Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, S.N.
1992-12-31
This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlowski, M.F.; Maricle, S.; Mouser, R.
A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm{sup 2}, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm{sup 2} beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse tomore » pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 {micro}m/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0{micro}m/pulse. The lens was also used in Beamlet for a subsequent 1053 {micro}m/526 {micro}m campaign. The 352 {micro}m-initiated damage continued to grow during that campaign although at generally lower growth rate.« less
Cleanliness for the NIF 1ω Laser Amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaeth, M. L.; Manes, K. R.; Honig, J.
During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1ω amplifiers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab-high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, wouldmore » lead to higher than acceptable slab-refurbishment rates. Finally, this study tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1ω amplifier slabs.« less
Cleanliness for the NIF 1ω Laser Amplifiers
Spaeth, M. L.; Manes, K. R.; Honig, J.
2017-03-23
During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1ω amplifiers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab-high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, wouldmore » lead to higher than acceptable slab-refurbishment rates. Finally, this study tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1ω amplifier slabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theys, M.
1994-05-06
Beamlet is a high power laser currently being built at Lawrence Livermore National Lab as a proof of concept for the National Ignition Facility (NIF). Beamlet is testing several areas of laser advancements, such as a 37cm Pockels cell, square amplifier, and propagation of a square beam. The diagnostics on beamlet tell the operators how much energy the beam has in different locations, the pulse shape, the energy distribution, and other important information regarding the beam. This information is being used to evaluate new amplifier designs, and extrapolate performance to the NIF laser. In my term at Lawrence Livermore Nationalmore » Laboratory I have designed and built a diagnostic, calibrated instruments used on diagnostics, setup instruments, hooked up communication lines to the instruments, and setup computers to control specific diagnostics.« less
NASA Astrophysics Data System (ADS)
Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.
2017-03-01
The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.
Chen, Hui; Hermann, M. R.; Kalantar, D. H.; ...
2017-03-16
Here, the Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20–30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4–9 × 10 –4 for x-rays with energies greater thanmore » 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Hansheng
The ICF Program in China has made significant progress with multilabs' efforts in the past years. The eight-beam SG-II laser facility, upgraded from the two-beam SG-I facility, is nearly completed for 1.05 {mu}m light output and is about to be operated for experiments. Some benchmark experiments have been conducted for disk targets. Advanced diagnostic techniques, such as an x-ray microscope with a 7-{mu}m spatial resolution and x-ray framing cameras with a temporal resolution better than 65ps, have been developed. Lower energy pumping with prepulse technique for Ne-like Ti laser at 32.6nm has succeeded and shadowgraphy of a fine mesh hasmore » been demonstrated with the Ti laser beam. A national project, SG-III laser facility, has been proposed to produce 60 kJ blue light for target physics experiments and is being conceptually designed. New laser technology, including maltipass amplification, large aperture plasma electrode switches and laser glass with fewer platinum grains have been developed to meet the requirements of the SG-III Project. The Technical Integration Line (TIL) as a scientific prototype beamlet of SG-III will be first built in the next few years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoni, V.; Agostinetti, P.; Brombin, M.
2015-04-08
In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with themore » aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.« less
Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.
2011-10-01
Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, R.; Kartz, M.; Behrendt, W.
1996-10-01
The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new,more » higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t{sub 0}-1 system.« less
3-ω damage threshold evaluation of final optics components using Beamlet Mule and off-line testing
NASA Astrophysics Data System (ADS)
Kozlowski, Mark R.; Maricle, Stephen M.; Mouser, Ron P.; Schwartz, Sheldon; Wegner, Paul J.; Weiland, Timothy L.
1999-07-01
A statistics-based model is being develop to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the mode, laser damage experiments were performed on the Beamlet laser system at LLNL. An early protoype NIF focus lens was exposed to twenty 351 nm pulses at an average fluence of 5 J/cm2, 3ns. Using a high resolution optic inspection inspection system a total of 353 damage sites was detected within the 1160 cm2 beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 micrometers /pulse were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both on the surface and at bulk inclusions. Growth rates as high as 79 micrometers /pulse were observed for damage initiating at per- existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately 10(Mu) m/pulse.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.
2013-10-01
Knowing spatial profiles of electron density (ne) in the underdense coronal region (n
Ion beamlet steering for two-grid electrostatic thrusters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Homa, J. M.
1984-01-01
An experimental study of ion beamlet steering in which the direction of beamlets emitted from a two grid aperture system is controlled by relative translation of the grids, is described. The results can be used to design electrostatic accelerating devices for which the direction and focus of emerging beamlets are important. Deflection and divergence angle data are presented for two grid systems as a function of the relative lateral displacement of the holes in these grids. At large displacements, accelerator grid impingements become excessive and this determines the maximum allowable displacement and as a result the useful range of beamlet deflection. Beamlet deflection is shown to vary linearly with grid offset angle over this range. The divergence of the beamlets is found to be unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished grid ion thruster are examined to determine the effects of thermally induced grid distortion and prescribed offsets of grid hole centerlines on the characteristics of the emerging beamlets. The results are used to determine the region on the grid surface where ion beamlet deflections exceed the useful range. Over this region high accelerator grid impingement currents and rapid grid erosion are predicted.
High brightness--multiple beamlets source for patterned X-ray production
Leung, Ka-Ngo [Hercules, CA; Ji, Qing [Albany, CA; Barletta, William A [Oakland, CA; Jiang, Ximan [El Cerrito, CA; Ji, Lili [Albany, CA
2009-10-27
Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.
Transverse-To-Longitudinal Photocathode Distribution Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Qiang, G.; Ha, G.
In this paper, we present a tunable picosecond-scale bunch train generation technique combining a microlens array (MLA) transverse laser shaper and a transverse-to-longitudinal emittance exchange (EEX) beamline. The modulated beamlet array is formed at the photocathode with the MLA setup. The resulting patterned electron beam is accelerated to 50 MeV and transported to the entrance of the EEX setup. A quadrupole channel is used to adjust the transverse spacing of the beamlet array upstream of the EEX, thereby enabling the generation of a bunch train with tunable separation downstream of the EEX beamline. Additionally, the MLA is mounted on amore » rotation stage which provides ad- ditional flexibility to produce high-frequency beam density modulation downstream of the EEX. Experimental results obtained at the Argonne Wakefield Accelerator (AWA) facil- ity are presented and compared with numerical simulations.« less
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
Persaud, A.; Ji, Q.; Feinberg, E.; ...
2017-06-08
Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
NASA Astrophysics Data System (ADS)
Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.
2017-06-01
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.
Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A
2017-06-01
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Nathan; Geissel, Matthias; Lewis, Sean M
2015-03-01
The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.
Test of 1D carbon-carbon composite prototype tiles for the SPIDER diagnostic calorimeter
NASA Astrophysics Data System (ADS)
Serianni, G.; Pimazzoni, A.; Canton, A.; Palma, M. Dalla; Delogu, R.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Tollin, M.
2017-08-01
Additional heating will be provided to the thermonuclear fusion experiment ITER by injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction at Consorzio RFX in Padova (Italy), the production of negative ions will be studied and optimised. To this purpose the STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) diagnostic will be used to characterise the SPIDER beam during short operation (several seconds) and to verify if the beam meets the ITER requirement regarding the maximum allowed beam non-uniformity (below ±10%). The most important measurements performed by STRIKE are beam uniformity, beamlet divergence and stripping losses. The major components of STRIKE are 16 1D-CFC (Carbon matrix-Carbon Fibre reinforced Composite) tiles, observed at the rear side by a thermal camera. The requirements of the 1D CFC material include a large thermal conductivity along the tile thickness (at least 10 times larger than in the other directions); low specific heat and density; uniform parameters over the tile surface; capability to withstand localised heat loads resulting in steep temperature gradients. So 1D CFC is a very anisotropic and delicate material, not commercially available, and prototypes are being specifically realised. This contribution gives an overview of the tests performed on the CFC prototype tiles, aimed at verifying their thermal behaviour. The spatial uniformity of the parameters and the ratio between the thermal conductivities are assessed by means of a power laser at Consorzio RFX. Dedicated linear and non-linear simulations are carried out to interpret the experiments and to estimate the thermal conductivities; these simulations are described and a comparison of the experimental data with the simulation results is presented.
Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun
NASA Astrophysics Data System (ADS)
Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.
2016-09-01
The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paguio, R. R.; Smith, G. E.; Taylor, J. L.
Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less
Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...
2017-12-04
Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less
A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.
Bush, K; Popescu, I A; Zavgorodni, S
2008-09-21
As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.
Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2015-04-07
Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation time including both MC dose calculations and plan optimizations was reduced by a factor of 4.4, from 494 to 113 s, using only one GPU card.
LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)
NASA Astrophysics Data System (ADS)
Shrestha, K.; Carter, W. E.; Slatton, K. C.
2009-12-01
Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the sensitivity of the sensor by changing the PMT supply voltage. For heavily turbid water, the multi-photon state (2300 V, 2.5*10^5 gain) was not sufficient for feature identification. Extraction of the bottom signal in a heavily turbid suspension necessitated maximum MCP-PMT gain (2500 V, 8*10^5 gain). Extrapolation of bathymetric test results suggest that the density of data points from the sea bottom should be sufficient to establish near-shore depths (up to 5 m) at a spatial resolution of 1 meter, in moderately turbid water. Initial airborne tests over fresh water lakes in central Florida indicate that scan patterns containing near nadir laser points produce strong returns from the surface of the water that cause oscillations in the PMT—preventing the detection of the lake bottom in shallow clear water. These results suggest that it may be necessary to tilt the sensor head in its mount, or use a scan pattern that does not include nadir points, such as a circular scan, for bathymetric mapping. Additional tests are ongoing to optimize the performance of the CATS LSNR airborne LIDAR system for both high spatial resolution terrain mapping and shallow water bathymetric mapping.
Polarization Rotation Caused by Cross-Beam Energy Transfer in Direct-Drive Implosions
NASA Astrophysics Data System (ADS)
Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J. G.; Turnbull, D.; Froula, D. H.
2017-10-01
The first evidence of polarization rotation caused by cross-beam energy transfer (CBET) during direct-drive implosions has been provided by a new beamlets diagnostic that was fielded on OMEGA. Beamlet images are, in essence, the end points of beamlets of light originating from different regions of each beam profile and following paths determined by refraction through the coronal plasma. The intensity of each beamlet varies because of absorption and many CBET interactions along that path. The new diagnostic records images in two time windows and includes a Wollaston prism to split each beamlet into two orthogonal polarization images recording the polarization of each beamlet. Only the common polarization components couple during CBET so when each beam is linearly polarized, CBET rotates the polarization of each beam. A 3-D CBET postprocessor for hydrodynamics codes was used to model the beamlet images. The predicted images are compared to the images recorded by the new diagnostic. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
A method for modeling laterally asymmetric proton beamlets resulting from collimation
Gelover, Edgar; Wang, Dongxu; Hill, Patrick M.; Flynn, Ryan T.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark; Hyer, Daniel E.
2015-01-01
Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σx1,σx2,σy1,σy2) together with the spatial location of the maximum dose (μx,μy). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets. PMID:25735287
Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltador, C., E-mail: carlo.baltador@igi.cnr.it; Veltri, P.; Agostinetti, P.
2016-02-15
SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. Themore » study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.« less
Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets
NASA Astrophysics Data System (ADS)
Baltador, C.; Veltri, P.; Agostinetti, P.; Chitarin, G.; Serianni, G.
2016-02-01
SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.
NASA Astrophysics Data System (ADS)
Lizotte, Todd
2010-08-01
A novel laser beam shaping system was designed to demonstrate the potential of using high power UV laser sources for large scale disinfection of liquids used in the production of food products, such as juices, beer, milk and other beverage types. The design incorporates a patented assembly of optical components including a diffractive beam splitting/shaping element and a faceted pyramidal or conically shaped Lambertian diffuser made from a compression molded PTFE compounds. When properly sintered to an appropriate density, as an example between 1.10 and 1.40 grams per cubic centimeter, the compressed PTFE compounds show a ~99% reflectance at wavelengths ranging from 300 nm to 1500 nm, and a ~98.5% refection of wavelengths from 250 nm to 2000 nm [1]. The unique diffuser configuration also benefits from the fact that the PTFE compounds do not degrade when exposed to ultraviolet radiation as do barium sulfate materials and silver or aluminized mirror coatings [2]. These components are contained within a hermetically sealed quartz tube. Once assembled a laser beam is directed through one end of the tube. This window takes the form of a computer generated diffractive splitter or other diffractive shaper element to split the laser beam into a series of spot beamlets, circular rings or other geometric shapes. As each of the split beamlets or rings cascade downward, they illuminate various points along the tapered PTFE cone or faceted pyramidal form. As they strike the surface they each diffuse in a Lambertian reflectance pattern creating a pseudo-uniform circumferential illuminator along the length of the quartz tube enclosing the assembly. The compact tubular structure termed Longitudinal Illuminated Diffuser (LID) provides a unique UV disinfection source that can be placed within a centrifugal reactor or a pipe based reactor chamber. This paper will review the overall design principle, key component design parameters, preliminary analytic and bench operational testing results.
Design of a multistep phase mask for high-energy THz pulse generation in ZnTe crystal
NASA Astrophysics Data System (ADS)
Avetisyan, Yuri H.; Makaryan, Armen; Tadevosyan, Vahe
2017-08-01
A new scheme for generating high-energy terahertz (THz) pulses by optical rectification of tilted pulse front (TPF) femtosecond laser pulses in ZnTe crystal is proposed and analyzed. The TPF laser pulses are originated due to propagation through a multistep phase mask (MSPM) attached to the entrance surface of the nonlinear crystal. Similar to the case of contacting optical grating the necessity of the imaging optics is avoided. In addition, introduction of large amounts of angular dispersion is also eliminated. The operation principle is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets", which together form a discretely TPF in the nonlinear crystal. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and widely used lithium niobate (LN) crystals are calculated. The optimal number of steps is estimated taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The THz field in no pump depletion approximation is analytically calculated using radiating antenna model. The analysis shows that application of ZnTe crystal allows obtaining higher THz-pulse energy than that of LN crystal, especially when long-wavelength pump sources are used. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THzpulse source.
A method for modeling laterally asymmetric proton beamlets resulting from collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.
2015-03-15
Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEVmore » parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.« less
NASA Astrophysics Data System (ADS)
Du, Zhidong; Chen, Chen; Pan, Liang
2017-04-01
Maskless lithography using parallel electron beamlets is a promising solution for next generation scalable maskless nanolithography. Researchers have focused on this goal but have been unable to find a robust technology to generate and control high-quality electron beamlets with satisfactory brightness and uniformity. In this work, we will aim to address this challenge by developing a revolutionary surface-plasmon-enhanced-photoemission (SPEP) technology to generate massively-parallel electron beamlets for maskless nanolithography. The new technology is built upon our recent breakthroughs in plasmonic lenses, which will be used to excite and focus surface plasmons to generate massively-parallel electron beamlets through photoemission. Specifically, the proposed SPEP device consists of an array of plasmonic lens and electrostatic micro-lens pairs, each pair independently producing an electron beamlet. During lithography, a spatial optical modulator will dynamically project light onto individual plasmonic lenses to control the switching and brightness of electron beamlets. The photons incident onto each plasmonic lens are concentrated into a diffraction-unlimited spot as localized surface plasmons to excite the local electrons to near their vacuum levels. Meanwhile, the electrostatic micro-lens extracts the excited electrons to form a focused beamlet, which can be rastered across a wafer to perform lithography. Studies showed that surface plasmons can enhance the photoemission by orders of magnitudes. This SPEP technology can scale up the maskless lithography process to write at wafers per hour. In this talk, we will report the mechanism of the strong electron-photon couplings and the locally enhanced photoexcitation, design of a SPEP device, overview of our proof-of-concept study, and demonstrated parallel lithography of 20-50 nm features.
Constrained sheath optics for high thrust density, low specific impulse ion thrusters
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Han, Jian-Zhang
1987-01-01
The results of an experimental study showing that a contoured, fine wire mesh attached to the screen grid can be used to control the divergence characteristics of ion beamlets produced at low net-to-total accelerating voltage ratios are presented. The influence of free and constrained-sheath optics systems on beamlet divergence characteristics are found to be similar in the operating regime investigated, but it was found that constrained-sheath optics systems can be operated at higher perveance levels than free-sheath ones. The concept of a fine wire interference probe that can be used to study ion beamlet focusing behavior is introduced. This probe is used to demonstrate beamlet focusing to a diameter about one hundreth of the screen grid extraction aperture diameter. Additional testing is suggested to define an optimally contoured mesh that could yield well focused beamlets at net-to-total accelerating voltage ratios below about 0.1.
Sputtering Holes with Ion Beamlets
NASA Technical Reports Server (NTRS)
Byers, D. C.; Banks, B. A.
1974-01-01
Ion beamlets of predetermined configurations are formed by shaped apertures in the screen grid of an ion thruster having a double grid accelerator system. A plate is placed downstream from the screen grid holes and attached to the accelerator grid. When the ion thruster is operated holes having the configuration of the beamlets formed by the screen grid are sputtered through the plate at the accelerator grid.
Laser-induced damage and fracture in fused silica vacuum windows
NASA Astrophysics Data System (ADS)
Campbell, John H.; Hurst, Patricia A.; Heggins, Dwight D.; Steele, William A.; Bumpas, Stanley E.
1997-05-01
Laser induced damage, that initiates catastrophic fracture, has been observed in large, fused silica lenses that also serve as vacuum barriers in high-fluence positions on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lens. The damage can lead to catastrophic crack growth if the flaw size exceeds the critical flaw size for SiO2. If the elastic stored energy in the lens in high enough, the lens will fracture into many pieces resulting in an implosion. The consequences of such an implosion can be severe, particularly for large vacuum systems. Three parameters control the degree of fracture in the vacuum barrier window: (1) the elastic stored energy, (2) the ratio of the window thickness to flaw depth and (3) secondary crack propagation. Fracture experiments have ben carried our on 15-cm diameter fused silica windows that contain surface flaws caused by laser damage. The results of these experiments, combined with data from window failures on Beamlet and Nova have been sued to develop design criteria for a 'fail-safe' lens. Specifically the window must be made thick enough such that the peak tensile stress is less than 500 psi and the corresponding ratio of the thickness to critical flaw size is less than 6. Under these conditions a properly mounted window, upon failure, will break into only tow pieces and will not implode. One caveat to these design criteria is that the air leak through the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments 'lock' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase leading to further crack growth.
A Compact High-Brightness Heavy-Ion Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westenskow, G A; Grote, D P; Halaxa, E
2005-05-11
To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF) accelerators, we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. In an 80-kV 20-microsecond experiment, the RF plasma source has produced up to 5 mA of Ar{sup +} in a single beamlet. An extraction current density of 100 mA/cm{sup 2} was achieved, and the thermal temperature of the ions was below 1 eV. We have tested at full voltage gradient the first 4 gaps of an injector design. Einzel lens were used to focus the beamlets while reducing the beamletmore » to beamlet space charge interaction. We were able to reach greater than 100 kV/cm in the first four gaps. We also performed experiments on a converging 119 multi-beamlet source. Although the source has the same optics as a full 1.6 MV injector system, these test were carried out at 400 kV due to the test stand HV limit. We have measured the beam's emittance after the beamlets are merged and passed through an electrostatic quadrupole (ESQ). Our goal is to confirm the emittance growth and to demonstrate the technical feasibility of building a driver-scale HIF injector.« less
Inertial Confinement Fusion Annual Report 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.« less
Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.
2012-01-01
Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717
Fine-structure characteristics in the emittance images of a strongly focusing He{sup +} beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasao, M.; Kobuchi, T.; Kisaki, M.
2010-02-15
The phase space distribution of a strongly focused He{sup +} ion beam source equipped with concave multiaperture electrodes was measured using a pepper-pot plate and a Kapton foil. The substructure of 301 merging He beamlets was clearly observed on a footprint of pepper-pot hole at the beam waist, where the beam density was 500 mA/cm{sup 2}. The position and the width of each beamlet substructure show the effect of interference of beamlets with surrounding one.
Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification
NASA Astrophysics Data System (ADS)
Avetisyan, Y.; Makaryan, A.; Tadevosyan, V.; Tonouchi, M.
2017-12-01
A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets," which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.
Park, Justin C; Li, Jonathan G; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray
2015-04-01
The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc therapy fields (∼90 control points) with a 3D grid size of 2.0 × 2.0 × 2.0 mm(3), dose was computed within 3-5 and 10-15 s timeframe, respectively. The authors have developed an efficient adaptive beamlet-based pencil beam dose calculation algorithm. The fast computation nature along with GPU compatibility has shown better performance than conventional FSPB. This enables the implementation of AB-FSPB in the clinical environment for independent volumetric dose verification.
NASA Astrophysics Data System (ADS)
Russo, G.; Attili, A.; Battistoni, G.; Bertrand, D.; Bourhaleb, F.; Cappucci, F.; Ciocca, M.; Mairani, A.; Milian, F. M.; Molinelli, S.; Morone, M. C.; Muraro, S.; Orts, T.; Patera, V.; Sala, P.; Schmitt, E.; Vivaldo, G.; Marchetto, F.
2016-01-01
The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.
Two-Photon Imaging with Diffractive Optical Elements
Watson, Brendon O.; Nikolenko, Volodymyr; Yuste, Rafael
2009-01-01
Two-photon imaging has become a useful tool for optical monitoring of neural circuits, but it requires high laser power and serial scanning of each pixel in a sample. This results in slow imaging rates, limiting the measurements of fast signals such as neuronal activity. To improve the speed and signal-to-noise ratio of two-photon imaging, we introduce a simple modification of a two-photon microscope, using a diffractive optical element (DOE) which splits the laser beam into several beamlets that can simultaneously scan the sample. We demonstrate the advantages of DOE scanning by enhancing the speed and sensitivity of two-photon calcium imaging of action potentials in neurons from neocortical brain slices. DOE scanning can easily improve the detection of time-varying signals in two-photon and other non-linear microscopic techniques. PMID:19636390
NASA Astrophysics Data System (ADS)
Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy
2017-10-01
The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.
NASA Technical Reports Server (NTRS)
Anderson, John R.; Wilbur, Paul J.
1989-01-01
The potential usefulness of the constrained sheath optics concept as a means of controlling the divergence of low energy, high current density ion beams is examined numerically and experimentally. Numerical results demonstrate that some control of the divergence of typical ion beamlets can be achieved at perveance levels of interest by contouring the surface of the constrained sheath properly. Experimental results demonstrate that a sheath can be constrained by a wire mesh attached to the screen plate of the ion optics system. The numerically predicted beamlet divergence characteristics are shown to depart from those measured experimentally, and additional numerical analysis is used to demonstrate that this departure is probably due to distortions of the sheath caused by the fact that it attempts to conform to the individual wires that make up the sheath constraining mesh. The concept is considered potentially useful in controlling the divergence of ion beamlets in applications where low divergence, low energy, high current density beamlets are being sought, but more work is required to demonstrate this for net beam ion energies as low as 5 eV.
Generation of a novel phase-space-based cylindrical dose kernel for IMRT optimization.
Zhong, Hualiang; Chetty, Indrin J
2012-05-01
Improving dose calculation accuracy is crucial in intensity-modulated radiation therapy (IMRT). We have developed a method for generating a phase-space-based dose kernel for IMRT planning of lung cancer patients. Particle transport in the linear accelerator treatment head of a 21EX, 6 MV photon beam (Varian Medical Systems, Palo Alto, CA) was simulated using the EGSnrc/BEAMnrc code system. The phase space information was recorded under the secondary jaws. Each particle in the phase space file was associated with a beamlet whose index was calculated and saved in the particle's LATCH variable. The DOSXYZnrc code was modified to accumulate the energy deposited by each particle based on its beamlet index. Furthermore, the central axis of each beamlet was calculated from the orientation of all the particles in this beamlet. A cylinder was then defined around the central axis so that only the energy deposited within the cylinder was counted. A look-up table was established for each cylinder during the tallying process. The efficiency and accuracy of the cylindrical beamlet energy deposition approach was evaluated using a treatment plan developed on a simulated lung phantom. Profile and percentage depth doses computed in a water phantom for an open, square field size were within 1.5% of measurements. Dose optimized with the cylindrical dose kernel was found to be within 0.6% of that computed with the nontruncated 3D kernel. The cylindrical truncation reduced optimization time by approximately 80%. A method for generating a phase-space-based dose kernel, using a truncated cylinder for scoring dose, in beamlet-based optimization of lung treatment planning was developed and found to be in good agreement with the standard, nontruncated scoring approach. Compared to previous techniques, our method significantly reduces computational time and memory requirements, which may be useful for Monte-Carlo-based 4D IMRT or IMAT treatment planning.
NASA Astrophysics Data System (ADS)
Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.
2015-02-01
Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C5H12) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 1014 W/cm2, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.
NASA Astrophysics Data System (ADS)
Alom, Md. Zahangir; Awwal, Abdul A. S.; Lowe-Webb, Roger; Taha, Tarek M.
2017-08-01
Deep-learning methods are gaining popularity because of their state-of-the-art performance in image classification tasks. In this paper, we explore classification of laser-beam images from the National Ignition Facility (NIF) using a novel deeplearning approach. NIF is the world's largest, most energetic laser. It has nearly 40,000 optics that precisely guide, reflect, amplify, and focus 192 laser beams onto a fusion target. NIF utilizes four petawatt lasers called the Advanced Radiographic Capability (ARC) to produce backlighting X-ray illumination to capture implosion dynamics of NIF experiments with picosecond temporal resolution. In the current operational configuration, four independent short-pulse ARC beams are created and combined in a split-beam configuration in each of two NIF apertures at the entry of the pre-amplifier. The subaperture beams then propagate through the NIF beampath up to the ARC compressor. Each ARC beamlet is separately compressed with a dedicated set of four gratings and recombined as sub-apertures for transport to the parabola vessel, where the beams are focused using parabolic mirrors and pointed to the target. Small angular errors in the compressor gratings can cause the sub-aperture beams to diverge from one another and prevent accurate alignment through the transport section between the compressor and parabolic mirrors. This is an off-normal condition that must be detected and corrected. The goal of the off-normal check is to determine whether the ARC beamlets are sufficiently overlapped into a merged single spot or diverged into two distinct spots. Thus, the objective of the current work is three-fold: developing a simple algorithm to perform off-normal classification, exploring the use of Convolutional Neural Network (CNN) for the same task, and understanding the inter-relationship of the two approaches. The CNN recognition results are compared with other machine-learning approaches, such as Deep Neural Network (DNN) and Support Vector Machine (SVM). The experimental results show around 96% classification accuracy using CNN; the CNN approach also provides comparable recognition results compared to the present feature-based off-normal detection. The feature-based solution was developed to capture the expertise of a human expert in classifying the images. The misclassified results are further studied to explain the differences and discover any discrepancies or inconsistencies in current classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
2010-05-15
The radial convergence required to reach fusion conditions is considerably higher for cylindrical than for spherical implosions since the volume is proportional to r{sup 2} versus r{sup 3}, respectively. Fuel magnetization and preheat significantly lowers the required radial convergence enabling cylindrical implosions to become an attractive path toward generating fusion conditions. Numerical simulations are presented indicating that significant fusion yields may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized (>10 T) and preheated (100-500 eV) deuterium-tritium (DT) fuel. Yields exceeding 100 kJ could be possible on Z at 25 MA, while yields exceeding 50 MJ could bemore » possible with a more advanced pulsed power machine delivering 60 MA. These implosions occur on a much shorter time scale than previously proposed implosions, about 100 ns as compared to about 10 mus for magnetic target fusion (MTF) [I. R. Lindemuth and R. C. Kirkpatrick, Nucl. Fusion 23, 263 (1983)]. Consequently the optimal initial fuel density (1-5 mg/cc) is considerably higher than for MTF (approx1 mug/cc). Thus the final fuel density is high enough to axially trap most of the alpha-particles for cylinders of approximately 1 cm in length with a purely axial magnetic field, i.e., no closed field configuration is required for ignition. According to the simulations, an initial axial magnetic field is partially frozen into the highly conducting preheated fuel and is compressed to more than 100 MG. This final field is strong enough to inhibit both electron thermal conduction and the escape of alpha-particles in the radial direction. Analytical and numerical calculations indicate that the DT can be heated to 200-500 eV with 5-10 kJ of green laser light, which could be provided by the Z-Beamlet laser. The magneto-Rayleigh-Taylor (MRT) instability poses the greatest threat to this approach to fusion. Two-dimensional Lasnex simulations indicate that the liner walls must have a substantial initial thickness (10-20% of the radius) so that they maintain integrity throughout the implosion. The Z and Z-Beamlet experiments are now being planned to test the various components of this concept, e.g., the laser heating of the fuel and the robustness of liner implosions to the MRT instability.« less
NASA Astrophysics Data System (ADS)
Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre; U. Rochester-Sandia Collaboration
2017-10-01
Magnetic Liner Inertial Fusion (MagLIF) experiments incorporate a laser to preheat a deuterium filled capsule before compression via a magnetically imploding liner. In this work, we focus on the blast wave formed in the fuel during the laser preheat component of MagLIF, where approximately 1kJ of energy is deposited in 3ns into the capsule axially before implosion. To model blast waves directly relevant to experiments such as MagLIF, we inferred deposited energy from shadowgraphy of laser-only experiments preformed at the PECOS target chamber using the Z-Beamlet laser. These energy profiles were used to initialize 2-dimensional simulations using by the adaptive mesh refinement code FLASH. Gradients or asymmetries in the energy deposition may seed instabilities that alter the fuel's distribution, or promote mix, as the blast wave interacts with the liner wall. The AMR capabilities of FLASH allow us to study the development and dynamics of these instabilities within the fuel and their effect on the liner before implosion. Sandia Natl Labs is managed by NTES of Sandia, LLC., a subsidiary of Honeywell International, Inc, for the U.S. DOEs NNSA under contract DE-NA0003525.
Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements
NASA Astrophysics Data System (ADS)
Serianni, G.; Bonomo, F.; Brombin, M.; Cervaro, V.; Chitarin, G.; Cristofaro, S.; Delogu, R.; De Muri, M.; Fasolo, D.; Fonnesu, N.; Franchin, L.; Franzen, P.; Ghiraldelli, R.; Molon, F.; Muraro, A.; Pasqualotto, R.; Ruf, B.; Schiesko, L.; Tollin, M.; Veltri, P.
2015-04-01
The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features of the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.
Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Brombin, M.; Cervaro, V.
The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features ofmore » the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.« less
Optics for multimode lasers with elongated depth of field
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2017-02-01
Modern multimode high-power lasers are widely used in industrial applications and control of their radiation, especially by focusing, is of great importance. Because of relatively low optical quality, characterized by high values of specifications Beam Parameter Product (BPP) or M², the depth of field by focusing of multimode laser radiation is narrow. At the same time laser technologies like deep penetration welding, cutting of thick metal sheets get benefits from elongated depth of field in area of focal plane, therefore increasing of zone along optical axis with minimized spot size is important technical task. As a solution it is suggested to apply refractive optical systems splitting an initial laser beam into several beamlets, which are focused in different foci separated along optical axis with providing reliable control of energy portions in each separate focus, independently of beam size or mode structure. With the multi-focus optics, the length of zone of material processing along optical axis is defined rather by distances between separate foci, which are determined by optical design of the optics and can be chosen according to requirements of a particular laser technology. Due to stability of the distances between foci there is provided stability of a technology process. This paper describes some design features of refractive multi-focus optics, examples of real implementations and experimental results will be presented as well.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.
2012-10-01
ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 < n < nc/4) of the plasma is essential to understanding the LPI observation. However, numerical simulation was the only way to access the profiles for the previous experiments. In the current Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.
Conduction cooled compact laser for the chemcam instrument
NASA Astrophysics Data System (ADS)
Durand, E.; Derycke, C.; Simon-Boisson, C.; Muller, S.; Faure, B.; Saccoccio, M.; Maurice, M.
2017-11-01
A new conduction cooled compact laser for laser induced spectroscopy on the Mars Science Laboratory (MSL) to be launched in 2009 is presented. An oscillator combined to amplifiers generates 30mJ at 1μm with a good spatial quality. Development prototype of this laser has been built and characterized. Environmental testing of this prototype is also reported.
Practical application of pulsed "eye-safe" microchip laser to laser rangefinders
NASA Astrophysics Data System (ADS)
Młyńczak, J.; Kopczyński, K.; Mierczyk, Z.; Zygmunt, M.; Natkański, S.; Muzal, M.; Wojtanowski, J.; Kirwil, P.; Jakubaszek, M.; Knysak, P.; Piotrowski, W.; Zarzycka, A.; Gawlikowski, A.
2013-09-01
The paper describes practical application of pulsed microchip laser generating at 1535-nm wavelength to a laser rangefinder. The complete prototype of a laser rangefinder was built and investigated in real environmental conditions. The measured performance of the device is discussed. To build the prototype of a laser rangefinder at a reasonable price and shape a number of basic considerations had to be done. These include the mechanical and optical design of a microchip laser and the opto-mechanical construction of the rangefinder.
Rapid Prototyping: State of the Art
2003-10-23
Rapid Prototyping SCS Solid Creation System SLM Selective Laser Melting SLP Solid Laser diode Plotter SLS Selective Laser Sintering SOAR State of the...121,000, respectively. SLP stands for Sold Laser Diode Plotter. The machines are relatively slow and parts are small, so, to date, the products have been...Gigerenzer, H., “Directed Laser Welding of Metal Matrix Composite Structures for Space Based Applications,“ Triton Systems Inc., Chelmsford, MA., 1
Design of integrated laser initiator
NASA Astrophysics Data System (ADS)
Cao, Chunqiang; He, Aifeng; Jing, Bo; Ma, Yue
2018-03-01
This paper analyzes the design principle of integrated laser detonator, introduces the design method of integrated laser Detonators. Based on the integrated laser detonator, structure, laser energy -exchange device, circuit design and the energetic material properties and the charge parameters, developed a high level of integration Antistatic ability Small size of the integrated laser prototype Detonator. The laser detonator prototype antistatic ability of 25 kV. The research of this paper can solve the key design of laser detonator miniaturization and integration of weapons and equipment, satisfy the electromagnetic safety and micro weapons development of explosive demand.
Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry
Choudhury, Niloy; Chen, Fangyi; Wang, Ruikang K.; Jacques, Steven L.; Nuttall, Alfred L.
2013-01-01
Abstract. We present an optical vibrometer based on delay-encoded, dual-beamlet phase-sensitive Fourier domain interferometric system to provide depth-resolved subnanometer scale vibration information from scattering biological specimens. System characterization, calibration, and preliminary vibrometry with biological specimens were performed. The proposed system has the potential to provide both amplitude and direction of vibration of tissue microstructures on a single two-dimensional plane. PMID:23455961
Adaptive Tunable Laser Spectrometer for Space Applications
NASA Technical Reports Server (NTRS)
Flesch, Gregory; Keymeulen, Didier
2010-01-01
An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.
Capote, Roberto; Sánchez-Doblado, Francisco; Leal, Antonio; Lagares, Juan Ignacio; Arráns, Rafael; Hartmann, Günther H
2004-09-01
Intensity modulated radiation therapy (IMRT) has evolved toward the use of many small radiation fields, or "beamlets," to increase the resolution of the intensity map. The size of smaller beamlets can be typically about 1-5 cm2. Therefore small ionization chambers (IC) with sensitive volumes < or = 0.1 cm3 are generally used for dose verification of IMRT treatment. The dosimetry of these narrow photon beams pertains to the so-called nonreference conditions for beam calibration. The use of ion chambers for such narrow beams remains questionable due to the lack of electron equilibrium in most of the field. The present contribution aims to estimate, by the Monte Carlo (MC) method, the total correction needed to convert the IBA-Wellhöfer NAC007 micro IC measured charge in such radiation field to the absolute dose to water. Detailed geometrical simulation of the microionization chamber was performed. The ion chamber was always positioned at a 10 cm depth in water, parallel to the beam axis. The delivered doses to air and water cavity were calculated using the CAVRZ EGSnrc user code. The 6 MV phase-spaces for Primus Clinac (Siemens) used as an input to the CAVRZnrc code were derived by BEAM/EGS4 modeling of the treatment head of the machine along with the multileaf collimator [Sánchez-Doblado et al., Phys. Med. Biol. 48, 2081-2099 (2003)] and contrasted with experimental measurements. Dose calculations were carried out for two irradiation geometries, namely, the reference 10x10 cm2 field and an irregular (approximately 2x2 cm2) IMRT beamlet. The dose measured by the ion chamber is estimated by MC simulation as a dose averaged over the air cavity inside the ion-chamber (Dair). The absorbed dose to water is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water (Dwater) in the absence of the ionization chamber. Therefore, the Dwater/Dair dose ratio is a MC direct estimation of the total correction factor needed to convert the absorbed dose in air to absorbed dose to water. The dose ratio was calculated for several chamber positions, starting from the penumbra region around the beamlet along the two diagonals crossing the radiation field. For this quantity from 0 up to a 3% difference is observed between the dose ratio values obtained within the small irregular IMRT beamlet in comparison with the dose ratio derived for the reference 10x10 cm2 field. Greater differences from the reference value up to 9% were obtained in the penumbra region of the small IMRT beamlet.
A SIMPLE METHOD FOR MEASURING THE ELECTRON-BEAM MAGNETIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Qiang, G.; Wisniewski, E.
2016-10-18
There are a number of projects that require magnetized beams, such as electron cooling or aiding in “flat” beam transforms. Here we explore a simple technique to characterize the magnetization, observed through the angular momentum of magnetized beams. These beams are produced through photoemission. The generating drive laser first passes through microlens arrays (fly-eye light condensers) to form a transversely modulated pulse incident on the photocathode surface [1]. The resulting charge distribution is then accelerated from the photocathode. We explore the evolution of the pattern via the relative shearing of the beamlets, providing information about the angular momentum. This methodmore » is illustrated through numerical simulations and preliminary measurements carried out at the Argonne Wakefield Accelerator (AWA) facility are presented.« less
Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D
2013-09-01
We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.
Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets
NASA Astrophysics Data System (ADS)
Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.
2018-02-01
The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.
Maskless micro-ion-beam reduction lithography system
Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.
2005-05-03
A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.
Development of an integrated automated retinal surgical laser system.
Barrett, S F; Wright, C H; Oberg, E D; Rockwell, B A; Cain, C; Rylander, H G; Welch, A J
1996-01-01
Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Preliminary testing on rhesus primate subjects have been accomplished with the CW argon laser and also the ultrashort pulse laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Several interesting areas of study have developed in integrating the two subsystems: 1) "doughnut" shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, 2) the optimal retinal field of view (FOV) to achieve both tracking and lesion parameter control, and 3) development of a hybrid analog/digital tracker using confocal reflectometry to achieve retinal tracking speeds of up to 100 dgs. This presentation will discuss these design issues of this clinically significant prototype system. Details of the hybrid prototype system are provided in "Hybrid Eye Tracking for Computer-Aided Retinal Surgery" at this conference. The paper will close with remaining technical hurdles to clear prior to testing the full-up clinical prototype system.
Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki
2010-07-05
We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.
Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Kimmel, Mark; Rambo, Patrick; Broyles, Robin; Geissel, Matthias; Schwarz, Jens; Bellum, John; Atherton, Briggs
2009-10-01
To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandia's in-house meter-class coating capability.
Parallel processing of embossing dies with ultrafast lasers
NASA Astrophysics Data System (ADS)
Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan; Du, Keming; Jenke, Gerald
2018-02-01
Functionalization of surfaces equips products and components with new features like hydrophilic behavior, adjustable gloss level, light management properties, etc. Small feature sizes demand diffraction-limited spots and adapted fluence for different materials. Through the availability of high power fast repeating ultrashort pulsed lasers and efficient optical processing heads delivering diffraction-limited small spot size of around 10μm it is feasible to achieve fluences higher than an adequate patterning requires. Hence, parallel processing is becoming of interest to increase the throughput and allow mass production of micro machined surfaces. The first step on the roadmap of parallel processing for cylinder embossing dies was realized with an eight- spot processing head based on ns-fiber laser with passive optical beam splitting, individual spot switching by acousto optical modulation and an advanced imaging. Patterning of cylindrical embossing dies shows a high efficiency of nearby 80%, diffraction-limited and equally spaced spots with pitches down to 25μm achieved by a compression using cascaded prism arrays. Due to the nanoseconds laser pulses the ablation shows the typical surrounding material deposition of a hot process. In the next step the processing head was adapted to a picosecond-laser source and the 500W fiber laser was replaced by an ultrashort pulsed laser with 300W, 12ps and a repetition frequency of up to 6MHz. This paper presents details about the processing head design and the analysis of ablation rates and patterns on steel, copper and brass dies. Furthermore, it gives an outlook on scaling the parallel processing head from eight to 16 individually switched beamlets to increase processing throughput and optimized utilization of the available ultrashort pulsed laser energy.
Could we use beamlets as a tool for remote sensing of the magnetotail?
NASA Astrophysics Data System (ADS)
Dolgonosov, Maxim; Zelenyi, Lev; Zimbardo, Gaetano; Perri, Silvia; Kovrazhkin, Rostislav
2012-07-01
In our presentation we are going to raise a question of exploiting beamlets for remote sensing of magnetotail. There is a long history of investigation of particle dynamics and features of distribution functions with prescribed electric and magnetic fields that could be measured by spacecrafts. But we would like to focus our attention on small part of this story and study in detail the behavior of ion the vicinity of the current sheet. Burkhart and Chen [Burkhart and Chen, 1991,JGR] employed the modified Harris model of the current sheet magnetic field [vec{B}=B_{0} tanh (z/L)vec{e}_{x} +B_{z} vec{e}_{z} ] and found a signature of nonlinear particle dynamics and an underlying partitioning of phase space that manifests itself as a series of peaks in the ion distribution function. The separation between the peaks is proportional to the fourth root of the particle energy and quantities that describe the current sheet structure. Formation of these peaks in the ion distribution function was explained on the basis resonant condition proposed by Buchner and Zelenyi [Buchner and Zelenyi,1989, JGR]. The non-adiabatic dynamics of the ions at vicinity of equatorial plane can be characterized by the action integral I_{z} =1/2 π \\oint \\dot{z}dz , which serves as an approximate integral of motion [Sonnerup, 1971]. Chaos is generated by the jumps Δ I_{z} of this invariant which accompany the particle crossing of the current sheet, which can lead both to the almost regular (field-aligned) motion of particles and to the capture of particles in the center of the current sheet, due to the unavoidable chaotic scattering. However, a subset of the ``regularity'' regions can exist in the physical space for certain combinations of current sheet parameters. Successive jumps of the adiabatic invariant Iz within these regions at the entry of particle into the current sheet and its exit from the current sheet, in the first approximation compensate each other, and ions ejected from these regions form almost monoenergetic highly accelerated and spatially localized ion beams, the so-called beamlets. The quasi-stationary dawn-dusk electric field Ey in the magnetotail accelerates ions between these jumps [Buchner and Zelenyi, 1990; Zelenyi et al., 2006a; Grigorenko et al., 2007]. The sites of acceleration depend on the value of Bn, and for a typical energy of the ions coming from the mantle, the resonance condition is satisfied at a number of discrete positions downtail. Zelenyi et al. [Zelenyi et al., 2007, JETP Letters] found the universal scaling characterizing the chain of these "regularity" regions. This ``law'' gives a relation between the typical beamlet energy WN and corresponding number of resonant region N: W_{N} =4/3 log N. Later Dolgonosov et al. [Dolgonosov et al., 2010, JGR] modified ``universal'' scaling and showed that to study experimentally observed beamlets one should take into account presence of the electric field perpendicular to the plane of the current sheet. On the basis of this paper [Kovrakhin et al., 2012, JETP Letters] it was analyzed spacecraft data (Cluster and Interball) to study properties of thin current sheets. Evidently, nonlinear particle dynamic result to the generation of the regularity ``island'' with some characteristic features. In the paper of Zelenyi et al. [Zelenyi et al, 2006, GRL] modulation of the normal component of the magnetic field under influence of self-consistent currents of particles was investigated. Peaks of Bz modulation nearly coincided with ``regularity'' islands. This result indicates on the fact that turbulence in the plasma sheet could be resulted from the nonlinear particle dynamic and properties of these ``noise'' are governed by features of particle motion. Thereby influence of ``noise'' constrains exploiting beamlets for remote sensing. It is also natural to ask what happens with these ``resonant'' regions under influence of external noise (or externally driven turbulence). Experimental observation of the magnetic field in the plasma sheet indicate on the permanent perturbation of the magnetic field and this perturbation could be very significant δBz ˜Bz. At the same time measurements of beamlets at the PSBL show that beamlets are long living structures [Grigorenko, 2003, JETP Letters]. What is the value of the magnetic field perturbation that could destroy generation of beamlets? In our report we are going to discuss current sheet properties obtained from beamlets analysis and natural restrictions imposed by turbulence.
NASA Astrophysics Data System (ADS)
Ghosh, P.
2015-03-01
The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported.
[Rapid prototyping: a very promising method].
Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T
2013-03-01
Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.
A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning.
Lu, Weiguo
2010-12-07
We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N(3))) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets and lead to better plan quality. The computation parallelization on a GPU instead of a computer cluster significantly reduces hardware and service costs. Compared with using the current VBS framework on a computer cluster, the planning time is significantly reduced using the NVBB framework on a single workstation with a GPU card.
NASA Astrophysics Data System (ADS)
Pogue, B. W.; Krishnaswamy, V.; Jermyn, M.; Bruza, P.; Miao, T.; Ware, William; Saunders, S. L.; Andreozzi, J. M.; Gladstone, D. J.; Jarvis, L. A.
2017-05-01
Cherenkov imaging has been shown to allow near real time imaging of the beam entrance and exit on patient tissue, with the appropriate intensified camera and associated image processing. A dedicated system has been developed for research into full torso imaging of whole breast irradiation, where the dual camera system captures the beam shape for all beamlets used in this treatment protocol. Particularly challenging verification measurement exists in dynamic wedge, field in field, and boost delivery, and the system was designed to capture these as they are delivered. Two intensified CMOS (ICMOS) cameras were developed and mounted in a breast treatment room, and pilot studies for intensity and stability were completed. Software tools to contour the treatment area have been developed and are being tested prior to initiation of the full trial. At present, it is possible to record delivery of individual beamlets as small as a single MLC thickness, and readout at 20 frames per second is achieved. Statistical analysis of system repeatibilty and stability is presented, as well as pilot human studies.
NASA Technical Reports Server (NTRS)
Cariapa, Vikram
1993-01-01
The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.
NASA Technical Reports Server (NTRS)
Aston, Graeme (Inventor)
1984-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.
Numerical simulations of the first operational conditions of the negative ion test facility SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Agostinetti, P.; Antoni, V.
2016-02-15
In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.
Numerical simulations of the first operational conditions of the negative ion test facility SPIDER
NASA Astrophysics Data System (ADS)
Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Cavenago, M.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.
2016-02-01
In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.
NASA Astrophysics Data System (ADS)
Patil, S. N.; Mulay, A. V.; Ahuja, B. B.
2018-04-01
Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of metal rapid prototyping process and its important parameters.
You can achieve anything with a laser: ingenuity in the design of the impossible
NASA Astrophysics Data System (ADS)
Davies, Ray
2009-06-01
In the area of Photonics Research as to what can be achieved with Low Power Photonics Sources, such as a Class 2 HeNe Laser, a Laser Diode, or an ultra high intensity LED, the Photonics Academy at OpTIC possesses a highly impressive array of functional Prototype Designs. Each of these visually attractive Prototype Designs illustrates the Ingenuity in Design that has been achieved by students, in the range of 15 - 25 years of age, who have been engaged in personal opportunities to Investigate the potential application of Photonics concepts to, and within, a whole range of highly Innovative outcomes, that are clear demonstrations of many students' individual Originality and Ingenuity in creating new ideas for the application of Low Power Photonics Concepts. This Paper will highlight some of the highly Perceptive Prototype Design achievements of students in the application of Photonics principles, with these applications ranging from the Use of a Laser to identify the Letters of a Word in an ordinary book before translating them into Braille for a Visually Handicapped person, to the transmission of audio information over a distance; from a Book Page turning device for a paralysed person, to a pair of Laser Activated Mobile Feet; from a Mobile Guide Robot for a Blind person, to a five-Laser beam Combination Lock for a high Security application; from a Laser Birefringent Seismograph, to a Laser Speckle Activated Robotic Hand; and many, many more. All of the many functioning Prototype Design ideas that will be demonstrated have one characteristic that is common, namely, they are all designed with the intention to help improve the day-to-day experiences of other people, especially those who are impaired in some way. One of the most interesting challenges that can be presented to students is to apply Low Power Laser Photonics to help any visually impaired person within a whole range of activities, and several of the Prototype Designs will illustrate that particular type of student Ingenuity and Achievement via Perceptive Knowledge in Photonics.
Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad
2017-12-01
In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder
Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without anymore » phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.« less
Single-Photon LIDAR for Vegetation Analysis
NASA Astrophysics Data System (ADS)
Rosette, J.; Field, C.; Nelson, R. F.; Decola, P.; Cook, B. D.; Degnan, J. J.
2011-12-01
Lidar is now an established and recognised technology which has been widely applied to assist forest inventory, monitoring and management. Small footprint lidar systems produce dense 'point clouds' from intercepted surfaces which, after classification of ground and vegetation returns, can be related to important forest biophysical parameters such as biomass or carbon. Within the context of NASA's Carbon Monitoring System (CMS) initiative (NASA, 2010), the prototype 100 beam, single-photon, scanning lidar, developed by Sigma Space Corporation, USA, is tested to assess the potential of this sensor for vegetation analysis. This emerging lidar technology is currently generally operated at green wavelengths (532 nm) and, like more conventional discrete return NIR lidar sensors, produces point clouds of intercepted surfaces. However, the high pulse repetition rate (20 kHz) and multibeam approach produces an unprecedented measurement rate (up to 2 Million pixels per second) and a correspondingly high point density. Furthermore, the single photon sensitivity enables the technique to be more easily extended to high altitudes and therefore larger swath widths. Additionally, CW diode laser pumping and a low laser pulse energy (6 μJ at 532 nm) favour an extended laser lifetime while the much lower energy per beamlet (~50nJ) ensures eye safety despite operating at a visible wavelength. Furthermore, the short laser pulse duration (0.7ns) allows the surface to be located with high vertical precision. Although the 532 nm green wavelength lies near the peak of the solar output, the spatial and temporal coherence of the surface returns, combined with stringent instrument specifications (small detector field of view and narrow optical band-pass filter), allow solid surfaces to be distinguished from the solar background during daylight operations. However, for extended volumetric scatterers such as tree canopies, some amount of solar noise is likely to be mixed in with valid biomass returns. This has potential implications for the accurate identification of the vegetation profile, particularly for rough transition zones such as the canopy top. This research aims to improve understanding of the ability to extract lidar metrics and forest biomass from datasets where solar noise is present. Studies of this nature will inform future photon-counting satellite lidar sensors such as NASA's ICESat II, scheduled for launch at the beginning of 2016. This objective is achieved through a comparison of the new sensor capabilities with archival discrete return lidar data and recent field measurements in the eastern USA which are used to map biomass. Since such sensors have the potential to facilitate large area lidar coverage, this may extend the capabilities of biomass mapping and monitoring at regional or national scales. REFERENCE NASA, 2010. NASA Carbon Monitoring System Initiative. Available online at: http://cce.nasa.gov/cce/cms/index.html.
Bill, J S; Reuther, J F
2004-05-01
The aim was to define the indications for use of rapid prototyping models based on data of patients treated with this technique. Since 1987 our department has been developing methods of rapid prototyping in surgery planning. During the study, first the statistical and reproducible anatomical precision of rapid prototyping models was determined on pig skull measurements depending on CT parameters and method of rapid prototyping. Measurements on stereolithography models and on selective laser sintered models confirmed an accuracy of +/-0.88 mm or 2.7% (maximum deviation: -3.0 mm to +3.2 mm) independently from CT parameters or method of rapid prototyping, respectively. With the same precision of models multilayer helical CT with a higher rate is the preferable method of data acquisition compared to conventional helical CT. From 1990 to 2002 in atotal of 122 patients, 127 rapid prototyping models were manufactured: in 112 patients stereolithography models, in 2 patients an additional stereolithography model, in 2 patients an additional selective laser sinter model, in 1 patient an additional milled model, and in 10 patients just a selective laser sinter model. Reconstructive surgery, distraction osteogenesis including midface distraction, and dental implantology are proven to be the major indications for rapid prototyping as confirmed in a review of the literature. Surgery planning on rapid prototyping models should only be used in individual cases due to radiation dose and high costs. Routine use of this technique only seems to be indicated in skull reconstruction and distraction osteogenesis.
Naval Science & Technology: Enabling the Future Force
2013-04-01
corn for disruptive technologies Laser Cooling Spintronics Bz 1st U.S. Intel satellite GRAB Semiconductors GaAs, GaN, SiC GPS...Payoff • Innovative and game-changing • Approved by Corporate Board • Delivers prototype Innovative Naval Prototypes (5-10 Year) Disruptive ... Technologies Free Electron Laser Integrated Topside EM Railgun Sea Base Enablers Tactical Satellite Large Displacement UUV AACUS Directed
A practical optical-resolution photoacoustic microscopy prototype using a 300 mW visible laser diode
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Piao, Zhonglie; Huang, Shenghai; Jia, Wangcun; Chen, Zhongping
2016-03-01
Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique for microvasculature imaging at high spatial resolution and contrast. In this work, we present a practical visible laser-diode-based OR-PAM (LD-OR-PAM) prototype for vasculature imaging, which has the desirable properties of being portable, low-cost, and label-free. The prototype employs a 300 mW pulsed laser diode in a 3.8 mm diameter package, emitting 174 ns pulses at 405 +/- 5 nm wavelength and a pulse energy of 52 nJ. An aspheric objective with a numerical aperture of 0.60 is used to achieve microscope optical illumination. The laser diode excitation has a compact size of 4.5 × 1.8 × 1.8 cm3 assembled with a cooling block. The lateral resolution was tested to be 0.95 μm on ~7 μm carbon fibers. The subcutaneous microvasculature on a mouse back was label-free imaged ex vivo, which demonstrates the potential of the LD-OR-PAM prototype for in vivo imaging skin chromosphores such as hemoglobin. Our ultimate aim is to provide a practical and affordable OR-PAM system as a routine instrument for standard clinical applications.
Mid-infrared coronary laser angioplasty with multifiber catheters
NASA Astrophysics Data System (ADS)
White, Christopher J.; Ramee, Stephen R.; Collins, Tyrone J.
1993-06-01
Mid-infrared laser wavelengths offer advantages as a source for coronary angioplasty based upon the excellent fiberoptic transmission and the enhanced tissue absorption of these photons. We report the results of a pilot clinical trial of a Holmium:YAG (2.1 micrometers ) coronary laser angioplasty using a prototype (1.6 mm and 2.0 mm) multifiber catheters. Coronary laser angioplasty with or without adjunctive balloon angioplasty or directional atherectomy was performed in 14 patients with 17 coronary stenoses. Laser success was obtained in 13/14 (93%) patients and 16/17 (94%) lesions. Uncomplicated procedural success was achieved in 9/14 (64%) patients and 12/17 (71%) lesions. Our initial laser success rate was very encouraging using this prototype multifiber catheter with a holmium:YAG laser. However, our overall procedural success rate was disappointing, and not superior to that expected with conventional angioplasty alone. The holmium laser remains an attractive energy source for laser angioplasty, but its utility is limited by catheters which create inadequate channels for stand-alone laser angioplasty.
NASA Technical Reports Server (NTRS)
Aston, G. (Inventor)
1981-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.
Means and method for the focusing and acceleration of parallel beams of charged particles
Maschke, Alfred W.
1983-07-05
A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.
Microfabricated Ion Beam Drivers for Magnetized Target Fusion
NASA Astrophysics Data System (ADS)
Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas
2015-11-01
Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.
Ao, T.; Harding, E. C.; Bailey, J. E.; ...
2016-01-13
Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH 2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm 3, andmore » temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less
Compensation in the presence of deep turbulence using tiled-aperture architectures
NASA Astrophysics Data System (ADS)
Spencer, Mark F.; Brennan, Terry J.
2017-05-01
The presence of distributed-volume atmospheric aberrations or "deep turbulence" presents unique challenges for beam-control applications which look to sense and correct for disturbances found along the laser-propagation path. This paper explores the potential for branch-point-tolerant reconstruction algorithms and tiled-aperture architectures to correct for the branch cuts contained in the phase function due to deep-turbulence conditions. Using wave-optics simulations, the analysis aims to parameterize the fitting-error performance of tiled-aperture architectures operating in a null-seeking control loop with piston, tip, and tilt compensation of the individual optical beamlet trains. To evaluate fitting-error performance, the analysis plots normalized power in the bucket as a function of the Fried coherence diameter, the log-amplitude variance, and the number of subapertures for comparison purposes. Initial results show that tiled-aperture architectures with a large number of subapertures outperform filled-aperture architectures with continuous-face-sheet deformable mirrors.
Reusable Rapid Prototyped Blunt Impact Simulator
2016-08-01
for a nonclassical gun experimental application. 15. SUBJECT TERMS rapid prototype, additive manufacturing, reusable projectile, 3-axis accelerometer... gun -launched applications.1,2 SLS technology uses a bed of powdered material that is introduced to a laser. The laser is controlled by a computer to...in creating internal gun -hardened electronics for a variety of high-g applications, GTB developed an internal electronics package containing a COTS
Adaptive Optics for the Thirty Meter Telescope
NASA Astrophysics Data System (ADS)
Ellerbroek, Brent
2013-12-01
This paper provides an overview of the progress made since the last AO4ELT conference towards developing the first-light AO architecture for the Thirty Meter Telescope (TMT). The Preliminary Design of the facility AO system NFIRAOS has been concluded by the Herzberg Institute of Astrophysics. Work on the client Infrared Imaging Spectrograph (IRIS) has progressed in parallel, including a successful Conceptual Design Review and prototyping of On-Instrument WFS (OIWFS) hardware. Progress on the design for the Laser Guide Star Facility (LGSF) continues at the Institute of Optics and Electronics in Chengdu, China, including the final acceptance of the Conceptual Design and modest revisions for the updated TMT telescope structure. Design and prototyping activities continue for lasers, wavefront sensing detectors, detector readout electronics, real-time control (RTC) processors, and deformable mirrors (DMs) with their associated drive electronics. Highlights include development of a prototype sum frequency guide star laser at the Technical Institute of Physics and Chemistry (Beijing); fabrication/test of prototype natural- and laser-guide star wavefront sensor CCDs for NFIRAOS by MIT Lincoln Laboratory and W.M. Keck Observatory; a trade study of RTC control algorithms and processors, with prototyping of GPU and FPGA architectures by TMT and the Dominion Radio Astrophysical Observatory; and fabrication/test of a 6x60 actuator DM prototype by CILAS. Work with the University of British Columbia LIDAR is continuing, in collaboration with ESO, to measure the spatial/temporal variability of the sodium layer and characterize the sodium coupling efficiency of several guide star laser systems. AO performance budgets have been further detailed. Modeling topics receiving particular attention include performance vs. computational cost tradeoffs for RTC algorithms; optimizing performance of the tip/tilt, plate scale, and sodium focus tracking loops controlled by the NGS on-instrument wavefront sensors, sky coverage, PSF reconstruction for LGS MCAO, and precision astrometry for the galactic center and other observations.
Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing
Nikodem, Michal; Wysocki, Gerard
2012-01-01
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389
Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.
Nikodem, Michal; Wysocki, Gerard
2012-11-28
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
Schomacker, Kevin T.; Basilavecchio, Lisa D.; Plugis, Jessica M.; Bhawalkar, Jayant D.
2017-01-01
Background and Objectives Fractional treatment with a dual wavelength 1,064 and 532 nm picosecond‐domain laser, delivering a 10 × 10 array of highly focused beamlets via a holographic optic, was investigated for the treatment of acne scars. Study Twenty‐seven of 31 subjects completed the study, 19 were treated using 1,064 nm and 8 were treated at 532 nm, all having four‐monthly treatments. Blinded evaluation of digital images by three physician evaluators comparing pre‐ and 3‐month post‐treatment images measured efficacy using a 10‐point scale. Subject self‐assessment of treatment effects were also recorded. Safety was measured by recording subject discomfort scores and adverse effects. Results Blinded reviewers correctly identified the baseline image in 61 of the 81 image sets (75%), and baseline acne scar scores were 1.8 ± 0.7 and 1.8 ± 0.5 for the 1,064 and 532 nm cohorts, and decreased to 1.1 ± 0.5 (P < 0.001) and 1.1 ± 0.0 (P < 0.005), respectively. Post‐treatment erythema, mild edema, and petechiae were the only side effects noted. Conclusion The 1,064 and 532 nm picosecond‐domain laser incorporating a 10 × 10 holographic beam‐splitting handpiece was found to be safe and effective for the treatment of facial acne scars. The treatments were well tolerated and the subjects experienced little to no downtime. Lasers Surg. Med. 49:796–802, 2017. © 2017 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. PMID:28960395
Broadband interferometric characterization of divergence and spatial chirp.
Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-09-01
We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).
Selective laser sintering: A qualitative and objective approach
NASA Astrophysics Data System (ADS)
Kumar, Sanjay
2003-10-01
This article presents an overview of selective laser sintering (SLS) work as reported in various journals and proceedings. Selective laser sintering was first done mainly on polymers and nylon to create prototypes for audio-visual help and fit-to-form tests. Gradually it was expanded to include metals and alloys to manufacture functional prototypes and develop rapid tooling. The growth gained momentum with the entry of commercial entities such as DTM Corporation and EOS GmbH Electro Optical Systems. Computational modeling has been used to understand the SLS process, optimize the process parameters, and enhance the efficiency of the sintering machine.
NASA Astrophysics Data System (ADS)
Ghosh, P.
2016-01-01
The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.
SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazareth, D; Spaans, J
Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objectivemore » function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.« less
SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Tian, Z; Song, T
Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accountingmore » for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosini, M; GALAL, M; Emam, I
2014-06-01
Purpose: To investigate the planning and dosimetric advantages of direct aperture optimization (DAO) over beam-let optimization in IMRT treatment of head and neck (H/N) and prostate cancers. Methods: Five Head and Neck as well as five prostate patients were planned using the beamlet optimizer in Elekta-Xio ver 4.6 IMRT treatment planning system. Based on our experience in beamlet IMRT optimization, PTVs in H/N plans were prescribed to 70 Gy delivered by 7 fields. While prostate PTVs were prescribed to 76 Gy with 9 fields. In all plans, fields were set to be equally spaced. All cases were re-planed using Directmore » Aperture optimizer in Prowess Panther ver 5.01 IMRT planning system at same configurations and dose constraints. Plans were evaluated according to ICRU criteria, number of segments, number of monitor units and planning time. Results: For H/N plans, the near maximum dose (D2) and the dose that covers 95% D95 of PTV has improved by 4% in DAO. For organs at risk (OAR), DAO reduced the volume covered by 30% (V30) in spinal cord, right parotid, and left parotid by 60%, 54%, and 53% respectively. This considerable dosimetric quality improvement achieved using 25% less planning time and lower number of segments and monitor units by 46% and 51% respectively. In DAO prostate plans, Both D2 and D95 for the PTV were improved by only 2%. The V30 of the right femur, left femur and bladder were improved by 35%, 15% and 3% respectively. On the contrary, the rectum V30 got even worse by 9%. However, number of monitor units, and number of segments decreased by 20% and 25% respectively. Moreover the planning time reduced significantly too. Conclusion: DAO introduces considerable advantages over the beamlet optimization in regards to organs at risk sparing. However, no significant improvement occurred in most studied PTVs.« less
Effect of beam types on the scintillations: a review
NASA Astrophysics Data System (ADS)
Baykal, Yahya; Eyyuboglu, Halil T.; Cai, Yangjian
2009-02-01
When different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh- Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh- Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam waist size along the long axis to that along the short axis (i.e., astigmatism). Comparing against the fundamental Gaussian beam on equal source size and equal power basis, it is observed that the scintillation index of the lowest order Bessel-Gaussian beam is lower at large source sizes and large width parameters. However, for excessively large width parameters and beyond certain propagation lengths, the advantage of the lowest order Bessel-Gaussian beam seems to be lost. Compared to Gaussian beam, laser array beam exhibits less scintillations at long propagation ranges and at some midrange radial displacement parameters. When compared among themselves, laser array beams tend to have reduced scintillations for larger number of beamlets, longer wavelengths, midrange radial displacement parameters, intermediate Gaussian source sizes, larger inner scales and smaller outer scales of turbulence. The number of beamlets used does not seem to be so effective in this improvement of the scintillations.
NASA Astrophysics Data System (ADS)
Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon
2018-02-01
Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.
Integration and test of high-speed transmitter electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Soni, Nitin J.; Lizanich, Paul J.
1994-01-01
The NASA Lewis Research Center in Cleveland, Ohio, has developed the electronics for a free-space, direct-detection laser communications system demonstration. Under the High-Speed Laser Integrated Terminal Electronics (Hi-LITE) Project, NASA Lewis has built a prototype full-duplex, dual-channel electronics transmitter and receiver operating at 325 megabit S per second (Mbps) per channel and using quaternary pulse-position modulation (QPPM). This paper describes the integration and testing of the transmitter portion for future application in free-space, direct-detection laser communications. A companion paper reviews the receiver portion of the prototype electronics. Minor modifications to the transmitter were made since the initial report on the entire system, and this paper addresses them. The digital electronics are implemented in gallium arsenide integrated circuits mounted on prototype boards. The fabrication and implementation issues related to these high-speed devices are discussed. The transmitter's test results are documented, and its functionality is verified by exercising all modes of operation. Various testing issues pertaining to high-speed circuits are addressed. A description of the transmitter electronics packaging concludes the paper.
Intense, brilliant micro γ-beams in nuclear physics and applications
NASA Astrophysics Data System (ADS)
Habs, D.; Gasilov, S.; Lang, C.; Thirolf, P. G.; Jentschel, M.; Diehl, R.; Schroer, C.; Barty, C. P. J.; Zamfir, N. V.
2011-06-01
The upcoming γ facilities MEGa-Ray (Livermore) and ELI-NP (Bucharest) will have a 105 times higher γ flux F0 = 1013/s and a ~30 times smaller band width (ΔEγ/Eγ = BW ~ 10-3) than the presently best γ beam facility. They will allow to extract a small γ beam of about 30 - 100 μm radius 1 m behind the γ production point, containing the dominant γ energy band width. One can collimate the γ beam down to ΘBW = √ BW/ γe , where γe = Ee/ mec2 is a measure of the energy Ee of the electron beam, from which the γ beam is produced by Compton back-scattering. Due to the γ energy - angle correlation, the angular collimation results at the same time in a reduction of the γ beam band width without loss of "good" γ quanta, however, the primary γ flux F0is reduced to about Fcoll ~ F0 . 1.5 . ΔEγ/Eγ. For γ rays in the (0.1-100) MeV range, the negative real part δ of the index of refraction n = 1- δ + iβ from coherent Rayleigh scattering (virtual photo effect) dominates over the positive δ contributions from coherent virtual Compton scattering and coherent virtual pair creation scattering (Delbrück scattering). The very small absolute value |δ| ~ 10-6 - 10-9 of the index of refraction of matter for hard X-rays and γ-rays and its negative sign--in contrast to usual optics--results in a very different γ-ray optics, e.g. focusing lenses become concave and we use stacks of N optimized lenses. It requires very small radii of curvature of the γ lenses and thus very small γ beam radii. This leads to a technical new solution, where the primary γ beam is subdivided into M γ beamlets, which do not interfere with each other, but contribute with their independent intensities. We send the γ beamlets into a two-dimensional array of closely packed cylindrical parabolic refractive lenses, where N ~ 103 lenses with very small radius of curvature are stacked behind each other, leading to contracted beam spots in one dimension. With a second 1D lens system turned by 900, we can obtain small spots for each of the beamlets. While focusing the beamlets to a much smaller spot size, we can bend them effectively with micro wedges to e.g. parallel beamlets. We can monochromatize these γ beamlets within the rocking curve of a common Laue crystal, using an additional angle selection by a collimator to reach a strongly reduced band width of 10-4 - 10-6. We propose the use of a further lens/wedge arrays or Bragg reflection to superimpose the beamlets to a very small total γ beam spot. Many experiments gain much from the high beam resolution and the smaller focal spot. This new γ optics requires high resolution diagnostics, where we want to optimize the focusing, using very thin target wires of a specific nuclear resonance fluorescence (NRF) isotope to monitor the focusing for the resonance energy. With such beams we can explore new nuclear physics of higher excited states with larger level densities. New phenomena, like the transition from chaotic to regular nuclear motion, weakly-bound halo states or states decaying by tunneling can be studied. The higher level density also allows to probe parity violating nuclear forces more sensitively. This γ optics improves many applications, like a more brilliant positron source, a more brilliant neutron source, higher specific activity of medical radioisotopes or NRF micro-imaging.
Schuettler, M; Stiess, S; King, B V; Suaning, G J
2005-03-01
A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.
Synergic effects of ultrasound and laser on the pain relief in women with hand osteoarthritis.
Paolillo, Alessandra Rossi; Paolillo, Fernanda Rossi; João, Jessica Patrícia; João, Herbert Alexandre; Bagnato, Vanderlei Salvador
2015-01-01
Patients with pain avoid movements, leading to a gradual impairment of their physical condition and functionality. In this context, the use of ultrasound (US) and low-level laser therapy (LLLT) show promising results for nonpharmacological and noninvasive treatment. The aim of this study was evaluated the synergistic effects of the US and the LLLT (new prototype) with or without therapeutic exercises (TE) on pain and grip strength in women with hand osteoarthritis. Forty-five women with hand osteoarthritis, aged 60 to 80 years, were randomly assigned to one of three groups, but 43 women successfully completed the full study. The three groups were as follows: (i) the placebo group which did not perform TE, but the prototype without emitting electromagnetic or mechanical waves was applied (n = 11); (ii) the US + LLLT group which carried out only the prototype (n = 13); and (iii) the TE + US + LLLT group which performed TE before the prototype is applied (n = 13). The parameters of US were frequency 1 MHz; 1.0 W/cm(2) intensity, pulsed mode 1:1 (duty cycle 50%). Regarding laser, the output power of the each laser was fixed at 100 mW leading to an energy value of 18 J per laser. Five points were irradiated per hand, during 3 min per point and 15 min per session. The prototype was applied after therapeutic exercises. The treatments are done once a week for 3 months. Grip strength and pressure pain thresholds (PPT) were measured. Grip strength did not differ significantly for any of the groups (p ≥ 0.05). The average PPT between baseline and 3 months shows significant decrease of the pain sensitivity for both the US + LLLT group (∆ = 30 ± 19 N, p˂0.001) and the TE + US + LLLT group (∆ = 32 ± 13 N, p < 0.001). However, there were no significant differences in average PPT for placebo group (∆ = -0.3 ± 9 N). There was no placebo effect. The new prototype that combines US and LLLT reduced pain in women with hand osteoarthritis.
Beamlets from stochastic acceleration
NASA Astrophysics Data System (ADS)
Perri, Silvia; Carbone, Vincenzo
2008-09-01
We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.
Consequences of wave-particle interactions on chaotic acceleration
NASA Technical Reports Server (NTRS)
Schriver, David; Ashour-Abdalla, Maha
1991-01-01
The recent model of Ashour-Abdalla et al. (1991) has proposed that the earth's plasma sheet can be formed by chaotic acceleration in a magnetotail-like field configuration. The ion velocity distributions created by chaotic acceleration have unstable features and represent robust free energy sources for kinetic plasma waves that can modify the original distributions. In the plasma sheet boundary layer, field-aligned ion beamlets are formed which drive a host of instabilities creating a broadbanded noise spectrum and cause thermal spreading of the beamlets. In addition, there is strong heating of any cold background plasma that may be present. In the central plasma sheet, ion antiloss cone distributions are created which are unstable to very low frequency waves that saturate by filling the antiloss cone.
Compact High-Current Heavy-Ion Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westenskow, G.A.; Grote, D.P.; Kwan, J.W.
2005-10-05
To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was used to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment hasmore » possible significant economical and technical impacts on the architecture of HIF drivers.« less
Compact High-Current Heavy-Ion Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westenskow, G A; Grote, D P; Kwan, J W
2006-04-13
To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was use to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment hasmore » possible significant economical and technical impacts on the architecture of HIF drivers.« less
NASA Astrophysics Data System (ADS)
Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.
2015-10-01
Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.
Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.
2015-01-01
Abstract. Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (∼100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (∼300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553
NASA Astrophysics Data System (ADS)
Rauschenbach, I.; Jessberger, E. K.; Pavlov, S. G.; Hübers, H.-W.
2010-08-01
We report on our ongoing studies to develop Laser-Induced Breakdown Spectroscopy (LIBS) for planetary surface missions to Mars and other planets and moons, like Jupiter's moon Europa or the Earth's moon. Since instruments for space missions are severely mass restricted, we are developing a light-weight miniaturized close-up LIBS instrument to be installed on a lander or rover for the in-situ geochemical analysis of planetary surface rocks and coarse fines. The total mass of the instrument will be ≈ 1 kg in flight configuration. Here we report on a systematic performance study of a LIBS instrument equipped with a prototype laser of 216 g total mass and an energy of 1.8 mJ. The LIBS measurements with the prototype laser and the comparative measurements with a regular 40 mJ laboratory laser were both performed under Martian atmospheric conditions. We calibrated 14 major and minor elements by analyzing 18 natural samples of certified composition. The calibration curves define the limits of detection that are > 5 ppm for the lab laser and > 400 ppm for the prototype laser, reflecting the different analyzed sample masses of ≈ 20 µg and ≈ 2 µg, respectively. To test the accuracy we compared the LIBS compositions, determined with both lasers, of Mars analogue rocks with certified or independently measured compositions and found agreements typically within 10-20%. In addition we verified that dust coverage is effectively removed from rock surfaces by the laser blast. Our study clearly demonstrates that a close-up LIBS instrument (spot size ≈ 50 µm) will decisively enhance the scientific output of planetary lander missions by providing a very large number of microscopic elemental analyses.
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.
Micro sculpting technology using DPSSL
NASA Astrophysics Data System (ADS)
Chang, Won-Seok; Shin, Bosung; Kim, Jae-gu; Whang, Kyung-Hyun
2003-11-01
Multiple pulse laser ablation of polymer is performed with DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO4 laser (355 nm) in order to fabricate three-dimensional micro components. Here we considered mechanistic aspects of the interaction between UV laser and polymer to obtain optimum process conditions for maskless photomachining using DPSSL. The photo-physical and photochemical parameters such as laser wavelength and optical characteristics of polymers are investigated by experiments to reduce plume effect, which induce the re-deposited debris on the surface of substrate. In this study, LDST (laser direct sculpting technique) are developed to gain various three-dimensional shape with size less than 500 micrometer. Main process sequences are from rapid prototyping technology such as CAD/CAM modeling of products, machining path generation, layer-by-layer machining, and so on. This method can be applied to manufacture the prototype of micro device and the polymer mould for mass production without expensive mask fabrication.
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.
2017-05-01
Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550-μm-core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18-mm length×1.2-mm width. The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3±1.7 mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038±474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174±221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7±0.8, 3.4±0.7, and 1.0±0.4 mm, respectively. Results demonstrated that the 5-mm optical laparoscopic prototype consistently sealed vessels less than 5-mm diameter with low thermal spread. Further in vivo studies are planned to test the performance across a variety of vessels and tissues.
Schwarz, Jens; Rambo, Patrick; Armstrong, Darrell; ...
2016-10-21
The Z-backlighter laser facility primarily consists of two high energy, high-power laser systems. Z-Beamlet laser (ZBL) (Rambo et al., Appl. Opt. 44, 2421 (2005)) is a multi-kJ-class, nanosecond laser operating at 1054 nm which is frequency doubled to 527 nm in order to provide x-ray backlighting of high energy density events on the Z-machine. Z-Petawatt (ZPW) (Schwarz et al., J. Phys.: Conf. Ser. 112, 032020 (2008)) is a petawatt-class system operating at 1054 nm delivering up to 500 J in 500 fs for backlighting and various short-pulse laser experiments (see also Figure 10 for a facility overview). With the developmentmore » of the magnetized liner inertial fusion (MagLIF) concept on the Z-machine, the primary backlighting missions of ZBL and ZPW have been adjusted accordingly. As a result, we have focused our recent efforts on increasing the output energy of ZBL from 2 to 4 kJ at 527 nm by modifying the fiber front end to now include extra bandwidth (for stimulated Brillouin scattering suppression). The MagLIF concept requires a well-defined/behaved beam for interaction with the pressurized fuel. Hence we have made great efforts to implement an adaptive optics system on ZBL and have explored the use of phase plates. We are also exploring concepts to use ZPW as a backlighter for ZBL driven MagLIF experiments. Alternatively, ZPW could be used as an additional fusion fuel pre-heater or as a temporally flexible high energy pre-pulse. All of these concepts require the ability to operate the ZPW in a nanosecond long-pulse mode, in which the beam can co-propagate with ZBL. Finally, some of the proposed modifications are complete and most of them are well on their way.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Jens; Rambo, Patrick; Armstrong, Darrell
The Z-backlighter laser facility primarily consists of two high energy, high-power laser systems. Z-Beamlet laser (ZBL) (Rambo et al., Appl. Opt. 44, 2421 (2005)) is a multi-kJ-class, nanosecond laser operating at 1054 nm which is frequency doubled to 527 nm in order to provide x-ray backlighting of high energy density events on the Z-machine. Z-Petawatt (ZPW) (Schwarz et al., J. Phys.: Conf. Ser. 112, 032020 (2008)) is a petawatt-class system operating at 1054 nm delivering up to 500 J in 500 fs for backlighting and various short-pulse laser experiments (see also Figure 10 for a facility overview). With the developmentmore » of the magnetized liner inertial fusion (MagLIF) concept on the Z-machine, the primary backlighting missions of ZBL and ZPW have been adjusted accordingly. As a result, we have focused our recent efforts on increasing the output energy of ZBL from 2 to 4 kJ at 527 nm by modifying the fiber front end to now include extra bandwidth (for stimulated Brillouin scattering suppression). The MagLIF concept requires a well-defined/behaved beam for interaction with the pressurized fuel. Hence we have made great efforts to implement an adaptive optics system on ZBL and have explored the use of phase plates. We are also exploring concepts to use ZPW as a backlighter for ZBL driven MagLIF experiments. Alternatively, ZPW could be used as an additional fusion fuel pre-heater or as a temporally flexible high energy pre-pulse. All of these concepts require the ability to operate the ZPW in a nanosecond long-pulse mode, in which the beam can co-propagate with ZBL. Finally, some of the proposed modifications are complete and most of them are well on their way.« less
Preliminary work toward the development of a dimensional tolerance standard for rapid prototyping
NASA Technical Reports Server (NTRS)
Kennedy, W. J.
1996-01-01
Rapid prototyping is a new technology for building parts quickly from CAD models. It works by slicing a CAD model into layers, then by building a model of the part one layer at a time. Since most parts can be sliced, most parts can be modeled using rapid prototyping. The layers themselves are created in a number of different ways - by using a laser to cure a layer of an epoxy or a resin, by depositing a layer of plastic or wax upon a surface, by using a laser to sinter a layer of powder, or by using a laser to cut a layer of paper. Rapid prototyping (RP) is new, and a standard part for use in comparing dimensional tolerances has not yet been chosen and accepted by ASTM (the American Society for Testing Materials). Such a part is needed when RP is used to build parts for investment casting or for direct use. The objective of this project was to start the development of a standard part by using statistical techniques to choose the features of the part which show curl - the vertical deviation of a part from its intended horizontal plane.
Yu, Quan; Gong, Xin; Wang, Guo-Min; Yu, Zhe-Yuan; Qian, Yu-Fen; Shen, Gang
2011-01-01
To establish a new method of presurgical nasoalveolar molding (NAM) using computer-aided reverse engineering and rapid prototyping technique in infants with unilateral cleft lip and palate (UCLP). Five infants (2 males and 3 females with mean age of 1.2 w) with complete UCLP were recruited. All patients were subjected to NAM before the cleft lip repair. The upper denture casts were recorded using a three-dimensional laser scanner within 2 weeks after birth in UCLP infants. A digital model was constructed and analyzed to simulate the NAM procedure with reverse engineering software. The digital geometrical data were exported to print the solid model with rapid prototyping system. The whole set of appliances was fabricated based on these solid models. Laser scanning and digital model construction simplified the NAM procedure and estimated the treatment objective. The appliances were fabricated based on the rapid prototyping technique, and for each patient, the complete set of appliances could be obtained at one time. By the end of presurgical NAM treatment, the cleft was narrowed, and the malformation of nasoalveolar segments was aligned normally. We have developed a novel technique of presurgical NAM based on a computer-aided design. The accurate digital denture model of UCLP infants could be obtained with laser scanning. The treatment design and appliance fabrication could be simplified with a computer-aided reverse engineering and rapid prototyping technique.
Laparoscopic prototype for optical sealing of renal blood vessels
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.
2017-02-01
Energy-based, radiofrequency and ultrasonic devices provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternative for vessel sealing with less collateral thermal damage. Previous studies demonstrated vessel sealing in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices in surgical use was developed, and tests were conducted on porcine renal blood vessels. The 5-mm-OD prototype featured a traditional Maryland jaw configuration. Laser energy was delivered through a 550-μm-core fiber and side-delivery from the lower jaw, with beam dimensions of 18-mm-length x 1.2-mm-width. The 1470-nm diode laser delivered 68 W with 3 s activation time. A total of 69 porcine renal vessels with mean diameter of 3.3 +/- 1.7 mm were tested, ex vivo. Vessels smaller than 5 mm were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038 +/- 474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174 +/- 221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7 +/- 0.8, 3.4 +/- 0.7, and 1.0 +/- 0.4 mm. A novel optical laparoscopic prototype with 5-mm- OD shaft integrated within a standard Maryland jaw design consistently sealed vessels less than 5 mm with minimal thermal spread. Further in vivo studies are planned to test performance across a variety of vessels and tissues.
MEMS based ion beams for fusion
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Schaffer, Z. A.; Lal, A.
2016-10-01
Micro-Electro-Mechanical Systems (MEMS) fabrication provides an exciting opportunity to shrink existing accelerator concepts to smaller sizes and to reduce cost by orders of magnitude. We revisit the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and show how, with current technologies, the concept can be downsized from gap distances of several cm to distances in the sub-mm regime. The basic concept implements acceleration gaps using radio frequency (RF) fields and electrostatic quadrupoles (ESQ) on silicon wafers. First results from proof-of-concept experiments using printed circuit boards to realize the MEQALAC structures are presented. We show results from accelerating structures that were used in an array of nine (3x3) parallel beamlets with He ions at 15 keV. We will also present results from an ESQ focusing lattice using the same beamlet layout showing beam transport and matching. We also will discuss our progress in fabricating MEMS devices in silicon wafers for both the RF and ESQ structures and integration of necessary RF-circuits on-chip. The concept can be scaled up to thousands of beamlets providing high power beams at low cost and can be used to form and compress a plasma for the development of magnetized target fusion approaches. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC0205CH11231 (LBNL).
Laser Direct Routing for High Density Interconnects
NASA Astrophysics Data System (ADS)
Moreno, Wilfrido Alejandro
The laser restructuring of electronic circuits fabricated using standard Very Large Scale Integration (VLSI) process techniques, is an excellent alternative that allows low-cost quick turnaround production with full circuit similarity between the Laser Restructured prototype and the customized product for mass production. Laser Restructurable VLSI (LRVLSI) would allow design engineers the capability to interconnect cells that implement generic logic functions and signal processing schemes to achieve a higher level of design complexity. LRVLSI of a particular circuit at the wafer or packaged chip level is accomplished using an integrated computer controlled laser system to create low electrical resistance links between conductors and to cut conductor lines. An infrastructure for rapid prototyping and quick turnaround using Laser Restructuring of VLSI circuits was developed to meet three main parallel objectives: to pursue research on novel interconnect technologies using LRVLSI, to develop the capability of operating in a quick turnaround mode, and to maintain standardization and compatibility with commercially available equipment for feasible technology transfer. The system is to possess a high degree of flexibility, high data quality, total controllability, full documentation, short downtime, a user-friendly operator interface, automation, historical record keeping, and error indication and logging. A specially designed chip "SLINKY" was used as the test vehicle for the complete characterization of the Laser Restructuring system. With the use of Design of Experiment techniques the Lateral Diffused Link (LDL), developed originally at MIT Lincoln Laboratories, was completely characterized and for the first time a set of optimum process parameters was obtained. With the designed infrastructure fully operational, the priority objective was the search for a substitute for the high resistance, high current leakage to substrate, and relatively low density Lateral Diffused Link. A high density Laser Vertical Link with resistance values below 10 ohms was developed, studied and tested using design of experiment methodologies. The vertical link offers excellent advantages in the area of quick prototyping of electronic circuits, but even more important, due to having similar characteristics to a foundry produced via, it gives quick transfer from the prototype system verification stage to the mass production stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming
An U.S. DOE Cooperative Research and Development Agreement (CRADA) between ANL and Optodyne, Inc. has been established to develop a prototype laser Doppler displacement encoder system with ultra-low noise level for linear measurements to sub-nanometer resolution for synchrotron radiation applications. We have improved the heterodyne efficiency and reduced the detector shot noises by proper shielding and adding a low-pass filter. The laser Doppler displacement encoder system prototype demonstrated a ~ 1 nm system output noise floor with single reflection optics. With multiple-pass optical arrangement, 0.1 nm scale closed-loop feedback control is achieved.
Development of Thomson scattering system on Shenguang-III prototype laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Li, Zhichao
2015-02-15
A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.
Organic Binder Developments for Solid Freeform Fabrication
NASA Technical Reports Server (NTRS)
Cooper, Ken; Mobasher, Amir A.
2003-01-01
A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.
NASA Astrophysics Data System (ADS)
De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.
2017-02-01
In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.
Progress in NEXT Ion Optics Modeling
NASA Technical Reports Server (NTRS)
Emhoff, Jerold W.; Boyd, Iain D.
2004-01-01
Results are presented from an ion optics simulation code applied to the NEXT ion thruster geometry. The error in the potential field solver of the code is characterized, and methods and requirements for reducing this error are given. Results from a study on electron backstreaming using the improved field solver are given and shown to compare much better to experimental results than previous studies. Results are also presented on a study of the beamlet behavior in the outer radial apertures of the NEXT thruster. The low beamlet currents in this region allow over-focusing of the beam, causing direct impingement of ions on the accelerator grid aperture wall. Different possibilities for reducing this direct impingement are analyzed, with the conclusion that, of the methods studied, decreasing the screen grid aperture diameter eliminates direct impingement most effectively.
An adaptive optics system for solid-state laser systems used in inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmon, J.T.; Bliss, E.S.; Byrd, J.L.
1995-09-17
Using adaptive optics the authors have obtained nearly diffraction-limited 5 kJ, 3 nsec output pulses at 1.053 {micro}m from the Beamlet demonstration system for the National Ignition Facility (NIF). The peak Strehl ratio was improved from 0.009 to 0.50, as estimated from measured wavefront errors. They have also measured the relaxation of the thermally induced aberrations in the main beam line over a period of 4.5 hours. Peak-to-valley aberrations range from 6.8 waves at 1.053 {micro}m within 30 minutes after a full system shot to 3.9 waves after 4.5 hours. The adaptive optics system must have enough range to correctmore » accumulated thermal aberrations from several shots in addition to the immediate shot-induced error. Accumulated wavefront errors in the beam line will affect both the design of the adaptive optics system for NIF and the performance of that system.« less
He-Ne and CW CO2 laser long-path systems for gas detection
NASA Technical Reports Server (NTRS)
Grant, W. B.
1986-01-01
This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.
Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program
NASA Astrophysics Data System (ADS)
Hassell, Frank R.; Groark, Frank M.
1995-10-01
Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.
NASA Technical Reports Server (NTRS)
Stysley, Paul R.; Coyle, D. Barry; Kay, Richard B.; Frederickson, Robert; Poulios, Demetrios; Blair, Bryan; Scott, Stan; Arnold, Ed
2011-01-01
We update the status of a diode-pumped, Nd:YAG oscillator that is the prototype laser for NASA's DESDynI mission. After completing TRL-6 testing, this laser has fired over 5.5 billion shots in lifetesting.
Fiber Based Seed Laser for CO 2 Ultrafast Laser Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuchuan
A compact and effective 10-micron femtosecond laser with pulse duration <500fs and repetition rate of >100Hz or smaller is desirable by DOE for seeding CO 2 ultrafast laser systems to improve the stability, reliability and efficiency in generating 10-micron laser from GW up to 100TW peak power, which is irreplaceable in driving an accelerator for particle beam generation due to the efficiency proportional to the square of the laser wavelength. Agiltron proposes a fiber based ultrafast 10-micron seed laser that can provide the required specifications and high performance. Its success will directly benefit DOE’s compact proton and ion sources. Themore » innovative technology can be used for ultrafast laser generation over the whole mid-IR range, and speed up the development of mid-IR laser applications. Agiltron, Inc. has successfully completed all tasks and demonstrated the feasibility of a fiber based 10-micron ultrafast laser in Phase I of the Program. We built a mode-locked fiber laser that generated < 400fs ultrafast laser pulses and successfully controlled the repetition rate to be the required 100Hz. Using this mode-locked laser, we demonstrated the feasibility of parametric femtosecond laser generation based on frequency down conversion. The experimental results agree with our simulation results. The investigation results of Phase I will be used to optimize the design of the laser system and build a fully functional prototype for delivery to the DOE in the Phase II program. The prototype development in Phase II program will be in the collaboration with Professor Chandrashekhar Joshi, the leader of UCLA Laser-Plasma group. Prof. Joshi discovered a new mechanism for generation of monoenergetic proton/ion beams: Shock Wave Acceleration in a near critical density plasma and demonstrated that high-energy proton beams using CO 2 laser driven collisionless shocks in a gas jet plasma, which opened an opportunity to develop a rather compact high-repetition rate ion source for medical and other applications which could be significantly cheaper than that based on RF acceleration. We propose an output energy >1 μJ, one order of magnitude higher than the DOE original requirement. The performance of the prototype will be tested at UCLA by directly seeding the CO 2 laser system driving an accelerator.« less
Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.
2015-01-01
Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three-dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.
Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.
2014-01-01
Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.
Laser-powered thermoelectric generators operating at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Harutyunyan, S. R.; Vardanyan, V. H.; Kuzanyan, A. S.; Nikoghosyan, V. R.; Kunii, S.; Winzer, K.; Wood, K. S.; Gulian, A. M.
2005-11-01
A thermoelectric generator, operating in a cryostat at liquid helium temperatures, is described. Energy to the generator is supplied via an external laser beam. For this prototype device the associated heat load at permanent operation is comparable with the heat load associated with power delivery via metallic wires. Estimates indicate that still better performance can be enabled with existing thermoelectric materials, thereby far exceeding efficiency of traditional cryostat wiring. We used a prototype generator to produce electric power for measuring critical currents in Nb3Sn-films at 4K.
Design considerations for a space-borne ocean surface laser altimeter
NASA Technical Reports Server (NTRS)
Plotkin, H. H.
1972-01-01
Design procedures for using laser ranging systems in spacecraft to reflect ocean surface pulses vertically and measure spacecraft altitude with high precision are examined. Operating principles and performance experience of a prototype system are given.
Note: Digital laser frequency auto-locking for inter-satellite laser ranging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yingxin; Yeh, Hsien-Chi, E-mail: yexianji@mail.hust.edu.cn; Li, Hongyin
2016-05-15
We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.
Life on the edge: squirrel-cage fringe fields and their effects in the MBE-4 combiner experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, W.M.
1996-02-01
The MBE-4 combiner experiment employs an electrostatic combined-function focusing/bending element, the so-called ``squirrel-cage`` just before the actual merging region. There has been concern that non-linear fields, primarily in the fringe regions at the beginning and end of the cage, may be strong enough to lead to significant emittance degradation. This note present the results of numerical calculations which determined the anharmonic, non-linear components of the 3D fields in the cage and the resultant, orbit-integrated effects upon the MBE-4 beamlets. We find that while the anharmonic effects are small compared to the dipole deflection, the resultant transverse emittance growth is significantmore » when compared to the expected value of the initial emittance of the individual beamlets.« less
NASA Astrophysics Data System (ADS)
Li, Yung-Hui; Hu, Chia-Ming; Tsai, Ming-Lun
2017-10-01
Laser Doppler Flowmetry (LDF), a non-invasive microcirculation measurement equipment, is designed to be used in measuring microcirculation and perfusion in the skin. LDF is very applicable to healthcare. However, the cost of commercial LDF prevents its prevalence and popularity. In this paper, continuing previous researches, a LDF prototype was built from the combination of the off-the-shelf electronic components. The raw signals acquired from the proposed LDF prototype is validated to be relevant to the microcirculation flux. Furthermore, we would like to verify the consistency between the signals measured from both model, and find an implicit transformation rule to transform the LDF prototype signals. For the purpose of verification and calibration of the LDF prototype signal feature, we first collected a parallel database consisting of flux signals measured by commercial and prototype LDF at the same time. Second, we extract signals with specific frequency of normalized signals as features and use these features to establish a model to allow us to map signals measured by LDF prototype to the commercial model. The result of the experiment showed that after we used the linear regression models to calibrate physiological feature, the correlation coefficient reached nearly 0.9999, which is close to a perfect positive correlation. The overall evaluation results showed that the proposed method can verify and ensure the validity of the LDF prototype. Through the proposed transformation, the flux signals measured by the proposed LDF prototype can successfully be transformed to its parallel form as if it is measured by commercial LDF.
Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission
NASA Technical Reports Server (NTRS)
Howell, Joe T.; ONeill, Mark; Fork, Richard
2004-01-01
For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology should be developed and flown, to lay the groundwork for future space power applications in the Earth-Moon neighborhood, and ultimately encompassing Mars and its environs.
New developments in surface technology and prototyping
NASA Astrophysics Data System (ADS)
Himmer, Thomas; Beyer, Eckhard
2003-03-01
Novel lightweight applications in the automotive and aircraft industries require advanced materials and techniques for surface protection as well as direct and rapid manufacturing of the related components and tools. The manufacturing processes presented in this paper are based on multiple additive and subtractive technologies such as laser cutting, laser welding, direct laser metal deposition, laser/plasma hybrid spraying technique or CNC milling. The process chain is similar to layer-based Rapid Prototyping Techniques. In the first step, the 3D CAD geometry is sliced into layers by a specially developed software. These slices are cut by high speed laser cutting and then joined together. In this way laminated tools or parts are built. To improve surface quality and to increase wear resistance a CNC machining center is used. The system consists of a CNC milling machine, in which a 3 kW Nd:YAG laser, a coaxial powder nozzle and a digitizing system are integrated. Using a new laser/plasma hybrid spraying technique, coatings can be deposited onto parts for surface protection. The layers show a low porosity and high adhesion strength, the thickness is up to 0.3 mm, and the lower effort for preliminary surface preparation reduces time and costs of the whole process.
Laser ignition application in a space experiment
NASA Technical Reports Server (NTRS)
Liou, Larry C.; Culley, Dennis E.
1993-01-01
A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.
Experimental and Theoretical Study of the Temperature Performance of Type-II Quantum Well Lasers
2007-05-31
performance of type-II Interband Cascade (IC) GaSb-based semiconductor lasers has been developed. The method includes comparing the temperature-concentration... dependence at the laser threshold with steady-state carrier heating characteristics. The number of cascades in prototype type-II IC lasers has been...Monroy, and R.L.Tober, "Wavelength Tuning of Interband Cascade Laser Based on the Stark Effect", in “Future Trends in Microelectronics” ed. by
NASA Astrophysics Data System (ADS)
Würl, M.; Reinhardt, S.; Rosenfeld, A.; Petasecca, M.; Lerch, M.; Tran, L.; Karsch, S.; Assmann, W.; Schreiber, J.; Parodi, K.
2017-01-01
Laser-accelerated proton beams exhibit remarkably different beam characteristics as compared to conventionally accelerated ion beams. About 105 to 107 particles per MeV and msr are accelerated quasi-instantaneously within about 1 ps. The resulting energy spectrum typically shows an exponentially decaying distribution. Our planned approach to determine the energy spectrum of the particles generated in each pulse is to exploit the time-of-flight (TOF) difference of protons with different kinetic energies at 1 m distance from the laser-target interaction. This requires fast and sensitive detectors. We therefore tested two prototype silicon detectors, developed at the Centre for Medical Radiation Physics at the University of Wollongong with a current amplifier, regarding their suitability for TOF-spectrometry in terms of sensitivity and timing properties. For the latter, we illuminated the detectors with short laser pulses, measured the signal current and compared it to the signal of a fast photodiode. The comparison revealed that the timing properties of both prototypes are not yet sufficient for our purpose. In contrast, our results regarding the detectors’ sensitivity are promising. The lowest detectable proton flux at 10 MeV was found to be 25 protons per ns on the detector. With this sensitivity and with a smaller pixelation of the detectors, the timing properties can be improved for new prototypes, making them potential candidates for TOF-spectrometry of laser-accelerated particle beams.
Laser-absorption sensing of gas composition of products from coal gasification
NASA Astrophysics Data System (ADS)
Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.
2014-06-01
A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.
Laser Direct Write Synthesis of Lead Halide Perovskites
Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; ...
2016-09-05
Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH 3NH 3PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetectormore » using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less
Laser Direct Write Synthesis of Lead Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.
Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH 3NH 3PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetectormore » using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less
Kim, Amy S.; Ridge, Jeremy S.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.
2013-01-01
Abstract. There is currently a need for a safe and effective way to detect and diagnose early stages of childhood caries. A multimodal optical clinical prototype for diagnosing caries demineralization in vivo has been developed. The device can be used to quickly image and screen for any signs of demineralized enamel by obtaining high-resolution and high-contrast surface images using a 405-nm laser as the illumination source, as well as obtaining autofluorescence and bacterial fluorescence images. When a suspicious region of demineralization is located, the device also performs dual laser fluorescence spectroscopy using 405- and 532-nm laser excitation. An autofluorescence ratio of the two excitation lasers is computed and used to quantitatively diagnose enamel health. The device was tested on five patients in vivo as well as on 28 extracted teeth with clinically diagnosed carious lesions. The device was able to provide detailed images that highlighted the lesions identified by the clinicians. The autofluorescence spectroscopic ratios obtained from the extracted teeth successfully quantitatively discriminated between sound and demineralized enamel. PMID:23986369
Initial results from the Lick Observatory Laser Guide Star Adaptive Optics System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S.S.; An, J.; Avicola, K.
1995-11-08
A prototype adaptive optics system has been installed and tested on the 3 m Shane telescope at Lick Observatory. The adaptive optics system performance, using bright natural guide stars, is consistent with expectations based on theory. A sodium-layer laser guide star system has also been installed and tested on the Shane telescope. Operating at 15 W, the laser system produces a 9th magnitude guide star with seeing-limited size at 589 nm. Using the laser guide star, the adaptive optics system has reduced the wavefront phase variance on scales above 50 cm by a factor of 4. These results represent themore » first continuous wavefront phase correction using a sodium-layer laser guide star. Assuming tip-tilt is removed using a natural guide star, the measured control loop performance should produce images with a Strehl ratio of 0.4 at 2.2 {mu}m in 1 arc second seeing. Additional calibration procedures must be implemented in order to achieve these results with the prototype Lick adaptive optics system.« less
Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor
NASA Astrophysics Data System (ADS)
Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander
2015-03-01
Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.
NASA Astrophysics Data System (ADS)
Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter
2017-11-01
This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.
Open-Path Hydrocarbon Laser Sensor for Oil and Gas Facility Monitoring
This poster reports on an experimental prototype open-path laser absorption sensor for measurement of unspeciated hydrocarbons for oil and gas production facility fence-line monitoring. Such measurements may be useful to meet certain state regulations, and enable advanced leak d...
Biomedical sensing and imaging for the anterior segment of the eye
NASA Astrophysics Data System (ADS)
Eom, Tae Joong; Yoo, Young-Sik; Lee, Yong-Eun; Kim, Beop-Min; Joo, Choun-Ki
2015-07-01
Eye is an optical system composed briefly of cornea, lens, and retina. Ophthalmologists can diagnose status of patient's eye from information provided by optical sensors or images as well as from history taking or physical examinations. Recently, we developed a prototype of optical coherence tomography (OCT) image guided femtosecond laser cataract surgery system. The system combined a swept-source OCT and a femtosecond (fs) laser and afford the 2D and 3D structure information to increase the efficiency and safety of the cataract procedure. The OCT imaging range was extended to achieve the 3D image from the cornea to lens posterior. A prototype of OCT image guided fs laser cataract surgery system. The surgeons can plan the laser illumination range for the nuclear division and segmentation, and monitor the whole cataract surgery procedure using the real time OCT. The surgery system was demonstrated with an extracted pig eye and in vivo rabbit eye to verify the system performance and stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palma, B; Bazalova, M; Qu, B
Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization wasmore » performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.« less
Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications
O'Neill, P. F.; Ben Azouz, A.; Vázquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H. C.; Diamond, D.; Brabazon, D.
2014-01-01
The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes. PMID:25538804
National Ignition Facility Project: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, W J; Moses, E; Warner, B
2000-12-07
The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This papermore » will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less
The National Ignition Facility Project: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, W.J.; Moses, E.; Warner, B.
2000-12-07
The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. Thismore » paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less
Development of a pulsed UV laser system for laser-desorption mass spectrometry on Mars
NASA Astrophysics Data System (ADS)
Kolleck, C.; Büttner, A.; Ernst, M.; Hülsenbusch, T.; Lang, T.; Marwah, R.; Mebben, S.; Priehs, M.; Kracht, D.; Neumann, J.
2017-11-01
A near-flight prototype of a pulsed UV laser has been developed for the Mars Organic Molecule Analyzer (MOMA) of the ExoMars mission. The laser head is based on a Nd:YAG oscillator with subsequent frequency quadrupling and emits nanosecond pulses with an energy of > 300 μJ at a wavelength of 266 nm. The design is compact and lightweight. Tests in relevant environment regarding temperature, vibration, and radiation have been performed.
Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin
2016-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
NASA Astrophysics Data System (ADS)
Amend, P.; Pscherer, C.; Rechtenwald, T.; Frick, T.; Schmidt, M.
This paper presents experimental results of manufacturing MID-prototypes by means of SLS, laser structuring and metallization. Therefore common SLS powder (PA12) doped with laser structuring additives is used. First of all the influence of the additives on the characteristic temperatures of melting and crystallization is analyzed by means of DSC. Afterwards the sintering process is carried out and optimized by experiments. Finally the generated components are qualified regarding their density, mechanical properties and surface roughness. Especially the surface quality is important for the metallization process. Therefore surface finishing techniques are investigated.
Note: Neutron bang time diagnostic system on Shenguang-III prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Qi; Chen, Jiabin; Liu, Zhongjie
A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.
A prototype coarse pointing mechanism for laser communication
NASA Astrophysics Data System (ADS)
Miller, Eric D.; DeSpenza, Michael; Gavrilyuk, Ilya; Nelson, Graham; Erickson, Brent; Edwards, Britney; Davis, Ethan; Truscott, Tony
2017-02-01
Laser communication systems promise orders-of-magnitude improvement in data throughput per unit SWaP (size, weight and power) compared to conventional RF systems. However, in order for lasercom to make sense economically as part of a worldwide connectivity solution, the cost per terminal still needs to be significantly reduced. In this paper, we describe a coarse pointing mechanism that has been designed with an emphasis on simplicity, making use of conventional materials and commercial off-the-shelf components wherever possible. An overview of the design architecture and trades is presented, along with various results and practical lessons learned during prototype integration and test.
Development of an Opto-Acoustic Recanalization System Final Report CRADA No. 1314-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, L. D.; Adam, H. R.
The objective of the project was to develop an ischemic stroke treatient system that restores blood flow to the brain by removing occlusions using acoustic energy created by fiber optic delivery of laser light, a process called Opto Acoustic Recanalization (OAR). The key tasks of the project were to select a laser system, quantify temperature, pressure and particle size distribution, and develop a prototype device incorporating a feedback mechanism. System parameters were developed to cause emulsification while attempting to minimize particle size and collateral damage. The prototype system was tested in animal models and resulted in no visible collateral damage.
New-type planar field emission display with superaligned carbon nanotube yarn emitter.
Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan
2012-05-09
With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.
Optical choppers with rotational elements: modeling, design and prototypes
NASA Astrophysics Data System (ADS)
Duma, Virgil-Florin; Cira, Octavian; Demian, Dorin
2017-05-01
We present a brief overview of our contributions regarding the analysis and design of optical choppers. Their applications range numerous domains, from optical sensing in radiometry or telescopes to laser manufacturing and biomedical imaging - for example for the controlled attenuation of light, the elimination of selected spectral domains, or the switching of optical paths. While these aspects are pointed out, the paper describes our analysis, modeling, and manufacturing of prototypes for choppers with: (a) wheels with windows with linear margins; (b) wheels with windows with non-linear margins (semi-circular or elliptical), outward or inward; (c) rotational shafts with different shapes, with slits or with holes. While variant (a) represents classical choppers, variant (b) represents the "eclipse" choppers that we have developed and also patented for the solution with two adjustable wheels that can produce circular windows. Variant (c), of choppers with shafts is also a patent application. Their transmission functions are discussed, for the shape of the laser pulses produced and for the attenuation coefficients obtained. While this discussion has been completed analytically for top-hat laser beams, it has been modeled using simulations for Gaussian and Bessel beams. Design, manufacturing aspects, and prototypes of the different chopper configurations complete the presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulman, Holly; Ross, Nicole
2015-10-30
An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, greenmore » handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.« less
Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion
Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; ...
2014-10-06
This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with T e ≈ T i, and produces up tomore » 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 10 10, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm 2.« less
Laser-induced selective copper plating of polypropylene surface
NASA Astrophysics Data System (ADS)
Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.
2016-03-01
Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.
Prototyping of Dental Structures Using Laser Milling
NASA Astrophysics Data System (ADS)
Andreev, A. O.; Kosenko, M. S.; Petrovskiy, V. N.; Mironov, V. D.
2016-02-01
The results of experimental studies of the effect of an ytterbium fiber laser radiation parameters on processing efficiency and quality of ZrO2 ceramics widely used in stomatology are presented. Laser operating conditions with optimum characteristics for obtaining high quality final surfaces and rapid material removal of dental structures are determined. The ability of forming thin-walled ceramic structures by laser milling technology (a minimum wall thickness of 50 μm) is demonstrated. The examples of three-dimensional dental structures created in computer 3D-models of human teeth using laser milling are shown.
Development of Processing Parameters for Organic Binders Using Selective Laser Sintering
NASA Technical Reports Server (NTRS)
Mobasher, Amir A.
2003-01-01
This document describes rapid prototyping, its relation to Computer Aided Design (CAD), and the application of these techniques to choosing parameters for Selective Laser Sintering (SLS). The document reviews the parameters selected by its author for his project, the SLS machine used, and its software.
This project involves the real-time measurement of air quality using open-path IR spectroscopy. A prototype open-path tunable laser absorption spectroscopy instrument was designed, built, and successfully operated for several hundred hours between October and December 2000. The...
Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly
NASA Technical Reports Server (NTRS)
Merle, Cormic; Wick, Eric; Hayden, Joseph
2011-01-01
This system was one of the test methods considered for measuring the radius of curvature of one or more of the 18 segmented mirrors that form the 6.5 m diameter primary mirror (PM) of the James Webb Space Telescope (JWST). The assembled telescope will be tested at cryogenic temperatures in a 17-m diameter by 27-m high vacuum chamber at the Johnson Space Center. This system uses a Leica Absolute Distance Meter (ADM), at a wavelength of 780 nm, combined with beam-steering and beam-shaping optics to make a differential distance measurement between a ring mirror on the reflective null assembly and individual PM segments. The ADM is located inside the same Pressure-Tight Enclosure (PTE) that houses the test interferometer. The PTE maintains the ADM and interferometer at ambient temperature and pressure so that they are not directly exposed to the telescope s harsh cryogenic and vacuum environment. This system takes advantage of the existing achromatic objective and reflective null assembly used by the test interferometer to direct four ADM beamlets to four PM segments through an optical path that is coincident with the interferometer beam. A mask, positioned on a linear slide, contains an array of 1.25 mm diameter circular subapertures that map to each of the 18 PM segments as well as six positions around the ring mirror. A down-collimated 4 mm ADM beam simultaneously covers 4 adjacent PM segment beamlets and one ring mirror beamlet. The radius, or spacing, of all 18 segments can be measured with the addition of two orthogonally-oriented scanning pentaprisms used to steer the ADM beam to any one of six different sub-aperture configurations at the plane of the ring mirror. The interferometer beam, at a wavelength of 687 nm, and the ADM beamlets, at a wavelength of 780 nm, pass through the objective and null so that the rays are normally incident on the parabolic PM surface. After reflecting off the PM, both the ADM and interferometer beams return to their respective instruments on nearly the same path. A fifth beamlet, acting as a differential reference, reflects off a ring mirror attached to the objective and null and returns to the ADM. The spacings between the ring mirror, objective, and null are known through manufacturing tolerances as well as through an in situ null wavefront alignment of the interferometer test beam with a reflective hologram located near the caustic of the null. Since total path length between the ring mirror and PM segments is highly deterministic, any ADM-measured departures from the predicted path length can be attributed to either spacing error or radius error in the PM. It is estimated that the path length measurement between the ring mirror and a PM segment is accurate to better than 100 m. The unique features of this invention include the differential distance measuring capability and its integration into an existing cryogenic and vacuum compatible interferometric optical test.
Laser Imaging Video Camera Sees Through Fire, Fog, Smoke
NASA Technical Reports Server (NTRS)
2015-01-01
Under a series of SBIR contracts with Langley Research Center, inventor Richard Billmers refined a prototype for a laser imaging camera capable of seeing through fire, fog, smoke, and other obscurants. Now, Canton, Ohio-based Laser Imaging through Obscurants (LITO) Technologies Inc. is demonstrating the technology as a perimeter security system at Glenn Research Center and planning its future use in aviation, shipping, emergency response, and other fields.
Using Stars to Align a Steered Laser System for Cosmic Ray Simulation
NASA Astrophysics Data System (ADS)
Krantz, Harry; Wiencke, Lawrence
2016-03-01
Ultra high energy cosmic rays (UHECRs) are the highest energy cosmic particles with kinetic energy above 1018eV . UHECRs are detected from the air shower of secondary particles and UV florescence that results from interaction with the atmosphere. A high power UV laser beam can be used to simulate the optical signature of a UHCER air shower. The Global Light System (GLS) is a planned network of ground-based light sources including lasers to support the planned space-based Extreme Universe Space Observatory (EUSO). A portable prototype GLS laser station has been constructed at the Colorado School of Mines. Currently the laser system uses reference targets on the ground but stars can be used to better align the beam by providing a complete hemisphere of targets. In this work, a CCD camera is used to capture images of known stars through the steering head optics. The images are analyzed to find the steering head coordinates of the target star. The true coordinates of the star are calculated from the location and time of observation. A universal adjustment for the steering head is determined from the differences between the two pairs of coordinates across multiple stars. This laser system prototype will also be used for preflight tests of the ESUO Super Pressure Balloon mission.
Study on selective laser sintering of glass fiber reinforced polystyrene
NASA Astrophysics Data System (ADS)
Yang, Laixia; Wang, Bo; Zhou, Wenming
2017-12-01
In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.
Status and test report on the LANL-Boeing APLE/HPO flying-wire beam-profile monitor. Status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, M.; Barlow, D.; Fortgang, C.
1994-07-01
The High-Power Oscillator (HPO) demonstration of the Average Power Laser Experiment (APLE) is a collaboration by Los Alamos National Laboratory and Boeing to demonstrate a 10 kW average power, 10 {mu}m free electron laser (FEL). As part of the collaboration, Los Alamos National Laboratory (LANL) is responsible for many of the electron beam diagnostics in the linac, transport, and laser sections. Because of the high duty factor and power of the electron beam, special diagnostics are required. This report describes the flying wire diagnostic required to monitor the beam profile during high-power, high-duty operation. The authors describe the diagnostic andmore » prototype tests on the Los Alamos APLE Prototype Experiment (APEX) FEL. They also describe the current status of the flying wires being built for APLE.« less
Optical Breath Gas Sensor for Extravehicular Activity Application
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S>
2012-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .
The application of robotics to microlaryngeal laser surgery.
Buckmire, Robert A; Wong, Yu-Tung; Deal, Allison M
2015-06-01
To evaluate the performance of human subjects, using a prototype robotic micromanipulator controller in a simulated, microlaryngeal operative setting. Observational cross-sectional study. Twenty-two human subjects with varying degrees of laser experience performed CO2 laser surgical tasks within a simulated microlaryngeal operative setting using an industry standard manual micromanipulator (MMM) and a prototype robotic micromanipulator controller (RMC). Accuracy, repeatability, and ablation consistency measures were obtained for each human subject across both conditions and for the preprogrammed RMC device. Using the standard MMM, surgeons with >10 previous laser cases performed superior to subjects with fewer cases on measures of error percentage and cumulative error (P = .045 and .03, respectively). No significant differences in performance were observed between subjects using the RMC device. In the programmed (P/A) mode, the RMC performed equivalently or superiorly to experienced human subjects on accuracy and repeatability measures, and nearly an order of magnitude better on measures of ablation consistency. The programmed RMC performed significantly better for repetition error when compared to human subjects with <100 previous laser cases (P = .04). Experienced laser surgeons perform better than novice surgeons on tasks of accuracy and repeatability using the MMM device but roughly equivalently using the novel RMC. Operated in the P/A mode, the RMC performs equivalently or superior to experienced laser surgeons using the industry standard MMM for all measured parameters, and delivers an ablation consistency nearly an order of magnitude better than human laser operators. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.
2016-07-01
Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.
NASA Astrophysics Data System (ADS)
Schollmeier, M. S.; Knapp, P. F.; Ampleford, D. J.; Harding, E. C.; Jennings, C. A.; Lamppa, D. C.; Loisel, G. P.; Martin, M. R.; Robertson, G. K.; Shores, J. E.; Smith, I. C.; Speas, C. S.; Weis, M. R.; Porter, J. L.; McBride, R. D.
2017-10-01
Many experiments on Sandia National Laboratories' Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α ) or 6.151 keV (Mn He α ) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [ C R = r i ( 0 ) / r i ( t ) ] using the 6.151-keV backlighter system were too opaque to identify the inner radius r i of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co He α resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.
Schollmeier, M. S.; Knapp, P. F.; Ampleford, D. J.; ...
2017-10-10
Many experiments on Sandia National Laboratories’ Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α) or 6.151 keV (Mn He α) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios C R above 15 [C R=r i(0)/r i(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the linermore » with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co He α resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (C R about 4-5), high-areal-density liner implosions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schollmeier, M. S.; Knapp, P. F.; Ampleford, D. J.
Many experiments on Sandia National Laboratories’ Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α) or 6.151 keV (Mn He α) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios C R above 15 [C R=r i(0)/r i(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the linermore » with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co He α resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (C R about 4-5), high-areal-density liner implosions.« less
Study of Perturbations on High Mach Number Blast Waves in Various Gasses
NASA Astrophysics Data System (ADS)
Edens, A.; Adams, R.; Rambo, P.; Shores, J.; Smith, I.; Atherton, B.; Ditmire, T.
2006-10-01
We have performed a series of experiments examining the properties of high Mach number blast waves. Experiments were conducted on the Z-Beamlet^1 laser at Sandia National Laboratories. We created blast waves in the laboratory by using 10 J- 1000 J laser pulses to illuminate millimeter scale solid targets immersed in gas. Our experiments studied the validity of theories forwarded by Vishniac and Ryu^2-4 to explain the dynamics of perturbations on astrophysical blast waves. These experiments consisted of an examination of the evolution of perturbations of known primary mode number induced on the surface of blast waves by means of regularly spaced wire arrays. The temporal evolution of the amplitude of the induced perturbations relative to the mean radius of the blast wave was fit to a power law in time. Measurements were taken for a number of different mode numbers and background gasses and the results show qualitative agreement with previously published theories for the hydrodynamics of thin shell blast wave. The results for perturbations on nitrogen gas have been recently published^5. .^1 P. K. Rambo, I. C. Smith, J. L. Porter, et al., Applied Optics 44, 2421 (2005). ^2 D. Ryu and E. T. Vishniac, Astrophysical Journal 313, 820 (1987). ^3 D. Ryu and E. T. Vishniac, Astrophysical Journal 368, 411 (1991). ^4 E. T. Vishniac, Astrophysical Journal 274, 152 (1983). ^5 A. D. Edens, T. Ditmire, J. F. Hansen, et al., Physical Review Letters 95 (2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, C.T.; Dulaney, J.L.; Campbell, B.E.
Demonstrations of operation of a compact neodymium glass laser with average output powers greater than 1 kW for several seconds are reported. The laser is based on the thermal inertia laser (TIL) concept wherein a neodymium-doped glass rod is pumped uniformly without cooling during a burst mode of laser operation. Design principles for TIL devices and scaling to 100 kW class lasers are discussed. Experimental results for a low repetition-rate proof-of-concept pulsed device (30 J, 0.2 Hz) and a high repetition-rate pulsed prototype (40 J, 36 Hz) are presented and compared to numerical solutions for the laser rate equations withmore » temperature dependent cross-sections.« less
A developmental perspective on high power laser facility technology for ICF
NASA Astrophysics Data System (ADS)
Zhu, Jianqiang; Sun, Mingying; Liu, Chong; Guo, Yajing; Yang, Lin; Yang, Pengqian; Zhang, Yanli; Wang, Bingyan; Liu, Cheng; Li, Yangshuai; Ren, Zhiyuan; Liu, Dean; Liu, Zhigang; Jiao, Zhaoyang; Ren, Lei; Zhang, Guowen; Fan, Quantang; Feng, Tao; Lin, Zunqi
2018-02-01
The latest progress on high power laser facilities in NLHPLP was reported. Based on a high power laser prototype, damage behavior of 3ω optics was experimentally tested, and the key influencing factors contributed to laser-induced damage in optics were deeply analyzed. The latest experimental results of advanced precision measurement for optical quality applied in the high power laser facility were introduced. At last, based on the accumulated works of 3ω elements damage behavior status in our laboratory, beam expanding scheme was presented to increase the total maximum output 3ω energy properly and decrease the laser induced damage risking of ω optics simultaneously.
Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator
NASA Astrophysics Data System (ADS)
Bol, G. H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.
2012-03-01
The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.
Development of Sensor-Based Measures of Rifle Marksmanship Skill and Performance. CRESST Report 756
ERIC Educational Resources Information Center
Espinosa, Paul D.; Nagashima, Sam O.; Chung, Gregory K. W. K.; Parks, Daniel; Baker, Eva L.
2009-01-01
Measures of rifle marksmanship skill and performance were developed using a prototype instrumented laser-based training system. Measures of performance were derived from laser strikes on a video-projected target. Measures of rifle marksmanship skill--breath control, trigger control, and muzzle wobble--were developed from shooters' breathing and…
NASA Astrophysics Data System (ADS)
Manns, Fabrice; Rol, Pascal O.; Parel, Jean-Marie A.; Schmid, Armin; Shen, Jin-Hui; Matsui, Takaaki; Soederberg, Per G.
1996-05-01
The smoothness and accuracy of PMMA ablations with a prototype scanning photorefractive keratectomy (SPRK) system were evaluated by optical profilometry. A prototype frequency- quintupled Nd:YAG laser (Laser Harmonic, LaserSight, Orlando, FL) was used (wavelength: 213 nm, pulse duration: 15 ns, repetition rate: 10 Hz). The laser energy was delivered through two computer-controlled galvanometer scanners that were controlled with our own hardware and software. The system was programmed to create on a block of PMMA the ablations corresponding to the correction of 6 diopters of myopia with 60%, 70%, and 80% spot overlap. The energy was 1.25 mJ. After ablation, the topography of the samples was measured with an optical profilometer (UBM Messtechnik, Ettlingen, Germany). The ablation depth was 10 to 15 micrometer larger than expected. The surfaces created with 50% to 70% overlap exhibited large saw-tooth like variations, with a maximum peak to peak variation of approximately 20 micrometer. With 80% overlap, the rms roughness was 1.3 micrometer and the central flattening was 7 diopters. This study shows that scanning PRK can produce smooth and accurate ablations.
Development of a YAG laser system for the edge Thomson scattering system in ITER.
Hatae, T; Yatsuka, E; Hayashi, T; Yoshida, H; Ono, T; Kusama, Y
2012-10-01
A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).
Novel Magnetic Fluids for Breast Cancer Therapy
2007-04-01
21, 2000. 3. A.E. Siegman , Lasers (University Science Books, Sausalito, California, 1986) p.669. 4. K.C. Neuman and S.M. Block, Optical trapping...nitrogen gas mixture was conducted. Fig. 2. Schematic of the proposed apparatus for laser spark crushing of micropowder into nanopowder. Fig. 3...Photgraph of the conceptual prototype of the laser spark crushing apparatus. Fig. 4. Photograph of the precipitated suspension of Fe2O3:TiO2:MgO ferrite
Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring.
Mueller, Matthias; de la Oliva, Natalia; Del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas
2017-12-01
Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.
Aung, S C; Tan, B K; Foo, C L; Lee, S T
1999-09-01
Advances in technology have benefited the medical world in many ways and a new generation of computed tomography (CT) scanners and three-dimensional (3-D) model making rapid prototyping systems (RPS) have taken craniofacial surgical planning and management to new heights. With the development of new rapid prototyping systems and the improvements in CT scan technology, such as the helical scanner, biomedical modelling has improved considerably and accurate 3-D models can now be fabricated to allow surgeons to visualise and physically handle a 3-D model on which simulation surgery can be performed. The principle behind this technology is to first acquire digital data (CT scan data) which is then imported to the RPS to fabricate fine layers or cuts of the model which are gradually built up to form the 3-D models. Either liquid resin or nylon powder or special paper may be used to make these models using the various RPS available today. Selective laser sintering (SLS), which employs a CO2 laser beam to solidify special nylon powder and build up the model in layers is described in this case report, where a 23-year old Chinese female with panfacial fracture and a skull defect benefited from SLS biomodelling in the preoperative workup.
Characterization of the ELIMED prototype permanent magnet quadrupole system
NASA Astrophysics Data System (ADS)
Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.
2017-01-01
The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.
Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.
Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J
2005-08-15
Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.
NASA direct detection laser diode driver
NASA Technical Reports Server (NTRS)
Seery, B. D.; Hornbuckle, C. A.
1989-01-01
TRW has developed a prototype driver circuit for GaAs laser diodes as part of the NASA/Goddard Space Flight Center's Direct Detection Laser Transceiver (DDLT) program. The circuit is designed to drive the laser diode over a range of user-selectable data rates from 1.7 to 220 Mbps, Manchester-encoded, while ensuring compatibility with 8-bit and quaternary pulse position modulation (QPPM) formats for simulating deep space communications. The resulting hybrid circuit has demonstrated 10 to 90 percent rise and fall times of less than 300 ps at peak currents exceeding 100 mA.
Development of a gas cell-based laser ion source for RIKEN PALIS
NASA Astrophysics Data System (ADS)
Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Noto, T.; Iimura, H.; Matsuo, Y.; Kubo, T.; Shinozuka, T.; Wakui, T.; Mita, H.; Naimi, S.; Furukawa, T.; Itou, Y.; Schury, P.; Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y.; Hirayama, Y.
2013-04-01
We developed a prototype laser ionization gas cell with a beam extraction system. This device is for use of PArasitic Laser Ion-Source (PALIS), which will be implemented into RIKEN's fragment separator, BigRIPS as a part of SLOWRI. Off-line resonant laser ionization for stable Co, Cu, Fe, Ni, Ti, Nb, Sn, In and Pd inside the gas cell, ion extraction and transport to the high-vacuum region via SPIG and QMS have been confirmed (Sonoda et al, Nucl Instrum Meth B 295:1, 2013).
Laser direct writing of micro- and nano-scale medical devices
Gittard, Shaun D; Narayan, Roger J
2010-01-01
Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557
Laser Transmitter Aims At Laser Beacon
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Lesh, James R.
1993-01-01
Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.
Laser-self-mixing interferometry for mechatronics applications.
Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano
2009-01-01
We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems.
Luo, W; Xu, W; Pan, Q Y; Cai, X Z; Chen, J G; Chen, Y Z; Fan, G T; Fan, G W; Guo, W; Li, Y J; Liu, W H; Lin, G Q; Ma, Y G; Shen, W Q; Shi, X C; Xu, B J; Xu, J Q; Xu, Y; Zhang, H O; Yan, Z; Yang, L F; Zhao, M H
2010-01-01
As a prototype of the Shanghai Laser Electron Gamma Source in the Shanghai Synchrotron Radiation Facility, an x-ray source based on laser-Compton scattering (LCS) has been installed at the terminal of the 100 MeV linac of the Shanghai Institute of Applied Physics. LCS x-rays are generated by interactions between Q-switched Nd:yttrium aluminum garnet laser pulses [with wavelength of 1064 nm and pulse width of 21 ns (full width at half maximum)] and electron bunches [with energy of 108 MeV and pulse width of 0.95 ns (rms)] at an angle of 42 degrees between laser and electron beam. In order to measure the energy spectrum of LCS x-rays, a Si(Li) detector along the electron beam line axis is positioned at 9.8 m away from a LCS chamber. After background subtraction, the LCS x-ray spectrum with the peak energy of 29.1+/-4.4|(stat)+/-2.1|(syst) keV and the peak width (rms) of 7.8+/-2.8|(stat)+/-0.4|(syst) keV is observed. Normally the 100 MeV linac operates with the electron macropulse charge of 1.0 nC/pulse, and the electron and laser collision repetition rate of 20 Hz. Therefore, the total LCS x-ray flux of (5.2+/-2.0) x 10(2) Hz can be achieved.
High-Energy 2-Micrometers Doppler Lidar for Wind Measurements
NASA Technical Reports Server (NTRS)
Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.
2006-01-01
High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.
2015-02-08
We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.
Initial results from a video-laser rangefinder device
Neil A. Clark
2000-01-01
Three hundred and nine width measurements at various heights to 10 m on a metal light pole were calculated from video images captured with a prototype video-laser rangefinder instrument. Data were captured at distances from 6 to 15 m. The endpoints for the width measurements were manually selected to the nearest pixel from individual video frames.Chi-square...
Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization
NASA Technical Reports Server (NTRS)
Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.;
2011-01-01
We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.
Xia, Delin; Gui, Lai; Zhang, Zhiyong; Lu, Changsheng; Niu, Feng; Jin, Ji; Liu, Xiaoqing
2005-10-01
To investigate the methods of establishing 3-dimensional skull model using electron beam CT (EBCT) data rapid prototyping technique, and to discuss its application in repairing cranio-maxillo-facial trauma. The data were obtained by EBCT continuous volumetric scanning with 1.0 mm slice at thickness. The data were transferred to work-station for 3-dimensional surface reconstruction by computer-aided design software and the images were saved as STL file. The data can be used to control a laser rapid-prototyping device (AFS-320QZ) to construct geometric model. The material for the model construction is a kind of laser-sensitive resin power, which will become a mass when scanned by laser beam. The design and simulation of operation can be done on the model. The image data were transferred to the device slice by slice. Thus a geometric model is constructed according to the image data by repeating this process. Preoperative analysis, surgery simulation and implant of bone defect could be done on this computer-aided manufactured 3D model. One case of cranio-maxillo-facial bone defect resulting from trauma was reconstructed with this method. The EBCT scanning showed that the defect area was 4 cm x 6 cm. The nose was flat and deviated to left. The 3-dimensional skull was reconstructed with EBCT data and rapid prototyping technique. The model can display the structure of 3-dimensional anatomy and their relationship. The prefabricated implant by 3-dimensional model was well-matched with defect. The deformities of flat and deviated nose were corrected. The clinical result was satisfactory after a follow-up of 17 months. The 3-dimensional model of skull can replicate the prototype of disease and play an important role in the diagnosis and simulation of operation for repairing cranio-maxillo-facial trauma.
Fabrication of custom-shaped grafts for cartilage regeneration.
Koo, Seungbum; Hargreaves, Brian A; Gold, Garry E; Dragoo, Jason L
2010-10-01
to create a custom-shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom-shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4 ± 0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04 ± 0.19 mm. This investigation proves the concept that custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology. The accuracy of this technology may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom-shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths.
Rapid prototyping of three-dimensional microstructures from multiwalled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, W.H.; Kumar, Rajay; Bushmaker, Adam
The authors report a method for creating three-dimensional carbon nanotube structures, whereby a focused laser beam is used to selectively burn local regions of a dense forest of multiwalled carbon nanotubes. Raman spectroscopy and scanning electron microscopy are used to quantify the threshold for laser burnout and depth of burnout. The minimum power density for burning carbon nanotubes in air is found to be 244 {mu}W/{mu}m{sup 2}. We create various three-dimensional patterns using this method, illustrating its potential use for the rapid prototyping of carbon nanotube microstructures. Undercut profiles, changes in nanotube density, and nanoparticle formation are observed after lasermore » surface treatment and provide insight into the dynamic process of the burnout mechanism.« less
Tri-channel single-mode terahertz quantum cascade laser.
Wang, Tao; Liu, Jun-Qi; Liu, Feng-Qi; Wang, Li-Jun; Zhang, Jin-Chuan; Wang, Zhan-Guo
2014-12-01
We report on a compact THz quantum cascade laser source emitting at, individually controllable, three different wavelengths (92.6, 93.9, and 95.1 μm). This multiwavelength laser array can be used as a prototype of the emission source of THz wavelength division multiplex (WDM) wireless communication system. The source consists of three tapered single-mode distributed feedback (DFB) terahertz quantum cascade lasers fabricated monolithically on a single chip. All array elements feature longitudinal as well as lateral single-mode in the entire injection range. The peak output powers of individual lasers are 42, 73, and 37 mW at 10 K, respectively.
Theoretical and experimental aspects of laser cutting with a direct diode laser
NASA Astrophysics Data System (ADS)
Costa Rodrigues, G.; Pencinovsky, J.; Cuypers, M.; Duflou, J. R.
2014-10-01
Recent developments in beam coupling techniques have made it possible to scale up the power of diode lasers with a laser beam quality suitable for laser cutting of metal sheets. In this paper a prototype of a Direct Diode Laser (DDL) source (BPP of 22 mm-mrad) is analyzed in terms of efficiency and cut performance and compared with two established technologies, CO2 and fiber lasers. An analytical model based on absorption calculations is used to predict the performance of the studied laser source with a good agreement with experimental results. Furthermore results of fusion cutting of stainless steel and aluminium alloys as well as oxygen cutting of structural steel are presented, demonstrating that industrial relevant cutting speeds with high cutting quality can now be achieved with DDL.
Status of prototype of SG-III high-power solid-state laser
NASA Astrophysics Data System (ADS)
Yu, Haiwu; Jing, Feng; Wei, Xiaofeng; Zheng, Wanguo; Zhang, Xiaomin; Sui, Zhan; Li, Mingzhong; Hu, Dongxia; He, Shaobo; Peng, Zhitao; Feng, Bin; Zhou, Hai; Guo, Liangfu; Li, Xiaoqun; Su, Jingqin; Zhao, Runchang; Yang, Dong; Zheng, Kuixing; Yuan, Xiaodong
2008-10-01
We are currently developing a large aperture neodymium-glass based high-power solid state laser, Shenguang-III (SG-III), which will be used to provide extreme conditions for high-energy-density physical experiments in China. As a baseline design, SG-III will be composed of 48 beams arranged in 6 bundles with each beam aperture of 40cm×40cm. A prototype of SG-III (TIL-Technical Integration experimental Line) was developed from 2000, and completed in 2007. TIL is composed of 8 beams (four in vertical and two in horizontal), with each square aperture of 30cm×30cm. After frequency tripling, TIL has delivered about 10kJ in 0.351 μm at 1 ns pulsewidth. As an operational laser facility, TIL has a beam divergence of 70 μrad (focus length of 2.2m, i.e., 30DL) and pointing accuracy of 30 μm (RMS), and meets the requirements of physical experiments.
NASA Technical Reports Server (NTRS)
Ni, Wei-Tou; Shy, Jow-Tsong; Tseng, Shiao-Min; Shao, Michael
1992-01-01
A propasal to study the second order light deflection in the solar gravitational field is presented. It is proposed to use 1 to 2 W frequency stabilized lasers on two microspacecraft about 0.25 degree apart in the sky with apparent positions near the Sun, and observe the relative angle of two spacecraft using ground based fiber linked interferometers with 10 km baseline to determine the second order relativistic light deflection effects. The first two years of work would emphasize the establishment of a prototype stabilized laser system and fiber linked interferometer. The first year, a prototype fiber linked interferometer would be set up to study the phase noise produced by external perturbations to fiber links. The second year, a second interferometer would be set up. The cancellation of phase drift due to fiber links of both interferometers in the same environment would be investigated.
Laser-Self-Mixing Interferometry for Mechatronics Applications
Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano
2009-01-01
We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems. PMID:22412324
NASA Astrophysics Data System (ADS)
Mallets, T.
1983-12-01
The Laser Paint Stripper program is a three phase effort which includes: feasibility demonstration; prototype optimization; and implementation at our Air Logistic Centers (depots) by FY88. Major technical areas that make up the automated system include: (1) laser device with power and uptime to handle the number and size of aircraft (F-16 vs C-5A); (2) the beam transport and manipulation system; (3) controls for beam/aircraft safety, alignment, and surface condition sensors; (4) integration software; and (5) cleanup of residue products.
Design and testing of low intensity laser biostimulator.
Valchinov, Emil S; Pallikarakis, Nicolas E
2005-01-13
The non-invasive nature of laser biostimulation has made lasers an attractive alternative in Medical Acupuncture at the last 25 years. However, there is still an uncertainty as to whether they work or their effect is just placebo. Although a plethora of scientific papers published about the topic showing positive clinical results, there is still a lack of objective scientific proofs about the biostimulation effect of lasers in Medical Acupuncture. The objective of this work was to design and build a low cost portable laser device for stimulation of acupuncture points, considered here as small localized biosources (SLB), without stimulating any sensory nerves via shock or heat and to find out a suitable method for objectively evaluating its stimulating effect. The design is aimed for studying SLB potentials provoked by laser stimulus, in search for objective proofs of the biostimulation effect of lasers used in Medical Acupuncture. The proposed biostimulator features two operational modes: program mode and stimulation mode and two output polarization modes: linearly and circularly polarized laser emission. In program mode, different user-defined stimulation protocols can be created and memorized. The laser output can be either continuous or pulse modulated. Each stimulation session consists of a pre-defined number of successive continuous or square pulse modulated sequences of laser emission. The variable parameters of the laser output are: average output power, pulse width, pulse period, and continuous or pulsed sequence duration and repetition period. In stimulation mode the stimulus is automatically applied according to the pre-programmed protocol. The laser source is 30 mW AlGaInP laser diode with an emission wavelength of 685 nm, driven by a highly integrated driver. The optical system designed for beam collimation and polarization change uses single collimating lens with large numerical aperture, linear polarizer and a quarter-wave retardation plate. The proposed method for testing the device efficiency employs a biofeedback from the subject by recording the biopotentials evoked by the laser stimulus at related distant SLB sites. Therefore measuring of SLB biopotentials caused by the stimulus would indicate that a biopotential has been evoked at the irradiated site and has propagated to the measurement sites, rather than being caused by local changes of the electrical skin conductivity. A prototype device was built according to the proposed design using relatively inexpensive and commercially available components. The laser output can be pulse modulated from 0.1 to 1000 Hz with a duty factor from 10 to 90%. The average output power density can be adjusted in the range 24-480 mW/cm2, where the total irradiation is limited to 2 Joule per stimulation session. The device is controlled by an 8-bit RISC Flash microcontroller with internal RAM and EEPROM memory, which allows for a wide range of different stimulation protocols to be implemented and memorized. The integrated laser diode driver with its onboard light power control loop provides safe and consistent laser modulation. The prototype was tested on the right Tri-Heater (TH) acupuncture meridian according to the proposed method. Laser evoked potentials were recorded from most of the easily accessible SLB along the meridian under study. They appear like periodical spikes with a repetition rate from 0.05 to 10 Hz and amplitude range 0.1-1 mV. The prototype's specifications were found to be better or comparable to those of other existing devices. It features low component count, small size and low power consumption. Because of the low power levels used the possibility of sensory nerve stimulation via the phenomenon of shock or heat is excluded. Thus senseless optical stimulation is achieved. The optical system presented offers simple and cost effective way for beam collimation and polarization change. The novel method proposed for testing the device efficiency allows for objectively recording of SLB potentials evoked by laser stimulus. Based on the biopotential records obtained with this method, a scientifically based conclusion can be drawn about the effectiveness of the commercially available devices for low-level laser therapy used in Medical Acupuncture. The prototype tests showed that with the biostimulator presented, SLB could be effectively stimulated at low power levels. However more studies are needed to derive a general conclusion about the SLB biostimulation mechanism of lasers and their most effective power and optical settings.
Express RGB mapping of three to five skin chromophores
NASA Astrophysics Data System (ADS)
Oshina, Ilze; Spigulis, Janis; Rubins, Uldis; Kviesis-Kipge, Edgars; Lauberts, Kalvis
2017-07-01
Skin melanin, oxy- and deoxy-hemoglobin were snapshot-mapped under simultaneous 448-532-659 nm laser illumination by a smartphone RGB camera. Experimental prototypes for double-snapshot RGB mapping of four (melanin, bilirubin, oxy- and deoxy-hemoglobin) and five (melanin, bilirubin, lipids, oxy- and deoxy-hemoglobin) skin chromophores with reduced laser speckle artefacts have been developed and tested. A set of 405-448-532-659 nm lasers were used for four chromophores mapping, and a set of 405-448-532-659-842 nm lasers for five chromophores mapping. Clinical tests confirmed functionality of the developed devices.
Laser Cooled Atomic Clocks in Space
NASA Technical Reports Server (NTRS)
Thompson, R. J.; Kohel, J.; Klipstein, W. M.; Seidel, D. J.; Maleki, L.
2000-01-01
The goals of the Glovebox Laser-cooled Atomic Clock Experiment (GLACE) are: (1) first utilization of tunable, frequency-stabilized lasers in space, (2) demonstrate laser cooling and trapping in microgravity, (3) demonstrate longest 'perturbation-free' interaction time for a precision measurement on neutral atoms, (4) Resolve Ramsey fringes 2-10 times narrower than achievable on Earth. The approach taken is: the use of COTS components, and the utilization of prototype hardware from LCAP flight definition experiments. The launch date is scheduled for Oct. 2002. The Microgravity Science Glovebox (MSG) specifications are reviewed, and a picture of the MSG is shown.
An Open-path Laser Transmissometer for Atmospheric Extinction Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, P. M. Satheesh; Krishnakumar, C. P.; Varma, Ravi
2011-10-20
A transmissometer is an optical instrument which measures transmitted intensity of monochromatic light over a fixed pathlength. Prototype of a simple laser transmissometer has been developed for transmission (or extinction) measurements through suspended absorbers and scatterers in the atmosphere over tens of meters. Instrument consists of a continuous green diode pumped solid state laser, transmission optics, photodiode detectors and A/D data acquisition components. A modulated laser beam is transmitted and subsequently reflected and returned to the unit by a retroreflecting mirror assembly placed several tens of meters away. Results from an open-path field measurement of the instrument are described.
Integrated Device for Circulating Tumor Cell Capture, Characterization, and Lens-Free Microscopy
2012-08-01
prototype consists of an Excelsior-532-200- CDRH laser (wavelength = 532 nm) as the light source, a simple Thorlabs Fig. 2. (a) Wide FOV image of a...demonstration, as shown in Fig. 1(a), used a laser (Excelsior-532-200- CDRH , Spectra Physics, with wavelength of 532 nm and power of 200 mW) as light
NASA Technical Reports Server (NTRS)
Lin, Bing
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.
Efficiency limits of laser power converters for optical power transfer applications
NASA Astrophysics Data System (ADS)
Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.
2013-07-01
We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.
Active retroreflector to measure the rotational orientation in conjunction with a laser tracker
NASA Astrophysics Data System (ADS)
Hofherr, O.; Wachten, C.; Müller, C.; Reinecke, H.
2012-10-01
High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) can determine accurately x-y-z coordinates of passive retroreflectors. Next-generation systems answer the additional need to measure an object's rotational orientation (pitch, yaw, roll). These devices are based on photogrammetry or on enhanced retroreflectors. However, photogrammetry relies on camera systems and time-consuming image processing. Enhanced retroreflectors analyze the LT's beam but are restricted in roll angle measurements. Here we present an integrated laser based method to evaluate all six degrees of freedom. An active retroreflector directly analyzes its orientation to the LT's beam path by outcoupling laser light on detectors. A proof of concept prototype has been designed with a specified measuring range of 360° for roll angle measurements and +/-15° for pitch and yaw angle respectively. The prototype's optical design is inspired by a cat's eye retroreflector. First results are promising and further improvements are under development. We anticipate our method to facilitate simple and cost-effective six degrees of freedom measurements. Furthermore, for industrial applications wide customizations are possible, e.g. adaptation of measuring range, optimization of accuracy, and further system miniaturization.
Zhang, Fumin; Qu, Xinghua; Ouyang, Jianfei
2012-01-01
A novel measurement prototype based on a mobile vehicle that carries a laser scanning sensor is proposed. The prototype is intended for the automated measurement of the interior 3D geometry of large-diameter long-stepped pipes. The laser displacement sensor, which has a small measurement range, is mounted on an extended arm of known length. It is scanned to improve the measurement accuracy for large-sized pipes. A fixing mechanism based on two sections is designed to ensure that the stepped pipe is concentric with the axis of rotation of the system. Data are acquired in a cylindrical coordinate system and fitted in a circle to determine diameter. Systematic errors covering arm length, tilt, and offset errors are analyzed and calibrated. The proposed system is applied to sample parts and the results are discussed to verify its effectiveness. This technique measures a diameter of 600 mm with an uncertainty of 0.02 mm at a 95% confidence probability. A repeatability test is performed to examine precision, which is 1.1 μm. A laser tracker is used to verify the measurement accuracy of the system, which is evaluated as 9 μm within a diameter of 600 mm.
Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring
NASA Astrophysics Data System (ADS)
Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas
2017-12-01
Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.
Measurement of Laser Weld Temperatures for 3D Model Input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagel, Daryl; Grossetete, Grant; Maccallum, Danny O.
Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defectsmore » and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.« less
Low-cost CWDM transmitter package
NASA Astrophysics Data System (ADS)
Bhandarkar, Navin; Castillega, Jaime
2005-03-01
A low-cost coarse-wavelength-division multiplexer (CWDM) transmitter that combines four channels (wavelengths) in the infrared spectrum (~1310 nm) in a small form-factor un-cooled package is demonstrated. The package utilizes precision molded optics to multiplex beams from four grating-outcoupled surface-emitting (GSE) lasers into a single beam suitable for coupling into multimode fiber. This paper summarizes the optical and opto-mechanical design, fabrication and assembly of prototypes, and optical, thermal and electrical measurement results of the prototypes. This unique design enables multiplexing of wavelengths without the use of filters, waveguides, couplers and fiber splicing. Commercial fabrication and alignment technology is used to manufacture the package, resulting in a more robust, reliable and low-cost transmitter. The transmitter package is enabled by the unique characteristics of the long-wavelength GSE laser.
Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope
NASA Astrophysics Data System (ADS)
Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.
2018-06-01
The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.
Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices.
Matellan, Carlos; Del Río Hernández, Armando E
2018-05-03
The difficulty in translating conventional microfluidics from laboratory prototypes to commercial products has shifted research efforts towards thermoplastic materials for their higher translational potential and amenability to industrial manufacturing. Here, we present an accessible method to fabricate and assemble polymethyl methacrylate (PMMA) microfluidic devices in a "mask-less" and cost-effective manner that can be applied to manufacture a wide range of designs due to its versatility. Laser micromachining offers high flexibility in channel dimensions and morphology by controlling the laser properties, while our two-step surface treatment based on exposure to acetone vapour and low-temperature annealing enables improvement of the surface quality without deformation of the device. Finally, we demonstrate a capillarity-driven adhesive delivery bonding method that can produce an effective seal between PMMA devices and a variety of substrates, including glass, silicon and LiNbO 3 . We illustrate the potential of this technique with two microfluidic devices, an H-filter and a droplet generator. The technique proposed here offers a low entry barrier for the rapid prototyping of thermoplastic microfluidics, enabling iterative design for laboratories without access to conventional microfabrication equipment.
Leung, Ka-Ngo; Lou, Tak Pui
2005-03-22
A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.
NASA Astrophysics Data System (ADS)
Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.
2004-07-01
The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.
Demonstration Of Fast, Single-Shot Photocathode QE Mapping Method Using Mla Pattern Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wisniewski, E. E.; Conde, M.; Doran, D. S.
Quantum efficiency (QE) is the chief figure of merit in the characterization of photocathodes. Semiconductor photocathodes, especially when used in high rep-rate photoinjectors, are known to show QE degradation over time and must be replaced. The totalQE is the basic diagnosticwhich is used widely and is easy to obtain. However, a QE map indicating variations of QE across the cathode surface has greater utility. It can quickly diagnose problems of QE inhomogeneity. Most QE mapping techniques require hours to complete and are thus disruptive to a user facility schedule. A fast, single-shot method has been proposed using a micro-lens arraymore » (MLA) generated QE map. In this paper we report the implementation of the method at Argonne Wakefield Accelerator facility. A micro-lens array (MLA) is used to project an array of beamlets onto the photocathode. The resulting photoelectron beam in the form of an array of electron beamlets is imaged at a YAG screen. Four synchronized measurements are made and the results used to produce a QE map of the photocathode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, C.L.; Hanson, D.L.; Poukey, J.W.
Space charge neutralization for intense beams for inertial confinement fusion is usually assumed to be perfect. However, small charge clumps in the beam will not be totally charge neutralized, and the residual net minimum potential set by electron trapping (e{phi} {approx} {1/2}m{sub e}v{sup 2}{sub i}, where m{sub e} is the electron mass and v{sub i} is the ion velocity) may lead to a substantial microdivergence. Experiments on the SABRE accelerator and simulations with the IPROP computer code are being performed to assess this mechanism. The authors have successfully created a 5 mrad beam on the SABRE accelerator, by expanding themore » beam (a process consistent with Liouville`s theorem) and, by passing the beam through a plate with pinholes, they have created low divergence beamlets to study this mechanism. Results clearly show: (1) at low pressures, trapping does neutralize the beamlets, but only down to e{phi} {approx} {1/2}m{sub e}v{sup 2}{sub i}; and (2) at higher pressures ({approx} 0.1-1 Torr), plasma shielding does remove the effect.« less
NASA Astrophysics Data System (ADS)
Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.
2017-12-01
Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.
Puncken, Oliver; Gandara, David Mendoza; Damjanic, Marcin; Mahnke, Peter; Bergmann, Ralf B; Kalms, Michael; Peuser, Peter; Wessels, Peter; Neumann, Jörg; Schnars, Ulf
2016-02-20
We present a new laser prototype for laser ultrasonics excitation. The fundamental wavelength of a Q-switched Nd:YAG laser with a repetition rate of 1 kHz is converted to 3.3 μm with a KTiOAsO4 optical parametric oscillator. The achieved pulse energy at 3.3 μm is 1.7 mJ, and the pulse duration at the fundamental wavelength of 1.06 μm has been measured to be 21 ns. The ultrasonic excitation efficiency is about 3.5 times better compared to the application of state-of-the-art CO2 lasers.
Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.
Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S
2013-01-01
This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.
Enabling Microfluidics: From Clean Rooms to Makerspaces
2016-09-30
anyone can make 133 and rapidly scale to bulk manufacturing . To enable others to take part in this type of product 134 design and development, we...cost molds for a fee; however, the 77 design process is slowed down waiting for molds to be manufactured and shipped. While 78 PDMS devices may be...finished prototype into a commercial product . An example of a rapid 101 prototyping method amenable to scaled-up manufacturing is laser cutting. Figure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University, Cairo; Jin, L
2014-06-15
Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, J; Labarbe, R; Sterpin, E
2016-06-15
Purpose: To understand the extent to which the prompt gamma camera measurements can be used to predict the residual proton range due to setup errors and errors in the calibration curve. Methods: We generated ten variations on a default calibration curve (CC) and ten corresponding range maps (RM). Starting with the default RM, we chose a square array of N beamlets, which were then rotated by a random angle θ and shifted by a random vector s. We added a 5% distal Gaussian noise to each beamlet in order to introduce discrepancies that exist between the ranges predicted from themore » prompt gamma measurements and those simulated with Monte Carlo algorithms. For each RM, s, θ, along with an offset u in the CC, were optimized using a simple Euclidian distance between the default ranges and the ranges produced by the given RM. Results: The application of our method lead to the maximal overrange of 2.0mm and underrange of 0.6mm on average. Compared to the situations where s, θ, and u were ignored, these values were larger: 2.1mm and 4.3mm. In order to quantify the need for setup error corrections, we also performed computations in which u was corrected for, but s and θ were not. This yielded: 3.2mm and 3.2mm. The average computation time for 170 beamlets was 65 seconds. Conclusion: These results emphasize the necessity to correct for setup errors and the errors in the calibration curve. The simplicity and speed of our method makes it a good candidate for being implemented as a tool for in-room adaptive therapy. This work also demonstrates that the Prompt gamma range measurements can indeed be useful in the effort to reduce range errors. Given these results, and barring further refinements, this approach is a promising step towards an adaptive proton radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Li, Y; Tian, Z
2015-06-15
Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine wasmore » used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.« less
Novel low-kVp beamlet system for choroidal melanoma
Esquivel, Carlos; Fuller, Clifton D; Waggener, Robert G; Wong, Adrian; Meltz, Martin; Blough, Melissa; Eng, Tony Y; Thomas, Charles R
2006-01-01
Background Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in source-based radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or "BLOKX" system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures. Methods Monte Carlo N-Particle (MCNP) transport code version 5.0(14) was used to simulate photon interaction with normal and tumor tissues within modeled right eye phantoms. Five modeled dome-shaped tumors with a diameter and apical height of 8 mm and 6 mm, respectively, were simulated distinct positions with respect to the macula iteratively. A single fixed 9 × 9 mm2 beamlet, and a comparison COMS protocol plaque containing eight I-125 seeds (apparent activity of 8 mCi) placed on the scleral surface of the eye adjacent to the tumor, were utilized to determine dosimetric parameters at tumor and adjacent tissues. After MCNP simulation, comparison of dose distribution at each of the 5 tumor positions for each modality (BLOKX vs. eye-plaque) was performed. Results Tumor-base doses ranged from 87.1–102.8 Gy for the BLOKX procedure, and from 335.3–338.6 Gy for the eye-plaque procedure. A reduction of dose of at least 69% to tumor base was noted when using the BLOKX. The BLOKX technique showed a significant reduction of dose, 89.8%, to the macula compared to the episcleral plaque. A minimum 71.0 % decrease in dose to the optic nerve occurred when the BLOKX was used. Conclusion The BLOKX technique allows more favorable dose distribution in comparison to standard COMS brachytherapy, as simulated using a Monte Carlo iterative mathematical modeling. Future series to determine clinical utility of such an approach are warranted. PMID:16965624
SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Kenny S K; Lee, Louis K Y; Xing, L
2015-06-15
Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalla Palma, M.; Pasqualotto, R.; Rizzolo, A.
An important feature of the ITER project is represented by additional heating via injection of neutral beams from accelerated negative ions. To study and optimise their production, the SPIDER test facility is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation.STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic to characterise the SPIDER negative ion beam during short operation (several seconds). During long pulse operations, STRIKE is parked off-beam in the vacuum vessel. The most important measurements are beam uniformity, beamlet divergence and stripping losses. STRIKE is directly exposed to themore » beam and is formed of 16 tiles, one for each beamlet groups. The measurements are provided by thermal cameras, current sensors, thermocouples and electrostatic sensors. This paper presents the investigation of the influence on the response of STRIKE of: thermal characteristics of the tile material, exposure angle, features of some dedicated diagnostics. The uniformity of the beam will be studied by measurements of the current flowing through each tile and by thermal cameras. Simulations show that it will be possible to verify experimentally whether the beam meets the ITER requirement about the maximum allowed beam non-uniformity (below {+-}10%). In the simulations also the influence of the beam halo has been included; the effect of off-perveance conditions has been studied. To estimate the beamlet divergence, STRIKE can be moved along the beam direction at two different distances from the accelerator. The optimal positions have been defined taking into account design constraints. The effect of stripping on the comparison between currents and heat loads has been assessed; this will allow to obtain an experimental estimate of stripping. Electrostatic simulations have provided the suitable tile biasing voltage in order to reabsorb secondary particles into the same tile as the one where they were emitted from.« less
Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byer, Robert L.
2013-11-07
The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.
Continued Development of in Situ Geochronology for Planetary Missions
NASA Technical Reports Server (NTRS)
Devismes, D.; Cohen, B. A.
2015-01-01
The instrument 'Potassium (K) Argon Laser Experiment' (KArLE) is developed and designed for in situ absolute dating of rocks on planetary surfaces. It is based on the K-Ar dating method and uses the Laser Induced Breakdown Spectroscopy - Laser Ablation - Quadrupole Mass Spectrometry (LIBSLA- QMS) technique. We use a dedicated interface to combine two instruments similar to SAM of Mars Science Laboratory (for the QMS) and ChemCam (for the LA and LIBS). The prototype has demonstrated that KArLE is a suitable and promising instrument for in situ absolute dating.
Fiber Lasers and Amplifiers for Space-based Science and Exploration
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.;
2012-01-01
We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.
Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments
Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; ...
2015-04-29
In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as highmore » as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10 12 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm 3. In these experiments, up to 5 ×10 10 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm 2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10 10. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less
Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.
2015-05-15
The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutronmore » yields up to 2 × 10{sup 12} have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm{sup 3}. In these experiments, up to 5 × 10{sup 10} secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm{sup 2}, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10{sup 10}. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less
NASA Astrophysics Data System (ADS)
Kolleck, C.; Büttner, A.; Ernst, M.; Hunnekuhl, M.; Hülsenbusch, T.; Moalem, A.; Priehs, M.; Kracht, D.; Neumann, J.
2017-11-01
A laser-desorption mass spectrometer will be part of the ESA-led ExoMars mission with the objective of identifying organic molecules on planet Mars. A UV laser source emitting nanosecond pulses with pulse energy of about 250 μJ at a wavelength of 266 nm is required for the ionization of nonvolatile soil constituents. A passively q-switched, diode-pumped Nd∶YAG laser oscillator with external frequency quadrupling has been developed. The basic optical concept and a previously developed flight-near prototype are redesigned for the engineering qualification model of the laser, mainly due to requirements updated during the development process and necessary system adaptations. Performance issues like pulse energy stability, pulse energy adjustment, and burst mode operation are presented in this paper.
Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications
NASA Astrophysics Data System (ADS)
Opalevs, D.; Scholz, M.; Stuhler, J.; Gilfert, C.; Liu, L. J.; Wang, X. Y.; Vetter, A.; Kirner, R.; Scharf, T.; Noell, W.; Rockstuhl, C.; Li, R. K.; Chen, C. T.; Voelkel, R.; Leisching, P.
2018-02-01
We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency.
Fabrication of Custom-Shaped Grafts for Cartilage Regeneration
Koo, Seungbum; Hargreaves, Brian A.; Gold, Garry E.; Dragoo, Jason L.
2011-01-01
Transplantation of engineered cartilage grafts is a promising method to treat diseased articular cartilage. The interfacial areas between the graft and the native tissues play an important role in the successful integration of the graft to adjacent native tissues. The purposes of the study were to create a custom shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4±0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04±0.19 mm. Custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology, which may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths. PMID:21058268
NASA Astrophysics Data System (ADS)
Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.
2000-04-01
The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.
Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument
NASA Astrophysics Data System (ADS)
Evans, T.
The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.
Measuring parameters of large-aperture crystals used for generating optical harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, R. E.; Hibbard, R. L.; Michie, R. B.
1999-02-23
The purpose of this project was to develop tools for understanding the influence of crystal quality and crystal mounting on harmonic-generation efficiency at high irradiance. Measuring the homogeneity of crystals interferometrically, making detailed physics calculations of conversion efficiency, performing finite- element modeling of mounted crystals, and designing a new optical metrology tool were key elements in obtaining that understanding. For this work, we used the following frequency-tripling scheme: type I second- harmonic generation followed by type II sum-frequency mixing of the residual fundamental and the second harmonic light. The doubler was potassium dihydrogen phosphate (KDP), and the tripler was deuteratedmore » KDP (KD*P). With this scheme, near-infrared light (1053 nm) can be frequency tripled (to 351 nm) at high efficiency (theoretically >90%) for high irradiance (>3 GW/cm²). Spatial variations in the birefringence of the large crystals studied here (37 to 41 cm square by about 1 cm thick) imply that the ideal phase-matching orientation of the crystal with respect to the incident laser beam varies across the crystal. We have shown that phase-measuring interferometry can be used to measure these spatial variations. We observed transmitted wavefront differences between orthogonally polarized interferograms of {lambda}/50 to {lambda}/100, which correspond to index variations of order 10 -6. On some plates that we measured, the standard deviation of angular errors is 22-23 µrad; this corresponds to a 1% reduction in efficiency. Because these conversion crystals are relatively thin, their surfaces are not flat (deviate by k2.5 urn from flat). A crystal is mounted against a precision-machined surface that supports the crystal on four edges. This mounting surface is not flat either (deviates by +2.5 µm from flat). A retaining flange presses a compliant element against the crystal. The load thus applied near the edges of the crystal surface holds it in place. We performed detailed finite-element modeling to predict the resulting shape of the mounted crystal. The prediction agreed with measurements of mounted crystals. We computed the physics of the frequency-conversion process to better quantify the effects on efficiency of variation in the crystal' s axis, changes in the shape of the crystal, and mounting-induced stress. We were able to accurately predict the frequency-conversion performance of 37-cm square crystals on Beamlet, a one-beam scientific prototype of the NIF laser architecture, using interferometric measurements of the mounted crystals and the model. In a 2{omega} measurement campaign, the model predicted 64.9% conversion efficiency; 64.1% was observed. When detuned by 640 µrad, the model and measurement agreement is even better (both were 10.4%). Finally, we completed the design and initial testing of a new optical metrology tool to measure the spatial variation of frequency conversion. This system employs a high-power subaperture beam from a commercial laser oscillator and rod amplifier. The beam interrogates the crystal' s aperture by moving the crystal horizontally on a translation stage and translating the laser beam vertically on an optical periscope. Precision alignment is maintained by means of a full-aperture reference mirror, a precision-machined surface on the crystal mount, and autocollimators (the goal for angular errors is 10 µrad). The autocollimators track the mounting angle of the crystal and the direction of the laser beam with respect to the reference mirror. The conversion efficiency can be directly measured by recording l{omega}, 2{omega}, 3{omega} energy levels during the scan and by rocking (i.e., tilting) the crystal mount over an angular range.« less
LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory
NASA Astrophysics Data System (ADS)
Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.
2017-08-01
MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.
A microcomputer based frequency-domain processor for laser Doppler anemometry
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Adair, Desmond
1988-01-01
A prototype multi-channel laser Doppler anemometry (LDA) processor was assembled using a wideband transient recorder and a microcomputer with an array processor for fast Fourier transform (FFT) computations. The prototype instrument was used to acquire, process, and record signals from a three-component wind tunnel LDA system subject to various conditions of noise and flow turbulence. The recorded data was used to evaluate the effectiveness of burst acceptance criteria, processing algorithms, and selection of processing parameters such as record length. The recorded signals were also used to obtain comparative estimates of signal-to-noise ratio between time-domain and frequency-domain signal detection schemes. These comparisons show that the FFT processing scheme allows accurate processing of signals for which the signal-to-noise ratio is 10 to 15 dB less than is practical using counter processors.
A laser optical torquemeter for measuring the mechanical power furnished by a chirale turbine
NASA Astrophysics Data System (ADS)
Bonfanti, Marco; La Rosa, Guido; Lo Savio, Fabio
2005-02-01
The design of the present laser optical torquemeter arose from the need to measure the mechanical power furnished by a prototype of chirale turbine, which exploits the lift force produced in the rotor, due to the "Magnus effect." The particular optical reading system allows the device to determine both the torque and the mechanical power. The torque value is obtained through the reading of the torsional angle. From this value, together with that of the transmission shaft angular speed measured by the same torquemeter, the mechanical power of the turbine is calculated. The optical system output signals are acquired, processed and elaborated by a virtual logic circuit, simulated by means of a suitable home-made software in LabVIEW environment. The torquemeter has been tested operating with the prototype of turbine in a wind tunnel.
NASA Astrophysics Data System (ADS)
Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.
2017-07-01
A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.
The 3D scanner prototype utilize object profile imaging using line laser and octave software
NASA Astrophysics Data System (ADS)
Nurdini, Mugi; Manunggal, Trikarsa Tirtadwipa; Samsi, Agus
2016-11-01
Three-dimensional scanner or 3D Scanner is a device to reconstruct the real object into digital form on a computer. 3D Scanner is a technology that is being developed, especially in developed countries, where the current 3D Scanner devices is the advanced version with a very expensive prices. This study is basically a simple prototype of 3D Scanner with a very low investment costs. 3D Scanner prototype device consists of a webcam, a rotating desk system controlled by a stepper motor and Arduino UNO, and a line laser. Objects that limit the research is the object with same radius from its center point (object pivot). Scanning is performed by using object profile imaging by line laser which is then captured by the camera and processed by a computer (image processing) using Octave software. On each image acquisition, the scanned object on a rotating desk rotated by a certain degree, so for one full turn multiple images of a number of existing side are finally obtained. Then, the profile of the entire images is extracted in order to obtain digital object dimension. Digital dimension is calibrated by length standard, called gage block. Overall dimensions are then digitally reconstructed into a three-dimensional object. Validation of the scanned object reconstruction of the original object dimensions expressed as a percentage error. Based on the results of data validation, horizontal dimension error is about 5% to 23% and vertical dimension error is about +/- 3%.
The laser accelerator-another unicorn in the garden
NASA Astrophysics Data System (ADS)
Hand, L. N.
1981-07-01
Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.
Diamond Shaped Ring Laser Characterization, Package Design and Performance
2006-09-01
fabricated by Binoptics, with the end facets formed by chemically assisted ion beam etching . The lasers, designed for operation at 1550 nm, propagated bi...calculated and Corning OptiFocus™ Lensed fiber was chosen to use for the four fiber outputs. Each fiber placement was actively optimized. Output power...aligned using active feedback and placed with submicron precision. The prototype package design was constrained to modification of a prior
1997-04-01
are subsequently read out using a low- doped Glasses power, solid-state diode laser. Figure 4 shows a schematic of the OSL dosimeter . The 807-nm A.L...Huston, S, Rychnovsky, and B.L. Justus (near infrared) diode laser light stimulates blue OSL Optical Sciences Division emission from the dosimeter , and...The sensitivity of the hole pairs become trapped and may persist until prototype OSL dosimeter exceeds that of the stimulated to luminesce by the
NASA Technical Reports Server (NTRS)
Shiner, Christopher S.
1986-01-01
Research is directed toward the design and synthesis of new media for solar-pumped I* lasers. Since the most effective existing lasants are perfluoroalkyl iodides, a strategy was proposed for the development of improved materials of this type with absorption maxima at 300 nm. Absorption spectra were synthesized and measured for prototypical species containing iodine bound to boron, iron, and cobalt.
Additive and Photochemical Manufacturing of Copper
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733
Polyplanar optical display electronics
NASA Astrophysics Data System (ADS)
DeSanto, Leonard; Biscardi, Cyrus
1997-07-01
The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.
Additive and Photochemical Manufacturing of Copper
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-12-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.
Zhang, Fumin; Qu, Xinghua; Ouyang, Jianfei
2012-01-01
A novel measurement prototype based on a mobile vehicle that carries a laser scanning sensor is proposed. The prototype is intended for the automated measurement of the interior 3D geometry of large-diameter long-stepped pipes. The laser displacement sensor, which has a small measurement range, is mounted on an extended arm of known length. It is scanned to improve the measurement accuracy for large-sized pipes. A fixing mechanism based on two sections is designed to ensure that the stepped pipe is concentric with the axis of rotation of the system. Data are acquired in a cylindrical coordinate system and fitted in a circle to determine diameter. Systematic errors covering arm length, tilt, and offset errors are analyzed and calibrated. The proposed system is applied to sample parts and the results are discussed to verify its effectiveness. This technique measures a diameter of 600 mm with an uncertainty of 0.02 mm at a 95% confidence probability. A repeatability test is performed to examine precision, which is 1.1 μm. A laser tracker is used to verify the measurement accuracy of the system, which is evaluated as 9 μm within a diameter of 600 mm. PMID:22778615
Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J
2011-09-01
Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Laser Micro and Nano Processing of Metals , Ceramics , and Polymers
NASA Astrophysics Data System (ADS)
Pfleging, Wilhelm; Kohler, Robert; Südmeyer, Isabelle; Rohde, Magnus
Laser -based material processing is well investigated for structuring , modification , and bonding of metals , ceramics , glasses, and polymers . Especially for material processing on micrometer, and nanometer scale laser-assisted processes will very likely become more prevalent as lasers offer more cost-effective solutions for advanced material research, and application. Laser ablation , and surface modification are suitable for direct patterning of materials and their surface properties. Lasers allow rapid prototyping and small-batch manufacturing . They can also be used to pattern moving substrates, permitting fly-processing of large areas at reasonable speed. Different types of laser processes such as ablation, modification, and welding can be successfully combined in order to enable a high grade of bulk and surface functionality. Ultraviolet lasers favored for precise and debris-free patterns can be generated without the need for masks, resist materials, or chemicals. Machining of materials, for faster operation, thermally driven laser processes using NIR and IR laser radiation, could be increasingly attractive for a real rapid manufacturing.
NASA Technical Reports Server (NTRS)
Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James
2003-01-01
This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los Alamos National Laboratory and CFD Research Corporation have designed and fabricated a miniaturized, first-generation optical prototype of a laser ignition system that could be the basis for a laser ignition system for rocket applications. This prototype will be tested at MSFC in future subscale rocket ignition tests.
2016-08-09
This image shows the bare bones of the first prototype starshade by NASA's Jet Propulsion Laboratory, Pasadena, California. The prototype was shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California in 2013. In order for the petals of the starshade to diffract starlight away from the camera of a space telescope, they must be deployed with accuracy once the starshade reaches space. The four petals pictured in the image are being measured for this positional accuracy with a laser. As shown by this 66-foot (20-meter) model, starshades can come in many shapes and sizes. This design shows petals that are more extreme in shape which properly diffracts starlight for smaller telescopes. http://photojournal.jpl.nasa.gov/catalog/PIA20903
NASA Technical Reports Server (NTRS)
Davis, M. H.
1981-01-01
Final development of a gravimetric test for performance evaluation of a precision saturator is described. The design and development of a prototype droplet levitation chamber is discussed. Technical assistance to the MSFC Airborne Laser Doppler Program is reported.
Applications of lasers and electro-optics
NASA Astrophysics Data System (ADS)
Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.
Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.
NASA Technical Reports Server (NTRS)
Sankar, S.; Livas, J.
2016-01-01
We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.
NASA Astrophysics Data System (ADS)
Schuler, Carlos A.; Tapos, Francis M.; Alayleh, Mehyeddine M.; Bachalo, William D.
1997-02-01
Aerometrics initiated and continues on the development an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. The principles of operation of the sensor, and the results of Aerometrics' early testing were presented last year in this forum. This paper presents Aerometrics' continuing efforts in bringing the technology to market. New prototypes have been developed and tested. Aerometrics' engineering efforts and the use of latest technologies have resulted in a 24-fold reduction in sensor volume when compared to their predecessors and similar reductions in weight. The current prototype measures less than 9 cm X 8 cm X 7 cm, and can be easily fit within the cavity of rear-view mirror holders used in most present-day vehicles. Also, advances in signal conditioning and processing have improved the reliability of the sensor. Results of continuing testing of the sensor will be presented.
Technology infusion of intellectual 3D printers-based prototyping of products into learning process
NASA Astrophysics Data System (ADS)
Boshhenko, T. V.; Chepur, P. V.
2018-03-01
The article considers the prospects for the technologies of intellectual design and prototyping applying 3D printers. It presents basic technologies of 3D printing, currently developed and released for construction. The experience of educational activities in the University to train students for the Academic Competitions on three-dimensional modeling and prototyping is described in the present article. Requirements for the prototyping implementation are given, allowing obtaining a positive effect from the technology infusion released for construction. The results of activities to train students for the Academic Competition are stated. It is established that the proposed approaches to the training of students have led to the highest score in the national contest in Novosibirsk when performing tasks for prototyping a stand for a cell phone and manufacturing the product on a 3D printer at the SLS technology, selective laser sintering. The conclusions about the possibilities and prospects of development of this direction in the industry in the entire country are drawn.
NASA Astrophysics Data System (ADS)
Bisconti, Francesca; JEM-EUSO Collaboration
2016-07-01
EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.
Optical ordnance system for use in explosive ordnance disposal activities
NASA Technical Reports Server (NTRS)
Merson, J. A.; Salas, F. J.; Helsel, F.M.
1994-01-01
A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.
Quaternary pulse position modulation electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.
1991-01-01
The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (GPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.
Quaternary pulse position modulation electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.
1991-01-01
The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.
HiPEP Ion Optics System Evaluation Using Gridlets
NASA Technical Reports Server (NTRS)
Willliams, John D.; Farnell, Cody C.; Laufer, D. Mark; Martinez, Rafael A.
2004-01-01
Experimental measurements are presented for sub-scale ion optics systems comprised of 7 and 19 aperture pairs with geometrical features that are similar to the HiPEP ion optics system. Effects of hole diameter and grid-to-grid spacing are presented as functions of applied voltage and beamlet current. Recommendations are made for the beamlet current range where the ion optics system can be safely operated without experiencing direct impingement of high energy ions on the accelerator grid surface. Measurements are also presented of the accelerator grid voltage where beam plasma electrons backstream through the ion optics system. Results of numerical simulations obtained with the ffx code are compared to both the impingement limit and backstreaming measurements. An emphasis is placed on identifying differences between measurements and simulation predictions to highlight areas where more research is needed. Relatively large effects are observed in simulations when the discharge chamber plasma properties and ion optics geometry are varied. Parameters investigated using simulations include the applied voltages, grid spacing, hole-to-hole spacing, doubles-to-singles ratio, plasma potential, and electron temperature; and estimates are provided for the sensitivity of impingement limits on these parameters.
Design of a digital holography system for PFC erosion measurements on Proto-MPEX.
Thomas, C E Tommy; Biewer, T M; Baylor, L R; Combs, S K; Meitner, S J; Rapp, J; Hillis, D L; Granstedt, E M; Majeski, R; Kaita, R
2016-11-01
A project has been started at ORNL to develop a dual-wavelength digital holography system for plasma facing component erosion measurements on prototype material plasma exposure experiment. Such a system will allow in situ real-time measurements of component erosion. Initially the system will be developed with one laser, and first experimental laboratory measurements will be made with the single laser system. In the second year of development, a second CO 2 laser will be added and measurements with the dual wavelength system will begin. Adding the second wavelength allows measurements at a much longer synthetic wavelength.
Localization of a mobile laser scanner via dimensional reduction
NASA Astrophysics Data System (ADS)
Lehtola, Ville V.; Virtanen, Juho-Pekka; Vaaja, Matti T.; Hyyppä, Hannu; Nüchter, Andreas
2016-11-01
We extend the concept of intrinsic localization from a theoretical one-dimensional (1D) solution onto a 2D manifold that is embedded in a 3D space, and then recover the full six degrees of freedom for a mobile laser scanner with a simultaneous localization and mapping algorithm (SLAM). By intrinsic localization, we mean that no reference coordinate system, such as global navigation satellite system (GNSS), nor inertial measurement unit (IMU) are used. Experiments are conducted with a 2D laser scanner mounted on a rolling prototype platform, VILMA. The concept offers potential in being extendable to other wheeled platforms.
NASA Astrophysics Data System (ADS)
Zhong, Chuyu; Zhang, Xing; Hofmann, Werner; Yu, Lijuan; Liu, Jianguo; Ning, Yongqiang; Wang, Lijun
2018-05-01
Few-mode vertical-cavity surface-emitting lasers that can be controlled to emit certain modes and polarization states simply by changing the biased contacts are proposed and fabricated. By directly etching trenches in the p-doped distributed Bragg reflector, the upper mesa is separated into several submesas above the oxide layer. Individual contacts are then deposited. Each contact is used to control certain transverse modes with different polarization directions emitted from the corresponding submesa. These new devices can be seen as a prototype of compact laser sources in mode division multiplexing communications systems.
Three-dimensional digitizer for the footwear industry
NASA Astrophysics Data System (ADS)
Gonzalez, Francisco; Campoy, Pascual; Aracil, Rafael; Penafiel, Francisco; Sebastian, Jose M.
1993-12-01
This paper presents a developed system for digitizing 3D objects in the footwear industry (e.g. mould, soles, heels) and their introduction in a CAD system for further manipulation and production of rapid prototypes. The system is based on the acquisition of the sequence of images of the projection of a laser line onto the 3D object when this is moving in front of the laser beam and the camera. This beam projection lights a 3D curve on the surface of the object, whose image is processed in order to obtain the 3D coordinates of every point of mentioned curve according to a previous calibration of the system. These coordinates of points in all the curves are analyzed and combined in order to make up a 3D wire-frame model of the object, which is introduced in a CAD station for further design and connection to the machinery for rapid prototyping.
Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)
NASA Technical Reports Server (NTRS)
Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.
1995-01-01
A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.
Beam uniformity analysis of infrared laser illuminators
NASA Astrophysics Data System (ADS)
Allik, Toomas H.; Dixon, Roberta E.; Proffitt, R. Patrick; Fung, Susan; Ramboyong, Len; Soyka, Thomas J.
2015-02-01
Uniform near-infrared (NIR) and short-wave infrared (SWIR) illuminators are desired in low ambient light detection, recognition, and identification of military applications. Factors that contribute to laser illumination image degradation are high frequency, coherent laser speckle and low frequency nonuniformities created by the laser or external laser cavity optics. Laser speckle analysis and beam uniformity improvements have been independently studied by numerous authors, but analysis to separate these two effects from a single measurement technique has not been published. In this study, profiles of compact, diode laser NIR and SWIR illuminators were measured and evaluated. Digital 12-bit images were recorded with a flat-field calibrated InGaAs camera with measurements at F/1.4 and F/16. Separating beam uniformity components from laser speckle was approximated by filtering the original image. The goal of this paper is to identify and quantify the beam quality variation of illumination prototypes, draw awareness to its impact on range performance modeling, and develop measurement techniques and methodologies for military, industry, and vendors of active sources.
NASA Technical Reports Server (NTRS)
Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd;
2016-01-01
We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 J/cm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 J/cm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.
NASA Technical Reports Server (NTRS)
Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd;
2016-01-01
We present the results of three year life-aging of a specially designed prototype flight source laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and external frequency doubler. The Fibertek-designed, slightly pressurized air, enclosed-container source laser operated at 1064 nm in active Q-switching mode. The external frequency doubler was set in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm discreetly. The external frequency doubler consisted of a Lithium triborate, LiB3O5, crystal operated at non-critical phase-matching. Due to 1064 nm diagnostic needs, the amount of fundamental frequency power available for doubling was 13.7W. The power generated at 532 nm was between 8.5W and 10W, depending on the level of stress and degradation. The life-aging consisted of double stress-step operation for doubler crystal, at 0.35 Jcm2 for almost 1 year, corresponding to normal conditions, and then at 0.93 Jcm2 for the rest of the experiment, corresponding to accelerated testing. We observed no degradation at the first step and linear degradation at the second step. The linear degradation at the second stress-step was related to doubler crystal output surface changes and linked to laser-assisted contamination. We discuss degradation model and estimate the expected lifetime for the flight laser at 532 nm. This work was done within the laser testing for NASAs Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.
NASA Astrophysics Data System (ADS)
Konoplev, Oleg A.; Chiragh, Furqan L.; Vasilyev, Aleksey A.; Edwards, Ryan; Stephen, Mark A.; Troupaki, Elisavet; Yu, Anthony W.; Krainak, Michael A.; Sawruk, Nick; Hovis, Floyd; Culpepper, Charles F.; Strickler, Kathy
2016-05-01
We present the results of a three-year operational-aging test of a specially designed prototype flight laser operating at 1064 nm, 10 kHz, 1ns, 15W average power and externally frequency-doubled. Fibertek designed and built the q-switched, 1064nm laser and this laser was in a sealed container of dry air pressurized to 1.3 atm. The external frequency doubler was in a clean room at a normal air pressure. The goal of the experiment was to measure degradation modes at 1064 and 532 nm separately. The external frequency doubler consisted of a Lithium triborate, LiB3O5, non-critically phase-matched crystal. After some 1064 nm light was diverted for diagnostics, 13.7W of fundamental power was available to pump the doubling crystal. Between 8.5W and 10W of 532nm power was generated, depending on the level of stress and degradation. The test consisted of two stages, the first at 0.3 J/cm2 for almost 1 year, corresponding to expected operational conditions, and the second at 0.93 J/cm2 for the remainder of the experiment, corresponding to accelerated optical stress testing. We observed no degradation at the first stress-level and linear degradation at the second stress-level. The linear degradation was linked to doubler crystal output surface changes from laser-assisted contamination. We estimate the expected lifetime for the flight laser at 532 nm using fluence as the stress parameter. This work was done for NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) LIDAR at Goddard Space Flight Center in Greenbelt, MD with the goal of 1 trillion shots lifetime.
NASA Astrophysics Data System (ADS)
Ulianova, Onega; Moiseeva, Yulia; Filonova, Nadezhda; Subbotina, Irina; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Ulyanov, Sergey; Larionova, Olga; Utz, Sergey; Feodorova, Valentina
2018-04-01
Principles of two-cascaded laser speckle-microscopy prospect for application to express diagnostics of chlamydial infection are developed. Prototype of two-cascaded speckle-microscope is designed and tested. Specific case of illumination of bacterial cells by dynamic speckles is considered. Express method of detection of epithelial cells, containing defects, which are caused by Chlamydia trachomatis bacteria, is suggested. Results of improved recognition of C. trachomatis bacteria are discussed.
Four channel Laser Firing Unit using laser diodes
NASA Technical Reports Server (NTRS)
Rosner, David, Sr.; Spomer, Edwin, Sr.
1994-01-01
This paper describes the accomplishments and status of PS/EDD's (Pacific Scientific/Energy Dynamics Division) internal research and development effort to prototype and demonstrate a practical four channel laser firing unit (LFU) that uses laser diodes to initiate pyrotechnic events. The LFU individually initiates four ordnance devices using the energy from four diode lasers carried over the fiber optics. The LFU demonstrates end-to-end optical built in test (BIT) capabilities. Both Single Fiber Reflective BIT and Dual Fiber Reflective BIT approaches are discussed and reflection loss data is presented. This paper includes detailed discussions of the advantages and disadvantages of both BIT approaches, all-fire and no-fire levels, and BIT detection levels. The following topics are also addressed: electronic control and BIT circuits, fiber optic sizing and distribution, and an electromechanical shutter type safe/arm device. This paper shows the viability of laser diode initiation systems and single fiber BIT for typing military applications.
Attacking the information access problem with expert systems
NASA Technical Reports Server (NTRS)
Ragusa, James M.; Orwig, Gary W.
1991-01-01
The results of applications research directed at finding an improved method of storing and accessing information are presented. Twelve microcomputer-based expert systems shells and five laser-optical formats have been studied, and the general and specific methods of interfacing these technologies are being tested in prototype systems. Shell features and interfacing capabilities are discussed, and results from the study of five laser-optical formats are recounted including the video laser, compact, and WORM disks, and laser cards and film. Interfacing, including laser disk device driver interfacing, is discussed and it is pointed out that in order to control the laser device from within the expert systems application, the expert systems shell must be able to access the device driver software. Potential integrated applications are investigated and an initial list is provided including consumer services, travel, law enforcement, human resources, marketing, and education and training.
Research on laser direct metal deposition
NASA Astrophysics Data System (ADS)
Zhang, Yongzhong; Shi, Likai
2003-03-01
Laser direct deposition of metallic parts is a new manufacturing technology, which combines with computer-aided design, laser cladding and rapid prototyping. Fully dense metallic parts can be directly obtained through melting the coaxially fed powders with a high-power laser in a layer-by-layer manner. The process characteristics, system composition as well as some research and advancement on laser direct deposition are presented here. The microstructure and properties observation of laser direct formed 663 copper alloy, 316L stainless steel and Rene'95 nickel super alloy samples indicate that, the as-deposited microstructure is similar to rapidly solidified materials, with homogenous composition and free of defects. Under certain conditions, directionally solidified microstructure can be obtained. The as-formed mechanical properties are equal to or exceed those for casting and wrought annealed materials. At the same time, some sample parts with complicate shape are presented for technology demonstration. The formed parts show good surface quality and dimensional accuracy.
Opto-mechanical design of vacuum laser resonator for the OSQAR experiment
NASA Astrophysics Data System (ADS)
Hošek, Jan; Macúchová, Karolina; Nemcová, Šárka; Kunc, Štěpán.; Šulc, Miroslav
2015-01-01
This paper gives short overview of laser-based experiment OSQAR at CERN which is focused on search of axions and axion-like particles. The OSQAR experiment uses two experimental methods for axion search - measurement of the ultra-fine vacuum magnetic birefringence and a method based on the "Light shining through the wall" experiment. Because both experimental methods have reached its attainable limits of sensitivity we have focused on designing a vacuum laser resonator. The resonator will increase the number of convertible photons and their endurance time within the magnetic field. This paper presents an opto-mechanical design of a two component transportable vacuum laser resonator. Developed optical resonator mechanical design allows to be used as a 0.8 meter long prototype laser resonator for laboratory testing and after transportation and replacement of the mirrors it can be mounted on the LHC magnet in CERN to form a 20 meter long vacuum laser resonator.
Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers
NASA Astrophysics Data System (ADS)
Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning
2015-10-01
Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.
Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark
2005-01-01
We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
NASA Astrophysics Data System (ADS)
DeSanto, Leonard
1998-09-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMDTM) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMDTM divorced from the light engine and the interfacing of the DMDTM board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.
Processing of pure Ti by rapid prototyping based on laser cladding
NASA Astrophysics Data System (ADS)
Arias-González, F.; del Val, J.; Comesaña, R.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.
2013-11-01
Rapid prototyping based on laser cladding is an additive manufacturing (AM) process based on the overlapping of cladding tracks to produce functional components. Powder or wire are fed into a melting pool created using laser radiation as a heat source and the relative movement between the beam and the work piece makes possible to generate pieces layer-by-layer. This technique can be applied for any material which can be melted and the components can be manufactured directly according to a computer aided design (CAD) model. Additive manufacturing is particularly interesting to produce titanium components because, in this case, the loss of material produced by subtractive manufacturing methods is highly costly. Moreover, titanium and its alloys are widely used in biomedical, aircraft, chemical and marine industries due to their biocompatibility, excellent corrosion resistance and superior strength-to-weight ratio. In this research work, a near-infrared laser delivering a maximum power of 500W is used to produce pure titanium thin parts. Dimensions and surface morphology are characterized using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), the hardness by nanoindentation and the composition by X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). The aim of this work is to establish the conditions under which satisfactory properties are obtained and to understand the relationship between microstructure/properties and deposition parameters.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.
2013-01-01
The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.
Optical Breath Gas Sensor for Extravehicular Activity Application
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer
2013-01-01
The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
A first characterization of the NIO1 particle beam by means of a diagnostic calorimeter
NASA Astrophysics Data System (ADS)
Pimazzoni, A.; Cavenago, M.; Cervaro, V.; Fasolo, D.; Serianni, G.; Tollin, M.; Veltri, P.
2017-08-01
Powerful neutral beam injectors (NBI) are required as heating and current drive systems for tokamaks like ITER. The development of negative ion sources and accelerators (40 A; 1 MeV D- beam) in particular, is a crucial point and many issues still require a better understanding. In this framework, the experiment NIO1 (9 beamlets of 15 mA H- each, 60 kV) operated at Consorzio RFX started operation in 2014[1]. Both its RF negative ion source (up to 2.5 kW) and its beamline are equipped with many diagnostics [2]. For the early tests on the extraction system, oxygen has been used as well as hydrogen due to its higher electronegativity, which allows reaching currents large enough to test the beam diagnostics even without caesium injection. In particular a 1D-CFC (carbon-fibre-carbon composite) tile is used as a calorimeter to determine the beam power deposition by observing the rear surface of the tile with an infra-red camera; the same design is applied as for STRIKE [3], one of the diagnostics of SPIDER (the ITER-like ion source prototype [4]) whose facility is currently under construction at Consorzio RFX. From this diagnostic it is also possible to assess the beam divergence and thus the beam optics. The present contribution describes the characterization of the NIO1 particle beam by means of temperature and current measurements with different source and accelerator parameters.
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.
2002-01-01
This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.
The GINGER project and status of the GINGERino prototype at LNGS
NASA Astrophysics Data System (ADS)
Ortolan, A.; Belfi, J.; Bosi, F.; Di Virgilio, A.; Beverini, N.; Carelli, G.; Maccioni, E.; Santagata, R.; Simonelli, A.; Beghi, A.; Cuccato, D.; Donazzan, A.; Naletto, G.
2016-05-01
GINGER (Gyroscopes IN GEneral Relativity) is a proposal for measuring in a ground-based laboratory the Lense-Thirring effect, known also as inertial frame dragging, that is predicted by General Relativity, and is induced by the rotation of a massive source. GINGER will consist in an array of at least three square ring lasers, mutually orthogonal, with about 6-10 m side, and located in a deep underground site, possibly the INFN - National Laboratories of Gran Sasso. The tri-axial design will provide a complete estimation of the laboratory frame angular velocity, to be compared with the Earths rotation estimate provided by IERS with respect the fixed stars frame. Large-size ring lasers have already reached a very high sensitivity, allowing for relevant geodetic measurements. The accuracy required for Lense-Thirring effect measurement is higher than 10-14 rad/s and therefore Earth angular velocity must be measured within one part in 10-9. A 3.6 m side, square ring laser, called GINGERino, has been recently installed inside the Gran Sasso underground laboratories in order to qualify the site for a future installation of GINGER. We discuss the current status of the experimental work, and in particular of the GINGERino prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, L.N.
Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for 'grating-type' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a 'multi-pass collider', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak powermore » requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.« less
Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.
Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T
2016-02-01
A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy
NASA Astrophysics Data System (ADS)
Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.
2016-02-01
A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.
2014-11-15
Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less
Feasibility of a simple method of hybrid collimation for megavoltage grid therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almendral, Pedro; Mancha, Pedro J.; Roberto, Daniel
2013-05-15
Purpose: Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. Methods: The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equallymore » spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. Results: The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. Conclusions: The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver grid therapy. The implementation of this method is technically simpler than the construction of a conventional grid block.« less
Feasibility of a simple method of hybrid collimation for megavoltage grid therapy.
Almendral, Pedro; Mancha, Pedro J; Roberto, Daniel
2013-05-01
Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equally spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver grid therapy. The implementation of this method is technically simpler than the construction of a conventional grid block.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voet, Peter W. J.; Dirkx, Maarten L. P.; Breedveld, Sebastiaan
2013-07-15
Purpose: To compare IMRT planning strategies for prostate cancer patients with metal hip prostheses.Methods: All plans were generated fully automatically (i.e., no human trial-and-error interactions) using iCycle, the authors' in-house developed algorithm for multicriterial selection of beam angles and optimization of fluence profiles, allowing objective comparison of planning strategies. For 18 prostate cancer patients (eight with bilateral hip prostheses, ten with a right-sided unilateral prosthesis), two planning strategies were evaluated: (i) full exclusion of beams containing beamlets that would deliver dose to the target after passing a prosthesis (IMRT{sub remove}) and (ii) exclusion of those beamlets only (IMRT{sub cut}). Plansmore » with optimized coplanar and noncoplanar beam arrangements were generated. Differences in PTV coverage and sparing of organs at risk (OARs) were quantified. The impact of beam number on plan quality was evaluated.Results: Especially for patients with bilateral hip prostheses, IMRT{sub cut} significantly improved rectum and bladder sparing compared to IMRT{sub remove}. For 9-beam coplanar plans, rectum V{sub 60Gy} reduced by 17.5%{+-} 15.0% (maximum 37.4%, p= 0.036) and rectum D{sub mean} by 9.4%{+-} 7.8% (maximum 19.8%, p= 0.036). Further improvements in OAR sparing were achievable by using noncoplanar beam setups, reducing rectum V{sub 60Gy} by another 4.6%{+-} 4.9% (p= 0.012) for noncoplanar 9-beam IMRT{sub cut} plans. Large reductions in rectum dose delivery were also observed when increasing the number of beam directions in the plans. For bilateral implants, the rectum V{sub 60Gy} was 37.3%{+-} 12.1% for coplanar 7-beam plans and reduced on average by 13.5% (maximum 30.1%, p= 0.012) for 15 directions.Conclusions: iCycle was able to automatically generate high quality plans for prostate cancer patients with prostheses. Excluding only beamlets that passed through the prostheses (IMRT{sub cut} strategy) significantly improved OAR sparing. Noncoplanar beam arrangements and, to a larger extent, increasing the number of treatment beams further improved plan quality.« less
The mosaic structure of plasma bulk flows in the Earth's magnetotail
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Richard, R. L.; Zelenyi, L. M.; Peroomian, V.; Bosqued, J. M.
1995-01-01
Moments of plasma distributions observed in the magnetotail vary with different time scales. In this paper we attempt to explain the observed variability on intermediate timescales of approximately 10-20 min that result from the simultaneous energization and spatial structuring of solar wind plasma in the distant magnetotail. These processes stimulate the formation of a system of spatially disjointed. highly accelerated filaments (beamlets) in the tail. We use the results from large-scale kinetic modeling of magnetotail formation from a plasma mantle source to calculate moments of ion distribution functions throughout the tail. Statistical restrictions related to the limited number of particles in our system naturally reduce the spatial resolution of our results, but we show that our model is valid on intermediate spatial scales Delta(x) x Delta(z) equal to approximately 1 R(sub E) x 1000 km. For these spatial scales the resulting pattern, which resembles a mosaic, appears to be quite variable. The complexity of the pattern is related to the spatial interference between beamlets accelerated at various locations within the distant tail which mirror in the strong near-Earth magnetic field. Global motion of the magnetotail results in the displacement of spacecraft with respect to this mosaic pattern and can produce variations in all of the moments (especially the x-component of the bulk velocity) on intermediate timescales. The results obtained enable us to view the magnetotail plasma as consisting of two different populations: a tailward-Earthward system of highly accelerated beamlets interfering with each other, and an energized quasithermal population which gradually builds as the Earth is approached. In the near-Earth tail, these populations merge into a hot quasi-isotropic ion population typical of the near-Earth plasma sheet. The transformation of plasma sheet boundary layer (PSBL) beam energy into central plasma sheet (CPS) quasi-thermal energy occurs in the absence of collisions or noise. This paper also clarifies the relationship between the global scale where an MHD description might be appropriate and the lower intermediate scales where MHD fails and large-scale kinetic theory should be used.
Prototype simulates remote sensing spectral measurements on fruits and vegetables
NASA Astrophysics Data System (ADS)
Hahn, Federico
1998-09-01
A prototype was designed to simulate spectral packinghouse measurements in order to simplify fruit and vegetable damage assessment. A computerized spectrometer is used together with lenses and an externally controlled illumination in order to have a remote sensing simulator. A laser is introduced between the spectrometer and the lenses in order to mark the zone where the measurement is being taken. This facilitates further correlation work and can assure that the physical and remote sensing measurements are taken in the same place. Tomato ripening and mango anthracnose spectral signatures are shown.
Application of reverse engineering in the medical industry.
NASA Astrophysics Data System (ADS)
Kaleev, A. A.; Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.
2017-09-01
The purpose of this research is to develop on the basis of existing analogs new design of ophthalmologic microsurgical tweezers by using reverse engineering techniques. Virtual model was obtained by using a three-dimensional scanning system Solutionix Rexcan 450 MP. Geomagic Studio program was used to remove defects and inaccuracies of the obtained parametric model. A prototype of the finished model was made on the installation of laser stereolithography Projet 6000. Total time of the creation was 16 hours from the reverse engineering procedure to 3D-printing of the prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tate, John G.; Richardson, Bradley S.; Love, Lonnie J.
ORNL worked with the Schaeffler Group USA to explore additive manufacturing techniques that might be appropriate for prototyping of bearing cages. Multiple additive manufacturing techniques were investigated, including e-beam, binder jet and multiple laser based processes. The binder jet process worked best for the thin, detailed cages printed.
Kilmer, Suzanne L
2017-01-01
Cryolipolysis is a safe, effective non-surgical procedure to reduce fat. For most cryolipolysis treatments, tissue is pulled between parallel cooling plates with a treatment duration of 60 minutes. A novel contoured cup, medium-sized applicator was developed to increase tissue contact with reduced skin tension and reduced treatment time. This prototype contoured cup was investigated with a standard cryolipolysis applicator to evaluate safety, efficacy, and patient preference. A prototype CoolCup medium-sized vacuum applicator (CoolSculpting System, ZELTIQ Aesthetics) was used to treat n = 19 subjects in the flanks. Randomly assigned, one flank received standard treatment with the CoolCore applicator (-10°C for 60 minutes). The contralateral flank received treatment from the CoolCup (-11°C for 35 minutes). The clinical study primary efficacy endpoint was 70% correct identification of baseline photographs by independent physician review. Incidence of adverse device effects was monitored. Fat layer reduction was measured by ultrasound and subject surveys were administered 12 weeks post-treatment. Equivalent efficacy was demonstrated between the CoolCore standard treatment and the prototype CoolCup. Independent review from three blinded physicians found 81% correct identification of baseline photographs for the standard treatment and 79% for the CoolCup. Ultrasound measurements indicated mean fat layer reduction of 4.38 mm for the standard treatment and 4.40 mm for the CoolCup; no statistically significant difference was found when comparing treatment efficacy of the two applicators (P = 0.96). Patient questionnaires revealed 85% preferred CoolCup because of shorter treatment duration and greater comfort. Procedural assessments revealed 45% lower pain scores for CoolCup. Immediate post-treatment clinical assessments revealed 82% less bruising. Typical side effects, such as numbness and erythema, were similar. There were no adverse events. This clinical study of a prototype medium-sized vacuum applicator with a cooled contoured surface indicates that the CoolCup produces equivalent safety and efficacy to the standard CoolCore cryolipolysis applicator. With a 42% reduction in treatment time, the procedure was found to be more comfortable because of lower vacuum skin tension and shorter treatment duration. Lasers Surg. Med. 49:63-68, 2017. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Adaptive optics program update at TMT
NASA Astrophysics Data System (ADS)
Boyer, C.; Ellerbroek, B.
2016-07-01
The TMT first light AO facility consists of the Narrow Field Infra-Red AO System (NFIRAOS), the associated Laser Guide Star Facility (LGSF) and the AO Executive Software (AOESW). Design, fabrication and prototyping activities of the TMT first light AO systems and their components have significantly ramped up in Canada, China, France, and in the US. NFIRAOS is an order 60 x 60 laser guide star (LGS) multi-conjugate AO (MCAO) system, which provides uniform, diffraction-limited performance in the J, H, and K bands over 34 x 34 arc sec fields with 50 per cent sky coverage at the galactic pole, as required to support the TMT science cases. NFIRAOS includes two deformable mirrors, six laser guide star wavefront sensors, one high order Pyramid WFS for natural guide star AO, and up to three low-order, IR, natural guide star on-instrument wavefront sensors (OIWFS) and four on-detector guide windows (ODGW) within each client instrument. The first light LGSF system includes six sodium lasers to generate the NFIRAOS laser guide stars. In this paper, we will provide an update on the progress in designing, prototyping, fabricating and modeling the TMT first light AO systems and their AO components over the last two years. TMT is continuing with detailed AO modeling to support the design and development of the first light AO systems and components. Major modeling topics studied during the last two years include further studies in the area of pyramid wavefront sensing, high precision astrometry, PSF reconstruction for LGS MCAO, LGSF wavefront error budget and sophisticated low order mode temporal filtering.
A portable lidar using a diode-pumped YAG laser
NASA Technical Reports Server (NTRS)
Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.
1992-01-01
A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.
NASA Astrophysics Data System (ADS)
Maggioni, G.; Carturan, S.; Raniero, W.; Riccetto, S.; Sgarbossa, F.; Boldrini, V.; Milazzo, R.; Napoli, D. R.; Scarpa, D.; Andrighetto, A.; Napolitani, E.; De Salvador, D.
2018-03-01
A new method for the formation of hole-barrier contacts in high purity germanium (HPGe) is described, which consists in the sputter deposition of a Sb film on HPGe, followed by Sb diffusion produced through laser annealing of the Ge surface in the melting regime. This process gives rise to a very thin ( ≤ 100 nm) n-doped layer, as determined by SIMS measurement, while preserving the defect-free morphology of HPGe surface. A small prototype of gamma ray detector with a Sb laser-diffused contact was produced and characterized, showing low leakage currents and good spectroscopy data with different gamma ray sources.
Initial development of a laser altimeter
NASA Astrophysics Data System (ADS)
Gilio, J. P.
1985-09-01
A design study was carried out of a small, expendable, self-contained laser altimeter for overwater operation at low altitude. A .904 micrometer Gallium Arsenide laser was used to build a prototype transmitter/ receiver at a cost of less than $600 and small enough to fit inside a 5 inch diameter cylinder, 5 inches long. Tests at a height of 120 feet above the surface of a lake resulted in a signal-to-noise ratio of 6, and validated the trade-off equation used in this study. A second test model, with design improvements incorporated, is predicted to yield a SNR of over 20 for an altitude of 150 meters.
Real-Time Laser Ultrasound Tomography for Profilometry of Solids
NASA Astrophysics Data System (ADS)
Zarubin, V. P.; Bychkov, A. S.; Karabutov, A. A.; Simonova, V. A.; Kudinov, I. A.; Cherepetskaya, E. B.
2018-01-01
We studied the possibility of applying laser ultrasound tomography for profilometry of solids. The proposed approach provides high spatial resolution and efficiency, as well as profilometry of contaminated objects or objects submerged in liquids. The algorithms for the construction of tomograms and recognition of the profiles of studied objects using the parallel programming technology NDIVIA CUDA are proposed. A prototype of the real-time laser ultrasound profilometer was used to obtain the profiles of solid surfaces of revolution. The proposed method allows the real-time determination of the surface position for cylindrical objects with an approximation accuracy of up to 16 μm.
Implementation and Validation of 3-D Ice Accretion Measurement Methodology
NASA Technical Reports Server (NTRS)
Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd
2014-01-01
A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.
Study on Octahedral Spherical Hohlraum
NASA Astrophysics Data System (ADS)
Lan, Ke; Liu, Jie; Huo, Wenyi; Li, Zhichao; Yang, Dong; Li, Sanwei; Ren, Guoli; Chen, Yaohua; Jiang, Shaoen; He, Xian-Tu; Zhang, Weiyan
2015-11-01
In this talk, we report our recent study on octahedral spherical hohlraum which has six laser entrance holes (LEHs). First, our study shows that the octahedral hohlraums have robust high symmetry during the capsule implosion at hohlraum-to- capsule radius ratio larger than 3.7 and have potential superiority on low backscatter without supplementary technology. Second, we study the laser arrangement and constraints of the octahedral hohlraums and give their laser arrangement design for ignition facility. Third, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. Fourth, we study the sensitivity of capsule symmetry inside the octahedral hohlraums to laser power balance, pointing accuracy, deviations from the optimal position and target fabrication accuracy, and compare the results with that of tradiational cylinders and rugby hohlraums. Finally, we present our recent experimental studies on the octahedral hohlraums on SGIII prototype laser facility.
Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators
NASA Astrophysics Data System (ADS)
Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.
2017-10-01
Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.
Adaptive Optics Imaging in Laser Pointer Maculopathy.
Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M
2016-08-01
The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.
Changing profile of excimer laser coronary angioplasty: refinements in catheters
NASA Astrophysics Data System (ADS)
Bittl, John A.
1994-07-01
During more than five years of investigation with excimer laser angioplasty, several changes have been made in patient selection and laser catheters. It is unclear, however, whether these changes have improved the outcome of excimer laser angioplasty. A total of 2041 patients underwent treatment with excimer laser coronary angioplasty for 2324 lesions with clinical success in 89%, ischemic complications in 7.5%, and vessel perforation in 2.1%. When the entire 5-year period of investigation was divided into four discrete phases, as defined by the successive release of improved laser catheters (prototype, flexible, extremely flexible, and eccentric), clinical success was seen to improve from 86% to 95% (p<0.001) despite the increased incidence of advanced age (pequals0.01) and unstable angina (p<0.001). Multivariable analysis identified improved laser catheters, saphenous vein graft lesions, and unclarified stenoses as predictors of favorable outcome. Operator experience was associated with decreased complications. Reduced catheter size relative to vessel size was associated with decreased risk of vessel perforation. Thus, refinements in patient selection and in laser technique have been associated with enhanced safety and efficacy of excimer laser angioplasty.
Study methods for disinfection water for injection
NASA Astrophysics Data System (ADS)
Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Polyakov, Vladimir; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey
2016-04-01
Experimental results presented in this study tends to explore viruses in the water for their further decontamination under the influence of laser radiation (λ=220-390 nm). Conducted a series of experiments to study the dependence of water quality from the effects of laser radiation. Correlation between degree of survival of viruses and power density. The results showed that all the analyzed samples of water is clearing from bacteria to 98%. Preliminary tests of the prototype laboratory system UFOVI has opened up new opportunities for water sterilizing.
Optimization of Synthetic Jet Actuators
2003-01-01
Gallas et al.8 have experimentally validated the lumped element model for two different prototypical synthetic jet actuators using phase-locked Laser ...DNS of Microjets for Turbulent Boundary Layer Control,” AIAA paper 2001-1013, 2001. 8 7. Cattafesta, L., Garg, S., and Shukla, D
Effect of the CO2 laser (9.6μm) on the dental pulp in humans
NASA Astrophysics Data System (ADS)
Wigdor, Harvey A.; Walsh, Joseph T., Jr.; Mostafi, Reza
2000-03-01
There has been great interest in the potential use of a laser to replace the dental handpiece (drill). Ideally a laser emitting radiation that is absorbed strongly by both the water and hydroxyapatite in teeth, would be a more efficient laser. Previous investigators showed that the 9.3 and 9.6 micron wavelength bands of the CO2 laser contain hydroxyapatite absorption peaks. For this study, human patients who were to have teeth removed for either orthodontic or periodontal reasons were used. A total of 16 teeth were irradiated. The number of teeth treated per patient varied from 1 - 4. The laser used was a prototype CO2 laser (ESC Medical Systems, Yokneam, Israel). The CO2 laser emits 50 mJ 60 microsecond-long pulses of 9.6 micrometer radiation in a beam focused to a 300 micrometer diameter (i/e2) spot. The pulps in both the laser and handpiece prepared holes appeared similar and had no apparent inflammation or vascular changes. It appears from this small sample of laser treated human teeth that this laser has an equal effect to the dental pulpal tissue when compared to the dental handpiece.
Optical memory development. Volume 1: prototype memory system
NASA Technical Reports Server (NTRS)
Cosentino, L. S.; Mezrich, R. S.; Nagle, E. M.; Stewart, W. C.; Wendt, F. S.
1972-01-01
The design, development, and implementation of a prototype, partially populated, million bit read-write holographic memory system using state-of-the-art components are described. The system employs an argon ion laser, acoustooptic beam deflectors, a holographic beam splitter (hololens), a nematic liquid crystal page composer, a photoconductor-thermoplastic erasable storage medium, a silicon P-I-N photodiode array, with lenses and electronics of both conventional and custom design. Operation of the prototype memory system was successfully demonstrated. Careful attention is given to the analysis from which the design criteria were developed. Specifications for the major components are listed, along with the details of their construction and performance. The primary conclusion resulting from this program is that the basic principles of read-write holographic memory system are well understood and are reducible to practice.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Experiments on PIM in Support of the Development of IVA Technology for Radiography at AWE
NASA Astrophysics Data System (ADS)
Clough, Stephen G.; Thomas, Kenneth J.; Williamson, Mark C.; Phillips, Martin J.; Smith, Ian D.; Bailey, Vernon L.; Kishi, Hiroshi J.; Maenchen, John E.; Johnson, David L.
2002-12-01
The PIM machine has been designed and constructed at AWE as part of a program to investigate IVA technology for radiographic applications. PIM, as originally constructed, was a prospective single module of a 14 MV, 100 kA, ten module machine. The design of such a machine is a primary goal of the program as several are required to provide multi-axis radiography in a new Hydrodynamics Research Facility (HRF). Another goal is to design lower voltage machines (ranging from 1 to 5 MV) utilizing PIM style components. The original PIM machine consisted of a single inductive cavity pulsed by a 10 ohm water dielectric Blumlein pulse forming line (PFL) charged by a Marx generator. These components successfully achieved their design voltages and data on the prepulse was obtained showing it to be worse than expected. This information provided a basis for design work on the 14 MV HRF IVA, carried out by Titan-PSD, resulting in a proposal for a prepulse switch, a prototype of which should be installed on PIM by the end of this year. The original single, coaxial switch used to initiate the Blumlein has been replaced by a prototype laser triggered switching arrangement, also designed by Titan-PSD, which it was desired to test prior to its eventual use in the HRF. Despite problems with the laser, which will necessitate further experiments, it was determined that laser triggering with low jitter was occurring. A split oil co-ax feed has now been used to install a second cavity, in parallel with the first, on the PIM Blumlein. This two cavity configuration provides a prototype for future radiographic machines operating at up to 3 MV and a test facility for diode research.
Direct aperture optimization using an inverse form of back-projection.
Zhu, Xiaofeng; Cullip, Timothy; Tracton, Gregg; Tang, Xiaoli; Lian, Jun; Dooley, John; Chang, Sha X
2014-03-06
Direct aperture optimization (DAO) has been used to produce high dosimetric quality intensity-modulated radiotherapy (IMRT) treatment plans with fast treatment delivery by directly modeling the multileaf collimator segment shapes and weights. To improve plan quality and reduce treatment time for our in-house treatment planning system, we implemented a new DAO approach without using a global objective function (GFO). An index concept is introduced as an inverse form of back-projection used in the CT multiplicative algebraic reconstruction technique (MART). The index, introduced for IMRT optimization in this work, is analogous to the multiplicand in MART. The index is defined as the ratio of the optima over the current. It is assigned to each voxel and beamlet to optimize the fluence map. The indices for beamlets and segments are used to optimize multileaf collimator (MLC) segment shapes and segment weights, respectively. Preliminary data show that without sacrificing dosimetric quality, the implementation of the DAO reduced average IMRT treatment time from 13 min to 8 min for the prostate, and from 15 min to 9 min for the head and neck using our in-house treatment planning system PlanUNC. The DAO approach has also shown promise in optimizing rotational IMRT with burst mode in a head and neck test case.
Finite elements numerical codes as primary tool to improve beam optics in NIO1
NASA Astrophysics Data System (ADS)
Baltador, C.; Cavenago, M.; Veltri, P.; Serianni, G.
2017-08-01
The RF negative ion source NIO1, built at Consorzio RFX in Padua (Italy), is aimed to investigate general issues on ion source physics in view of the full-size ITER injector MITICA as well as DEMO relevant solutions, like energy recovery and alternative neutralization systems, crucial for neutral beam injectors in future fusion experiments. NIO1 has been designed to produce 9 H-beamlets (in a 3x3 pattern) of 15mA each and 60keV, using a three electrodes system downstream the plasma source. At the moment the source is at its early operational stage and only operation at low power and low beam energy is possible. In particular, NIO1 presents a too strong set of SmCo co-extraction electron suppression magnets (CESM) in the extraction grid (EG) that will be replaced by a weaker set of Ferrite magnets. A completely new set of magnets will be also designed and mounted on the new EG that will be installed next year, replacing the present one. In this paper, the finite element code OPERA 3D is used to investigate the effects of the three sets of magnets on beamlet optics. A comparison of numerical results with measurements will be provided where possible.
Laser-based firing systems for prompt initiation of secondary explosives
NASA Technical Reports Server (NTRS)
Meeks, Kent D.; Setchell, Robert E.
1993-01-01
Motivated by issues of weapon safety and security, laser based firing systems for promptly initiating secondary explosives have been under active development at Sandia National Laboratories for more than four years. Such a firing system consists of miniaturized, Q-switched, solid-state laser, optical detonators, optical safety switches, and elements for splitting, coupling, and transmitting the laser output. Potential system applications pose significant challenges in terms of server mechanical and thermal environments and packaging constraints, while requiring clear demonstration of safety enhancements. The Direct Optical Initiation (DOI) Program at Sandia is addressing these challenges through progress development phases during which the design, fabrication, and testing of prototype hardware is aimed at more difficult application requirements. A brief history of the development program, and a summary of current and planned activities, will be presented.
Advanced injection seeder for various applications: form LIDARs to supercontinuum sources
NASA Astrophysics Data System (ADS)
Grzes, Pawel
2017-12-01
The paper describes an injection seeder driver (prototype) for a directly modulated semiconductor laser diode. The device provides adjustable pulse duration and repetition frequency to shape an output signal. A temperature controller stabilizes a laser diode spectrum. Additionally, to avoid a back oscillation, redundant power supply holds a generation until next stages shut down. Low EMI design and ESD protection guarantee stable operation even in a noisy environment. The controller is connected to the PC via USB and parameters of the pulse are digitally controlled through a graphical interface. The injection seeder controller can be used with a majority of commercially available laser diodes. In the experimental setup a telecommunication DFB laser with 4 GHz bandwidth was used. It allows achieving subnanosecond pulses generated at the repetition rate ranging from 1 kHz to 50 MHz. The developed injection seeder controller with a proper laser diode can be used in many scientific, industrial and medical applications.
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A; Armstrong, P; Ault, E
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontiummore » fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).« less
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...
2017-04-19
Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J
2017-05-01
The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.
Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension.
Alexander, Vinay V; Shi, Zhennan; Iftekher, Fariha; Welsh, Michael J; Gurm, Hitinder S; Rising, Gail; Yanovich, Amber; Walacavage, Kim; Islam, Mohammed N
2014-11-01
Renal denervation has recently become of great interest as a potential treatment for resistant hypertension. Denervation techniques using radio frequency (RF) or ultrasound energy sources have already been explored in literature. In this study, we investigate the use of lasers as a potential energy source for renal denervation. In vitro studies are performed in porcine/ovine renal arteries with focused laser beams at 980 nm, 1210 nm, and 1700 nm to study the ability to damage renal nerves without causing injury to non-target tissue structures like the endothelium. Then, a 980 nm laser catheter prototype is built and used to demonstrate in vivo renal denervation in ovine renal arteries. This study utilizes fiber coupled infrared lasers at 980 nm, 1210 nm, and 1700 nm. In vitro laser denervation studies at 980 nm are performed in both porcine and ovine renal arteries to study the ability of focused laser beams to damage renal nerves without injuring the endothelium. In vitro studies using lasers close to the lipid absorption lines at 1210 nm and 1700 nm are also performed in porcine renal arteries to study the possibility of selectively damaging the renal nerves by targeting the lipid myelin sheaths surrounding the nerves. Then, a laser catheter prototype is designed and built for in vivo renal denervation in ovine renal arteries using the 980 nm laser (powers ranging from 2 to 4 W, 5 seconds per exposure). Histochemical evaluations of the frozen sections are performed using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Histochemical analysis of in vitro laser treatments at 980 nm in porcine and ovine renal arteries show clear evidence of laser-induced renal nerve damage without injury to the endothelium and part of the media. No evidence of selective nerve damage is observed using the 1210 nm and 1700 nm lasers with the current treatment parameters. Histochemical analysis of in vivo laser treatments in ovine renal arteries using a focused 980 nm laser show clear evidence of renal nerve damage with depths of damage extending > 1.5 mm from the artery wall. Sections with laser-induced damage to the media/adventitia at depths of > 1 mm without injury to the endothelium are also observed. We demonstrate the use of focused lasers as an attractive energy source for causing renal nerve damage without injury to the artery wall and thus, may have potential therapeutic applications for conditions such as resistant hypertension, where renal denervation has been shown to be a promising form of treatment. © 2014 Wiley Periodicals, Inc.
Hengsbach, Stefan; Lantada, Andrés Díaz
2014-08-01
The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.
NASA Astrophysics Data System (ADS)
Ardanuy, Antoni; Comerón, Adolfo
2018-04-01
We analyze the practical limits of a lidar system based on the use of a laser diode, random binary continuous wave power modulation, and an avalanche photodiode (APD)-based photereceiver, combined with the control and computing power of the digital signal processors (DSP) currently available. The target is to design a compact portable lidar system made all in semiconductor technology, with a low-power demand and an easy configuration of the system, allowing change in some of its features through software. Unlike many prior works, we emphasize the use of APDs instead of photomultiplier tubes to detect the return signal and the application of the system to measure not only hard targets, but also medium-range aerosols and clouds. We have developed an experimental prototype to evaluate the behavior of the system under different environmental conditions. Experimental results provided by the prototype are presented and discussed.
The effect of cutting conditions on power inputs when machining
NASA Astrophysics Data System (ADS)
Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.
2016-08-01
Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.
Polyplanar optical display electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, L.; Biscardi, C.
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.« less
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, L.
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.« less
NASA Astrophysics Data System (ADS)
Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao
2004-05-01
The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.
Progress on laser technology for proposed space-based sodium lidar
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Li, Steven X.; Bai, Yingxin; Numata, Kenji; Chen, Jeffrey R.; Fahey, Molly E.; Micalizzi, Frankie; Konoplev, Oleg A.; Janches, Diego; Gardner, Chester S.; Allan, Graham R.
2018-02-01
We propose a nadir-pointing space-based Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS). The science instrument goal is temperature and vertical wind measurements of the Earth Mesosphere Lower Thermosphere (MLT) 75-115 km region using atomic sodium as a tracer. Our instrument concept uses a high-energy laser transmitter at 589 nm and highly sensitive photon counting detectors that permit range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are pursuing high power laser architectures that permit limited day time sodium lidar observations with the help of a narrow bandpass etalon filter. We discuss technology, prototypes, risks and trades for two 589 nm wavelength laser architectures: 1) Raman laser 2) Sum Frequency Generation. Laser-induced saturation of atomic sodium in the MLT region affects both sodium density and temperature measurements. We discuss the saturation impact on the laser parameters, laser architecture and instrument trades. Off-nadir pointing from the ISS causes Doppler shifts that effect the sodium spectroscopy. We discuss laser wavelength locking, tuning and spectroscopic-line sampling strategy.
Conduction cooled compact laser for chemcam instrument
NASA Astrophysics Data System (ADS)
Faure, B.; Saccoccio, M.; Maurice, S.; Durand, E.; Derycke, C.
2017-11-01
A new conduction cooled compact laser for Laser Induced Breakdown Spectroscopy (LIBS) on Mars is presented. The laser provides pulses with energy higher than 30mJ at 1μm of wavelength with a good spatial quality. Three development prototypes of this laser have been built and functional and environmental tests have been done. Then, the Qualification and Flight models have been developed and delivered. A spare model is now developed. This laser will be mounted on the ChemCam Instrument of the NASA mission MSL 2009. ChemCam Instrument is developed in collaboration between France (CESR and CNES) and USA (LANL). The goal of this Instrument is to study the chemical composition of Martian rocks. A laser source (subject of this presentation) emits a pulse which is focused by a telescope. It creates a luminous plasma on the rock; the light of this plasma is then analysed by three spectrometers to obtain information on the composition of the rock. The laser source is developed by the French company Thales Laser, with a technical support from CNES and CESR. This development is funded by CNES. The laser is compact, designed to work in burst mode. It doesn't require any active cooling.
Multi-access laser communications terminal
NASA Technical Reports Server (NTRS)
1992-01-01
The Optical Multi-Access (OMA) Terminal is capable of establishing up to six simultaneous high-data-rate communication links between low-Earth-orbit satellites and a host satellite at synchronous orbit with only one 16-inch-diameter antenna on the synchronous satellite. The advantage over equivalent RF systems in space weight, power, and swept volume is great when applied to NASA satellite communications networks. A photograph of the 3-channel prototype constructed under the present contract to demonstrate the feasibility of the concept is presented. The telescope has a 10-inch clear aperture and a 22 deg full field of view. It consists of 4 refractive elements to achieve a telecentric focus, i.e., the focused beam is normal to the focal plane at all field angles. This feature permits image pick-up optics in the focal plane to track satellite images without tilting their optic axes to accommodate field angle. The geometry of the imager-pick-up concept and the coordinate system of the swinging arm and disk mechanism for image pick-up are shown. Optics in the arm relay the telescope focus to a communications and tracking receiver and introduce the transmitted beacon beam on a path collinear with the receive path. The electronic circuits for the communications and tracking receivers are contained on the arm and disk assemblies and relay signals to an associated PC-based operator's console for control of the arm and disk motor drive through a flexible cable which permits +/- 240 deg travel for each arm and disk assembly. Power supplies and laser transmitters are mounted in the cradle for the telescope. A single-mode fiber in the cable is used to carry the laser transmitter signal to the arm optics. The promise of the optical multi-access terminal towards which the prototype effort worked is shown. The emphasis in the prototype development was the demonstration of the unique aspect of the concept, and where possible, cost avoidance compromises were implemented in areas already proven on other programs. The design details are described in section 2, the prototype test results in section 3, additional development required in section 4, and conclusions in section 5.
Uklejewski, Ryszard; Winiecki, Mariusz; Rogala, Piotr; Patalas, Adam
2017-01-01
The multispiked connecting scaffold (MSC-Scaffold) prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA) endoprostheses. The biomimetic MSC-Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM). The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM-manufactured MSC-Scaffold prototype, compensating the reduced ability-due to the SLM technological limitations-to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM-manufactured prototype of total hip resurfacing arthroplasty (THRA) endoprosthesis with the MSC-Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM-manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural-geometric functionalization, allowing the MSC-Scaffold adequate redesigning and manufacturing in additive SLM technology.
Rogala, Piotr; Patalas, Adam
2017-01-01
The multispiked connecting scaffold (MSC-Scaffold) prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA) endoprostheses. The biomimetic MSC‐Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM). The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM‐manufactured MSC‐Scaffold prototype, compensating the reduced ability—due to the SLM technological limitations—to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM‐manufactured prototype of total hip resurfacing arthroplasty (THRA) endoprosthesis with the MSC‐Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM‐manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural‐geometric functionalization, allowing the MSC‐Scaffold adequate redesigning and manufacturing in additive SLM technology. PMID:28785159
Spring Internship 2018 at the Prototype Development Lab: A place of Dreamers and Makers
NASA Technical Reports Server (NTRS)
Rueda, Juan F.
2018-01-01
This paper covers the role of the design process and the methodology of creating a trophy during my Spring 2018 Internship at the Prototype Development Laboratory at the Kennedy Space Center. In the course of this project I used many new machines and materials while trying to deliver a professional product for a competition that invites college student teams from across the country. The machines covered in this paper include the wood chop saw, CNC mill, water jet, laser engraver, and the 3D printer. This paper also serves as an assembly guide for the trophy.
Endomicroscopy imaging of epithelial structures using tissue autofluorescence
NASA Astrophysics Data System (ADS)
Lin, Bevin; Urayama, Shiro; Saroufeem, Ramez M. G.; Matthews, Dennis L.; Demos, Stavros G.
2011-04-01
We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems--an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology.
NASA Astrophysics Data System (ADS)
Naessens, Kris; Van Hove, An; Coosemans, Thierry; Verstuyft, Steven; Ottevaere, Heidi; Vanwassenhove, Luc; Van Daele, Peter; Baets, Roel G.
2000-06-01
Laser ablation is extremely well suited for rapid prototyping and proves to be a versatile technique delivering high accuracy dimensioning and repeatability of features in a wide diversity of materials. In this paper, we present laser ablation as a fabrication method for micro machining in of arrays consisting of precisely dimensioned U-grooves in dedicated polycarbonate and polymethylmetacrylate plates. The dependency of the performance on various parameters is discussed. The fabricated plates are used to hold optical fibers by means of a UV-curable adhesive. Stacking and gluing of the plates allows the assembly of a 2D connector of plastic optical fibers for short distance optical interconnects.
European X-Ray Free Electron Laser (EXFEL): local implications
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2013-10-01
European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.
Multiphoton lithography using a high-repetition rate microchip laser.
Ritschdorff, Eric T; Shear, Jason B
2010-10-15
Multiphoton lithography (MPL) provides a means to create prototype, three-dimensional (3D) materials for numerous applications in analysis and cell biology. A major impediment to the broad adoption of MPL in research laboratories is its reliance on high peak-power light sources, a requirement that typically has been met using expensive femtosecond titanium:sapphire lasers. Development of affordable microchip laser sources has the potential to substantially extend the reach of MPL, but previous lasers have provided relatively low pulse repetition rates (low kilohertz range), thereby limiting the rate at which microforms could be produced using this direct-write approach. In this report, we examine the MPL capabilities of a new, high-repetition-rate (36.6 kHz) microchip Nd:YAG laser. We show that this laser enables an approximate 4-fold decrease in fabrication times for protein-based microforms relative to the existing state-of-the-art microchip source and demonstrate its utility for creating complex 3D microarchitectures.
Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application
NASA Astrophysics Data System (ADS)
Liégeois, Flavien; Vercambre, Clément; Hernandez, Yves; Salhi, Mohamed; Giannone, Domenico
2006-09-01
Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.
Ren, Kuan; Liu, Shenye; Du, Huabing; Hou, Lifei; Jing, Longfei; Zhao, Yang; Yang, Zhiwen; Wei, Minxi; Deng, Keli; Yao, Li; Yang, Guohong; Li, Sanwei; Lan, Ke; Liu, Jie; Zhu, Xiaoli; Ding, Yongkun; Yi, Lin
2015-10-01
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Kuan; Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Liu, Shenye, E-mail: lsye1029@163.com
2015-10-15
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). Themore » different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.« less
Ciocca, L; Fantini, M; De Crescenzio, F; Corinaldesi, G; Scotti, R
2011-11-01
This study describes a protocol for the direct manufacturing of a customized titanium mesh using CAD-CAM procedures and rapid prototyping to augment maxillary bone and minimize surgery when severe atrophy or post-oncological deformities are present. Titanium mesh and particulate autogenous plus bovine demineralised bone were planned for patient rehabilitation. Bone augmentation planning was performed using the pre-op CT data set in relation to the prosthetic demands, minimizing the bone volume to augment at the minimum necessary for implants. The containment mesh design was used to prototype the 0.6 mm thickness customized titanium mesh, by direct metal laser sintering. The levels of regenerated bone were calculated using the post-op CT data set, through comparison with the pre-op CT data set. The mean vertical height difference of the crestal bone was 2.57 mm, while the mean buccal-palatal dimension of thickness difference was 3.41 mm. All planned implants were positioned after an 8 month healing period using two-step implant surgery, and finally restored with a partial fixed prosthesis. We present a viable and reproducible method to determine the correct bone augmentation prior to implant placement and CAD-CAM to produce a customized direct laser-sintered titanium mesh that can be used for bone regeneration.
Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna
2015-01-01
This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems.
Tests of a two-color interferometer and polarimeter for ITER density measurements
NASA Astrophysics Data System (ADS)
Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.
2017-12-01
A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.
Allely, Rebekah R; Van-Buendia, Lan B; Jeng, James C; White, Patricia; Wu, Jingshu; Niszczak, Jonathan; Jordan, Marion H
2008-01-01
A paradigm shift in management of postburn facial scarring is lurking "just beneath the waves" with the widespread availability of two recent technologies: precise three-dimensional scanning/digitizing of complex surfaces and computer-controlled rapid prototyping three-dimensional "printers". Laser Doppler imaging may be the sensible method to track the scar hyperemia that should form the basis of assessing progress and directing incremental changes in the digitized topographical face mask "prescription". The purpose of this study was to establish feasibility of detecting perfusion through transparent face masks using the Laser Doppler Imaging scanner. Laser Doppler images of perfusion were obtained at multiple facial regions on five uninjured staff members. Images were obtained without a mask, followed by images with a loose fitting mask with and without a silicone liner, and then with a tight fitting mask with and without a silicone liner. Right and left oblique images, in addition to the frontal images, were used to overcome unobtainable measurements at the extremes of face mask curvature. General linear model, mixed model, and t tests were used for data analysis. Three hundred seventy-five measurements were used for analysis, with a mean perfusion unit of 299 and pixel validity of 97%. The effect of face mask pressure with and without the silicone liner was readily quantified with significant changes in mean cutaneous blood flow (P < .5). High valid pixel rate laser Doppler imager flow data can be obtained through transparent face masks. Perfusion decreases with the application of pressure and with silicone. Every participant measured differently in perfusion units; however, consistent perfusion patterns in the face were observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, D.L.; Rosen, M.D.
One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widelymore » known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.« less
Laser micromachining of cadmium tungstate scintillator for high energy X-ray imaging
NASA Astrophysics Data System (ADS)
Richards, Sion Andreas
Pulsed laser ablation has been investigated as a method for the creation of thick segmented scintillator arrays for high-energy X-ray radiography. Thick scintillators are needed to improve the X-ray absorption at high energies, while segmentation is required for spatial resolution. Monte-Carlo simulations predicted that reflections at the inter-segment walls were the greatest source of loss of scintillation photons. As a result of this, fine pitched arrays would be inefficient as the number of reflections would be significantly higher than in large pitch arrays. Nanosecond and femtosecond pulsed laser ablation was investigated as a method to segment cadmium tungstate (CdWO_4). The effect of laser parameters on the ablation mechanisms, laser induced material changes and debris produced were investigated using optical and electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy for both types of lasers. It was determined that nanosecond ablation was unsuitable due to the large amount of cracking and a heat affected zone created during the ablation process. Femtosecond pulsed laser ablation was found to induce less damage. The optimised laser parameters for a 1028 nm laser was found to be a pulse energy of 54 μJ corresponding to a fluence of 5.3 J cm. -2 a pulse duration of 190 fs, a repetition rate of 78.3 kHz and a laser scan speed of 707 mm s. -1 achieving a normalised pulse overlap of 0.8. A serpentine scan pattern was found to minimise damage caused by anisotropic thermal expansion. Femtosecond pulsed ablation was also found to create a layer of tungsten and cadmium sub-oxides on the surface of the crystals. The CdWO_4 could be cleaned by immersing the CdWO_4 in ammonium hydroxide at 45°C for 15 minutes. However, XPS indicated that the ammonium hydroxide formed a thin layer of CdCO_3 and Cd(OH)_2 on the surface. Prototype arrays were shown to be able to resolve features as small as 0.5 mm using keV energy X-rays. The most efficient prototype showed low detective quantum efficiency of 0.08±0.01 at 0 lp/mm using a tube voltage of 160 kVp.
Prototype Test Results for the Single Photon Detection SLR2000 Satellite Laser Ranging System
NASA Technical Reports Server (NTRS)
Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Cheek, Jack W.; Dunn, Peter J.; Patterson, Don; Donovan, Howard
2004-01-01
NASA's aging Satellite Laser Ranging (SLR) network is scheduled to be replaced over the next few years with a fully automated single photon detection system. A prototype of this new system, called SLR2000, is currently undergoing field trials at the Goddard Space Flight Center in Greenbelt, Maryland to evaluate photon counting techniques and determine system hardware, software, and control algorithm performance levels and limitations. Newly developed diode pumped microchip lasers and quadrant microchannel plate-based photomultiplier tubes have enabled the development of this high repetition rate single photon detection SLR system. The SLR2000 receiver threshold is set at the single photoelectron (pe) level but tracks satellites with an average signal level typically much less than 1 pe. The 2 kHz laser fire rate aids in satellite acquisition and tracking and will enable closed loop tracking by accumulating single photon count statistics in a quadrant detector and using this information to correct for pointing errors. Laser transmitter beamwidths of 10 arcseconds (FWHM) or less are currently being used to maintain an adequate signal level for tracking while the receiver field of view (FOV) has been opened to 40 arcseconds to accommodate point ahead/look behind angular offsets. In the near future, the laser transmitter point ahead will be controlled by a pair of Risley prisms. This will allow the telescope to point behind and enable closure of the receiver FOV to roughly match the transmitter beam divergence. Bandpass filters (BPF) are removed for night tracking operations while 0.2 nm or 1 nm filters are used during daylight operation. Both day and night laser tracking of Low Earth Orbit (LEO) satellites has been achieved with a laser transmitter energy of only 65 microjoules per pulse. Satellite tracking is presently limited to LEO satellites until the brassboard laser transmitter can be upgraded or replaced. Simultaneous tracks have also been observed with NASA s SLR standard, MOBLAS 7, for the purposes of data comparison and identification of biases. Work continues to optimize the receive optics; upgrade or replace the laser transmitter; calibrate the quadrant detector, the point ahead Risley prisms, and event timer verniers; and test normal point generation with SLR2000 data. This paper will report on the satellite tracking results to date, issues yet to be resolved, and future plans for the SLR2000 system.
Electronic Document Delivery: OCLC's Prototype System.
ERIC Educational Resources Information Center
Hickey, Thomas B.; Calabrese, Andrew M.
1986-01-01
Describes development of system for retrieval of documents from magnetic storage that uses stored font definition codes to control an inexpensive laser printer in the production of copies that closely resemble original document. Trends in information equipment and printing industries that will govern future application of this technology are…
RGB imaging system for monitoring of skin vascular malformation's laser therapy
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Kuzmina, Ilona; Berzina, Anna; Spigulis, Janis
2012-06-01
A prototype RGB imaging system for mapping of skin chromophores consists of a commercial RGB CMOS sensor, RGB LEDs ring-light illuminator and orthogonally orientated polarizers for reducing specular reflectance. The system was used for monitoring of vascular malformations (hemagiomas and telangiectasias) therapy.
Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A
2001-10-01
Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations <40 nmol/L, no differentiation from the background was possible. The transitional area between the contrast-free edge of the phantom and the central contrast-containing part appeared in the profiles as a steep increase with a width of 4.2 +/- 1.8 mm. The experimental tumors were detectable in nonenhanced images as well as contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption profiles, a 44.1% +/- 11.3% greater absorption increase was seen in tumor tissue compared with normal tissue. The laser wavelength lambda1 of the prototype laser mammography device was not situated at maximum absorption of the contrast agent NIR96010 but on the descending shoulder of the absorption spectrum. This implies a 20% signal loss for contrast detection. Despite the nonideal measurement conditions, concentrations as low as 40 nmol/L were detectable in vitro. In vivo, all tumors were detectable in color-coded nonenhanced scans as well as in contrast-enhanced scans, with better delineation after contrast administration.
Coherent Transition Radiation Generated from Transverse Electron Density Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.; Tyukhtin, A. V.
Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper, we present a study of CTR properties produced from simultaneous electron transverse and longitudinal density modulation. We demonstrate via numerical simulations a simple technique to generate THz-scale frequencies from mm-scale transversely separated electron beamlets formed into a ps-scale bunch train. The results and a potential experimental setup are discussed.
Fabrication and testing of a prototype longwall face alignment system
NASA Technical Reports Server (NTRS)
1981-01-01
Fabrication and testing of a laser system for instantaneous location of a longwall shearer are summarized. Calculations and measurements for the design of a laser based system for monitoring and controlling the trajectory of the shearing machine as it progresses along the longwall face are reported. An early version was fabricated by employing simple mechanical contrivances and a standard miners lamp. It is concluded that the advantages of the early version is the ability to test the longwall face without approval from the Mine Safety and Health Administration.
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey; Larionova, Olga; Ulianova, Onega; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Filonova, Nadezhda; Subbotina, Irina; Kalduzova, Irina; Utz, Sergey; Moiseeva, Yulia; Feodorova, Valentina
2018-04-01
Method of speckle-microscopy has been adapted to the problem of detection of Chlamydia trachomatis microbial cells in clinical samples. Prototype of laser scanning speckle-microscope has been designed. Spatial resolution and output characteristics of this microscope have been analyzed for the case of scanning of C. trachomatis bacteria inclusions - Elementary Bodies (EBs) inside the human cells, fixed on the glass. It has been demonstrated, that presence of C. trachomatis microbial cells in the sample can be easily detected using speckle microscopy.
Multi-point laser coherent detection system and its application on vibration measurement
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, C.; Xu, Y. J.; Liu, H.; Yan, K.; Guo, M.
2015-05-01
Laser Doppler vibrometry (LDV) is a well-known interferometric technique to measure the motions, vibrations and mode shapes of machine components and structures. The drawback of commercial LDV is that it can only offer a pointwise measurement. In order to build up a vibrometric image, a scanning device is normally adopted to scan the laser point in two spatial axes. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new multiple-point laser coherent detection system based on spatial-encoding technology and fiber configuration. A simultaneous vibration measurement on multiple points is realized using a single photodetector. A prototype16-point laser coherent detection system is built and it is applied to measure the vibration of various objects, such as body of a car or a motorcycle when engine is on and under shock tests. The results show the prospect of multi-point laser coherent detection system in the area of nondestructive test and precise dynamic measurement.
Direct retrograde cholangioscopy with a new prototype double-bending cholangioscope.
Beyna, Torsten; Farnik, Harald; Sarrazin, Christoph; Gerges, Christian; Neuhaus, Horst; Albert, Jörg G
2016-10-01
Direct retrograde cholangioscopy (DRC) enables high quality video imaging of the bile ducts and allows intraductal treatment with optical control. We evaluated the feasibility, success, and complications of a new third-generation prototype cholangioscope. All consecutive patients from two tertiary endoscopy centers who had undergone DRC with the prototype were included. Indications for DRC were: evaluation of indeterminate strictures, filling defects, and complex bile duct stones. Technical success was investigated in terms of indication and treatment performed. All adverse events were recorded. DRC with the prototype was performed in 74 patients. Therapeutic interventions included laser or electrohydraulic lithotripsy and stone removal, among others. The papilla was entered in 72/74 patients (97 %). The targeted bile duct segment was reached in 62 /74 patients (84 %), with an anchoring balloon catheter needed in 21/74 (28 %). Mean investigation time was 21 minutes (15 - 27 minutes) DRC using the prototype is feasible, safe, and attains access to the bile ducts in almost all patients, with less need of an anchoring balloon catheter compared with the standard technique and short investigation and fluoroscopy times. © Georg Thieme Verlag KG Stuttgart · New York.
Validation of Reverse-Engineered and Additive-Manufactured Microsurgical Instrument Prototype.
Singh, Ramandeep; Suri, Ashish; Anand, Sneh; Baby, Britty
2016-12-01
With advancements in imaging techniques, neurosurgical procedures are becoming highly precise and minimally invasive, thus demanding development of new ergonomically aesthetic instruments. Conventionally, neurosurgical instruments are manufactured using subtractive manufacturing methods. Such a process is complex, time-consuming, and impractical for prototype development and validation of new designs. Therefore, an alternative design process has been used utilizing blue light scanning, computer-aided designing, and additive manufacturing direct metal laser sintering (DMLS) for microsurgical instrument prototype development. Deviations of DMLS-fabricated instrument were studied by superimposing scan data of fabricated instrument with the computer-aided designing model. Content and concurrent validity of the fabricated prototypes was done by a group of 15 neurosurgeons by performing sciatic nerve anastomosis in small laboratory animals. Comparative scoring was obtained for the control and study instrument. T test was applied to the individual parameters and P values for force (P < .0001) and surface roughness (P < .01) were found to be statistically significant. These 2 parameters were further analyzed using objective measures. Results depicts that additive manufacturing by DMLS provides an effective method for prototype development. However, direct application of these additive-manufactured instruments in the operating room requires further validation. © The Author(s) 2016.
Moser, Harald; Pölz, Walter; Waclawek, Johannes Paul; Ofner, Johannes; Lendl, Bernhard
2017-01-01
The implementation of a sensitive and selective as well as industrial fit gas sensor prototype based on wavelength modulation spectroscopy with second harmonic detection (2f-WMS) employing an 8-μm continuous-wave distributed feedback quantum cascade laser (CW-DFB-QCL) for monitoring hydrogen sulfide (H 2 S) at sub-ppm levels is reported. Regarding the applicability for analytical and industrial process purposes aimed at petrochemical environments, a synthetic methane (CH 4 ) matrix of up to 1000 ppmv together with a varying H 2 S content was chosen as the model environment for the laboratory-based performance evaluation performed at TU Wien. A noise-equivalent absorption sensitivity (NEAS) for H 2 S targeting the absorption line at 1247.2 cm -1 was found to be 8.419 × 10 -10 cm -1 Hz -1/2 , and a limit of detection (LOD) of 150 ppbv H 2 S could be achieved. The sensor prototype was then deployed for on-site measurements at the petrochemical research hydrogenation platform of the industrial partner OMV AG. In order to meet the company's on-site safety regulations, the H 2 S sensor platform was installed in an industry rack and equipped with the required safety infrastructure for protected operation in hazardous and explosive environments. The work reports the suitability of the sensor prototype for simultaneous monitoring of H 2 S and CH 4 content in the process streams of a research hydrodesulfurization (HDS) unit. Concentration readings were obtained every 15 s and revealed process dynamics not observed previously.
CCD Detects Two Images In Quick Succession
NASA Technical Reports Server (NTRS)
Janesick, James R.; Collins, Andy
1996-01-01
Prototype special-purpose charge-coupled device (CCD) designed to detect two 1,024 x 1,024-pixel images in rapid succession. Readout performed slowly to minimize noise. CCD operated in synchronism with pulsed laser, stroboscope, or other pulsed source of light to form pairs of images of rapidly moving objects.
NASA Astrophysics Data System (ADS)
Wiesendanger, R.; Wurz, P.; Tulej, M.; Wacey, D.; Neubeck, A.; Grimaudo, V.; Riedo, A.; Moreno, P.; Cedeño-López, A.; Ivarsson, M.
2018-04-01
The University of Bern developed instrument prototypes that allow analysis of samples on Mars prior to bringing them back to Earth, allowing to maximize the scientific outcome of the returned samples. We will present the systems and first results.
Small scale adaptive optics experiment systems engineering
NASA Technical Reports Server (NTRS)
Boykin, William H.
1993-01-01
Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.
Structured illumination to spatially map chromatin motions.
Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre
2018-05-01
We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340 ± 30 nm, which simultaneously photoactivate a 7 × 7 matrix pattern of GFP-labeled histones, with spots 1.70 μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Wavelength-Agile External-Cavity Diode Laser for DWDM
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S.; Bomse, David S.
2006-01-01
A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.
NASA Astrophysics Data System (ADS)
Zamuruyev, Konstantin O.; Zrodnikov, Yuriy; Davis, Cristina E.
2017-01-01
Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µm minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µm. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µm in borosilicate glass), feature under etch ratio in isotropic etch (~1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility.
Study of pseudo noise CW diode laser for ranging applications
NASA Technical Reports Server (NTRS)
Lee, Hyo S.; Ramaswami, Ravi
1992-01-01
A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.
Implementation and validation of a CubeSat laser transmitter
NASA Astrophysics Data System (ADS)
Kingsbury, R. W.; Caplan, D. O.; Cahoy, K. L.
2016-03-01
The paper presents implementation and validation results for a CubeSat-scale laser transmitter. The master oscillator power amplifier (MOPA) design produces a 1550 nm, 200mW average power optical signal through the use of a directly modulated laser diode and a commercial fiber amplifier. The prototype design produces high-fidelity M-ary pulse position modulated (PPM) waveforms (M=8 to 128), targeting data rates > 10 Mbit/s while meeting a constraining 8W power allocation. We also present the implementation of an avalanche photodiode (APD) receiver with measured transmitter-to-receiver performance within 3 dB of theory. Via loopback, the compact receiver design can provide built-in self-test and calibration capabilities, and supports incremental on-orbit testing of the design.
Optimised design for a 1 kJ diode-pumped solid-state laser system
NASA Astrophysics Data System (ADS)
Mason, Paul D.; Ertel, Klaus; Banerjee, Saumyabrata; Phillips, P. Jonathan; Hernandez-Gomez, Cristina; Collier, John L.
2011-06-01
A conceptual design for a kJ-class diode-pumped solid-state laser (DPSSL) system based on cryogenic gas-cooled multislab ceramic Yb:YAG amplifier technology has been developed at the STFC as a building block towards a MJ-class source for inertial fusion energy (IFE) projects such as HiPER. In this paper, we present an overview of an amplifier design optimised for efficient generation of 1 kJ nanosecond pulses at 10 Hz repetition rate. In order to confirm the viability of this technology, a prototype version of this amplifier scaled to deliver 10 J at 10 Hz, DiPOLE, is under development at the Central Laser Facility. A progress update on the status of this system is also presented.
Development of Laser Based Remote Sensing System for Inner-Concrete Defects
NASA Astrophysics Data System (ADS)
Shimada, Yoshinori; Kotyaev, Oleg
Laser-based remote sensing using a vibration detection system has been developed using a photorefractive crystal to reduce the effect of concrete surface-roughness. An electric field was applied to the crystal and the reference beam was phase shifted to increase the detection efficiency (DE). The DE increased by factor of 8.5 times compared to that when no voltage and no phase shifting were applied. Vibration from concrete defects can be detected at a distance of 5 m from the system. A vibration-canceling system has also developed that appears to be promising for canceling vibrations between the laser system and the concrete. Finally, we have constructed a prototype system that can be transported in a small truck.
Optically powered remote gas monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubaniewicz, T.H. Jr.; Chilton, J.E.
1995-12-31
Many mines rely on toxic gas sensors to help maintain a safe and healthy work environment. This report describes a prototype monitoring system developed by the US Bureau of Mines (USBM) that uses light to power and communicate with several remote toxic gas sensors. The design is based on state-of-art optical-to-electrical power converters, solid-state diode lasers, and fiber optics. This design overcomes several problems associated with conventional wire-based systems by providing complete electrical isolation between the remote sensors and the central monitor. The prototype performed well during a 2-week field trial in the USBM Pittsburgh Research Center Safety Research Coalmore » Mine.« less
A Radio-Frequency-over-Fiber link for large-array radio astronomy applications
NASA Astrophysics Data System (ADS)
Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.
2013-10-01
A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.
Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field-Ionized Thruster
2011-12-01
30 Figure 13. Equipotential plot, Ez as a function of z and r, Jreq=300 kA/m2, space charge off... Equipotential plots, Ez as a function of z and r, Jreq=300 kA/m2, space charge on. Plots are taken at time intervals of 0.05 ns...on the accelerating grids; under-perveance results in crossover, overlap of neighboring beamlets, and impingement on downstream surfaces . Optimum
Leung, Ka-Ngo
2005-08-02
A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.
On-line Adaptive Radiation Treatment of Prostate Cancer
2009-01-01
12]. For intensity modulated radiation therapy (IMRT) plans , the beamlet weight can be re-optimized on a daily basis to mini- mize the dose to the OAR...Thongphiew D, Wang Z, Mathayomchan B, Chankong V, Yoo S, et al. On-line re-optimization of prostate IMRT plans for adaptive radiation therapy . Phys Med Biol...time. The treatment planning method for VMAT however is not mature. We are developing a robust VMAT treatment planning method which incorporates
Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitarin, G., E-mail: chitarin@igi.cnr.it; University of Padova, Dept. of Management and Engineering, Strad. S. Nicola 3, 36100 Vicenza; Agostinetti, P.
2015-04-08
The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids withinmore » tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids.« less
NASA Astrophysics Data System (ADS)
Nightingale, M. P. S.; Kugel, H.; Gee, S. J.; Price, M. N.
1999-01-01
Theoretical modeling of 1-2 MW positive hydrogen ion neutral injectors developed at Oak Ridge National Laboratory (ORNL) has suggested that the plasma grid temperature could rise by up to 180 °C at pulse lengths above 0.5 s, leading to a grid deformation on the order of 5 mm, with a consequent change in focal length (from 4 to 2 m) and beamlet focusing. One of these injectors (on loan from ORNL) was used to achieve record β values on the Small Tight Aspect Ratio Tokamak at Culham, and two more are to be used on the Mega-Ampere Spherical Tokamak (MAST) at pulse lengths of up to 5 s. Since the grid modeling has never been tested experimentally, a method for diagnosing changes in beam transport as a function of pulse length using light emitted by the beam is now under development at Culham to see if grid modifications are required for MAST. Initial experimental results, carried out using a 50 A 30 keV hydrogen beam, are presented (including comparison with thermocouple data using an EK98 graphite beam stop). These confirm that emission measurement should allow the accelerator focal length and beamlet divergence to be determined to accuracies of better than ±0.45 m and ±0.2°, respectively (compared to nominal values of 4 m and 1.2°).
Inertial Confinement Fusion Quarterly Report January-March 1999, Volume 9, Number 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atherton, J.
1999-03-31
This quarterly report covers the following topics: (1) Properties of and Manufacturing Methods for NIF Laser Glasses (J. H. Campbell)--The NIF amplifiers require 3380 Nd-doped laser glass slabs; continuous glass melting methods will be used for the first time to manufacture these slabs. The properties of the laser glasses are summarized and the novel continuous melting method is described. (2) Diffractive Optics for the NIF (J. A. Britten)--We have fabricated demonstration diffractive optics according to the NIF baseline design at full scale, via wet-chemical etching of patterns into fused silica. We have examined the effects of dip-coated sol-gel antireflection coatingsmore » on the performance of these optics, and have concluded that diffractive optics should remain uncoated to minimize laser-induced damage to downstream optics and to maximize environmental stability. We have also demonstrated the feasibility of combining all diffractive structures required by NIF, which vary over orders of magnitude in lateral and vertical scales, onto a single surface. (3) Producing KDP and DKDP Crystals for the NIF Laser (A. K. Burnham)--Rapid-growth KDP has overcome most of the hurdles for production of boules for NIF switch crystals and doublers, but some improvements in process reliability at the tripler's 3{omega} damage threshold are needed. The ability to meet KDP finishing specifications has been demonstrated, and the equipment for efficient NIF production is being built. (4) Engineering High-Damage-Threshold NIF Polarizers and Mirrors (C. J. Stolz)--High-fluence polarizer and mirror coatings for the NIF can be realized by engineering the coating process and design once the laser interaction with coating defects is understood. (5) Improved Antireflection Coatings for the NIF (P. K. Whitman)--We summarize our progress in developing antireflection coatings and applications processes for the NIF laser optics. We describe new materials and coating treatments to minimize the sensitivity of these porous sol-gel coatings to environmental humidity and organic contamination. (6) Developing Optics Finishing Technologies for the National Ignition Facility (T. G. Parham)--Fabrication of the 7500 meter-class lenses and flats for the NIF required extension of finishing technologies to meet cost and schedule targets. Developments at LLNL and our industrial partners are described for improved shaping, grinding, polishing, figuring, and metrology of large optics. (7) Laser-Damage Testing and Modeling Methods for Predicting the Performance of Large-Area NIF Optics (M. R. Kozlowski)--Laser damage to high-quality laser optics is limited by localized, defect-initiated processes. The damage performance of such materials is better described by statistical distributions than by discrete damage thresholds. The prediction of the damage performance of a Beamlet focus lens, based on new statistics-based damage data measurement and analysis techniques, is demonstrated. (8) Development of the NIF Target Chamber First Wall and Beam Dumps (A. K. Burnham)--NIF target designs and target chamber ablations are listed by a 1-nm/shot contamination rate of the final optics debris shield, as determined by transmittance and damage lifetime. This constraint forces a self-cleaning louvre design for the first wall and unconverted-light beam dumps. Nickel-free stainless steel is the cheapest and most practical material.« less
Prototype laser-diode-pumped solid state laser transmitters
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.
1989-01-01
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.
The evaluation of phasemeter prototype performance for the space gravitational waves detection.
Liu, He-Shan; Dong, Yu-Hui; Li, Yu-Qiong; Luo, Zi-Ren; Jin, Gang
2014-02-01
Heterodyne laser interferometry is considered as the most promising readout scheme for future space gravitational wave detection missions, in which the gravitational wave signals disguise as small phase variances within the heterodyne beat note. This makes the phasemeter, which extracts the phase information from the beat note, the key device to this system. In this paper, a prototype of phasemeter based on digital phase-locked loop technology is developed, and the major noise sources which may contribute to the noise spectra density are analyzed in detail. Two experiments are also carried out to evaluate the performance of the phasemeter prototype. The results show that the sensitivity is achieved 2π μrad/√Hz in the frequency range of 0.04 Hz-10 Hz. Due to the effect of thermal drift, the noise obviously increases with the frequencies down to 0.1 mHz.
The evaluation of phasemeter prototype performance for the space gravitational waves detection
NASA Astrophysics Data System (ADS)
Liu, He-Shan; Dong, Yu-Hui; Li, Yu-Qiong; Luo, Zi-Ren; Jin, Gang
2014-02-01
Heterodyne laser interferometry is considered as the most promising readout scheme for future space gravitational wave detection missions, in which the gravitational wave signals disguise as small phase variances within the heterodyne beat note. This makes the phasemeter, which extracts the phase information from the beat note, the key device to this system. In this paper, a prototype of phasemeter based on digital phase-locked loop technology is developed, and the major noise sources which may contribute to the noise spectra density are analyzed in detail. Two experiments are also carried out to evaluate the performance of the phasemeter prototype. The results show that the sensitivity is achieved 2π μrad/√Hz in the frequency range of 0.04 Hz-10 Hz. Due to the effect of thermal drift, the noise obviously increases with the frequencies down to 0.1 mHz.
QPPM receiver for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Mohamed, J. H.; Nagy, L. A.; Lizanich, P. J.; Mortensen, D. J.
1994-01-01
A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned.
A laser spectrometer and wavemeter for pulsed lasers
NASA Technical Reports Server (NTRS)
Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.
1989-01-01
The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.
Vaz, Pedro G; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João
2017-12-29
Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.
Microreplication of laser-fabricated surface and three-dimensional structures
NASA Astrophysics Data System (ADS)
Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.
2010-12-01
The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.
Fiber-based laser MOPA transmitter packaging for space environment
NASA Astrophysics Data System (ADS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian
2018-02-01
NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.
Laterally Coupled Quantum-Dot Distributed-Feedback Lasers
NASA Technical Reports Server (NTRS)
Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke
2003-01-01
InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.
NASA Astrophysics Data System (ADS)
Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João
2018-01-01
Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.
Effect of process parameters on formability of laser melting deposited 12CrNi2 alloy steel
NASA Astrophysics Data System (ADS)
Peng, Qian; Dong, Shiyun; Kang, Xueliang; Yan, Shixing; Men, Ping
2018-03-01
As a new rapid prototyping technology, the laser melting deposition technology not only has the advantages of fast forming, high efficiency, but also free control in the design and production chain. Therefore, it has drawn extensive attention from community.With the continuous improvement of steel performance requirements, high performance low-carbon alloy steel is gradually integrated into high-tech fields such as aerospace, high-speed train and armored equipment.However, it is necessary to further explore and optimize the difficult process of laser melting deposited alloy steel parts to achieve the performance and shape control.This article took the orthogonal experiment on alloy steel powder by laser melting deposition ,and revealed the influence rule of the laser power, scanning speed, powder gas flow on the quality of the sample than the dilution rate, surface morphology and microstructure analysis were carried out.Finally, under the optimum technological parameters, the Excellent surface quality of the alloy steel forming part with high density, no pore and cracks was obtained.
Wavefront Measurement in Ophthalmology
NASA Astrophysics Data System (ADS)
Molebny, Vasyl
Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann's test was strengthened by Platt's lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning's aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler's help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.
Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M
2009-04-01
Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.
Rapid prototyping technology and its application in bone tissue engineering*
YUAN, Bo; ZHOU, Sheng-yuan; CHEN, Xiong-sheng
2017-01-01
Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects. PMID:28378568
Rapid prototyping technology and its application in bone tissue engineering.
Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng
Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.
Diode pumped, regenerative Nd:YAG ring amplifier for space application
NASA Technical Reports Server (NTRS)
Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.
NASA Technical Reports Server (NTRS)
Degnan, J. J., III; Zagwodski, T. W.
1979-01-01
A prototype Q-switched Nd:YAG laser transmitter intended for use in the NASA mobile laser ranging system was subjected to various tests of temporal pulse shape and stability, output energy and stability, beam divergence, and range bias errors. Peak to peak variations in the mean range were as large as 30 cm and drift rates of system bias with time as large as 6 mm per minute of operation were observed. The incorporation of a fast electro-optic cavity dump into the oscillator gave significantly improved results. Reevaluation of the ranging performance after modification showed a reduction in the peak to peak variation in the mean range to the 2 or 3 cm level and a drift rate of system time biases of less than 1 mm per minute of operation. A qualitative physical explanation for the superior performance of cavity dumped lasers is given.
Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.
Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong
2017-11-27
In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.
Unresolved issues in excimer laser corneal surgery
NASA Astrophysics Data System (ADS)
Trokel, Stephen L.
1991-06-01
More than one hundred fifty clinical excimer laser units designed for corneal surgery have been developed and sold commercially. Manufacturers include Meditec Lasers in Germany, Summit Engineering, Taunton Technologies, and Visx in the United States, and Synthelabo in France. Furthermore a number of prototypes have been built in the USSR and other countries which are being investigated for their clinical use. While in the United States and Canada, substantial regulation of these devices has limited their distribution and use, sales in other parts of the world have been restricted only by market forces. Early clinical successes have created an enthusiasm for this new technology. In spite of this, substantial technical issues remain uncertain and have not been carefully studied. Indeed we have accepted certain parameters for on an almost serendipitous, empirical basis. It is a proper time to pause and consider the bases for these laser techniques.
Tissue dissection using a 1470-nm diode laser and laparoscopic prototype
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Hammerland, John; Nau, William H.; Fried, Nathaniel M.
2017-02-01
A continuous-wave, 40 Watt, 1470 nm laser was explored for rapid and precise dissection of porcine mesentery fascia and liver tissues, ex vivo. Laser energy was delivered through a 550-μm-core optical fiber inside a 5-mm-OD, laparoscopic probe, with detachable, 2 mm, sapphire ball rolling tip. Fascia tissue was cleanly dissected with scanning rates from 2.0 - 4.5 mm/s using 16 - 31W. Fascia collateral thermal damage measured as low as 180 +/- 50 μm at 4.5 mm/s scan speed. Porcine liver ablation crater depth measured up to 1010 +/- 220 μm with 30 W at 2.0 mm/s or as shallow as 80 +/- 30 μm with 10 W at 10 mm/s. Peak temperatures reached 130 °C at ball tip and 75 °C on metal jaws. The 1470-nm laser and probe show promise for laparoscopic tissue cutting and coagulation.
Arenani: pointing and information query system for object beyond your reach
NASA Astrophysics Data System (ADS)
Adachi, Mariko; Sakamoto, Kunio
2008-03-01
The authors developed a prototype information query system. It is easy to get the information about an object with in your reach. But it is troublesome to do the same in case that the object is far away. If someone is around you, you can ask an easy question with a finger pointing; "What is that?" Our developed system also realizes this approach using information technologies. The system consists of a laser pointer, transmitter and receiver units for an optical communication. The laser pointer is used for pointing an object. Moreover this laser light is modulated for sending information about user's identification (ID) codes to identify who asks a question. Each object has a receiver for laser light communication and sends user's identification to a main computer. After pointing an object, a questioner receives an answer through a wireless information network like an email on the cellular phone.
Research and development of the laser tracker measurement system
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Zhou, W. H.; Lao, D. B.; Yuan, J.; Dong, D. F. F.; Ji, R. Y. Y.
2013-01-01
The working principle and system design of the laser tracker measurement system are introduced, as well as the key technologies and solutions in the implementation of the system. The design and implementation of the hardware and configuration of the software are mainly researched. The components of the hardware include distance measuring unit, angle measuring unit, tracking and servo control unit and electronic control unit. The distance measuring devices include the relative distance measuring device (IFM) and the absolute distance measuring device (ADM). The main component of the angle measuring device, the precision rotating stage, is mainly comprised of the precision axis and the encoders which are both set in the tracking head. The data processing unit, tracking and control unit and power supply unit are all set in the control box. The software module is comprised of the communication module, calibration and error compensation module, data analysis module, database management module, 3D display module and the man-machine interface module. The prototype of the laser tracker system has been accomplished and experiments have been carried out to verify the proposed strategies of the hardware and software modules. The experiments showed that the IFM distance measuring error is within 0.15mm, the ADM distance measuring error is within 3.5mm and the angle measuring error is within 3" which demonstrates that the preliminary prototype can realize fundamental measurement tasks.
NASA Astrophysics Data System (ADS)
Aragón, Angel L.; Pérez, Eliseo; Pazos, Antonio; Bao-Varela, Carmen; Nieto, Daniel
2017-08-01
In this work we present the process of fabrication and optimization of a prototype of a cell electrostimulator device for medical application combining physical vapor deposition and laser ablation. The fabrication of the first prototype begins with a deposition of a thin layer of 200 nm of aluminium on a borosilicate glass substrate using physical vapor deposition (PVD). In the second stage the geometry design of the electrostimulator is made in a CAD-like software available in a Nd:YVO4 Rofin Power line 20E, operating at the fundamental wavelength of 1064 nm and 20 ns pulse width. Choosing the proper laser parameters the negative of the electrostimulator desing is ablated. After that the glass is assembled between two polycarbonate sheets and a thick sheet of polydimethylsiloxane (PDMS). The PDMS sheet has a round hole in where cells are placed. There is also included a thin soda-lime silicate glass (100 μm) between the electrostimulator and the PMDS to prevent the cells for being in contact with the electric circuit. In order to control the electrical signal applied to the electrostimulator is used a digital I/O device from National Instruments (USB-6501) which provides 5 V at the output monitored by a software programmed in LabVIEW. Finally, the optical and electrical characterization of the cell electrostimulator device is presented.
Pompa, Giorgio; Di Carlo, Stefano; De Angelis, Francesca; Cristalli, Maria Paola; Annibali, Susanna
2015-01-01
This study assessed whether there are differences in marginal fit between laser-fusion and conventional techniques to produce fixed dental prostheses (FDPs). A master steel die with 2 abutments was produced to receive a posterior 4-unit FDPs and single copings. These experimental models were divided into three groups (n = 20/group) manufactured: group 1, Ni-Cr alloy, with a lost-wax casting technique; group 2, Co-Cr alloy, with selective laser melting (SLM); and group 3, yttria-tetragonal zirconia polycrystal (Y-TZP), with a milling system. All specimens were cut along the longitudinal axis and their adaptation was measured at the marginal and shoulder areas on the right and left sides of each abutment. Measurements were made using a stereomicroscope (×60 magnification) and a scanning electron microscope (×800 magnification). The data were analyzed using one-way analysis of variance and the Bonferroni post hoc test, with a significance cutoff of 5%. Significant differences (P < 0.05) were observed between group 3 and the other groups. The marginal opening was smallest with Co-Cr alloy substructures, while the shoulder opening was smallest with Ni-Cr alloy substructures. Within the limitations of this study, the marginal fit of an FDP is better with rapid prototyping (RP) via SLM than conventional manufacturing systems. PMID:26576419
A simple pendulum borehole tiltmeter based on a triaxial optical-fibre displacement sensor
NASA Astrophysics Data System (ADS)
Chawah, P.; Chéry, J.; Boudin, F.; Cattoen, M.; Seat, H. C.; Plantier, G.; Lizion, F.; Sourice, A.; Bernard, P.; Brunet, C.; Boyer, D.; Gaffet, S.
2015-11-01
Sensitive instruments like strainmeters and tiltmeters are necessary for measuring slowly varying low amplitude Earth deformations. Nonetheless, laser and fibre interferometers are particularly suitable for interrogating such instruments due to their extreme precision and accuracy. In this paper, a practical design of a simple pendulum borehole tiltmeter based on laser fibre interferometric displacement sensors is presented. A prototype instrument has been constructed using welded borosilicate with a pendulum length of 0.85 m resulting in a main resonance frequency of 0.6 Hz. By implementing three coplanar extrinsic fibre Fabry-Perot interferometric probes and appropriate signal filtering, our instrument provides tilt measurements that are insensitive to parasitic deformations caused by temperature and pressure variations. This prototype has been installed in an underground facility (Rustrel, France) where results show accurate measurements of Earth strains derived from Earth and ocean tides, local hydrologic effects, as well as local and remote earthquakes. The large dynamic range and the high sensitivity of this tiltmeter render it an invaluable tool for numerous geophysical applications such as transient fault motion, volcanic strain and reservoir monitoring.
Advanced Fire Detector for Space Applications
NASA Technical Reports Server (NTRS)
Kutzner, Joerg
2012-01-01
A document discusses an optical carbon monoxide sensor for early fire detection. During the sensor development, a concept was implemented to allow reliable carbon monoxide detection in the presence of interfering absorption signals. Methane interference is present in the operating wavelength range of the developed prototype sensor for carbon monoxide detection. The operating parameters of the prototype sensor have been optimized so that interference with methane is minimized. In addition, simultaneous measurement of methane is implemented, and the instrument automatically corrects the carbon monoxide signal at high methane concentrations. This is possible because VCSELs (vertical cavity surface emitting lasers) with extended current tuning capabilities are implemented in the optical device. The tuning capabilities of these new laser sources are sufficient to cover the wavelength range of several absorption lines. The delivered carbon monoxide sensor (COMA 1) reliably measures low carbon monoxide levels even in the presence of high methane signals. The signal bleed-over is determined during system calibration and is then accounted for in the system parameters. The sensor reports carbon monoxide concentrations reliably for (interfering) methane concentrations up to several thousand parts per million.
Vandenabeele, Peter; Conti, Claudia; Rousaki, Anastasia; Moens, Luc; Realini, Marco; Matousek, Pavel
2017-09-05
Microspatially offset Raman spectroscopy (micro-SORS) has been proposed as a valuable approach to sample molecular information from layers that are covered by a turbid (nontransparent) layer. However, when large magnifications are involved, the approach is not straightforward, as spatial constraints exist to position the laser beam and the objective lens with the external beam delivery or, with internal beam delivery, the maximum spatial offset achievable is restricted. To overcome these limitations, we propose here a prototype of a new micro-SORS sensor, which uses bare glass fibers to transfer the laser radiation to the sample and to collect the Raman signal from a spatially offset zone to the Raman spectrometer. The concept also renders itself amenable to remote delivery and to the miniaturization of the probe head which could be beneficial for special applications, e.g., where access to sample areas is restricted. The basic applicability of this approach was demonstrated by studying several layered structure systems. Apart from proving the feasibility of the technique, also, practical aspects of the use of the prototype sensor are discussed.
Intensity-Modulated Continuous-Wave Lidar at 1.57 Micrometer for Atmospheric CO2 Measurements
NASA Technical Reports Server (NTRS)
Lin, Bing; Ismail, Syed; Browell, Edward; Meadows, Byron; Nehrir, Amin; Harrison, Wallace F.; Dobler, Jeremy; Obland, Michael
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc proposes to use the intensity-modulated, continuous-wave (IM-CW) lidar approach for the ASCENDS mission. Prototype instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space lidar systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW lidar system for the active space CO2 mission ASCENDS.
Rapid prototyping--when virtual meets reality.
Beguma, Zubeda; Chhedat, Pratik
2014-01-01
Rapid prototyping (RP) describes the customized production of solid models using 3D computer data. Over the past decade, advances in RP have continued to evolve, resulting in the development of new techniques that have been applied to the fabrication of various prostheses. RP fabrication technologies include stereolithography (SLA), fused deposition modeling (FDM), computer numerical controlled (CNC) milling, and, more recently, selective laser sintering (SLS). The applications of RP techniques for dentistry include wax pattern fabrication for dental prostheses, dental (facial) prostheses mold (shell) fabrication, and removable dental prostheses framework fabrication. In the past, a physical plastic shape of the removable partial denture (RPD) framework was produced using an RP machine, and then used as a sacrificial pattern. Yet with the advent of the selective laser melting (SLM) technique, RPD metal frameworks can be directly fabricated, thereby omitting the casting stage. This new approach can also generate the wax pattern for facial prostheses directly, thereby reducing labor-intensive laboratory procedures. Many people stand to benefit from these new RP techniques for producing various forms of dental prostheses, which in the near future could transform traditional prosthodontic practices.
Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications
NASA Astrophysics Data System (ADS)
Henderson, Sammy W.; Hale, Charley P.
2017-08-01
We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.
Pulsed laser deposition—invention or discovery?
NASA Astrophysics Data System (ADS)
Venkatesan, T.
2014-01-01
The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high Tc superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology.
Fan-beam scanning laser optical computed tomography for large volume dosimetry
NASA Astrophysics Data System (ADS)
Dekker, K. H.; Battista, J. J.; Jordan, K. J.
2017-05-01
A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.
Performance of Laser Megajoule’s x-ray streak camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.
2016-11-15
A prototype of a picosecond x-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to provide plasma-diagnostic support for the Laser Megajoule. We report on the measured performance of this streak camera, which almost fulfills the requirements: 50-μm spatial resolution over a 15-mm field in the photocathode plane, 17-ps temporal resolution in a 2-ns timebase, a detection threshold lower than 625 nJ/cm{sup 2} in the 0.05–15 keV spectral range, and a dynamic range greater than 100.
NASA Astrophysics Data System (ADS)
di Virgilio, Angela D. V.
Gyroscopes IN General Relativity (GINGER) is a proposal of an Earth-base experiment to measure the Lense-Thirring effect. GINGER uses an array of ring lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. GINGER is based on a three-dimensional array of large size ring lasers, able to measure the de Sitter and Lense-Thirring effects. The instrument will be located in the INFN Gran Sasso underground laboratory, in Italy. We describe preliminary developments and measurements. Earlier prototypes based in Italy, GP2, GINGERino, and G-LAS are also described and their preliminary results reported.
Modeling and Experimental Study of Fracture-Based Wellbore Strengthening
NASA Astrophysics Data System (ADS)
Zhong, Ruizhi
Measuring physical dimensions has always been one of the challenges for optical metrology. Specifically, the thickness is often a prerequisite piece of information for other optical properties when characterizing components and materials. For example, when measuring the index of refraction of materials using interferometric methods, the direct measurement is optical path length difference. To acquire index of refraction with high accuracy, the thickness must be predetermined with correspondingly high accuracy as well. In this dissertation, a prototype low-coherence interferometer system is developed through several design iterations to measure the absolute thickness map of a plane-parallel samples in a nondestructive manner. The prototype system is built with all off-the-shelf components in a configuration that combines a Twyman-Green interferometer and a Sagnac interferometer. The repeatability and accuracy of the measured thickness are characterized to be less than one micrometer. Based on the information acquired from the development of the prototype system, a permanent low-coherence interferometer system is designed and built to achieve a higher accuracy in thickness measurements, on the level of a hundred nanometers. A comprehensive uncertainty model is established for the thickness measurement using the low-coherence interferometer system. Additionally, this system is also capable of measuring the topography of both surfaces of the sample, as well as the wedge of the sample. This low-coherence dimensional metrology uses only the reflection signals from the sample surfaces. Thus, the measured physical dimensions are independent of the index of refraction, transparency, transmission, or homogeneity of the sample. In addition, a laser Sagnac interferometer is designed and built by repurposing the test arm of the low-coherence interferometer. The laser Sagnac interferometer provides a non-contact bulk index of refraction metrology for solid materials. The uncertainty model for the index of refraction measurement is detailed with analytical solutions. The laser Sagnac interferometer requires relatively simple sample preparation and fast turn-around time, which is suitable for applications in optical material research.
Novel CAD/CAM rapid prototyping of next-generation biomedical devices
NASA Astrophysics Data System (ADS)
Doraiswamy, Anand
An aging population with growing healthcare needs demands multifaceted tools for diagnosis and treatment of health conditions. In the near-future, drug-administration devices, implantable devices/sensors, enhanced prosthesis, artificial and unique functional tissue constructs will become increasingly significant. Conventional technologies for mass-produced implants do not adequately take individual patient anatomy into consideration. Development of novel CAD/CAM rapid prototyping techniques may significantly accelerate progress of these devices for next-generation patient-care. In this dissertation, several novel rapid prototyping techniques have been introduced for next-generation biomedical applications. Two-photon polymerization was developed to microfabricate scaffolds for tissue engineering, microneedles for drug-delivery and ossicular replacement prostheses. Various photoplymers were evaluated for feasibility, mechanical properties, cytotoxicity, and surface properties. Laser direct write using MDW was utilized for developing microstructures of bioceramics such as hydroxyapatite, and viable mammalian osteosarcoma cells. CAD/CAM laser micromachining (CLM) was developed to engineer biointerfaces as surface recognition regions for differential adherence of cells and growth into tissue-like networks. CLM was also developed for engineering multi-cellular vascular networks. Cytotoxic evaluations and growth studies demonstrated VEGF-induced proliferation of HAAE-1 human aortic endothelial cells with inhibition of HA-VSMC human aortic smooth muscle cells. Finally, piiezoelectric inkjet printing was developed for controlled administration of natural and synthetic adhesives to overcome several problems associated with conventional tissue bonding materials, and greatly improve wound-repair in next generation eye repair, fracture fixation, organ fixation, wound closure, tissue engineering, and drug delivery devices.
A Water Cherenkov Detector prototype for the HAWC Gamma-Ray Observatory
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel; Salesa Greus, Francisco; Warner, David
2011-10-01
A full-size Water Cherenkov Detector (WCD) prototype for the High Altitude Water Cherenkov (HAWC) gamma-ray Observatory was deployed, and is currently being operated at Colorado State University (CSU). The HAWC Observatory will consist of 300 WCDs at the very high altitude (4100m) site in Sierra Negra, Mexico. Each WCD will have 4 baffled upward-facing Photomultiplier Tubes (PMTs) anchored to the bottom of a self made multilayer hermetic plastic bag containing 200,000 liters of purified water, inside a 5m deep by 7.3m diameter steel container. The full size WCD at CSU is the only full size prototype outside of the HAWC site. It is equipped with seven HAWC PMTs and has scintillators both under and above the volume of water. It has been in operation since March 1, 2011. This prototype also has the same laser calibration system that the detectors deployed at the HAWC site will have. The CSU WCD serves as a testbed for the different subsystems before deployment at high altitude, and for optimizing the location of the PMTs, the design of the light collectors, deployment procedures, etc. Simulations of the light inside the detectors and the expected signals in the PMTs can also be benchmarked with this prototype.
Muon data from a water Cherenkov detector prototype at Colorado State University
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel
2013-04-01
The High Altitude Water Cherenkov (HAWC) Observatory is a very high energy gamma-ray experiment currently under construction in Sierra Negra in the state of Puebla, Mexico, at an altitude of 4,100 m a.s.l. The HAWC Observatory will consist of 300 water Cherenkov detectors (WCDs), each instrumented with three 8'' photomultiplier tubes (PMTs) and one 10'' high efficiency (HE) PMT. The PMTs are upward facing, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank, containing a multilayer hermetic plastic bag holding 200,000 L of purified water. The only full size WCD prototype outside of the HAWC site is located at Colorado State University (CSU) in Fort Collins, CO at an altitude of 1,525 m a.s.l. This prototype is instrumented with six 8'' PMTs, one 10'' HE PMT, and the same laser calibration system, electronics, and data acquisition system as the WCDs at the HAWC site. The CSU prototype is additionally equipped with scintillator paddles both under and above the volume of water, temperature probes (in the water, outside, and in the DAQ room), and one covered PMT. Preliminary results for muon rates and their temperature dependance using data collected with the CSU prototype will be presented.
DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.
Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L
2015-07-27
The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.
Evaluation of an optoacoustic based gas analysing device
NASA Astrophysics Data System (ADS)
Markmann, Janine; Lange, Birgit; Theisen-Kunde, Dirk; Danicke, Veit; Mayorov, Fedor; Eckert, Sebastian; Kettmann, Pascal; Brinkmann, Ralf
2017-07-01
The relative occurrence of volatile organic compounds in the human respiratory gas is disease-specific (ppb range). A prototype of a gas analysing device using two tuneable laser systems, an OPO-laser (2.5 to 10 μm) and a CO2-laser (9 to 11 μm), and an optoacoustic measurement cell was developed to detect concentrations in the ppb range. The sensitivity and resolution of the system was determined by test gas measurements, measuring ethylene and sulfur hexafluoride with the CO2-laser and butane with the OPO-laser. System sensitivity found to be 13 ppb for sulfur hexafluoride, 17 ppb for ethylene and <10 ppb for butane, with a resolution of 50 ppb at minimum for sulfur hexafluoride. Respiratory gas samples of 8 healthy volunteers were investigated by irradiation with 17 laser lines of the CO2-laser. Several of those lines overlap with strong absorption bands of ammonia. As it is known that ammonia concentration increases by age a separation of people <35 und >35 was striven for. To evaluate the data the first seven gas samples were used to train a discriminant analysis algorithm. The eighth subject was then assigned correctly to the group >35 years with the age of 49 years.
Laser Plasma Microthruster Performance Evaluation
NASA Astrophysics Data System (ADS)
Luke, James R.; Phipps, Claude R.
2003-05-01
The micro laser plasma thruster (μLPT) is a sub-kilogram thruster that is capable of meeting the Air Force requirements for the Attitude Control System on a 100-kg class small satellite. The μLPT uses one or more 4W diode lasers to ablate a solid fuel, producing a jet of hot gas or plasma which creates thrust with a high thrust/power ratio. A pre-prototype continuous thrust experiment has been constructed and tested. The continuous thrust experiment uses a 505 mm long continuous loop fuel tape, which consists of a black laser-absorbing fuel material on a transparent plastic substrate. When the laser is operated continuously, the exhaust plume and thrust vector are steered in the direction of the tape motion. Thrust steering can be avoided by pulsing the laser. A torsion pendulum thrust stand has been constructed and calibrated. Many fuel materials and substrates have been tested. Best performance from a non-energetic fuel material was obtained with black polyvinyl chloride (PVC), which produced an average of 70 μN thrust and coupling coefficient (Cm) of 190 μN/W. A proprietary energetic material was also tested, in which the laser initiates a non-propagating detonation. This material produced 500 μN of thrust.
One can achieve anything with a laser: an educational initiative
NASA Astrophysics Data System (ADS)
Davies, Ray K.
2005-06-01
Laser Photonics has been highlighted by many as THE Technology of the 21st Century. However, there are few obvious opportunities for students to see a Laser in operation in circumstances beyond some simple low power Laser Interferometry demonstrations, or the use of Laser Pointer Pens. As part of an educational initiative, PION LASER SENSORS within the University of Salford has developed a series of laboratory design and construction Projects that involve both the opportunities for, and the innovative creation of, visually attractive operative applications of low power Laser Photonics. These highly functional Laser Photonics Projects range from the transmission of audio signals to a written alphabetical letter recognition and Braille converter sensor for a visually impaired person; from a Laser speckle eye-sight testing system to a prototype mobile robotic guide for a blind person.; from a novel type of Laser seismograph to an equally novel set of Laser measurement callipers; from a Laser activated pair of walking feet to an optical feedback system to maintain a horizontal surface within a vehicle traversing rough terrain. This type of low power Laser Photonics design and construction Project not only provides the opportunity for students to become involved with some highly creative and innovative laboratory opportunities, but the experience clearly enthuses the students towards many aspects of Physics, Medicine, and Engineering through a sense of personal achievement resulting from a realization of their imaginative thinking sills, combined with their acquired manual skills.
NASA Astrophysics Data System (ADS)
Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo
2013-03-01
In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.
Reducing wall plasma expansion with gold foam irradiated by laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lu; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com
The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls havemore » advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.« less
Aircrew laser eye protection: visual consequences and mission performance.
Thomas, S R
1994-05-01
Battlefield laser proliferation poses a mounting risk to aircrew and ground personnel. Laser eye protection (LEP) based on current mature, mass-producible technologies absorbs visible light and can impact visual performance and color identification. These visual consequences account for many of the mission incompatibilities associated with LEP. Laboratory experiments and field investigations that examined the effects of LEP on visual performance and mission compatibility are reviewed. Laboratory experiments assessed the ability of subjects to correctly read and identify the color of head-down display symbology and tactical pilotage charts (TPC's) with three prototype LEP visors. Field investigations included Weapons Systems Trainer (WST), ground, and flight tests of the LEP visors. Recommendations for modifying aviation lighting systems to improve LEP compatibility are proposed. Issues concerning flight safety when using LEP during air operation are discussed.
Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer
NASA Technical Reports Server (NTRS)
Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.
2016-01-01
Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.
Code OK3 - An upgraded version of OK2 with beam wobbling function
NASA Astrophysics Data System (ADS)
Ogoyski, A. I.; Kawata, S.; Popov, P. H.
2010-07-01
For computer simulations on heavy ion beam (HIB) irradiation onto a target with an arbitrary shape and structure in heavy ion fusion (HIF), the code OK2 was developed and presented in Computer Physics Communications 161 (2004). Code OK3 is an upgrade of OK2 including an important capability of wobbling beam illumination. The wobbling beam introduces a unique possibility for a smooth mechanism of inertial fusion target implosion, so that sufficient fusion energy is released to construct a fusion reactor in future. New version program summaryProgram title: OK3 Catalogue identifier: ADST_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADST_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 221 517 No. of bytes in distributed program, including test data, etc.: 2 471 015 Distribution format: tar.gz Programming language: C++ Computer: PC (Pentium 4, 1 GHz or more recommended) Operating system: Windows or UNIX RAM: 2048 MBytes Classification: 19.7 Catalogue identifier of previous version: ADST_v2_0 Journal reference of previous version: Comput. Phys. Comm. 161 (2004) 143 Does the new version supersede the previous version?: Yes Nature of problem: In heavy ion fusion (HIF), ion cancer therapy, material processing, etc., a precise beam energy deposition is essentially important [1]. Codes OK1 and OK2 have been developed to simulate the heavy ion beam energy deposition in three-dimensional arbitrary shaped targets [2, 3]. Wobbling beam illumination is important to smooth the beam energy deposition nonuniformity in HIF, so that a uniform target implosion is realized and a sufficient fusion output energy is released. Solution method: OK3 code works on the base of OK1 and OK2 [2, 3]. The code simulates a multi-beam illumination on a target with arbitrary shape and structure, including beam wobbling function. Reasons for new version: The code OK3 is based on OK2 [3] and uses the same algorithm with some improvements, the most important one is the beam wobbling function. Summary of revisions:In the code OK3, beams are subdivided on many bunches. The displacement of each bunch center from the initial beam direction is calculated. Code OK3 allows the beamlet number to vary from bunch to bunch. That reduces the calculation error especially in case of very complicated mesh structure with big internal holes. The target temperature rises during the time of energy deposition. Some procedures are improved to perform faster. The energy conservation is checked up on each step of calculation process and corrected if necessary. New procedures included in OK3 Procedure BeamCenterRot( ) rotates the beam axis around the impinging direction of each beam. Procedure BeamletRot( ) rotates the beamlet axes that belong to each beam. Procedure Rotation( ) sets the coordinates of rotated beams and beamlets in chamber and pellet systems. Procedure BeamletOut( ) calculates the lost energy of ions that have not impinged on the target. Procedure TargetT( ) sets the temperature of the target layer of energy deposition during the irradiation process. Procedure ECL( ) checks up the energy conservation law at each step of the energy deposition process. Procedure ECLt( ) performs the final check up of the energy conservation law at the end of deposition process. Modified procedures in OK3 Procedure InitBeam( ): This procedure initializes the beam radius and coefficients A1, A2, A3, A4 and A5 for Gauss distributed beams [2]. It is enlarged in OK3 and can set beams with radii from 1 to 20 mm. Procedure kBunch( ) is modified to allow beamlet number variation from bunch to bunch during the deposition. Procedure ijkSp( ) and procedure Hole( ) are modified to perform faster. Procedure Espl( ) and procedure ChechE( ) are modified to increase the calculation accuracy. Procedure SD( ) calculates the total relative root-mean-square (RMS) deviation and the total relative peak-to-valley (PTV) deviation in energy deposition non-uniformity. This procedure is not included in code OK2 because of its limited applications (for spherical targets only). It is taken from code OK1 and modified to perform with code OK3. Running time: The execution time depends on the pellet mesh number and the number of beams in the simulated illumination as well as on the beam characteristics (beam radius on the pellet surface, beam subdivision, projectile particle energy and so on). In almost all of the practical running tests performed, the typical running time for one beam deposition is about 30 s on a PC with a CPU of Pentium 4, 2.4 GHz. References:A.I. Ogoyski, et al., Heavy ion beam irradiation non-uniformity in inertial fusion, Phys. Lett. A 315 (2003) 372-377. A.I. Ogoyski, et al., Code OK1 - Simulation of multi-beam irradiation on a spherical target in heavy ion fusion, Comput. Phys. Comm. 157 (2004) 160-172. A.I. Ogoyski, et al., Code OK2 - A simulation code of ion-beam illumination on an arbitrary shape and structure target, Comput. Phys. Comm. 161 (2004) 143-150.
NASA Technical Reports Server (NTRS)
Pinnick, Veronica; Buch, Arnaud; VanAmerom, Friso H. W.; Danell, Ryan M.; Brinckerhoff, William; Mahaffy, Paul; Cotter, Robert J.
2011-01-01
The Mars Organic Molecule Analyzer (MOMA) is a joint venture by NASA and the European Space Agency (ESA) to develop a sensitive, light-weight, low-power mass spectrometer for chemical analysis on Mars. MOMA is a key analytical instrument aboard the 2018 ExoMars rover mission seeking signs of past or present life. The current prototype was built to demonstrate operation of gas chromatography (OC) and laser desorption (LD) mass spectrometry under martian ambient conditions (5-7 Torr of CO2-rich atmosphere). Recent reports have discussed the MO MA concept, design and performance. Here, we update the current prototype performance, focusing specifically on the GCMS mode.
Laser ignition of engines: a realistic option!
NASA Astrophysics Data System (ADS)
Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.
2006-01-01
Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.
A modular approach to detection and identification of defects in rough lumber
Sang Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt
2001-01-01
This paper describes a prototype scanning system that can automatically identify several important defects on rough hardwood lumber. The scanning system utilizes 3 laser sources and an embedded-processor camera to capture and analyze profile and gray-scale images. The modular approach combines the detection of wane (the curved sides of a board, possibly containing...
Measuring orthometric water heights from lightweight Unmanned Aerial Vehicles (UAVs)
NASA Astrophysics Data System (ADS)
Bandini, Filippo; Olesen, Daniel; Jakobsen, Jakob; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter
2016-04-01
A better quantitative understanding of hydrologic processes requires better observations of hydrological variables, such as surface water area, water surface level, its slope and its temporal change. However, ground-based measurements of water heights are restricted to the in-situ measuring stations. Hence, the objective of remote sensing hydrology is to retrieve these hydraulic variables from spaceborne and airborne platforms. The forthcoming Surface Water and Ocean Topography (SWOT) satellite mission will be able to acquire water heights with an expected accuracy of 10 centimeters for rivers that are at least 100 m wide. Nevertheless, spaceborne missions will always face the limitations of: i) a low spatial resolution which makes it difficult to separate water from interfering surrounding areas and a tracking of the terrestrial water bodies not able to detect water heights in small rivers or lakes; ii) a limited temporal resolution which limits the ability to determine rapid temporal changes, especially during extremes. Unmanned Aerial Vehicles (UAVs) are one technology able to fill the gap between spaceborne and ground-based observations, ensuring 1) high spatial resolution; 2) tracking of the water bodies better than any satellite technology; 3) timing of the sampling which only depends on the operator 4) flexibility of the payload. Hence, this study focused on categorizing and testing sensors capable of measuring the range between the UAV and the water surface. The orthometric height of the water surface is then retrieved by subtracting the height above water measured by the sensors from the altitude above sea level retrieved by the onboard GPS. The following sensors were tested: a) a radar, b) a sonar c) a laser digital-camera based prototype developed at Technical University of Denmark. The tested sensors comply with the weight constraint of small UAVs (around 1.5 kg). The sensors were evaluated in terms of accuracy, maximum ranging distance and beam divergence. The sonar demonstrated a maximum ranging distance of 10 m, the laser prototype of 15 m, whilst the radar is potentially able to measure the range to water surface from a height up to 50 m. After numerous test flights above a lake with an approximately horizontal water surface, estimation of orthometric water height error, including overall accuracy of the system GPS-sensors, was possible. The RTK GPS system proved able to deliver a relative vertical accuracy better than 5-7 cm. The radar confirmed to have the best reliability with an accuracy which is generally few cm (0.7-1.3% of the ranging distance). Whereas the accuracy of the sonar and laser varies from few cm (0.7-1.6% of the ranging distance) to some tens of cm because sonar measurements are generally influenced by noise and turbulence generated by the propellers of the UAV and the laser prototype is affected by drone vibrations and water waviness. However, the laser prototype demonstrated the lowest beam divergence, which is required to measure unconventional remote sensing targets, such as sinkholes and Mexican cenotes, and to clearly distinguish between rivers and interfering surroundings, such as riparian vegetation.
Distribution of the background gas in the MITICA accelerator
NASA Astrophysics Data System (ADS)
Sartori, E.; Dal Bello, S.; Serianni, G.; Sonato, P.
2013-02-01
MITICA is the ITER neutral beam test facility to be built in Padova for the generation of a 40A D- ion beam with a 16×5×16 array of 1280 beamlets accelerated to 1MV. The background gas pressure distribution and the particle flows inside MITICA accelerator are critical aspects for stripping losses, generation of secondary particles and beam non-uniformities. To keep the stripping losses in the extraction and acceleration stages reasonably low, the source pressure should be 0.3 Pa or less. The gas flow in MITICA accelerator is being studied using a 3D Finite Element code, named Avocado. The gas-wall interaction model is based on the cosine law, and the whole vacuum system geometry is represented by a view factor matrix based on surface discretization and gas property definitions. Pressure distribution and mutual fluxes are then solved linearly. In this paper the result of a numerical simulation is presented, showing the steady-state pressure distribution inside the accelerator when gas enters the system at room temperature. The accelerator model is limited to a horizontal slice 400 mm high (1/4 of the accelerator height). The pressure profile at solid walls and through the beamlet axis is obtained, allowing the evaluation and the discussion of the background gas distribution and nonuniformity. The particle flux at the inlet and outlet boundaries (namely the grounded grid apertures and the lateral conductances respectively) will be discussed.
Excimer Laser Curing Of Polymer Coatings
NASA Astrophysics Data System (ADS)
Klick, David; Akerman, M. Alfred; Paul, George L.; Supurovic, Darko; Tsuda, Haruki
1988-12-01
The use of the excimer laser as a source of energy for photo-assisted curing of industrial polymeric coatings was investigated. Presently, UV lamps are sometimes used to excite a photoinitiating molecule mixed with the starting monomers and oligomers of a coating. The resulting polymeric chain reaction multiplies the effect of the initial photons, making economical use of the light source. The high cost of laser photons may thus be justifiable if lasers provide advantages over lamps. A series of visibly transparent 7 μm coatings (a typical thickness for 'slick' magazine coatings) with various photoinitiators, monomers, and oligomers was illuminated with excimer laser light of various wavelengths, fluences, and pulse repetition rates. For the optimum parameters, it was found that the laser had large advantages in curing speed over existing UV lamp processes, due to its monochromaticity. Pigmented coatings (20 μm TiO2 mixtures typical of appliance or automotive finishes) are not easily cured with UV lamps due to the inability of light to penetrate the absorbing and scattering pigmented layer. However, economically-viable cure rates were achieved with certain photoinitiators using a tunable excimer-pumped dye laser. A prototype of such a laser suitable for factory use was built and used to cure these coatings. Results are scaled to a factory situation, and costs are calculated to show the advantages of the laser method over currently used processes.
A 7.2 keV spherical crystal backlighter system for Sandia's Z Pulsed Power Facility
NASA Astrophysics Data System (ADS)
Schollmeier, M.; Knapp, P. F.; Ampleford, D. J.; Loisel, G. P.; Robertson, G.; Shores, J. E.; Smith, I. C.; Speas, C. S.; Porter, J. L.; McBride, R. D.
2016-10-01
Many experiments on Sandia's Z facility, a 30 MA, 100 ns rise-time, pulsed-power driver, use a monochromatic Quartz crystal imaging backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array. The x-ray source is generated by the Z-Beamlet Laser (ZBL), which provides up to 4.5 kJ at 527 nm during a 6 ns window. Radiographs of an imploding thick-walled Beryllium liner at a convergence ratio of about 20 [CR =Rin . (0) /Rin . (t) ] were too opaque to identify the inner surface of the liner with high confidence, demonstrating the need for a higher-energy x-ray backlighter between 6 and 10 keV. We present the design, test and first application of a Ge (335) spherical crystal x-ray backlighter system using the 7.242 keV Co Heα resonance line. The system operates at an almost identical Bragg angle as the existing 1.865 and 6.151 keV backlighters, enhancing our capabilities such as two-color, two-frame radiography, without changing detector shielding hardware. SAND No: SAND2016-6724 A. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DoE NNSA under contract DE-AC04-94AL85000.
Control of active reflector system for radio telescope
NASA Astrophysics Data System (ADS)
Zhou, Guo-hua; Li, Guo-ping; Zhang, Yong; Zhang, Zhen-chao
2016-10-01
According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 mm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.
Conceptual design for a user-friendly adaptive optics system at Lick Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissinger, H.D.; Olivier, S.; Max, C.
1996-03-08
In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptivemore » optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
Murakoshi, Dai; Hirota, Kazuhiro; Ishii, Hiroyasu; Hashimoto, Atsushi; Ebata, Tetsurou; Irisawa, Kaku; Wada, Takatsugu; Hayakawa, Toshiro; Itoh, Kenji; Ishihara, Miya
2018-02-01
Photoacoustic (PA) imaging technology is expected to be applied to clinical assessment for peripheral vascularity. We started a clinical evaluation with the prototype PA imaging system we recently developed. Prototype PA imaging system was composed with in-house Q-switched Alexandrite laser system which emits short-pulsed laser with 750 nm wavelength, handheld ultrasound transducer where illumination optics were integrated and signal processing for PA image reconstruction implemented in the clinical ultrasound (US) system. For the purpose of quantitative assessment of PA images, an image analyzing function has been developed and applied to clinical PA images. In this analyzing function, vascularity derived from PA signal intensity ranged for prescribed threshold was defined as a numerical index of vessel fulfillment and calculated for the prescribed region of interest (ROI). Skin surface was automatically detected by utilizing B-mode image acquired simultaneously with PA image. Skinsurface position is utilized to place the ROI objectively while avoiding unwanted signals such as artifacts which were imposed due to melanin pigment in the epidermal layer which absorbs laser emission and generates strong PA signals. Multiple images were available to support the scanned image set for 3D viewing. PA images for several fingers of patients with systemic sclerosis (SSc) were quantitatively assessed. Since the artifact region is trimmed off in PA images, the visibility of vessels with rather low PA signal intensity on the 3D projection image was enhanced and the reliability of the quantitative analysis was improved.
NASA Astrophysics Data System (ADS)
Smith, Malcolm; Kerley, Dan; Chapin, Edward L.; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi
2016-07-01
Prototyping and benchmarking was performed for the Real-Time Controller (RTC) of the Narrow Field InfraRed Adaptive Optics System (NFIRAOS). To perform wavefront correction, NFIRAOS utilizes two deformable mirrors (DM) and one tip/tilt stage (TTS). The RTC receives wavefront information from six Laser Guide Star (LGS) Shack- Hartmann WaveFront Sensors (WFS), one high-order Natural Guide Star Pyramid WaveFront Sensor (PWFS) and multiple low-order instrument detectors. The RTC uses this information to determine the commands to send to the wavefront correctors. NFIRAOS is the first light AO system for the Thirty Meter Telescope (TMT). The prototyping was performed using dual-socket high performance Linux servers with the real-time (PREEMPT_RT) patch and demonstrated the viability of a commercial off-the-shelf (COTS) hardware approach to large scale AO reconstruction. In particular, a large custom matrix vector multiplication (MVM) was benchmarked which met the required latency requirements. In addition all major inter-machine communication was verified to be adequate using 10Gb and 40Gb Ethernet. The results of this prototyping has enabled a CPU-based NFIRAOS RTC design to proceed with confidence and that COTS hardware can be used to meet the demanding performance requirements.
NASA Astrophysics Data System (ADS)
Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.
2017-12-01
We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.
Micromirror-based real image laser automotive head-up display
NASA Astrophysics Data System (ADS)
Fan, Chao; He, Siyuan
2017-01-01
This paper reports a micromirror-based real image laser automotive head-up display (HUD), which overcomes the limitations of the previous designs by: (1) implementing an advanced display approach which is able to display sharp corners while the previous designs can only display curved lines such as to improve the display fidelity and (2) Optimizing the optical configuration to significantly reduce the HUD module size. The optical design in the HUD is simulated to choose the off-the-shelf concave lens. The vibration test is conducted to verify that the micromirror can survive 5 g. The prototype of the HUD system is fabricated and tested.
Semiconductor laser insert with uniform illumination for use in photodynamic therapy
NASA Astrophysics Data System (ADS)
Charamisinau, Ivan; Happawana, Gemunu; Evans, Gary; Rosen, Arye; Hsi, Richard A.; Bour, David
2005-08-01
A low-cost semiconductor red laser light delivery system for esophagus cancer treatment is presented. The system is small enough for insertion into the patient's body. Scattering elements with nanoscale particles are used to achieve uniform illumination. The scattering element optimization calculations, with Mie theory, provide scattering and absorption efficiency factors for scattering particles composed of various materials. The possibility of using randomly deformed spheres and composite particles instead of perfect spheres is analyzed using an extension to Mie theory. The measured radiation pattern from a prototype light delivery system fabricated using these design criteria shows reasonable agreement with the theoretically predicted pattern.
The shaped pulses control and operation on the SG-III prototype facility
NASA Astrophysics Data System (ADS)
Ping, Li; Wei, Wang; Sai, Jin; Wanqing, Huang; Wenyi, Wang; Jingqin, Su; Runchang, Zhao
2018-04-01
The laser driven inertial confined fusion experiments require careful temporal shape control of the laser pulse. Two approaches are introduced to improve the accuracy and efficiency of the close loop feedback system for long term operation in TIL; the first one is a statistical model to analyze the variation of the parameters obtained from previous shots, the other is a matrix algorithm proposed to relate the electrical signal and the impulse amplitudes. With the model and algorithm applied in the pulse shaping in TIL, a variety of shaped pulses were produced with a 10% precision in half an hour for almost three years under different circumstance.
Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo
2014-01-01
A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496
NASA Astrophysics Data System (ADS)
Steiner, P.; Považay, B.; Stoller, M.; Morgenthaler, P.; Inniger, D.; Arnold, P.; Sznitman, R.; Meier, Ch.
2015-07-01
Retinal laser photocoagulation represents a widely used treatment for retinal pathologies such as diabetic chorioretinopathy or diabetic edema. For effective treatment, an appropriate choice of the treatment energy dose is crucial to prevent excessive tissue damage caused by over-irradiation of the retina. In this manuscript we investigate simultaneous and time-resolved optical coherence tomography for its applicability to provide feedback to the ophthalmologist about the introduced retinal damage during laser photocoagulation. Time-resolved and volumetric optical coherence tomography data of 96 lesions on ex-vivo porcine samples, set with a 577 nm laser prototype and irradiance of between 300 and 8800 W=cm2 were analyzed. Time-resolved scans were compared to volumetric scans of the lesion and correlated with ophthalmoscopic visibility. Lastly, image parameters extracted from optical coherence tomography Mscans, suitable for lesion classification were identified. Results presented in this work support the hypothesis that simultaneous optical coherence tomography provides valuable information about the extent of retinal tissue damage and may be used to guide retinal laser photocoagulation in the future.
Laser rapid forming technology of high-performance dense metal components with complex structure
NASA Astrophysics Data System (ADS)
Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin
2005-01-01
Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.
High energy diode-pumped solid-state laser development at the Central Laser Facility
NASA Astrophysics Data System (ADS)
Mason, Paul D.; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Butcher, Thomas; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Hernandez-Gomez, Cristina; Edwards, Chris; Collier, John
2016-04-01
In this paper we review the development of high energy, nanosecond pulsed diode-pumped solid state lasers within the Central Laser Facility (CLF) based on cryogenic gas cooled multi-slab ceramic Yb:YAG amplifier technology. To date two 10J-scale systems, the DiPOLE prototype amplifier and an improved DIPOLE10 system, have been developed, and most recently a larger scale system, DiPOLE100, designed to produce 100 J pulses at up to 10 Hz. These systems have demonstrated amplification of 10 ns duration pulses at 1030 nm to energies in excess of 10 J at 10 Hz pulse repetition rate, and over 100 J at 1 Hz, with optical-to-optical conversion efficiencies of up to 27%. We present an overview of the cryo-amplifier concept and compare the design features of these three systems, including details of the amplifier designs, gain media, diode pump lasers and the cryogenic gas cooling systems. The most recent performance results from the three systems are presented along with future plans for high energy DPSSL development within the CLF.
NASA Astrophysics Data System (ADS)
Johnson, Bart; Atia, Walid; Kuznetsov, Mark; Cook, Christopher; Goldberg, Brian; Wells, Bill; Larson, Noble; McKenzie, Eric; Melendez, Carlos; Mallon, Ed; Woo, Seungbum; Murdza, Randal; Whitney, Peter; Flanders, Dale
A 1060 nm OEM laser "engine", manufactured by Axsun Technologies, is described. It consists of a swept laser and control electronics coupled with a balanced receiver, k-clock, and a 550 MS/s data acquisition board. The laser's passive mode-locking behavior induced by the rapid wavelength sweep is discussed. As they pass though the gain medium, each pulse is shifted to longer wavelength due to the rise in refractive index associated with gain depletion. New, longer wavelengths, are thus created by nonlinear means rather than by building up anew from spontaneous emission. This nonlinear mechanism enables low noise operation and fast sweep rates. The so-called "coherence revival" phenomenon associated with interference between neighboring mode-locked pulses, is discussed. Typical laser and system data is shown, including k-clock frequency, trigger waveform, pulsed and average output powers and RIN. Receiver and DAQ board noise performance is quantified. The laser RIN is estimated to be lower than -150 dB/Hz. A typical shot-noise-limited sensitivity of 103 dB is achieved for 1.9 mW sample power. The engine is designed for ophthalmic imaging and retinal images from prototype commercial systems are presented.
Development and qualification testing of a laser-ignited, all-secondary (DDT) detonator
NASA Technical Reports Server (NTRS)
Blachowski, Thomas J.; Krivitsky, Darrin Z.; Tipton, Stephen
1994-01-01
The Indian Head Division, Naval Surface Warfare Center (IHDIV, NSWC) is conducting a qualification program for a laser-ignited, all-secondary (DDT) explosive detonator. This detonator was developed jointly by IHDIV, NSWC and the Department of Energy's EG&G Mound Applied Technologies facility in Miamisburg, Ohio to accept a laser initiation signal and produce a fully developed shock wave output. The detonator performance requirements were established by the on-going IHDIV, NSWC Laser Initiated Transfer Energy Subsystem (LITES) advanced development program. Qualification of the detonator as a component utilizing existing military specifications is the selected approach for this program. The detonator is a deflagration-to-detonator transfer (DDT) device using a secondary explosive, HMX, to generate the required shock wave output. The prototype development and initial system integration tests for the LITES and for the detonator were reported at the 1992 International Pyrotechnics Society Symposium and at the 1992 Survival and Flight Equipment National Symposium. Recent results are presented for the all-fire sensitivity and qualification tests conducted at two different laser initiation pulses.
NASA Astrophysics Data System (ADS)
Konacki, M.; Lejba, P.; Sybilski, P.; Pawłaszek, R.; Kozłowski, S.; Suchodolski, T.; Słonina, M.; Litwicki, M.; Sybilska, A.; Rogowska, B.; Kolb, U.; Burwitz, V.; Baader, J.; Groot, P.; Bloemen, S.; Ratajczak, M.; Hełminiak, K.; Borek, R.; Chodosiewicz, P.; Chimicz, A.
We present an update on the preparation of our assets that consists of a robotic network of eight optical telescopes and a laser ranging station for regular services in the SST domain. We report the development of new optical assets that include a double telescope system, Panoptes-1AB, and a new astrograph on our Solaris-3 telescope at the Siding Spring Observatory, Australia. Progress in the software development necessary for smooth SST operation includes a web based portal and an XML Azure Queue scheduling for the network giving easy access to our sensors. Astrometry24.net our new prototype cloud service for fast astrometry, streak detection and measurement with precision and performance results is also described. In the laser domain, for more than a year, Space Research Centre Borowiec laser station has regularly tracked space debris cooperative and uncooperative targets. The efforts of the stations’ staff have been focused on the tracking of typical rocket bodies from the LEO regime. Additionally, a second independent laser system fully dedicated to SST activities is under development. It will allow for an increased pace of operation of our consortium in the global SST laser domain.
Lewicki, Rafał; Doty, James H.; Curl, Robert F.; Tittel, Frank K.; Wysocki, Gerard
2009-01-01
A transportable prototype Faraday rotation spectroscopic system based on a tunable external cavity quantum cascade laser has been developed for ultrasensitive detection of nitric oxide (NO). A broadly tunable laser source allows targeting the optimum Q3/2(3/2) molecular transition at 1875.81 cm−1 of the NO fundamental band. For an active optical path of 44 cm and 1-s lock-in time constant minimum NO detection limits (1σ) of 4.3 parts per billion by volume (ppbv) and 0.38 ppbv are obtained by using a thermoelectrically cooled mercury–cadmium–telluride photodetector and liquid nitrogen-cooled indium–antimonide photodetector, respectively. Laboratory performance evaluation and results of continuous, unattended monitoring of atmospheric NO concentration levels are reported. PMID:19625625
Laser-driven polyplanar optic display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veligdan, J.T.; Biscardi, C.; Brewster, C.
1998-01-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variablemore » astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.« less
Laser-driven polyplanar optic display
NASA Astrophysics Data System (ADS)
Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard
1998-05-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid- state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the DLPTM chip, the opto-mechanical design and viewing angle characteristics.
Laser interferometric system for six-axis motion measurement.
Zhang, Zhipeng; Menq, Chia-Hsiang
2007-08-01
This article presents the development of a precision laser interferometric system, which is designed to achieve six-axis motion measurement for real-time applications. By combining the advantage of the interferometer with a retroreflector and that of the interferometer with a plane mirror reflector, the system is capable of simultaneously measuring large transverse motions along and large rotational motions about three orthogonal axes. Based on optical path analysis along with the designed kinematics of the system, a closed form relationship between the six-axis motion parameters of the object being measured and the readings of the six laser interferometers is established. It can be employed as a real-time motion sensor for various six-axis motion control stages. A prototype is implemented and integrated with a six-axis magnetic levitation stage to illustrate its resolution and measurement range.
Zeng, Lvming; Piao, Zhonglie; Huang, Shenghai; Jia, Wangcun; Chen, Zhongping
2015-01-01
We have developed laser-diode-based optical-resolution photoacoustic microscopy (LD-OR-PAM) of superficial microvasculature which has the desirable properties of being compact, low-cost, and label-free. A 300-mW visible pulsed laser diode was operated at a 405 ± 5 nm wavelength with a pulse energy as low as 52 nJ. By using a 3.6 MHz ultrasound transducer, the system was tested on carbon fibers with a lateral resolution of 0.95 µm and an SNR of 38 dB. The subcutaneous microvasculature on a mouse back was imaged without an exogenous contrast agent which demonstrates the potential of the proposed prototype for skin chromophores. Our eventual goal is to offer a practical and affordable multi-wavelength functional LD-OR-PAM instrument suitable for clinical applications. PMID:26698732
Three-dimensional volume containing multiple two-dimensional information patterns
NASA Astrophysics Data System (ADS)
Nakayama, Hirotaka; Shiraki, Atsushi; Hirayama, Ryuji; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2013-06-01
We have developed an algorithm for recording multiple gradated two-dimensional projection patterns in a single three-dimensional object. When a single pattern is observed, information from the other patterns can be treated as background noise. The proposed algorithm has two important features: the number of patterns that can be recorded is theoretically infinite and no meaningful information can be seen outside of the projection directions. We confirmed the effectiveness of the proposed algorithm by performing numerical simulations of two laser crystals: an octagonal prism that contained four patterns in four projection directions and a dodecahedron that contained six patterns in six directions. We also fabricated and demonstrated an actual prototype laser crystal from a glass cube engraved by a laser beam. This algorithm has applications in various fields, including media art, digital signage, and encryption technology.
Product Development and its Comparative Analysis by SLA, SLS and FDM Rapid Prototyping Processes
NASA Astrophysics Data System (ADS)
Choudhari, C. M.; Patil, V. D.
2016-09-01
To grab market and meeting deadlines has increased the scope of new methods in product design and development. Industries continuously strive to optimize the development cycles with high quality and cost efficient products to maintain market competitiveness. Thus the need of Rapid Prototyping Techniques (RPT) has started to play pivotal role in rapid product development cycle for complex product. Dimensional accuracy and surface finish are the corner stone of Rapid Prototyping (RP) especially if they are used for mould development. The paper deals with the development of part made with the help of Selective Laser Sintering (SLS), Stereo-lithography (SLA) and Fused Deposition Modelling (FDM) processes to benchmark and investigate on various parameters like material shrinkage rate, dimensional accuracy, time, cost and surface finish. This helps to conclude which processes can be proved to be effective and efficient in mould development. In this research work the emphasis was also given to the design stage of a product development to obtain an optimum design solution for an existing product.
Low-friction nanojoint prototype
NASA Astrophysics Data System (ADS)
Vlassov, Sergei; Oras, Sven; Antsov, Mikk; Butikova, Jelena; Lõhmus, Rünno; Polyakov, Boris
2018-05-01
High surface energy of individual nanostructures leads to high adhesion and static friction that can completely hinder the operation of nanoscale systems with movable parts. For instance, silver or gold nanowires cannot be moved on silicon substrate without plastic deformation. In this paper, we experimentally demonstrate an operational prototype of a low-friction nanojoint. The movable part of the prototype is made either from a gold or silver nano-pin produced by laser-induced partial melting of silver and gold nanowires resulting in the formation of rounded bulbs on their ends. The nano-pin is then manipulated into the inverted pyramid (i-pyramids) specially etched in a Si wafer. Due to the small contact area, the nano-pin can be repeatedly tilted inside an i-pyramid as a rigid object without noticeable deformation. At the same time in the absence of external force the nanojoint is stable and preserves its position and tilt angle. Experiments are performed inside a scanning electron microscope and are supported by finite element method simulations.
NASA Astrophysics Data System (ADS)
Gelmini, E.; Minoni, U.; Docchio, F.
1995-08-01
A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.
Hohenberger, M.; Shvydky, A.; Marozas, J. A.; ...
2016-09-07
Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Shvydky, A.; Marozas, J. A.
Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [Marozas et al., Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSD has been observed to reduce imprint levels bymore » ∼50% compared to the nominal OMEGA EP SSD system. The experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohenberger, M.; Shvydky, A.; Marozas, J. A.
Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less
Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion.
Ren, G; Yan, J; Liu, J; Lan, K; Chen, Y H; Huo, W Y; Fan, Z; Zhang, X; Zheng, J; Chen, Z; Jiang, W; Chen, L; Tang, Q; Yuan, Z; Wang, F; Jiang, S; Ding, Y; Zhang, W; He, X T
2017-04-21
We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 10^{14}-10^{15} W/cm^{2} intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Y_{n} to be related to the laser energy E_{L}, the hohlraum radius R_{h}, and the pulse duration τ through a scaling law of Y_{n}∝(E_{L}/R_{h}^{1.2}τ^{0.2})^{2.5}. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
Accurate Micro-Tool Manufacturing by Iterative Pulsed-Laser Ablation
NASA Astrophysics Data System (ADS)
Warhanek, Maximilian; Mayr, Josef; Dörig, Christian; Wegener, Konrad
2017-12-01
Iterative processing solutions, including multiple cycles of material removal and measurement, are capable of achieving higher geometric accuracy by compensating for most deviations manifesting directly on the workpiece. Remaining error sources are the measurement uncertainty and the repeatability of the material-removal process including clamping errors. Due to the lack of processing forces, process fluids and wear, pulsed-laser ablation has proven high repeatability and can be realized directly on a measuring machine. This work takes advantage of this possibility by implementing an iterative, laser-based correction process for profile deviations registered directly on an optical measurement machine. This way efficient iterative processing is enabled, which is precise, applicable for all tool materials including diamond and eliminates clamping errors. The concept is proven by a prototypical implementation on an industrial tool measurement machine and a nanosecond fibre laser. A number of measurements are performed on both the machine and the processed workpieces. Results show production deviations within 2 μm diameter tolerance.
NASA Astrophysics Data System (ADS)
Nunes, Syllene; Moreno, E.; Oliveira, H.; Osaka, J.; Salvador, G.; Michalany, N.; Tolosa, E.
2002-10-01
This study was to evaluate the effects of the CVL with low energy and short pulse widths. 18 female mice, C57BL/6 (9-11 weeks old) were distributed into four groups. The control group (CG) wasn't exposed to laser beam . Group L1 had 2 laser expositions with 24 hours gap between them (0.5W). Group L2 had 3 expositions (0.5W and 0.25W) and group L3 had 4 expositions (0.25 W). It was used a CVL prototype (5lOnm, 13 Khz, pulse width of 20 ms and spot size of 0.8cm). 7 days after last laser pulse no groups presented actinic keratosis, tumors or collagen changes. CVL had effective action on pilosebaceous units. High energy with few short pulses induced hair follicles proliferation while low energy with many repetitive short pulses showed increased and specific tissue damage besides hair plugging.
Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion
NASA Astrophysics Data System (ADS)
Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.
2017-04-01
We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
2010-01-01
Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm) acupuncture at the acupoint Kongzui (LU6). The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser) at an acupoint causes direct electrical biosignal changes. PMID:21092296
Shah, Kamran; Haq, Izhar Ul; Shah, Shaukat Ali; Khan, Farid Ullah; Khan, Sikander
2014-01-01
Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process. PMID:24592190
Fiber photo-catheters for laser treatment of atrial fibrillation
Peshko, Igor; Rubtsov, Vladimir; Vesselov, Leonid; Sigal, Gennady; Laks, Hillel
2009-01-01
A fiber photo-catheter has been developed for surgical treatment of atrial fibrillation with laser radiation. Atrial fibrillation (AF) is a heart rhythm abnormality that involves irregular and rapid heartbeats. Recent studies demonstrate the superiority of treating AF disease with optical radiation of the near infrared region. To produce long continuous transmural lesions, solid-state lasers and laser diodes, along with end-emitting fiber catheters, have been used experimentally. The absence of side-emitting flexible catheters with the ability to produce long continuous lesions limits the further development of this technology. In this research, a prototype of an optical catheter, consisting of a flexible 10-cm fiber diffuser has been used to make continuous photocoagulation lesions for effective maze procedure treatments. The system also includes: a flexible optical reflector; a series of openings for rapid self-attachment to the tissue; and an optional closed-loop irrigating chamber with circulating saline to cool the optical diffuser and irrigate the tissue. PMID:19587838
Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate: Parametric Investigation
NASA Astrophysics Data System (ADS)
Imran, M. Khalid; Masood, S. H.; Brandt, Milan
2015-12-01
Over the past decade, researchers have demonstrated interest in tribology and prototyping by the laser aided material deposition process. Laser aided direct metal deposition (DMD) enables the formation of a uniform clad by melting the powder to form desired component from metal powder materials. In this research H13 tool steel has been used to clad on a copper alloy substrate using DMD. The effects of laser parameters on the quality of DMD deposited clad have been investigated and acceptable processing parameters have been determined largely through trial-and-error approaches. The relationships between DMD process parameters and the product characteristics such as porosity, micro-cracks and microhardness have been analysed using scanning electron microscope (SEM), image analysis software (ImageJ) and microhardness tester. It has been found that DMD parameters such as laser power, powder mass flow rate, feed rate and focus size have an important role in clad quality and crack formation.
Strategic Alliances: Making a Difference One Warfighter At a Time
2011-03-12
Prototype Integration Planning Machining / CNC / Metals Welding Assembly / Paint Integration •Field-Experienced Veterans •Component, Subsystems...Wiring Harness •CAD/CAM CNC Programming •Quick reaction of parts - CNC , Lathes, Mills, Water Jet/Laser Cutting Design •Mechanical, Electrical...DEFORMATION RESISTANCE WELDING • Tubular Structural welding, Light weight structures COMBINED PLASMA -MIG ARC WELDING • Faster than any other
TACOM LCMC Industrial Base Networking Summit
2010-03-25
CAD/CAM CNC Programming •Quick reaction of parts - CNC , Lathes , Mills, Water Jet/Laser Cutting Design •Mechanical, Electrical, Electronics...system that can efficiently fabricate standard and unique parts at the point of need • Lathe modules deployed at 4 strategic SWA locations • Concepts...Prototype Integration Planning Machining / CNC / Metals Welding Assembly / Paint Integration •Field-Experienced Veterans •Component, Subsystems
Automated grading, upgrading, and cuttings prediction of surfaced dry hardwood lumber
Sang-Mook Lee; Phil Araman; A.Lynn Abbott; Matthew F. Winn
2010-01-01
This paper concerns the scanning, sawing, and grading of kiln-dried hardwood lumber. A prototype system is described that uses laser sources and a video camera to scan boards. The system automatically detects defects and wane, searches for optimal sawing solutions, and then estimates the grades of the boards that would result. The goal is to derive maximum commercial...
Hardwood lumber scanning tests to determine NHLA lumber grades
Philip A. Araman; Ssang-Mook Lee; A. Lynn Abbott; Matthew F. Winn
2011-01-01
This paper concerns the scanning, and grading of kiln-dried hardwood lumber. A prototype system is described that uses laser sources and a video camera to scan boards. The system automatically detects defects and wane, grades the boards, and then searches for higher value boards within the original board. The goal is to derive maximum commercial value based on current...
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
Portable atomic frequency standard based on coherent population trapping
NASA Astrophysics Data System (ADS)
Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming
2015-05-01
In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.
Miniature ureteroscope tip designs for use in thulium fiber laser lithotripsy
NASA Astrophysics Data System (ADS)
Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.
2017-02-01
A miniature ureteroscope has the potential to eliminate need for full anesthesia and dilation, increase comfort and safety of laser lithotripsy via ureteroscopy, and reduce hospital costs via an office based procedure. A prototype, 4.5 Fr (1.5-mm-OD), five channel ureteroscope tip was developed, housing a 200-μm-ID central channel for insertion of small, 100-μm-core fibers and four surrounding channels, each with 510-μm-ID for instrumentation, irrigation, imaging, and illumination, respectively. Common urological instruments (including fibers, guidewires, and stone baskets) were inserted through tip's working channels to demonstrate feasibility. Low irrigation rates were measured, revealing a need for manual pump-assisted irrigation. Imaging was conducted using 3k, 6k, and 10k pixel miniature flexible endoscopes with 0.4, 0.6, and 0.9 mm outer diameters, respectively. The 3k pixel endoscope with integrated illumination was inserted through the prototype unimpeded, and successfully demonstrated ability to differentiate between hard tissues (e.g. kidney stones) and soft tissues (e.g. ureter wall), for visibility and safety during potential clinical application. Based on both image quality and instrument diameter, the 6k pixel endoscope provided an optimal solution for miniature ureteroscopy.
Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya; Ku, Jentung; Kaya, Tarik
1998-01-01
This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.
Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration  the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).