB. Simulated results show that the CVVB focused by an objective also carry orbital angular momentum (OAM), and the optical fields near the focal region can be modulated by changing the topological charge of the CVVB. We numerically simulate the focus properties of radially and azimuthally polarized beams with topological charge equal to 0, 1, 2 and 10 respectively. As a result, a dark channel with a length about 20 λ can be obtained. These new properties have the potential applications such as particle acceleration, optical trapping and material processing.

  20. Coherence and dimensionality of intense spatiospectral twin beams

    NASA Astrophysics Data System (ADS)

    Peřina, Jan

    2015-07-01

    Spatiospectral properties of twin beams at their transition from low to high intensities are analyzed in parametric and paraxial approximations using decomposition into paired spatial and spectral modes. Intensity auto- and cross-correlation functions are determined and compared in the spectral and temporal domains as well as the transverse wave-vector and crystal output planes. Whereas the spectral, temporal, and transverse wave-vector coherence increases with the increasing pump intensity, coherence in the crystal output plane is almost independent of the pump intensity owing to the mode structure in this plane. The corresponding auto- and cross-correlation functions approach each other for larger pump intensities. The entanglement dimensionality of a twin beam is determined with a comparison of several approaches.

  1. Generation of elliptical and circular vector hollow beams with different polarizations by a Mach-Zehnder-type optical path

    NASA Astrophysics Data System (ADS)

    Wang, Zhizhang; Pei, Chunying; Xia, Meng; Yin, Yaling; Xia, Yong; Yin, Jianping

    2018-01-01

    We present an experimental approach to convert linearly polarized Gaussian beams into elliptical and circular vector hollow beams (VHBs) with different polarization states. The scheme employed is based on a Mach-Zehnder-type optical path combined with a reflective spatial light modulator (SLM) in each path. The resulting VHBs have radial, azimuthal, and other polarization states. Our studies also show that the size of the generated VHBs remains constant during the propagation in free space over a certain distance, and can be controlled by the axial ratio of the SLM’s binary phase plate. These studies deliver great optical parameters and hold promising applications in the fields of optical trapping and manipulation of particles.

  2. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams.

    PubMed

    Zhang, Yi; Li, Peng; Liu, Sheng; Zhao, Jianlin

    2015-10-01

    An intriguing photonic spin Hall effect (SHE) for a freely propagating fan-shaped cylindrical vector (CV) vortex beam in a paraxial situation is theoretically and experimentally studied. A developed model to describe this kind of photonic SHE is proposed based on angular spectrum diffraction theory. With this model, the close dependences of spin-dependent splitting on the azimuthal order of polarization, the topological charge of the spiral phase, and the propagation distance are accurately revealed. Furthermore, it is demonstrated that the asymmetric spin-dependent splitting of a fan-shaped CV beam can be consciously managed, even with a constant azimuthal order of polarization. Such a controllable photonic SHE is experimentally verified by measuring the Stokes parameters.

  3. Transverse Beam Dynamics in the Modified Betatron.

    DTIC Science & Technology

    1982-03-01

    charge, m is the electron rest mass, and c is the speed of light . Self field effects will modify Eq. (1) however. A nonneutral current ring produces both a...magnetic flux or stream func- tion *P(p.) rA, where A, is the usual vector potential. The equations for 4 and 1 are 17 CHERNJN AND SPRANGLE p-[ l 2 - ( o...8217- 4). (A-21) m m 2 Using Eq. (A-21) in Eq. (A-20) the resulting integrals are elementary. The result, for the vector potential inside the beam is Ask

  4. Light-Based Triggering and Reconstruction of Michel Electrons in LArIAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, W.

    2016-01-19

    The LArIAT Experiment aims to calibrate the liquid argon time projection chamber (LArTPC) using a beam of charged particles at the Fermilab Test Beam Facility. It is equipped with a novel scintillation light readout system using PMTs and custom SiPM preamplifier boards to detect light from reflector foils coated with wavelength-shifting TPB. A trigger on delayed secondary flashes of light captures events containing stopping cosmic muons together with the Michel electrons coming from their subsequent decay. This dedicated Michel trigger supplies an abundant sample of low-energy electrons throughout the detector's active volume, providing opportunities to study the combined calorimetric capabilitiesmore » of the light system and the TPC. Preliminary results using scintillation light to study properties of the Michel electron sample are presented.« less

  5. Spin manipulating vector & tensor polarized deuterons stored in COSY

    NASA Astrophysics Data System (ADS)

    Morozov, V. S.; Krisch, A. D.; Leonova, M. A.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Yonehara, K.; Gebel, R.; Lehrach, A.; Lorentz, B.; Maier, R.; Prasuhn, D.; Schnase, A.; Stockhorst, H.; Eversheim, D.; Hinterberger, F.; Rohdjess, H.; Ulbrich, K.

    2006-04-01

    We recently studied the spin manipulation of a simultaneously vector and tensor polarized deuteron beam stored at 1.85 GeV/c in the COSY Cooler Synchrotron. Using the EDDA detector, we first calibrated the vector and tensor analyzing powers, which were earlier unmeasured at 1.85 GeV/c; this allowed us to measure the absolute values of both the vector and tensor polarizations. Then we manipulated the deuteron's polarization by sweeping the frequency of a ferrite rf dipole through an rf-induced spin resonance. We first experimentally determined the resonance's frequency and then varied the rf dipole's frequency sweep range δf and frequency ramp time δt to maximize the spin-flip efficiency. We then obtained a measured vector spin-flip efficiency of 98.5 ± 0.3% [1]. We also studied, in detail, the behavior of the tensor polarization during spin manipulation; these new data may allow a better understanding of the interesting quantum behavior of spin-1 bosons. This research was supported by the German BMBF Science Ministry. [1] V.S. Morozov et al., Phys. Rev. ST Accel. Beams 8, 061001 (2005).

  6. Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Guignard, Jérémie; Furlong, Cosme; Rosowski, John J.

    2015-11-01

    Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to measure 3-D displacements from a single-shot hologram that contains displacement information from three sensitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently superimposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted such that the frequency components of the multiplexed hologram are completely separate. Because of the differences in the directions and wavelengths of the reference beams, the positions of each reconstructed image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accurately translate individual components of the hologram into a single global coordinate system to calculate 3-D displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric TM at several excitation frequencies showing modal and traveling wave motions on its surface.

  7. Burgers Vector Analysis of Vertical Dislocations in Ge Crystals by Large-Angle Convergent Beam Electron Diffraction.

    PubMed

    Groiss, Heiko; Glaser, Martin; Marzegalli, Anna; Isa, Fabio; Isella, Giovanni; Miglio, Leo; Schäffler, Friedrich

    2015-06-01

    By transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs. We investigated both pillar-shaped and unstructured Ge epilayers grown either by molecular beam epitaxy or by chemical vapor deposition to derive a general picture of the underlying dislocation mechanisms. For the Burgers vector analysis we used a combination of dark field imaging and large-angle convergent beam electron diffraction (LACBED). With LACBED simulations we identify ideally suited zeroth and second order Laue zone Bragg lines for an unambiguous determination of the three-dimensional Burgers vectors. By analyzing dislocation reactions we confirm the origin of the observed types of VDs, which can be efficiently distinguished by LACBED. The screw type VDs are formed by a reaction of perfect 60° dislocations, whereas the edge types are sessile dislocations that can be formed by cross-slips and climbing processes. The understanding of these origins allows us to suggest strategies to avoid VDs.

  8. Propagation of hollow Gaussian beam through a misaligned first-order optical system and its propagation properties

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng Liang; Lu, Xuan Hui

    2007-06-01

    Propagation properties of hollow Gaussian beam through a misaligned first-order ABCD system is studied using the generalized Huygens-Fresnel diffraction integral, augmented matrix. It is shown that, as a hollow Gaussian beam passes through the misaligned first-order ABCD system, the beam shape is not preserved, the out-put beams have differences when passing different misaligned optical systems. We can adjust the size of dark region through adjusting the misaligned transverse vector E.

  9. Single-Sided Noinvasive Inspection of Multielement Sample Using Fan-Beam Multiplexed Compton Scatter Tomography

    DTIC Science & Technology

    2000-05-01

    a vector , ρ "# represents the set of voxel densities sorted into a vector , and ( )A ρ $# "# represents a 8 mapping of the voxel densities to...density vector in equation (4) suggests that solving for ρ "# by direct inversion is not possible, calling for an iterative technique beginning with...the vector of measured spectra, and D is the diagonal matrix of the inverse of the variances. The diagonal matrix provides weighting terms, which

  10. Performance of the LHCb RICH detectors during the LHC Run II

    NASA Astrophysics Data System (ADS)

    Papanestis, A.; D'Ambrosio, C.; LHCb RICH Collaboration

    2017-12-01

    The LHCb RICH system provides hadron identification over a wide momentum range (2-100 GeV/c). This detector system is key to LHCb's precision flavour physics programme, which has unique sensitivity to physics beyond the standard model. This paper reports on the performance of the LHCb RICH in Run II, following significant changes in the detector and operating conditions. The changes include the refurbishment of significant number of photon detectors, assembled using new vacuum technologies, and the removal of the aerogel radiator. The start of Run II of the LHC saw the beam energy increase to 6.5 TeV per beam and a new trigger strategy for LHCb with full online detector calibration. The RICH information has also been made available for all trigger streams in the High Level Trigger for the first time.

  11. Equilibrium, confinement and stability of runaway electrons in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spong, D A

    1976-03-01

    Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits aremore » analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models. (MOW)« less

  12. Wavefront reconstruction using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael

    2012-02-01

    We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.

  13. Understanding the power reflection and transmission coefficients of a plane wave at a planar interface

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Jiang, Yikun; Lin, Haoze

    2017-03-01

    In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.

  14. Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography

    PubMed Central

    Khaleghi, Morteza; Guignard, Jérémie; Furlong, Cosme; Rosowski, John J.

    2015-01-01

    Abstract. Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to measure 3-D displacements from a single-shot hologram that contains displacement information from three sensitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently superimposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted such that the frequency components of the multiplexed hologram are completely separate. Because of the differences in the directions and wavelengths of the reference beams, the positions of each reconstructed image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accurately translate individual components of the hologram into a single global coordinate system to calculate 3-D displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric TM at several excitation frequencies showing modal and traveling wave motions on its surface. PMID:25984986

  15. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    PubMed

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  16. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers

    PubMed Central

    Li, Jing; Wu, Xiaoping

    2011-01-01

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam. PMID:21997083

  17. Scattering of a high-order Bessel beam by a spheroidal particle

    NASA Astrophysics Data System (ADS)

    Han, Lu

    2018-05-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), scattering from a homogeneous spheroidal particle illuminated by a high-order Bessel beam is formulated analytically. The high-order Bessel beam is expanded in terms of spheroidal vector wave functions, where the spheroidal beam shape coefficients (BSCs) are computed conveniently using an intrinsic method. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident Bessel beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by nonspherical particles and particle manipulation applications using Bessel beams.

  18. Primary aberrations in focused radially polarized vortex beams

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  19. Electron Beam Propagation Through a Magnetic Wiggler with Random Field Errors

    DTIC Science & Technology

    1989-08-21

    Another quantity of interest is the vector potential 6.A,.(:) associated with the field error 6B,,,(:). Defining the normalized vector potentials ba = ebA...then follows that the correlation of the normalized vector potential errors is given by 1 . 12 (-a.(zj)a.,(z2)) = a,k,, dz’ , dz" (bBE(z’)bB , (z")) a2...Throughout the following, terms of order O(z:/z) will be neglected. Similarly, for the y-component of the normalized vector potential errors, one

  20. Simulation and Assessment of a Ku-Band Full-Polarized Radar Scatterometer for Ocean Surface Vector Wind Measurement

    NASA Astrophysics Data System (ADS)

    Dong, X.; Lin, W.; Zhu, D.; Song, Z.

    2011-12-01

    Spaceborne radar scatterometry is the most important tool for global ocean surface wind vector (OSVW) measurement. Performances under condition of high-wind speed and accuracy of wind direction retrievals are two very important concerns for the development of OSVW measurement techniques by radar scatterometry. Co-polarized sigma 0 measurements are employed, for all the spaceborne radar scatterometers developed in past, and future planned missions. The main disadvantages of co-polarized only radar scatterometers for OSVW measurement are: firstly, wind vector retrieval performances varies with the position of the wind vector cells (WVC) within the swath, where WVCs with small incident angels with weaker modulation effect between sigma0 and azimuth incident angle, and the WVCs located in the outer part of the swath with lower signal-to-noise ratio and lower radiometric accuracies, have worse retrieval performances; secondly, for co-polarization measurements, Sigma 0 is the even function of the azimuth incident angle with respect to the real wind direction, which can results in directional ambiguity, and more additional information is need for the ambiguity removal. Theoretical and experimental results show that the cross-polarization measurement can provide complementary directional information to the co-polarization measurements, which can provide useful improvement to the wind vector retrieval performances. In this paper, the simulation and performance assessment of a full-polarized Ku-band radar scatterometer are provided. Some important conclusions are obtained: (1) Compared with available dual co-polarized radar scatterometer, the introduction of cross-polarization information can significantly improve the OSVW retrieval accuracies, where a relatively identical performance can be obtained within the whole swath. Simulation show that without significantly power increase, system design based on rotating-pencil beam design has much better performances than rotation fan-beam system due to its higher antenna gain and signal-to-noise ratio; (2) The performances of the full-polarized measurement, where all the 9 element covariant coefficient elements will be measurement, only have a little improvement compared with the "dual-co-polarization+HVVV" design, which is because of the almost identical characteristics of HVVV and VHHH measurement due to reciprocity; (3) The propagation error of rotation pencil-beam system is obviously much smaller than that of the rotation fan-beam system, which is due to the significant difference of antenna gains and signal-to-noise ratios; (4) Introduction of cross-polarized HVVV measurement can lead to almost identical wind direction retrieval performance for both the rotation pencil-beam and rotation fan-beam systems, which show that the cross-polarization information can significantly improve the wind direction retrieval performances by increasing the number of look angles, compared with the available fixed-fan-beam systems.

  1. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  2. Experimental investigation of the effect of the laser beam polarization state on the quality of steel sheet cutting

    NASA Astrophysics Data System (ADS)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2017-10-01

    The paper presents the results of experimental investigation of the effect of the beam polarization on the quality of the oxygen-assisted laser cutting of steel by a CO2-laser. Under consideration is the effect of the laser cutting parameters by the beam with the linear polarization on the cut surface roughness. It is founded that the minimal roughness is reached when the electric field vector is perpendicular to the cutting speed vector. It is concluded that the absorbed power distribution imposes the essential influence on the surface quality, and that the radiation heating of side walls is important to have lower roughness. Obtained results enabled to present probable reasons of the worse surface quality of the metals cut by a fiber laser than the ones cut by a CO2-laser.

  3. An actively Q-switched fiber laser with cylindrical vector beam generation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaojiao; Zhang, Zuxing; Cai, Yu; Wan, Hongdan; Wang, Zhiqiang; Zhang, Lin

    2018-03-01

    We demonstrate an actively Q-switched fiber laser with cylindrical vector beam (CVB) emission using a few-mode fiber Bragg grating as the mode selection component and an acousto-optic modulator to achieve Q-switching. To the best of our knowledge, this is the first such demonstration. Using a linear cavity configuration, an actively Q-switched CVB with a pulse width of about 64 ns, a pulse energy of 4.25 µJ and a repetition rate of 20 kHz has been obtained. Moreover, by tuning the polarization controllers radially and azimuthally, polarized Q-switched beams can be excited separately with a polarization purity of  >94.5%. This compact Q-switched fiber laser with ns CVB pulse output could find potential applications in the field of material processing, nonlinear optics and so on.

  4. Millimeter Wave Generation by Relativistic Electron Beams.

    DTIC Science & Technology

    1984-12-01

    frequency and wave vector matching relations for influence of various nonlinear effects on this instability is this four-wave interaction require...following coupled mode equations _ 6 = 6 _ (14)-- v vx (14) ." .’ for the lower hybrid sidebands: v - V 2 - The x component of the resultant vector equation...involves a purely growing modte, a four-wave interaction plitoces is analysed, including a u ap ti wave- vector up-shifted and ilown-shiftes upper

  5. Adaptive Neural Network-Based Event-Triggered Control of Single-Input Single-Output Nonlinear Discrete-Time Systems.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-01-01

    This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.

  6. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  7. Analysis of beam loss induced abort kicker instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang W.; Sandberg, J.; Ahrens, L.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems andmore » improved stability of the RHIC operation.« less

  8. A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation

    NASA Technical Reports Server (NTRS)

    Crivelli, Luis A.; Felippa, Carlos A.

    1992-01-01

    A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.

  9. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall

    NASA Astrophysics Data System (ADS)

    Won, Hong-In; Chung, Jintai

    2018-04-01

    This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.

  10. Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.

    2018-03-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.

  11. Bessel beams with spatial oscillating polarization

    PubMed Central

    Fu, Shiyao; Zhang, Shikun; Gao, Chunqing

    2016-01-01

    Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174

  12. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; Batell, B.; Brown, B. C.; Carr, R.; Chatterjee, A.; Cooper, R. L.; deNiverville, P.; Dharmapalan, R.; Djurcic, Z.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, J. A.; Huelsnitz, W.; de Icaza Astiz, I. L.; Karagiorgi, G.; Katori, T.; Ketchum, W.; Kobilarcik, T.; Liu, Q.; Louis, W. C.; Marsh, W.; Moore, C. D.; Mills, G. B.; Mirabal, J.; Nienaber, P.; Pavlovic, Z.; Perevalov, D.; Ray, H.; Roe, B. P.; Shaevitz, M. H.; Shahsavarani, S.; Stancu, I.; Tayloe, R.; Taylor, C.; Thornton, R. T.; Van de Water, R.; Wester, W.; White, D. H.; Yu, J.; MiniBooNE-DM Collaboration

    2017-06-01

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 ×1 020 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y =ɛ2αD(mχ/mV)4≲10-8 , for αD=0.5 and for dark matter masses of 0.01

  13. Dark Matter Search in a Proton Beam Dump with MiniBooNE.

    PubMed

    Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J

    2017-06-02

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01

  14. [Liposome-mediated glial growth factor 2 gene therapy in brain injury: an experimental study with rats].

    PubMed

    Xue, Ya-jun; Dong, Yan; Han, Xi; Wei, Mei-yang; Ge, Jun-hui; Cai, Ru-jue; Hu, Guo-han; Luo, Chun; Zhu, Cheng; Lu, Yi-cheng

    2006-09-05

    To explore the protective effect of glial growth factor-2 (GGF2) on brain injury. Thirty-four SD rats underwent lateral fluid percussion to establish brain injury models and then were randomly divided into 4 groups: treatment group (n = 10, the plasmid pEGFP-N1-GGF2 mixed with liposome was injected into the brain tissue directly), vector control group (n = 10, the vector pEGFP-N1 mixed with liposome was injected into the brain tissue directly), liposome control group (n = 10, liposome was injected), and sham operation group (n = 4). Three assessment tasks were performed for neurobehavioral evaluation: Clivas Test, Beam Balance Test and Beam Walking Test. 10 days after brain injury, the rats were sacrificed and their brains were embedded in paraffin for HE staining, Nissle staining and immunohistochemical examination of MBP, NSE, and GFAP. The Clivas test score of the treatment group was 66.25 +/- 3.54, significantly higher than those of the vector control group and. liposome control group (58.31 +/- 3.72 and 57.21 +/- 3.93 respectively, both P < 0.05). The beam test score of the treatment group was 2.59 +/- 0.21, significantly lower than those the vector control group and liposome control group (3.41 +/- 0.25 and 3.24 +/- 0.22 respectively, both P < 0.05). The walking test score of the treatment group was 20.15 +/- 2.59, significantly lower than those of control group and liposome control group (27.00 +/- 3.47 and 27.80 +/- 3.00 respectively, both P < 0.05). The improvement in beam walking test was the greatest. The neuron number in the external granular layer and external pyramidal layer in cortex of the treatment group was 98 +/- 10, significantly more than those of the vector control group and liposome group (75 +/- 7 and 67 +/- 8, both P < 0.05). The neuron number in the internal pyramidal layer in cortex of the treatment group was 37 +/- 4, significantly more than those of the vector control group and liposome group (19 +/- 3 and 23 +/- 4 respectively, both P < 0.05). The neuron number in the CA1 region in hippocampus of the treatment group was 102 +/- 11, significantly more than those of the vector control group and liposome group (67 +/- 8 and 58 +/- 9 respectively, both P < 0.01). Higher level of immunoreactivity with MBP was also detected in the cortex in the rats of the treatment group. Cationic liposome-mediated GGF2 gene therapy effectively promotes the recovery of brain injury.

  15. A feasibility study of the use of bounded beams resembling the shape of evanescent and inhomogeneous waves.

    PubMed

    Declercq, Nico F; Leroy, Oswald

    2011-08-01

    Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing. Copyright © 2011. Published by Elsevier B.V.

  16. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NASA Astrophysics Data System (ADS)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  17. Novel Concepts for HIV Vaccine Vector Design.

    PubMed

    Alayo, Quazim A; Provine, Nicholas M; Penaloza-MacMaster, Pablo

    2017-01-01

    The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.

  18. A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Peng, Zhengyu; Li, Changzhi

    2017-05-01

    A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)

  19. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Wei; Chu, Xiuxiang, E-mail: xiuxiangchu@yahoo.com

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airymore » beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.« less

  20. Controlled injection using a channel pinch in a plasma-channel-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqi; Zhang, Zhijun; Liu, Jiansheng; Li, Wentao; Wang, Wentao; Yu, Changhai; Qi, Rong; Qin, Zhiyong; Fang, Ming; Wu, Ying; Feng, Ke; Ke, Lintong; Wang, Cheng; Li, Ruxin

    2018-06-01

    Plasma-channel-guided laser plasma accelerators make it possible to drive high-brilliance compact radiation sources and have high-energy physics applications. Achieving tunable internal injection of the electron beam (e beam) inside the plasma channel, which realizes a tunable radiation source, is a challenging method to extend such applications. In this paper, we propose the use of a channel pinch, which is designed as an initial reduction followed by an expansion of the channel radius along the plasma channel, to achieve internal controlled off-axis e beam injection in a channel-guided laser plasma accelerator. The off-axis injection is triggered by bubble deformation in the expansion region. The dynamics of the plasma wake is explored, and the trapping threshold is found to be reduced radially in the channel pinch. Simulation results show that the channel pinch not only triggers injection process localized at the pinch but also modulates the parameters of the e beam by adjusting its density profile, which can additionally accommodate a tunable radiation source via betatron oscillation.

  1. The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Rafighi, I.; Pohl, M.; Niemiec, J.

    2018-04-01

    This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2–4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.

  2. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in March 2011, and extensive engineering runs were carried out using radioactive sources, and beams from the 88-Inch Cyclotron at LBNL. The data obtained will be used to optimize its performance. Then the first scientific campaign will start in March 2012 at NSCL MSU.

  3. New Materials, Techniques and Device Concepts for Organic NLO Chromophore-based Electrooptic Devices. Part 1

    DTIC Science & Technology

    2006-08-23

    polarization the electric field vector is parallel to the substrate, for TM polarization the magnetic field vector is parallel to the substrate. Figure...section can be obtained for the case of the two electromagnetic field polarization vectors λ and µ describing the two photons being absorbed (of the same or... polarization effects on two-photon absorption as investigated by the technique of thermal lensing detected absorption of a mode- locked laser beam. This

  4. Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam

    DOEpatents

    Stallard, Barry W.; Makowski, Michael A.; Byers, Jack A.

    1992-01-01

    An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k.sub..phi. component of the propagation vector of the gyrotron output beam. The second mirror has a twist reflector to linearly polarize the beam. The third mirror has a constant phase surface so the converter output is in phase.

  5. A 5000-hour test of a grid-translation beam-deflection system for a 5-cm diameter Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1973-01-01

    A grid-translation type beam deflection system was tested on a 5-cm diameter mercury ion thruster for 5000 hours at a thrust level of about 0.36 mlb. During the first 2000 hours the beam was vectored 10 degrees in one direction. No erosion damage attributable to beam deflection was detected. Results indicate a possible lifetime of 15,000 to 20,000 hours. An optimized neutralizer position was used which eliminated the sputter erosion groove observed on the SERT 2 thrusters.

  6. Reflection holograms using peristrophic multiplexing

    NASA Astrophysics Data System (ADS)

    Sayeh, Mohammed R.; Jeong, Y.

    2000-07-01

    In this paper, we consider a peristrophic multiplexing for reflection holograms. This type of multiplexing the rotation of either the material or the reference beam causes the grating vector to be off the plane of the reference and image beams. In the case of reflection hologram, we developed a relationship for the angular selectivity which is verified experimentally.

  7. Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong

    2018-05-01

    By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.

  8. Level Zero Trigger Processor for the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Soldi, D.; Chiozzi, S.

    2018-05-01

    The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν bar nu branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selection based on the characteristics of the event such as energy, multiplicity and topology of hits in the sub-detectors. It guarantees a maximum latency of 1 ms. The maximum input rate is about 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A description of the trigger algorithm is presented here.

  9. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  10. Dynamic tailoring of surface plasmon polaritons through incident angle modulation.

    PubMed

    Qiu, Peizhen; Zhang, Dawei; Jing, Ming; Lu, Taiguo; Yu, Binbin; Zhan, Qiwen; Zhuang, Songlin

    2018-04-16

    Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.

  11. Generation of tunable radially polarized array beams by controllable coherence

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Jipeng; Zhu, Shijun; Li, Zhenhua

    2017-05-01

    In this paper, a new method for converting a single radial polarization beam into an arbitrary radially polarized array (RPA) beam such as a radial or rectangular symmetry array in the focal plane by modulating a periodic correlation structure is introduced. The realizability conditions for such source and the beam condition for radiation generated by such source are derived. It is illustrated that both the amplitude and the polarization are controllable by means of initial correlation structure and coherence parameter. Furthermore, by designing the source correlation structure, a tunable NUST-shaped RPA beam is demonstrated, which can find widespread applications in micro-nano engineering. Such a method for generation of arbitrary vector array beams is useful in beam shaping and optical tweezers.

  12. Polarization Shaping for Control of Nonlinear Propagation.

    PubMed

    Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W

    2016-12-02

    We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

  13. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  14. Transformations of Gaussian Light Beams Caused by Reflection in FEL (free Electron Lasers) Resonators

    DTIC Science & Technology

    1988-10-27

    il FILE COPy Naval Research Laboratory Washingon, DC 20375-500 NRL Memorandum Report 6347 ,qJ. o Transformations of Gaussian Light Beams N Caused by...Transformations of 7aussian Light Beams Caused by Reflection in FEL Resonators 12 PERSONAL AUTHOR(S) Riyopoulos,* S., Tang, C.M. and Sprangle, P...34 𔃾-6603 -"I, -,’ SECURITY CLASSIFICATION OF THIS PAGE 19. ABSTRACTS (Continued) cross-coupling among vector components of the radiation field, caused

  15. Transverse field focused system

    DOEpatents

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  16. SU-F-J-54: Towards Real-Time Volumetric Imaging Using the Treatment Beam and KV Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M; Rozario, T; Liu, A

    Purpose: Existing real-time imaging uses dual (orthogonal) kV beam fluoroscopies and may result in significant amount of extra radiation to patients, especially for prolonged treatment cases. In addition, kV projections only provide 2D information, which is insufficient for in vivo dose reconstruction. We propose real-time volumetric imaging using prior knowledge of pre-treatment 4D images and real-time 2D transit data of treatment beam and kV beam. Methods: The pre-treatment multi-snapshot volumetric images are used to simulate 2D projections of both the treatment beam and kV beam, respectively, for each treatment field defined by the control point. During radiation delivery, the transitmore » signals acquired by the electronic portal image device (EPID) are processed for every projection and compared with pre-calculation by cross-correlation for phase matching and thus 3D snapshot identification or real-time volumetric imaging. The data processing involves taking logarithmic ratios of EPID signals with respect to the air scan to reduce modeling uncertainties in head scatter fluence and EPID response. Simulated 2D projections are also used to pre-calculate confidence levels in phase matching. Treatment beam projections that have a low confidence level either in pre-calculation or real-time acquisition will trigger kV beams so that complementary information can be exploited. In case both the treatment beam and kV beam return low confidence in phase matching, a predicted phase based on linear regression will be generated. Results: Simulation studies indicated treatment beams provide sufficient confidence in phase matching for most cases. At times of low confidence from treatment beams, kV imaging provides sufficient confidence in phase matching due to its complementary configuration. Conclusion: The proposed real-time volumetric imaging utilizes the treatment beam and triggers kV beams for complementary information when the treatment beam along does not provide sufficient confidence for phase matching. This strategy minimizes the use of extra radiation to patients. This project is partially supported by a Varian MRA grant.« less

  17. Performance of the TGT liquid argon calorimeter and trigger system

    NASA Astrophysics Data System (ADS)

    Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Ban, J.; Bruncko, D.; Jusko, A.; Kocper, B.; Aderholz, M.; Brettel, H.; Dulny, B.; Dydak, F.; Fent, J.; Huber, J.; Jakobs, K.; Oberlack, H.; Schacht, P.; Bogolyubsky, M. Y.; Chekulaev, S. V.; Kiryunin, A. E.; Kurchaninov, L. L.; Levitsky, M. S.; Maksimov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.

    1996-02-01

    A novel concept of a liquid argon calorimeter, the "Thin Gap Turbine" (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a "circular data store" and standalone readout and play-back capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given.

  18. Vector meson photoproduction with a linearly polarized beam

    NASA Astrophysics Data System (ADS)

    Mathieu, V.; Nys, J.; Fernández-Ramírez, C.; Jackura, A.; Pilloni, A.; Sherrill, N.; Szczepaniak, A. P.; Fox, G.; Joint Physics Analysis Center

    2018-05-01

    We propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum-transfer dependence of the spin-density matrix elements in photoproduction of ω , ρ0 and ϕ mesons at Eγ˜8.5 GeV , which are soon to be measured at Jefferson Lab.

  19. Blazed vector gratings fabricated using photosensitive polymer liquid crystals and control of polarization diffraction

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro

    2014-03-01

    The blazed vector grating possessing antisymmetric distributions of the birefringence were fabricated by exposing the line-focused linearly polarized ultraviolet light on the photosensitive polymer liquid crystals. The polarization states of the diffraction beams can be highly and widely controlled by designing the blazed structures, and the diffraction properties were well-explained by Jones calculus.

  20. Design and Simulation of a Spin Rotator for Longitudinal Field Measurements in the Low Energy Muons Spectrometer

    NASA Astrophysics Data System (ADS)

    Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.

    We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.

  1. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    DOE PAGES

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; ...

    2017-05-31

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 10 20 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the darkmore » matter cross section parameter, Y = ε 2α D(m χ/m V) 4≲10 –8, for α D = 0.5 and for dark matter masses of 0.01 < m χ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less

  2. Analytical description of lateral binding force exerted on bi-sphere induced by high-order Bessel beams

    NASA Astrophysics Data System (ADS)

    Bai, J.; Wu, Z. S.; Ge, C. X.; Li, Z. J.; Qu, T.; Shang, Q. C.

    2018-07-01

    Based on the generalized multi-particle Mie equation (GMM) and Electromagnetic Momentum (EM) theory, the lateral binding force (BF) exerted on bi-sphere induced by an arbitrary polarized high-order Bessel beam (HOBB) is investigated with particular emphasis on the half-conical angle of the wave number components and the order (or topological charge) of the beam. The illuminating HOBB with arbitrary polarization angle is described in terms of beam shape coefficients (BSCs) within the framework of generalized Lorenz-Mie theories (GLMT). Utilizing the vector addition theorem of the spherical vector wave functions (SVWFs), the interactive scattering coefficients are derived through the continuous boundary conditions on which the interaction of the bi-sphere is considered. Numerical effects of various parameters such as beam polarization angles, incident wavelengths, particle sizes, material losses and the refractive index, including the cases of weak, moderate, and strong than the surrounding medium are numerically analyzed in detail. The observed dependence of the separation of optically bound particles on the incidence of HOBB is in agreement with earlier theoretical prediction. Accurate investigation of BF induced by HOBB could provide an effective test for further research on BF between more complex particles, which plays an important role in using optical manipulation on particle self-assembly.

  3. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 10 20 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the darkmore » matter cross section parameter, Y = ε 2α D(m χ/m V) 4≲10 –8, for α D = 0.5 and for dark matter masses of 0.01 < m χ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less

  4. High on/off ratio nanosecond laser pulses for a triggered single-photon source

    NASA Astrophysics Data System (ADS)

    Jin, Gang; Liu, Bei; He, Jun; Wang, Junmin

    2016-07-01

    An 852 nm nanosecond laser pulse chain with a high on/off ratio is generated by chopping a continuous-wave laser beam using a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). The detailed dependence of the MZ-EOIM’s on/off ratio on various parameters is characterized. By optimizing the incident beam polarization and stabilizing the MZ-EOIM temperature, a static on/off ratio of 12600:1 is achieved. The dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. The high-on/off-ratio nanosecond pulsed laser system was used in a triggered single-photon source based on a trapped single cesium atom, which reveals clear antibunching.

  5. Polarimetry of uncoupled light on the NIF.

    PubMed

    Turnbull, D; Moody, J D; Michel, P; Ralph, J E; Divol, L

    2014-11-01

    Polarimetry has been added to the full aperture backscatter diagnostic on the NIF. Wollaston prisms are used to sample a small region of a beam's backscatter, effectively separating it into two linear polarizations, one of which is parallel to the incident beam. A time-averaged measurement of each polarization is obtained by imaging the separated spots off of a scatter plate. Results have improved understanding of crossed beam energy transfer, glint, and sidescatter, and motivated plans to upgrade to a time-resolved polarimeter measuring the full Stokes vector.

  6. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    PubMed

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  7. E-beam generated holographic masks for optical vector-matrix multiplication

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Case, S. K.

    1981-01-01

    An optical vector matrix multiplication scheme that encodes the matrix elements as a holographic mask consisting of linear diffraction gratings is proposed. The binary, chrome on glass masks are fabricated by e-beam lithography. This approach results in a fairly simple optical system that promises both large numerical range and high accuracy. A partitioned computer generated hologram mask was fabricated and tested. This hologram was diagonally separated outputs, compact facets and symmetry about the axis. The resultant diffraction pattern at the output plane is shown. Since the grating fringes are written at 45 deg relative to the facet boundaries, the many on-axis sidelobes from each output are seen to be diagonally separated from the adjacent output signals.

  8. Computational methods for the identification of spatially varying stiffness and damping in beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1986-01-01

    A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.

  9. Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization.

    PubMed

    Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian

    2015-05-04

    We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.

  10. Theoretical study of the generation of terahertz radiation by the interaction of two laser beams with graphite nanoparticles

    NASA Astrophysics Data System (ADS)

    Sepehri Javan, N.; Rouhi Erdi, F.

    2017-12-01

    In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1-ω2 , which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.

  11. The polarization evolution of electromagnetic waves as a diagnostic method for a motional plasma

    NASA Astrophysics Data System (ADS)

    Shahrokhi, Alireza; Mehdian, Hassan; Hajisharifi, Kamal; Hasanbeigi, Ali

    2017-12-01

    The polarization evolution of electromagnetic (EM) radiation propagating through an electron beam-ion channel system is studied in the presence of self-magnetic field. Solving the fluid-Maxwell equations to obtain the medium dielectric tensor, the Stokes vector-Mueller matrix approach is employed to determine the polarization of the launched EM wave at any point in the propagation direction, applying the space-dependent Mueller matrix on the initial polarization vector of the wave at the plasma-vacuum interface. Results show that the polarization evolution of the wave is periodic in space along the beam axis with the specified polarization wavelength. Using the obtained results, a novel diagnostic method based on the polarization evolution of the EM waves is proposed to evaluate the electron beam density and velocity. Moreover, to use the mentioned plasma system as a polarizer, the fraction of the output radiation power transmitted through a motional plasma crossed with the input polarization is calculated. The results of the present investigation will greatly contribute to design a new EM amplifier with fixed polarization or EM polarizer, as well as a new diagnostic approach for the electron beam system where the polarimetric method is employed.

  12. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  13. The HERMES Polarized Atomic Beam Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nass, A.

    2003-07-30

    The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 {center_dot} 1016H-vector/s (hydrogen in two hyperfine substates) and 6.0 {center_dot} 1016D-vector/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHzmore » has been developed and installed into the HERMES-ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte-Carlo simulations were successfully used to describe the gas expansion between nozzle, skimmer and collimator. A new type of beam monitor was used to study the beam formation after the nozzle.« less

  14. Formation and characterization of perpendicular mode Si ripples by glancing angle O{sub 2}{sup +} sputtering at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollick, S. A.; Ghose, D.

    Off-normal low energy ion beam sputtering of solid surfaces often leads to morphological instabilities resulting in the spontaneous formation of ripple structures in nanometer length scales. In the case of Si surfaces at ambient temperature, ripple formation is found to take place normally at lower incident angles with the wave vector parallel to the ion beam direction. The absence of ripple pattern on Si surface at larger angles is due to the dominance of ion beam polishing effect. We have shown that a gentle chemical roughening of the starting surface morphology can initiate ripple pattern under grazing incidence ion beammore » sputtering (theta>64 deg. with respect to the surface normal), where the ripple wave vector is perpendicular to the ion beam direction. The characteristics of the perpendicular mode ripples are studied as a function of pristine surface roughness (2-30 nm) and projectile fluence (5x10{sup 16}-1.5x10{sup 18} O atoms cm{sup -2}). The quality of the morphological structure is assessed from the analysis of ion induced topological defects.« less

  15. Event Recognition Based on Deep Learning in Chinese Texts

    PubMed Central

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%. PMID:27501231

  16. Event Recognition Based on Deep Learning in Chinese Texts.

    PubMed

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  17. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, R.; Lorentz, B.; Prasuhn, D.

    2009-08-04

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate the beam heating bymore » the target gas. The analysis of the d-vectorp-vector->dp and d-vectorp-vector->(dp{sub sp})pi{sup 0} reactions showed that events from different positions of the extended target can be clearly identified in the ANKE detector system. The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np->dpi{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79+-0.07 in the vertical stray field of the D2 magnet acting as a holding field. The target thickness achieved was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.« less

  18. Spin Manipulating Vector and Tensor Polarized Deuterons Stored in COSY

    NASA Astrophysics Data System (ADS)

    Morozov, Vassili; Krisch, Alan; Leonova, Maria; Raymond, Richard; Sivers, Dennis; Wong, Victor; Yonehara, Katsuya; Bechstedt, Ulf; Gebel, Ralf; Lehrach, Andreas; Lorentz, Bernd; Maier, Rudolf; Schnase, Alexander; Stockhorst, Hans; Eversheim, Dieter; Hinterberger, Frank; Rohdjess, Heiko; Ulbrich, Kay

    2004-05-01

    We recently studied spin flipping and spin manipulation of a simultaneously vector and tensor polarized deuteron beam stored in the COSY Cooler Synchrotron at 1.85 GeV/c. Using the EDDA detector we calibrated vector and tensor analyzing powers, which were earlier unknown at this energy; thus, we were able to obtain the absolute values for both the vector and tensor polarizations. We manipulated the deuteron's polarization using a new water-cooled ferrite rf dipole, by adiabatically sweeping its frequency through an rf-induced spin resonance. We first experimentally determined the resonance's frequency and then varied the dipole's frequency range and frequency ramp time. This allowed us to maximize the vector polarization spin-flip efficiency to about 97 ± 1%. We also studied the interesting tensor polarization manipulation in considerable detail.

  19. The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T

    2015-02-01

    Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.

  20. Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave Doughty; S. Lemon; P. Bonneau

    1992-10-01

    The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF (Continuous Electron Beam Accelerator Facility) has been studied. It is found that the newest ECL (emitter coupled logic) flip-flops (ECLinPS) are much faster than older families at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.

  1. Theory of beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1982-01-01

    The general theory of beam plasma discharge (BPD) is discussed in relation to space and laboratory beam injection situations. An important concept introduced is that even when beam plasma instabilities are excited, there are two regime of BPD with radically different observational properties. They are described here as BPD with either classical or anomalous energy depositions. For high pressures or low altitudes, the classical is expected to dominate. For high altitudes and laboratory experiments, where the axial system size is less than lambda sub en, no BPD will be triggered unless the unstable waves are near the ambient plasma frequency and their amplitudes at saturation are large enough to create suprathermal tails by collapsing.

  2. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    PubMed

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  3. Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model

    NASA Astrophysics Data System (ADS)

    Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang

    2018-02-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.

  4. Trigger design for a gamma ray detector of HIRFL-ETF

    NASA Astrophysics Data System (ADS)

    Du, Zhong-Wei; Su, Hong; Qian, Yi; Kong, Jie

    2013-10-01

    The Gamma Ray Array Detector (GRAD) is one subsystem of HIRFL-ETF (the External Target Facility (ETF) of the Heavy Ion Research Facility in Lanzhou (HIRFL)). It is capable of measuring the energy of gamma-rays with 1024 CsI scintillators in in-beam nuclear experiments. The GRAD trigger should select the valid events and reject the data from the scintillators which are not hit by the gamma-ray. The GRAD trigger has been developed based on the Field Programmable Gate Array (FPGAs) and PXI interface. It makes prompt trigger decisions to select valid events by processing the hit signals from the 1024 CsI scintillators. According to the physical requirements, the GRAD trigger module supplies 12-bit trigger information for the global trigger system of ETF and supplies a trigger signal for data acquisition (DAQ) system of GRAD. In addition, the GRAD trigger generates trigger data that are packed and transmitted to the host computer via PXI bus to be saved for off-line analysis. The trigger processing is implemented in the front-end electronics of GRAD and one FPGA of the GRAD trigger module. The logic of PXI transmission and reconfiguration is implemented in another FPGA of the GRAD trigger module. During the gamma-ray experiments, the GRAD trigger performs reliably and efficiently. The function of GRAD trigger is capable of satisfying the physical requirements.

  5. Linear analysis of active-medium two-beam accelerator

    NASA Astrophysics Data System (ADS)

    Voin, Miron; Schächter, Levi

    2015-07-01

    We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.

  6. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Min; Xu, Ding

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathymore » (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.« less

  7. Vector meson photoproduction with a linearly polarized beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, V.; Nys, J.; Fernendez-Ramirez, C.

    Here, we propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum transfer dependence of the spin-density matrix elements in photoproduction of ω,more » $$\\rho^0$$ and $$\\sigma$$ mesons at Ε γ ~ 8.5 GeV, which are soon to be measured at Jefferson Lab.« less

  8. Connection between the two branches of the quantum two-stream instability across the k space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Haas, F.

    2010-05-15

    The stability of two quantum counterstreaming electron beams is investigated within the quantum plasma fluid equations for arbitrarily oriented wave vectors k. The analysis reveals that the two quantum two-stream unstable branches are indeed connected by a continuum of unstable modes with oblique wave vectors. Using the longitudinal approximation, the stability domain for any k is analytically explained, together with the growth rate.

  9. Vector meson photoproduction with a linearly polarized beam

    DOE PAGES

    Mathieu, V.; Nys, J.; Fernendez-Ramirez, C.; ...

    2018-05-09

    Here, we propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum transfer dependence of the spin-density matrix elements in photoproduction of ω,more » $$\\rho^0$$ and $$\\sigma$$ mesons at Ε γ ~ 8.5 GeV, which are soon to be measured at Jefferson Lab.« less

  10. The trigger system for K0→2 π0 decays of the NA48 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Mikulec, I.

    1998-02-01

    A fully pipelined 40 MHz "dead-time-free" trigger system for neutral K0 decays for the NA48 experiment at CERN is described. The NA48 experiment studies CP-violation using the high intensity beam of the CERN SPS accelerator. The trigger system sums, digitises, filters and processes signals from 13 340 channels of the liquid krypton electro-magnetic calorimeter. In 1996 the calorimeter and part of the trigger electronics were installed and tested. In 1997 the system was completed and prepared to be used in the first NA48 physics data taking period. Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warszawa, Wien Collaboration.

  11. Otto Schmitt's contributions to basic and applied biomedical engineering and to the profession.

    PubMed

    Patterson, Robert

    2009-01-01

    Otto Schmitt was one of the early giants in biomedical engineering. Best known in engineering circles for the Schmitt Trigger, he also made many other significant scientific contributions. Besides his scientific work Otto was involved in early organizational activities, which included the first large professional BME meeting in Minneapolis in 1958. A description of his many contributions will be presented along with a short video of Schmitt giving a tour of his laboratory, including the original Schmitt Trigger and the model he used to develop his vector ECG system.

  12. On beam models and their paraxial approximation

    NASA Astrophysics Data System (ADS)

    Waters, W. J.; King, B.

    2018-01-01

    We derive focused laser pulse solutions to the electromagnetic wave equation in vacuum. After reproducing beam and pulse expressions for the well-known paraxial Gaussian and axicon cases, we apply the method to analyse a laser beam with Lorentzian transverse momentum distribution. Whilst a paraxial approach has some success close to the focal axis and within a Rayleigh range of the focal spot, we find that it incorrectly predicts the transverse fall-off typical of a Lorentzian. Our vector-potential approach is particularly relevant to calculation of quantum electrodynamical processes in weak laser pulse backgrounds.

  13. FDTD approach to optical forces of tightly focused vector beams on metal particles.

    PubMed

    Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian

    2009-05-11

    We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

  14. SU-F-P-30: Clinical Assessment of Auto Beam-Hold Triggered by Fiducial Localization During Prostate RapidArc Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, P; Chen, Q

    2016-06-15

    Purpose: To assess the clinical efficacy of auto beam hold during prostate RapidArc delivery, triggered by fiducial localization on kV imaging with a Varian True Beam. Methods: Prostate patients with four gold fiducials were candidates in this study. Daily setup was accomplished by aligning to fiducials using orthogonal kV imaging. During RapidArc delivery, a kV image was automatically acquired with a momentary beam hold every 60 degrees of gantry rotation. The position of each fiducial was identified by a search algorithm and compared to a predetermined 1.4 cm diameter target area. Treatment continued if all the fiducials were within themore » target area. If any fiducial was outside the target area the beam hold was not released, and the operators determined if the patient needed re-alignment using the daily setup method. Results: Four patients were initially selected. For three patients, the auto beam hold performed seamlessly. In one instance, the system correctly identified misaligned fiducials, stopped treatment, and the patient was re-positioned. The fourth patient had a prosthetic hip which sometimes blocked the fiducials and caused the fiducial search algorithm to fail. The auto beam hold was disabled for this patient and the therapists manually monitored the fiducial positions during treatment. Average delivery time for a 2-arc fraction was increased by 59 seconds. Phantom studies indicated the dose discrepancy related to multiple beam holds is <0.1%. For a plan with 43 fractions, the additional imaging increased dose by an estimated 68 cGy. Conclusion: Automated intrafraction kV imaging can effectively perform auto beam holds due to patient movement, with the exception of prosthetic hip patients. The additional imaging dose and delivery time are clinically acceptable. It may be a cost-effective alternative to Calypso in RapidArc prostate patient delivery. Further study is warranted to explore its feasibility under various clinical conditions.« less

  15. Track vertex reconstruction with neural networks at the first level trigger of Belle II

    NASA Astrophysics Data System (ADS)

    Neuhaus, Sara; Skambraks, Sebastian; Kiesling, Christian

    2017-08-01

    The track trigger is one of the main components of the Belle II first level trigger, taking input from the Central Drift Chamber (CDC). It consists of several stages, first combining hits to track segments, followed by a 2D track finding in the transverse plane and finally a 3D track reconstruction. The results of the track trigger are the track multiplicity, the momentum vector of each track and the longitudinal displacement of the origin or production vertex of each track ("z-vertex"). The latter allows to reject background tracks from outside of the interaction region and thus to suppress a large fraction of the machine background. This contribution focuses on the track finding stage using Hough transforms and on the z-vertex reconstruction with neural networks. We describe the algorithms and show performance studies on simulated events.

  16. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  17. Improved Escherichia coli Bactofection and Cytotoxicity by Heterologous Expression of Bacteriophage ΦX174 Lysis Gene E.

    PubMed

    Chung, Tai-Chun; Jones, Charles H; Gollakota, Akhila; Kamal Ahmadi, Mahmoud; Rane, Snehal; Zhang, Guojian; Pfeifer, Blaine A

    2015-05-04

    Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.

  18. Defining the safe current limit for opening ID photon shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.

    The NSLS-II storage ring is protected from possible damage from insertion devices (IDs) synchrotron radiation by a dedicated active interlock system (AIS). It monitors electron beam position and angle and triggers beam drop if beam orbit exceeds the boundaries of pre-calculated active interlock envelope (AIE). The beamlines (BL) and beamline frontends (FE) are designed under assumption that the electron beam is interlocked within the AIE. For historic reasons the AIS engages the ID active interlock (AI-ID) at any non-zero beam current whenever the ID photon shutter (IDPS) is getting opened. Such arrangement creates major inconveniences for BLs commissioning. Apparently theremore » is some IDPS safe current limit (SCL) under which the IDPS can be opened without interlocking the e-beam. The goal of this paper is to find such limit.« less

  19. Considerations for NSLS-II Synchrotron Radiation Protection When Operating Damping Wigglers at Low Machine Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Podobedov, B.

    2015-12-30

    The NSLS-II storage ring vacuum chamber, including frontends (FE) and beamlines (BL), is protected from possible damage from synchrotron radiation (SR) emitted from insertion devices (IDs) by a dedicated active interlock system (AIS). The system monitors electron beam position and angle and triggers a beam dump if the beam orbit is outside of the active interlock envelope (AIE). The AIE was calculated under the assumptions of 3 GeV beam energy and ID gaps set to their minimum operating values (i.e. “fully closed”). Recently it was proposed to perform machine studies that would ramp the stored beam energy significantly below themore » nominal operational value of 3 GeV. These studies may potentially include the use of NSLS-II damping wigglers (DWs) for electron beam emittance reduction and control.« less

  20. On the validity of the use of a localized approximation for helical beams. I. Formal aspects

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; André Ambrosio, Leonardo

    2018-03-01

    The description of an electromagnetic beam for use in light scattering theories may be carried out by using an expansion over vector spherical wave functions with expansion coefficients expressed in terms of Beam Shape Coefficients (BSCs). A celebrated method to evaluate these BSCs has been the use of localized approximations (with several existing variants). We recently established that the use of any existing localized approximation is of limited validity in the case of Bessel and Mathieu beams. In the present paper, we address a warning against the use of any existing localized approximation in the case of helical beams. More specifically, we demonstrate that a procedure used to validate any existing localized approximation fails in the case of helical beams. Numerical computations in a companion paper will confirm that existing localized approximations are of limited validity in the case of helical beams.

  1. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-07-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy-Bessel-Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light-matter interaction and optical sensing performance.

  2. Phenomena induced by charged particle beams. [experimental design for Spacelab

    NASA Technical Reports Server (NTRS)

    Beghin, C.

    1981-01-01

    The injection of energetic particles along the Earth's magnetic field lines is a possible remote sensing method for measuring the electric fields parallel to the magnetic field with good time resolution over the entire magnetic field. Neutralization processes, return-current effects, dynamics of the beams, triggered instabilities, and waves must be investigated before the fundamental question about proper experimental conditions, such as energy, intensity and divergence of the beams, pitch-angle injection, ion species, proper probes and detectors and their location, and rendezvous conditions, can be resolved. An experiment designed to provide a better understanding of these special physical processes and to provide some answers to questions concerning beam injection techniques is described.

  3. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    Magnon scattered light generally experiences a 90° rotation in polarization from the incident beam. The wave- vector selective BLS measurements...filters, phase locked microwave pulse sources, microwave and millimeter wave devices such as isolators, circulators, phase shifters, secure signal...Wave vector selective Brillouin light scattering measurements and analysis, " C. L. Ordofiez-Romero, B. A. Kalinikos, P. Krivosik, Wei Tong, P

  4. On the Nonlinear Dynamics of a Tunable Shock Micro-switch

    NASA Astrophysics Data System (ADS)

    Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa

    2016-12-01

    A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.

  5. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    PubMed Central

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-01-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications. PMID:28327611

  6. Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming

    NASA Astrophysics Data System (ADS)

    Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.

  7. Review on structured optical field generated from array beams

    NASA Astrophysics Data System (ADS)

    Hou, Tianyue; Zhou, Pu; Ma, Yanxing; Zhi, Dong

    2018-03-01

    Structured optical field (SOF), which includes vortex beams, non-diffraction beams, cylindrical vector beams and so on, has been under intensive investigation theoretically and experimentally in recent years. Generally, current research focus on the extraordinary properties (non-diffraction propagation, helical wavefront, rotation of electrical field, et al), which can be widely applied in micro-particle manipulation, super-resolution imaging, free-space communication and so on. There are mainly two technical routes, that is, inner-cavity and outer-cavity (spatial light modulators, diffractive phase holograms, q-plates). To date, most of the SOFs generated from both technical routes involves with single monolithic beam. As a novel technical route, SOF based on array beams has the advantage in more flexible freedom degree and power scaling potential. In this paper, research achievements in SOF generation based on array beams are arranged and discussed in detail. Moreover, experiment of generating exotic beam by array beams is introduced, which illustrates that SOF generated from array beams is theoretically valid and experimentally feasible. SOF generated from array beams is also beneficial for capacity increasing and data receiving for free-space optical communication systems at long distance.

  8. Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere

    NASA Astrophysics Data System (ADS)

    Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.

    2017-12-01

    We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.

  9. A Study of Multiplicities in Hadronic Interactions (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada Tristan, Nora Patricia; /San Luis Potosi U.

    Using data from the SELEX (Fermilab E781) experiment obtained with a minimum-bias trigger, we study multiplicity and angular distributions of secondary particles produced in interactions in the experimental targets. We observe interactions of {Sigma}{sup -}, proton, {pi}{sup -}, and {pi}{sup +}, at beam momenta between 250 GeV/c and 650 GeV/c, in copper, polyethylene, graphite, and beryllium targets. We show that the multiplicity and angular distributions for meson and baryon beams at the same momentum are identical. We also show that the mean multiplicity increases with beam momentum, and presents only small variations with the target material.

  10. Signal acquisition and scale calibration for beam power density distribution of electron beam welding

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong

    2017-06-01

    The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.

  11. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbins, T. J., E-mail: tdobbins@wisc.edu; Kumar, S. T. A.; Anderson, D. T.

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. In order to compare the experimental results with theoretical models it is important to accurately model the beam width effects. A synthetic diagnostic has been developed for this purpose. This synthetic diagnostic calculates the effect of spot sizemore » and beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  12. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  13. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE PAGES

    Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.

    2016-08-03

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  14. Multipulsed dynamic moire interferometer

    DOEpatents

    Deason, Vance A.

    1991-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  15. Multiple acousto-optic q-switch

    DOEpatents

    Deason, Vance A.

    1993-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  16. Multiple acousto-optic q-switch

    DOEpatents

    Deason, Vance A.

    1993-12-07

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  17. Propagation properties of the chirped Airy beams through the gradient-index medium

    NASA Astrophysics Data System (ADS)

    Feng, Liyan; Zhang, Jianbin; Pang, Zihao; Wang, Linyi; Zhong, Tianfen; Yang, Xiangbo; Deng, Dongmei

    2017-11-01

    Through analytical derivation and numerical analysis, the propagation properties of the chirped Airy(CAi) beams in the gradient-index medium are investigated. The intensity and the phase distributions, the propagation trajectory and the Poynting vector of the CAi beams are demonstrated to investigate the propagation properties. Owing to the special and symmetrical refractive index profile of the gradient-index medium, the CAi beams propagate periodically. The effects of the distribution factor and the chirped parameter on the propagation of the CAi beams are analyzed. As the increasing of the distribution factor, the intensity distribution of the CAi beams is more scattering. However, with the chirped parameter increasing, the focusing property of the CAi beams strengthens. The variation of the chirped parameter can change the position of the peak intensity maximum, but it cannot alter the period of the peak intensity. The variations of the initial phase and the energy of the beams in the transverse plane expedite accordingly.

  18. Initial Flight Test Evaluation of the F-15 ACTIVE Axisymmetric Vectoring Nozzle Performance

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Hathaway, Ross; Ferguson, Michael D.

    1998-01-01

    A full envelope database of a thrust-vectoring axisymmetric nozzle performance for the Pratt & Whitney Pitch/Yaw Balance Beam Nozzle (P/YBBN) is being developed using the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft. At this time, flight research has been completed for steady-state pitch vector angles up to 20' at an altitude of 30,000 ft from low power settings to maximum afterburner power. The nozzle performance database includes vector forces, internal nozzle pressures, and temperatures all of which can be used for regression analysis modeling. The database was used to substantiate a set of nozzle performance data from wind tunnel testing and computational fluid dynamic analyses. Findings from initial flight research at Mach 0.9 and 1.2 are presented in this paper. The results show that vector efficiency is strongly influenced by power setting. A significant discrepancy in nozzle performance has been discovered between predicted and measured results during vectoring.

  19. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  20. Generation and dynamics of optical beams with polarization singularities.

    PubMed

    Cardano, Filippo; Karimi, Ebrahim; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2013-04-08

    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as "lemon", "star", and "spiral". Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  1. Measurement of aspheric mirror by nanoprofiler using normal vector tracing

    NASA Astrophysics Data System (ADS)

    Kitayama, Takao; Shiraji, Hiroki; Yamamura, Kazuya; Endo, Katsuyoshi

    2016-09-01

    Aspheric or free-form optics with high accuracy are necessary in many fields such as third-generation synchrotron radiation and extreme-ultraviolet lithography. Therefore the demand of measurement method for aspherical or free-form surface with nanometer accuracy increases. Purpose of our study is to develop a non-contact measurement technology for aspheric or free-form surfaces directly with high repeatability. To achieve this purpose we have developed threedimensional Nanoprofiler which detects normal vectors of sample surface. The measurement principle is based on the straightness of laser light and the accurate motion of rotational goniometers. This machine consists of four rotational stages, one translational stage and optical head which has the quadrant photodiode (QPD) and laser source. In this measurement method, we conform the incident light beam to reflect the beam by controlling five stages and determine the normal vectors and the coordinates of the surface from signal of goniometers, translational stage and QPD. We can obtain three-dimensional figure from the normal vectors and their coordinates by surface reconstruction algorithm. To evaluate performance of this machine we measure a concave aspheric mirror with diameter of 150 mm. As a result we achieve to measure large area of 150mm diameter. And we observe influence of systematic errors which the machine has. Then we simulated the influence and subtracted it from measurement result.

  2. Near Optimal Event-Triggered Control of Nonlinear Discrete-Time Systems Using Neurodynamic Programming.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-09-01

    This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP.

  3. Decomposition of group-velocity-locked-vector-dissipative solitons and formation of the high-order soliton structure by the product of their recombination.

    PubMed

    Wang, Xuan; Li, Lei; Geng, Ying; Wang, Hanxiao; Su, Lei; Zhao, Luming

    2018-02-01

    By using a polarization manipulation and projection system, we numerically decomposed the group-velocity-locked-vector-dissipative solitons (GVLVDSs) from a normal dispersion fiber laser and studied the combination of the projections of the phase-modulated components of the GVLVDS through a polarization beam splitter. Pulses with a structure similar to a high-order vector soliton could be obtained, which could be considered as a pseudo-high-order GVLVDS. It is found that, although GVLVDSs are intrinsically different from group-velocity-locked-vector solitons generated in fiber lasers operated in the anomalous dispersion regime, similar characteristics for the generation of pseudo-high-order GVLVDS are obtained. However, pulse chirp plays a significant role on the generation of pseudo-high-order GVLVDS.

  4. Topical Meeting on Optical Bistability Held at Rochester, New York on 15-17 June 1983.

    DTIC Science & Technology

    1983-01-01

    distortion of their initial directions of polarization : both of the beams are linearly polarized , with their electric vectors either (i)parallel to...New Zealand. ChSAM aIB ct Multistability, self-oscillation, and chaos in a model for polarization I Chas mnd Optlcal Bltabillty: Blfuraton...second circularly polarized pumping beam has been observed, transition sequence arises that is consistent with recent observ- Sense of response

  5. Analytical study on the self-healing property of Bessel beam

    NASA Astrophysics Data System (ADS)

    Chu, X.

    2012-10-01

    With the help of Babinet principle, an analytical expression for the self-healing of Bessel beam is derived by using the Gaussian absorption function to describe the obstacle. Based on the analytical expression, the self-healing properties of Bessel beam are studied. It shows that Bessel beam has the ability to reconstruct its beam shape disturbed by an obstacle. However, during the self-healing process, not only the intensity of the beam behind the obstacle but also the other part will be affected by the obstruction. Meanwhile, the highlight spot, which intensity is larger than that without the obstacle will appear, and the size and strength of the highlight spot is determined by the size of the obstacle. From the change of Poynting vector and Babinet principle, the physical interpretations for the self-healing ability, the effects of the obstruction on the other part and the appearance of highlight spot are given.

  6. Scanning wind-vector scatterometers with two pencil beams

    NASA Technical Reports Server (NTRS)

    Kirimoto, T.; Moore, R. K.

    1984-01-01

    A scanning pencil-beam scatterometer for ocean windvector determination has potential advantages over the fan-beam systems used and proposed heretofore. The pencil beam permits use of lower transmitter power, and at the same time allows concurrent use of the reflector by a radiometer to correct for atmospheric attenuation and other radiometers for other purposes. The use of dual beams based on the same scanning reflector permits four looks at each cell on the surface, thereby improving accuracy and allowing alias removal. Simulation results for a spaceborne dual-beam scanning scatterometer with a 1-watt radiated power at an orbital altitude of 900 km is described. Two novel algorithms for removing the aliases in the windvector are described, in addition to an adaptation of the conventional maximum likelihood algorithm. The new algorithms are more effective at alias removal than the conventional one. Measurement errors for the wind speed, assuming perfect alias removal, were found to be less than 10%.

  7. Laser-triggered vacuum switch

    DOEpatents

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  8. Multi-megavolt low jitter multistage switch

    DOEpatents

    Humphreys, D.R.; Penn, K.J. Jr.

    1985-06-19

    It is one object of the present invention to provide a multistage switch capable of holding off numerous megavolts, until triggered, from a particle beam accelerator of the type used for inertial confinement fusion. The invention provides a multistage switch having low timing jitter and capable of producing multiple spark channels for spreading current over a wider area to reduce electrode damage and increase switch lifetime. The switch has fairly uniform electric fields and a short spark gap for laser triggering and is engineered to prevent insulator breakdowns.

  9. Laser-triggered vacuum switch

    DOEpatents

    Brannon, P.J.; Cowgill, D.F.

    1990-12-18

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.

  10. A modular solid state detector for measuring high energy heavy ion fragmentation near the beam axis

    NASA Technical Reports Server (NTRS)

    Zeitlin, C. J.; Frankel, K. A.; Gong, W.; Heilbronn, L.; Lampo, E. J.; Leres, R.; Miller, J.; Schimmerling, W.

    1994-01-01

    A multi-element solid state detector has been designed to measure fluences of fragments produced near the beam axis by high energy heavy ion beams in thick targets. The detector is compact and modular, so as to be readily reconfigured according to the range of fragment charges and energies to be measured. Preamplifier gain settings and detector calibrations are adjustable remotely under computer control. We describe the central detector, its associated detectors and electronics, triggering scheme, data acquisition and particle identification techniques, illustrated by data taken with 600 MeV/u 56Fe beams and thick polyethylene targets at the LBL Bevalac. The applications of this work to space radiation protection are discussed.

  11. Readiness of the ATLAS Trigger and Data Acquisition system for the first LHC beams

    NASA Astrophysics Data System (ADS)

    Vandelli, W.; Atlas Tdaq Collaboration

    2009-12-01

    The ATLAS Trigger and Data Acquisition (TDAQ) system is based on O(2k) processing nodes, interconnected by a multi-layer Gigabit network, and consists of a combination of custom electronics and commercial products. In its final configuration, O(20k) applications will provide the needed capabilities in terms of event selection, data flow, local storage and data monitoring. In preparation for the first LHC beams, many TDAQ sub-systems already reached the final configuration and roughly one third of the final processing power has been deployed. Therefore, the current system allows for a sensible evaluation of the performance and scaling properties. In this paper we introduce the ATLAS TDAQ system requirements and architecture and we discuss the status of software and hardware component. We moreover present the results of performance measurements validating the system design and providing a figure for the ATLAS data acquisition capabilities in the initial data taking period.

  12. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction.more » The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.« less

  13. Experimental realization of underdense plasma photocathode wakefield acceleration at FACET

    NASA Astrophysics Data System (ADS)

    Scherkl, Paul

    2017-10-01

    Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.

  14. Bidirectional current triggering in planar devices based on serially connected VO2 thin films using 965 nm laser diode.

    PubMed

    Kim, Jihoon; Park, Kyongsoo; Kim, Bong-Jun; Lee, Yong Wook

    2016-08-08

    By incorporating a 965 nm laser diode, the bidirectional current triggering of up to 30 mA was demonstrated in a two-terminal planar device based on serially connected vanadium dioxide (VO2) thin films grown by pulsed laser deposition. The bidirectional current triggering was realized by using the focused beams of laser pulses through the photo-thermally induced phase transition of VO2. The transient responses of laser-triggered currents were also investigated when laser pulses excited the device at a variety of pulse widths and repetition rates of up to 4.0 Hz. A switching contrast between off- and on-state currents was obtained as ~8333, and rising and falling times were measured as ~39 and ~29 ms, respectively, for 50 ms laser pulses.

  15. Alternative Beam Efficiency Calculations for a Large-aperture Multiple-frequency Microwave Radiometer (LAMMR)

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1979-01-01

    The fundamental definition of beam efficiency, given in terms of a far field radiation pattern, was used to develop alternative definitions which improve accuracy, reduce the amount of calculation required, and isolate the separate factors composing beam efficiency. Well-known definitions of aperture efficiency were introduced successively to simplify the denominator of the fundamental definition. The superposition of complex vector spillover and backscattered fields was examined, and beam efficiency analysis in terms of power patterns was carried out. An extension from single to dual reflector geometries was included. It is noted that the alternative definitions are advantageous in the mathematical simulation of a radiometer system, and are not intended for the measurements discipline where fields have merged and therefore lost their identity.

  16. Selectively transporting small chiral particles with circularly polarized Airy beams.

    PubMed

    Lu, Wanli; Chen, Huajin; Guo, Sandong; Liu, Shiyang; Lin, Zhifang

    2018-05-01

    Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

  17. Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure

    NASA Astrophysics Data System (ADS)

    Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.

    2018-04-01

    Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.

  18. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams.

    PubMed

    Demore, Christine E M; Yang, Zhengyi; Volovick, Alexander; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2012-05-11

    We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam's topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result.

  19. Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.

    PubMed

    Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong

    2017-09-19

    Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.

  20. Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins

    USGS Publications Warehouse

    Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.

    2006-01-01

    The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.

  1. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  2. Synchrotron X-ray topographic study on nature of threading mixed dislocations in 4H–SiC crystals grown by PVT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jianqiu; Yang, Yu; Wu, Fangzhen

    Synchrotron X-ray Topography is a powerful technique to study defects structures particularly dislocation configurations in single crystals. Complementing this technique with geometrical and contrast analysis can enhance the efficiency of quantitatively characterizing defects. In this study, the use of Synchrotron White Beam X-ray Topography (SWBXT) to determine the line directions of threading dislocations in 4H–SiC axial slices (sample cut parallel to the growth axis from the boule) is demonstrated. This technique is based on the fact that the projected line directions of dislocations on different reflections are different. Another technique also discussed is the determination of the absolute Burgers vectorsmore » of threading mixed dislocations (TMDs) using Synchrotron Monochromatic Beam X-ray Topography (SMBXT). This technique utilizes the fact that the contrast from TMDs varies on SMBXT images as their Burgers vectors change. By comparing observed contrast with the contrast from threading dislocations provided by Ray Tracing Simulations, the Burgers vectors can be determined. Thereafter the distribution of TMDs with different Burgers vectors across the wafer is mapped and investigated.« less

  3. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems.

    PubMed

    Cai, Yangjian; Lin, Qiang

    2004-06-01

    A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.

  4. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Lin, Qiang

    2004-06-01

    A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.

  5. A polarized atomic-beam target for COSY-Jülich

    NASA Astrophysics Data System (ADS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.; Glende, M.; Walker, M.; Hiemer, A.; Gebel, R.

    1998-01-01

    An atomic-beam target (ABT) for the EDDA experiment has been built in Bonn and was tested for the very first time at the cooler synchrotron COSY. The ABT differs from the polarized colliding-beams ion source for COSY in the DC-operation of the dissociator and the use of permanent 6-pole magnets. At present the beam optics of the ABT is set-up for maximum density in the interaction zone, but for target-cell operation it can be modified to give maximum intensity. The modular concept of this atomic ground-state target allows to provide all vector- (and tensor) polarizations for protons and deuterons, respectively. Up to now the polarization of the atomic-beam could be verified by the EDDA experiment to be ≳80% with a density in the interaction zone of ≳1011atoms/cm2.

  6. Beam-centroid tracking instrument for ion thrusters

    NASA Astrophysics Data System (ADS)

    Pollard, J. E.

    1995-03-01

    Thrust vector stability for an electrostatic ion engine can be measured with improved sensitivity and time resolution by the method described here. Four double-wire Langmuir probes, aligned in the form of a cross, are placed in the exhaust plume and are translated by a motorized positioning system to balance the currents collected along two orthogonal axes. The thrust vector position is thereby measured with an angular resolution of less than 0.01 deg and a response time of less than 5 sec.

  7. Dudley Herschbach: Chemical Reactions and Molecular Beams

    Science.gov Websites

    elementary reactions such as K + CH3I and K + Br2, where it became possible to correlate reaction dynamics been a pioneer in the measurement and theoretical interpretation of vector properties of reaction

  8. Data processing device test apparatus and method therefor

    DOEpatents

    Wilcox, Richard Jacob; Mulig, Jason D.; Eppes, David; Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Hawkins, Charles F.; Louie, Arnold Y.

    2003-04-08

    A method and apparatus mechanism for testing data processing devices are implemented. The test mechanism isolates critical paths by correlating a scanning microscope image with a selected speed path failure. A trigger signal having a preselected value is generated at the start of each pattern vector. The sweep of the scanning microscope is controlled by a computer, which also receives and processes the image signals returned from the microscope. The value of the trigger signal is correlated with a set of pattern lines being driven on the DUT. The trigger is either asserted or negated depending the detection of a pattern line failure and the particular line that failed. In response to the detection of the particular speed path failure being characterized, and the trigger signal, the control computer overlays a mask on the image of the device under test (DUT). The overlaid image provides a visual correlation of the failure with the structural elements of the DUT at the level of resolution of the microscope itself.

  9. Spin-Flipping Polarized Deuterons At COSY

    NASA Astrophysics Data System (ADS)

    Yonehara, K.; Krisch, A. D.; Morozov, V. S.; Raymond, R. S.; Wong, V. K.; Bechstedt, U.; Gebel, R.; Lehrach, A.; Lorenz, B.; Maier, R.; Prasuhn, D.; Schnase, A.; Stockhorst, H.; Eversheim, D.; Hinterberger, F.; Rohdjess, H.; Ulbrich, K.; Scobel, W.

    2004-02-01

    We recently stored a 1.85 GeV/c vertically polarized deuteron beam in the COSY Ring in Jülich; we then spin-flipped it by ramping a new air-core rf dipole's frequency through an rf-induced spin resonance to manipulate the polarization direction of the deuteron beam. We first experimentally determined the resonance's frequency and set the dipole's rf voltage to its maximum; then we varied its frequency ramp time and frequency range. We used the EDDA detector to measure the vector and tensor polarization asymmetries. We have not yet extracted the deuteron's tensor polarization spin-flip parameters from the measured data, since our short run did not provide adequate tensor analyzing-power data at 1.85 GeV/c. However, with a 100 Hz frequency ramp and our longest ramp time of 400 s, the deuterons' vector polarization spin-flip efficiency was 48±1%.

  10. Physical-geometric optics method for large size faceted particles.

    PubMed

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Zhang, Xiaodong

    2017-10-02

    A new physical-geometric optics method is developed to compute the single-scattering properties of faceted particles. It incorporates a general absorption vector to accurately account for inhomogeneous wave effects, and subsequently yields the relevant analytical formulas effective and computationally efficient for absorptive scattering particles. A bundle of rays incident on a certain facet can be traced as a single beam. For a beam incident on multiple facets, a systematic beam-splitting technique based on computer graphics is used to split the original beam into several sub-beams so that each sub-beam is incident only on an individual facet. The new beam-splitting technique significantly reduces the computational burden. The present physical-geometric optics method can be generalized to arbitrary faceted particles with either convex or concave shapes and with a homogeneous or an inhomogeneous (e.g., a particle with a core) composition. The single-scattering properties of irregular convex homogeneous and inhomogeneous hexahedra are simulated and compared to their counterparts from two other methods including a numerically rigorous method.

  11. Method to improve optical parametric oscillator beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.; Bowers, Mark S.

    2003-11-11

    A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  12. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, Philippe; Bracke, Adam; Demir, Veysel

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  13. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    PubMed

    Chen, Yong; Chen, Qian; Li, Manman; Mao, Qianzhuo; Chen, Hongyan; Wu, Wei; Jia, Dongsheng; Wei, Taiyun

    2017-11-01

    Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  14. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector

    PubMed Central

    Mao, Qianzhuo; Chen, Hongyan; Wu, Wei

    2017-01-01

    Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors. PMID:29125860

  15. Tombusvirus-based vector systems to permit over-expression of genes or that serve as sensors of antiviral RNA silencing in plants.

    PubMed

    Shamekova, Malika; Mendoza, Maria R; Hsieh, Yi-Cheng; Lindbo, John; Omarov, Rustem T; Scholthof, Herman B

    2014-03-01

    A next generation Tomato bushy stunt virus (TBSV) coat protein gene replacement vector system is described that can be applied by either RNA inoculation or through agroinfiltration. A vector expressing GFP rapidly yields high levels of transient gene expression in inoculated leaves of various plant species, as illustrated for Nicotiana benthamiana, cowpea, tomato, pepper, and lettuce. A start-codon mutation to down-regulate the dose of the P19 silencing suppressor reduces GFP accumulation, whereas mutations that result in undetectable levels of P19 trigger rapid silencing of GFP. Compared to existing virus vectors the TBSV system has a unique combination of a very broad host range, rapid and high levels of replication and gene expression, and the ability to regulate its suppressor. These features are attractive for quick transient assays in numerous plant species for over-expression of genes of interest, or as a sensor to monitor the efficacy of antiviral RNA silencing. Copyright © 2014. Published by Elsevier Inc.

  16. Renninger's Gedankenexperiment, the collapse of the wave function in a rigid quantum metamaterial and the reality of the quantum state vector.

    PubMed

    Savel'ev, Sergey E; Zagoskin, Alexandre M

    2018-06-25

    A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.

  17. Lentiviral Protein Transfer Vectors Are an Efficient Vaccine Platform and Induce a Strong Antigen-Specific Cytotoxic T Cell Response

    PubMed Central

    Uhlig, Katharina M.; Schülke, Stefan; Scheuplein, Vivian A. M.; Malczyk, Anna H.; Reusch, Johannes; Kugelmann, Stefanie; Muth, Anke; Koch, Vivian; Hutzler, Stefan; Bodmer, Bianca S.; Schambach, Axel; Buchholz, Christian J.; Waibler, Zoe; Scheurer, Stephan

    2015-01-01

    ABSTRACT To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8+ T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8+ T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8+ T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8+ T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations. PMID:26085166

  18. Concepts and design of the CMS high granularity calorimeter Level-1 trigger

    NASA Astrophysics Data System (ADS)

    Sauvan, Jean-Baptiste; CMS Collaboration

    2017-11-01

    The CMS experiment has chosen a novel high granularity calorimeter for the forward region as part of its planned upgrade for the high luminosity LHC. The calorimeter will have a fine segmentation in both the transverse and longitudinal directions and will be the first such calorimeter specifically optimised for particle flow reconstruction to operate at a colliding beam experiment. The high granularity results in around six million readout channels in total and so presents a significant challenge in terms of data manipulation and processing for the trigger; the trigger data volumes will be an order of magnitude above those currently handled at CMS. In addition, the high luminosity will result in an average of 140 to 200 interactions per bunch crossing, giving a huge background rate in the forward region that needs to be efficiently reduced by the trigger algorithms. Efficient data reduction and reconstruction algorithms making use of the fine segmentation of the detector have been simulated and evaluated. They provide an increase of the trigger rates with the luminosity significantly smaller than would be expected with the current trigger system.

  19. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  20. Tests with beam setup of the TileCal phase-II upgrade electronics

    NASA Astrophysics Data System (ADS)

    Reward Hlaluku, Dingane

    2017-09-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile calorimeter plans to introduce a new readout architecture by completely replacing the back-end and front-end electronics for the High Luminosity LHC. The photomultiplier signals will be fully digitized and transferred for every bunch crossing to the off-detector Tile PreProcessor. The Tile PreProcessor will further provide preprocessed digital data to the first level of trigger with improved spatial granularity and energy resolution in contrast to the current analog trigger signals. A single super-drawer module commissioned with the phase-II upgrade electronics is to be inserted into the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new super-drawer, so-called hybrid Demonstrator, must provide analog trigger signals for backward compatibility with the current system. This Demonstrator drawer has been inserted into a Tile calorimeter module prototype to evaluate the performance in the lab. In parallel, one more module has been instrumented with two other front-end electronics options based on custom ASICs (QIE and FATALIC) which are under evaluation. These two modules together with three other modules composed of the current system electronics were exposed to different particles and energies in three test-beam campaigns during 2015 and 2016.

  1. Ray tracing study of rising tone EMIC-triggered emissions

    NASA Astrophysics Data System (ADS)

    Hanzelka, Miroslav; Santolík, Ondřej; Grison, Benjamin; Cornilleau-Wehrlin, Nicole

    2017-04-01

    ElectroMagnetic Ion Cyclotron (EMIC) triggered emissions have been subject of extensive theoretical and experimental research in last years. These emissions are characterized by high coherence values and a frequency range of 0.5 - 2.0 Hz, close to local helium gyrofrequency. We perform ray tracing case studies of rising tone EMIC-triggered emissions observed by the Cluster spacecraft in both nightside and dayside regions off the equatorial plane. By comparison of simulated and measured wave properties, namely wave vector orientation, group velocity, dispersion and ellipticity of polarization, we determine possible source locations. Diffusive equilibrium density model and other, semi-empirical models are used with ion composition inferred from cross-over frequencies. Ray tracing simulations are done in cold plasma approximation with inclusion of Landau and cyclotron damping. Various widths, locations and profiles of plasmapause are tested.

  2. Magmatically triggered slow slip at Kilauea Volcano, Hawaii.

    PubMed

    Brooks, Benjamin A; Foster, James; Sandwell, David; Wolfe, Cecily J; Okubo, Paul; Poland, Michael; Myer, David

    2008-08-29

    We demonstrate that a recent dike intrusion probably triggered a slow fault-slip event (SSE) on Kilauea volcano's mobile south flank. Our analysis combined models of Advanced Land Observing Satellite interferometric dike-intrusion displacement maps with continuous Global Positioning System (GPS) displacement vectors to show that deformation nearly identical to four previous SSEs at Kilauea occurred at far-field sites shortly after the intrusion. We model stress changes because of both secular deformation and the intrusion and find that both would increase the Coulomb failure stress on possible SSE slip surfaces by roughly the same amount. These results, in concert with the observation that none of the previous SSEs at Kilauea was directly preceded by intrusions but rather occurred during times of normal background deformation, suggest that both extrinsic (intrusion-triggering) and intrinsic (secular fault creep) fault processes can lead to SSEs.

  3. Readiness of the ATLAS detector: Performance with the first beam and cosmic data

    NASA Astrophysics Data System (ADS)

    Pastore, F.

    2010-05-01

    During 2008 the ATLAS experiment went through an intense period of preparation to have the detector fully commissioned for the first beam period. In about 30 h of beam time available to ATLAS in 2008 the systems went through a rapid setup sequence, from successfully recording the first bunch ever reaching ATLAS, to setting up the timing of the trigger system synchronous to the incoming single beams. The so-called splash events were recorded, where the beam was stopped on a collimator 140 m upstream of ATLAS, showering the experiment with millions of particles per beam shot. These events were found to be extremely useful for timing setup. After the stop of the beam operation, the experiment went through an extensive cosmic ray data taking campaign, recording more than 500 million cosmic ray events. These events have been used to make significant progress on the calibration and alignment of the detector. This paper describes the commissioning programme and the results obtained from both the single beam data and the cosmic data recorded in 2008.

  4. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  5. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America.

    PubMed

    Fernández-Salas, Ildefonso; Danis-Lozano, Rogelio; Casas-Martínez, Mauricio; Ulloa, Armando; Bond, J Guillermo; Marina, Carlos F; Lopez-Ordóñez, Teresa; Elizondo-Quiroga, Armando; Torres-Monzón, Jorge A; Díaz-González, Esteban E

    2015-12-01

    The arrival of chikungunya fever (CHIKF) in Latin American countries has been expected to trigger epidemics and challenge health systems. Historically considered as dengue-endemic countries, abundant Aedes aegypti populations make this region highly vulnerable to chikungunya virus (CHIKV) circulation. This review describes the current dengue and CHIKF epidemiological situations, as well as the role of uncontrolled Ae. aegypti and Aedes albopictus vectors in spreading the emerging CHIKV. Comments are included relating to the vector competence of both species and failures of surveillance and vector control measures. Dengue endemicity is a reflection of these abundant and persistent Aedes populations that are now spreading CHIKV in the Americas. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World." Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    PubMed Central

    2010-01-01

    Background Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEXGM-CSF, we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. Methods To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Results Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. Conclusions This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials. PMID:20836854

  7. Coordinated Research Program in Pulsed Power Physics.

    DTIC Science & Technology

    1984-02-27

    storage element and the spark gap sectional area at the injected beam) which helps reduce elec- are both contained within the high pressure vessel of a...ns At the present time the continued research is aimed at duration of the first region corresponds closely to the FWHM answering various unresolved...10-ns e-beam has been used to trigger a spark gap pressurized to 3 atm of N2 . The gap voltage is close to self-breakdown voltage (Le., 0.95 Vb

  8. Electron cloud simulations for the main ring of J-PARC

    NASA Astrophysics Data System (ADS)

    Yee-Rendon, Bruce; Muto, Ryotaro; Ohmi, Kazuhito; Satou, Kenichirou; Tomizawa, Masahito; Toyama, Takeshi

    2017-07-01

    The simulation of beam instabilities is a helpful tool to evaluate potential threats against the machine protection of the high intensity beams. At Main Ring (MR) of J-PARC, signals related to the electron cloud have been observed during the slow beam extraction mode. Hence, several studies were conducted to investigate the mechanism that produces it, the results confirmed a strong dependence on the beam intensity and the bunch structure in the formation of the electron cloud, however, the precise explanation of its trigger conditions remains incomplete. To shed light on the problem, electron cloud simulations were done using an updated version of the computational model developed from previous works at KEK. The code employed the signals of the measurements to reproduce the events seen during the surveys.

  9. Design of the Trigger Interface and Distribution Board for CEBAF 12 GeV Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianhui; Dong, Hai; Cuevas, R

    The design of the Trigger Interface and Distribution (TID) board for the 12 GeV Upgrade at the Continuous Electron Beam Accelerator Facility (CEBAF) at TJNAL is described. The TID board distributes a low jitter system clock, synchronized trigger, and synchronized multi-purpose SYNC signal. The TID also initiates data acquisition for the crate. With the TID boards, a multi-crate system can be setup for experiment test and commissioning. The TID board can be selectively populated as a Trigger Interface (TI) board, or a Trigger Distribution (TD) board for the 12 GeV upgrade experiments. When the TID is populated as a TI,more » it can be located in the VXS crate and distribute the CLOCK/TRIGGER/SYNC through the VXS P0 connector; it can also be located in the standard VME64 crate, and distribute the CLOCK/TRIGGER/SYNC through the VME P2 connector or front panel. It initiates the data acquisition for the front crate where the TI is positioned in. When the TID is populated as a TD, it fans out the CLOCK/TRIGGER/SYNC from trigger supervisor to the front end crates through optical fibres. The TD monitors the trigger processing on the TIs, and gives feedback to the TS for trigger flow control. Field Programmable Gate Arrays (FPGA) is utilised on TID board to provide programmability. The TID boards were intensively tested on the bench, and various setups.« less

  10. Design and optimization of stress centralized MEMS vector hydrophone with high sensitivity at low frequency

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Ding, Junwen; Xu, Wei; Liu, Yuan; Wang, Renxin; Han, Janjun; Bai, Bing; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2018-05-01

    A micro hydrophone based on piezoresistive effect, "MEMS vector hydrophone" was developed for acoustic detection application. To improve the sensitivity of MEMS vector hydrophone at low frequency, we reported a stress centralized MEMS vector hydrophone (SCVH) mainly used in 20-500 Hz. Stress concentration area was actualized in sensitive unit of hydrophone by silicon micromachining technology. Then piezoresistors were placed in stress concentration area for better mechanical response, thereby obtaining higher sensitivity. Static analysis was done to compare the mechanical response of three different sensitive microstructure: SCVH, conventional micro-silicon four-beam vector hydrophone (CFVH) and Lollipop-shaped vector hydrophone (LVH) respectively. And fluid-structure interaction (FSI) was used to analyze the natural frequency of SCVH for ensuring the measurable bandwidth. Eventually, the calibration experiment in standing wave field was done to test the property of SCVH and verify the accuracy of simulation. The results show that the sensitivity of SCVH has nearly increased by 17.2 dB in contrast to CFVH and 7.6 dB in contrast to LVH during 20-500 Hz.

  11. Protection of the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Assmann, R.; Carlier, E.; Dehning, B.; Denz, R.; Goddard, B.; Holzer, E. B.; Kain, V.; Puccio, B.; Todd, B.; Uythoven, J.; Wenninger, J.; Zerlauth, M.

    2006-11-01

    The Large Hadron Collider (LHC) at CERN will collide two counter-rotating proton beams, each with an energy of 7 TeV. The energy stored in the superconducting magnet system will exceed 10 GJ, and each beam has a stored energy of 362 MJ which could cause major damage to accelerator equipment in the case of uncontrolled beam loss. Safe operation of the LHC will therefore rely on a complex system for equipment protection. The systems for protection of the superconducting magnets in case of quench must be fully operational before powering the magnets. For safe injection of the 450 GeV beam into the LHC, beam absorbers must be in their correct positions and specific procedures must be applied. Requirements for safe operation throughout the cycle necessitate early detection of failures within the equipment, and active monitoring of the beam with fast and reliable beam instrumentation, mainly beam loss monitors (BLM). When operating with circulating beams, the time constant for beam loss after a failure extends from apms to a few minutes—failures must be detected sufficiently early and transmitted to the beam interlock system that triggers a beam dump. It is essential that the beams are properly extracted on to the dump blocks at the end of a fill and in case of emergency, since the beam dump blocks are the only elements of the LHC that can withstand the impact of the full beam.

  12. The design, status and performance of the ZEUS central tracking detector electronics

    NASA Astrophysics Data System (ADS)

    Cussans, D. G.; Fawcett, H. F.; Foster, B.; Gilmore, R. S.; Heath, G. P.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Gingrich, D. M.; Harnew, N.; Hallam-Baker, P.; Nash, J.; Khatri, T.; Shield, P. D.; McArthur, I.; Topp-Jorgensen, S.; Wilson, F. F.; Allen, D.; Baird, S. A.; Carter, R.; Galagardera, S.; Gibson, M. D.; Hatley, R. S.; Jeffs, M.; Milborrow, R.; Morissey, M.; Quinton, S. P. H.; White, D. J.; Lane, J.; Nixon, G.; Postranecky, M.; Jamdagni, A. K.; Marcou, C.; Miller, D. B.; Toudup, L.

    1992-05-01

    The readout system developed for the ZEUS central trackign detector (CDT) is described. The CTD is required to provide an accurate measurement of the sagitta and energy loss of charged particles as well as provide fast trigger information. This must be carried out in the HERA environment in which beams cross every 96 ns. The first two aims are achieved by digitizing chamber pulses using a pipelined 104 MHz FADC system. The trigger uses a fast determination of the difference in the arrival times of a pulse at each end of the CTD. It processes this data and gives information to the ZEUS global first level trigger. The modules are housed in custom-built racks and crates and read out using a DAQ system based on Transputer readout controllers. These also monitor data quality and produce data for the ZEUS second level Trigger.

  13. Integration of the Super Nova early warning system with the NOvA Trigger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habig, Alec; Zirnstein, Jan

    The NOvA experiment, with a baseline of 810km, samples Fermilab’s upgraded NuMI beam with a Near Detector on-site and a Far Detector (FD) at Ash River, MN, to observe oscillations of muon neutrinos. The 344,064 liquid scintillator-filled cells of the 14 kton FD provide high granularity of a large detector mass and enable us to also study non-accelerator based neutrinos with our Data Driven Trigger framework. This paper will focus on the real time integration of the SNEWS with the NOvA Trigger where we have set up an XML-RPC based messaging system to inject the SNEWS signal directly into ourmore » trigger. In conclusion, this presents a departure from the E-Mail based notification mechanism used by SNEWS in the past and allows NOvA more control over propagation and transmission timing.« less

  14. Integration of the Super Nova early warning system with the NOvA Trigger

    DOE PAGES

    Habig, Alec; Zirnstein, Jan

    2015-12-23

    The NOvA experiment, with a baseline of 810km, samples Fermilab’s upgraded NuMI beam with a Near Detector on-site and a Far Detector (FD) at Ash River, MN, to observe oscillations of muon neutrinos. The 344,064 liquid scintillator-filled cells of the 14 kton FD provide high granularity of a large detector mass and enable us to also study non-accelerator based neutrinos with our Data Driven Trigger framework. This paper will focus on the real time integration of the SNEWS with the NOvA Trigger where we have set up an XML-RPC based messaging system to inject the SNEWS signal directly into ourmore » trigger. In conclusion, this presents a departure from the E-Mail based notification mechanism used by SNEWS in the past and allows NOvA more control over propagation and transmission timing.« less

  15. Status of the Electromagnetic Calorimeter Trigger system at the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Lee, I. S.; Unno, Y.; Cheon, B. G.

    2017-09-01

    The Belle II experiment at the SuperKEKB collider in Japan has been under the construction toward a physics run in 2018 with an ultimate target of 40 times higher instantaneous luminosity than the KEKB collider. The main physics motivation is to search for the New Physics from heavy quark/lepton flavor decays. In order to select an event of interest efficiently under much higher luminosity and beam background environment than the KEKB, we have upgraded the Electromagnetic Calorimeter (ECL) hardware trigger system. It would be realized by the improvement of ECL trigger logic based on two main triggers, the total energy and the number of clusters, with an FPGA-based flexible architecture and a high speed serial link for the data transfer. We report the current status of hardware, firmware, and software that has been achieved so far. The overall scheme of the system will be presented as well.

  16. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    PubMed

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  17. Coherent production of ρ - mesons in charged current antineutrino-neon interactions in BEBC

    NASA Astrophysics Data System (ADS)

    Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Katz, U. F.; Klein, H.; Matsinos, E.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.

    1987-09-01

    Coherent production of ρ - mesons in charged current antineutrino interactions on neon nuclei is studied in the BEBC bubble chamber exposed to the CERN SPS wide band beam. The cross section is measured to be (95±25)·10-40 cm2 per neon nucleus, averaged over the beam energy spectrum. The distributions of kinematical variables and the absolute value of the cross section are in agreement with theoretical predictions based on the CVC hypothesis and the vector meson dominance model.

  18. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Gao, Yixian; Li, Yong

    2015-05-01

    Consider the one dimensional nonlinear beam equation utt + uxxxx + mu + u3 = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form.

  19. Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation

    NASA Astrophysics Data System (ADS)

    Wang, Yi

    2012-06-01

    In this paper, one quasi-periodically forced nonlinear beam equation utt+uxxxx+μu+ɛg(ωt,x)u3=0,μ>0,x∈[0,π] with hinged boundary conditions is considered. Here ɛ is a small positive parameter, g( ωt, x) is real analytic in all variables and quasi-periodic in t with a frequency vector ω = ( ω1, ω2, … , ωm). It is proved that the above equation admits small-amplitude quasi-periodic solutions.

  20. Spin-Hall effect in the scattering of structured light from plasmonic nanowire.

    PubMed

    Sharma, Deepak K; Kumar, Vijay; Vasista, Adarsh B; Chaubey, Shailendra K; Kumar, G V Pavan

    2018-06-01

    Spin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the spin-Hall effect for a HG beam compared to a Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition, the nodal line of the HG beam acts as the marker for the spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the spin flow component of the Poynting vector associated with the circular polarization is responsible for the spin-Hall effect and its enhancement.

  1. Spin-Hall effect in the scattering of structured light from plasmonic nanowire

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak K.; Kumar, Vijay; Vasista, Adarsh B.; Chaubey, Shailendra K.; Kumar, G. V. Pavan

    2018-06-01

    Spin-orbit interactions are subwavelength phenomena which can potentially lead to numerous device related applications in nanophotonics. Here, we report Spin-Hall effect in the forward scattering of Hermite-Gaussian and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the Spin-Hall effect for Hermite-Gaussian beam as compared to Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition to it, nodal line of HG beam acts as the marker for the Spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the Spin flow component of Poynting vector associated with the circular polarization is responsible for the Spin-Hall effect and its enhancement.

  2. Giant narrowband twin-beam generation along the pump-energy propagation direction

    NASA Astrophysics Data System (ADS)

    Pérez, Angela M.; Spasibko, Kirill Yu; Sharapova, Polina R.; Tikhonova, Olga V.; Leuchs, Gerd; Chekhova, Maria V.

    2015-07-01

    Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators.

  3. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam.

    PubMed

    Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu

    2011-07-18

    Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.

  4. Laser-based ion sources for medical applications

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Yu.; Brantov, A. V.

    2015-10-01

    Interaction of relativistic short laser pulses with thin foils is studied by using 3D PIC simulations in the context of ICAN's "dream laser". It is shown that such a laser will make it possible to accelerate protons and deuterons to multi-MeV energies with a current density of 100 A/cm2. The laser-triggered hadron beams may trigger nuclear reactions of interest for nuclear medicine and pharmacy. As an example, the yields C-11 for PET, of Tc-99m for SPECT, and neutrons for therapy have been analyzed.

  5. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    DOEpatents

    Zhang, Shukui; Wilson, Guy

    2014-09-23

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  6. Hybrid biosynthetic gene therapy vector development and dual engineering capacity.

    PubMed

    Jones, Charles H; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P; Pfeifer, Blaine A

    2014-08-26

    Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.

  7. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    PubMed

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  8. Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction.

    PubMed

    Shao, Wenwei; Earley, Lauriel F; Chai, Zheng; Chen, Xiaojing; Sun, Junjiang; He, Ting; Deng, Meng; Hirsch, Matthew L; Ting, Jenny; Samulski, R Jude; Li, Chengwen

    2018-06-21

    Data from clinical trials for hemophilia B using adeno-associated virus (AAV) vectors have demonstrated decreased transgenic coagulation factor IX (hFIX) expression 6-10 weeks after administration of a high vector dose. While it is likely that capsid-specific cytotoxic T lymphocytes eliminate vector-transduced hepatocytes, thereby resulting in decreased hFIX, this observation is not intuitively consistent with restored hFIX levels following prednisone application. Although the innate immune response is immediately activated following AAV vector infection via TLR pathways, no studies exist regarding the role of the innate immune response at later time points after AAV vector transduction. Herein, activation of the innate immune response in cell lines, primary human hepatocytes, and hepatocytes in a human chimeric mouse model was observed at later time points following AAV vector transduction. Mechanistic analysis demonstrated that the double-stranded RNA (dsRNA) sensor MDA5 was necessary for innate immune response activation and that transient knockdown of MDA5, or MAVS, decreased IFN-β expression while increasing transgene production in AAV-transduced cells. These results both highlight the role of the dsRNA-triggered innate immune response in therapeutic transgene expression at later time points following AAV transduction and facilitate the execution of effective strategies to block the dsRNA innate immune response in future clinical trials.

  9. Lentiviral Vector Induced Insertional Haploinsufficiency of Ebf1 Causes Murine Leukemia

    PubMed Central

    Heckl, Dirk; Schwarzer, Adrian; Haemmerle, Reinhard; Steinemann, Doris; Rudolph, Cornelia; Skawran, Britta; Knoess, Sabine; Krause, Johanna; Li, Zhixiong; Schlegelberger, Brigitte; Baum, Christopher; Modlich, Ute

    2012-01-01

    Integrating vectors developed on the basis of various retroviruses have demonstrated therapeutic potential following genetic modification of long-lived hematopoietic stem and progenitor cells. Lentiviral vectors (LV) are assumed to circumvent genotoxic events previously observed with γ-retroviral vectors, due to their integration bias to transcription units in comparison to the γ-retroviral preference for promoter regions and CpG islands. However, recently several studies have revealed the potential for gene activation by LV insertions. Here, we report a murine acute B-lymphoblastic leukemia (B-ALL) triggered by insertional gene inactivation. LV integration occurred into the 8th intron of Ebf1, a major regulator of B-lymphopoiesis. Various aberrant splice variants could be detected that involved splice donor and acceptor sites of the lentiviral construct, inducing downregulation of Ebf1 full-length message. The transcriptome signature was compatible with loss of this major determinant of B-cell differentiation, with partial acquisition of myeloid markers, including Csf1r (macrophage colony-stimulating factor (M-CSF) receptor). This was accompanied by receptor phosphorylation and STAT5 activation, both most likely contributing to leukemic progression. Our results highlight the risk of intragenic vector integration to initiate leukemia by inducing haploinsufficiency of a tumor suppressor gene. We propose to address this risk in future vector design. PMID:22472950

  10. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    PubMed

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Respirator triggering of electron beam computed tomography (EBCT): evaluation of dynamic changes during mechanical expiration in the traumatized patient

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Hatschenberger, Robert; Knapp, Rudolf; zur Nedden, Dieter; Hoermann, Christoph

    1999-05-01

    The purpose of this project is to evaluate the dynamic changes during expiration at different levels of positive end- expiratory pressure (PEEP) in the ventilated patient. We wanted to discriminate between normal lung function and acute respiratory distress syndrome (ARDS). After approval by the local Ethic Committee we studied two ventilated patients: (1) with normal lung function; (2) ARDS). We used the 50 ms scan mode of the EBCT. The beam was positioned 1 cm above the diaphragm. The table position remained unchanged. An electronic trigger was developed, that utilizes the respirators synchronizing signal to start the EBCT at the onset of expiration. During controlled mechanical expiration at two levels of PEEP (0 and 15 cm H2O), pulmonary aeration was rated as: well-aerated (-900HU/-500HU), poorly- aerated (-500HU/-100HU) and non-aerated (-100HU/+100HU). Pathological and normal lung function showed different dynamic changes (FIG.4-12). The different PEEP levels resulted in a significant change of pulmonary aeration in the same patient. Although we studied only a very limited number of patients, respirator triggered EBCT may be accurate in discriminating pathological changes due to the abnormal lung function in the mechanically ventilated patient.

  12. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  13. Conversion of the high-mode solitons in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    2017-01-01

    The conversion of high-mode solitons propagating in Strongly Nonlocal Nonlinear Media (SNNM) in three coordinate systems, namely, the elliptic coordinate system, the rectangular coordinate system and the cylindrical coordinate system, based on the Snyder-Mitchell Model that describes the paraxial beam propagating in SNNM, is discussed. Through constituting the trial solution with modulating the Gaussian beam by Ince polynomials, the closed-solution of Gaussian beams in elliptic coordinate is accessed. The Ince-Gaussian (IG) beams constitute the exact and continuous transition modes between Hermite-Gaussian beams and Laguerre-Gaussian (LG) beams, which is controlled by the elliptic parameter. The conditions of conversion in the three types of solitons are given in relation to the Gouy phase invariability in stable propagation. The profiles of the IG breather at a different propagating distance are numerically obtained, and the conversions of a few IG solitons are illustrated. The difference between the IG soliton and the corresponding LG soliton is remarkable from the Poynting vector and phase plots at their profiles along the propagating axis.

  14. Optical parametric osicllators with improved beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.

    2003-11-11

    An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  15. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.« less

  16. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  17. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance ofmore » the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.« less

  18. High-speed optical three-axis vector magnetometry based on nonlinear Hanle effect in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Azizbekyan, Hrayr; Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Movsisyan, Marina; Papoyan, Aram

    2017-07-01

    The magnetic-field-compensation optical vector magnetometer based on the nonlinear Hanle effect in alkali metal vapor allowing two-axis measurement operation has been further elaborated for three-axis performance, along with significant reduction of measurement time. The upgrade was achieved by implementing a two-beam resonant excitation configuration and a fast maximum searching algorithm. Results of the proof-of-concept experiments, demonstrating 1 μT B-field resolution, are presented. The applied interest and capability of the proposed technique is analyzed.

  19. Chaotic Electron Motion Caused by Sidebands in Free Electron Lasers

    DTIC Science & Technology

    1988-10-27

    sideband. The total vector potential is then, A (z,t) = (1) •w (e~ )ri(krZ-Wr t) l(ksZ-Wst)] -c’-[(ex-iey)AweZ% _+V-(ex+iey)Are ikrzwr _) (ex+iey)Ase... light c, ignoring the small correction of order w 2/W 2 from the dielectric contribution of the beam. Electrostatic contributions to the fields are...mass to me and the vector potentials according to ai=IeIAi/mec2 the dimensionless Hamiltonian describing the electron motion in the fields of Eq. (1

  20. WE-DE-BRA-11: A Study of Motion Tracking Accuracy of Robotic Radiosurgery Using a Novel CCD Camera Based End-To-End Test System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L; M Yang, Y; Nelson, B

    Purpose: A novel end-to-end test system using a CCD camera and a scintillator based phantom (XRV-124, Logos Systems Int’l) capable of measuring the beam-by-beam delivery accuracy of Robotic Radiosurgery (CyberKnife) was developed and reported in our previous work. This work investigates its application in assessing the motion tracking (Synchrony) accuracy for CyberKnife. Methods: A QA plan with Anterior and Lateral beams (with 4 different collimator sizes) was created (Multiplan v5.3) for the XRV-124 phantom. The phantom was placed on a motion platform (superior and inferior movement), and the plans were delivered on the CyberKnife M6 system using four motion patterns:more » static, Sine- wave, Sine with 15° phase shift, and a patient breathing pattern composed of 2cm maximum motion with 4 second breathing cycle. Under integral recording mode, the time-averaged beam vectors (X, Y, Z) were measured by the phantom and compared with static delivery. In dynamic recording mode, the beam spots were recorded at a rate of 10 frames/second. The beam vector deviation from average position was evaluated against the various breathing patterns. Results: The average beam position of the six deliveries with no motion and three deliveries with Synchrony tracking on ideal motion (sinewave without phase shift) all agree within −0.03±0.00 mm, 0.10±0.04, and 0.04±0.03 in the X, Y, and X directions. Radiation beam width (FWHM) variations are within ±0.03 mm. Dynamic video record showed submillimeter tracking stability for both regular and irregular breathing pattern; however the tracking error up to 3.5 mm was observed when a 15 degree phase shift was introduced. Conclusion: The XRV-124 system is able to provide 3D and 4D targeting accuracy for CyberKnife delivery with Synchrony. The experimental results showed sub-millimeter delivery in phantom with excellent correlation in target to breathing motion. The accuracy was degraded when irregular motion and phase shift was introduced.« less

  1. A safe and efficient BCG vectored vaccine to prevent the disease caused by the human Respiratory Syncytial Virus.

    PubMed

    Rey-Jurado, Emma; Soto, Jorge; Gálvez, Nicolás; Kalergis, Alexis M

    2017-09-02

    The human Respiratory Syncytial Virus (hRSV) causes lower respiratory tract infections including pneumonia and bronchiolitis. Such infections also cause a large number of hospitalizations and affects mainly newborns, young children and the elderly worldwide. Symptoms associated with hRSV infection are due to an exacerbated immune response characterized by low levels of IFN-γ, recruitment of neutrophils and eosinophils to the site of infection and lung damage. Although hRSV is a major health problem, no vaccines are currently available. Different immunization approaches have been developed to achieve a vaccine that activates the immune system, without triggering an unbalanced inflammation. These approaches include live attenuated vaccine, DNA or proteins technologies, and the use of vectors to express proteins of the virus. In this review, we discuss the host immune response to hRSV and the immunological mechanisms underlying an effective and safe BCG vectored vaccine against hRSV.

  2. Velocity-tunable slow beams of cold O2 in a single spin-rovibronic state with full angular-momentum orientation by multistage Zeeman deceleration

    NASA Astrophysics Data System (ADS)

    Wiederkehr, A. W.; Schmutz, H.; Motsch, M.; Merkt, F.

    2012-08-01

    Cold samples of oxygen molecules in supersonic beams have been decelerated from initial velocities of 390 and 450 m s-1 to final velocities in the range between 150 and 280 m s-1 using a 90-stage Zeeman decelerator. (2 + 1) resonance-enhanced-multiphoton-ionization (REMPI) spectra of the 3sσ g 3Π g (C) ? two-photon transition of O2 have been recorded to characterize the state selectivity of the deceleration process. The decelerated molecular sample was found to consist exclusively of molecules in the J ‧‧ = 2 spin-rotational component of the X ? ground state of O2. Measurements of the REMPI spectra using linearly polarized laser radiation with polarization vector parallel to the decelerator axis, and thus to the magnetic-field vector of the deceleration solenoids, further showed that only the ? magnetic sublevel of the N‧‧ = 1, J ‧‧ = 2 spin-rotational level is populated in the decelerated sample, which therefore is characterized by a fully oriented total-angular-momentum vector. By maintaining a weak quantization magnetic field beyond the decelerator, the polarization of the sample could be maintained over the 5 cm distance separating the last deceleration solenoid and the detection region.

  3. Generation of auroral kilometric radiation by a finite-size source in a dipole magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burinskaya, T. M., E-mail: tburinsk@iki.rssi.ru; Shevelev, M. M.

    2016-10-15

    Generation, amplification, and propagation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron beam propagates is studied in the geometrical optics approximation. It is shown that the waves that start with a group velocity directed earthward and have optimal relation between the wave vector components determining the linear growth rate and the wave residence time inside the amplification region undergo the largest amplification. Taking into account the longitudinal velocity of fast electrons results in the shift of the instability domain toward wave vectors directed to the Earth and leads to a change inmore » the dispersion relation, due to which favorable conditions are created for the generation of waves with frequencies above the cutoff frequency for the cold background plasma at the wave generation altitude. The amplification factor for these waves is lower than for waves that have the same wave vectors but are excited by the electron beams with lower velocities along the magnetic field. For waves excited at frequencies below the cutoff frequency of the background plasma at the generation altitude, the amplification factor increases with increasing longitudinal electron velocity, because these waves reside for a longer time in the amplification region.« less

  4. Subwavelength dark hollow focus of spirally polarized axisymmetric Bessel-modulated Gaussian beam

    NASA Astrophysics Data System (ADS)

    Gao, X. M.; Zhan, Q. F.; Wang, Q.; Yun, M. J.; Guo, H. M.; Zhuang, S. L.

    2011-09-01

    Dark hollow focus plays an important role in many optical systems. In this paper, dark hollow focal shaping of spirally polarized axisymmetric Bessel-modulated Gaussian beam is investigated by vector diffraction theory in detail. Results show that the dark hollow focus can be altered considerably by beam parameter and spiral parameter that indicates polarization spiral degree. One dark hollow focus and two dark hollow foci pattern may occur for certain spiral parameter, and the transverse size of dark hollow focus can be less than the diffraction limit size of bright focus. In addition, there may also appear two triangle dark hollow foci that are connected by one dark line focus.

  5. A finite element beam propagation method for simulation of liquid crystal devices.

    PubMed

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  6. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser.

    PubMed

    Kim, D J; Kim, J W

    2015-02-01

    A simple method for generating a Laguerre-Gaussian (LG) mode optical vortex beam with well-determined handedness in a single-frequency solid state laser end-pumped by a ring-shaped pump beam is reported. After investigating the intensity profile and the wavefront helicity of each longitudinal mode output to understand generation of the LG mode in a Nd:YVO4 laser resonator, selection of the wavefront handedness has been achieved simply by inserting and tilting an etalon in the resonator, which breaks the propagation symmetry of the Poynting vectors with opposite helicity. Simple calculation and the experimental results are discussed for supporting this selection mechanism.

  7. Wave-optics description of self-healing mechanism in Bessel beams.

    PubMed

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  8. Beaconless Pointing for Deep-Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  9. Generation of terahertz radiation by intense hollow Gaussian laser beam in magnetised plasma under relativistic-ponderomotive regime

    NASA Astrophysics Data System (ADS)

    Rawat, Priyanka; Rawat, Vinod; Gaur, Bineet; Purohit, Gunjan

    2017-07-01

    This paper explores the self-focusing of hollow Gaussian laser beam (HGLB) in collisionless magnetized plasma and its effect on the generation of THz radiation in the presence of relativistic-ponderomotive nonlinearity. The relativistic change of electron mass and electron density perturbation due to the ponderomotive force leads to self-focusing of the laser beam in plasma. Nonlinear coupling between the intense HGLB and electron plasma wave leads to generation of THz radiation in plasma. Resonant excitation of THz radiation at different frequencies of laser and electron plasma wave satisfies proper phase matching conditions. Appropriate expressions for the beam width parameter of the laser beam and the electric vector of the THz wave have been evaluated under the paraxial-ray and Wentzel-Kramers Brillouin approximations. It is found that the yield of THz amplitude depends on the focusing behaviour of laser beam, magnetic field, and background electron density. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on self-focusing of the laser beam and further its effect on the efficiency of the generated THz radiation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, D. T.; Maximov, A. V.; Short, R. W.

    The fraction of laser energy converted into hot electrons by the two-plasmon-decay instability is found to have different overlapped intensity thresholds for various configurations on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); J. H. Kelly et al., J. Phys. IV 133, 75 (2006)]. A factor-of-2 difference in the overlapped intensity threshold is observed between two- and four-beam configurations. The overlapped intensity threshold increases by a factor of 2 between the 4- and 18-beam configurations and by a factor of 3 between the 4- and 60-beam configurations. This is explained by a linear common-wavemore » model where multiple laser beams drive a common electron-plasma wave in a wavevector region that bisects the laser beams (resonant common-wave region in k-space). These experimental results indicate that the hot-electron threshold depends on the hydrodynamic parameters at the quarter-critical density surface, the configuration of the laser beams, and the sum of the intensity of the beams that share the same angle with the common-wave vector.« less

  11. Snakes, rotators, serpents and the octahedral group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fieguth, T.

    1986-04-01

    Specific configurations of horizontal and vertical bending magnets are given that, when acting on the spin polarization vector of a particle beam, generate a group of 24 operators isomorphic to the group of rotational symmetries of a cube, known as the octahedral group. Some of these configurations have the feature of converting transversely polarized beams to longitudinally polarized beams (or vice versa) at the midpoint of the configuration for, in principle, all beam energies. Since the first order optical transfer matrix for each half of these configurations is nearly that of a drift region, the external geometry remains unchanged andmore » midpoint dispersion is not introduced. Changing field strengths and/or polarities allows a configuration to serve as either a Snake(1/sup st/ or 2/sup nd/ kind) or a Rotator, where in both cases the spin polarization is longitudinal at the midpoint. In this conceptualization, emphasis has been placed on electron beams and, indeed, for these beams some practical applications can be envisioned. However, due to the relatively high integrated field strengths required, application of these concepts to proton beams may be more promising.« less

  12. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNAmore » expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.« less

  13. NOTE: A method for controlling image acquisition in electronic portal imaging devices

    NASA Astrophysics Data System (ADS)

    Glendinning, A. G.; Hunt, S. G.; Bonnett, D. E.

    2001-02-01

    Certain types of camera-based electronic portal imaging devices (EPIDs) which initiate image acquisition based on sensing a change in video level have been observed to trigger unreliably at the beginning of dynamic multileaf collimation sequences. A simple, novel means of controlling image acquisition with an Elekta linear accelerator (Elekta Oncology Systems, Crawley, UK) is proposed which is based on illumination of a photodetector (ORP-12, Silonex Inc., Plattsburgh, NY, USA) by the electron gun of the accelerator. By incorporating a simple trigger circuit it is possible to derive a beam on/off status signal which changes at least 100 ms before any dose is measured by the accelerator. The status signal does not return to the beam-off state until all dose has been delivered and is suitable for accelerator pulse repetition frequencies of 50-400 Hz. The status signal is thus a reliable means of indicating the initiation and termination of radiation exposure, and thus controlling image acquisition of such EPIDs for this application.

  14. An electron fixed target experiment to search for a new vector boson A' decaying to e +e -

    DOE PAGES

    Rouven Essig; Schuster, Philip; Toro, Natalia; ...

    2011-02-02

    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10 –8 α to electrons (α' = e 2/4π) in the mass range 65 MeV < m A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiationmore » off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e +e - spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to α'/α one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.« less

  15. SU-E-T-171: Missing Dose in Integrated EPID Images.

    PubMed

    King, B; Seymour, E; Nitschke, K

    2012-06-01

    A dosimetric artifact has been observed with Varian EPIDs in the presence of beam interrupts. This work determines the root cause and significance of this artifact. Integrated mode EPID images were acquired both with and without a manual beam interrupt for rectangular, sliding gap IMRT fields. Simultaneously, the individual frames were captured on a separate computer using a frame-grabber system. Synchronization of the individual frames with the integrated images allowed the determination of precisely how the EPID behaved during regular operation as well as when a beam interrupt was triggered. The ability of the EPID to reliably monitor a treatment in the presence of beam interrupts was tested by comparing the difference between the interrupt and non-interrupt images. The interrupted images acquired in integrated acquisition mode displayed unanticipated behaviour in the region of the image where the leaves were located when the beam interrupt was triggered. Differences greater than 5% were observed as a result of the interrupt in some cases, with the discrepancies occurring in a non-uniform manner across the imager. The differences measured were not repeatable from one measurement to another. Examination of the individual frames showed that the EPID was consistently losing a small amount of dose at the termination of every exposure. Inclusion of one additional frame in every image rectified the unexpected behaviour, reducing the differences to 1% or less. Although integrated EPID images nominally capture the entire dose delivered during an exposure, a small amount of dose is consistently being lost at the end of every exposure. The amount of missing dose is random, depending on the exact beam termination time within a frame. Inclusion of an extra frame at the end of each exposure effectively rectifies the problem, making the EPID more suitable for clinical dosimetry applications. The authors received support from Varian Medical Systems in the form of software and equipment loans as well as technical support. © 2012 American Association of Physicists in Medicine.

  16. Manipulation of the polarization of intense laser beams via optical wave mixing in plasmas

    NASA Astrophysics Data System (ADS)

    Michel, Pierre; Divol, Laurent; Turnbull, David; Moody, John

    2014-10-01

    When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena reminiscent of those used in crystals and photorefractive materials. Using a vector analysis, we present a full analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma. We show that plasmas can be used to provide full control of the polarization state of a laser beam, and give simple analytical estimates and practical considerations for the design of novel photonics devices such as plasma polarizers and plasma waveplates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  17. Electronic Desorption of gas from metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Kollmus, H; Mahner, E

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  18. Upgrade project and plans for the ATLAS detector and trigger

    NASA Astrophysics Data System (ADS)

    Pastore, Francesca; Atlas Collaboration

    2013-08-01

    The LHC is expected to under go upgrades over the coming years in order to extend its scientific potential. Through two different phases (namely Phase-I and Phase-II), the average luminosity will be increased by a factor 5-10 above the design luminosity, 1034 cm-2 s-1. Consequently, the LHC experiments will need upgraded detectors and new infrastructure of the trigger and DAQ systems, to take into account the increase of radiation level and of particle rates foreseen at such high luminosity. In this paper we describe the planned changes and the investigations for the ATLAS experiment, focusing on the requirements for the trigger system to handle the increase rate of collisions per beam crossing, while maintaining widely inclusive selections. In different steps, the trigger detectors will improve their selectivity by benefiting from increased granularity. To improve the flexibility of the system, the use of the tracking information in the lower levels of the trigger selection is also discussed. Lastly different scenarios are compared, based on the expected physics potential of ATLAS in this high luminosity regime.

  19. A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, S.; Samanta, S.; Banik, R.; Bhattacharjee, R.; Basu, K.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Bhattacharya, S.; Imran, S.; Mukherjee, G.; Bhattacharyya, S.; Goswami, A.; Palit, R.; Tan, H.

    2018-06-01

    The development of a digitizer based pulse processing and data acquisition system for γ-ray spectroscopy with large detector arrays is presented. The system is based on 250 MHz 12-bit digitizers, and is triggered by a user chosen multiplicity of Compton suppressed detectors. The logic for trigger generation is similar to the one practised for analog (NIM/CAMAC) pulse processing electronics, while retaining the fast processing merits of the digitizer system. Codes for reduction of data acquired from the system have also been developed. The system has been tested with offline studies using radioactive sources as well as in the in-beam experiments with an array of Compton suppressed Clover detectors. The results obtained therefrom validate its use in spectroscopic efforts for nuclear structure investigations.

  20. Current developments in optical engineering and diffraction phenomena; Proceedings of the Meeting, San Diego, CA, Aug. 21, 22, 1986

    NASA Astrophysics Data System (ADS)

    Fischer, Robert E.; Smith, Warren J.; Harvey, James

    1986-01-01

    Papers dealing with current materials for gradient-index optics, an intelligent data-base system for optical designers; tilted mirror systems; a null-lens design approach for centrally obscured components; the use of the vector aberration theory to optimize an unobscured optical system; multizone bifocal contact lens design; and the concentric meniscus element are presented. Topics discussed include optical manufacturing in the Far East; the optical performance of molded-glass lenses for optical memory applications; through-wafer optical interconnects for multiwafer wafer-scale integrated architecture; optical thin-flim monitoring using optical fibers; aerooptical testing; optical inspection; and a system analysis program for a 32K microcomputer. Consideration is given to various theories, algorithms, and applications of diffraction, a vector formulation of a ray-equivalent method for Gaussian beam propagation; Fourier optical analysis of aberrations in focused laser beams; holography and moire interferometry; and phase-conjugate optical correctors for diffraction-limited applications.

  1. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    NASA Astrophysics Data System (ADS)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  2. Beam-hardening correction by a surface fitting and phase classification by a least square support vector machine approach for tomography images of geological samples

    NASA Astrophysics Data System (ADS)

    Khan, F.; Enzmann, F.; Kersten, M.

    2015-12-01

    In X-ray computed microtomography (μXCT) image processing is the most important operation prior to image analysis. Such processing mainly involves artefact reduction and image segmentation. We propose a new two-stage post-reconstruction procedure of an image of a geological rock core obtained by polychromatic cone-beam μXCT technology. In the first stage, the beam-hardening (BH) is removed applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. The final BH-corrected image is extracted from the residual data, or the difference between the surface elevation values and the original grey-scale values. For the second stage, we propose using a least square support vector machine (a non-linear classifier algorithm) to segment the BH-corrected data as a pixel-based multi-classification task. A combination of the two approaches was used to classify a complex multi-mineral rock sample. The Matlab code for this approach is provided in the Appendix. A minor drawback is that the proposed segmentation algorithm may become computationally demanding in the case of a high dimensional training data set.

  3. Observing a light dark matter beam with neutrino experiments

    NASA Astrophysics Data System (ADS)

    Deniverville, Patrick; Pospelov, Maxim; Ritz, Adam

    2011-10-01

    We consider the sensitivity of fixed-target neutrino experiments at the luminosity frontier to light stable states, such as those present in models of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate via light mediators, which in turn provide an access portal for direct production in colliders or fixed targets. Indeed, this framework endows the neutrino beams produced at fixed-target facilities with a companion “dark matter beam,” which may be detected via an excess of elastic scattering events off electrons or nuclei in the (near-)detector. We study the high-luminosity proton fixed-target experiments at LSND and MiniBooNE, and determine that the ensuing sensitivity to light dark matter generally surpasses that of other direct probes. For scenarios with a kinetically-mixed U(1)' vector mediator of mass mV, we find that a large volume of parameter space is excluded for mDM˜1-5MeV, covering vector masses 2mDM≲mV≲mη and a range of kinetic mixing parameters reaching as low as κ˜10-5. The corresponding MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are thus strongly constrained.

  4. Polarization singularity indices in Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2002-01-01

    Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.

  5. A Theoretical and Experimental Comparison of 3-3 and 3-1 Mode Piezoelectric Microelectromechanical Systems (MEMS)

    PubMed Central

    Kim, Donghwan; Hewa-Kasakarage, Nishshanka; Hall, Neal A.

    2014-01-01

    Two piezoelectric transducer modes applied in microelectromechanical systems are (i) the 3-1 mode with parallel electrodes perpendicular to a vertical polarization vector, and (ii) the 3-3 mode which uses interdigitated (IDT) electrodes to realize an in-plane polarization vector. This study compares the two configurations by deriving a Norton equivalent representation of each approach – including expressions for output charge and device capacitance. The model is verified using a microfabricated device comprised of multiple epitaxial silicon beams with sol-gel deposited lead zirconate titanate at the surface. The beams have identical dimensions and are attached to a common moving element at their tip. The only difference between beams is electrode configuration – enabling a direct comparison. Capacitance and charge measurements verify the presented theory with high accuracy. The Norton equivalent representation is general and enables comparison of any figure of merit, including electromechanical coupling coefficient and signal to noise ratio. With respect to coupling coefficient, the experimentally validated theory in this work suggests that 3-3 mode IDT-electrode configurations offer the potential for modest improvements compared against 3-1 mode devices (less than 2×), and the only geometrical parameter affecting this ratio is the fill factor of the IDT electrode. PMID:25309041

  6. Synthetic activation of caspases: Artificial death switches

    PubMed Central

    MacCorkle, Rebecca A.; Freeman, Kevin W.; Spencer, David M.

    1998-01-01

    The development of safe vectors for gene therapy requires fail-safe mechanisms to terminate therapy or remove genetically altered cells. The ideal “suicide switch” would be nonimmunogenic and nontoxic when uninduced and able to trigger cell death independent of tissue type or cell cycle stage. By using chemically induced dimerization, we have developed powerful death switches based on the cysteine proteases, caspase-1 ICE (interleukin-1β converting enzyme) and caspase-3 YAMA. In both cases, aggregation of the target protein is achieved by a nontoxic lipid-permeable dimeric FK506 analog that binds to the attached FK506-binding proteins, FKBPs. We find that intracellular cross-linking of caspase-1 or caspase-3 is sufficient to trigger rapid apoptosis in a Bcl-xL-independent manner, suggesting that these conditional proapoptotic molecules can bypass intracellular checkpoint genes, such as Bcl-xL, that limit apoptosis. Because these chimeric molecules are derived from autologous proteins, they should be nonimmunogenic and thus ideal for long-lived gene therapy vectors. These properties should also make chemically induced apoptosis useful for developmental studies, for treating hyperproliferative disorders, and for developing animal models to a wide variety of diseases. PMID:9520421

  7. Ballistic protons in incoherent exclusive vector meson production as a measure of rare parton fluctuations at an electron-ion collider

    DOE PAGES

    Lappi, T.; Venugopalan, R.; Mantysaari, H.

    2015-02-25

    We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multi-parton Fock states in the nuclear wavefunctions. In particular, the saturation scale that characterizes this multi-parton dynamics is significantly larger in central events relative to minimum bias events. As an application, we examine the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.

  8. Optical tolerances for the PICTURE-C mission: error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration

    NASA Astrophysics Data System (ADS)

    Mendillo, Christopher B.; Howe, Glenn A.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. Four leakage sources owing to the optical fabrication tolerances and optical coatings are: electric field conjugation (EFC) residuals, beam walk on the secondary and tertiary mirrors, optical surface scattering, and polarization aberration. Simulations and analysis of these four leakage sources for the PICTUREC optical design are presented here.

  9. Fractional Fourier transform of truncated elliptical Gaussian beams.

    PubMed

    Du, Xinyue; Zhao, Daomu

    2006-12-20

    Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.

  10. Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)

    DTIC Science & Technology

    2005-01-01

    tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form

  11. Hydroxyl Tagging Velocimetry in Cavity-Piloted Mach 2 Combustor (Postprint)

    DTIC Science & Technology

    2006-01-01

    combustor with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H...grid of OH tracked by planar laser -induced fluorescence to yield about 120 velocity vectors of the two-dimensional flow over a fixed time delay...with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H + OH to

  12. A novel in situ trigger combination method

    DOE PAGES

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; ...

    2013-01-30

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and system performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding ofmore » the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, that were combined in the context of the search for the Higgs (H) boson produced in association with a $W$ boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. We compare the inclusion and novel in situ methods for signal event yields in the CDF $WH$ search. This new combination method, by virtue of its scalability to large numbers of differing trigger chains and insensitivity to correlations between triggers, will benefit future long-running collider experiments, including those currently operating on the Large Hadron Collider.« less

  13. A novel in situ trigger combination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and system performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding ofmore » the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, that were combined in the context of the search for the Higgs (H) boson produced in association with a $W$ boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. We compare the inclusion and novel in situ methods for signal event yields in the CDF $WH$ search. This new combination method, by virtue of its scalability to large numbers of differing trigger chains and insensitivity to correlations between triggers, will benefit future long-running collider experiments, including those currently operating on the Large Hadron Collider.« less

  14. Vector solitons with polarization instability and locked polarization in a fiber laser

    NASA Astrophysics Data System (ADS)

    Tang, Dingkang; Zhang, Jian-Guo; Liu, Yuanshan

    2012-07-01

    We investigate the characteristics of vector solitons with and without locked phase velocities of orthogonal polarization components in a specially-designed laser cavity which is formed by a bidirectional fiber loop together with a semiconductor saturable absorber mirror. The characteristics of the two states are compared in the temporal and spectrum domain, respectively. Both of the two states exhibit the characteristic of mode locking while the two orthogonal polarization components are not resolved. However, for the vector soliton with unlocked phase velocities, identical intensity varies after passing through a polarization beam splitter (PBS) outside the laser cavity. Contrary to the polarization rotation locked vector soliton, the intensity does not change periodically. For the polarization-locked vector soliton (PLVS), the identical pulse intensity is still obtained after passing through the PBS and can be observed on the oscilloscope screen after photodetection. A coupler instead of a circulator is integrated in the laser cavity and strong interaction on the polarization resolved spectra of the PLVS is observed. By comparing the two states, we conclude that interaction between the two orthogonal components contributes to the locked phase velocities.

  15. An investigation for the development of an integrated optical data preprocessor. [preprocessing remote sensor outputs

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Kenan, R. P.; Hartman, N. F.; Chapman, C. M.

    1980-01-01

    A laboratory model of a 16 channel integrated optical data preprocessor was fabricated and tested in response to a need for a device to evaluate the outputs of a set of remote sensors. It does this by accepting the outputs of these sensors, in parallel, as the components of a multidimensional vector descriptive of the data and comparing this vector to one or more reference vectors which are used to classify the data set. The comparison is performed by taking the difference between the signal and reference vectors. The preprocessor is wholly integrated upon the surface of a LiNbO3 single crystal with the exceptions of the source and the detector. He-Ne laser light is coupled in and out of the waveguide by prism couplers. The integrated optical circuit consists of a titanium infused waveguide pattern, electrode structures and grating beam splitters. The waveguide and electrode patterns, by virtue of their complexity, make the vector subtraction device the most complex integrated optical structure fabricated to date.

  16. Use of digital control theory state space formalism for feedback at SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himel, T.; Hendrickson, L.; Rouse, F.

    The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allowsmore » simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs.« less

  17. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  18. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  19. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO 4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed justmore » 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.« less

  20. The Heavy Photon Search beamline and its performance

    DOE PAGES

    Baltzell, N.; Egiyan, H.; Ehrhart, M.; ...

    2017-07-01

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  1. Selection of the elastic scattering events in interactions of the NICA colliding proton (deuteron) beams

    NASA Astrophysics Data System (ADS)

    Sharov, Vasily

    2017-03-01

    The features of the kinematics of elastic pp (dd) scattering in the collider system, as well as some issues concerning registration and selection of elastic scattering events in the NICA colliding beams are considered. Equality and the opposite direction of the scattered particle momenta provide a powerful selection criterion for elastic collisions. Variants of the organization of the trigger signal for recording tracks of secondary particles and DAQ system are given. The estimates of the characteristics of elastic NN processes are obtained from available dσ/dΩCM data for the elastic pp and np scattering. The paper presents examples of simulations using the Monte-Carlo of elastic pp scattering in the colliding proton beams and quasi-elastic np scattering in the colliding deuteron beams and evaluates the outputs of these processes at the NICA collider.

  2. Performance of the NOνA Data Acquisition and Trigger Systems for the full 14 kT Far Detector

    NASA Astrophysics Data System (ADS)

    Norman, A.; Davies, G. S.; Ding, P. F.; Dukes, E. C.; Duyan, H.; Frank, M. J.; R. C. Group; Habig, A.; Henderson, W.; Niner, E.; Mina, R.; Moren, A.; Mualem, L.; Oksuzian, Y.; Rebel, B.; Shanahan, P.; Sheshukov, A.; Tamsett, M.; Tomsen, K.; Vinton, L.; Wang, Z.; Zamorano, B.; Zirnstien, J.

    2015-12-01

    The NOvA experiment uses a continuous, free-running, dead-timeless data acquisition system to collect data from the 14 kT far detector. The DAQ system readouts the more than 344,000 detector channels and assembles the information into an raw unfiltered high bandwidth data stream. The NOvA trigger systems operate in parallel to the readout and asynchronously to the primary DAQ readout/event building chain. The data driven triggering systems for NOvA are unique in that they examine long contiguous time windows of the high resolution readout data and enable the detector to be sensitive to a wide range of physics interactions from those with fast, nanosecond scale signals up to processes with long delayed coincidences between hits which occur at the tens of milliseconds time scale. The trigger system is able to achieve a true 100% live time for the detector, making it sensitive to both beam spill related and off-spill physics.

  3. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less

  4. FPGA-based trigger system for the Fermilab SeaQuest experimentz

    NASA Astrophysics Data System (ADS)

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin

    2015-12-01

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ- produced in 120 GeV/c proton-nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

  5. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    DOE PAGES

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; ...

    2015-09-10

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less

  6. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.

    2015-07-15

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot andmore » its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.« less

  7. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    NASA Astrophysics Data System (ADS)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-07-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  8. Multipass Steering: A Reference Implementation

    NASA Astrophysics Data System (ADS)

    Hennessey, Michael; Tiefenback, Michael

    2015-10-01

    We introduce a reference implementation of a protocol to compute corrections that bring all beams in one of the CEBAF linear accelerators (linac) to axis, including, with a larger tolerance, the lowest energy pass using measured beam trajectory data. This method relies on linear optics as representation of the system; we treat beamline perturbations as magnetic field errors localized to regions between cryomodules, providing the same transverse momentum kick to each beam. We produce a vector of measured beam position data with which we left-multiply the pseudo-inverse of a coefficient array, A, that describes the transport of the beam through the linac using parameters that include the magnetic offsets of the quadrupole magnets, the instrumental offsets of the BPMs, and the beam initial conditions. This process is repeated using a reduced array to produce values that can be applied to the available correcting magnets and beam initial conditions. We show that this method is effective in steering the beam to a straight axis along the linac by using our values in elegant, the accelerator simulation program, on a model of the linac in question. The algorithms in this reference implementation provide a tool for systematic diagnosis and cataloging of perturbations in the beam line. Supported by Jefferson Lab, Old Dominion University, NSF, DOE.

  9. 3D beam shape estimation based on distributed coaxial cable interferometric sensor

    NASA Astrophysics Data System (ADS)

    Cheng, Baokai; Zhu, Wenge; Liu, Jie; Yuan, Lei; Xiao, Hai

    2017-03-01

    We present a coaxial cable interferometer based distributed sensing system for 3D beam shape estimation. By making a series of reflectors on a coaxial cable, multiple Fabry-Perot cavities are created on it. Two cables are mounted on the beam at proper locations, and a vector network analyzer (VNA) is connected to them to obtain the complex reflection signal, which is used to calculate the strain distribution of the beam in horizontal and vertical planes. With 6 GHz swept bandwidth on the VNA, the spatial resolution for distributed strain measurement is 0.1 m, and the sensitivity is 3.768 MHz mɛ -1 at the interferogram dip near 3.3 GHz. Using displacement-strain transformation, the shape of the beam is reconstructed. With only two modified cables and a VNA, this system is easy to implement and manage. Comparing to optical fiber based sensor systems, the coaxial cable sensors have the advantage of large strain and robustness, making this system suitable for structure health monitoring applications.

  10. Control of polarization rotation in nonlinear propagation of fully structured light

    NASA Astrophysics Data System (ADS)

    Gibson, Christopher J.; Bevington, Patrick; Oppo, Gian-Luca; Yao, Alison M.

    2018-03-01

    Knowing and controlling the spatial polarization distribution of a beam is of importance in applications such as optical tweezing, imaging, material processing, and communications. Here we show how the polarization distribution is affected by both linear and nonlinear (self-focusing) propagation. We derive an analytical expression for the polarization rotation of fully structured light (FSL) beams during linear propagation and show that the observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising the FSL beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase modulation due to a self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by changing the eigenmodes of the superposition, and physical parameters such as the beam size, the amount of Kerr nonlinearity, and the input power. Finally, we show that by biasing cylindrical vector beams to have elliptical polarization, we can vary the polarization state from radial through spiral to azimuthal using nonlinear propagation.

  11. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    PubMed

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  12. Negative refraction and backward wave in pseudochiral mediums: illustrations of Gaussian beams.

    PubMed

    Chern, Ruey-Lin; Chang, Po-Han

    2013-02-11

    We investigate the phenomena of negative refraction and backward wave in pseudochiral mediums, with illustrations of Gaussian beams. Due to symmetry breaking intrinsic in pseudochiral mediums, there exist two elliptically polarized eigenwaves with different wave vectors. As the chirality parameter increases from zero, the two waves begin to split from each other. For a wave incident from vacuum onto a pseudochiral medium, negative refraction may occur for the right-handed wave, whereas backward wave may appear for the left-handed wave. These features are illustrated with Gaussian beams based on Fourier integral formulations for the incident, reflected, and transmitted waves. Negative refraction and backward wave are manifest, respectively, on the energy flow in space and wavefront movement in time.

  13. Measurement of the beam asymmetry Σ for π0 and η photoproduction on the proton at Eγ=9 GeV

    NASA Astrophysics Data System (ADS)

    Al Ghoul, H.; Anassontzis, E. G.; Austregesilo, A.; Barbosa, F.; Barnes, A.; Beattie, T. D.; Bennett, D. W.; Berdnikov, V. V.; Black, T.; Boeglin, W.; Briscoe, W. J.; Brooks, W. K.; Cannon, B. E.; Chernyshov, O.; Chudakov, E.; Crede, V.; Dalton, M. M.; Deur, A.; Dobbs, S.; Dolgolenko, A.; Dugger, M.; Dzhygadlo, R.; Egiyan, H.; Eugenio, P.; Fanelli, C.; Foda, A. M.; Frye, J.; Furletov, S.; Gan, L.; Gasparian, A.; Gerasimov, A.; Gevorgyan, N.; Goetzen, K.; Goryachev, V. S.; Guo, L.; Hakobyan, H.; Hardin, J.; Henderson, A.; Huber, G. M.; Ireland, D. G.; Ito, M. M.; Jarvis, N. S.; Jones, R. T.; Kakoyan, V.; Kamel, M.; Klein, F. J.; Kliemt, R.; Kourkoumeli, C.; Kuleshov, S.; Kuznetsov, I.; Lara, M.; Larin, I.; Lawrence, D.; Levine, W. I.; Livingston, K.; Lolos, G. J.; Lyubovitskij, V.; Mack, D.; Mattione, P. T.; Matveev, V.; McCaughan, M.; McCracken, M.; McGinley, W.; McIntyre, J.; Mendez, R.; Meyer, C. A.; Miskimen, R.; Mitchell, R. E.; Mokaya, F.; Moriya, K.; Nerling, F.; Nigmatkulov, G.; Ochoa, N.; Ostrovidov, A. I.; Papandreou, Z.; Patsyuk, M.; Pedroni, R.; Pennington, M. R.; Pentchev, L.; Peters, K. J.; Pooser, E.; Pratt, B.; Qiang, Y.; Reinhold, J.; Ritchie, B. G.; Robison, L.; Romanov, D.; Salgado, C.; Schumacher, R. A.; Schwarz, C.; Schwiening, J.; Semenov, A. Yu.; Semenova, I. A.; Seth, K. K.; Shepherd, M. R.; Smith, E. S.; Sober, D. I.; Somov, A.; Somov, S.; Soto, O.; Sparks, N.; Staib, M. J.; Stevens, J. R.; Strakovsky, I. I.; Subedi, A.; Tarasov, V.; Taylor, S.; Teymurazyan, A.; Tolstukhin, I.; Tomaradze, A.; Toro, A.; Tsaris, A.; Vasileiadis, G.; Vega, I.; Walford, N. K.; Werthmüller, D.; Whitlatch, T.; Williams, M.; Wolin, E.; Xiao, T.; Zarling, J.; Zhang, Z.; Zihlmann, B.; Mathieu, V.; Nys, J.; GlueX Collaboration

    2017-04-01

    We report measurements of the photon beam asymmetry Σ for the reactions γ ⃗p →p π0 and γ ⃗p →p η from the GlueX experiment using a 9 GeV linearly polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous π0 measurements and are the first η measurements in this energy regime. The results are compared with theoretical predictions based on t -channel, quasiparticle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.

  14. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.

    PubMed

    Pavone, S C; Ettorre, M; Casaletti, M; Albani, M

    2016-05-16

    In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity.

  15. Hole-cyclotron instability in semiconductor quantum plasmas

    NASA Astrophysics Data System (ADS)

    Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.

    2018-01-01

    The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.

  16. Development of novel two-photon microscopy for living brain and neuron.

    PubMed

    Nemoto, Tomomi

    2014-11-01

    "In vivo" two-photon microscopy (TPLSM) has revealed vital information on neural activity for brain function, even in light of its limitation in imaging events at depths greater than a several hundred micrometers from the brain surface. To break the limit of this penetration depth, we introduced a novel light source based on a semiconductor laser [1]. The light source successfully visualized not only cortex layer V pyramidal neurons spreading to all cortex layers at a superior S/N ratio, but visualize hippocampal CA1 neurons in young adult mice [2]. These results indicate that the penetration depth of this laser was ∼1.4 mm. In vivo TPLSM with a laser emitting a longer wavelength might give us insights on activities of neurons in the cortex or the hippocampus. This deep imaging method could be applicable to other living organs including tumor tissues. In addition, we developed liquid crystal devices to convert linearly polarized beams (LP) to vector beams [3]. A liquid device generated a vector beam called higher-order radially polarized (HRP) beam, which enabled that each of the aggregated 0.17 m beads was distinguished individually, whereas in conventional confocal microscopy or TPLSM they could not. We also visualized the finer structures of networks of filamentous cytoskeleton microtubule fluorescently-labeled in the COS-7, and primary culture of mouse neurons. Moreover, by taking an advantage of the LCDs that can utilize various wavelengths including near-infrared, we could employ an HRP beam for improving TPLSM. An HRP beam visualized fine intracellular structures not only in fixed cells stained with various dyes, but also in living cells expressing a fluorescent protein [4]. HRP beam also visualized finer structures of microtubules in fixed cells. Here, we will discuss these improvements and future application on the basis of our recent data.jmicro;63/suppl_1/i7/DFU087F1F1DFU087F1Fig. 1."in vivo" imaging of living mouse brain (H-line). © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Singular value description of a digital radiographic detector: Theory and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.

    The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the objectmore » is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to signal detection theory, and the characterization of shift-variant imaging systems.« less

  18. First results on the energy scan of the vector Ay and tensor Ayy and Axx analyzing powers in deuteron-proton elastic scattering at Nuclotron1

    NASA Astrophysics Data System (ADS)

    Ladygin, V. P.; Averyanov, A. V.; Chernykh, E. V.; Enache, D.; Gurchin, Yu V.; Isupov, A. Yu; Janek, M.; Karachuk, J.-T.; Khrenov, A. N.; Krivenkov, D. O.; Kurilkin, P. K.; Ladygina, N. B.; Livanov, A. N.; Piyadin, S. M.; Reznikov, S. G.; Skhomenko, Ya T.; Terekhin, A. A.; Tishevsky, A. V.; Uesaka, T.

    2017-12-01

    New results on the vector Ay and tensor Ayy and Axx analyzing powers in deuteron-proton elastic scattering obtained at Nuclotron in the energy range 400-1800 MeV are presented. These data have been obtained in 2016-2017 at DSS setup at internal target station using polarized deuteron beam from new source of polarized ions. The preliminary data on the deuteron analyzing powers in in the wide energy range demonstrate the sensitivity to the short-range spin structure of the nucleon-nucleon correlations.

  19. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam.

    PubMed

    Fang, Zhao-Xiang; Chen, Yue; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De; Zhang, An-Qi; Zhao, Hong-Ze; Wang, Pei

    2018-03-19

    Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.

  20. Enhanced optical limiting effects in a double-decker bis(phthalocyaninato) rare earth complex using radially polarized beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jia-Lu; Gu, Bing, E-mail: gubing@seu.edu.cn; Liu, Dahui

    2014-10-27

    Optical limiting (OL) effects can be enhanced by exploiting various limiting mechanisms and by designing nonlinear optical materials. In this work, we present the large enhancement of OL effects by manipulating the polarization distribution of the light field. Theoretically, we develop the Z-scan and nonlinear transmission theories on a two-photon absorber under the excitation of cylindrical vector beams. It is shown that both the sensitivity of Z-scan technique and the OL effect using radially polarized beams have the large enhancement compared with that using linearly polarized beams (LPBs). Experimentally, we investigate the nonlinear absorption properties of a double-decker Pr[Pc(OC{sub 8}H{submore » 17}){sub 8}]{sub 2} rare earth complex by performing Z-scan measurements with femtosecond-pulsed radially polarized beams at 800 nm wavelength. The observed two-photon absorption process, which originates from strong intramolecular π–π interaction, is exploited for OL application. The results demonstrate the large enhancement of OL effects using radially polarized beams instead of LPBs.« less

  1. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less

  2. Neurotropism and behavioral changes associated with Zika infection in the vector Aedes aegypti.

    PubMed

    Gaburro, Julie; Bhatti, Asim; Harper, Jenni; Jeanne, Isabelle; Dearnley, Megan; Green, Diane; Nahavandi, Saeid; Paradkar, Prasad N; Duchemin, Jean-Bernard

    2018-04-25

    Understanding Zika virus infection dynamics is essential, as its recent emergence revealed possible devastating neuropathologies in humans, thus causing a major threat to public health worldwide. Recent research allowed breakthrough in our understanding of the virus and host pathogenesis; however, little is known on its impact on its main vector, Aedes aegypti. Here we show how Zika virus targets Aedes aegypti's neurons and induces changes in its behavior. Results are compared to dengue virus, another flavivirus, which triggers a different pattern of behavioral changes. We used microelectrode array technology to record electrical spiking activity of mosquito primary neurons post infections and discovered that only Zika virus causes an increase in spiking activity of the neuronal network. Confocal microscopy also revealed an increase in synapse connections for Zika virus-infected neuronal networks. Interestingly, the results also showed that mosquito responds to infection by overexpressing glutamate regulatory genes while maintaining virus levels. This neuro-excitation, possibly via glutamate, could contribute to the observed behavioral changes in Zika virus-infected Aedes aegypti females. This study reveals the importance of virus-vector interaction in arbovirus neurotropism, in humans and vector. However, it appears that the consequences differ in the two hosts, with neuropathology in human host, while behavioral changes in the mosquito vector that may be advantageous to the virus.

  3. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  4. Spiral-Based Phononic Plates: From Wave Beaming to Topological Insulators

    NASA Astrophysics Data System (ADS)

    Foehr, André; Bilal, Osama R.; Huber, Sebastian D.; Daraio, Chiara

    2018-05-01

    Phononic crystals and metamaterials can sculpt elastic waves, controlling their dispersion using different mechanisms. These mechanisms are mostly Bragg scattering, local resonances, and inertial amplification, derived from ad hoc, often problem-specific geometries of the materials' building blocks. Here, we present a platform that ultilizes a lattice of spiraling unit cells to create phononic materials encompassing Bragg scattering, local resonances, and inertial amplification. We present two examples of phononic materials that can control waves with wavelengths much larger than the lattice's periodicity. (1) A wave beaming plate, which can beam waves at arbitrary angles, independent of the lattice vectors. We show that the beaming trajectory can be continuously tuned, by varying the driving frequency or the spirals' orientation. (2) A topological insulator plate, which derives its properties from a resonance-based Dirac cone below the Bragg limit of the structured lattice of spirals.

  5. Discovering New Light States at Neutrino Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Rouven; /SLAC; Harnik, Roni

    2011-08-11

    Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovaemore » constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.« less

  6. Optics. Spatially structured photons that travel in free space slower than the speed of light.

    PubMed

    Giovannini, Daniel; Romero, Jacquiline; Potoček, Václav; Ferenczi, Gergely; Speirits, Fiona; Barnett, Stephen M; Faccio, Daniele; Padgett, Miles J

    2015-02-20

    That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wave vectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam's transverse spatial structure. Using time-correlated photon pairs, we show a reduction in the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several micrometers over a propagation distance of ~1 meter. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves. Copyright © 2015, American Association for the Advancement of Science.

  7. Achromatic vector vortex beams from a glass cone

    NASA Astrophysics Data System (ADS)

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-02-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.

  8. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamare, Jeffrey E

    2003-06-20

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 {micro}S (the beam transit time aroundmore » the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS.« less

  9. SU-E-J-141: Assessment of the Magnitude and Impact of Trigger Delay in Respiratory Triggered Real-Time Imaging during Radiotherapy.

    PubMed

    Duan, J; Shen, S; Popple, R; Wu, X; Cardan, R; Brezovich, I

    2012-06-01

    To assess the trigger delay in respiratory triggered real-time imaging and its impact on image guided radiotherapy (IGRT) with Varian TrueBeam System. A sinusoidal motion phantom with 2cm motion amplitude was used. The trigger delay was determined directly with video image, and indirectly by the distance between expected and actual triggering phantom positions. For the direct method, a fluorescent screen was placed on the phantom to visualize the x-ray. The motion of the screen was recorded at 60 frames/second. The number of frames between the time when the phantom reached expected triggering position and the time when the screen was illuminated by the x-ray was used to determine the trigger delay. In the indirect method, triggered kV x-ray images were acquired in real-time during 'treatment' with triggers set at 25% and 75% respiratory phases where the phantom moved at the maximum speed. 39-40 triggered images were acquired continuously in each series. The distance between the expected and actual triggering points, d, was measured on the images to determine the delay time t by d=Asin(wt), where w=2π/T, T=period and A=amplitude. Motion periods of 2s and 4s were used in the measurement. The trigger delay time determined with direct video imaging was 125ms (7.5 video frames). The average distance between the expected and actual triggering positions determined by the indirect method was 3.93±0.74mm for T=4s and 7.02±1.25mm for T=2s, yielding mean trigger delay times of 126±24ms and 120±22ms, respectively. Although the mean over-travel distance is significant at 25% and 75% phases, clinically, the target over-travel resulted from the trigger delay at the end of expiration (50% phase) is negligibly small(< 0.5mm). The trigger delay in respiration-triggered imaging is in the range of 120-126ms. This delay has negligible clinical effect on gated IGRT. © 2012 American Association of Physicists in Medicine.

  10. Cylindrical Vector Beams for Rapid Polarization-Dependent Measurements in Atomic Systems

    DTIC Science & Technology

    2011-12-05

    www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-25035. 16. S. Tripathi and K. C. Toussaint, Jr., “Rapid Mueller matrix polarimetry based on parallelized...optical trapping [11], atom guiding [12], laser machining [13], charged particle acceleration [14,15], and polarimetry [16]. Yet despite numerous

  11. Current vector control challenges in the fight against malaria.

    PubMed

    Benelli, Giovanni; Beier, John C

    2017-10-01

    The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Phase measurement for driven spin oscillations in a storage ring

    NASA Astrophysics Data System (ADS)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2018-04-01

    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.

  13. Deduction of two-dimensional blood flow vector by dual angle diverging waves from a cardiac sector probe

    NASA Astrophysics Data System (ADS)

    Maeda, Moe; Nagaoka, Ryo; Ikeda, Hayato; Yaegashi, So; Saijo, Yoshifumi

    2018-07-01

    Color Doppler method is widely used for noninvasive diagnosis of heart diseases. However, the method can measure one-dimensional (1D) blood flow velocity only along an ultrasonic beam. In this study, diverging waves with two different angles were irradiated from a cardiac sector probe to estimate a two-dimensional (2D) blood flow vector from each velocity measured with the angles. The feasibility of the proposed method was evaluated in experiments using flow poly(vinyl alcohol) (PVA) gel phantoms. The 2D velocity vectors obtained with the proposed method were compared with the flow vectors obtained with the particle image velocimetry (PIV) method. Root mean square errors of the axial and lateral components were 11.3 and 29.5 mm/s, respectively. The proposed method was also applied to echo data from the left ventricle of the heart. The inflow from the mitral valve in diastole and the ejection flow concentrating in the aorta in systole were visualized.

  14. Performance of SMARTer at Very Low Scattering Vector q-Range Revealed by Monodisperse Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, E. Giri Rachman; Ikram, A.; Bharoto

    2008-03-17

    A monodisperse nanoparticle sample of polystyrene has been employed to determine performance of the 36 meter small-angle neutron scattering (SANS) BATAN spectrometer (SMARTer) at the Neutron Scattering Laboratory (NSL)--Serpong, Indonesia, in a very low scattering vector q-range. Detector position at 18 m from sample position, beam stopper of 50 mm in diameter, neutron wavelength of 5.66 A as well as 18 m-long collimator had been set up to achieve very low scattering vector q-range of SMARTer. A polydisperse smeared-spherical particle model was applied to fit the corrected small-angle scattering data of monodisperse polystyrene nanoparticle sample. The mean average of particlemore » radius of 610 A, volume fraction of 0.0026, and polydispersity of 0.1 were obtained from the fitting results. The experiment results from SMARTer are comparable to SANS-J, JAEA - Japan and it is revealed that SMARTer is powerfully able to achieve the lowest scattering vector down to 0.002 A{sup -1}.« less

  15. Ceramic components manufacturing by selective laser sintering

    NASA Astrophysics Data System (ADS)

    Bertrand, Ph.; Bayle, F.; Combe, C.; Goeuriot, P.; Smurov, I.

    2007-12-01

    In the present paper, technology of selective laser sintering/melting is applied to manufacture net shaped objects from pure yttria-zirconia powders. Experiments are carried out on Phenix Systems PM100 machine with 50 W fibre laser. Powder is spread by a roller over the surface of 100 mm diameter alumina cylinder. Design of experiments is applied to identify influent process parameters (powder characteristics, powder layering and laser manufacturing strategy) to obtain high-quality ceramic components (density and micro-structure). The influence of the yttria-zirconia particle size and morphology onto powder layering process is analysed. The influence of the powder layer thickness on laser sintering/melting is studied for different laser beam velocity V ( V = 1250-2000 mm/s), defocalisation (-6 to 12 mm), distance between two neighbour melted lines (so-called "vectors") (20-40 μm), vector length and temperature in the furnace. The powder bed density before laser sintering/melting also has significant influence on the manufactured samples density. Different manufacturing strategies are applied and compared: (a) different laser beam scanning paths to fill the sliced surfaces of the manufactured object, (b) variation of vector length (c) different strategies of powder layering, (d) temperature in the furnace and (e) post heat treatment in conventional furnace. Performance and limitations of different strategies are analysed applying the following criteria: geometrical accuracy of the manufactured samples, porosity. The process stability is proved by fabrication of 1 cm 3 volume cube.

  16. Optimization and Modification of the SeaQuest Trigger Efficiency Program

    NASA Astrophysics Data System (ADS)

    White, Nattapat

    2017-09-01

    The primary purpose E906/SeaQuest is to examine the quark and antiquark distributions within the nucleon. This experiment uses the proton beam from the 120 GeV Fermi National Accelerator Laboratory Main Injector to collide with one of several fixed targets. From the collision, a pair of muons produced by the Drell-Yan process directly probes the nucleon sea antiquarks. The Seaquest spectrometer consists of two focusing magnets, several detectors, and multiple planes of scintillating hodoscopes that helped track and analyze the properties of particles. Hodoscope hits are compared to predetermined hit combinations that would result from a pair of muons that originated in the target. Understanding the trigger efficiency is part of the path to determine the probability of Drell Yan muon pair production in the experiment. Over the years of data taking, the trigger efficiency varied as individual scintillator detection efficiency changed. To accurately determine how the trigger efficiency varied over time, the trigger efficiency program needed to be upgraded to include the effects of inefficiencies in the 284 individual channels in the hodoscope systems. The optimization, modification, and results of the upgraded trigger efficiency program will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.

  17. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Chauhan, Prashant

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled lasermore » beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.« less

  18. The development of high-voltage repetitive low-jitter corona stabilized triggered switch

    NASA Astrophysics Data System (ADS)

    Geng, Jiuyuan; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao; Chen, Rong

    2018-04-01

    The high-power switch plays an important part in a pulse power system. With the trend of pulse power technology toward modularization, miniaturization, and accuracy control, higher requirements on electrical trigger and jitter of the switch have been put forward. A high-power low-jitter corona-stabilized triggered switch (CSTS) is designed in this paper. This kind of CSTS is based on corona stabilized mechanism, and it can be used as a main switch of an intense electron-beam accelerator (IEBA). Its main feature was the use of an annular trigger electrode instead of a traditional needle-like trigger electrode, taking main and side trigger rings to fix the discharging channels and using SF6/N2 gas mixture as its operation gas. In this paper, the strength of the local field enhancement was changed by a trigger electrode protrusion length Dp. The differences of self-breakdown voltage and its stability, delay time jitter, trigger requirements, and operation range of the switch were compared. Then the effect of different SF6/N2 mixture ratio on switch performance was explored. The experimental results show that when the SF6 is 15% with the pressure of 0.2 MPa, the hold-off voltage of the switch is 551 kV, the operating range is 46.4%-93.5% of the self-breakdown voltage, the jitter is 0.57 ns, and the minimum trigger voltage requirement is 55.8% of the peak. At present, the CSTS has been successfully applied to an IEBA for long time operation.

  19. The development of high-voltage repetitive low-jitter corona stabilized triggered switch.

    PubMed

    Geng, Jiuyuan; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao; Chen, Rong

    2018-04-01

    The high-power switch plays an important part in a pulse power system. With the trend of pulse power technology toward modularization, miniaturization, and accuracy control, higher requirements on electrical trigger and jitter of the switch have been put forward. A high-power low-jitter corona-stabilized triggered switch (CSTS) is designed in this paper. This kind of CSTS is based on corona stabilized mechanism, and it can be used as a main switch of an intense electron-beam accelerator (IEBA). Its main feature was the use of an annular trigger electrode instead of a traditional needle-like trigger electrode, taking main and side trigger rings to fix the discharging channels and using SF 6 /N 2 gas mixture as its operation gas. In this paper, the strength of the local field enhancement was changed by a trigger electrode protrusion length Dp. The differences of self-breakdown voltage and its stability, delay time jitter, trigger requirements, and operation range of the switch were compared. Then the effect of different SF 6 /N 2 mixture ratio on switch performance was explored. The experimental results show that when the SF 6 is 15% with the pressure of 0.2 MPa, the hold-off voltage of the switch is 551 kV, the operating range is 46.4%-93.5% of the self-breakdown voltage, the jitter is 0.57 ns, and the minimum trigger voltage requirement is 55.8% of the peak. At present, the CSTS has been successfully applied to an IEBA for long time operation.

  20. Heavy-ion induced electronic desorption of gas from metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Kollmus, H; Mahner, E

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  1. Measuring Low-PRF Pulsed Signals with a Standard HP 8510B Vector Network Analyzer Within Milliseconds (Het Meten van Lage-PRF Gepulste Signalen met een Standaard HP 8510B Vector Network Analyzer Binnen Enkele Milliseconden)

    DTIC Science & Technology

    1990-08-01

    reference signal 25 5 A METHOD FOR MEASURING LOW-PRF PULSED SIGNALS 28 5.1 Using a NWA with a smaller BPF 28 5.2 Using the HP 8510B external trigger...2nd LO 11Q 3MHz BPF lOkHz BPF Fig. 4: Receiver block diagram The receiver is a double conversion superheterodyne with a 10 kHz wide BandPass Filter... BPF ) in the second IF. This 10 kHz filter is the component that dictates how the HP 8510B responds to pulsed signals. For the pulsed-RF test signal

  2. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  3. A 32-channel front-end ASIC for GEM detectors used in beam monitoring applications

    NASA Astrophysics Data System (ADS)

    Ciciriello, F.; Altieri, P. R.; Corsi, F.; De Robertis, G.; Felici, G.; Loddo, F.; Lorusso, L.; Marzocca, C.; Matarrese, G.; Ranieri, A.; Stamerra, A.

    2017-11-01

    A multichannel, mixed-signal, front-end ASIC for GEM detectors, intended for beam monitoring in hadron therapy applications, has been designed and prototyped in a standard 0.35 μm CMOS technology. The analog channels are based on the classic CSA + shaper processing chain, followed by a peak detector which can work as an analog memory, to simplifiy the analog-to-digital conversion of the peak voltage of the output pulse, proportional to the energy of the detected event. The available hardware resources include an 8-bit A/D converter and a standard-cell digital part, which manages the read-out procedure, in sparse or serial mode. The ASIC is self-triggered and transfers energy and address data to the external DAQ via a fast 100 MHz LVDS link. Preliminary characterization results show that the non-linearity error is limited to 5% for a maximum input charge of about 70 fC, the measured ENC is about 1400e- and the time jitter of the trigger signal generated in response to an injected charge of 60 fC is close to 200 ps.

  4. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.

    PubMed

    Tufail, Yusuf; Cook, Daniela; Fourgeaud, Lawrence; Powers, Colin J; Merten, Katharina; Clark, Charles L; Hoffman, Elizabeth; Ngo, Alexander; Sekiguchi, Kohei J; O'Shea, Clodagh C; Lemke, Greg; Nimmerjahn, Axel

    2017-02-08

    Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. 2-D Nonlinear Theory of the Free Electron Laser Amplifier for an Electron Beam with Finite Axial and Transverse Dimensions.

    DTIC Science & Technology

    1982-04-23

    configuration is shown in Fig. 1. The generalized vector potentials of the right-handed, heh. !, static magnetic wiggler field and the electromagnetic...Fig. 2 denote the locations of the electron beams at t1 - 1 rn/c and t - 2 in/c, which c is the speed of light . The solid lines in the (z, t) plot are...the light lines. The gain pulse on axis are plotted at times t and t2. We see that the excited radiation pulse grows and spreads beyond the electron

  6. Environmental Drivers of West Nile Fever Epidemiology in Europe and Western Asia—A Review

    PubMed Central

    Paz, Shlomit; Semenza, Jan C.

    2013-01-01

    Abiotic and biotic conditions are both important determinants of West Nile Fever (WNF) epidemiology. Ambient temperature plays an important role in the growth rates of vector populations, the interval between blood meals, viral replication rates and transmission of West Nile Virus (WNV). The contribution of precipitation is more complex and less well understood. In this paper we discuss impacts of climatic parameters (temperature, relative humidity, precipitation) and other environmental drivers (such as bird migration, land use) on WNV transmission in Europe. WNV recently became established in southeastern Europe, with a large outbreak in the summer of 2010 and recurrent outbreaks in 2011 and 2012. Abundant competent mosquito vectors, bridge vectors, infected (viremic) migrating and local (amplifying) birds are all important characteristics of WNV transmission. In addition, certain key climatic factors, such as increased ambient temperatures, and by extension climate change, may also favor WNF transmission, and they should be taken into account when evaluating the risk of disease spread in the coming years. Monitoring epidemic precursors of WNF, such as significant temperature deviations in high risk areas, could be used to trigger vector control programs and public education campaigns. PMID:23939389

  7. Strong-field ionization with twisted laser pulses

    NASA Astrophysics Data System (ADS)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  8. Modeling and control of beam-like structures

    NASA Technical Reports Server (NTRS)

    Hu, A.; Skelton, R. E.; Yang, T. Y.

    1987-01-01

    The most popular finite element codes are based upon appealing theories of convergence of modal frequencies. For example, the popularity of cubic elements for beam-like structures is due to the rapid convergence of modal frequencies and stiffness properties. However, for those problems in which the primary consideration is the accuracy of response of the structure at specified locations it is more important to obtain accuracy in the modal costs than in the modal frequencies. The modal cost represents the contribution of a mode in the norm of the response vector. This paper provides a complete modal cost analysis for beam-like continua. Upper bounds are developed for mode truncation errors in the model reduction process and modal cost analysis dictates which modes to retain in order to reduce the model for control design purposes.

  9. Measurement of the beam asymmetry Σ for π 0 and η photoproduction on the proton at E γ = 9 GeV

    DOE PAGES

    Al Ghoul, H.; Anassontzis, E. G.; Austregesilo, A.; ...

    2017-04-24

    In this paper, we report measurements of the photon beam asymmetrymore » $$\\Sigma$$ for the reactions $$\\vec{\\gamma}p\\to p\\pi^0$$ and $$\\vec{\\gamma}p\\to p\\eta $$ from the GLUEX experiment using a 9 GeV linearly polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $$\\pi^0$$ measurements and are the first $$\\eta$$ measurements in this energy regime. Lastly, the results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giunta, G.; Belouettar, S.

    In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less

  11. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells.

    PubMed

    Chang, Chia-Wei; Lai, Yi-Shin; Pawlik, Kevin M; Liu, Kaimao; Sun, Chiao-Wang; Li, Chao; Schoeb, Trenton R; Townes, Tim M

    2009-05-01

    We report the derivation of induced pluripotent stem (iPS) cells from adult skin fibroblasts using a single, polycistronic lentiviral vector encoding the reprogramming factors Oct4, Sox2, and Klf4. Porcine teschovirus-1 2A sequences that trigger ribosome skipping were inserted between human cDNAs for these factors, and the polycistron was subcloned downstream of the elongation factor 1 alpha promoter in a self-inactivating (SIN) lentiviral vector containing a loxP site in the truncated 3' long terminal repeat (LTR). Adult skin fibroblasts from a humanized mouse model of sickle cell disease were transduced with this single lentiviral vector, and iPS cell colonies were picked within 30 days. These cells expressed endogenous Oct4, Sox2, Nanog, alkaline phosphatase, stage-specific embryonic antigen-1, and other markers of pluripotency. The iPS cells produced teratomas containing tissue derived from all three germ layers after injection into immunocompromised mice and formed high-level chimeras after injection into murine blastocysts. iPS cell lines with as few as three lentiviral insertions were obtained. Expression of Cre recombinase in these iPS cells resulted in deletion of the lentiviral vector, and sequencing of insertion sites demonstrated that remnant 291-bp SIN LTRs containing a single loxP site did not interrupt coding sequences, promoters, or known regulatory elements. These results suggest that a single, polycistronic "hit and run" vector can safely and effectively reprogram adult dermal fibroblasts into iPS cells.

  12. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Vector-Potential Flow in Relativistic Beam Diodes.

    DTIC Science & Technology

    1980-09-05

    is no plasma formation and consequent loss of energy to accelerated ions. Entering a region close to the ax ik in which an anode plasma does exist...Hubbard 1 copy J. Guillory 1 copy JAYCOR, Inc. 1401 Camino Del Mar Del Mar, CA 92014 Attn: E. Wenaas 1 copy JAYCOR, INC. 300 Unicorn Park Drive Woburn

  14. Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

    NASA Astrophysics Data System (ADS)

    Khan, Faisal; Enzmann, Frieder; Kersten, Michael

    2016-03-01

    Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.

  15. Out-of-plane measurements of the fifth response function of the exclusive electronuclear response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolfini, S. M.; Arizona State University, Tempe, Arizona 85287-1504; Alarcon, R. O.

    1999-12-01

    The first measurements of f{sub LT}{sup '}, known as the fifth response function, have been made for the {sup 2}H(e(vector sign),e{sup '}p) and {sup 12}C(e(vector sign),e{sup '}p) reactions. This response is directly related to the imaginary part of the interference between the transverse and longitudinal nuclear electromagnetic currents. Its observation requires longitudinally polarized electron beams and out-of-plane detection, the latter made possible by the newly developed out-of-plane spectrometer system. The initial measurements were made by using a 560-MeV polarized electron beam and quasielastic kinematics at Q{sup 2}=3.3 fm{sup -2}. The development of the methodology for out-of-plane physics, and the analysismore » of the data from the initial experiments are described in detail. The measured fifth response and the related asymmetry in the coincidence cross section are in agreement, albeit with large statistical errors, with the theoretical predictions. Future extensions of the out-of-plane program are also discussed. (c) 1999 The American Physical Society.« less

  16. Recoil Polarization and Beam-Recoil Double Polarization Measurement of {eta} Electroproduction on the Proton in the Region of the S{sub 11}(1535) Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.

    2007-09-28

    The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  17. Search for single production of vector-like top partners at the Large Hadron Electron Collider

    NASA Astrophysics Data System (ADS)

    Liu, Yao-Bei

    2017-10-01

    The new vector-like top partners with charge 2/3 are a typical feature of many new physics models beyond the Standard Model (SM). We propose a search strategy for single production of top partners T focusing on both the T → Wb and T → th decay channels at the Large Hadron Electron Collider (LHeC). Our analysis is based on a simplified model in which the top partner is an SU (2) singlet, with couplings only to the third generation of SM quarks. We study the observability of the single T through the processes e+ p → T (→ bW+)νbare → bℓ+ + E̸Tmiss and e+ p → T (→ th)νbare → t (→ jj‧ b) h (→ b b bar) E̸Tmiss at the LHeC with the proposed 140 GeV electron beam (with 80% polarization) and 7 TeV proton beam. For three typical T-quark masses (800, 900 and 1000 GeV), the 3σ exclusion limits on the TWb coupling are respectively presented for various values of the integrated luminosity.

  18. Breathing motion compensated reconstruction for C-arm cone beam CT imaging: initial experience based on animal data

    NASA Astrophysics Data System (ADS)

    Schäfer, D.; Lin, M.; Rao, P. P.; Loffroy, R.; Liapi, E.; Noordhoek, N.; Eshuis, P.; Radaelli, A.; Grass, M.; Geschwind, J.-F. H.

    2012-03-01

    C-arm based tomographic 3D imaging is applied in an increasing number of minimal invasive procedures. Due to the limited acquisition speed for a complete projection data set required for tomographic reconstruction, breathing motion is a potential source of artifacts. This is the case for patients who cannot comply breathing commands (e.g. due to anesthesia). Intra-scan motion estimation and compensation is required. Here, a scheme for projection based local breathing motion estimation is combined with an anatomy adapted interpolation strategy and subsequent motion compensated filtered back projection. The breathing motion vector is measured as a displacement vector on the projections of a tomographic short scan acquisition using the diaphragm as a landmark. Scaling of the displacement to the acquisition iso-center and anatomy adapted volumetric motion vector field interpolation delivers a 3D motion vector per voxel. Motion compensated filtered back projection incorporates this motion vector field in the image reconstruction process. This approach is applied in animal experiments on a flat panel C-arm system delivering improved image quality (lower artifact levels, improved tumor delineation) in 3D liver tumor imaging.

  19. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  20. An operational satellite scatterometer for wind vector measurements over the ocean

    NASA Technical Reports Server (NTRS)

    Grantham, W. L.; Bracalente, E. M.; Jones, W. L.; Schrader, J. H.; Schroeder, L. C.; Mitchell, J. L.

    1975-01-01

    Performance requirements and design characteristics of a microwave scatterometer wind sensor for measuring surface winds over the oceans on a global basis are described. Scatterometer specifications are developed from user requirements of wind vector measurement range and accuracy, swath width, resolution cell size and measurement grid spacing. A detailed analysis is performed for a baseline fan-beam scatterometer design, and its performance capabilities for meeting the SeaSat-A user requirements. Various modes of operation are discussed which will allow the resolution of questions concerning the effects of sea state on the scatterometer wind sensing ability and to verify design boundaries of the instrument.

  1. Features of the photometry of the superposition of coherent vector electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Sakhnovskyj, Mykhajlo Yu.; Tymochko, Bogdan M.; Rudeichuk, Volodymyr M.

    2018-01-01

    In the paper we propose a general approach to the calculation of the forming the intensity and polarization fields of the superposition of arbitrary coherent vector beams at points of a given reference plane. The method of measuring photometric parameters of a field, formed in the neighborhood of an arbitrary point of the plane of analysis by minimizing the values of irradiance in the vicinity of a given point (method of zero-amplitude at a given point), which is achieved by superimposing on it the reference wave with the controlled values of intensity, polarization state, phase, and angle of incidence, is proposed.

  2. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  3. Rational-q Triggered Transport Changes With Varying Toroidal Rotation in DIII-D

    NASA Astrophysics Data System (ADS)

    Austin, M. E.; Burrell, K. H.; Waltz, R. E.; van Zeeland, M. A.; McKee, G. R.; Shafer, M. W.; Rhodes, T. L.

    2007-11-01

    Comparison of rational-q triggered ITBs in discharges with varying toroidal torque injection was carried out. Experiments were conducted in negative central shear discharges with different mixes of co/counter neutral beam injection (NBI) that altered the equilibrium ExB shear in conditions where transient improvements in transport occur near integer qmin values. The transport changes were seen in high and low rotation cases; however, the latter discharges did not transition to improved core confinement. Observations support the model that sufficient background ExB shear is required for barrier formation and zonal flow effects at integer qmin act as trigger in this case. The lack of TAE modes in the balanced injection cases indicates they are not linked to the transient confinement improvement. Fluctuation data obtained in co and balanced NBI show similar reductions in turbulence near integer qmin as well as poloidal velocity excursions that may be further evidence of zonal flow.

  4. Basic concepts and architectural details of the Delphi trigger system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocci, V.; Booth, P.S.L.; Bozzo, M.

    1995-08-01

    Delphi (DEtector with Lepton, Photon and Hadron Identification) is one of the four experiments of the LEP (Large Electron Positron) collider at CERN. The detector is laid out to provide a nearly 4 {pi} coverage for charged particle tracking, electromagnetic, hadronic calorimetry and extended particle identification. The trigger system consists of four levels. The first two are synchronous with the BCO (Beam Cross Over) and rely on hardwired control units, while the last two are performed asynchronously with respect to the BCO and are driven by the Delphi host computers. The aim of this paper is to give a comprehensivemore » global view of the trigger system architecture, presenting in detail the first two levels, their various hardware components and the latest modifications introduced in order to improve their performance and make more user friendly the whole software user interface.« less

  5. The fragmentation of 670A MeV neon-20 as a function of depth in water. I. Experiment

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Miller, J.; Wong, M.; Rapkin, M.; Howard, J.; Spieler, H. G.; Jarret, B. V.

    1989-01-01

    We present the final analysis of an experiment to study the interaction of a beam of 670A MeV neon ions incident on a water column set to different thicknesses. The atomic number Z (and, in some cases, the isotopic mass A) of primary beam particles and of the products of nuclear interactions emerging from the water column close to the central axis of the beam was obtained for nuclei between Be (Z = 4) and Ne (Z = 10) using a time-of-flight telescope to measure the velocity and a set of silicon detectors to measure the energy loss of each particle. The fluence of particles of a given charge was obtained and normalized to the incident beam intensity. Corrections were made for accidental coincidences between multiple particles triggering the TOF telescope and for interactions in the detector. The background due to beam particles interacting in beam line elements upstream of the detector was calculated. Sources of experimental artifacts and background in particle identification experiments designed to characterize heavy ion beams for radiobiological research are summarized, and some of the difficulties inherent in this work are discussed. Complete tables of absolutely normalized fluence spectra as a function of LET are included for reference purposes.

  6. Emission and propagation of Saturn kilometric radiation: Magnetoionic modes, beaming pattern, and polarization state

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Cecconi, B.; Zarka, P.; Canu, P.; Schippers, P.; Kurth, W. S.; Mutel, R. L.; Gurnett, D. A.; Menietti, D.; Louarn, P.

    2011-04-01

    The Cassini mission crossed the source region of the Saturn kilometric radiation (SKR) on 17 October 2008. On this occasion, the Radio and Plasma Wave Science (RPWS) experiment detected both local and distant radio sources, while plasma parameters were measured in situ by the magnetometer and the Cassini Plasma Spectrometer. A goniopolarimetric inversion was applied to RPWS three-antenna electric measurements to determine the wave vector k and the complete state of polarization of detected waves. We identify broadband extraordinary (X) mode as well as narrowband ordinary (O) mode SKR at low frequencies. Within the source region, SKR is emitted just above the X mode cutoff frequency in a hot plasma, with a typical electron-to-wave energy conversion efficiency of ˜1% (2% peak). The knowledge of the k vector is then used to derive the locus of SKR sources in the kronian magnetosphere, which shows X and O components emanating from the same regions. We also compute the associated beaming angle at the source θ‧ = (k, -B) either from (1) in situ measurements or a model of the magnetic field vector (for local to distant sources) or (2) polarization measurements (for local sources). Obtained results, similar for both modes, suggest quasi-perpendicular emission for local sources, whereas the beaming pattern of distant sources appears as a hollow cone with a frequency-dependent constant aperture angle: θ‧ = 75° ± 15° below 300 kHz, decreasing at higher frequencies to reach θ‧ (1000 kHz) = 50° ± 25°. Finally, we investigate quantitatively the SKR polarization state, observed to be strongly elliptical at the source, and quasi-purely circular for sources located beyond approximately two kronian radii. We show that conditions of weak mode coupling are achieved along the raypath, under which the magnetoionic theory satisfactorily describes the evolution of the observed polarization. These results are analyzed comparatively with the auroral kilometric radiation at Earth.

  7. Photoexcitation of atoms by Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Peshkov, A. A.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2017-08-01

    In a recent experiment, Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] investigated the magnetic sublevel population of Ca+ ions in a Laguerre-Gaussian light beam if the target atoms were just centered along the beam axis. They demonstrated in this experiment that the sublevel population of the excited atoms is uniquely defined by the projection of the orbital angular momentum of the incident light. However, little attention has been paid so far to the question of how the magnetic sublevels are populated when atoms are displaced from the beam axis by some impact parameter b . Here, we analyze this sublevel population for different atomic impact parameters in first-order perturbation theory and by making use of the density-matrix formalism. Detailed calculations are performed especially for the 4 s 1/2 2S →3 d 5/2 2 transition in Ca+ ions and for the vector potential of a Laguerre-Gaussian beam in Coulomb gauge. It is shown that the magnetic sublevel population of the excited 5/2 2D level varies significantly with the impact parameter and is sensitive to the polarization, the radial index, as well as the orbital angular momentum of the incident light beam.

  8. Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate

    PubMed Central

    JJ Nivas, Jijil; He, Shutong; Rubano, Andrea; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2015-01-01

    Creation of patterns and structures on surfaces at the micro- and nano-scale is a field of growing interest. Direct femtosecond laser surface structuring with a Gaussian-like beam intensity profile has already distinguished itself as a versatile method to fabricate surface structures on metals and semiconductors. Here we present an approach for direct femtosecond laser surface structuring based on optical vortex beams with different spatial distributions of the state of polarization, which are easily generated by means of a q-plate. The different states of an optical vortex beam carrying an orbital angular momentum ℓ = ±1 are used to demonstrate the fabrication of various regular surface patterns on silicon. The spatial features of the regular rippled and grooved surface structures are correlated with the state of polarization of the optical vortex beam. Moreover, scattered surface wave theory approach is used to rationalize the dependence of the surface structures on the local state of the laser beam characteristics (polarization and fluence). The present approach can be further extended to fabricate even more complex and unconventional surface structures by exploiting the possibilities offered by femtosecond optical vector fields. PMID:26658307

  9. Interferometric characterization of the structured polarized light beam produced by the conical refraction phenomenon.

    PubMed

    Peinado, Alba; Turpin, Alex; Iemmi, Claudio; Márquez, Andrés; Kalkandjiev, Todor K; Mompart, Jordi; Campos, Juan

    2015-07-13

    The interest on the conical refraction (CR) phenomenon in biaxial crystals has revived in the last years due to its prospective for generating structured polarized light beams, i.e. vector beams. While the intensity and the polarization structure of the CR beams are well known, an accurate experimental study of their phase structure has not been yet carried out. We investigate the phase structure of the CR rings by means of a Mach-Zehnder interferometer while applying the phase-shifting interferometric technique to measure the phase at the focal plane. In general the two beams interfering correspond to different states of polarization (SOP) which locally vary. To distinguish if there is an additional phase added to the geometrical one we have derived the appropriate theoretical expressions using the Jones matrix formalism. We demonstrate that the phase of the CR rings is equivalent to that one introduced by an azimuthally segmented polarizer with CR-like polarization distribution. Additionally, we obtain direct evidence that the Poggendorff dark ring is an annular singularity, with a π phase change between the inner and outer bright rings.

  10. Polychromatic polarization microscope: bringing colors to a colorless world.

    PubMed

    Shribak, Michael

    2015-11-27

    Interference of two combined white light beams produces Newton colors if one of the beams is retarded relative to the other by from 400 nm to 2000 nm. In this case the corresponding interfering spectral components are added as two scalars at the beam combination. If the retardance is below 400 nm the two-beam interference produces grey shades only. The interference colors are widely used for analyzing birefringent samples in mineralogy. However, many of biological structures have retardance <100 nm. Therefore, cells and tissues under a regular polarization microscope are seen as grey image, which contrast disappears at certain orientations. Here we are proposing for the first time using vector interference of polarized light in which the full spectrum colors are created at retardance of several nanometers, with the hue determined by orientation of the birefringent structure. The previously colorless birefringent images of organelles, cells, and tissues become vividly colored. This approach can open up new possibilities for the study of biological specimens with weak birefringent structures, diagnosing various diseases, imaging low birefringent crystals, and creating new methods for controlling colors of the light beam.

  11. Design and Operation of a Two-Color Interferometer to Measure Plasma and Neutral Gas Densities in a Laser-Triggered Spark Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.; Schmitt-Sody, A.; Lucero, A.

    2014-10-01

    A Mach-Zehnder imaging interferometer, operating with 1064-nm and 532-nm wavelength beams from a short-pulse laser and a frequency-doubled branch, respectively, has been designed and built to simultaneously measure plasma free electron and neutral gas densities profiles within a laser-triggered spark gap switch with a 5-mm gap. The switch will be triggered by focusing a separate 532-nm or 1064-nm laser pulse along the gap's axis to trigger low-jitter breakdown. Illuminating the gap transverse to this axis, the diagnostic will generate interferograms for each wavelength, which will then be numerically converted to phase-shift maps. These will be used to calculate independent line-integrated free electron and neutral density profiles by exploiting their different frequency dispersion curves. The density profiles themselves, then, will be calculated by Abel inversion. Details of the interferometer's design will be presented along with density data obtained using a variety of fill gasses at various pressures. Other switch parameters will be varied as well in order to characterize more fully the performance of the switch.

  12. Tests of a Roman Pot prototype for the TOTEM experiment

    NASA Astrophysics Data System (ADS)

    Deile, M.; Alagoz, E.; Anelli, G.; Antchev, G.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.; Eggert, K.; Escourrou, J.L; Fochler, O.; Gill, K.; Grabit, R.; Haung, F.; Jarron, P.; Kaplon, J.; Kroyer, T.; Luntama, T.; Macina, D.; Mattelon, E.; Niewiadomski, H.; Mirabito, L.; Noschis, E.P.; Oriunno, M.; Park, a.; Perrot, A.-L.; Pirotte, O.; Quetsch, J.M.; Regnier, F.; Ruggiero, G.; Saramad, S.; Siegrist, P.; Snoeys, W.; sSouissi, T.; Szczygiel, R.; Troska, J.; Vasey, F.; Verdier, A.; Da Vià, C.; Hasi, J.; Kok, A.; Watts, S.; Kašpar, J.; Kundrát, V.; Lokajíček, M.V.; Smotlacha, J.; Avati, V.; Järvinen, M.; Kalliokoski, M.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Oljemark, F.; Orava, R.; Österberg, K.; Palmieri, V.; Saarikko, H.; Soininen, A.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macrí, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Santroni, A.; Sette, G.; Sobol, A.; sBerardi, V.; Catanesi, M.G.; Radicioni, E.

    The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.

  13. Research Technology

    NASA Image and Video Library

    2004-04-15

    The Boussard Interstellar Ramjet engine concept uses interstellar hydrogen scooped up from its environment as the spacecraft passes by to provide propellant mass. The hydrogen is then ionized and then collected by an electromagentic field. In this image, an onboard laser is uded to heat the plasma, and the laser or electron beam is used to trigger fusion pulses thereby creating propulsion.

  14. Energy Frontier Research With ATLAS: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, John; Black, Kevin; Ahlen, Steve

    2016-06-14

    The Boston University (BU) group is playing key roles across the ATLAS experiment: in detector operations, the online trigger, the upgrade, computing, and physics analysis. Our team has been critical to the maintenance and operations of the muon system since its installation. During Run 1 we led the muon trigger group and that responsibility continues into Run 2. BU maintains and operates the ATLAS Northeast Tier 2 computing center. We are actively engaged in the analysis of ATLAS data from Run 1 and Run 2. Physics analyses we have contributed to include Standard Model measurements (W and Z cross sections,more » t\\bar{t} differential cross sections, WWW^* production), evidence for the Higgs decaying to \\tau^+\\tau^-, and searches for new phenomena (technicolor, Z' and W', vector-like quarks, dark matter).« less

  15. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  16. Cosmology and accelerator tests of strongly interacting dark matter

    DOE PAGES

    Berlin, Asher; Blinov, Nikita; Gori, Stefania; ...

    2018-03-23

    A natural possibility for dark matter is that it is composed of the stable pions of a QCD-like hidden sector. Existing literature largely assumes that pion self-interactions alone control the early universe cosmology. We point out that processes involving vector mesons typically dominate the physics of dark matter freeze-out and significantly widen the viable mass range for these models. The vector mesons also give rise to striking signals at accelerators. For example, in most of the cosmologically favored parameter space, the vector mesons are naturally long-lived and produce standard model particles in their decays. Electron and proton beam fixed-target experimentsmore » such as HPS, SeaQuest, and LDMX can exploit these signals to explore much of the viable parameter space. As a result, we also comment on dark matter decay inherent in a large class of previously considered models and explain how to ensure dark matter stability.« less

  17. Vector and Tensor Analyzing Powers in Deuteron-Proton Breakup

    NASA Astrophysics Data System (ADS)

    Stephan, E.; Kistryn, St.; Kalantar-Nayestanaki, N.; Biegun, A.; Bodek, K.; Ciepał, I.; Deltuva, A.; Eslami-Kalantari, M.; Fonseca, A. C.; Gasparić, I.; Golak, J.; Jamróz, B.; Joulaeizadeh, L.; Kamada, H.; Kiš, M.; Kłos, B.; Kozela, A.; Mahjour-Shafiei, M.; Mardanpour, H.; Messchendorp, J.; Micherdzińska, A.; Moeini, H.; Nogga, A.; Ramazani-Moghaddam-Arani, A.; Skibiński, R.; Sworst, R.; Witała, H.; Zejma, J.

    2011-05-01

    High precision data for vector and tensor analyzing powers of the {^1{H}({d},{{pp}}){n}} breakup reaction at 130 and 100 MeV deuteron beam energies have been measured in a large fraction of the phase space. They are compared to the theoretical predictions based on various approaches to describe the three nucleon (3N) system dynamics. Theoretical predictions describe very well the vector analyzing power data, with no need to include any three-nucleon force effects for these observables. Tensor analyzing powers can be also very well reproduced by calculations in most of the studied region, but locally certain discrepancies are observed. At 130 MeV for A xy such discrepancies usually appear, or are enhanced, when model 3N forces are included. Predicted effects of 3NFs are much lower at 100 MeV and at this energy equally good consistency between the data and the calculations is obtained with or without 3NFs.

  18. Cosmology and accelerator tests of strongly interacting dark matter

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Blinov, Nikita; Gori, Stefania; Schuster, Philip; Toro, Natalia

    2018-03-01

    A natural possibility for dark matter is that it is composed of the stable pions of a QCD-like hidden sector. Existing literature largely assumes that pion self-interactions alone control the early universe cosmology. We point out that processes involving vector mesons typically dominate the physics of dark matter freeze-out and significantly widen the viable mass range for these models. The vector mesons also give rise to striking signals at accelerators. For example, in most of the cosmologically favored parameter space, the vector mesons are naturally long-lived and produce standard model particles in their decays. Electron and proton beam fixed-target experiments such as HPS, SeaQuest, and LDMX can exploit these signals to explore much of the viable parameter space. We also comment on dark matter decay inherent in a large class of previously considered models and explain how to ensure dark matter stability.

  19. Cosmology and accelerator tests of strongly interacting dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Blinov, Nikita; Gori, Stefania

    A natural possibility for dark matter is that it is composed of the stable pions of a QCD-like hidden sector. Existing literature largely assumes that pion self-interactions alone control the early universe cosmology. We point out that processes involving vector mesons typically dominate the physics of dark matter freeze-out and significantly widen the viable mass range for these models. The vector mesons also give rise to striking signals at accelerators. For example, in most of the cosmologically favored parameter space, the vector mesons are naturally long-lived and produce standard model particles in their decays. Electron and proton beam fixed-target experimentsmore » such as HPS, SeaQuest, and LDMX can exploit these signals to explore much of the viable parameter space. As a result, we also comment on dark matter decay inherent in a large class of previously considered models and explain how to ensure dark matter stability.« less

  20. Design and test of the RHIC CMD10 abort kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, H.; Blaskiewicz, M.; Drees, A.

    2015-05-03

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  1. Many-body delocalization with random vector potentials

    NASA Astrophysics Data System (ADS)

    Cheng, Chen; Mondaini, Rubem

    2016-11-01

    We study the ergodic properties of excited states in a model of interacting fermions in quasi-one-dimensional chains subjected to a random vector potential. In the noninteracting limit, we show that arbitrarily small values of this complex off-diagonal disorder trigger localization for the whole spectrum; the divergence of the localization length in the single-particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. When short-range interactions are included, the localization is lost, and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields.

  2. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids

    PubMed Central

    Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas

    2016-01-01

    Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration—at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then—through a variety of mechanisms—result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction. PMID:26757051

  3. The measurement of an aspherical mirror by three-dimensional nanoprofiler

    NASA Astrophysics Data System (ADS)

    Tokuta, Yusuke; Okita, Kenya; Okuda, Kohei; Kitayama, Takao; Nakano, Motohiro; Nakatani, Shun; Kudo, Ryota; Yamamura, Kazuya; Endo, Katsuyoshi

    2015-09-01

    Aspherical optical elements with high accuracy are important in several fields such as third-generation synchrotron radiation and extreme-ultraviolet lithography. Then the demand of measurement method for aspherical or free-form surface with nanometer resolution is rising. Our purpose is to develop a non-contact profiler to measure free-form surfaces directly with repeatability of figure error of less than 1 nm PV. To achieve this purpose we have developed three-dimensional Nanoprofiler which traces normal vectors of sample surface. The measurement principle is based on the straightness of LASER light and the accuracy of a rotational goniometer. This machine consists of four rotational stages, one translational stage and optical head which has the quadrant photodiode (QPD) and LASER head at optically equal position. In this measurement method, we conform the incident light beam to reflect the beam by controlling five stages and determine the normal vectors and the coordinates of the surface from signal of goniometers, translational stage and QPD. We can obtain three-dimensional figure from the normal vectors and the coordinates by a reconstruction algorithm. To evaluate performance of this machine we measure a concave aspherical mirror ten times. From ten results we calculate measurement repeatability, and we evaluate measurement uncertainty to compare the result with that measured by an interferometer. In consequence, the repeatability of measurement was 2.90 nm (σ) and the difference between the two profiles was +/-20 nm. We conclude that the two profiles was correspondent considering systematic errors of each machine.

  4. Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11* beam

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Li, Bo; Zhao, Heng; Hu, Yi; Wang, Wenjin; Wang, Youqing

    2013-06-01

    An novel method for generating an annual periodic optical chain by tight focusing the rotational symmetric π/0 phase plate modulated first order radially polarized Laguerre Gaussian (LG11*) beam with a high-NA lens is proposed. The optical chain is composed of either bright spots or dark spots. Vector diffraction numerical calculation method is employed to analyze the tight focus properties. The analyses indicate that the properties of the optical chains are closely related to the number of phase plate sectors, beam width of radially polarized LG11* beam and the numerical aperture of focusing lens. Furthermore, the average Full Width at Half Maximum (FWHM) of hollow dark spots or bright spots in optical chain is breaking the diffraction limit. These kinds of annular optical chains are expected to be applied in trapping or arranging multiple bar-like micro particles whose refractive index are either higher or lower than that of the ambient.

  5. STATISTICALLY DETERMINED DISPERSION RELATIONS OF MAGNETIC FIELD FLUCTUATIONS IN THE TERRESTRIAL FORESHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnat, B.; O’Connell, D.; Nakariakov, V. M.

    2016-08-20

    We obtain dispersion relations of magnetic field fluctuations for two crossings of the terrestrial foreshock by Cluster spacecraft. These crossings cover plasma conditions that differ significantly in their plasma β and in the density of the reflected ion beam, but not in the properties of the encountered ion population, both showing shell-like distribution function. Dispersion relations are reconstructed using two-point instantaneous wave number estimations from pairs of Cluster spacecraft. The accessible range of wave vectors, limited by the available spacecraft separations, extends to ≈2 × 10{sup 4} km. Results show multiple branches of dispersion relations, associated with different powers ofmore » magnetic field fluctuations. We find that sunward propagating fast magnetosonic waves and beam resonant modes are dominant for the high plasma β interval with a dense beam, while the dispersions of the interval with low beam density include Alfvén and fast magnetosonic modes propagating sunward and anti-sunward.« less

  6. Advanced chemical oxygen iodine lasers for novel beam generation

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  7. Crystallography of ordered colloids using optical microscopy. 2. Divergent-beam technique.

    PubMed

    Rogers, Richard B; Lagerlöf, K Peter D

    2008-04-10

    A technique has been developed to extract quantitative crystallographic data from randomly oriented colloidal crystals using a divergent-beam approach. This technique was tested on a series of diverse experimental images of colloidal crystals formed from monodisperse suspensions of sterically stabilized poly-(methyl methacrylate) spheres suspended in organic index-matching solvents. Complete sets of reciprocal lattice basis vectors were extracted in all but one case. When data extraction was successful, results appeared to be accurate to about 1% for lattice parameters and to within approximately 2 degrees for orientation. This approach is easier to implement than a previously developed parallel-beam approach with the drawback that the divergent-beam approach is not as robust in certain situations with random hexagonal close-packed crystals. The two techniques are therefore complimentary to each other, and between them it should be possible to extract quantitative crystallographic data with a conventional optical microscope from any closely index-matched colloidal crystal whose lattice parameters are compatible with visible wavelengths.

  8. Comparison of technologies for nano device prototyping with a special focus on ion beams: A review

    NASA Astrophysics Data System (ADS)

    Bruchhaus, L.; Mazarov, P.; Bischoff, L.; Gierak, J.; Wieck, A. D.; Hövel, H.

    2017-03-01

    Nano device prototyping (NDP) is essential for realizing and assessing ideas as well as theories in the form of nano devices, before they can be made available in or as commercial products. In this review, application results patterned similarly to those in the semiconductor industry (for cell phone, computer processors, or memory) will be presented. For NDP, some requirements are different: thus, other technologies are employed. Currently, in NDP, for many applications direct write Gaussian vector scan electron beam lithography (EBL) is used to define the required features in organic resists on this scale. We will take a look at many application results carried out by EBL, self-organized 3D epitaxy, atomic probe microscopy (scanning tunneling microscope/atomic force microscope), and in more detail ion beam techniques. For ion beam techniques, there is a special focus on those based upon liquid metal (alloy) ion sources, as recent developments have significantly increased their applicability for NDP.

  9. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less

  10. Near-Stall Modal Disturbances Within a Transonic Compressor Rotor

    DTIC Science & Technology

    2011-12-01

    kpi to kulite.position.interp %to loc creation.... what is interesting is why the other runs for 70,80, %85 pc were not affected? kpi ...kulite.position.interp; kulite.position.smooth = smooth(( kpi (loc_loc)... -(round( kpi (loc_loc(1)))): ... round( kpi (loc_loc(end))))’,0.05, ’rloess...8217); % Step 4: Correct Position Vector kulite.position.correct = kpi *blade.number; % total number of blade passings 90 % Trigger Plot with Error

  11. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    PubMed

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  12. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    PubMed

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    NASA Astrophysics Data System (ADS)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  14. F-15B ACTIVE - First supersonic yaw vectoring flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On Wednesday, April 24, 1996, the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft achieved its first supersonic yaw vectoring flight at Dryden Flight Research Center, Edwards, California. ACTIVE is a joint NASA, U.S. Air Force, McDonnell Douglas Aerospace (MDA) and Pratt & Whitney (P&W) program. The team will assess performance and technology benefits during flight test operations. Current plans call for approximately 60 flights totaling 100 hours. 'Reaching this milestone is very rewarding. We hope to set some more records before we're through,' stated Roger W. Bursey, P&W's pitch-yaw balance beam nozzle (PYBBN) program manager. A pair of P&W PYBBNs vectored (horizontally side-to-side, pitch is up and down) the thrust for the MDA manufactured F-15 research aircraft. Power to reach supersonic speeds was provided by two high-performance F100-PW-229 engines that were modified with the multi-directional thrust vectoring nozzles. The new concept should lead to significant increases in performance of both civil and military aircraft flying at subsonic and supersonic speeds.

  15. Large magnetic to electric field contrast in azimuthally polarized vortex beams generated by a metasurface (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Veysi, Mehdi; Guclu, Caner; Capolino, Filippo

    2015-09-01

    We investigate azimuthally E-polarized vortex beams with enhanced longitudinal magnetic field. Ideally, such beams possess strong longitudinal magnetic field on the beam axis where there is no electric field. First we formulate the electric field vector and the longitudinal magnetic field of an azimuthally E-polarized beam as an interference of right- and left-hand circularly polarized Laguerre Gaussian (LG) beams carrying the orbital angular momentum (OAM) states of -1 and +1, respectively. Then we propose a metasurface design that is capable of converting a linearly polarized Gaussian beam into an azimuthally E-polarized vortex beam with longitudinal magnetic field. The metasurface is composed of a rectangular array of double-layer double split-ring slot elements, though other geometries could be adopted as well. The element is specifically designed to have nearly a 180° transmission phase difference between the two polarization components along two orthogonal axes, similar to the optical axes of a half-wave plate. By locally rotating the optical axes of each metasurface element, the transmission phase profile of the circularly polarized waves over the metasurface can be tailored. Upon focusing of the generated vortex beam through a lens with a numerical aperture of 0.7, a 41-fold enhancement of the magnetic to electric field ratio is achieved on the beam axis with respect to that of a plane wave. Generation of beams with large magnetic field to electric field contrast can find applications in future spectroscopy systems based on magnetic dipole transitions, which are usually much weaker than electric dipole transitions.

  16. SU-G-TeP4-12: Individual Beam QA for a Robotic Radiosurgery System Using a Scintillator Cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuinness, C; Descovich, M; Sudhyadhom, A

    2016-06-15

    Purpose: The targeting accuracy of the Cyberknife system is measured by end-to-end tests delivering multiple isocentric beams to a point in space. While the targeting accuracy of two representative beams can be determined by a Winston-Lutz-type test, no test is available today to determine the targeting accuracy of each clinical beam. We used a scintillator cone to measure the accuracy of each individual beam. Methods: The XRV-124 from Logos Systems Int’l is a scintillator cone with an imaging system that is able to measure individual beam vectors and a resulting error between planned and measured beam coordinates. We measured themore » targeting accuracy of isocentric and non-isocentric beams for a number of test cases using the Iris and the fixed collimator. The average difference between plan and measured beam position was 0.8–1.2mm across the collimator sizes and plans considered here. The max error for a single beam was 2.5mm for the isocentric plans, and 1.67mm for the non-isocentric plans. The standard deviation of the differences was 0.5mm or less. Conclusion: The CyberKnife System is specified to have an overall targeting accuracy for static targets of less than 0.95mm. In E2E tests using the XRV124 system we measure average beam accuracy between 0.8 to 1.23mm, with maximum of 2.5mm. We plan to investigate correlations between beam position error and robot position, and to quantify the effect of beam position errors on patient specific plans. Martina Descovich has received research support and speaker honoraria from Accuray.« less

  17. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  18. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.

    PubMed

    Martín-Fabiani, Ignacio; Rebollar, Esther; García-Gutiérrez, Mari Cruz; Rueda, Daniel R; Castillejo, Marta; Ezquerra, Tiberio A

    2015-02-11

    In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Arvind, E-mail: arvindsharma230771@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com

    We investigate the interaction of optical vector soliton with a symmetric thin-film gallium-silica waveguide structure using the equivalent particle theory. The relevant nonlinear Schrodinger equation has been solved by the method of phase plane analysis. The analysis shows beam break up into transmitted, reflected and nonlinear surface waves at the interface. The stability properties of the solitons so formed have been discussed.

  20. Evaluation of a Nonlinear Finite Element Program - ABAQUS.

    DTIC Science & Technology

    1983-03-15

    anisotropic properties. * MATEXP - Linearly elastic thermal expansions with isotropic, orthotropic and anisotropic properties. * MATELG - Linearly...elastic materials for general sections (options available for beam and shell elements). • MATEXG - Linearly elastic thermal expansions for general...decomposition of a matrix. * Q-R algorithm • Vector normalization, etc. Obviously, by consolidating all the utility subroutines in a library, ABAQUS has

  1. Spectral Density of Laser Beam Scintillation in Wind Turbulence. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1997-01-01

    The temporal spectral density of the log-amplitude scintillation of a laser beam wave due to a spatially dependent vector-valued crosswind (deterministic as well as random) is evaluated. The path weighting functions for normalized spectral moments are derived, and offer a potential new technique for estimating the wind velocity profile. The Tatarskii-Klyatskin stochastic propagation equation for the Markov turbulence model is used with the solution approximated by the Rytov method. The Taylor 'frozen-in' hypothesis is assumed for the dependence of the refractive index on the wind velocity, and the Kolmogorov spectral density is used for the refractive index field.

  2. Optimal Model-Based Fault Estimation and Correction for Particle Accelerators and Industrial Plants Using Combined Support Vector Machines and First Principles Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; /SLAC /Pavilion Technologies, Inc., Austin, TX

    2010-08-25

    Timely estimation of deviations from optimal performance in complex systems and the ability to identify corrective measures in response to the estimated parameter deviations has been the subject of extensive research over the past four decades. The implications in terms of lost revenue from costly industrial processes, operation of large-scale public works projects and the volume of the published literature on this topic clearly indicates the significance of the problem. Applications range from manufacturing industries (integrated circuits, automotive, etc.), to large-scale chemical plants, pharmaceutical production, power distribution grids, and avionics. In this project we investigated a new framework for buildingmore » parsimonious models that are suited for diagnosis and fault estimation of complex technical systems. We used Support Vector Machines (SVMs) to model potentially time-varying parameters of a First-Principles (FP) description of the process. The combined SVM & FP model was built (i.e. model parameters were trained) using constrained optimization techniques. We used the trained models to estimate faults affecting simulated beam lifetime. In the case where a large number of process inputs are required for model-based fault estimation, the proposed framework performs an optimal nonlinear principal component analysis of the large-scale input space, and creates a lower dimension feature space in which fault estimation results can be effectively presented to the operation personnel. To fulfill the main technical objectives of the Phase I research, our Phase I efforts have focused on: (1) SVM Training in a Combined Model Structure - We developed the software for the constrained training of the SVMs in a combined model structure, and successfully modeled the parameters of a first-principles model for beam lifetime with support vectors. (2) Higher-order Fidelity of the Combined Model - We used constrained training to ensure that the output of the SVM (i.e. the parameters of the beam lifetime model) are physically meaningful. (3) Numerical Efficiency of the Training - We investigated the numerical efficiency of the SVM training. More specifically, for the primal formulation of the training, we have developed a problem formulation that avoids the linear increase in the number of the constraints as a function of the number of data points. (4) Flexibility of Software Architecture - The software framework for the training of the support vector machines was designed to enable experimentation with different solvers. We experimented with two commonly used nonlinear solvers for our simulations. The primary application of interest for this project has been the sustained optimal operation of particle accelerators at the Stanford Linear Accelerator Center (SLAC). Particle storage rings are used for a variety of applications ranging from 'colliding beam' systems for high-energy physics research to highly collimated x-ray generators for synchrotron radiation science. Linear accelerators are also used for collider research such as International Linear Collider (ILC), as well as for free electron lasers, such as the Linear Coherent Light Source (LCLS) at SLAC. One common theme in the operation of storage rings and linear accelerators is the need to precisely control the particle beams over long periods of time with minimum beam loss and stable, yet challenging, beam parameters. We strongly believe that beyond applications in particle accelerators, the high fidelity and cost benefits of a combined model-based fault estimation/correction system will attract customers from a wide variety of commercial and scientific industries. Even though the acquisition of Pavilion Technologies, Inc. by Rockwell Automation Inc. in 2007 has altered the small business status of the Pavilion and it no longer qualifies for a Phase II funding, our findings in the course of the Phase I research have convinced us that further research will render a workable model-based fault estimation and correction for particle accelerators and industrial plants feasible.« less

  3. Improvement of cardiac CT reconstruction using local motion vector fields.

    PubMed

    Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael

    2009-03-01

    The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.

  4. Feasibility of maintaining in-plane polarization for a storage ring EDM search

    NASA Astrophysics Data System (ADS)

    Stephenson, Edward; Storage Ring EDM Collaboration

    2014-09-01

    A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron cooling reduces the depolarization from finite emittance and second-order momentum spread acting through synchrotron oscillations. Further lifetime improvement to the level of hundreds of seconds is achieved by adjusting sextupole fields located in the COSY ring arcs at places of large transverse beta functions and dispersion. The dependence of the reciprocal of the lifetime on sextupole field strength is nearly linear, permitting an easy location of the best field values. These typically occur near loci of zero chromaticity. A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron cooling reduces the depolarization from finite emittance and second-order momentum spread acting through synchrotron oscillations. Further lifetime improvement to the level of hundreds of seconds is achieved by adjusting sextupole fields located in the COSY ring arcs at places of large transverse beta functions and dispersion. The dependence of the reciprocal of the lifetime on sextupole field strength is nearly linear, permitting an easy location of the best field values. These typically occur near loci of zero chromaticity. Supported in part by the Forschungszentrum-Juelich and the European Union.

  5. System for Automated Calibration of Vector Modulators

    NASA Technical Reports Server (NTRS)

    Lux, James; Boas, Amy; Li, Samuel

    2009-01-01

    Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create correction tables to allow the commanding of the phase shift in each of four channels used as a phased array for beam steering of a Ka-band (32-GHz) signal. The system also was the basis of a breadboard electronic beam steering system. In this breadboard, the goal was not to make systematic measurements of the properties of a vector modulator, but to drive the breadboard with a series of test patterns varying in phase and amplitude. This is essentially the same calibration process, but with the difference that the data collection process is oriented toward collecting breadboard performance, rather than the measurement of output from a network analyzer.

  6. A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. I - Theory. II - Application

    NASA Technical Reports Server (NTRS)

    Weng, Fuzhong

    1992-01-01

    A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.

  7. Three axis vector atomic magnetometer utilizing polarimetric technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less

  8. Design of single-polarization wavelength splitter based on photonic crystal fiber.

    PubMed

    Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan

    2011-12-20

    A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.

  9. Beam Test Studies of 3D Pixel Sensors Irradiated Non-Uniformly for the ATLAS Forward Physics Detector

    DTIC Science & Technology

    2013-02-21

    telescope consists of six Mimosa tracking planes, the readout data acquisition system and the trigger hardware, and provides a ≈ 3µm track point- ing...is larger than the Mimosa sensors of the telescope, separate sets of data were taken to cover the irradiated and non-irradiated regions of the sensors

  10. Trigger drift chamber for the upgraded mark II detector at PEP

    NASA Astrophysics Data System (ADS)

    Ford, W. T.; Smith, J. G.; Wagner, S. R.; Weber, P.; White, S. L.; Alvarez, M.; Calviño, F.; Fernandez, E.

    1987-04-01

    A small cylindrical track detector was built as an array of single-wire drift cells with aluminized mylar cathode tubes. Point measurement resolution of ˜ 90 μm was achieved with a drift gas of 50% argon-50% ethane at atmospheric pressure. The chamber construction, electronics, and calibration are discussed. Performance results from PEP colliding-beam data are presented.

  11. Vector method for strain estimation in phase-sensitive optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Matveyev, A. L.; Matveev, L. A.; Sovetsky, A. A.; Gelikonov, G. V.; Moiseev, A. A.; Zaitsev, V. Y.

    2018-06-01

    A noise-tolerant approach to strain estimation in phase-sensitive optical coherence elastography, robust to decorrelation distortions, is discussed. The method is based on evaluation of interframe phase-variation gradient, but its main feature is that the phase is singled out at the very last step of the gradient estimation. All intermediate steps operate with complex-valued optical coherence tomography (OCT) signals represented as vectors in the complex plane (hence, we call this approach the ‘vector’ method). In comparison with such a popular method as least-square fitting of the phase-difference slope over a selected region (even in the improved variant with amplitude weighting for suppressing small-amplitude noisy pixels), the vector approach demonstrates superior tolerance to both additive noise in the receiving system and speckle-decorrelation caused by tissue straining. Another advantage of the vector approach is that it obviates the usual necessity of error-prone phase unwrapping. Here, special attention is paid to modifications of the vector method that make it especially suitable for processing deformations with significant lateral inhomogeneity, which often occur in real situations. The method’s advantages are demonstrated using both simulated and real OCT scans obtained during reshaping of a collagenous tissue sample irradiated by an IR laser beam producing complex spatially inhomogeneous deformations.

  12. Increasing the computational efficient of digital cross correlation by a vectorization method

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Yuan; Ma, Chien-Ching

    2017-08-01

    This study presents a vectorization method for use in MATLAB programming aimed at increasing the computational efficiency of digital cross correlation in sound and images, resulting in a speedup of 6.387 and 36.044 times compared with performance values obtained from looped expression. This work bridges the gap between matrix operations and loop iteration, preserving flexibility and efficiency in program testing. This paper uses numerical simulation to verify the speedup of the proposed vectorization method as well as experiments to measure the quantitative transient displacement response subjected to dynamic impact loading. The experiment involved the use of a high speed camera as well as a fiber optic system to measure the transient displacement in a cantilever beam under impact from a steel ball. Experimental measurement data obtained from the two methods are in excellent agreement in both the time and frequency domain, with discrepancies of only 0.68%. Numerical and experiment results demonstrate the efficacy of the proposed vectorization method with regard to computational speed in signal processing and high precision in the correlation algorithm. We also present the source code with which to build MATLAB-executable functions on Windows as well as Linux platforms, and provide a series of examples to demonstrate the application of the proposed vectorization method.

  13. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J.; Harkay, K.; Sajaev, V.

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016more » and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.« less

  14. Study of optically trapped living Trypanosoma cruzi/Trypanosoma rangeli - Rhodnius prolixus interactions by real time confocal images using CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Almeida, D. B.; Faustino, W. M.; Jacob, G. J.; Fontes, A.; Barbosa, L. C.; Cesar, C. L.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.

    2008-08-01

    One of the fundamental goals in biology is to understand the interplay between biomolecules of different cells. This happen, for example, in the first moments of the infection of a vector by a parasite that results in the adherence to the cell walls. To observe this kind of event we used an integrated Optical Tweezers and Confocal Microscopy tool. This tool allow us to use the Optical Tweezers to trigger the adhesion of the Trypanosoma cruzi and Trypanosoma rangeli parasite to the intestine wall cells and salivary gland of the Rhodnius prolixus vector and to, subsequently observe the sequence of events by confocal fluorescence microscopy under optical forces stresses. We kept the microorganism and vector cells alive using CdSe quantum dot staining. Besides the fact that Quantum Dots are bright vital fluorescent markers, the absence of photobleaching allow us to follow the events in time for an extended period. By zooming to the region of interested we have been able to acquire confocal images at the 2 to 3 frames per second rate.

  15. The Vector Electric Field Instrument on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.

  16. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    PubMed

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  17. An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction.

    PubMed

    Ponte-Sucre, Alicia

    2016-01-01

    Trypanosoma brucei rhodesiense and T. brucei gambiense , the causative agents of Human African Trypanosomiasis, are transmitted by tsetse flies. Within the vector, the parasite undergoes through transformations that prepares it to infect the human host. Sequentially these developmental stages are the replicative procyclic (in which the parasite surface is covered by procyclins) and trypo-epimastigote forms, as well as the non-replicative, infective, metacyclic form that develops in the vector salivary glands. As a pre-adaptation to their life in humans, metacyclic parasites begin to express and be densely covered by the Variant Surface Glycoprotein (VSG). Once the metacyclic form invades the human host the parasite develops into the bloodstream form. Herein the VSG triggers a humoral immune response. To avoid this humoral response, and essential for survival while in the bloodstream, the parasite changes its cover periodically and sheds into the surroundings the expressed VSG, thus evading the consequences of the immune system activation. Additionally, tools comparable to quorum sensing are used by the parasite for the successful parasite transmission from human to insect. On the other hand, the human host promotes clearance of the parasite triggering innate and adaptive immune responses and stimulating cytokine and chemokine secretion. All in all, the host-parasite interaction is extremely active and leads to responses that need multiple control sites to develop appropriately.

  18. Charged Particle Therapy Steps Into the Clinical Environment

    NASA Astrophysics Data System (ADS)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  19. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies

    NASA Astrophysics Data System (ADS)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.

    2013-10-01

    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  20. SU-E-T-327: The Update of a XML Composing Tool for TrueBeam Developer Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Y; Mao, W; Jiang, S

    2014-06-01

    Purpose: To introduce a major upgrade of a novel XML beam composing tool to scientists and engineers who strive to translate certain capabilities of TrueBeam Developer Mode to future clinical benefits of radiation therapy. Methods: TrueBeam Developer Mode provides the users with a test bed for unconventional plans utilizing certain unique features not accessible at the clinical mode. To access the full set of capabilities, a XML beam definition file accommodating all parameters including kV/MV imaging triggers in the plan can be locally loaded at this mode, however it is difficult and laborious to compose one in a text editor.more » In this study, a stand-along interactive XML beam composing application, TrueBeam TeachMod, was developed on Windows platforms to assist users in making their unique plans in a WYSWYG manner. A conventional plan can be imported in a DICOM RT object as the start of the beam editing process in which trajectories of all axes of a TrueBeam machine can be modified to the intended values at any control point. TeachMod also includes libraries of predefined imaging and treatment procedures to further expedite the process. Results: The TeachMod application is a major of the TeachMod module within DICOManTX. It fully supports TrueBeam 2.0. Trajectories of all axes including all MLC leaves can be graphically rendered and edited as needed. The time for XML beam composing has been reduced to a negligible amount regardless the complexity of the plan. A good understanding of XML language and TrueBeam schema is not required though preferred. Conclusion: Creating XML beams manually in a text editor will be a lengthy error-prone process for sophisticated plans. A XML beam composing tool is highly desirable for R and D activities. It will bridge the gap between scopes of TrueBeam capabilities and their clinical application potentials.« less

  1. Cluster observations of reflected EMIC-triggered emission

    NASA Astrophysics Data System (ADS)

    Grison, B.; Darrouzet, F.; Santolík, O.; Cornilleau-Wehrlin, N.; Masson, A.

    2016-05-01

    On 19 March 2001, the Cluster fleet recorded an electromagnetic rising tone on the nightside of the plasmasphere. The emission was found to propagate toward the Earth and toward the magnetic equator at a group velocity of about 200 km/s. The Poynting vector is mainly oblique to the background magnetic field and directed toward the Earth. The propagation angle θk,B0 becomes more oblique with increasing magnetic latitude. Inside each rising tone θk,B0 is more field aligned for higher frequencies. Comparing our results to previous ray tracing analysis we conclude that this emission is a triggered electromagnetic ion cyclotron (EMIC) wave generated at the nightside plasmapause. We detect the wave just after its reflection in the plasmasphere. The reflection makes the tone slope shallower. This process can contribute to the formation of pearl pulsations.

  2. Focus modulation of cylindrical vector beams by using 1D photonic crystal lens with negative refraction effect.

    PubMed

    Xu, Ji; Zhong, Yi; Wang, Shengming; Lu, Yunqing; Wan, Hongdan; Jiang, Jian; Wang, Jin

    2015-10-19

    Sub-wavelength focusing of cylindrical vector beams (CVBs) has attracted great attention due to the specific physical effects and the applications in many areas. More powerful, flexible and effective ways to modulate the focus transversally and also longitudinally are always being pursued. In this paper, cylindrically symmetric lens composed of negative-index one-dimensional photonic crystal is proposed to make a breakthrough. By revealing the relationship between focal length and the exit surface shape of the lens, a quite simple and effective principle of designing the lens structure is presented to realize specific focus modulation. Plano-concave lenses are parameterized to modulate the focal length and the number of focuses. An axicon constructed by one-dimensional photonic crystal is proposed for the first time to obtain a large depth of focus and an optical needle focal field with almost a theoretical minimum FWHM of 0.362λ is achieved under radially polarized incident light. Because of the almost identical negative refractive index for TE and TM polarization states, all the modulation methods can be applied for any arbitrary polarized CVBs. This work offers a promising methodology for designing negative-index lenses in related application areas.

  3. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    NASA Astrophysics Data System (ADS)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  4. Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C. S.; Tripathi, V. K.

    An intense machining laser beam, impinged on a gas jet target, causes space periodic ionization of the gas and heats the electrons. The nonuniform plasma pressure leads to atomic density redistribution. When, after a suitable time delay, a second more intense laser pulse is launched along the periodicity wave vector q-vector, a plasma density ripple n{sub q} is instantly created, leading to resonant third harmonic generation when q=4{omega}{sub p}{sup 2}/(3{omega}c{gamma}{sub 0}), where {omega}{sub p} is the plasma frequency, {omega} is the laser frequency, and {gamma}{sub 0} is the electron Lorentz factor. The third harmonic is produced through the beating ofmore » ponderomotive force induced second harmonic density oscillations and the quiver velocity of electrons at the fundamental. The relativistic mass nonlinearity plays no role in resonant coupling. The energy conversion efficiency scales as the square of plasma density and square of depth of density ripple, and is {approx}0.2% for normalized laser amplitude a{sub o}{approx}1 in a plasma of 1% critical density with 20% density ripple. The theory explains several features of a recent experiment.« less

  5. Immune tolerance of vector beetle to its partner plant parasitic nematode modulated by its insect parasitic nematode.

    PubMed

    Zhou, Jiao; Zhao, Li-Lin; Yu, Hai-Ying; Wang, Yan-Hong; Zhang, Wei; Hu, Song-Nian; Zou, Zhen; Sun, Jiang-Hua

    2018-04-02

    Immune response of insect vectors to transmitted pathogens or insect hosts against parasites are well studied, whereas the mechanism of tripartite interactions remains elusive. In this study, we investigated the immune interactions of the vector beetle Monochamus alternatus ( Ma) to the devastating plant parasitic nematode Bursaphelenchus xylophilus ( Bx) and the insect parasitic nematode Howardula phyllotretae ( Hp). We report the unique immune mechanism by which the vector beetle tolerates many devastating Bx in its trachea, yet that immune tolerance is compromised by the parasitic nematode Hp. Contact with either nematode species triggers epithelial reactive oxygen species (ROS) production in Ma. Only the entry of Bx, not Hp, infection, induces increased expression of antioxidative genes, through which the ROS levels are balanced in the trachea of beetles. Furthermore, we found that up-regulation of antioxidative genes was induced by the interaction of Toll receptors. In contrast, beetles infected by Hp retain high levels of oxidative stress and melanization in trachea, and as a result, decrease Bx loading. This study highlights the role of Toll receptors in mediating the activation of antioxidative genes in immune tolerance to plant parasitic nematodes, and suggests the use of insect parasites as a biologic control.-Zhou, J., Zhao, L.-L., Yu, H.-Y., Wang, Y.-H., Zhang, W., Hu, S.-N., Zou, Z., Sun, J.-H. Immune tolerance of vector beetle to its partner plant parasitic nematode modulated by its insect parasitic nematode.

  6. Modeling the habitat suitability for the arbovirus vector Aedes albopictus (Diptera: Culicidae) in Germany.

    PubMed

    Koch, Lisa K; Cunze, Sarah; Werblow, Antje; Kochmann, Judith; Dörge, Dorian D; Mehlhorn, Heinz; Klimpel, Sven

    2016-03-01

    Climatic changes raise the risk of re-emergence of arthropod-borne virus outbreaks globally. These viruses are transmitted by arthropod vectors, often mosquitoes. Due to increasing worldwide trade and tourism, these vector species are often accidentally introduced into many countries beyond their former distribution range. Aedes albopictus, a well-known disease vector, was detected for the first time in Germany in 2007, but seems to have failed establishment until today. However, the species is known to occur in other temperate regions and a risk for establishment in Germany remains, especially in the face of predicted climate change. Thus, the goal of the study was to estimate the potential distribution of Ae. albopictus in Germany. We used ecological niche modeling in order to estimate the potential habitat suitability for this species under current and projected future climatic conditions. According to our model, there are already two areas in western and southern Germany that appear suitable for Ae. albopictus under current climatic conditions. One of these areas lies in Baden-Wuerttemberg, the other in North-Rhine Westphalia in the Ruhr region. Furthermore, projections under future climatic conditions show an increase of the modeled habitat suitability throughout Germany. Ae. albopictus is supposed to be better acclimated to colder temperatures than other tropical vectors and thus, might become, triggered by climate change, a serious threat to public health in Germany. Our modeling results can help optimizing the design of monitoring programs currently in place in Germany.

  7. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2017-12-29

    East and Pretorius have successfully evolved, using fully nonlinear numerical simulations, the superradiant instability of the Kerr black hole (BH) triggered by a massive, complex vector field. Evolutions terminate in stationary states of a vector field condensate synchronized with a rotating BH horizon. We show that these end points are fundamental states of Kerr BHs with synchronized Proca hair. Motivated by the "experimental data" from these simulations, we suggest a universal (i.e., field-spin independent), analytic model for the subset of BHs with synchronized hair that possess a quasi-Kerr horizon, applicable in the weak hair regime. Comparing this model with fully nonlinear numerical solutions of BHs with a synchronized scalar or Proca hair, we show that the model is accurate for hairy BHs that may emerge dynamically from superradiance, whose domain we identify.

  8. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen

    2017-12-01

    East and Pretorius have successfully evolved, using fully nonlinear numerical simulations, the superradiant instability of the Kerr black hole (BH) triggered by a massive, complex vector field. Evolutions terminate in stationary states of a vector field condensate synchronized with a rotating BH horizon. We show that these end points are fundamental states of Kerr BHs with synchronized Proca hair. Motivated by the "experimental data" from these simulations, we suggest a universal (i.e., field-spin independent), analytic model for the subset of BHs with synchronized hair that possess a quasi-Kerr horizon, applicable in the weak hair regime. Comparing this model with fully nonlinear numerical solutions of BHs with a synchronized scalar or Proca hair, we show that the model is accurate for hairy BHs that may emerge dynamically from superradiance, whose domain we identify.

  9. Beam-folding ultraviolet-visible Fourier transform spectrometry and underwater cytometry for in situ measurement of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Wang, Xuzhu

    The system complexity and hence high cost needed for generating the high-resolution and precise position-sampling triggers over very long distances is one of main hindrances to the popularization of the UV-visible Fourier transform spectrometer (FTS). In part one of this thesis, the specially designed beam-folding and improved beam-folding methods to optically subdivide the laser fringes are presented. The Near-UV to Near-infrared FTSs based on 4-fold beam-folding systems were developed. The experimental results have demonstrated that these techniques are promising methods to produce the high-resolution and high-precision sampling triggers of scanning mechanism of UV-visible FTSs without the need for complicated optics, sophisticated detector electronics and high-stability motion control systems. The FTS based on the beam-folding technique can reach a spectral resolution of ˜4 cm-1 (0.1nm) in the visible wavelengths; The FTS based on the improved beam-folding technique can achieve a spectral resolution of ˜0.28 cm-1 (0.01nm) in the visible wavelengths. In the improved beam-folding FTS, The adoption of retroreflectors and the symmetrical arrangement of two back-to back interferometers produced much higher performance than that of the beam-folding FTS employing prism mirrors. The replacement of prism mirrors by retroreflectors and the symmetrical optical arrangement maintain the FTS in perfect optical alignment during scanning process by keeping all beams parallel with the incident beams. The vertex of the movable retroreflector in the measurement interferometer is arranged very close to the midpoint of the vertices of the movable retroreflectors in the tracking interferometer so that the optical symmetrical axes for both interferometers always keep in line with each other. That is, the change of the OPD of the tracking interferometer always remains synchronous to that of the OPD of the measurement interferometer even for any moving misalignments, making the FTS itself insensitive to these fluctuations. In addition, an attempt on fast-scanning visible IFTS based on the improved beam-folding technique was done. Preliminary experimental results demonstrated the feasibility of the fast-scanning visible IFTS based on the improved beam-folding technique. In part two, an underwater cytometer for in situ measurement of marine phytoplankton using a combining technique of laser-induced fluorescence (LIF) and laser differential Doppler velocimetry (LDDV) was developed. The advancement compared to the previous work done in the laboratory is to realize an in situ underwater measurement system by means of improving the optical design. The experimental results in June and August 2004 in the coastal area of Hong Kong demonstrated that the new cytometer can be used for in situ measurement of marine phytoplankton. The mean concentration detected by this instrument agreed closely with the experimental data measured by the traditional cell counting under a microscope. With an underwater optical sensing unit that does not rely on an electrical power source, the sensing unit can stay submerged underwater for long periods, making a long-term real-time monitoring system possible.

  10. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  11. Reactive Collisions in Crossed Molecular Beams

    DOE R&D Accomplishments Database

    Herschbach, D. R.

    1962-02-01

    The distribution of velocity vectors of reaction products is discussed with emphasis on the restrictions imposed by the conservation laws. The recoil velocity that carries the products away from the center of mass shows how the energy of reaction is divided between internal excitation and translation. Similarly, the angular distributions, as viewed from the center of mass, reflect the partitioning of the total angular momentum between angular momenta of individual molecules and orbital angular momentum associated with their relative motion. Crossed-beam studies of several reactions of the type M + RI yields R + MI are described, where M = K, Rb, Cs, and R = CH{sub 3}, C{sub 3}H{sub 5}, etc. The results show that most of the energy of reaction goes into internal excitation of the products and that the angular distribution is quite anisotropic, with most of the MI recoiling backward (and R forward) with respect to the incoming K beam. (auth)

  12. Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System

    NASA Astrophysics Data System (ADS)

    Gao, Xingshun; Zhao, Lei; Liu, Jinxin; Jiang, Zouyi; Hu, Xiaofang; Liu, Shubin; An, Qi

    2016-12-01

    A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of the Beam Position Monitor (BPM). Considering that the delay variations of different analog circuit channels would introduce phase measurement errors, we propose a new method to tune the digital waveforms of four channels before summation and achieve real-time error correction. The process is based on the vector rotation method and implemented within one single Field Programmable Gate Array (FPGA) device. Tests were conducted to evaluate this correction method and the results indicate that a phase correction precision better than ± 0.3° over the dynamic range from -60 dBm to 0 dBm is achieved.

  13. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas.

    PubMed

    Sun, Yi-Zhi; Feng, Li-Shuang; Bachelot, Renaud; Blaize, Sylvain; Ding, Wei

    2017-07-24

    We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.

  14. A compact electron gun for time-resolved electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less

  15. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    NASA Astrophysics Data System (ADS)

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-07-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses.

  16. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    PubMed Central

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-01-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses. PMID:27435390

  17. Optical design of transmitter lens for asymmetric distributed free space optical networks

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek; Traczyk, Maciej

    2018-05-01

    We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is examined, showing perfect agreement with expectations.

  18. 3-D Vector Flow Estimation With Row-Column-Addressed Arrays.

    PubMed

    Holbek, Simon; Christiansen, Thomas Lehrmann; Stuart, Matthias Bo; Beers, Christopher; Thomsen, Erik Vilain; Jensen, Jorgen Arendt

    2016-11-01

    Simulation and experimental results from 3-D vector flow estimations for a 62 + 62 2-D row-column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3-MHz RC array is developed and validated. First, a parametric simulation study is conducted, where flow direction, ensemble length, number of pulse cycles, steering angles, transmit/receive apodization, and TO apodization profiles and spacing are varied, to find the optimal parameter configuration. The performance of the estimator is evaluated with respect to relative mean bias ~B and mean standard deviation ~σ . Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight-vessel phantom with a pulsating flow are presented. Both an M-mode and a steered transmit sequence are applied. The 3-D vector flow is estimated in the flow rig for four representative flow directions. In the setup with 90° beam-to-flow angle, the relative mean bias across the entire velocity profile is (-4.7, -0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for ( v x , v y , v z ). The estimated peak velocity is 48.5 ± 3 cm/s giving a -3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow rig at a 90° beam-to-flow angle. The estimated mean flow rate in this setup is 91.2 ± 3.1 L/h corresponding to a bias of -11.1%. In a pulsating flow setup, flow rate measured during five cycles is 2.3 ± 0.1 mL/stroke giving a negative 9.7% bias. It is concluded that accurate 3-D vector flow estimation can be obtained using a 2-D RC-addressed array.

  19. MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu

    2016-08-07

    We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of themore » reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.« less

  20. ATLAS trigger operations: Upgrades to ``Xmon'' rate prediction system

    NASA Astrophysics Data System (ADS)

    Myers, Ava; Aukerman, Andrew; Hong, Tae Min; Atlas Collaboration

    2017-01-01

    We present ``Xmon,'' a tool to monitor trigger rates in the Control Room of the ATLAS Experiment. We discuss Xmon's recent (1) updates, (2) upgrades, and (3) operations. (1) Xmon was updated to modify the tool written for the three-level trigger architecture in Run-1 (2009-2012) to adapt to the new two-level system for Run-2 (2015-current). The tool takes as input the beam luminosity to make a rate prediction, which is compared with incoming rates to detect anomalies that occur both globally throughout a run and locally within a run. Global offsets are more commonly caught by the predictions based upon past runs, where offline processing allows for function adjustments and fit quality through outlier rejection. (2) Xmon was upgraded to detect local offsets using on-the-fly predictions, which uses a sliding window of in-run rates to make predictions. (3) Xmon operations examples are given. Future work involves further automation of the steps to provide the predictive functions and for alerting shifters.

Top