Sample records for beamline alignment operations

  1. Some aspects of SR beamline alignment

    NASA Astrophysics Data System (ADS)

    Gaponov, Yu. A.; Cerenius, Y.; Nygaard, J.; Ursby, T.; Larsson, K.

    2011-09-01

    Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.

  2. Commissioning of the synchrotron radiation protection system and beamlines frontends at NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S., E-mail: seletskiy@bnl.gov; Amundsen, C.; Choi, J.

    2016-07-27

    The first eight insertion devices (IDs) at the NSLS-II were commissioned during the fall run of 2014. In this paper we discuss commissioning of the synchrotron radiation protection (SRP) system and beamline frontends (FE) for the respective IDs. We describe the diagnostics utilized if FE commissioning and a procedure that was used for the alignment of the photon beam from insertion devices in the beamline frontends. Then we discuss the current status of the SRP system and operation of the commissioned frontends.

  3. Ray-tracing as a tool for efficient specification of beamline optical components

    NASA Astrophysics Data System (ADS)

    Pedreira, P.; Sics, I.; Llonch, M.; Ladrera, J.; Ribó, Ll.; Colldelram, C.; Nicolas, J.

    2016-09-01

    We propose a method to determine the required performances of the positioning mechanics of the optical elements of a beamline. Generally, when designing and specifying a beamline, one assumes that the position and orientations of the optical elements should be aligned to its ideal position. For this, one would generally require six degrees of freedom per optical element. However, this number is reduced due to symmetries (e.g. a flat mirror does not care about yaw). Generally, one ends up by motorizing many axes, with high resolution and a large motion range. On the other hand, the diagnostics available at a beamline provide much less variables than the available motions. Moreover, the actual parameters that one wants to optimize are reduced to a very few. These are basically, spot size and size at the sample, flux, and spectral resolution. The result is that many configurations of the beamline are actually equivalent, and therefore indistinguishable from the ideal alignment in terms of performance.We propose a method in which the effect of misalignment of each one of the degrees of freedom of the beamline is scanned by ray tracing. This allows building a linear system in which one can identify and select the best set of motions to control the relevant parameters of the beam. Once the model is built it provides the required optical pseudomotors as well as the requirements in alignment and manufacturing, for all the motions, as well as the range, resolution and repeatability of the motorized axes.

  4. Recent advances in automatic alignment system for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki

    2011-03-01

    The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.

  5. Hartmann wavefront sensors and their application at FLASH.

    PubMed

    Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus

    2016-01-01

    Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.

  6. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  7. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry ( e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape ( e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength ( in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  8. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    PubMed Central

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; Domning, Edward E.; Merthe, Daniel J.; Salmassi, Farhad; Smith, Brian V.

    2015-01-01

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described. PMID:25931083

  9. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE PAGES

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; ...

    2015-04-08

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry ( e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape ( e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength ( in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  10. NSLS-II storage ring insertion device and front-end commissioning and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.

    The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed.more » We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.« less

  11. Characterization of an in-vacuum PILATUS 1M detector.

    PubMed

    Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael

    2014-05-01

    A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  12. Control system for the 2nd generation Berkeley AutoMounters (BAM2) at GM/CA CAT macromolecular crystallography beamlines

    PubMed Central

    Makarov, O.; Hilgart, M.; Ogata, C.; Pothineni, S.; Cork, C.

    2011-01-01

    GM/CA CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second generation Berkeley automounter is being integrated into the beamline control system at the 23-BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design. PMID:21822343

  13. Microfocusing at the PG1 beamline at FLASH

    DOE PAGES

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; ...

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines andmore » limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Lastly, aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.« less

  14. An isocenter estimation tool for proton gantry alignment

    NASA Astrophysics Data System (ADS)

    Hansen, Peter; Hu, Dongming

    2017-12-01

    A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.

  15. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, R

    2004-06-08

    The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takesmore » into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less

  16. EPICS controlled sample mounting robots at the GM/CA CAT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, O. A.; Benn, R.; Corcoran, S.

    2007-11-11

    GM/CA CAT at Sector 23 of the advanced photon source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction [R.F. Fischetti, et al., GM/CA canted undulator beamlines for protein crystallography, Acta Crystallogr. A 61 (2005) C139]. The facility consists of three beamlines; two based on canted undulators and one on a bending magnet. The scientific and technical goals of the CAT emphasize streamlined, efficient throughput for a variety of sample types, sizes and qualities, representing the cutting edge of structural biology research. For this purpose all three beamlines are equipped with the ALS-stylemore » robots [C.W.Cork, et al. Status of the BCSB automated sample mounting and alignment system for macromolecular crystallography at the Advanced Light Source, SRI-2003, San-Francisco, CA, USA, August 25-29, 2003] for an automated mounting of cryo-protected macromolecular crystals. This report summarizes software and technical solutions implemented with the first of the three operational robots at beamline 23-ID-B. The automounter's Dewar can hold up to 72 or 96 samples residing in six Rigaku ACTOR magazines or ALS-style pucks, respectively. Mounting of a crystal takes approximately 2 s, during which time the temperature of the crystal is maintained near that of liquid nitrogen.« less

  17. Optical and x-ray alignment approaches for off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  18. Use of the BINP HLS to measure vertical changes in the locations of the building and ground at the PAL-XFEL

    NASA Astrophysics Data System (ADS)

    Choi, Hyo-Jin; Seo, Kwang-Won; Gil, Kye-Hwan; Kim, Seung-Hwan; Kang, Heung-Sik

    2016-09-01

    The Pohang Accelerator Laboratory's X-ray free-electron laser (PAL-XFEL), a 4 th generation light source, is currently being installed and will be completed by December 2015 so that users can be supported beginning in 2016. The PAL-XFEL equipment must continuously maintain the bunch-tobunch beam parameters (60 Hz, Energy: 10 GeV, Charge: 200 pC, Bunch Length: 60 fs, Emittance X/Y: 0.481/0.256 mm rad) in order to supply stable photons with the energy and flux appropriate for tests by beamline users. To this end, the PAL-XFEL equipment has to be kept precisely aligned (Linear Accelerator: +/- 100 μm, Undulator: +/- 50 μm). As a part of the process for installing the PAL-XFEL, a GPS-using surface geodetic network is being constructed for precise equipment measurement and alignment, and the installation of a tunnel measurement network inside the buildings is in the preparation stage; additionally, the fiducialization of major equipment is underway. After the PAL-XFEL equipment is optimized and aligned, if the ground and the buildings go through vertical changes during operation, misalignment (and tilt) of the equipment, including various magnets and RF structures, will cause errors in the electron beam's trajectory, which will lead to changes to the beam parameters. For continuous and systemic measurement of vertical changes in the buildings and monitoring of ground sinking and uplifting, the Budker Institute of Nuclear Physics (BINP) Ultrasonic-type Hydrostatic Levelling System (HLS) is to be installed and operated in all sections of the PAL-XFEL for the linear accelerator, the insertion device (undulator) and the beamline. This study will introduce the operation principle, design concept, and advantages (self-calibration) of the HLS and will outline its installation plan and operation plan.

  19. Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guang; Chu, Shengqi; Sun, Tianxi

    A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368–1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function andmore » flexibility of general XAS beamlines, and extend their capabilities to a wider user community.« less

  20. Optical pseudomotors for soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedreira, P., E-mail: ppedreira@cells.es; Sics, I.; Sorrentino, A.

    2016-05-15

    Optical elements of soft x-ray beamlines usually have motorized translations and rotations that allow for the fine alignment of the beamline. This is to steer the photon beam at some positions and to correct the focus on slits or on sample. Generally, each degree of freedom of a mirror induces a change of several parameters of the beam. Inversely, several motions are required to actuate on a single optical parameter, keeping the others unchanged. We define optical pseudomotors as combinations of physical motions of the optical elements of a beamline, which allow modifying one optical parameter without affecting the others.more » We describe a method to obtain analytic relationships between physical motions of mirrors and the corresponding variations of the beam parameters. This method has been implemented and tested at two beamlines at ALBA, where it is used to control the focus of the photon beam and its position independently.« less

  1. Commissioning of the soft x-ray undulator beamline at the Siam Photon Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Hideki, E-mail: hideki@slri.or.th; Chaichuay, Sarunyu; Sudmuang, Porntip

    2016-07-27

    The synchrotron radiation from the first undulator at the Siam Photon Laboratory was characterized with the photon beam position monitors (BPMs) and grating monochromator. The soft x-ray undulator beamline employs a varied line-spacing plane grating monochromator with three interchangeable gratings. Since 2010, the beamline has delivered photons with energy of 40-160 and 220-1040 eV at the resolving power of 10,000 for user services at the two end- stations that utilize the photoemission electron spectroscopy and microscopy techniques. The undulator power-density distributions measured by the 0.05-mm wire-scan BPM were in good agreement with those in simulation. The flux-density distributions were evaluatedmore » in the red-shift measurements, which identify the central cone of radiation and its distribution. Since 2014, the operation of the other insertion devices in the storage ring has started, and consequently bought about the increases in the emittance from 41 to 61 nm·rad and the coupling constant from 4 to 11%. The local electron-orbit correction greatly improved the alignment of the electron beam in the undulator section resulting in the improvements of the photon flux and harmonics peaks of the undulator radiation.« less

  2. Development of at-wavelength metrology for x-ray optics at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Yuan, Sheng

    2010-07-09

    The comprehensive realization of the exciting advantages of new third- and forth-generation synchrotron radiation light sources requires concomitant development of reflecting and diffractive x-ray optics capable of micro- and nano-focusing, brightness preservation, and super high resolution. The fabrication, tuning, and alignment of the optics are impossible without adequate metrology instrumentation, methods, and techniques. While the accuracy of ex situ optical metrology at the Advanced Light Source (ALS) has reached a state-of-the-art level, wavefront control on beamlines is often limited by environmental and systematic alignment factors, and inadequate in situ feedback. At ALS beamline 5.3.1, we are developing broadly applicable, high-accuracy,more » in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of tests with increasing accuracy and sensitivity. Geometric Hartmann tests, performed with a scanning illuminated sub-aperture determine the wavefront slope across the full mirror aperture. Shearing interferometry techniques use coherent illumination and provide higher sensitivity wavefront measurements. Combining these techniques with high precision optical metrology and experimental methods will enable us to provide in situ setting and alignment of bendable x-ray optics to realize diffraction-limited, sub 50 nm focusing at beamlines. We describe here details of the metrology beamline endstation, the x-ray beam diagnostic system, and original experimental techniques that have already allowed us to precisely set a bendable KB mirror to achieve a focused spot size of 150 nm.« less

  3. Conceptual design of the neutral beamline for TPX long pulse operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, K.E.; Dahlgren, F.; Fan, H.M.

    The Tokamak Physics Experiment (TPX) will require a minimum of 8.0 megawatts of Neutral Beam beating power to be injected into the plasma for pulse lengths up to one thousand (1000) seconds to meet the experimental objectives. The Neutral Beam Injection System (NBIS) for initial operation on TPX will consist of one neutral beamline (NBL) with three Ion sources. Provisions will be made for a total of three NBLs. The NBIS will provide S.S MW of 120 keV D{sup 0} and 2.S MW of partial-energy D{sup 0} at 60 keV and 40 keV. The system also provides for measuring themore » neutral beam power, limits excess cold gas from entering the torus, and provides independent power, control, and protection for each individual ion source and accelerating structure. The Neutral Beam/Torus Connecting Duct (NB/TCD) includes a vacuum valve, an electrical insulating break, alignment bellows, vacuum seals, internal energy absorbing protective elements, beam diagnostics and bakeout capability. The NBL support structure will support the NBL, which will weigh approximately 80 tons at the proper elevation and withstand a seismic event. The NBIS currently operational on the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory (PPPL) is restricted to injection pulse lengths of two (2) seconds by the limited capability of various energy absorbers. This paper describes the modifications and improvements which will be implemented for the TFTR Neutral Beamlines and the NB/TCD to satisfy the TPX requirements.« less

  4. Geometry calibration for x-ray equipment in radiation treatment devices and estimation of remaining patient alignment errors

    NASA Astrophysics Data System (ADS)

    Selby, Boris P.; Sakas, Georgios; Walter, Stefan; Stilla, Uwe

    2008-03-01

    Positioning a patient accurately in treatment devices is crucial for radiological treatment, especially if accuracy vantages of particle beam treatment are exploited. To avoid sub-millimeter misalignments, X-ray images acquired from within the device are compared to a CT to compute respective alignment corrections. Unfortunately, deviations of the underlying geometry model for the imaging system degrade the achievable accuracy. We propose an automatic calibration routine, which bases on the geometry of a phantom and its automatic detection in digital radiographs acquired for various geometric device settings during the calibration. The results from the registration of the phantom's X-ray projections and its known geometry are used to update the model of the respective beamlines, which is used to compute the patient alignment correction. The geometric calibration of a beamline takes all nine relevant degrees of freedom into account, including detector translations in three directions, detector tilt by three axes and three possible translations for the X-ray tube. Introducing a stochastic model for the calibration we are able to predict the patient alignment deviations resulting from inaccuracies inherent to the phantom design and the calibration. Comparisons of the alignment results for a treatment device without calibrated imaging systems and a calibrated device show that an accurate calibration can enhance alignment accuracy.

  5. The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockhauser, Sandor; UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble; Ravelli, Raimond B. G.

    2013-07-01

    Hardware and software solutions for MX data-collection strategies using the EMBL/ESRF miniaturized multi-axis goniometer head are presented. Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitatemore » the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.« less

  6. The ID23-2 structural biology microfocus beamline at the ESRF

    PubMed Central

    Flot, David; Mairs, Trevor; Giraud, Thierry; Guijarro, Matias; Lesourd, Marc; Rey, Vicente; van Brussel, Denis; Morawe, Christian; Borel, Christine; Hignette, Olivier; Chavanne, Joel; Nurizzo, Didier; McSweeney, Sean; Mitchell, Edward

    2010-01-01

    The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick–Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation. PMID:20029119

  7. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines andmore » limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Lastly, aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.« less

  9. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  10. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  11. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE PAGES

    Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.; ...

    2016-08-12

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  12. Large-field high-contrast hard x-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source.

    PubMed

    Lim, Jun; Park, So Yeong; Huang, Jung Yun; Han, Sung Mi; Kim, Hong-Tae

    2013-01-01

    We developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects. The setup, including the optics and the alignment, is simple and easy, and allows faster and easier imaging of large bio-samples.

  13. Beam measurements using visible synchrotron light at NSLS2 storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Weixing, E-mail: chengwx@bnl.gov; Bacha, Bel; Singh, Om

    2016-07-27

    Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper.more » A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.« less

  14. The Advanced Light Source (ALS) Slicing Undulator Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimann, P. A.; Glover, T. E.; Plate, D.

    2007-01-19

    A beamline optimized for the bunch slicing technique has been construction at the Advanced Light Source (ALS). This beamline includes an in-vacuum undulator, soft and hard x-ray beamlines and a femtosecond laser system. The soft x-ray beamline may operate in spectrometer mode, where an entire absorption spectrum is accumulated at one time, or in monochromator mode. The femtosecond laser system has a high repetition rate of 20 kHz to improve the average slicing flux. The performance of the soft x-ray branch of the ALS slicing undulator beamline will be presented.

  15. A hard X-ray nanoprobe beamline for nanoscale microscopy.

    PubMed

    Winarski, Robert P; Holt, Martin V; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G Brian; McNulty, Ian; Maser, Jörg

    2012-11-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  16. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  17. At-wavelength metrology facility for soft X-ray reflection optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, A., E-mail: andrey.sokolov@helmholtz-berlin.de; Bischoff, P.; Eggenstein, F.

    2016-05-15

    A new Optics Beamline coupled to a versatile UHV reflectometer is successfully operating at BESSY-II. It is used to carry out at-wavelength characterization and calibration of in-house produced gratings and novel nano-optical devices as well as mirrors and multilayer systems in the UV and XUV spectral region. This paper presents most recent commissioning data of the beamline and shows their correlation with initial beamline design calculations. Special attention is paid to beamline key parameters which determine the quality of the measurements such as high-order suppression and stray light behavior. The facility is open to user operation.

  18. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  19. 10 years of protein crystallography at AR-NW12A beamline

    NASA Astrophysics Data System (ADS)

    Chavas, L. M. G.; Yamada, Y.; Hiraki, M.; Igarashi, N.; Matsugaki, N.; Wakatsuki, S.

    2013-03-01

    The exponential growth of protein crystallography can be observed in the continuously increasing demand for synchrotron beam time, both from academic and industrial users. Nowadays, the screening of a profusion of sample crystals for more and more projects is being implemented by taking advantage of fully automated procedures at every level of the experiments. The insertion device AR-NW12A beamline is one of the five macromolecular crystallography (MX) beamlines at the Photon Factory (PF). Currently the oldest MX beamline operational at the High Energy Accelerator Research Organization (KEK), the end-station was launched in 2001 as part of an upgrade of the PF Advanced Ring. Since its commissioning, AR-NW12A has been operating as a high-throughput beamline, slowly evolving to a multipurpose end-station for MX experiments. The development of the beamline took place about a decade ago, in parallel with a drastic development of protein crystallography and more general synchrotron technology. To keep the beamline up-to-date and competitive with other MX stations in Japan and worldwide, new features have been constantly added, with the goal of user friendliness of the various beamline optics and other instruments. Here we describe the evolution of AR-NW12A for its tenth anniversary. We also discuss the plans for upgrades for AR-NW12A, the future objectives in terms of the beamline developments, and especially the strong desire to open the beamline to a larger user community.

  20. Nonneutral plasma diagnostic commissioning for the ALPHA Antihydrogen experiment

    NASA Astrophysics Data System (ADS)

    Konewko, S.; Friesen, T.; Tharp, T. D.; Alpha Collaboration

    2017-10-01

    The ALPHA experiment at CERN creates antihydrogen by mixing antiproton and positron plasmas. Diagnostic measurements of the precursor plasmas are performed using a diagnostic suite, colloquially known as the ``stick.'' This stick has a variety of sensors and is able to move to various heights to align the desired diagnostic with the beamline. A cylindrical electrode, a faraday cup, an electron gun, and a microchannel-plate detector (MCP) are regularly used to control and diagnose plasmas in ALPHA. We have designed, built, and tested a new, upgraded stick which includes measurement capabilities in both beamline directions.

  1. Macromolecular crystallography beamline X25 at the NSLS

    PubMed Central

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community. PMID:24763654

  2. SPring-8 BL44XU, beamline designed for structure analysis of large biological macromolecular assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiura, Akifumi, E-mail: hgsur-a@protein.osaka-u.ac.jp; Yamashita, Eiki; Yoshimura, Masato

    2016-07-27

    Beamline BL44XU at SPring-8 is operated by the Institute for Protein Research of Osaka University. The beamline is designed for X-ray crystallography of large biological macromolecular assemblies. Here we show its detailed performances, results, and the ongoing upgrade plans.

  3. A Dedicated Micro-Tomography Beamline For The Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.

    2010-07-23

    A dedicated micro-tomography beamline is proposed for the Australian Synchrotron. It will enable high-resolution micro-tomography with resolution below a micron and supporting phase-contrast imaging modes. A key feature of the beamline will be high-throughput/high-speed operation enabling near real-time micro-tomography.

  4. PF-AR NW14, a new time-resolved diffraction/scattering beamline

    NASA Astrophysics Data System (ADS)

    Nozawa, Shunsuke; Adachi, Shin-ichi; Tazaki, Ryoko; Takahashi, Jun-ichi; Itatani, Jiro; Daimon, Masahiro; Mori, Takeharu; Sawa, Hiroshi; Kawata, Hiroshi; Koshihara, Shin-ya

    2005-01-01

    NW14 is a new insertion device beamline at the Photon Factory Advanced Ring (PF-AR), which is a unique ring with full-time single-bunched operation, aiming for timeresolved x-ray diffraction/scattering and XAFS experiments. The primary scientific goal of this beamline is to observe the ultrafast dynamics of condensed matter systems such as organic and inorganic crystals, biological systems and liquids triggered by optical pulses. With the large photon fluxes derived from the undulator, it should become possible to take a snapshoot an atomic-scale image of the electron density distribution. By combining a series of images it is possible to produce a movie of the photo-induced dynamics with 50-ps resolution. The construction of the beamline is being funded by the ERATO Koshihara Non-equilibrium Dynamics Project of the Japan Science and Technology Agency (JST), and the beamline will be operational from autumn 2005.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  6. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Uwe; Darowski, Nora; Fuchs, Martin R.

    2012-03-20

    Three macromolecular crystallography (MX) beamlines at the Helmholtz-Zentrum Berlin (HZB) are available for the regional, national and international structural biology user community. The state-of-the-art synchrotron beamlines for MX BL14.1, BL14.2 and BL14.3 are located within the low-[beta] section of the BESSY II electron storage ring. All beamlines are fed from a superconducting 7 T wavelength-shifter insertion device. BL14.1 and BL14.2 are energy tunable in the range 5-16 keV, while BL14.3 is a fixed-energy side station operated at 13.8 keV. All beamlines are equipped with CCD detectors. BL14.1 and BL14.2 are in regular user operation providing about 200 beam days permore » year and about 600 user shifts to approximately 50 research groups across Europe. BL14.3 has initially been used as a test facility and was brought into regular user mode operation during the year 2010. BL14.1 has recently been upgraded with a microdiffractometer including a mini-[kappa] goniometer and an automated sample changer. Other user facilities include office space adjacent to the beamlines, a sample preparation laboratory, a biology laboratory (safety level 1) and high-end computing resources. In this article the instrumentation of the beamlines is described, and a summary of the experimental possibilities of the beamlines and the provided ancillary equipment for the user community is given.« less

  7. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin

    PubMed Central

    Mueller, Uwe; Darowski, Nora; Fuchs, Martin R.; Förster, Ronald; Hellmig, Michael; Paithankar, Karthik S.; Pühringer, Sandra; Steffien, Michael; Zocher, Georg; Weiss, Manfred S.

    2012-01-01

    Three macromolecular crystallography (MX) beamlines at the Helmholtz-Zentrum Berlin (HZB) are available for the regional, national and international structural biology user community. The state-of-the-art synchrotron beamlines for MX BL14.1, BL14.2 and BL14.3 are located within the low-β section of the BESSY II electron storage ring. All beamlines are fed from a superconducting 7 T wavelength-shifter insertion device. BL14.1 and BL14.2 are energy tunable in the range 5–16 keV, while BL14.3 is a fixed-energy side station operated at 13.8 keV. All three beamlines are equipped with CCD detectors. BL14.1 and BL14.2 are in regular user operation providing about 200 beam days per year and about 600 user shifts to approximately 50 research groups across Europe. BL14.3 has initially been used as a test facility and was brought into regular user mode operation during the year 2010. BL14.1 has recently been upgraded with a microdiffractometer including a mini-κ goniometer and an automated sample changer. Additional user facilities include office space adjacent to the beamlines, a sample preparation laboratory, a biology laboratory (safety level 1) and high-end computing resources. In this article the instrumentation of the beamlines is described, and a summary of the experimental possibilities of the beamlines and the provided ancillary equipment for the user community is given. PMID:22514183

  8. Status of the Nanoscopium Scanning Hard X-ray Nanoprobe Beamline of Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Kewish, C. M.; Ribbens, M.; Moreno, T.; Polack, F.; Baranton, G.; Desjardins, K.; Samama, J. P.

    2013-10-01

    The Nanoscopium 155 m-long scanning hard X-ray nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal 2D/3D imaging. The beamline aims to reach down to 30 nm spatial resolution in the 5-20 keV energy range. Two experimental stations working in consecutive operation mode will be dedicated to coherent diffractive imaging and scanning X-ray nanoprobe techniques. The beamline is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this paper.

  9. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donzelli, Mattia, E-mail: donzelli@esrf.fr; Bräuer-Krisch, Elke; Nemoz, Christian

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Usingmore » four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2{sup ∘}. Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.« less

  10. Tracking Simulation of Third-Integer Resonant Extraction for Fermilab's Mu2e Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chong Shik; Amundson, James; Michelotti, Leo

    2015-02-13

    The Mu2e experiment at Fermilab requires acceleration and transport of intense proton beams in order to deliver stable, uniform particle spills to the production target. To meet the experimental requirement, particles will be extracted slowly from the Delivery Ring to the external beamline. Using Synergia2, we have performed multi-particle tracking simulations of third-integer resonant extraction in the Delivery Ring, including space charge effects, physical beamline elements, and apertures. A piecewise linear ramp profile of tune quadrupoles was used to maintain a constant averaged spill rate throughout extraction. To study and minimize beam losses, we implemented and introduced a number ofmore » features, beamline element apertures, and septum plane alignments. Additionally, the RF Knockout (RFKO) technique, which excites particles transversely, is employed for spill regulation. Combined with a feedback system, it assists in fine-tuning spill uniformity. Simulation studies were carried out to optimize the RFKO feedback scheme, which will be helpful in designing the final spill regulation system.« less

  11. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments

    PubMed Central

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W.; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J.; Hall, David R.; Lavault, Bernard; McCarthy, Andrew A.; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B. G.; Thibault, Xavier; Walsh, Martin A.; Leonard, Gordon A.; McSweeney, Sean M.

    2010-01-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1. PMID:20724792

  12. The X-ray microscopy beamline UE46-PGM2 at BESSY

    NASA Astrophysics Data System (ADS)

    Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.

    2010-06-01

    The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

  13. The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, D.; Jonge, M. D. de; Howard, D. L.

    2011-09-09

    A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.

  14. Optical design of the ARAMIS-beamlines at SwissFEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follath, R.; Flechsig, U.; Milne, C.

    2016-07-27

    SwissFEL is a free electron laser facility for hard and soft X-rays at the Paul Scherrer Institut in Switzerland. The first hard X-ray FEL named ARAMIS will deliver photons in the wavelength range from 1 Å to 7 Å in up to three beamlines alternatively. The beamlines are equipped with crystal monochromators, cover the full wavelength range and offer a variety of operational modes.

  15. Performance of the Taiwan Contract Beamline BL12B2 at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M.-T.; Du, C.-H.; Lee, J.-F.

    2004-05-12

    The recent status of the SPring-8 Taiwan Contract Beamline BL12B2 is reported. The beamline was designed to provide multiple applications for materials and biological researches. It is equipped with four end stations, including an EXAFS station, a Huber 6-circle diffractometer for X-ray scattering, a curved image plate for the studies of powder diffraction, and a station for the protein crystallography. The beamline construction was completed in 2000 and it has been in full speed operation since September 2001. To enhance the focusing capacity, the beamline optics has been modified in 2002 and a gain of factor of 10 in photonmore » flux was consequently obtained at protein crystallography station.« less

  16. New micro-beam beamline at SPring-8, targeting at protein micro-crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Kunio; Ueno, Go; Nisawa, Atsushi

    2010-06-23

    A new protein micro-crystallography beamline BL32XU at SPring-8 is under construction and scheduled to start operation in 2010. The beamline is designed to provide the stabilized and brilliant micro-beam to collect high-quality data from micro-crystals. The beamline consists of a hybrid in-vacuum undulator, a liquid-nitrogen cooled double crystal monochromator, and K-B focusing mirrors with large magnification factor. Development of data acquisition system and end station consists of high-precision diffractometer, high-efficiency area detector, sample auto-changer etc. are also in progress.

  17. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.

    2017-08-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  18. The Protein Micro-Crystallography Beamlines for Targeted Protein Research Program

    NASA Astrophysics Data System (ADS)

    Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi

    In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented.

  19. WIFIP: a web-based user interface for automated synchrotron beamlines.

    PubMed

    Sallaz-Damaz, Yoann; Ferrer, Jean Luc

    2017-09-01

    The beamline control software, through the associated graphical user interface (GUI), is the user access point to the experiment, interacting with synchrotron beamline components and providing automated routines. FIP, the French beamline for the Investigation of Proteins, is a highly automatized macromolecular crystallography (MX) beamline at the European Synchrotron Radiation Facility. On such a beamline, a significant number of users choose to control their experiment remotely. This is often performed with a limited bandwidth and from a large choice of computers and operating systems. Furthermore, this has to be possible in a rapidly evolving experimental environment, where new developments have to be easily integrated. To face these challenges, a light, platform-independent, control software and associated GUI are required. Here, WIFIP, a web-based user interface developed at FIP, is described. Further than being the present FIP control interface, WIFIP is also a proof of concept for future MX control software.

  20. Energy optimization of a regular macromolecular crystallography beamline for ultra-high-resolution crystallography

    DOE PAGES

    Rosenbaum, Gerd; Ginell, Stephan L.; Chen, Julian C.-H.

    2015-01-01

    In this study, a practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19-ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower- and higher-energy harmonic contamination. A Pd-coated mirror and Al attenuators acted as effective low- and high-bandpass filters. The resulting flux at 30 keV, although significantly lower than with X-ray optics designed and optimized for this energy, allowed for accuratemore » data collection on crystals of the small protein crambin to 0.38 Å resolution.« less

  1. A neutral-beam profile monitor with a phosphor screen and a high-sensitivity camera for the J-PARC KOTO experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.

    2018-03-01

    We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.

  2. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, Irina; Huang, Rong; Graber, Timothy

    2009-09-02

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10{sup 11} photons s{sup -1} at 1 {angstrom} wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 {mu}rad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) {delta}E/E = 1.5 x 10{sup -4} (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and deliversmore » to the sample focused beam of size (FWHM) 240 {micro}m (horizontally) x 160 {micro}m (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.« less

  3. Advanced light source: Compendium of user abstracts and technical reports,1993-1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1997-04-01

    This compendium contains abstracts written by users summarizing research completed or in progress from 1993-1996, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998. Two tables of contents organize the user abstracts by beamline and by area of research, and an author index makes abstracts accessible by author and by principal investigator. Technical details for each beamline including whom to contact for additional information can be found in the beamline information section. Separate abstracts have been indexed into the database for contributions to thismore » compendium.« less

  4. SPring-8 beamline control system.

    PubMed

    Ohata, T; Konishi, H; Kimura, H; Furukawa, Y; Tamasaku, K; Nakatani, T; Tanabe, T; Matsumoto, N; Ishii, M; Ishikawa, T

    1998-05-01

    The SPring-8 beamline control system is now taking part in the control of the insertion device (ID), front end, beam transportation channel and all interlock systems of the beamline: it will supply a highly standardized environment of apparatus control for collaborative researchers. In particular, ID operation is very important in a third-generation synchrotron light source facility. It is also very important to consider the security system because the ID is part of the storage ring and is therefore governed by the synchrotron ring control system. The progress of computer networking systems and the technology of security control require the development of a highly flexible control system. An interlock system that is independent of the control system has increased the reliability. For the beamline control system the so-called standard model concept has been adopted. VME-bus (VME) is used as the front-end control system and a UNIX workstation as the operator console. CPU boards of the VME-bus are RISC processor-based board computers operated by a LynxOS-based HP-RT real-time operating system. The workstation and the VME are linked to each other by a network, and form the distributed system. The HP 9000/700 series with HP-UX and the HP 9000/743rt series with HP-RT are used. All the controllable apparatus may be operated from any workstation.

  5. An Automated, High-Throughput System for GISAXS and GIWAXS Measurements of Thin Films

    NASA Astrophysics Data System (ADS)

    Schaible, Eric; Jimenez, Jessica; Church, Matthew; Lim, Eunhee; Stewart, Polite; Hexemer, Alexander

    Grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) are important techniques for characterizing thin films. In order to meet rapidly increasing demand, the SAXSWAXS beamline at the Advanced Light Source (beamline 7.3.3) has implemented a fully automated, high-throughput system to conduct SAXS, GISAXS and GIWAXS measurements. An automated robot arm transfers samples from a holding tray to a measurement stage. Intelligent software aligns each sample in turn, and measures each according to user-defined specifications. Users mail in trays of samples on individually barcoded pucks, and can download and view their data remotely. Data will be pipelined to the NERSC supercomputing facility, and will be available to users via a web portal that facilitates highly parallelized analysis.

  6. The new HMI beamline MAGS: an instrument for hard X-ray diffraction at BESSY.

    PubMed

    Dudzik, Esther; Feyerherm, Ralf; Diete, Wolfgang; Signorato, Riccardo; Zilkens, Christopher

    2006-11-01

    The Hahn-Meitner-Institute Berlin is operating the new hard X-ray diffraction beamline MAGS at the Berlin synchrotron radiation source BESSY. The beamline is intended to complement the existing neutron instrumentation at the Berlin Neutron Scattering Centre. The new beamline uses a 7 T multipole wiggler to produce photon fluxes in the 10(11)-10(12) photons s(-1) (100 mA)(-1) (0.1% bandwidth)(-1) range at energies from 4 to 30 keV at the experiment. It has active bendable optics to provide flexible horizontal and vertical focusing and to compensate the large heat load from the wiggler source. The experimental end-station consists of a six-circle Huber diffractometer which can be used with an additional (polarization) analyser and different sample environments. The beamline is intended for single-crystal diffraction and resonant magnetic scattering experiments for the study of ordering phenomena, phase transitions and materials science.

  7. Diffraction gratings metrology and ray-tracing results for an XUV Raman spectrometer at FLASH

    PubMed Central

    Dziarzhytski, Siarhei; Siewert, Frank; Gwalt, Grzegorz; Seliger, Tino; Rübhausen, Michael; Weigelt, Holger; Brenner, Günter

    2018-01-01

    The extreme-ultraviolet double-stage imaging Raman spectrometer is a permanent experimental endstation at the plane-grating monochromator beamline branch PG1 at FLASH at DESY in Hamburg, Germany. This unique instrument covers the photon energy range from 20 to 200 eV with high energy resolution of about 2 to 20 meV (design values) featuring an efficient elastic line suppression as well as effective stray light rejection. Such a design enables studies of low-energy excitations like, for example, phonons in solids close to the vicinity of the elastic line. The Raman spectrometer effectively operates with four reflective off-axial parabolic mirrors and two plane-grating units. The optics quality and their precise alignment are crucial to guarantee best performance of the instrument. Here, results on a comprehensive investigation of the quality of the spectrometer diffraction gratings are presented. The gratings have been characterized by ex situ metrology at the BESSY-II Optics Laboratory, employing slope measuring deflectometry and interferometry as well as atomic force microscopy studies. The efficiency of these key optical elements has been measured at the at-wavelength metrology laboratory using the reflectometer at the BESSY-II Optics beamline. Also, the metrology results are discussed with respect to the expected resolving power of the instrument by including them in ray-tracing studies of the instrument. PMID:29271763

  8. Thermo-mechanical analysis of a user filter assembly for undulator/wiggler operations at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nian, H.L.T.; Kuzay, T.M.; Collins, J.

    1996-12-31

    This paper reports a thermo-mechanical study of a beamline filter (user filter) for undulator/wiggler operations. It is deployed in conjunction with the current commissioning window assembly on the APS insertion device (ID) front ends. The beamline filter at the Advanced Photon Source (APS) will eventually be used in windowless operations also. Hence survival and reasonable life expectancy of the filters under intense insertion device (ID) heat flu are crucial to the beamline operations. To accommodate various user requirements, the filter is configured to be a multi-choice type and smart to allow only those filter combinations that will be safe tomore » operate with a given ring current and beamline insertion device gap. However, this paper addresses only the thermo-mechanical analysis of individual filter integrity and safety in all combinations possible. The current filter design is configured to have four filter frames in a cascade with each frame holding five filters. This allows a potential 625 total filter combinations. Thermal analysis for all of these combinations becomes a mammoth task considering the desired choices for filter materials (pyrolitic graphite and metallic filters), filter thicknesses, undulator gaps, and the beam currents. The paper addresses how this difficult task has been reduced to a reasonable effort and computational level. Results from thermo-mechanical analyses of the filter combinations are presented both in tabular and graphical format.« less

  9. Strongly aligned gas-phase molecules at free-electron lasers

    DOE PAGES

    Kierspel, Thomas; Wiese, Joss; Mullins, Terry; ...

    2015-09-16

    Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment ofmore » $$\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.« less

  10. A Beam line for Macromolecular Crystallography in ALBA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanhuix, Jordi; Ferrer, Salvador

    2007-01-19

    ALBA is a third generation 3 GeV storage ring being built near Barcelona and foreseen to be operational in 2010. Out of the seven beamlines already funded in ALBA, one will be dedicated to macromolecular crystallography (MX). The beamline, dubbed XALOC, shall cope with a broad range of crystal structures and sizes. To this aim, a flexible optical design involving variable focusing optics has been incorporated into the beamline optics. The photon source will be a 2 m long, in-vacuum undulator with a period of 21.3 mm. The optics will consist in a Si(111), double-crystal monochromator cryogenically cooled, and amore » pair of mirrors placed in a Kirkpatrick-Baez configuration. The beamline will deliver a high flux beam in the 5-15 keV energy range, with an energy resolution of {delta}E/E {approx}2 x 10-4. In addition to the main beamline, it is being considered the possibility to use a diamond laue monochromator to provide photons at a fixed wavelength to an ancillary branch. This report shows the present status of the beamline design.« less

  11. Alignment telescope for Antares

    NASA Astrophysics Data System (ADS)

    Appert, Q. D.; Swann, T. A.; Ward, J. H.; Hardesty, C.; Wright, L.

    The Antares Automatic Alignment System employs a specially designed telescope for alignment of its laser beamlines. There are two telescopes in the system, and since each telescope is a primary alignment reference, stringent boresight accuracy and stability over the focus range were required. Optical and mechanical designs, which meet this requirements as well as that of image quality over a wide wavelength band, are described. Special test techniques for initial assembly and alignment of the telescope are also presented. The telescope, which has a 180-mm aperture FK51-KZF2 type glass doublet objective, requires a boresight accuracy of 2.8 (SIGMA)rad at two focal lengths, and object distances between 11 meters and infinity. Travel of a smaller secondary doublet provides focus from 11 m to infinity with approximately 7.8 m effective focal length. By flipping in a third doublet, the effective focal length is reduced to 2.5 m. Telescope alignment was accomplished by using a rotary air bearing to establish an axis in front of the system and placing the focus of a Laser Unequal Path Interferometer (LUPI) at the image plane.

  12. Alignment Telescope For Antares

    NASA Astrophysics Data System (ADS)

    Appert, Q. D.; Swann, T. A.; Ward, J. H.; Hardesty, C.; Wrignt, L.

    1983-11-01

    The Antares Automatic Alignment System employs a specially designed telescope for alignment of its laser beamlines. There are two telescopes in the system, and since eacn telescope is a primary alignment reference, stringent boresight accuracy and stability over the focus range were required. Optical and mechanical designs, which meet this requirement as well as that of image quality over a wide wavelength band, are described. Special test techniques for initial assembly and alignment of the telescope are also presented. The telescope, which has a 180-mm aperture FK51-KZF2 type glass doublet objective, requires a boresight accuracy of 2.8 prad at two focal lengths, and object distances between 11 meters and infinity. Travel of a smaller secondary doublet provides focus from 11 m to infinity with approximately 7.8 m effective focal length. By flipping in a third doublet, the effective focal length is reduced to 2.5 m. Telescope alignment was accomplished by using a rotary air bearing to establish an axis in front of the system and placing the focus of a Laser Unequal Path Interferometer (LUPI) at the image plane.

  13. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    PubMed

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  14. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines

    PubMed Central

    Roessler, Christian G.; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M.; Allaire, Marc; Soares, Alexei S.; Héroux, Annie

    2013-01-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide ‘conveyor belt’. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second. PMID:23955046

  15. Ray tracing: Experience at SRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, M.

    1996-09-01

    SHADOW [B. Lai and F. Cerrina, Nucl. Instrum. Methods A {bold 246}, 337 (1986)] is the primary ray-tracing program used at SRC. Ray tracing provides a tremendous amount of information regarding beamline layout, mirror sizes, resolution, alignment tolerances, and beam size at various locations. It also provides a way to check the beamline design for errors. Two recent designs have been ray traced extensively: an undulator-based, 4-meter, normal-incidence monochromator (NIM) [R. Reininger, M.C. Severson, R.W.C. Hansen, W.R. Winter, M.A. Green, and W.S. Trzeciak, Rev. Sci. Instrum. {bold 66}, 2194 (1995)] and an undulator-based, plane-grating monochromator (PGM) [R. Reininger, S.L. Crossley,more » M.A. Lagergren, M.C. Severson, and R.W.C. Hansen, Nucl. Instrum. Methods A {bold 347}, 304 (1994)]. {copyright} {ital 1996 American Institute of Physics.}« less

  16. Optical setup for two-colour experiments at the low density matter beamline of FERMI

    NASA Astrophysics Data System (ADS)

    Finetti, Paola; Demidovich, Alexander; Plekan, Oksana; Di Fraia, Michele; Cucini, Riccardo; Callegari, Carlo; Cinquegrana, Paolo; Sigalotti, Paolo; Ivanov, Rosen; Danailov, Miltcho B.; Fava, Claudio; De Ninno, Giovanni; Coreno, Marcello; Grazioli, Cesare; Feifel, Raimund; Squibb, Richard J.; Mazza, Tommaso; Meyer, Michael; Prince, Kevin C.

    2017-11-01

    The low density matter beamline of the free electron laser facility FERMI is dedicated to the study of atomic, molecular and cluster systems, and here we describe the optical setup available for two-colour experiments. Samples can be exposed to ultrashort pulses from a Ti:Sapphire source (fundamental, or second or third harmonic), and ultrashort light pulses of FERMI in the EUV/soft x-ray region with a well-defined temporal delay, and negligible jitter (<10 fs) compared to the pulse durations (40-100 fs). Detection schemes available include electron, ion and optical spectroscopy. The majority of experiments using this apparatus are pump-and-probe, where either wavelength can be pump or probe, but the system is also useful for other techniques, such as multi-photon spectroscopy, cross-correlation measurements and alignment of molecules in space.

  17. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA

    PubMed Central

    Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S.

    2015-01-01

    Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts. PMID:25931105

  18. Micro- and nano-imaging at the diamond beamline I13L-imaging and coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk; University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS; Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008

    2016-07-27

    The Diamond Beamline I13L is dedicated to imaging on the micron- and nano-lengthscale, operating in the energy range between 6 and 30 keV. For this purpose two independent stations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometer resolution. Currently a full-field microscope providing 50nm spatial resolution over a field of view of 100 µm is being tested. On the coherence branch, coherent diffraction imaging techniques such as ptychography and coherent X-ray Bragg diffraction are currently developed. The beamline contains a number of unique features. The machine layout has been modifiedmore » to the so-called mini-beta scheme, providing significantly increased flux from the two canted undulators. New instrumental designs such as a robot arm for the detector in diffraction experiments have been employed. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline.« less

  19. Status of the Nanoscopium scanning nanoprobe beamline of Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Medjoubi, K.; Kewish, C. M.; Leroux, V.; Ribbens, M.; Baranton, G.; Polack, F.; Samama, J. P.

    2013-09-01

    The Nanoscopium 155 m-long scanning nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal imaging. Dedicated experimental stations, working in consecutive operation mode, will provide coherent scatter imaging and spectro-microscopy techniques in the 5-20 keV energy range for various user communities. Next to fast scanning, cryogenic cooling will reduce the radiation damage of sensitive samples during the measurements. Nanoscopium is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this contribution.

  20. Challenges And Concepts for Design of An Interaction Region With Push-Pull Arrangement of Detectors - An Interface Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, B.; /Brookhaven; Herve, Alain

    2011-10-14

    Two experimental detectors working in a push-pull mode has been considered for the Interaction Region of the International Linear Collider. The push-pull mode of operation sets specific requirements and challenges for many systems of detector and machine, in particular for the IR magnets, for the cryogenics and alignment system, for beamline shielding, for detector design and overall integration, and so on. These challenges and the identified conceptual solutions discussed in the paper intend to form a draft of the Interface Document which will be developed further in the nearest future. The authors of the present paper include the organizers andmore » conveners of working groups of the workshop on engineering design of interaction region IRENG07, the leaders of the IR Integration within Global Design Effort Beam Delivery System, and the representatives from each detector concept submitting the Letters Of Intent.« less

  1. Six degree-of-freedom scanning supports and manipulators based on parallel robots

    NASA Astrophysics Data System (ADS)

    Comin, Fabio

    1995-02-01

    The exploitation of third generation SR sources heavily relies on accurate and stable positioning and scanning of samples and optical elements. In some cases, active feedback is also necessary. Normally, these tasks are carried out by serial addition of individual components, each of them providing a well-defined excursion path. On the contrary, the exploitation of the concept of parallel robots, structures in close cinematic chain, permits us to follow any given trajectory in the six-dimensional space with a large increase in accuracy and stiffness. At ESRF, the parallel robot architecture conceived some tens of years ago for flight simulators has been adapted to both actively align and operate optical elements of considerable weight and position small samples in ultrahigh vacuum. The performance of these devices gives results far superior to the initial specification and a variety of drive mechanisms are being developed to fit the different needs of the ESRF beamlines.

  2. National Synchrotron Light Source annual report 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  3. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  4. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Kissick, D. J.; Venugopalan, N.

    Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less

  5. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Kissick, D. J.; Venugopalan, N.

    Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity atmore » optimal alignment.« less

  6. BEAMLINE-CONTROLLED STEERING OF SOURCE-POINT ANGLE AT THE ADVANCED PHOTON SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, L.; Fystro, G.; Shang, H.

    An EPICS-based steering software system has been implemented for beamline personnel to directly steer the angle of the synchrotron radiation sources at the Advanced Photon Source. A script running on a workstation monitors "start steering" beamline EPICS records, and effects a steering given by the value of the "angle request" EPICS record. The new system makes the steering process much faster than before, although the older steering protocols can still be used. The robustness features of the original steering remain. Feedback messages are provided to the beamlines and the accelerator operators. Underpinning this new steering protocol is the recent refinementmore » of the global orbit feedback process whereby feedforward of dipole corrector set points and orbit set points are used to create a local steering bump in a rapid and seamless way.« less

  7. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    PubMed

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  8. The High-Repetition-Rate Advanced Petawatt Laser System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefner, Constantin; Jarboe, Jeff; Koubikova, Luci

    2017-02-02

    The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), being developed at Lawrence Livermore National Laboratory (LLNL), recently completed a significant milestone: demonstration of continuous operation of an all diode-pumped, high-energy femtosecond petawatt laser system. The system is now ready for delivery and integration at the European Extreme Light Infrastructure Beamlines facility project (ELI Beamlines) in the Czech Republic.

  9. Development and implementation of a portable grating interferometer system as a standard tool for testing optics at the Advanced Photon Source beamline 1-BM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, Lahsen; Shi, Xianbo; Marathe, Shashidhara

    We developed a portable X-ray grating interferometer setup as a standard tool for testing optics at the Advanced Photon Source (APS) beamline 1-BM. The interferometer can be operated in phase-stepping, Moiré, or single-grating harmonic imaging mode with 1-D or 2-D gratings. All of the interferometer motions are motorized; hence, it is much easier and quicker to switch between the different modes of operation. A novel aspect of this new instrument is its designed portability. While the setup is designed to be primarily used as a standard tool for testing optics at 1-BM, it could be potentially deployed at other APSmore » beamlines for beam coherence and wavefront characterization or imaging. The design of the interferometer system is described in detail and coherence measurements obtained at the APS 34-ID-E beamline are presented. The coherence was probed in two directions using a 2-D checkerboard, a linear, and a circular grating at X-ray energies of 8 keV, 11 keV, and 18 keV.« less

  10. Design Status of the LBNF / DUNE Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadimitriou, Vaia; et al.

    The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a wide band beam of neutrinos of sufficient intensity and appropriate energy toward DUNE detectors, placed 4850 feet underground at SURF in South Dakota, about 1,300 km away. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a four-interaction length solid target and produce mesons which are subsequently focused by a set of three magnetic horns into a 194 m long helium-filled decay pipe where they decay intomore » muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, extensive simulations and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to about 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015 and CD-3a approval in September 2016. We discuss here the Beamline design status and the associated challenges.« less

  11. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  12. Detecting fiducials affected by trombone delay in ARC and the main laser alignment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl

    2015-09-01

    Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.

  13. Layout and first results of the nanotomography endstation at the P05 beamline at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogurreck, M.; Greving, I.; Beckmann, F.

    The Helmholtz-Zentrum Geesthacht operates the P05 Imaging Beamline at the DESY storage ring PETRA III. This beamline is dedicated to micro- and nanotomography with two endstations. This paper will present the nanotomography endstation layout and first results obtained from commissioning and test experiments. First tests have been performed with CRLs as X-ray objectives and newly developed rolled X-ray prism lenses as condenser optics. This setup allows a resolution of 100 nm half period with an effective detector pixel size of 15nm. A first tomograph of a photonic glass sample was measured in early 2014.

  14. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  15. Micro- and nano-tomography at the DIAMOND beamline I13L imaging and coherence

    NASA Astrophysics Data System (ADS)

    Rau, C.; Bodey, A.; Storm, M.; Cipiccia, S.; Marathe, S.; Zdora, M.-C.; Zanette, I.; Wagner, U.; Batey, D.; Shi, X.

    2017-10-01

    The Diamond Beamline I13L is dedicated to imaging on the micro- and nano-lengthsale, operating in the energy range between 6 and 30keV. For this purpose two independently operating branchlines and endstations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometre resolution. Grating interferometry is currently implemented, adding the capability of measuring phase and small-angle information. For tomography with increased resolution a full-field microscope providing 50nm spatial resolution with a field of view of 100μm is being tested. The instrument provides a large working distance between optics and sample to adapt a wide range of customised sample environments. On the coherence branch coherent diffraction imaging techniques such as ptychography, coherent X-ray diffraction (CXRD) are currently developed for three dimensional imaging with the highest resolution. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline. The scientific applications cover a large area including bio-medicine, materials science, chemistry geology and more. The present paper provides an overview about the current status of the beamline and the science addressed.

  16. WE-EF-303-10: Single- Detector Proton Radiography as a Portal Imaging Equivalent for Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doolan, P; Bentefour, E; Testa, M

    2015-06-15

    Purpose: In proton therapy, patient alignment is of critical importance due to the sensitivity of the proton range to tissue heterogeneities. Traditionally proton radiography is used for verification of the water-equivalent path length (WEPL), which dictates the depth protons reach. In this work we propose its use for alignment. Additionally, many new proton centers have cone-beam computed tomography in place of beamline X-ray imaging and so proton radiography offers a unique patient alignment verification similar to portal imaging in photon therapy. Method: Proton radiographs of a CIRS head phantom were acquired using the Beam Imaging System (BIS) (IBA, Louvain-la-Neuve) inmore » a horizontal beamline. A scattered beam was produced using a small, dedicated, range modulator (RM) wheel fabricated out of aluminum. The RM wheel was rotated slowly (20 sec/rev) using a stepper motor to compensate for the frame rate of the BIS (120 ms). Dose rate functions (DRFs) over two RM wheel rotations were acquired. Calibration was made with known thicknesses of homogeneous solid water. For each pixel the time width, skewness and kurtosis of the DRFs were computed. The time width was used to compute the object WEPL. In the heterogeneous phantom, the excess skewness and excess kurtosis (i.e. difference from homogeneous cases) were computed and assessed for suitability for patient set up. Results: The technique allowed for the simultaneous production of images that can be used for WEPL verification, showing few internal details, and excess skewness and kurtosis images that can be used for soft tissue alignment. These latter images highlight areas where range mixing has occurred, correlating with phantom heterogeneities. Conclusion: The excess skewness and kurtosis images contain details that are not visible in the WET images. These images, unique to the time-resolved proton radiographic method, could be used for patient set up according to soft tissues.« less

  17. X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.

    2012-05-01

    The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.

  18. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A {approx}5 {mu}m ({sigma}) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) andmore » x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.« less

  20. X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert; Erdmann, Mark; Kujala, Naresh

    2016-07-27

    Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatics beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less

  1. X-ray optics testing beamline 1-BM at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert, E-mail: atm@anl.gov; Erdmann, Mark; Kujala, Naresh

    2016-07-27

    Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatic beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less

  2. Remote access and automation of SPring-8 MX beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Go, E-mail: ueno@spring8.or.jp; Hikima, Takaaki; Yamashita, Keitaro

    At SPring-8 MX beamlines, a remote access system has been developed and started user operation in 2010. The system has been developed based on an automated data collection and data management architecture utilized for the confirmed scheme of SPring-8 mail-in data collection. Currently, further improvement to the remote access and automation which covers data processing and analysis are being developed.

  3. Assembling, cleaning, and testing a unique prototype open-ended cylindrical penning trap

    NASA Astrophysics Data System (ADS)

    Marble, Kassie; Shidling, Praveen; Melconian, Dan

    2016-09-01

    A new experimental beamline containing a prototype cylindrical penning trap has recently been constructed at the Cyclotron Laboratory at Texas A&M University. The new beamline will enable precision experiments that enhance our understanding of the limits on non-SM processes in the weak interaction through the measurement of the β- ν correlation parameter for T = 2 ,0+ ->0+ supper allowed β-delayed proton emitters. The prototype TAMU TRAP consists of an open-ended cylindrical penning trap of diameter of 90 mm with gold-plated electrodes of oxygen free high conductivity copper to prevent oxidation. The trap's electric quadrupole field is provided by a SHIP TRAPS RF electronic circuit to the four segmented electrodes at the center of the trap while the trap's 7 Tesla radial magnetic field is provided by an Agilent 210 ASR magnet. A discussion of the assembly of the prototype TAMU TRAP, construction of the RF electronic circuit, the experimental set up and alignment of the beamline will be presented. The method used to test the prototype penning trap using an ion source, Faraday cups, and Micro Chanel Plate (MCP) detectors will also be discussed. Work supported by the U.S. Department of Energy under Grant No. DE-FG02-11ER41747 and the National Science Foundation.

  4. JBluIce–EPICS control system for macromolecular crystallography

    PubMed Central

    Stepanov, Sergey; Makarov, Oleg; Hilgart, Mark; Pothineni, Sudhir Babu; Urakhchin, Alex; Devarapalli, Satish; Yoder, Derek; Becker, Michael; Ogata, Craig; Sanishvili, Ruslan; Venugopalan, Nagarajan; Smith, Janet L.; Fischetti, Robert F.

    2011-01-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline com­ponent. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallo­graphic experiments, especially in the field of microcrystallo­graphy. PMID:21358048

  5. An experimental apparatus for diffraction-limited soft x-ray nano-focusing

    NASA Astrophysics Data System (ADS)

    Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Yuan, Sheng; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Rakawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Warwick, Tony; Padmore, Howard

    2011-09-01

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing. The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. Visible-light long-trace profilometry was used to pre-align the mirror before installation at the beamline. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  6. APS Science 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2008-05-30

    This report provides research highlights from the Advanced Photon Source (APS). Although these highlights represent less than 10% of the published work from the APS in 2007, they give a flavor of the diversity and impact of user research at the facility. In the strategic planning the aim is to foster the growth of existing user communities and foresee new areas of research. This coming year finds the APS engaged in putting together, along with the users, a blueprint for the next five years, and making the case for a set of prioritized investments in beamlines, the accelerator, and infrastructure,more » each of which will be transformational in terms of scientific impact. As this is written plans are being formulated for an important user workshop on October 20-21, 2008, to prioritize strategic plans. The fruit from past investments can be seen in this report. Examples include the creation of a dedicated beamline for x-ray photon correlation spectroscopy at Sector 8, the evolution of dedicated high-energy x-ray scattering beamlines at sectors 1 and 11, a dedicated imaging beamline at Sector 32, and new beamlines for inelastic scattering and powder diffraction. A single-pulse facility has been built in collaboration with Sector 14 (BioCARS) and Phil Anfinrud at the National Institutes of Health, which will offer exceptionally high flux for single-pulse diffraction. The nanoprobe at Sector 26, built and operated jointly by the Argonne Center for Nanoscale Materials and the X-ray Operations and Research (XOR) section of the APS X-ray Science Division, has come on line to define the state of the art in nanoscience.« less

  7. X-ray fluorescence beamline at the LNLS: Current instrumentation and future developments (abstract)

    NASA Astrophysics Data System (ADS)

    Pérez, C. A.; Bueno, M. I. S.; Neuenshwander, R. T.; Sánchez, H. J.; Tolentino, H.

    2002-03-01

    The x-ray fluorescence (XRF) beamline, constructed at the Brazilian National Synchrotron Radiation Laboratory (LNLS-http://www.lnls.br), has been operating for the external users since August of 1998 (C. A. Pérez et al., Proc. of the European Conference on Energy Dispersive X-Ray Spectrometry, Bologna, Italy, 1998, pp. 125-129). The synchrotron source for this beamline is the D09B (15°) dipole magnet of the LNLS storage ring. Two main experimental setups are mounted at the XRF beamline. One consists of a high vacuum chamber adapted to carry out experiments in grazing excitation conditions. This allows chemical trace and ultratrace element determination on several samples, mainly coming from environmental and biological sciences. Another setup consists of an experimental station, operated in air, in which x-ray fluorescence analysis with spatial resolution can be done. This station is equipped with a fine conical capillary, capable of achieving 20 μm spatial resolution, and with an optical microscope in order to select the region of interest on the sample surface. In this work, the main characteristic of the beamline, experimental stations as well as the description of some new experimental facilities will be given. Future development in the instrumentation focuses on an appropriate x-ray optic to be able to carry out chemical trace analysis of light elements using the total x-ray fluorescence technique. Also, chemical mapping below 10 μm spatial resolution, while keeping high flux of photon on the sample, will be achieved by using the Kirkpatrick-Baez x-ray microfocusing optic.

  8. Non-destructive single-pass low-noise detection of ions in a beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Stefan; Institut für Kernchemie, Johannes Gutenberg–Universität Mainz, 55099 Mainz; Murböck, Tobias

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highlymore » charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.« less

  9. Latest experiences and future plans on NSLS-II insertion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, T.; Hidaka, Y.; Kitegi, C.

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH fundedmore » beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.« less

  10. The Scanning Nanoprobe Beamline Nanoscopium at Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Kewish, C. M.; Polack, F.; Moreno, T.

    2011-09-01

    The Nanoscopium beamline at Synchrotron Soleil will offer advanced scanning-based hard x-ray imaging techniques in the 5- to 20-keV energy range, for user communities working in the earth, environmental, and life sciences. Two dedicated end stations will exploit x-ray coherence to produce images in which contrast is based on a range of physical processes. In the first experiment hutch, coherent scatter imaging techniques will produce images in which contrast arises from spatial variations in the complex refractive index, and orientation in the nanostructure of samples. In the second experiment hutch, elemental mapping will be carried out at the trace (ppm) level by scanning x-ray fluorescence, speciation mapping by XANES, and phase gradient mapping by scanning differential phase contrast imaging. The beamline aims to reach sub-micrometric, down to 30 nm, spatial resolution. This ˜155-meter-long beamline will share the straight section with a future tomography beamline by using canted undulators having 6.5-mrad separation angle. The optical design of Nanoscopium aims to reduce the effect of instabilities on the probing nanobeam by utilizing an all-horizontal geometry for the reflections of the primary beamline mirrors, which focus onto a slit, creating an over-filled secondary source. Kirkpatrick-Baez mirrors and Fresnel zone plates will be used as focusing devices in the experiment hutches. Nanoscopium is expected to commence user operation in 2013.

  11. Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments

    NASA Astrophysics Data System (ADS)

    Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.

    2018-06-01

    At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.

  12. The protein crystallography beamline at LNLS, the Brazilian National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Polikarpov, I.; Oliva, G.; Castellano, E. E.; Garratt, R. C.; Arruda, P.; Leite, A.; Craievich, A.

    1998-02-01

    The Brazilian National Synchrotron Light Laboratory - LNLS, will have a dedicated protein crystallography beamline. The beamline under construction includes cylindrical mirror and bent crystal monochromator focusing the high flux of synchrotron radiation in the horizontal plane at the position of the sample. The monochromatic radiation will be tuneable between 2.0 and 1.0 Å with the optimum wavelength at 1.3-1.6 Å, chosen with the aim of maximizing the photon flux from the bending magnets of the storage ring (1.37 GeV). Diffraction images will be recorded on a commercial image plate detector system with on-line readout. The beamline set-up will include cooler/chiller for the samples and biochemical lab for crystallization, heavy-metal soaks, crystal storage and mounting at 22°C and 4°C, will also be available. The facility, intended to serve the national and international community, is planned to be brought into operation in the second half of 1997. It is foreseen that the commissioning of the first protein crystallography beamline in Latin America will boost the number of protein structures determined locally and will increase the general interest of the molecular biology and biochemical research community of Brazil in this area.

  13. FlexED8: the first member of a fast and flexible sample-changer family for macromolecular crystallography.

    PubMed

    Papp, Gergely; Felisaz, Franck; Sorez, Clement; Lopez-Marrero, Marcos; Janocha, Robert; Manjasetty, Babu; Gobbo, Alexandre; Belrhali, Hassan; Bowler, Matthew W; Cipriani, Florent

    2017-10-01

    Automated sample changers are now standard equipment for modern macromolecular crystallography synchrotron beamlines. Nevertheless, most are only compatible with a single type of sample holder and puck. Recent work aimed at reducing sample-handling efforts and crystal-alignment times at beamlines has resulted in a new generation of compact and precise sample holders for cryocrystallography: miniSPINE and NewPin [see the companion paper by Papp et al. (2017, Acta Cryst., D73, 829-840)]. With full data collection now possible within seconds at most advanced beamlines, and future fourth-generation synchrotron sources promising to extract data in a few tens of milliseconds, the time taken to mount and centre a sample is rate-limiting. In this context, a versatile and fast sample changer, FlexED8, has been developed that is compatible with the highly successful SPINE sample holder and with the miniSPINE and NewPin sample holders. Based on a six-axis industrial robot, FlexED8 is equipped with a tool changer and includes a novel open sample-storage dewar with a built-in ice-filtering system. With seven versatile puck slots, it can hold up to 112 SPINE sample holders in uni-pucks, or 252 miniSPINE or NewPin sample holders, with 36 samples per puck. Additionally, a double gripper, compatible with the SPINE sample holders and uni-pucks, allows a reduction in the sample-exchange time from 40 s, the typical time with a standard single gripper, to less than 5 s. Computer vision-based sample-transfer monitoring, sophisticated error handling and automatic error-recovery procedures ensure high reliability. The FlexED8 sample changer has been successfully tested under real conditions on a beamline.

  14. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    PubMed

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  15. In-vacuum sensors for the beamline components of the ITER neutral beam test facility.

    PubMed

    Dalla Palma, M; Pasqualotto, R; Sartori, E; Spagnolo, S; Spolaore, M; Veltri, P

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  16. Diffracting aperture based differential phase contrast for scanning X-ray microscopy.

    PubMed

    Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas

    2002-10-07

    It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.

  17. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Cherrill M.; /slac; Sugahara, Ryuhei

    2011-02-07

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus systemmore » to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.« less

  18. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  19. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellentmore » training for students and postdoctoral scientists in the field.« less

  20. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less

  1. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strainmore » gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.« less

  2. Development of sample exchange robot PAM-HC for beamline BL-1A at the photon factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraki, Masahiko, E-mail: masahiko.hiraki@kek.jp; Department of Accelerator Science, SOKENDAI; Matsugaki, Naohiro

    A macromolecular crystallography beamline, BL-1A, has been built at the Photon Factory (PF) for low energy experiments and has been operational since 2010. We have installed a sample exchange robot, PAM (PF Automated Mounting system), similar to other macromolecular crystallography beamlines. However, following the installation of a helium chamber to reduce the absorption of the diffraction signal by air, we developed a new sample exchange robot to replace PAM. The new robot, named PAM-HC (Helium Chamber), is designed with the goal of minimizing leakage of helium gas from the chamber. Here, the PAM-HC hardware and the flow of its movementmore » are described. Furthermore, measurements of temperature changes during sample exchange are presented in this paper.« less

  3. Towards a compact and precise sample holder for macromolecular crystallography.

    PubMed

    Papp, Gergely; Rossi, Christopher; Janocha, Robert; Sorez, Clement; Lopez-Marrero, Marcos; Astruc, Anthony; McCarthy, Andrew; Belrhali, Hassan; Bowler, Matthew W; Cipriani, Florent

    2017-10-01

    Most of the sample holders currently used in macromolecular crystallography offer limited storage density and poor initial crystal-positioning precision upon mounting on a goniometer. This has now become a limiting factor at high-throughput beamlines, where data collection can be performed in a matter of seconds. Furthermore, this lack of precision limits the potential benefits emerging from automated harvesting systems that could provide crystal-position information which would further enhance alignment at beamlines. This situation provided the motivation for the development of a compact and precise sample holder with corresponding pucks, handling tools and robotic transfer protocols. The development process included four main phases: design, prototype manufacture, testing with a robotic sample changer and validation under real conditions on a beamline. Two sample-holder designs are proposed: NewPin and miniSPINE. They share the same robot gripper and allow the storage of 36 sample holders in uni-puck footprint-style pucks, which represents 252 samples in a dry-shipping dewar commonly used in the field. The pucks are identified with human- and machine-readable codes, as well as with radio-frequency identification (RFID) tags. NewPin offers a crystal-repositioning precision of up to 10 µm but requires a specific goniometer socket. The storage density could reach 64 samples using a special puck designed for fully robotic handling. miniSPINE is less precise but uses a goniometer mount compatible with the current SPINE standard. miniSPINE is proposed for the first implementation of the new standard, since it is easier to integrate at beamlines. An upgraded version of the SPINE sample holder with a corresponding puck named SPINEplus is also proposed in order to offer a homogenous and interoperable system. The project involved several European synchrotrons and industrial companies in the fields of consumables and sample-changer robotics. Manual handling of miniSPINE was tested at different institutes using evaluation kits, and pilot beamlines are being equipped with compatible robotics for large-scale evaluation. A companion paper describes a new sample changer FlexED8 (Papp et al., 2017, Acta Cryst., D73, 841-851).

  4. Status of the Center for Advanced Microstructures and Devices (CAMD)—2010

    NASA Astrophysics Data System (ADS)

    Roy, Amitava; Morikawa, Eizi; Bellamy, Henry; Kumar, Challa; Goettert, Jost; Suller, Victor; Morris, Kevin; Kurtz, Richard; Scott, John

    2011-09-01

    The J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD) is a 1.3 GeV synchrotron-radiation facility owned and operated by the State of Louisiana. Fifteen beamlines provide radiation for CAMD users and cover the spectral range from the far IR to X-rays of ca. 40 keV. Eleven of them receive radiation from bending magnets and four from a 7 T wavelength shifter. A wide range of basic and applied scientific experiments as well as microfabrication are performed at these beamlines. The nanomaterial synthesis and characterization laboratory at CAMD continues to add new instruments such as SQUID magnetometer (Quantum Deign MPMS XL5) and high precision microfluidic-based nanomaterials synthesis equipment complementing already available facilities. We have recently received NSF MRI funding for a multipole 7.5 T wiggler that will become operational in 2012. Generous equipment donations from the University of California at Riverside (Professor Jory Yarmoff) and the University of Bonn (ELSA facility) will provide users with two additional VUV beamlines in the near future.

  5. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II

    PubMed Central

    Schäfers, F.; Bischoff, P.; Eggenstein, F.; Erko, A.; Gaupp, A.; Künstner, S.; Mast, M.; Schmidt, J.-S.; Senf, F.; Siewert, F.; Sokolov, A.; Zeschke, Th.

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm−1) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here. PMID:26698047

  6. Physics Design Considerations for Diagnostic X Electron Beam Transport System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y-J

    2000-04-10

    The Diagnostic X (D-X) beamlines will transport the DARHT-II beam from the end of the accelerator to the Diagnostic X firing point providing four lines of sight for x-ray radiography. The design goal for the Diagnostic X beamline is to deliver four x-ray pulses with the DARHT-II dose format and time integrated spot size on each line of sight. The D-X beamline's final focus should be compatible with a range of first conjugates from 1 m-5 m. Furthermore, the D-X beamline operational parameters and the beamline layout should not preclude a possible upgrade to additional lines of sight. The DARHT-IImore » accelerator is designed to deliver beams at a rate of 1 pulse per minute or less. Tuning the D-X beamline with several hundred optical elements would be time consuming. Therefore, minimizing the required number of tuning shots for the D-X beamline is also an important design goal. Many different beamline configurations may be able to accomplish these design objectives, and high beam quality (i.e., high current and low emittance) must be maintained throughout the chosen beamline configuration in order to achieve the DARHT-II x-ray dose format. In general, the longer the distance a beam travels, the harder it is to preserve the beam quality. Therefore, from the point of view of maintaining beam quality, it is highly desirable to minimize the beamline length. Lastly, modification to the DARHT-II building and the downstream transport should be minimized. Several processes can degrade beam quality by increasing the beam emittance, increasing the time-varying transverse beam motion, creating a beam halo, or creating a time-varying beam envelope. In this report, we consider those processes in the passive magnet lattice beamline and indicate how they constrain the beamline design. The physics design considerations for the active components such as the kicker system will be discussed in Ref. 2. In Sec. I, we discuss how beam emittance affects the x-ray forward dose. We also establish a physics design goal for the emittance growth budget. In Sec. II, we discuss how the conductivity and size of the beam pipe affects the transverse beam motion. We also discuss the emittance growth arise from the beam centroid offset. In Sec. III, we discuss the background gas focusing effects and establish the vacuum requirements. In Sec. IV, we consider the emittance growth in a bend. In Sec. V, we discuss the misalignment and corkscrew motion. The design specifications for misalignment are established. In Secs. VI and VII, we discuss the design objectives on how to extract beams from the DARHT-II beamline and how to minimize the tuning shots. The integrated spot size and final focusing are discussed in Sec. VIII. A conclusion will be presented in Sec. IX.« less

  7. Multimodal hard x-ray nanoprobe facility by nested Montel mirrors aimed for 40nm resolution at Taiwan Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shi-Hung; Chen, Bo-Yi

    2016-01-28

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides multimodal X-ray detections, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing nested Montel mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The mirrors are symmetrically placed with a 45 degrees cut. The beamline optics is thus designed to take the advantage of the symmetry of mirrors such that a round focal spot is accomplished. The size and the divergence of the focus spot are simulated around 40 nm andmore » 6.29 mrad, respectively. The whole facility including the beamline and the stations will be operated under vacuum to preserve the photon coherence as well as to prevent the system from unnecessary environmental interference. A SEM in close cooperation with laser interferometers is equipped to precisely locate the position of the sample. This endstation is scheduled to be commissioned in the fall of 2016.« less

  8. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauro, N.A.; Kelton, K.F.

    2011-10-27

    High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here,more » we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.« less

  9. The HB-2D Polarized Neutron Development Beamline at the High Flux Isotope Reactor

    NASA Astrophysics Data System (ADS)

    Crow, Lowell; Hamilton, WA; Zhao, JK; Robertson, JL

    2016-09-01

    The Polarized Neutron Development beamline, recently commissioned at the HB-2D position on the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, provides a tool for development and testing of polarizers, polarized neutron devices, and prototyping of polarized neutron techniques. With available monochromators including pyrolytic graphite and polarizing enriched Fe-57 (Si), the instrument has operated at 4.25 and 2.6 Å wavelengths, using crystal, supermirror, or He-3 polarizers and analyzers in various configurations. The Neutron Optics and Development Team has used the beamline for testing of He-3 polarizers for use at other HFIR and Spallation Neutron Source (SNS) instruments, as well as a variety of flipper devices. Recently, we have acquired new supermirror polarizers which have improved the instrument performance. The team and collaborators also have continuing demonstration experiments of spin-echo focusing techniques, and plans to conduct polarized diffraction measurements. The beamline is also used to support a growing use of polarization techniques at present and future instruments at SNS and HFIR.

  10. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    NASA Astrophysics Data System (ADS)

    Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C.

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  11. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, M.; Fahy, A.; Martens, J.

    2016-05-15

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  12. CLEARING MAGNET DESIGN FOR APS-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abliz, M.; Grimmer, J.; Jaski, Y.

    2017-06-25

    The Advanced Photon Source is in the process of developing an upgrade (APS-U) of the storage ring. The upgrade will be converting the current double bend achromat (DBA) lattice to a multi-bend achromat (MBA) lattice. In addition, the storage ring will be operated at 6 GeV and 200 mA with regular swap-out injection to keep the stored beam current constant [1]. The swap-out injection will take place with beamline shutters open. For radiation safety to ensure that no electrons can exit the storage ring, a passive method of protecting the beamline and containing the electrons inside the storage ring ismore » proposed. A clearing magnet will be located in all beamline front ends inside the storage ring tunnel. This article will discuss the features and design of the clearing magnet scheme for APS-U.« less

  13. Design and performance of BOREAS, the beamline for resonant X-ray absorption and scattering experiments at the ALBA synchrotron light source

    DOE PAGES

    Barla, Alessandro; Nicolas, Josep; Cocco, Daniele; ...

    2016-10-07

    The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X-ray absorption and scattering experiments using soft X-rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed-included-angle, variable-line-spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end-stations, one for X-ray magnetic circular dichroism and the other for resonant magnetic scattering. In conclusion, the commissioning results show that the expected beamline performance ismore » achieved both in terms of energy resolution and of photon flux at the sample position.« less

  14. Micro-CT at the imaging beamline P05 at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, Fabian, E-mail: fabian.wilde@hzg.de; Ogurreck, Malte; Greving, Imke

    2016-07-27

    The Imaging Beamline (IBL) P05 is operated by the Helmholtz-Zentrum Geesthacht and located at the DESY storage ring PETRA III. IBL is dedicated to X-ray full field imaging and consists of two experimental end stations. A micro tomography end station equipped for spatial resolutions down to 1 µm and a nano tomography end station for spatial resolutions down to 100 nm. The micro tomography end station is in user operation since 2013 and offers imaging with absorption contrast, phase enhanced absorption contrast and phase contrast methods. We report here on the current status and developments of the micro tomography endmore » station including technical descriptions and show examples of research performed at P05.« less

  15. Preparing the MAX IV storage rings for timing-based experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stråhlman, C., E-mail: Christian.Strahlman@maxlab.lu.se; Olsson, T., E-mail: Teresia.Olsson@maxlab.lu.se; Leemann, S. C.

    2016-07-27

    Time-resolved experimental techniques are increasingly abundant at storage ring facilities. Recent developments in accelerator technology and beamline instrumentation allow for simultaneous operation of high-intensity and timing-based experiments. The MAX IV facility is a state-of-the-art synchrotron light source in Lund, Sweden, that will come into operation in 2016. As many storage ring facilities are pursuing upgrade programs employing strong-focusing multibend achromats and passive harmonic cavities (HCs) in high-current operation, it is of broad interest to study the accelerator and instrumentation developments required to enable timing-based experiments at such machines. In particular, the use of hybrid filling modes combined with pulse pickingmore » by resonant excitation or pseudo single bunch has shown promising results. These methods can be combined with novel beamline instrumentation, such as choppers and instrument gating. In this paper we discuss how these techniques can be implemented and employed at MAX IV.« less

  16. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    NASA Astrophysics Data System (ADS)

    Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.

    2005-04-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.

  17. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst.

    PubMed

    Aguilar-Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-03-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO 2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  18. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Aguilar-Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-03-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  19. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOEpatents

    Stirling, W.L.

    1980-07-01

    A neutral beamline generator with energy recovery of the full-energy ion component of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the elecrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  20. Launch of the I13-2 data beamline at the Diamond Light Source synchrotron

    NASA Astrophysics Data System (ADS)

    Bodey, A. J.; Rau, C.

    2017-06-01

    Users of the Diamond-Manchester Imaging Branchline I13-2 commonly spend many months analysing the large volumes of tomographic data generated in a single beamtime. This is due to the difficulties inherent in performing complicated, computationally-expensive analyses on large datasets with workstations of limited computing power. To improve productivity, a ‘data beamline’ was launched in January 2016. Users are scheduled for visits to the data beamline in the same way as for regular beamlines, with bookings made via the User Administration System and provision of financial support for travel and subsistence. Two high-performance graphics workstations were acquired, with sufficient RAM to enable simultaneous analysis of several tomographic volumes. Users are given high priority on Diamond’s central computing cluster for the duration of their visit, and if necessary, archived data are restored to a high-performance disk array. Within the first six months of operation, thirteen user visits were made, lasting an average of 4.5 days each. The I13-2 data beamline was the first to be launched at Diamond Light Source and, to the authors’ knowledge, the first to be formalised in this way at any synchrotron.

  1. Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, V. R.; Dolton, W.; Wells, G.

    2010-06-23

    SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system tomore » allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.« less

  2. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    NASA Astrophysics Data System (ADS)

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C.

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (˜285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagias, M.; Cartier, S.; Wang, Z.

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front ofmore » the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.« less

  4. Minimizing Experimental Setup Time and Effort at APS beamline 1-ID through Instrumentation Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benda, Erika; Almer, Jonathan; Kenesei, Peter

    2016-01-01

    Sector 1-ID at the APS accommodates a number of dif-ferent experimental techniques in the same spatial enve-lope of the E-hutch end station. These include high-energy small and wide angle X-ray scattering (SAXS and WAXS), high-energy diffraction microscopy (HEDM, both near and far field modes) and high-energy X-ray tomography. These techniques are frequently combined to allow the users to obtain multimodal data, often attaining 1 μm spatial resolution and <0.05º angular resolution. Furthermore, these techniques are utilized while the sam-ple is thermo-mechanically loaded to mimic real operat-ing conditions. The instrumentation required for each of these techniques and environments has been designedmore » and configured in a modular way with a focus on stability and repeatability between changeovers. This approach allows the end station to be more versatile, capable of collecting multi-modal data in-situ while reducing time and effort typically required for set up and alignment, resulting in more efficient beam time use. Key instrumentation de-sign features and layout of the end station are presented.« less

  5. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis.

    PubMed

    Gann, E; Young, A T; Collins, B A; Yan, H; Nasiatka, J; Padmore, H A; Ade, H; Hexemer, A; Wang, C

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition. © 2012 American Institute of Physics

  6. APS 6BM-B Large Volume High Pressure Beamline: A Workhorse for Rock and Mineral Physics

    NASA Astrophysics Data System (ADS)

    Chen, H.; Whitaker, M. L.; Baldwin, K. J.; Huebsch, W. R.; Vaughan, M. T.; Weidner, D. J.

    2017-12-01

    With the inheritance of decades of technical innovations at the NSLS X17B2 Beamline, APS 6BM-B Beamline was established in 2015 and is a dedicated beamline for synchrotron-based large volume high pressure research in earth sciences, especially rock and mineral physics. Currently a 250-ton hydraulic press equipped with a D-DIA module is installed and a Rotational Drickamer Apparatus from Yale University is hosted every cycle, covering a pressure range from crust to lower mantle. 6BM-B operates in white beam mode with an effective energy range of 20-100 keV. Energy dispersive X-ray diffraction data is collected using a 10-element solid state Ge array detector arranged in a circular geometry to allow for the real time assessment of stress. Direct radiographic imaging using Prosillica CCD camera and scintillating YAG crystals yields sample strain and strain rate. In addition to applications in phase transitions, equation of states measurements, sound velocity measurements, this setup is ideal for studies of steady state and dynamic deformation process. In this presentation, technical features and strengths of 6BM-B will be discussed. Most recent progress and science highlights of our user community will be showcased.

  7. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    NASA Astrophysics Data System (ADS)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  8. Nanotomography endstation at the P05 beamline: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Greving, I.; Ogurreck, M.; Marschall, F.; Last, A.; Wilde, F.; Dose, T.; Burmester, H.; Lottermoser, L.; Müller, M.; David, C.; Beckmann, F.

    2017-06-01

    The Imaging Beamline IBL/P05 at the DESY storage ring PETRA III, operated by the Helmholtz-Zentrum Geesthacht, has two dedicated endstations optimized for micro- and nanotomography experiments [1-3]. Here we present the status of the nanotomography endstation, highlight the latest instrumentation upgrades and present first experimental results. In particular in materials science, where structures with ceramics or metallic materials are of interest, X-ray energies of 15 keV and above are required even for sample sizes of several 10 μm in diameter. The P05 imaging beamline is dedicated to materials science and is designed to allow for imaging applications with X-ray energies of 10 to 50 keV. In addition to the full field X-ray microscopy setup, the layout of the nanotomography endstation allows switching to cone-beam configuration. Kinematics for X-ray optics like compound refractive lenses (CRLs), Fresnel zone plates (FZP) or beam-shaping optics are implemented and the installation of a Kirkpatrick Baez-mirror (KB mirror) system is foreseen at a later stage of the beamline development. Altogether this leads to a high flexibility of the nanotomography setup such that the instrument can be tailored to the specific experimental requirements of a range of sample systems.

  9. Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.

    2011-04-05

    The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less

  10. Pump-probe experiments at the TEMPO beamline using the low-α operation mode of Synchrotron SOLEIL.

    PubMed

    Silly, Mathieu G; Ferté, Tom; Tordeux, Marie Agnes; Pierucci, Debora; Beaulieu, Nathan; Chauvet, Christian; Pressacco, Federico; Sirotti, Fausto; Popescu, Horia; Lopez-Flores, Victor; Tortarolo, Marina; Sacchi, Maurizio; Jaouen, Nicolas; Hollander, Philippe; Ricaud, Jean Paul; Bergeard, Nicolas; Boeglin, Christine; Tudu, Bharati; Delaunay, Renaud; Luning, Jan; Malinowski, Gregory; Hehn, Michel; Baumier, Cédric; Fortuna, Franck; Krizmancic, Damjan; Stebel, Luigi; Sergo, Rudi; Cautero, Giuseppe

    2017-07-01

    The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.

  11. 10 μ m-thick four-quadrant transmissive silicon photodiodes for beam position monitor application: electrical characterization and gamma irradiation effects

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Pellegrini, G.; Quirion, D.; Hidalgo, S.; Godignon, P.; Matilla, O.; Juanhuix, J.; Fontserè, A.; Molas, B.; Pothin, D.; Fajardo, P.

    2017-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines. Owing to Si absorption, devices thinner than 10 μ m are needed to achieve transmission over 90% for energies above 10 keV . In this work, new segmented four-quadrant diodes for beam alignment purposes are fabricated on both ultrathin (10 μ m-thick) and bulk silicon substrates. Four-quadrant diodes implementing different design parameters as well as auxiliary test structures (single diodes and MOS capacitors) are studied. An extensive electrical characterization, including current-voltage (I-V) and capacitance-voltage (C-V) techniques, is carried out on non-irradiated and gamma-irradiated devices up to 100 Mrad doses. Special attention is devoted to the study of radiation-induced charge build-up in diode interquadrant isolation dielectric, as well as its impact on device interquadrant resistance. Finally, the devices have been characterized with an 8 keV laboratory X-ray source at 108 ph/s and in BL13-XALOC ALBA Synchroton beamline with 1011 ph/s and energies from 6 to 16 keV . Sensitivity, spatial resolution and uniformity of the devices have been evaluated.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polack, F.; Silly, M.; Chauvet, C.

    A new insertion device beamline is now operational on straight section 8 at the SOLEIL synchrotron radiation source in France. The beamline and the experimental station were developed to optimize the study of the dynamics of electronic and magnetic properties of materials. Here we present the main technical characteristics of the installation and the general principles behind them. The source is composed of two APPLE II type insertion devices. The monochromator with plane gratings and spherical mirrors is working in the energy range 40-1500 eV. It is equipped with VLS, VGD gratings to allow the user optimization of flux ormore » higher harmonics rejection. The observed resonance structures measured in gas phase enable us to determine the available energy resolution: a resolving power higher than 10000 is obtained at the Ar 2p, N 1s and Ne K-edges when using all the optical elements at full aperture. The total flux as a function of the measured photon energy and the characterization of the focal spot size complete the beamline characterization.« less

  13. Software/hardware optimization for attenuation-based microtomography using SR at PETRA III (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Beckmann, Felix

    2016-10-01

    The Helmholtz-Zentrum Geesthacht, Germany, is operating the user experiments for microtomography at the beamlines P05 and P07 using synchrotron radiation produced in the storage ring PETRA III at DESY, Hamburg, Germany. In recent years the software pipeline, sample changing hardware for performing high throughput experiments were developed. In this talk the current status of the beamlines will be given. Furthermore, optimisation and automatisation of scanning techniques, will be presented. These are required to scan samples which are larger than the field of view defined by the X-ray beam. The integration into an optimized reconstruction pipeline will be shown.

  14. Fluorescence dynamics of biological systems using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratton, E.; Mantulin, W.W.; Weber, G.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes thatmore » can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}« less

  15. User oriented end-station on VUV pump-probe magneto-optical ellipsometry at ELI beamlines

    NASA Astrophysics Data System (ADS)

    Espinoza, Shirly; Neuber, Gerd; Brooks, Christopher D.; Besner, Bastian; Hashemi, Maryam; Rübhausen, Michael; Andreasson, Jakob

    2017-11-01

    A state of the art ellipsometer for user operations is being implemented at ELI Beamlines in Prague, Czech Republic. It combines three of the most promising and exotic forms of ellipsometry: VUV, pump-probe and magneto-optical ellipsometry. This new ellipsometer covers a spectral operational range from the NIR up to the VUV, with high through-put between 1 and 40 eV. The ellipsometer also allows measurements of magneto-optical spectra with a 1 kHz switchable magnetic field of up to 1.5 T across the sample combining ellipsometry and Kerr spectroscopy measurements in an unprecedented spectral range. This form of generalized ellipsometry enables users to address diagonal and off-diagonal components of the dielectric tensor within one measurement. Pump-probe measurements enable users to study the dynamic behaviour of the dielectric tensor in order to resolve the time-domain phenomena in the femto to 100 ns range.

  16. SU-E-T-27: A Dosimetric Evaluation of Boney Anatomy Versus Fiducial Marker Alignment for the Treatment of Prostate Cancer Using Scanned Beam Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freund, D; Ding, X; Zhang, J

    Purpose: In prostate proton radiotherapy, three fiducial markers are used for patient daily alignment. However fiducial alignment can change beamline heterogeneity in proton therapy. The purpose of this study is to determine the difference in fiducial and boney anatomy alignment for patient treatment. Methods and materials: Prostate cancer patients who received proton treatment were included in this study. 3 fiducial markers were implanted before the initial CT. All the patients were re-CT’d every 2 weeks to check the fiducial marker position reproducibility as well as dosimetric consistence of target coverage. In geometry study, re-CT were fused to the initial CTmore » base on the boney anatomy and the average fiducial marker displacement was measured the centers of the fiducials. Dosimetrically, the initial plan was recalculated directly to re-CT image set based on the boney alignment and fiducial alignment to determine the difference from daily treatment. Prostate coverage and hotspots were evaluated using the dose to 98% of the CTV (D98) and dose to 2% (D2), respectively. Results: The shift from the initial 6 patient CT image sets resulted in an average change in the fiducial location of 5.70 +/− 3 mm. Dosimetric comparison from a single patient revealed that differences from the planned dose resulted from both boney and fiducial alignment. Planned clinical treatment volume coverage resulted in a D98 of 70.44Gy and D2 of 70.84Gy compared to a D98 of 70.13Gy and D2 70.94Gy for boney alignment and a D98 of 70.08Gy and D2 71.18Gy for fiducial alignment respectively. Conclusion: This study demonstrates that with boney anatomy alignment there is little change to CTV coverage and only slightly worse CTV coverage and hotspot production with fiducial alignment. An increase patient cohort and further investigation is necessary to determine the whether boney alignment can help better control dose heterogeneity.« less

  17. Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33

    PubMed Central

    Round, A. R.; Franke, D.; Moritz, S.; Huchler, R.; Fritsche, M.; Malthan, D.; Klaering, R.; Svergun, D. I.; Roessle, M.

    2008-01-01

    There is a rapidly increasing interest in the use of synchrotron small-angle X-ray scattering (SAXS) for large-scale studies of biological macromolecules in solution, and this requires an adequate means of automating the experiment. A prototype has been developed of an automated sample changer for solution SAXS, where the solutions are kept in thermostatically controlled well plates allowing for operation with up to 192 samples. The measuring protocol involves controlled loading of protein solutions and matching buffers, followed by cleaning and drying of the cell between measurements. The system was installed and tested at the X33 beamline of the EMBL, at the storage ring DORIS-III (DESY, Hamburg), where it was used by over 50 external groups during 2007. At X33, a throughput of approximately 12 samples per hour, with a failure rate of sample loading of less than 0.5%, was observed. The feedback from users indicates that the ease of use and reliability of the user operation at the beamline were greatly improved compared with the manual filling mode. The changer is controlled by a client–server-based network protocol, locally and remotely. During the testing phase, the changer was operated in an attended mode to assess its reliability and convenience. Full integration with the beamline control software, allowing for automated data collection of all samples loaded into the machine with remote control from the user, is presently being implemented. The approach reported is not limited to synchrotron-based SAXS but can also be used on laboratory and neutron sources. PMID:25484841

  18. Status of PLS-II Upgrade Program

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Ryul; Wiedemann, Helmut; Park, Sung-Ju; Kim, Dong-Eon; Park, Chong-Do; Park, Sung-Soo; Kim, Seong-Hwan; Kim, Bongsoo; Namkung, Won; Nam, Sanghoon; Ree, Moonhor

    2010-06-01

    The Pohang Light Source (PLS) at the Pohang Accelerator Laboratory has been operated first at 2.0 GeV since 1995, and later was upgraded to 2.5 GeV. During this time, 6 insertion devices like undulators and multipole wigglers have been put into operation to produce special photon beams, with a total of 27 beamlines installed and 3 beamlines under construction. Recently, Korea synchrotron user's community is demanding high beam stability, higher photon energies as well as more straight sections for insertion devices in the PLS. To meet the user requirements, the PLS-II upgrade program has been launched in January, 2009, incorporating a modified chromatic version of Double Bend Achromat (DBA) to achieve almost twice as many straight sections as the current PLS with a design goal of the relatively low emittance, ɛ, of 5.9 nmṡrad. In the PLS-II, the top-up injection using full energy linac is planned for much higher stable beam as well and thus the production of hard x-ray undulator radiation of 8 to 13 keV is anticipated to allow for the successful research program namely Protein Crystallography. The PLS-II machine components of storage ring, linear accelerator and photon beamlines will be partly dismantled and reinstalled in a 6-months shutdown beginning January, 2011 and then the PLS-II upgrade be started the initial commissioning with a 100 mA beam current from July in 2011.

  19. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B 4C) coating especially optimized for the LCLS FEL conditions was deposited onmore » all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B 4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  20. Rotary Valve & Beamline Highlights for Fiscal Year 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitsos, P

    This Fiscal Year (FY) work was divided between continued testing and characterization work of the Rotary Valve (RV) and mechanical engineering support for the beamline hardware stands. This configuration is more like the final setup with the accelerator firing deuterons down the evacuated beamline toward the RV for interaction with the deuterium and neutron production. The beamline cells were part of an experiment to reduce the impact that RV gas would have on the beamline vacuum. This work will be reported separately from this report. Previous testing had been with the beamline at atmospheric pressure and now the goal wasmore » to get test results of the RV with it connected to a beamline that’s running at some level of vacuum.« less

  1. Development of Experimental Techniques Using LVP (Large Volume Press) at GSECARS Beamlines, Advanced Photon Source (in Japanese with English abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiyama, N.; Wang, Y.

    GSECARS (GeoSoilEnviroCARS, the University of Chicago) operates a bending magnet and an undulator beamlines at Sector 13, Advanced Photon Source. Experimental technique for High Pressure X-ray Tomographic Microscope (HPXTM) using monochromatized X-rays has been developed. The module for HPXTM also has shear deformation capability, which enables us to perform HPXTM experiments for microstructure developed by shear deformation under high pressure. A combination of Deformation DIA (D-DIA) and monochromatic X-rays has been developed for quantitative deformation experiments under pressure above 10 GPa. Deformation experiments of e-iron was performed at pressures up to 19 GPa and temperatures up to 700 K.

  2. Performance Report: A timeline for the synchrotron calibration of AXAF

    NASA Technical Reports Server (NTRS)

    Tananbaum, H. D.; Graessle, D.

    1994-01-01

    Presented herein are the known elements of the timeline for synchrotron reflectance calibrations of HRMA witness samples (Section 2). In Section 3, lists of measurements to be done on each witness flat are developed. The elements are then arranged into timelines for the three beamlines we expect to employ in covering the full 50-12,000 eV energy range (Section 4). Although the required AXAF operational range is only 0.1-10 keV, we must calibrate the extent to which radiation just outside this band may contaminate our in-band response. In Section 5, we describe the working relationships which exist with each of the beamlines, and estimate the time available for AXAF measurements on each. From the timelines and the available time, we calculate the number of flats which could be measured in full detail over the duration of the program for each beamline. A suggestion is made regarding a minimum required baselines of witness flats from each element coating run or qualification run to be used in the calibration. We intend that this suggestion open discussion of the issue of witness flat deployment.

  3. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOEpatents

    Stirling, William L.

    1982-01-01

    A neutral beamline generator with energy recovery of the full-energy ion ponent of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the electrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reininger, Ruben; Dhesi, Sarnjeet

    The main requirement of the Nanoscience Beamline at Diamond is to deliver the highest possible flux at the sample position of a PEEM with a resolving power of about 5000 in the energy range 80-2000 eV. The source of the beamline is a couple of APPLE II helical undulators in tandem that can also be used separately to allow for faster switching of the circular polarization. Based on its versatility, a collimated plane grating monochromator using sagittally focusing elements was chosen to cover the required energy range with three gratings. The operation of this monochromator requires a collimated beam incidentmore » on the grating along the dispersion direction. This can be achieved either with a toroid, focusing with its major radius along the non-dispersive direction at the exit slit, or with a sagittal cylinder. The former option uses a sagittal cylinder after the grating to focus the collimated beam at the exit slit. In the latter case, a toroid after the grating is used to focus in both directions at the exit slit. The advantage of the toroid downstream the grating is the higher horizontal demagnification. This configuration fulfills the Nanoscience Beamline's required resolving power but cannot be used to achieve very high resolution due to the astigmatic coma aberration of the toroidal mirror. The focusing at the sample position is performed with a KB pair of plane elliptical mirrors. Assuming achievable values for the errors on all the optical surfaces, the expected spots FWHW in the horizontal and vertical directions are 10 {mu}m and 3 {mu}m, respectively. The calculated photon flux at this spot at 5000 resolving power is >1012 photons/sec between 80 and 1600 eV for linearly polarized light and between 106 and 1200 eV for circularly polarized light. The beamline is expected to be operational in January 2007.« less

  5. Design and Construction of a High-speed Network Connecting All the Protein Crystallography Beamlines at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsugaki, Naohiro; Yamada, Yusuke; Igarashi, Noriyuki

    2007-01-19

    A private network, physically separated from the facility network, was designed and constructed which covered all the four protein crystallography beamlines at the Photon Factory (PF) and Structural Biology Research Center (SBRC). Connecting all the beamlines in the same network allows for simple authentication and a common working environment for a user who uses multiple beamlines. Giga-bit Ethernet wire-speed was achieved for the communication among the beamlines and SBRC buildings.

  6. MERLIN - A meV Resolution Beamline at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reininger, Ruben; Bozek, John; Chuang, Y.-D.

    2007-01-19

    An ultra-high resolution beamline is being constructed at the Advanced Light Source (ALS) for the study of low energy excitations in strongly correlated systems with the use of high-resolution inelastic scattering and angle-resolved photoemission. This new beamline, given the acronym Merlin (for meV resolution line), will cover the energy range 10-150 eV. The monochromator has fixed entrance and exit slits and a plane mirror that can illuminate a spherical grating at the required angle of incidence (as in the SX-700 mechanism). The monochromator can be operated in two different modes. In the highest resolution mode, the energy scanning requires translatingmore » the monochromator chamber (total travel 1.1 m) as well as rotating the grating and the plane mirror in front of the grating. The resolution in this mode is practically determined by the slits width. In the second mode, the scanning requires rotating the grating and the plane mirror. This mode can be used to scan a few eV without a significant resolution loss. The source for the beamline is a 1.9 m long, 90 mm period quasi periodic EPU. The expected flux at the sample is higher than 1011 photons/s at a resolving power of 5 x 104 in the energy range 16-130 eV. A second set of gratings can be used to obtain higher flux at the expense of resolution.« less

  7. Design and implementation of a robust and cost-effective double-scattering system at a horizontal proton beamline

    NASA Astrophysics Data System (ADS)

    Helmbrecht, S.; Baumann, M.; Enghardt, W.; Fiedler, F.; Krause, M.; Lühr, A.

    2016-11-01

    Purpose: particle therapy has the potential to improve radiooncology. With more and more facilities coming into operation, also the interest for research at proton beams increases. Though many centers provide beam at an experimental room, some of them do not feature a device for radiation field shaping, a so called nozzle. Therefore, a robust and cost-effective double-scattering system for horizontal proton beamlines has been designed and implemented. Materials and methods: the nozzle is based on the double scattering technique. Two lead scatterers, an aluminum ridge-filter and two brass collimators were optimized in a simulation study to form a laterally homogeneous 10 cm × 10 cm field with a spread-out Bragg-peak (SOBP). The parts were mainly manufactured using 3D printing techniques and the system was set up at OncoRay's experimental beamline. Measurement of the radiation field were carried out using a water phantom. Results: high levels of dose homogeneity were found in lateral (dose variation ΔD/D < ±2%) as well as in beam direction (ΔD/D < ± 3% in the SOBP). The system has already been used for radiobiology and physical experiments. Conclusion: the presented setup allows for creating clinically realistic extended radiation fields at fixed horizontal proton beamlines and is ready to use for internal and external users. The excellent performance combined with the simplistic design let it appear as a valuable option for proton therapy centers intending to foster their experimental portfolio.

  8. X-ray optical simulations supporting advanced commissioning of the coherent hard x-ray beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.

    2017-08-01

    We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.

  9. Construction and performance of BL28 of the Photon Factory for circularly polarized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Muto, Sadatsugu; Miyahara, Tsuneaki; Koide, Tsuneharu; Yamamoto, Shigeru; Kitamura, Hideo

    1992-01-01

    A branch beamline, BL28A, has been constructed for the application of circularly polarized vacuum ultraviolet radiation. The radiation can be obtained in the helical undulator operation mode of an insertion device, EMPW♯28, which is also cut for elliptically polarized hard x-ray radiation. T first harmonic of the helical undulator radiation can be tuned from 40 to 350 eV with its corresponding K value from 3 to 0.2. A monochromator working basically with constant deviation optics was installed, and has started its operation. A circularly polarized flux of ˜1010 photons/s has been achieved with energy resolution of around 500-1000 at the first harmonic peak. The circular polarization after the monochromator was estimated to be higher than 70% by comparing theory and experiment on the magnetic circular dichroism of nickel films in the 3p-3d excitation region. The design philosophy of the beamline and recent results on the performance tests are presented.

  10. Beamline Insertions Manager at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael C.

    2015-09-01

    The beam viewer system at Jefferson Lab provides operators and beam physicists with qualitative and quantitative information on the transverse electron beam properties. There are over 140 beam viewers installed on the 12 GeV CEBAF accelerator. This paper describes an upgrade consisting of replacing the EPICS-based system tasked with managing all viewers with a mixed system utilizing EPICS and high-level software. Most devices, particularly the beam viewers, cannot be safely inserted into the beam line during high-current beam operations. Software is partly responsible for protecting the machine from untimely insertions. The multiplicity of beam-blocking and beam-vulnerable devices motivates us tomore » try a data-driven approach. The beamline insertions application components are centrally managed and configured through an object-oriented software framework created for this purpose. A rules-based engine tracks the configuration and status of every device, along with the beam status of the machine segment containing the device. The application uses this information to decide on which device actions are allowed at any given time.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flechsig, U.; Nolting, F.; Fraile Rodriguez, A.

    The Surface/Interface: Microscopy beamline of the Swiss Light Source started operation in 2001. In 2007 the beamline has been significantly upgraded with a second refocusing section and a blazed grating optimized for high photon flux. Two Apple II type undulators with a plane grating monochromator using the collimated light scheme deliver photons with an energy from 90eV to about 2keV with variable polarization for the photoemission electron microscope (PEEM) as the primary user station. We measured a focus of (45x60) {mu}m({nu}xh) and a photon flux > 10{sup 12} photon/s for all gratings. Polarization switching within a few seconds is realizedmore » with the small bandpass of the monochromator and a slight detuning of the undulator.« less

  12. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation.

    PubMed

    Panaccione, G; Vobornik, I; Fujii, J; Krizmancic, D; Annese, E; Giovanelli, L; Maccherozzi, F; Salvador, F; De Luisa, A; Benedetti, D; Gruden, A; Bertoch, P; Polack, F; Cocco, D; Sostero, G; Diviacco, B; Hochstrasser, M; Maier, U; Pescia, D; Back, C H; Greber, T; Osterwalder, J; Galaktionov, M; Sancrotti, M; Rossi, G

    2009-04-01

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

  13. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  14. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response.

    PubMed

    Geandier, G; Thiaudière, D; Randriamazaoro, R N; Chiron, R; Djaziri, S; Lamongie, B; Diot, Y; Le Bourhis, E; Renault, P O; Goudeau, P; Bouaffad, A; Castelnau, O; Faurie, D; Hild, F

    2010-10-01

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  15. Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis

    2007-07-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which togethermore » formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller crystals, and on more rapidly screening larger numbers of candidate crystals; all of these requirements translate directly into a pressing need for increased flux, a tighter beam focus and faster detectors. With these growing demands in mind a major program of beamline and detector upgrades was initiated in 2004 with the goal of dramatically enhancing all aspects of beamline performance. Approximately $3 million in funding from diverse sources including NIH, LBL, the ALS, and the industrial and academic members of the beamline Participating Research Team (PRT), has been employed to develop and install new high performance beamline optics and to purchase the latest generation of CCD detectors. This project, which reached fruition in early 2007, has now fulfilled all of its original goals--boosting the flux on all three beamlines by up to 20-fold--with a commensurate reduction in exposure and data acquisition times for users. The performance of the Sector 5.0 beamlines is now comparable to that of the latest generation ALS superbend beamlines and, in the case of beamline 5.0.2, even surpasses it by a considerable margin. Indeed, the present performance of this beamline is now, once again, comparable to that envisioned for many MX beamlines planned or under construction on newer or higher energy machines.« less

  16. Aperture alignment in autocollimator-based deflectometric profilometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geckeler, R. D., E-mail: Ralf.Geckeler@ptb.de; Just, A.; Kranz, O.

    2016-05-15

    During the last ten years, deflectometric profilometers have become indispensable tools for the precision form measurement of optical surfaces. They have proven to be especially suitable for characterizing beam-shaping optical surfaces for x-ray beamline applications at synchrotrons and free electron lasers. Deflectometric profilometers use surface slope (angle) to assess topography and utilize commercial autocollimators for the contactless slope measurement. To this purpose, the autocollimator beam is deflected by a movable optical square (or pentaprism) towards the surface where a co-moving aperture limits and defines the beam footprint. In this paper, we focus on the precise and reproducible alignment of themore » aperture relative to the autocollimator’s optical axis. Its alignment needs to be maintained while it is scanned across the surface under test. The reproducibility of the autocollimator’s measuring conditions during calibration and during its use in the profilometer is of crucial importance to providing precise and traceable angle metrology. In the first part of the paper, we present the aperture alignment procedure developed at the Advanced Light Source, Lawrence Berkeley National Laboratory, USA, for the use of their deflectometric profilometers. In the second part, we investigate the topic further by providing extensive ray tracing simulations and calibrations of a commercial autocollimator performed at the Physikalisch-Technische Bundesanstalt, Germany, for evaluating the effects of the positioning of the aperture on the autocollimator’s angle response. The investigations which we performed are crucial for reaching fundamental metrological limits in deflectometric profilometry.« less

  17. Measurement of a Neutrino-Induced Charged Current Single Neutral Pion Cross Section at MicroBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackenburg, Ariana

    Micro Booster Neutrino Experiment (MicroBooNE) is a Liquid Argon Time Projection Chamber (LArTPC) operating in the Booster Neutrino Beamline at Fermi National Accelerator Laboratory. MicroBooNE's physics goals include studying short baslinemore » $$\

  18. Enhancement of the Microscopy Facilities at the NSLS X1A Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Chris

    1999-08-31

    As originally proposed, the authors constructed a new Scanning Transmission X-ray Microscope, STXM IV. The design and construction was led by Chris Jacobsen, and involved graduate students Michael Feser, Mary Carlucci-Dayton and Tobias Beetz. This microscope has the following new features: It has a new and improved high resolution scanning stage that should make it possible to perform higher resolution imaging without distortions. Preliminary results indicate that the stage performs as designed. It has an enclosure that can be evacuated and backfilled with helium. This makes it possible to perform imaging in the neighborhood of the nitrogen and oxygen edgesmore » without interference from residual air. It has a motorized detector stage for easy interchange of detectors and alignment microscope. We expect to use this to align the new segmented detector which makes it possible to perform brightfield and dark field microscopy simultaneously, and to record images in differential phase contrast as well. The microscope is located upstream of cryoSTXM, the instrument we use to examine specimens in a frozen hydrated state. The design of STXM IV is such that it makes it quick and easy to switch between STXM IV and cryo-STXM operations and vice versa. IEEE488 based control electronics provides multiple channels of data collection. The microscope is run from a LINUX PC with all new software, developed in-house. The stages for the zone plate and the order sorting aperture (OSA) have kinematic mounts. This way different sets of zone plates (optimized for different wavelengths and working distances) can be exchanged without the need for complete realignment of the instrument. The enclosure can be used as a glove-box, making it possible to examine specimens which require anaerobic handling.« less

  19. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller ,L.; Nasta, K.

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materialsmore » Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS capabilities and much-needed beam time for the life sciences, soft condensed matter physics, and nanoscience communities. Looking toward the future, a significant step has been made in expanding the user base and diversifying the work force by holding the first Historically Black Colleges and Universities (HBCU) Professors' Workshop. The workshop, which brought 11 professors to the NSLS to learn how to become successful synchrotron users, concluded with the formation of an HBCU User Consortium. Finally, significant contributions were made in optics and detector development to enhance the utilization of the NSLS and address the challenges of NSLS-II. In particular, x-ray detectors developed by the NSLS Detector Section have been adopted by an increasing number of research programs both at the NSLS and at light sources around the world, speeding up measurement times by orders of magnitude and making completely new experiments feasible. Significant advances in focusing and high-energy resolution optics have also been made this year.« less

  20. Review of Canadian Light Source facilities for biological applications

    NASA Astrophysics Data System (ADS)

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaun; Wysokinski, Tomasz W.; Belev, George; Korbas, Malgorzata; Rosendahl, Scott M.

    2017-11-01

    The newly-created Biological and Life Sciences Department at the Canadian Light Source (CLS) encompasses four sets of beamlines devoted to biological studies ranging in scope from the atomic scale to cells, tissues and whole organisms. The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines devoted primarily to crystallographic studies of proteins and other macromolecules. The Mid-Infrared Spectromicroscopy (Mid-IR) beamline focusses on using infrared energy to obtain biochemical, structural and dynamical information about biological systems. The Bio-Medical Imaging and Therapy (BMIT) facility consists of two beamlines devoted to advanced imaging and X-ray therapy techniques. The Biological X-ray Absorption Spectroscopy (BioXAS) facility is being commissioned and houses three beamlines devoted to X-ray absorption spectroscopy and multi-mode X-ray fluorescence imaging. Together, these beamlines provide CLS Users with a powerful array of techniques to study today's most pressing biological questions. We describe these beamlines along with their current powerful features and envisioned future capabilities.

  1. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron

    PubMed Central

    Aishima, Jun; Cherukuvada, Hima; Clarken, Robert; Clift, Mark; Ericsson, Daniel Jesper; Macedo, Sofia; Mudie, Nathan; Price, Jason Roy; Rostan, Robert; Williamson, Rachel

    2018-01-01

    MX2 is an in-vacuum undulator-based crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range 4.8–21 keV to a focal spot of 22 × 12 µm FWHM (H × V). At 13 keV the flux at the sample is 3.4 × 1012 photons s−1. The beamline endstation allows robotic handling of cryogenic samples via an updated SSRL SAM robot. This beamline is ideal for weakly diffracting hard-to-crystallize proteins, virus particles, protein assemblies and nucleic acids as well as smaller molecules such as inorganic catalysts and organic drug molecules. The beamline is now mature and has enjoyed a full user program for the last nine years. This paper describes the beamline status, plans for its future and some recent scientific highlights. PMID:29714201

  2. A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices

    NASA Astrophysics Data System (ADS)

    Maser, Jörg; Lai, Barry; Buonassisi, Tonio; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Jacobsen, Chris; Preissner, Curt; Roehrig, Chris; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan

    2014-01-01

    The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick-Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. We furthermore discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar cells, one of the lines of inquiries for which the ISN is being developed.

  3. Limiting effects in double EEX beamline

    NASA Astrophysics Data System (ADS)

    Ha, G.; Power, J. G.; Conde, M.; Doran, D. S.; Gai, W.

    2017-07-01

    The double emittance exchange (EEX) beamline is suggested to overcome the large horizontal emittance and transverse jitter issues associated with the single EEX beamline while preserving its powerful phase-space manipulation capability. However, the double EEX beamline also has potential limitations due to coherent synchrotron radiation (CSR) and transverse jitter. The former limitation arises because double EEX uses twice as many bending magnets as single EEX which means stronger CSR effects degrading the beam quality. The latter limitation arises because a longitudinal jitter in front of the first EEX beamline is converted into a transverse jitter in the middle section (between the EEX beamlines) which can cause beam loss or beam degradation. In this paper, we numerically explore the effects of these two limitations on the emittance and beam transport.

  4. Muon Beamline Commissioning and Feasibility Study for μSR at a New DC Muon Beamline, MuSIC-RCNP, Osaka University

    NASA Astrophysics Data System (ADS)

    Tomono, Dai; Fukuda, Mitsuhiro; Hatanaka, Kichiji; Higemoto, Wataru; Kawashima, Yoshitaka; Kojima, Kenji M.; Kuno, Yoshitaka; Matsuda, Yugo; Matsuzaki, Teiichiro; Miyake, Yasuhiro; Miyamoto, Koichiro; Morita, Yasuyuki; Motoishi, Takahiro; Nakazawa, Yu; Ninomiya, Kazuhiko; Nishikawa, Ryo; Ohta, Saki; Sato, Akira; Shimomura, Koichiro; Takahisa, Keiji; Weichao, Yao; Wong, Ming L.

    At the new DC muon beamline MuSIC at Research Center for Nuclear Physics (RCNP), Osaka University, the beamline construction from the solenoid system of the muon production to the experimental port was completed. A beamline commissioning and a feasibility study for μSR are now in progress. With newly refurbished spectrometer installed at the experimental port, we succeeded in observing μSR spectra and μ-e decay asymmetry in a simple setup down to 4 K. We are still under development of other μSR appratuses.

  5. Upgrade of beamline BL25SU for soft x-ray imaging and spectroscopy of solid using nano- and micro-focused beams at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senba, Yasunori, E-mail: ysenba@spring8.or.jp; Ohashi, Haruhiko; Kotani, Yoshinori

    2016-07-27

    Substantial upgrades have been made to the beamline BL25SU at SPring-8 for soft X-ray imaging and spectroscopy of solid-state materials. The upgraded beamline consists of two branches: a micro-beam branch with high energy resolution, and a nano-beam branch with small angular divergence. The beamline has been available for use since October 2014, following a half year commissioning period. We present here the beamline performance parameters, including resolving power, photon flux, and focused beam size, which are consistent with designed specifications.

  6. The Astro-H Soft X-Ray Mirror

    NASA Technical Reports Server (NTRS)

    Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang

    2012-01-01

    The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutionsmore » and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.« less

  8. Diagnostic X-Multi-Axis Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, A C

    Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by aboutmore » 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45 degrees. An upgrade can later be made by adding beamlines 5-8 azimuthally indexed so as to provide an azimuthal resolution of 22.5 degrees. All eight beamlines point down by 10 degrees (pitch). The x-ray converter target can be located along each beamline anywhere between 0 to 5 meters from the firing point. An example of inter-facing the Diagnostic X facility with the Darht II accelerator located at LANL will be given.« less

  9. New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics

    NASA Astrophysics Data System (ADS)

    Krumrey, Michael; Müller, Peter; Cibik, Levent; Collon, Max; Barrière, Nicolas; Vacanti, Giuseppe; Bavdaz, Marcos; Wille, Eric

    2016-07-01

    A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.

  10. The soft x-ray beamline at Frascati Labs

    NASA Astrophysics Data System (ADS)

    Cinque, Gianfelice; Burattini, Emilio; Grilli, Antonio; Dabagov, Sultan

    2005-08-01

    DAΦNE-Light is the Synchrotron Radiation laboratory at the Laboratori Nazionali di Frascati (LNF)1. Three beamlines were commissioned since spring 2003 to exploit parasitically the intense photon emission from DAΦNE, the 0.5 1 GeV storage ring routinely circulating over 1 A of electrons. The soft X-ray beamline utilizes a wiggler source and, by a double-crystal fixed-exit monochromator, it is operational in the distinguishing energy window 1.5 - 4 keV range to be extended from the "water window" toward 6 keV. At present, the research activity is focused on X-ray Absorption Spectroscopy (XAS): precisely, X-ray Absorption Near Edge Spectroscopy (XANES) on the inner electronic levels of light elements and transition metals from Al to Ge and both d- and f-shells of higher Z atoms. Preliminary tests of X-ray imaging have been performed in view of applying different focusing optics, namely policapillary systems in trasmission and/or bent mica diffractor in back-reflection, for X-ray microscopy and spectromicroscopy experiments. The use of polycapillary systems (lenses, halflenses, capillaries) for studying features of radiation transportation by such structures (X-ray channelling, focusing, bending, etc.) has been planned.

  11. The life science X-ray scattering beamline at NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  12. The life science X-ray scattering beamline at NSLS-II

    DOE PAGES

    DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish; ...

    2015-09-30

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  13. The life science x-ray scattering beamline at NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiFabio, Jonathan; Chodankar, Shirish; Pjerov, Sal

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ∼0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  14. Construction and Commissioning of A 248 m-long Beamline with X-ray Undulator Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yoshio; Uesugi, Kentaro; Takimoto, Naoki

    2004-05-12

    A medium-length beamline with undulator source, BL20XU at SPring-8, was constructed, and opened to public use. The distance from source point to the end of the beamline is 248 m. By utilizing the long beam transport path, the beamline has advantages for experiment that requires high spatial coherence in hard X-ray regions.

  15. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32.

    PubMed

    Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B

    2016-03-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014.

  16. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panaccione, G.; Vobornik, I.; Fujii, J.

    2009-04-15

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beammore » facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.« less

  17. Design of a magnetic circuit for a cryogenic undulator in Taiwan photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jui-Che, E-mail: huang.juiche@nsrrc.org.tw; Kuo, Cheng-Ying; Yang, Chin-Kang

    2016-07-27

    The plan for beamlines in Phase II at Taiwan Photon Source is to construct two new BioSAXS and nano-ARPES beamlines. A highly brilliant light source can be produced with a cryogenic undulator, and many synchrotron facilities have been developed and operated with these in their storage rings. The development of a cryogenic undulator became a target for a light source in TPS phase II. A cryogenic undulator with period of length 15 mm will be made in a hybrid magnetic structure, and use PrFeB permanent-magnet materials. A maximum magnetic field 1.31 T is estimated at gap 4 mm and temperaturemore » about 100 K. The spectral performance of a TPS cryogenic undulator is presented in this paper.« less

  18. Hard x-ray nanoprobe of beamline P06 at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroer, C. G., E-mail: christian.schroer@desy.de; Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg; Baumbach, C.

    2016-07-27

    The hard x-ray scanning microscope at beamline P06 of PETRA III at DESY in Hamburg serves a large user community, from physics, chemistry, and nanotechnology to the bio-medical, materials, environmental, and geosciences. It has been in user operation since 2012, and is mainly based on nanofocusing refractive x-ray lenses. Using refractive optics, nearly gaussian-limited nanobeams in the range from 50 to 100 nm can be generated in the hard x-ray energy range from 8 to 30 keV. The degree of coherence can be traded off against the flux in the nanobeam by a two-stage focusing scheme. We give a briefmore » overview on published results from this instrument and describe its most important components and parameters.« less

  19. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geandier, G.; Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette; LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse

    2010-10-15

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains usingmore » x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.« less

  20. Thermal Analysis of Fermilab Mu2e Beamstop and Structural Analysis of Beamline Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narug, Colin S.

    The Mu2e project at Fermilab National Accelerator Laboratory aims to observe the unique conversion of muons to electrons. The success or failure of the experiment to observe this conversion will further the understanding of the standard model of physics. Using the particle accelerator, protons will be accelerated and sent to the Mu2e experiment, which will separate the muons from the beam. The muons will then be observed to determine their momentum and the particle interactions occur. At the end of the Detector Solenoid, the internal components will need to absorb the remaining particles of the experiment using polymer absorbers. Becausemore » the internal structure of the beamline is in a vacuum, the heat transfer mechanisms that can disperse the energy generated by the particle absorption is limited to conduction and radiation. To determine the extent that the absorbers will heat up over one year of operation, a transient thermal finite element analysis has been performed on the Muon Beam Stop. The levels of energy absorption were adjusted to determine the thermal limit for the current design. Structural finite element analysis has also been performed to determine the safety factors of the Axial Coupler, which connect and move segments of the beamline. The safety factor of the trunnion of the Instrument Feed Through Bulk Head has also been determined for when it is supporting the Muon Beam Stop. The results of the analysis further refine the design of the beamline components prior to testing, fabrication, and installation.« less

  1. XAFS and Protein Crystallography Beamline BL38B1 at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanida, Hajime; Miura, Keiko; Takeshita, Kunikazu

    2004-05-12

    The SPring-8 bending magnet beamline BL38B1 is designed for R and D of optics, detectors, experiments for XAFS and protein X-ray crystallography (PX). This beamline has a multi-purpose hutch for two experimental stations of XAFS and PX, and removable optical benches used for R and D of detectors and instruments. The design and the performance of the beamline are presented.

  2. From Soft to Hard X-ray with a Single Grating Monochromator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocco, D.; Bianco, A.; Kaulich, B.

    Even if not well defined a border exists between the soft and the hard X-ray region. The optics adopted in one region is not suitable for the other region and vice versa. Nevertheless, recently more and more experimentalists wish to investigate their samples by using an energy range as wide as possible. Without adopting complicated and very expensive mechanical solutions, it is a major challenge, for the optical designer, to find a solution suitable for both spectral ranges. This was our task for the TwinMic beamline at Elettra, the Italian 3rd generation synchrotron radiation source. This beamline will house amore » twin x-ray microscope, which combines scanning and full-field imaging in a single multipurpose end station and is operated in the 0.2-3 keV photon energy range. This energy range will be covered by a blazed grating, which has a very shallow blaze angle of 0.4 deg. With this grating mechanically ruled in the grating laboratory of Carl Zeiss very high diffraction efficiency can be achieved, expected to be higher then 10% over the whole range. This grating was tested at the KMC 1 beamline in BESSY, which is particularly suitable for this kind of measurements since it has a crystal monochromator that can go down to 1.7 keV and can be equipped with an high precision diffractometer. The obtained results demonstrate that it is possible to work with this grating up to 6 keV with still enough efficiency (5% at 6 keV and 15% at 1.8 keV). The efficiency in the lower part of the energy range was tested at Elettra, again with very good results (more then 20% at 950 eV and 15% at 600eV). A second grating, also produced by Carl Zeiss, with a blaze angle of 1.1 deg. will be mounted in the same monochromator, to cover the lower energy range. Both gratings have 600 grooves/mm, which is a good compromise for achieving the requested energy resolving power (of the order of 4000 in most of the range) and to have as much flux as possible, mandatory for the experiments proposed for this beamline. A multilayer mirror, mounted side by side with the two gratings, will permit a wide band selection of the incoming radiation. The beamline is expected to be operative in spring 2007.« less

  3. Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, V. V.; Yuan, S.; Baker, S.

    2010-06-02

    We review the recent development of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and at the Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. For simultaneous focusing in the tangential and sagittal directions, two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair, are used. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. Moreover, such optics cannot be easily readjusted for usemore » in multiple, different experimental arrangements, e.g. at different focal distances. This is in contrast to flat optics that are simpler to manufacture and easier to measure by conventional interferometry. The tangential figure of a flat substrate is changed by placing torques (couples) at each end. Depending on the applied couples, one can tune the shape close to a desired tangential cylinder, ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, describe original optical and at-wavelength techniques for optimal tuning of bendable optics and alignment on the beamline, and provide beamline performance of the bendable optics used for sub-micro and nano focusing of soft x-rays.« less

  4. Radiographic assessment of knee-ankle alignment after total knee arthroplasty for varus and valgus knee osteoarthritis.

    PubMed

    Gao, Fuqiang; Ma, Jinhui; Sun, Wei; Guo, Wanshou; Li, Zirong; Wang, Weiguo

    2017-01-01

    There are unanswered questions about knee-ankle alignment after total knee arthroplasty (TKA) for varus and valgus osteoarthritis (OA) of the knee. The aim of this retrospective study was to assess knee-ankle alignment after TKA. The study consisted of 149 patients who had undergone TKA due to varus and valgus knee OA. The alignment and angles in the selected knees and ankles were measured on full-length standing anteroposterior radiographs, both pre-operatively and post-operatively. The paired t-test and Pearson's correlation tests were used for statistical analysis. The results showed that ankle alignment correlated with knee alignment both pre-operatively and postoperatively (P<0.05). The pre-operative malalignment of the knee was corrected (P<0.05), and the ankle tilt angle was accordingly improved in the operative side after TKA (P<0.05). In addition, TKA had little effect on knee-ankle alignment on the non-operative side (P>0.05). These findings indicated that routine TKA could correct the varus or valgus deformity of a knee, and improve the tilt of the ankle. Ankle alignment correlated with knee alignment both pre-operatively and postoperatively. Both pre-operative knee and ankle malalignment can be simultaneously corrected following TKA. Level III. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. FLASH2: Operation, beamlines, and photon diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plönjes, Elke, E-mail: elke.ploenjes@desy.de; Faatz, Bart; Kuhlmann, Marion

    2016-07-27

    FLASH2, a major extension of the soft X-ray free-electron laser FLASH at DESY, turns FLASH into a multi-user FEL facility. A new undulator line is located in a separate accelerator tunnel and driven additionally by the FLASH linear accelerator. First lasing of FLASH2 was achieved in August 2014 with simultaneous user operation at FLASH1. The new FLASH2 experimental hall offers space for up to six experimental end stations, some of which will be installed permanently. The wide wavelength range spans from 4-60 nm and 0.8 nm in the 5{sup th} harmonic and in the future deep into the water windowmore » in the fundamental. While this is of high interest to users, it is challenging from the beamline instrumentation point of view. Online diagnostics - which are mostly pulse resolved - for beam intensity, position, wavelength, wave front, and pulse length have been to a large extent developed at FLASH(1) and have now been optimized for FLASH2. Pump-probe facilities for XUV-XUV, XUV optical and XUV-THz experiments will complete the FLASH2 user facility.« less

  6. Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF medical beamline

    NASA Astrophysics Data System (ADS)

    Beigzadeh Jalali, H.; Salimi, E.; Rahighi, J.

    2016-10-01

    Gas bremsstrahlung is generated in high energy electron storage ring accompanies the synchrotron radiation into the beamlines and strike the various components of the beamline. In this paper, radiation shielding calculation for secondary gas bremsstrahlung is performed for the first optics enclosure (FOE) of medical beamline of the Iranian Light Source Facility (ILSF). Dose equivalent rate (DER) calculation is accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof is given.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Steven; Shu, Deming

    A vibration survey of the APS experiment hall floor was conducted. It was found that beamlines 10-20 have particularly low levels of vibration when compared to the rest of the facility. The vibration spectrum for each beamline floor can be found in the appendix. Throughout the majority of the 5-100 Hz vibration spectrum beamlines at the APS fall below the most stringent NEST vibration criteria. Lastly, it was concluded that the magnitude of vibrations at a particular beamline is largely dependent upon the magnitude of vibrations present at the nearby mezzanine support column.

  8. AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.

    PubMed

    Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou

    2017-01-01

    In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

  9. Installation of a second superconducting wiggler at SAGA-LS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.

    The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of themore » vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.« less

  10. Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Chu, Y. N.; Broadbent, A.

    2010-08-30

    The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibrationmore » isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.« less

  11. Development of Superconducting Insertion Device Magnets at NSRRC

    NASA Astrophysics Data System (ADS)

    Hwang, C. S.; Chang, C. H.; Chen, H. H.; Jan, J. C.; Lin, F. Y.; Fan, T. C.; Chen, J.; Hsu, S. N.; Hsu, K. T.; Huang, M. H.; Chang, H. P.; Hsiung, G. Y.; Chien, Y. C.; Chen, J. R.; Kuo, C. C.; Chen, C. T.

    2007-01-01

    A superconducting wavelength shifter (SWLS) with a magnetic field of 6.5 T in cryogen-free operation provides X-rays for high-resolution X-ray microscopy, EXAFS, and medical imaging beamlines. A 32-pole superconducting wiggler (SW) with a period of 6.1 cm and a magnetic field of 3.2 T in a liquid helium bath provides for three dedicated protein crystallography beamlines. Additionally, three 16-pole in-achromatic superconducting wigglers (IASW) with a period of 6.1 cm and a field strength of 3.1 T were constructed in-house and installed between the first and second bending magnets of a TBA arc section. Development of a prototype superconducting undulator (SU15) with a period of 15 mm and a field strength of 1.4 T is currently underway at National Synchrotron Radiation Research Center (MSRRC).

  12. Installation, commissioning and performance of IDs installed at ALBA

    NASA Astrophysics Data System (ADS)

    Campmany, J.; Marcos, J.; Massana, V.; Becheri, F.; Gigante, J. V.; Colldelram, C.; Ribó, Ll

    2013-03-01

    The new synchrotron light source ALBA is currently starting regular operation. Up to 6 beamlines are using light produced by Insertion Devices. There are up to four types of IDs: 2 Apple-II undulators (EU62 and EU71) operating at low energies, one conventional wiggler (MPW80) operating in the range of 2 - 20 keV, two in-vacuum undulators (IVU21) operating in the range 5 - 30 keV and a superconducting wiggler (SCW30) operating in the range of (up to) 40 keV. The main IDs characteristics, their influence on the beam dynamics and a first characterization of their light will be presented.

  13. White Beam Slits and Pink Beam Slits for the Hard X-ray Nanoprobe Beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, C.; Jaski, Y.; Powers, T.

    2007-01-19

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less

  14. White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, C.; Jaski, Y.; Maser, J.

    2007-01-01

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less

  15. New Strategic Plan Takes the ALS into the Future

    NASA Astrophysics Data System (ADS)

    Kirz, J.; Chemla, D. S.; Feinberg, B.; Hussain, Z.; Krebs, G. F.; Padmore, H. A.; Robin, D. S.; Robinson, A. L.; Smith, N. V.; Warwick, T.

    2007-01-01

    A new strategic plan is in place to upgrade the ALS so it can continue to address fundamental questions, such as size-dependent and dimensional-confinement phenomena at the nanoscale; correlation and complexity in physical, biological, and environmental systems; and temporal evolution, assembly, dynamics and ultrafast phenomena. Moreover, the growing number of ALS users (now exceeding 2,000 per year) requires increased attention. Accordingly, our plan concentrates on projects that will continue to make it possible for ALS users to address grand scientific and technological challenges with incisive world-class tools and quality user support. Our highest priority is to begin top-off operation, in which electrons are injected into the storage ring at intervals of approximately 1 minute. The combination of top-off and concurrent development of small-gap in-vacuum undulators and superconducting undulators will allow an increase in brightness from eight to more than 100 times, depending on the specific undulators and photon energy range. As part of our core mission in the VUV and soft x-ray regions, we plan to exploit these accelerator developments to extend our capabilities for high spatial and temporal resolution and utilize the remarkable coherence properties of the ALS in a new generation of beamlines. Ranked by priority, several proposed beamlines will follow completion of five new beamlines already under construction or funded. The intellectual excitement of the ALS has been a powerful tool in the recruitment and retention of outstanding staff, but additional sustained efforts are required to increase diversity both in gender and in underrepresented groups. To this end, we intend to expand the ALS Doctoral Fellowship Program by giving special emphasis to underrepresented groups. We also envision a distinguished postdoctoral fellowship program with the same emphasis, to increase and diversify our pool of candidates for beamline scientist positions.

  16. CAT-ACT—A new highly versatile x-ray spectroscopy beamline for catalysis and radionuclide science at the KIT synchrotron light facility ANKA

    NASA Astrophysics Data System (ADS)

    Zimina, A.; Dardenne, K.; Denecke, M. A.; Doronkin, D. E.; Huttel, E.; Lichtenberg, H.; Mangold, S.; Pruessmann, T.; Rothe, J.; Spangenberg, Th.; Steininger, R.; Vitova, T.; Geckeis, H.; Grunwaldt, J.-D.

    2017-11-01

    CAT-ACT—the hard X-ray beamline for CATalysis and ACTinide/radionuclide research at the KIT synchrotron radiation facility ANKA—is dedicated to X-ray spectroscopy, including "flux hungry" photon-in/photon-out and correlative techniques and combines state-of-the-art optics with a unique infrastructure for radionuclide and catalysis research. Measurements can be performed at photon energies varying between 3.4 keV and 55 keV, thus encompassing the actinide M- and L-edge or potassium K-edge up to the K-edges of the lanthanide series such as cerium. Well-established X-ray absorption fine structure spectroscopy in transmission and fluorescence detection modes is available in combination with high energy-resolution X-ray emission spectroscopy or X-ray diffraction techniques. The modular beamline design with two alternately operated in-line experimental stations enables sufficient flexibility to adapt sample environments and detection systems to many scientific challenges. The ACT experimental station focuses on various aspects of nuclear waste disposal within the mission of the Helmholtz association to contribute to the solution of one of the greatest scientific and social challenges of our time—the safe disposal of heat producing, highly radioactive waste forms from nuclear energy production. It augments present capabilities at the INE-Beamline by increasing the flux and extending the energy range into the hard X-ray regime. The CAT experimental station focuses on catalytic materials, e.g., for energy-related and exhaust gas catalysis. Characterization of catalytically active materials under realistic reaction conditions and the development of in situ and operando cells for sample environments close to industrial reactors are essential aspects at CAT.

  17. CAT-ACT-A new highly versatile x-ray spectroscopy beamline for catalysis and radionuclide science at the KIT synchrotron light facility ANKA.

    PubMed

    Zimina, A; Dardenne, K; Denecke, M A; Doronkin, D E; Huttel, E; Lichtenberg, H; Mangold, S; Pruessmann, T; Rothe, J; Spangenberg, Th; Steininger, R; Vitova, T; Geckeis, H; Grunwaldt, J-D

    2017-11-01

    CAT-ACT-the hard X-ray beamline for CATalysis and ACTinide/radionuclide research at the KIT synchrotron radiation facility ANKA-is dedicated to X-ray spectroscopy, including "flux hungry" photon-in/photon-out and correlative techniques and combines state-of-the-art optics with a unique infrastructure for radionuclide and catalysis research. Measurements can be performed at photon energies varying between 3.4 keV and 55 keV, thus encompassing the actinide M- and L-edge or potassium K-edge up to the K-edges of the lanthanide series such as cerium. Well-established X-ray absorption fine structure spectroscopy in transmission and fluorescence detection modes is available in combination with high energy-resolution X-ray emission spectroscopy or X-ray diffraction techniques. The modular beamline design with two alternately operated in-line experimental stations enables sufficient flexibility to adapt sample environments and detection systems to many scientific challenges. The ACT experimental station focuses on various aspects of nuclear waste disposal within the mission of the Helmholtz association to contribute to the solution of one of the greatest scientific and social challenges of our time-the safe disposal of heat producing, highly radioactive waste forms from nuclear energy production. It augments present capabilities at the INE-Beamline by increasing the flux and extending the energy range into the hard X-ray regime. The CAT experimental station focuses on catalytic materials, e.g., for energy-related and exhaust gas catalysis. Characterization of catalytically active materials under realistic reaction conditions and the development of in situ and operando cells for sample environments close to industrial reactors are essential aspects at CAT.

  18. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    PubMed

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  19. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  20. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10/P07008/mmedia. The videos are given as supplementary material linked to the main article.

  1. The CAT-ACT Beamline at ANKA: A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research

    NASA Astrophysics Data System (ADS)

    Zimina, A.; Dardenne, K.; Denecke, M. A.; Grunwaldt, J. D.; Huttel, E.; Lichtenberg, H.; Mangold, S.; Pruessmann, T.; Rothe, J.; Steininger, R.; Vitova, T.

    2016-05-01

    A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported.

  2. Progress of projection computed tomography by upgrading of the beamline 37XU of SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Yasuko, E-mail: yterada@spring8.or.jp; Suzuki, Yoshio; Uesugi, Kentaro

    2016-01-28

    Beamline 37XU at SPring-8 has been upgraded for nano-focusing applications. The length of the beamline has been extended to 80 m. By utilizing this length, the beamline has advantages for experiments such as X-ray focusing, X-ray microscopic imaging and X-ray computed tomography. Projection computed tomography measurements were carried out at experimental hutch 3 located 80 m from the light source. CT images of a microcapsule have been successfully obtained with a wide X-ray energy range.

  3. VUV-soft x-ray beamline for spectroscopy and calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, R.J.; Trela, W.J.; Southworth, S.H.

    1986-01-01

    We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed.

  4. 76 FR 5649 - Tongue River Railroad Company, Inc.-Construction and Operation-Western Alignment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... River Railroad Company, Inc.--Construction and Operation-- Western Alignment ACTION: Notice of the re... construction and operation was issued in October, 2007. The PA was prepared in consultation with the Section... the rail line construction and operation on Wolf Mountain Battlefield. The alignment approved by the...

  5. Design study of beam transport lines for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Ghithan, S.; Roy, G.; Schuh, S.

    2017-09-01

    The biomedical community has asked CERN to investigate the possibility to transform the Low Energy Ion Ring (LEIR) accelerator into a multidisciplinary, biomedical research facility (BioLEIR) that could provide ample, high-quality beams of a range of light ions suitable for clinically oriented, fundamental research on cell cultures and for radiation instrumentation development. The present LEIR machine uses fast beam extraction to the next accelerator in the chain, eventually leading to the Large Hadron Collider (LHC) . To provide beam for a biomedical research facility, a new slow extraction system must be installed. Two horizontal and one vertical experimental beamlines were designed for transporting the extracted beam to three experimental end-stations. The vertical beamline (pencil beam) was designed for a maximum energy of 75 MeV/u for low-energy radiobiological research, while the two horizontal beamlines could deliver up to 440 MeV/u. One horizontal beamline shall be used preferentially for biomedical experiments and shall provide pencil beam and a homogeneous broad beam, covering an area of 5 × 5 cm2 with a beam homogeneity of ±5%. The second horizontal beamline will have pencil beam only and is intended for hardware developments in the fields of (micro-)dosimetry and detector development. The minimum full aperture of the beamlines is approximately 100 mm at all magnetic elements, to accommodate the expected beam envelopes. Seven dipoles and twenty quadrupoles are needed for a total of 65 m of beamlines to provide the specified beams. In this paper we present the optical design for the three beamlines.

  6. Upgrade of beamline BL08B at Taiwan Light Source from a photon-BPM to a double-grating SGM beamline.

    PubMed

    Yuh, Jih Young; Lin, Shan Wei; Huang, Liang Jen; Fung, Hok Sum; Lee, Long Life; Chen, Yu Joung; Cheng, Chiu Ping; Chin, Yi Ying; Lin, Hong Ji

    2015-09-01

    During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam-position monitor (BPM) to a testing beamline and a single-grating beamline that enables experiments to record X-ray photo-emission spectra (XPS) and X-ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X-ray photon energies in the range 300-1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano-fabrication and topological thin films are increasing. The basic spherical-grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end-stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme-ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L-edge adsorption spectrum.

  7. Measurements from a Compact Cost-Effective Beamline for the THC14 PET Cyclotron

    NASA Astrophysics Data System (ADS)

    Dehnel, M. P.; Theroux, J.; Christensen, T.; Stewart, T. M.; Roeder, M.; Sirot, P.; Fasse, D.; Brasile, J. P.; Raoult, F.; Buckley, K.

    2009-03-01

    The THC14 PET Cyclotron produced by THALES specifies two compact cost-effective beamlines for high current PET radioisotope production. The design and development of the beamline system was reported previously in NIM B 261 (2007) pp 809-812. This paper describes the successful testing of this compact beamline at the first installation. A series of measurement data are presented starting from low current scintillator image data, higher current beam diagnostic data (baffles, collimators, targets) and finally a simultaneous dual beam run on Faraday Cups. The beamline system has proven to be a flexible and valuable tool for optimizing high current beam intensity distribution on target in a well-instrumented manner. This ability to tailor the beam characteristics for the target is particularly important as high power targets are developed which can handle very high beam currents.

  8. Expected thermal deformation and wavefront preservation of a cryogenic Si monochromator for Cornell ERL beamlines

    PubMed Central

    Huang, Rong; Bilderback, Donald H.; Finkelstein, Kenneth

    2014-01-01

    Cornell energy-recovery linac (ERL) beamlines will have higher power density and higher fractional coherence than those available at third-generation sources; therefore the capability of a monochromator for ERL beamlines has to be studied. A cryogenic Si monochromator is considered in this paper because the perfect atomic structure of Si crystal is needed to deliver highly coherent radiation. Since neither the total heat load nor the power density alone can determine the severity of crystal deformation, a metric called modified linear power density is used to gauge the thermal deformation. For all ERL undulator beamlines, crystal thermal deformation profiles are simulated using the finite-element analysis tool ANSYS, and wavefront propagations are simulated using Synchrotron Radiation Workshop. It is concluded that cryogenic Si monochromators will be suitable for ERL beamlines in general. PMID:24562557

  9. High-throughput Toroidal Grating Beamline for Photoelectron Spectroscopy at CAMD

    PubMed Central

    Kizilkaya, O; Jiles, R W; Patterson, M C; Thibodeaux, C A; Poliakoff, E D; Sprunger, P T; Kurtz, R L; Morikawa, E

    2016-01-01

    A 5 meter toroidal grating (5m-TGM) beamline has been commissioned to deliver 28 mrad of bending magnet radiation to an ultrahigh vacuum endstation chamber to facilitate angle resolved photoelectron spectroscopy. The 5m-TGM beamline is equipped with Au-coated gratings with 300, 600 and 1200 lines/mm providing monochromatized synchrotron radiation in the energy ranges 25-70 eV, 50–120 eV and 100–240 eV, respectively. The beamline delivers excellent flux (~1014-1017 photons/sec/100mA) and a combined energy resolution of 189 meV for the beamline (at 1.0 mm slit opening) and HA-50 hemispherical analyzer was obtained at the Fermi level of polycrystalline gold crystal. Our preliminary photoelectron spectroscopy results of phenol adsorption on TiO2 (110) surface reveals the metal ion (Ti) oxidation. PMID:27134636

  10. Time Resolved Detectors and Measurements for Accelerators and Beamlines at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boland, M. J.; School of Physics, University of Melbourne, Parkville, Victoria 3010; Rassool, R. P.

    2010-06-23

    Time resolved experiments require precision timing equipment and careful configuration of the machine and the beamline. The Australian Synchrotron has a state of the art timing system that allows flexible, real-time control of the machine and beamline timing parameters to target specific electron bunches. Results from a proof-of-principle measurement with a pulsed laser and a streak camera on the optical diagnostic beamline will be presented. The timing system was also used to fast trigger the PILATUS detector on an x-ray beamline to measure the fill pattern dependent effects of the detector. PILATUS was able to coarsely measure the fill patternmore » in the storage ring which implies that fill pattern intensity variations need to be corrected for when using the detector in this mode.« less

  11. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source.

    PubMed

    Le Gros, Mark A; McDermott, Gerry; Cinquin, Bertrand P; Smith, Elizabeth A; Do, Myan; Chao, Weilun L; Naulleau, Patrick P; Larabell, Carolyn A

    2014-11-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X-rays (284-543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.

  12. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized productionmore » target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments« less

  13. About APPLE II Operation

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Zimoch, D.

    2007-01-01

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180° requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analytical model covering all types of APPLE II and its implementation will be presented.

  14. Ronchi test for characterization of X-ray nanofocusing optics and beamlines.

    PubMed

    Uhlén, Fredrik; Rahomäki, Jussi; Nilsson, Daniel; Seiboth, Frank; Sanz, Claude; Wagner, Ulrich; Rau, Christoph; Schroer, Christian G; Vogt, Ulrich

    2014-09-01

    A Ronchi interferometer for hard X-rays is reported in order to characterize the performance of the nanofocusing optics as well as the beamline stability. Characteristic interference fringes yield qualitative data on present aberrations in the optics. Moreover, the visibility of the fringes on the detector gives information on the degree of spatial coherence in the beamline. This enables the possibility to detect sources of instabilities in the beamline like vibrations of components or temperature drift. Examples are shown for two different nanofocusing hard X-ray optics: a compound refractive lens and a zone plate.

  15. The Current Performance of the Wide Range (90-2500 eV) Soft X-ray Beamline at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowie, B. C. C.; Tadich, A.; Thomsen, L.

    2010-06-23

    The Soft X-ray beamline at the Australian synchrotron has been constructed around a collimated light Plane Grating Monochromator taking light from an Elliptically Polarized Undulator (EPU). The beamline covers a wide photon energy range between 90 to 2500 eV, using two gratings of 250 l/mm and 1200 l/mm. At present the output from the monochromator is directed into one branchline with a dedicated UHV endstation. The measured performance of the beamline in flux and resolution is shown to be very close to that of theoretical calculations.

  16. Design of the LBNF Beamline Target Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tariq, S.; Ammigan, K.; Anderson, K.

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding inmore » a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.« less

  17. Development of optical choppers for time-resolved measurements at soft X-ray synchrotron radiation beamlines

    PubMed Central

    Osawa, Hitoshi; Ohkochi, Takuo; Fujisawa, Masami; Kimura, Shigeru; Kinoshita, Toyohiko

    2017-01-01

    Two types of optical choppers for time-resolved measurements at synchrotron radiation soft X-ray beamlines have been developed. One type uses an air-spindle-type rotation mechanism with a two-stage differential pumping system to maintain the ultra-high vacuum of the X-ray beamline, and the other uses a magnetic bearing. Both can be installed at the soft X-ray beamlines at SPring-8, greatly improving the accessibility of pump-and-probe spectroscopy. The combination of X-ray chopper and pump-and-probe photoemission electron microscope at SPring-8 provides drastic improvements in signal-to-noise ratio and resolution compared with techniques using high-voltage gating of channel plate detectors. The choppers have the capability to be used not only at synchrotron radiation facilities but also at other types of soft X-ray and VUV beamlines. PMID:28452746

  18. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawolle, M.; Koerstgens, V.; Ruderer, M. A.

    2012-10-15

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scatteredmore » intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.« less

  19. Generic guide concepts for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Martin Rodriguez, D.; Bentley, P. M.

    2015-12-01

    The construction of the European Spallation Source (ESS) faces many challenges from the neutron beam transport point of view: the spallation source is specified as being driven by a 5 MW beam of protons, each with 2 GeV energy, and yet the requirements in instrument background suppression relative to measured signal vary between 10-6 and 10-8. The energetic particles, particularly above 20 MeV, which are expected to be produced in abundance in the target, have to be filtered in order to make the beamlines safe, operational and provide good quality measurements with low background. We present generic neutron guides of short and medium length instruments which are optimised for good performance at minimal cost. Direct line of sight to the source is avoided twice, with either the first point out of line of sight or both being inside the bunker (20 m) to minimise shielding costs. These guide geometries are regarded as a baseline to define standards for instruments to be constructed at ESS. They are used to find commonalities and develop principles and solutions for common problems. Lastly, we report the impact of employing the over-illumination concept to mitigate losses from random misalignment passively, and that over-illumination should be used sparingly in key locations to be effective. For more widespread alignment issues, a more direct, active approach is likely to be needed.

  20. User-Friendly End Station at the ALS for Nanostructure Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. J. Himpsel; P. Alivisatos; T. Callcott

    2006-07-05

    This is a construction project for an end station at the ALS, which is optimized for measuring NEXAFS of nanostructures with fluorescence detection. Compared to the usual electron yield detection, fluorescence is able to probe buried structures and is sensitive to dilute species, such as nanostructures supported on a substrate. Since the quantum yield for fluorescence is 10{sup -4}-10{sup -5} times smaller than for electrons in the soft x-ray regime, such an end station requires bright undulator beamlines at the ALS. In order to optimize the setup for a wide range of applications, two end stations were built: (1) Amore » simple, mobile chamber with efficient photon detection (>10{sup 4} times the solid angle collection of fluorescence spectrographs) and a built-in magnet for MCD measurements at EPU beamlines (Fig. 1 left). It allows rapid mapping the electronic states of nanostructures (nanocrystals, nanowires, tailored magnetic materials, buried interfaces, biologically-functionalized surfaces). It was used with BL 8.0 (linear polarized undulator) and BL 4.0 (variable polarization). (2) A sophisticated, stationary end station operating at Beamline 8.0 (Fig. 1 right). It contains an array of surface characterization instruments and a micro-focus capability for scanning across graded samples (wedges for thickness variation, stoichiometry gradients, and general variations of the sample preparation conditions for optimizing nanostructures).« less

  1. BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments

    PubMed Central

    Round, Adam; Felisaz, Franck; Fodinger, Lukas; Gobbo, Alexandre; Huet, Julien; Villard, Cyril; Blanchet, Clement E.; Pernot, Petra; McSweeney, Sean; Roessle, Manfred; Svergun, Dmitri I.; Cipriani, Florent

    2015-01-01

    Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC. PMID:25615861

  2. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.; Yashchuk, Valeriy

    2007-12-01

    What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of newmore » light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area. But the situation isn't all dire: several leading groups are blazing a trail forward, and the recognition of this issue is increasing. The workshop featured eleven invited talks whose presenters came from Japan, Europe, and the US.« less

  3. TFTR neutral beam control and monitoring for DT operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Connor, T.; Kamperschroer, J.; Chu, J.

    1995-12-31

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were alsomore » added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions.« less

  4. PEP as a synchrotron radiation source (invited)

    NASA Astrophysics Data System (ADS)

    Bienenstock, A.; Brown, G.; Wiedemann, H.; Winick, H.

    1989-07-01

    The 16-GeV storage ring PEP has characteristics which enable it to operate in modes with very low emittance and to accommodate very long undulators, producing synchrotron radiation at x-ray wavelengths with extremely high brightness and coherent power. Two beamlines, each illuminated by a 2-m long, 77-mm period undulator magnet, are now operational and others are planned. In parasitic operation during colliding-beam runs at 14.5 GeV, these beamlines provide photons above 10 keV with a peak brightness of about 1016 photons/(s mm2 mrad2 ) within a 0.1% bandwidth. In low-emittance tests at 7.1 GeV, horizontal emittances of about 5 nm rad were measured, which is about the same as that planned for the new third-generation x-ray sources. With a current of 15 mA at 7.1 GeV, the present undulators deliver photon beams from 2.7 to 14 keV with a peak brightness of about 1017 . Higher performance levels are expected with the implementation of longer undulators and shorter period undulators. In the longer term, because of its large circumference and long straight sections, PEP could be further developed to achieve even higher performance levels with an emittance below 1 nm rad, very long undulators and picosecond bunches, resulting in one to two orders of magnitude higher brightness and coherent power.

  5. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning.

    PubMed

    Svetina, Cristian; Grazioli, Cesare; Mahne, Nicola; Raimondi, Lorenzo; Fava, Claudio; Zangrando, Marco; Gerusina, Simone; Alagia, Michele; Avaldi, Lorenzo; Cautero, Giuseppe; de Simone, Monica; Devetta, Michele; Di Fraia, Michele; Drabbels, Marcel; Feyer, Vitaliy; Finetti, Paola; Katzy, Raphael; Kivimäki, Antti; Lyamayev, Viktor; Mazza, Tommaso; Moise, Angelica; Möller, Thomas; O'Keeffe, Patrick; Ovcharenko, Yevheniy; Piseri, Paolo; Plekan, Oksana; Prince, Kevin C; Sergo, Rudi; Stienkemeier, Frank; Stranges, Stefano; Coreno, Marcello; Callegari, Carlo

    2015-05-01

    The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.

  6. Micro-Soft X-Ray Spectroscopy with the LUCIA Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagarde, P.; Flank, A.-M.; Vantelon, D.

    With the development of new synchrotron radiation machines, which have seen, in the last ten years, the emittance of the beam decreased by several orders of magnitude, new beamlines have been developed which make full use of these improvements. We describe here the LUCIA beamline, which has been implemented at the Swiss Light Source in a collaboration between PSI, SOLEIL and the CNRS.

  7. Clustalnet: the joining of Clustal and CORBA.

    PubMed

    Campagne, F

    2000-07-01

    Performing sequence alignment operations from a different program than the original sequence alignment code, and/or through a network connection, is often required. Interactive alignment editors and large-scale biological data analysis are common examples where such a flexibility is important. Interoperability between the alignment engine and the client should be obtained regardless of the architectures and programming languages of the server and client. Clustalnet, a Clustal alignment CORBA server is described, which was developed on the basis of Clustalw. This server brings the robustness of the algorithms and implementations of Clustal to a new level of reuse. A Clustalnet server object can be accessed from a program, transparently through the network. We present interfaces to perform the alignment operations and to control these operations via immutable contexts. The interfaces that select the contexts do not depend on the nature of the operation to be performed, making the design modular. The IDL interfaces presented here are not specific to Clustal and can be implemented on top of different sequence alignment algorithm implementations.

  8. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status ofmore » commissioning are reported.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Severson; M Bissen; M Fisher

    SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings atmore » the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 {mu}m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10{sup 12} (photons/s/200 mA) range, and a spot size of 400 {mu}m horizontal by 30 {mu}m vertical.« less

  11. SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klysubun, Wantana; Kidkhunthod, Pinit; Tarawarakarn, Pongjakr

    2017-04-04

    The SUT-NANOTEC-SLRI beamline was constructed in 2012 as the flagship of the SUT-NANOTEC-SLRI Joint Research Facility for Synchrotron Utilization, co-established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate-energy X-ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X-ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 10 8to 2 × 10 10 photons s -1(100 mA) -1varying across photon energies. Details of the beamlinemore » and XAS instrumentation are described. To demonstrate the beamline performance,K-edge XANES spectra of MgO, Al 2O 3, S 8, FeS, FeSO 4, Cu, Cu 2O and CuO, and EXAFS spectra of Cu and CuO are presented.« less

  12. The Diamond Beamline Controls and Data Acquisition Software Architecture

    NASA Astrophysics Data System (ADS)

    Rees, N.

    2010-06-01

    The software for the Diamond Light Source beamlines[1] is based on two complementary software frameworks: low level control is provided by the Experimental Physics and Industrial Control System (EPICS) framework[2][3] and the high level user interface is provided by the Java based Generic Data Acquisition or GDA[4][5]. EPICS provides a widely used, robust, generic interface across a wide range of hardware where the user interfaces are focused on serving the needs of engineers and beamline scientists to obtain detailed low level views of all aspects of the beamline control systems. The GDA system provides a high-level system that combines an understanding of scientific concepts, such as reciprocal lattice coordinates, a flexible python syntax scripting interface for the scientific user to control their data acquisition, and graphical user interfaces where necessary. This paper describes the beamline software architecture in more detail, highlighting how these complementary frameworks provide a flexible system that can accommodate a wide range of requirements.

  13. Protein crystallography beamline BL2S1 at the Aichi synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter.more » The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. Lastly, high-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.« less

  14. Protein crystallography beamline BL2S1 at the Aichi synchrotron.

    PubMed

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7-17 keV (1.8-0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. High-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.

  15. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introducedmore » briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.« less

  16. Neutral beamline with improved ion energy recovery

    DOEpatents

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  17. The GKSS beamlines at PETRA III and DORIS III

    NASA Astrophysics Data System (ADS)

    Haibel, A.; Beckmann, F.; Dose, T.; Herzen, J.; Utcke, S.; Lippmann, T.; Schell, N.; Schreyer, A.

    2008-08-01

    Due to the high brilliance of the new storage ring PETRA III at DESY in Hamburg, the low emittance of 1 nmrad and the high fraction of coherent photons also in the hard X-ray range extremely intense and sharply focused X-ray light will be provided. These advantages of the beam fulfill excellently the qualifications for the planned Imaging BeamLine IBL and the High Energy Materials Science Beamline (HEMS) at PETRA III, i.e. for absorption tomography, phase enhanced and phase contrast experiments, for diffraction, for nano focusing, for nano tomography, and for high speed or in-situ experiments with highest spatial resolution. The existing HARWI II beamline at the DORIS III storage ring at DESY completes the GKSS beamline concept with setups for high energy tomography (16-150 keV) and diffraction (16-250 keV), characterized by a large field of view and an excellent absorption contrast with spatial resolutions down to 2 μm.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, T.; Zimoch, D.

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180 deg. requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analyticalmore » model covering all types of APPLE II and its implementation will be presented.« less

  19. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning

    PubMed Central

    Svetina, Cristian; Grazioli, Cesare; Mahne, Nicola; Raimondi, Lorenzo; Fava, Claudio; Zangrando, Marco; Gerusina, Simone; Alagia, Michele; Avaldi, Lorenzo; Cautero, Giuseppe; de Simone, Monica; Devetta, Michele; Di Fraia, Michele; Drabbels, Marcel; Feyer, Vitaliy; Finetti, Paola; Katzy, Raphael; Kivimäki, Antti; Lyamayev, Viktor; Mazza, Tommaso; Moise, Angelica; Möller, Thomas; O’Keeffe, Patrick; Ovcharenko, Yevheniy; Piseri, Paolo; Plekan, Oksana; Prince, Kevin C.; Sergo, Rudi; Stienkemeier, Frank; Stranges, Stefano; Coreno, Marcello; Callegari, Carlo

    2015-01-01

    The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline. PMID:25931066

  20. Initial performances of first undulator-based hard x-ray beamlines of NSLS-II compared to simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar, Oleg, E-mail: chubar@bnl.gov; Chu, Yong S.; Huang, Xiaojing

    2016-07-27

    Commissioning of the first X-ray beamlines of NSLS-II included detailed measurements of spectral and spatial distributions of the radiation at different locations of the beamlines, from front-ends to sample positions. Comparison of some of these measurement results with high-accuracy calculations of synchrotron (undulator) emission and wavefront propagation through X-ray transport optics, performed using SRW code, is presented.

  1. New Strategic Plan Takes the ALS into the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirz, J.; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794; Chemla, D. S.

    2007-01-19

    A new strategic plan is in place to upgrade the ALS so it can continue to address fundamental questions, such as size-dependent and dimensional-confinement phenomena at the nanoscale; correlation and complexity in physical, biological, and environmental systems; and temporal evolution, assembly, dynamics and ultrafast phenomena. Moreover, the growing number of ALS users (now exceeding 2,000 per year) requires increased attention. Accordingly, our plan concentrates on projects that will continue to make it possible for ALS users to address grand scientific and technological challenges with incisive world-class tools and quality user support. Our highest priority is to begin top-off operation, inmore » which electrons are injected into the storage ring at intervals of approximately 1 minute. The combination of top-off and concurrent development of small-gap in-vacuum undulators and superconducting undulators will allow an increase in brightness from eight to more than 100 times, depending on the specific undulators and photon energy range. As part of our core mission in the VUV and soft x-ray regions, we plan to exploit these accelerator developments to extend our capabilities for high spatial and temporal resolution and utilize the remarkable coherence properties of the ALS in a new generation of beamlines. Ranked by priority, several proposed beamlines will follow completion of five new beamlines already under construction or funded. The intellectual excitement of the ALS has been a powerful tool in the recruitment and retention of outstanding staff, but additional sustained efforts are required to increase diversity both in gender and in underrepresented groups. To this end, we intend to expand the ALS Doctoral Fellowship Program by giving special emphasis to underrepresented groups. We also envision a distinguished postdoctoral fellowship program with the same emphasis, to increase and diversify our pool of candidates for beamline scientist positions.« less

  2. Mini-beam collimator enables microcrystallography experiments on standard beamlines

    PubMed Central

    Fischetti, Robert F.; Xu, Shenglan; Yoder, Derek W.; Becker, Michael; Nagarajan, Venugopalan; Sanishvili, Ruslan; Hilgart, Mark C.; Stepanov, Sergey; Makarov, Oleg; Smith, Janet L.

    2009-01-01

    The high-brilliance X-ray beams from undulator sources at third-generation synchrotron facilities are excellent tools for solving crystal structures of important and challenging biological macromolecules and complexes. However, many of the most important structural targets yield crystals that are too small or too inhomogeneous for a ‘standard’ beam from an undulator source, ∼25–50 µm (FWHM) in the vertical and 50–100 µm in the horizontal direction. Although many synchrotron facilities have microfocus beamlines for other applications, this capability for macromolecular crystallography was pioneered at ID-13 of the ESRF. The National Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team (GM/CA-CAT) dual canted undulator beamlines at the APS deliver high-intensity focused beams with a minimum focal size of 20 µm × 65 µm at the sample position. To meet growing user demand for beams to study samples of 10 µm or less, a ‘mini-beam’ apparatus was developed that conditions the focused beam to either 5 µm or 10 µm (FWHM) diameter with high intensity. The mini-beam has a symmetric Gaussian shape in both the horizontal and vertical directions, and reduces the vertical divergence of the focused beam by 25%. Significant reduction in background was achieved by implementation of both forward- and back-scatter guards. A unique triple-collimator apparatus, which has been in routine use on both undulator beamlines since February 2008, allows users to rapidly interchange the focused beam and conditioned mini-beams of two sizes with a single mouse click. The device and the beam are stable over many hours of routine operation. The rapid-exchange capability has greatly facilitated sample screening and resulted in several structures that could not have been obtained with the larger focused beam. PMID:19240333

  3. Geometrical layout and optics modelling of the surface science beamline station at the SESAME synchrotron radiation facility.

    PubMed

    Salah, Wa'el; Sanchez del Rio, Manuel

    2011-05-01

    The layout and the optical performance of the SGM branch of the D09 bending-magnet beamline, under construction at SESAME, are presented. The beamline is based on the Dragon-type design and delivers photons over the spectral range 15-250 eV. One fixed entrance slit and a movable exit slit are used. The performance of the beamline has been characterized by calculating the mirror reflectivities and the grating efficiencies. The flux and resolution were calculated by ray-tracing using SHADOW. The grating diffraction efficiencies were calculated using the GRADIF code. The results and the overall shapes of the predicted curves are in reasonable agreement with those obtained using an analytical formula.

  4. Synchrotron radiation beamline to study radioactive materials at the Photon Factory

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroyuki; Yokoya, Akinari; Shiwaku, Hideaki; Motohashi, Haruhiko; Makita, Tomoko; Kashihara, Yasuharu; Hashimoto, Shinya; Harami, Taikan; Sasaki, Teikichi A.; Maeta, Hiroshi; Ohno, Hideo; Maezawa, Hideki; Asaoka, Seiji; Kanaya, Noriichi; Ito, Kenji; Usami, Noriko; Kobayashi, Katsumi

    1996-02-01

    Design and construction of a new beamline have been described. The beamline is housed in a specially designed area controlled for radioactive materials at the Photon Factory (PF) in the National Laboratory for High Energy Physics (KEK). The beamline system consists of a front-end and two branchlines. One of the branchlines is used for X-ray photoelectron spectroscopy and radiation biology in the energy range of 1.8-6 keV and the other for X-ray diffractometry and XAFS studies as well as radiation biology in the range of 4-20 keV. The former was particularly equipped for the protection against accidental scattering of radioactive materials both inside and outside of the vacuum system.

  5. Compound refractive lenses as prefocusing optics for X-ray FEL radiation

    DOE PAGES

    Heimann, Philip; MacDonald, Michael; Nagler, Bob; ...

    2016-01-27

    The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. As a result, the X-ray focus was also determined bymore » the ablation imprint method.« less

  6. Navigation and Alignment Aids Concept of Operations and Supplemental Design Information. Revision A

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Cryan, Scott P.

    2016-01-01

    The IDSS Navigation and Alignment Aids Concept of Operations and Supplemental Design Information document provides supplemental information to the IDSS IDD. The guide provides insight into the navigation and alignment aids design, and how those aids can be utilized by incoming vehicles for proximity operations and docking. The navigation aids are paramount to successful docking.

  7. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis.

    PubMed

    Hopkins, Jesse Bennett; Gillilan, Richard E; Skou, Soren

    2017-10-01

    BioXTAS RAW is a graphical-user-interface-based free open-source Python program for reduction and analysis of small-angle X-ray solution scattering (SAXS) data. The software is designed for biological SAXS data and enables creation and plotting of one-dimensional scattering profiles from two-dimensional detector images, standard data operations such as averaging and subtraction and analysis of radius of gyration and molecular weight, and advanced analysis such as calculation of inverse Fourier transforms and envelopes. It also allows easy processing of inline size-exclusion chromatography coupled SAXS data and data deconvolution using the evolving factor analysis method. It provides an alternative to closed-source programs such as Primus and ScÅtter for primary data analysis. Because it can calibrate, mask and integrate images it also provides an alternative to synchrotron beamline pipelines that scientists can install on their own computers and use both at home and at the beamline.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally,more » a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.« less

  9. Detectors Requirements for the ODIN Beamline at ESS

    NASA Astrophysics Data System (ADS)

    Morgano, Manuel; Lehmann, Eberhard; Strobl, Markus

    The upcoming high intensity pulsed spallationneutron source ESS, now in construction in Sweden, will provide unprecedented opportunities for neutron science worldwide. In particular, neutron imaging will benefit from the time structure of the source and its high brilliance. These features will unlock new opportunities at the imaging beamline ODIN, but only if suitable detectors are employed and, in some cases, upgraded. In this paper, we highlight the current state-of-the-art for neutron imaging detectors, pointing out that, while no single presently existing detector can fulfill all the requirements currently needed to exploit the source to its limits, the wide range of applications of ODIN can be successfully covered by a suite of current state-of-the-art detectors. Furthermore we speculate on improvements to the current detector technologies that would expand the range of the existing detectors and application range and we outline a strategy to have the best possible combined system for the foreseen day 1 operations of ODIN in 2019.

  10. ELI-beamlines: progress in development of next generation short-pulse laser systems

    NASA Astrophysics Data System (ADS)

    Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Fibrich, M.; Green, J. T.; Lagron, J. C.; Antipenkov, R.; Bartoníček, J.; Batysta, F.; Baše, R.; Boge, R.; Buck, S.; Cupal, J.; Drouin, M. A.; Durák, M.; Himmel, B.; Havlíček, T.; Homer, P.; Honsa, A.; Horáček, M.; Hríbek, P.; Hubáček, J.; Hubka, Z.; Kalinchenko, G.; Kasl, K.; Indra, L.; Korous, P.; Košelja, M.; Koubíková, L.; Laub, M.; Mazanec, T.; Meadows, A.; Novák, J.; Peceli, D.; Polan, J.; Snopek, D.; Šobr, V.; Trojek, P.; Tykalewicz, B.; Velpula, P.; Verhagen, E.; Vyhlídka, Å.; Weiss, J.; Haefner, C.; Bayramian, A.; Betts, S.; Erlandson, A.; Jarboe, J.; Johnson, G.; Horner, J.; Kim, D.; Koh, E.; Marshall, C.; Mason, D.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Stolz, C.; Suratwala, T.; Telford, S.; Ditmire, T.; Gaul, E.; Donovan, M.; Frederickson, C.; Friedman, G.; Hammond, D.; Hidinger, D.; Chériaux, G.; Jochmann, A.; Kepler, M.; Malato, C.; Martinez, M.; Metzger, T.; Schultze, M.; Mason, P.; Ertel, K.; Lintern, A.; Edwards, C.; Hernandez-Gomez, C.; Collier, J.

    2017-05-01

    Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.

  11. Current status and future prospects of an automated sample exchange system PAM for protein crystallography

    NASA Astrophysics Data System (ADS)

    Hiraki, M.; Yamada, Y.; Chavas, L. M. G.; Matsugaki, N.; Igarashi, N.; Wakatsuki, S.

    2013-03-01

    To achieve fully-automated and/or remote data collection in high-throughput X-ray experiments, the Structural Biology Research Centre at the Photon Factory (PF) has installed PF automated mounting system (PAM) for sample exchange robots at PF macromolecular crystallography beamlines BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. We are upgrading the experimental systems, including the PAM for stable and efficient operation. To prevent human error in automated data collection, we installed a two-dimensional barcode reader for identification of the cassettes and sample pins. Because no liquid nitrogen pipeline in the PF experimental hutch is installed, the users commonly add liquid nitrogen using a small Dewar. To address this issue, an automated liquid nitrogen filling system that links a 100-liter tank to the robot Dewar has been installed on the PF macromolecular beamline. Here we describe this new implementation, as well as future prospects.

  12. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source

    PubMed Central

    Le Gros, Mark A.; McDermott, Gerry; Cinquin, Bertrand P.; Smith, Elizabeth A.; Do, Myan; Chao, Weilun L.; Naulleau, Patrick P.; Larabell, Carolyn A.

    2014-01-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with ‘water window’ X-rays (284–543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies. PMID:25343808

  13. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  14. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.

    2013-05-15

    We present a multicrystal Johann-type hard x-ray spectrometer ({approx}5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88 Degree-Sign -74 Degree-Sign ) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmosphericmore » pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4{pi} sr. The typical resolving power is in the order of (E/{Delta}E){approx}10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.« less

  15. High-spatial-resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines.

    PubMed

    Tobin, Mark J; Puskar, Ljiljana; Hasan, Jafar; Webb, Hayden K; Hirschmugl, Carol J; Nasse, Michael J; Gervinskas, Gediminas; Juodkazis, Saulius; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-05-01

    The wings of some insects, such as cicadae, have been reported to possess a number of interesting and unusual qualities such as superhydrophobicity, anisotropic wetting and antibacterial properties. Here, the chemical composition of the wings of the Clanger cicada (Psaltoda claripennis) were characterized using infrared (IR) microspectroscopy. In addition, the data generated from two separate synchrotron IR facilities, the Australian Synchrotron Infrared Microspectroscopy beamline (AS-IRM) and the Synchrotron Radiation Center (SRC), University of Wisconsin-Madison, IRENI beamline, were analysed and compared. Characteristic peaks in the IR spectra of the wings were assigned primarily to aliphatic hydrocarbon and amide functionalities, which were considered to be an indication of the presence of waxy and proteinaceous components, respectively, in good agreement with the literature. Chemical distribution maps showed that, while the protein component was homogeneously distributed, a significant degree of heterogeneity was observed in the distribution of the waxy component, which may contribute to the self-cleaning and aerodynamic properties of the cicada wing. When comparing the data generated from the two beamlines, it was determined that the SRC IRENI beamline was capable of producing higher-spatial-resolution distribution images in a shorter time than was achievable at the AS-IRM beamline, but that spectral noise levels per pixel were considerably lower on the AS-IRM beamline, resulting in more favourable data where the detection of weak absorbances is required. The data generated by the two complementary synchrotron IR methods on the chemical composition of cicada wings will be immensely useful in understanding their unusual properties with a view to reproducing their characteristics in, for example, industry applications.

  16. A next-generation in-situ nanoprobe beamline for the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Maser, Jörg; Lai, Barry; Buonassisi, Tonio; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Harder, Ross; Jacobsen, Chris; Liu, Wenjun; Murray, Conal; Preissner, Curt; Roehrig, Chris; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan

    2013-09-01

    The Advanced Photon Source is currently developing a suite of new hard x-ray beamlines, aimed primarily at the study of materials and devices under real conditions. One of the flagship beamlines of the APS Upgrade is the In-Situ Nanoprobe beamline (ISN beamline), which will provide in-situ and operando characterization of advanced energy materials and devices under change of temperature and gases, under applied fields, in 3D. The ISN beamline is designed to deliver spatially coherent x-rays with photon energies between 4 keV and 30 keV to the ISN instrument. As an x-ray source, a revolver-type undulator with two interchangeable magnetic structures, optimized to provide high brilliance throughout the range of photon energies of 4 keV - 30 keV, will be used. The ISN instrument will provide a smallest hard x-ray spot of 20 nm using diffractive optics, with sensitivity to sub-10 nm sample structures using coherent diffraction. Using nanofocusing mirrors in Kirkpatrick-Baez geometry, the ISN will also provide a focus of 50 nm with a flux of 8·1011 Photons/s at a photon energy of 10 keV, several orders of magnitude larger than what is currently available. This will allow imaging of trace amounts of most elements in the periodic table, with a sensitivity to well below 100 atoms for most metals in thin samples. It will also enable nanospectroscopic studies of the chemical state of most materials relevant to energy science. The ISN beamline will be primarily used to study inorganic and organic photovoltaic systems, advanced batteries and fuel cells, nanoelectronics devices, and materials and systems diesigned to reduce the environmental impact of combustion.

  17. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    DOE PAGES

    Fomin, N.; Greene, G. L.; Allen, R. R.; ...

    2014-11-04

    In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  18. The new NCPSS BL19U2 beamline at the SSRF for small-angle X-ray scattering from biological macromolecules in solution.

    PubMed

    Li, Na; Li, Xiuhong; Wang, Yuzhu; Liu, Guangfeng; Zhou, Ping; Wu, Hongjin; Hong, Chunxia; Bian, Fenggang; Zhang, Rongguang

    2016-10-01

    The beamline BL19U2 is located in the Shanghai Synchrotron Radiation Facility (SSRF) and is its first beamline dedicated to biological material small-angle X-ray scattering (BioSAXS). The electrons come from an undulator which can provide high brilliance for the BL19U2 end stations. A double flat silicon crystal (111) monochromator is used in BL19U2, with a tunable monochromatic photon energy ranging from 7 to 15 keV. To meet the rapidly growing demands of crystallographers, biochemists and structural biologists, the BioSAXS beamline allows manual and automatic sample loading/unloading. A Pilatus 1M detector (Dectris) is employed for data collection, characterized by a high dynamic range and a short readout time. The highly automated data processing pipeline SASFLOW was integrated into BL19U2, with help from the BioSAXS group of the European Molecular Biology Laboratory (EMBL, Hamburg), which provides a user-friendly interface for data processing. The BL19U2 beamline was officially opened to users in March 2015. To date, feedback from users has been positive and the number of experimental proposals at BL19U2 is increasing. A description of the new BioSAXS beamline and the setup characteristics is given, together with examples of data obtained.

  19. Wavefront propagation simulations for a UV/soft x-ray beamline: Electron Spectro-Microscopy beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.

    2014-09-01

    A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.

  20. How the ESRF helps industry and how they help the ESRF

    PubMed Central

    Malbet-Monaco, Stéphanie; Leonard, Gordon A.; Mitchell, Edward P.; Gordon, Elspeth J.

    2013-01-01

    The ESRF has worked with, and provided services for, the pharmaceutical industry since the construction of its first protein crystallography beamline in the mid-1990s. In more recent times, industrial clients have benefited from a portfolio of beamlines which offer a wide range of functionality and beam characteristics, including tunability, microfocus and micro-aperture. Included in this portfolio is a small-angle X-­ray scattering beamline dedicated to the study of biological molecules in solution. The high demands on throughput and efficiency made by the ESRF’s industrial clients have been a major driving force in the evolution of the ESRF’s macromolecular crystallography resources, which now include remote access, the automation of crystal screening and data collection, and a beamline database allowing sample tracking, experiment reporting and real-time at-a-distance monitoring of experiments. This paper describes the key features of the functionality put in place on the ESRF structural biology beamlines and outlines the major advantages of the interaction of the ESRF with the pharmaceutical industry. PMID:23793155

  1. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines.

    PubMed

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

  2. Preparing the BESSY APPLE Undulators for Top-Up Operation

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.

    2007-01-01

    BESSY plans to go to topping up operation in the near future. A high injection efficiency is essential to avoid particle losses inside the undulator magnets and to ensure a low radiation background in the beamlines. Dynamic and static multipoles of the insertion devices have to be minimized to accomplish this requirement. APPLE II devices show strong dynamic multipoles in the elliptical and vertical polarization mode. Measurements before and after shimming of these multipoles are presented. The static multipoles of the BESSY UE56-2 which are due to systematic block inhomgeneities have successfully been shimmed recovering the full dynamic aperture.

  3. Performance of a Highly Stabilized and High-resolution Beamline BL17SU for Advanced Soft X-ray Spectroscopy at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Haruhiko; Tanaka, Takashi; Kitamura, Hideo

    2007-01-19

    A new soft x-ray beamline BL17SU (RIKEN) has been constructed at SPring-8. The beamline consists of two branches with each varied-line-spacing-plane-grating-monochromator. Both monochromators perform high energy resolution (E/{delta}E > 10,000) between 0.2 and 1 keV. One of the monochromator achieves high energy stability of 10 meV over a period of half a day.

  4. Hutch for CSX Beamlines

    ScienceCinema

    Haas, Ed

    2018-02-06

    NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.

  5. Aligning for accountable care: Strategic practices for change in accountable care organizations.

    PubMed

    Hilligoss, Brian; Song, Paula H; McAlearney, Ann Scheck

    Alignment within accountable care organizations (ACOs) is crucial if these new entities are to achieve their lofty goals. However, the concept of alignment remains underexamined, and we know little about the work entailed in creating alignment. The aim of this study was to develop the concept of aligning by identifying and describing the strategic practices administrators use to align the structures, processes, and behaviors of their organizations and individual providers in pursuit of accountable care. We conducted 2-year qualitative case studies of four ACOs that have assumed full risk for the costs and quality of care for defined populations. Five strategic aligning practices were used by all four ACOs. Informing both aligns providers' understandings with the goals and value proposition of the ACO and aligns the providers' attention with the drivers of performance. Involving both aligns ACO leaders' understandings with the realities facing providers and aligns the policies of the ACO with the needs of providers. Enhancing both aligns the operations of individual provider practices with the operations of the ACO and aligns the trust of providers with the ACO. Motivating aligns what providers value with the goals of the ACO. Finally, evolving is a metapractice of learning and adapting that guides the execution of the other four practices. Our findings suggest that there are second-order cognitive (e.g., understandings and attention) and cultural (e.g., trust and values) levels of alignment, as well as a first-order operational level (organizational structures, processes, and incentives). A well-aligned organization may require ongoing repositioning at each of these levels, as well as attention to both cooperative and coordinative dimensions of alignment. Implications for research and practice are discussed.

  6. The National Ignition Facility: alignment from construction to shot operations

    NASA Astrophysics Data System (ADS)

    Burkhart, S. C.; Bliss, E.; Di Nicola, P.; Kalantar, D.; Lowe-Webb, R.; McCarville, T.; Nelson, D.; Salmon, T.; Schindler, T.; Villanueva, J.; Wilhelmsen, K.

    2010-08-01

    The National Ignition Facility in Livermore, California, completed it's commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50μm rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990's, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments.

  7. Vertical beam size measurement in the CESR-TA e+e- storage ring using x-rays from synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Fontes, E.; Heltsley, B. K.; Hopkins, W.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Savino, J.; Seeley, R.; Shanks, J.; Flanagan, J. W.

    2014-06-01

    We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10-100μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of ~2GeV. At such beam energies the xBSM images X-rays of ɛ≈1-10keV (λ≈0.1-1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×109 particles) per bunch and inter-bunch spacing of as little as 4 ns. At Eb=2.1GeV, systematic precision of ~1μm is achieved for a beam size of ~12μm; this is expected to scale as ∝1/σb and ∝1/Eb. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.

  8. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines

    PubMed Central

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W.; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods. PMID:29271779

  9. The Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant; May, Tim

    2009-06-01

    The far-infrared beamline at the Canadian Light Source. is a state of the art facility, which offers significantly more far-infrared brightness than conventional globar sources. While there is the potential to direct this advantage to many research areas, to date most of the effort has been directed toward high-resolution gas phase studies. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad^{2} port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm^{-1}. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. Data from the recently completed commissioning experiments will be presented along with a general overview of the beamline.

  10. Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; May, Tim E.

    2014-06-01

    The far-infrared beamline at the Canadian Light Source is a state of the art user facility, which offers significantly more far-infrared brightness than conventional globar sources. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad2 port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm-1. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. This talk will provide an overview of the the beamline, and the capabilities available to users, recent and planned improvements including the addition of a Glow Discharge cell and advances in Coherent Synchrotron Radiation. Furthermore, the process of acquiring access to the facility will be covered.

  11. Nanoscopium: a Scanning Hard X-ray Nanoprobe Beamline at Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Polack, F.; Moreno, T.

    2010-06-01

    Nanoscopium is the single scanning hard X-ray nano-probe beamline planned at SOLEIL. This ˜155 m long beamline will fully exploit the high brilliance and coherence characteristics of the X-ray beam both for diffraction limited focusing and for contrast formation. It will offer the most advanced imaging techniques in multimodal mode and will be a research tool for a wide user community working in the fields of earth-, environmental-, and life-sciences. The different μ-μnano-probe techniques offered by the beamline will permit elemental mapping at trace (ppm) levels (scanning XRF), speciation mapping (XANES), phase gradient mapping (scanning differential phase contrast), and density-contrast based imaging of internal structures (coherent diffraction imaging) in the 30 nm to 1 μm spatial resolution range, also in "in situ conditions". Nanoscopium will cover the 5-20 keV energy range. The stability of the nanobeam will be ensured by horizontally reflecting beamline optics (a sagitally and a tangentially pre-focusing mirror, horizontally reflecting monochromators) in front of the overfilled secondary source. Trade-off between high energy resolution (ΔE/E˜10-4) and high flux (1011 ph/s with ΔE/E˜10-2) will be achieved by two interchangeable monochromators (a double crystal and a double multilayer one). KB mirror and FZP lenses will be used as focusing devices. The beamline is in the design and construction phase. It is foreseen to be open for users at the beginning of 2013.

  12. Main functions, recent updates, and applications of Synchrotron Radiation Workshop code

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz

    2017-08-01

    The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.

  13. Canadian macromolecular crystallography facility: a suite of fully automated beamlines.

    PubMed

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaunivan; Gorin, James; Janzen, Kathryn; Berg, Russ

    2012-06-01

    The Canadian light source is a 2.9 GeV national synchrotron radiation facility located on the University of Saskatchewan campus in Saskatoon. The small-gap in-vacuum undulator illuminated beamline, 08ID-1, together with the bending magnet beamline, 08B1-1, constitute the Canadian Macromolecular Crystallography Facility (CMCF). The CMCF provides service to more than 50 Principal Investigators in Canada and the United States. Up to 25% of the beam time is devoted to commercial users and the general user program is guaranteed up to 55% of the useful beam time through a peer-review process. CMCF staff provides "Mail-In" crystallography service to users with the highest scored proposals. Both beamlines are equipped with very robust end-stations including on-axis visualization systems, Rayonix 300 CCD series detectors and Stanford-type robotic sample auto-mounters. MxDC, an in-house developed beamline control system, is integrated with a data processing module, AutoProcess, allowing full automation of data collection and data processing with minimal human intervention. Sample management and remote monitoring of experiments is enabled through interaction with a Laboratory Information Management System developed at the facility.

  14. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  15. Radiological considerations for the operation of the Advanced Photon Source storage ring (revised).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, H. J.

    2002-05-02

    This report deals with the radiological considerations of operations using 7700-MeV positron and electron beams in the storage ring (SR) tunnel. The radiological considerations addressed include the following: prompt secondary radiation (bremsstrahlung, giant resonance neutrons, medium and high energy neutrons, and muons) produced by electrons/positrons interacting in a beam stop or by particle losses in the component structures; skyshine radiation, which produces a radiation field in nearby areas and at the nearest off-site location; radioactive gases produced by neutron irradiation of air in the vicinity of a particle loss site; noxious gases (ozone and others) produced in air by themore » escaping bremsstrahlung radiation that results from absorbing particles in the components or by synchrotron radiation escaping into the tunnel; activation of the storage ring components that results in a residual radiation field in the vicinity of these materials following shutdown; potential activation of water used for cooling the magnets and other purposes in the SR tunnel; evaluation of the radiation fields due to escaping synchrotron radiation and gas bremsstrahlung. Estimated dose rates outside of the tunnel, in the early assembly area (EAA), and in the Experiment Hall for several modes of operation (including potential safety envelope beam power, normal beam power, and MCI (maximum credible incident) conditions) have been computed. Shielding in the first optics enclosure (FOE) and for the photon beamlines is discussed in ANL/APS/TB-7 (IPE 93), but additional radiological considerations for the ASD diagnostic beamlines are contained in Appendix C. Although the calculations refer to positrons, electron operation would produce essentially the same effects for the identical assumptions.« less

  16. Construction and Commissioning of BL37XU at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Yasuko; Goto, Shunji; Takimoto, Naoki

    2004-05-12

    Trace element analysis beamline (BL37XU) at SPring-8 was designed for application to various X-ray fluorescence analyses such as XRF imaging, XAFS, TXRF and XRF holography. The beamline has of two branches, one being a SPring-8 standard undulator-beamline optics branch (Branch A) and the other a high-energy branch (Branch B). In the experimental hutches, several kinds of experimental device are equipped. The end-stations have been opened to public use since November 2002, and various experiments have been carried out.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi

    The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

  18. The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements

    PubMed Central

    Kastengren, Alan; Powell, Christopher F.; Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin

    2012-01-01

    In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. PMID:22713903

  19. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MILLER,L.; EDITOR)

    2005-05-01

    The NSLS remains a viable and productive facility, as can be seen by the rich and diverse science produced in 2004. In one of these exciting research projects published in Nature, researchers detected a rare 'hole crystal' in a cuprate superconductor, which may provide insight into high-temperature superconductivity. In another Nature publication, the crystal structure of a segment of RNA was determined, opening a new window of knowledge into that crucial molecule. These are just a couple of the science highlights of 2004, and many others are displayed in the pages of this report. All told, more than 700 publicationsmore » resulted from NSLS research this year, the facility hosted 2,299 users, and the number of experiments performed rose from 1,145 in 2003 to 1,374 nuclear indications that the NSLS continues to thrive. As the NSLS accelerator complex enters its third decade of operations, it continues to perform very well. For 2004, the overall reliability of the VUV-IR ring was excellent at 99 percent. The reliability of the x-ray ring was just shy of 92 percent, primarily due to the need to replace the injection septum vacuum chamber, which developed a leak during the middle of the year. The Operations Division did a tremendous job of installing our spare chamber in minimal time, despite the complexity of the job and the inaccessibility of its location in the ring, as well as keeping downtime to a minimum throughout the rest of the year. In order to continue to meet the needs of users, several key beamline upgrades took place this year that will enrich our scientific programs, including upgrades to beamlines U12IR, X1A, X13A, and X21. We are very excited about two brand-new beamlines that were commissioned in 2004: X29 and X27A. X29 is the new mini-gap undulator beamline designed for macromolecular crystallography, and it will meet the growing demand of NSLS users who perform research in that area. The establishment of an x-ray microprobe at beamline X27A, optimized for the environmental science community, is also very important, as it will help to satisfy the large over subscription rate for this technique at the NSLS. Two other important upgrades that were initiated this past year are the replacement of the X25 wiggler with an undulator and the construction of the X9 undulator beamline for small-angle scattering, with an emphasis on nanoscience research. Another key activity that will benefit all users was the restoration of the x-ray ring lattice symmetry, which reduced the horizontal emittance and made the operational lattice more robust. Similarly, all users will benefit from the introduction of the PASS (Proposal Allocation Safety Scheduling) system this past year, which has greatly improved the process of proposal submission, review, allocation, and scheduling. This coming year we will work to add Rapid Access to the capabilities of PASS. Overall, the success of these and the many other projects that space does not permit listing is a testament to the dedication, hard work, and skill of the NSLS staff. Safety has always been an important issue at a large, complex scientific facility like the NSLS and in 2004 it received renewed attention. Safety is our highest priority and we spent a great deal of time reviewing and refining our safety practices and procedures. A new 'Safety Highlights' web page was created for safety news, and a large number of safety meetings and discussions were held. These reviews and meetings generated many ideas on how the NSLS might improve its safety practices, and we are committed to putting these in place and improving our already very good safety program. We had no lost-time accidents in 2004, which is a notable accomplishment. Our goal is to be best in class and I'm confident that by working together we can achieve that status. Several activities took place this past year to advance our proposal to replace the NSLS with a new National Synchrotron Light Source-II facility. These included a major workshop in support of the proposed facility in March, a mail review of our proposal outlinin« less

  20. Development of beamline U3A for AXAF synchrotron reflectivity calibrations

    NASA Astrophysics Data System (ADS)

    Burek, Anthony J.; Cobuzzi, J. C.; Fitch, Jonathan J.; Graessle, Dale E.; Ingram, R. H.; Sweeney, J. B.; Blake, Richard L.; Francoeur, R.; Sullivan, E. S.

    1998-11-01

    We discuss the development of beamline U3A at NSLS for AXAF telescope witness mirror reflectivity calibrations in the 1- 2 keV energy range. The beamline was originally constructed as a white light beamline and has been upgraded with the addition of a monochromator to meet the needs of the AXAF calibration program. The beamline consists of an upstream horizontally focussing gold coated elliptical mirror, a differential pumping section, a sample/filter chamber, a monochromator and a downstream filter set. The mirror is set at a 2 degree incident angle for a nominal high energy cutoff at 2 keV. The monochromator is a separated element, scanning, double crystal/multilayer design having low to moderate energy resolution. A fixed exit beam is maintained through the 7-70 degree Bragg angle range by longitudinal translation of the second scanning crystal. Tracking is achieved by computer control of the scan motors with lookup table positioning of the crystal rotary tables. All motors are in vacuum and there are no motional feedthroughs. Several different multilayer or crystal pairs are co-mounted on the monochromator crystal holders and can be exchanged in situ. Currently installed are a W/Si multilayer pair, beryl, and Na-(beta) alumina allowing energy coverage from 180 eV to 2000 eV. Measurements with Na-(beta) alumina and beryl show that beam impurity less than 0.1 percent can be achieved in the 1-2 keV energy range. Measured resolving powers are E/(Delta) E equals 60 for W/Si, 500-800 for (beta) alumina and 1500 to 3000 for beryl. Initial results suggest that signal to noise and beam purity are adequate in the 1-2 keV region to achieve the 1 percent calibration accuracy required by AXAF. This allows overlap of Ir MV edge data taken on x-ray beamline X8A and with low energy data taken on ALS beamline 6.3.2.

  1. KMC-1: a high resolution and high flux soft x-ray beamline at BESSY.

    PubMed

    Schaefers, F; Mertin, M; Gorgoi, M

    2007-12-01

    The crystal monochromator beamline KMC-1 at a BESSY II bending magnet covers the energy range from soft (1.7 keV) to hard x-rays (12 keV) employing the (n,-n) double crystal arrangement with constant beam offset. The monochromator is equipped with three sets of crystals, InSb, Si (111), and Si (422) which are exchangeable in situ within a few minutes. Beamline and monochromator have been optimized for high flux and high resolution. This could be achieved by (1) a windowless setup under ultrahigh-vacuum conditions up to the experiment, (2) by the use of only three optical elements to minimize reflection losses, (3) by collecting an unusually large horizontal radiation fan (6 mrad) with the toroidal premirror, and (4) the optimization of the crystal optics to the soft x-ray range necessitating quasibackscattering crystal geometry (theta(Bragg,max)=82 degrees) delivering crystal limited resolution. The multipurpose beamline is in use for a variety of user facilities such as extended x-ray absorption fine structure, ((Bio-)EXAFS) near-edge x-ray absorption fine structure (NEXAFS), absorption and fluorescence spectroscopy. Due to the windowless UHV setup the k edges of the technologically and biologically important elements such as Si, P, and S are accessible. In addition to these experiments this beamline is now extensively used for photoelectron spectroscopy at high kinetic energies. Photon flux in the 10(11)-10(12) photons/s range and beamline resolving powers of more than E/DeltaE approximately 100.000 have been measured at selected energies employing Si (nnn) high order radiation in quasibackscattering geometry, thus photoelectron spectroscopy with a total instrumental resolution of about 150 meV is possible. This article describes the design features of the beamline and reports some experimental results in the above mentioned fields.

  2. KMC-1: A high resolution and high flux soft x-ray beamline at BESSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefers, F.; Mertin, M.; Gorgoi, M.

    2007-12-15

    The crystal monochromator beamline KMC-1 at a BESSY II bending magnet covers the energy range from soft (1.7 keV) to hard x-rays (12 keV) employing the (n,-n) double crystal arrangement with constant beam offset. The monochromator is equipped with three sets of crystals, InSb, Si (111), and Si (422) which are exchangeable in situ within a few minutes. Beamline and monochromator have been optimized for high flux and high resolution. This could be achieved by (1) a windowless setup under ultrahigh-vacuum conditions up to the experiment, (2) by the use of only three optical elements to minimize reflection losses, (3)more » by collecting an unusually large horizontal radiation fan (6 mrad) with the toroidal premirror, and (4) the optimization of the crystal optics to the soft x-ray range necessitating quasibackscattering crystal geometry ({theta}{sub Bragg,max}=82 deg.) delivering crystal limited resolution. The multipurpose beamline is in use for a variety of user facilities such as extended x-ray absorption fine structure, ((Bio-)EXAFS) near-edge x-ray absorption fine structure (NEXAFS), absorption and fluorescence spectroscopy. Due to the windowless UHV setup the k edges of the technologically and biologically important elements such as Si, P, and S are accessible. In addition to these experiments this beamline is now extensively used for photoelectron spectroscopy at high kinetic energies. Photon flux in the 10{sup 11}-10{sup 12} photons/s range and beamline resolving powers of more than E/{delta}E{approx_equal}100.000 have been measured at selected energies employing Si (nnn) high order radiation in quasibackscattering geometry, thus photoelectron spectroscopy with a total instrumental resolution of about 150 meV is possible. This article describes the design features of the beamline and reports some experimental results in the above mentioned fields.« less

  3. Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin.

    PubMed

    Siewert, F; Löchel, B; Buchheim, J; Eggenstein, F; Firsov, A; Gwalt, G; Kutz, O; Lemke, St; Nelles, B; Rudolph, I; Schäfers, F; Seliger, T; Senf, F; Sokolov, A; Waberski, Ch; Wolf, J; Zeschke, T; Zizak, I; Follath, R; Arnold, T; Frost, F; Pietag, F; Erko, A

    2018-01-01

    Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm -1 and 1200 lines mm -1 . A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.

  4. Shining a light on planetary processes using synchrotron techniques

    NASA Astrophysics Data System (ADS)

    Brand, H. E. A.; Kimpton, J. A.

    2017-12-01

    The Australian Synchrotron is a world-class national research facility that uses accelerator technology to produce X-rays and infrared for research. It is available for researchers from all institutions and disciplines. This contribution is intended to inform the community of the current capabilities at the facility using examples drawn from planetary research across the beamlines. Examples will include: formation of jarosite minerals with a view to Mars; studies of Micrometeorites; and large volume CT imaging of geological samples. A suite of new beamlines has been proposed for the growth of the facility and one of these, ADS, the Advanced Diffraction and Scattering beamline, is intended to be a high energy X-ray diffraction beamline capable of reaching extreme conditions and carrying out challenging in situ experiments. There is an opportunity to develop complex new sample environments which could be of relevance to shock metamorphic processes and this will form part of the discussion.

  5. Status of the New Surface Muon Beamline at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Strasser, P.; Koda, A.; Kojima, K. M.; Ito, T. U.; Fujimori, H.; Irie, Y.; Aoki, M.; Nakatsugawa, Y.; Higemoto, W.; Hiraishi, M.; Li, H.; Okabe, H.; Takeshita, S.; Shimomura, K.; Kawamura, N.; Kadono, R.; Miyake, Y.

    A new surface muon beamline (S-line) dedicated to condensed matter physics experiments is being constructed at the Muon Science Facility (MUSE) located in the Materials and Life Science Facility (MLF) building at J-PARC. This beamline designed to provide high-intensity surface muons with a momentum of 28 MeV/c will comprise four beam legs and four experimental areas that will share the double-pulsed muon beam. The key feature is a new kicker system comprising two electric kickers to deliver the muon beam to the four experimental areas ensuring an optimum and seamless sharing of the double-pulsed muon beam. At present, only one experimental area (S1) has been completed and is now open to the user program since February 2017. An overview of the different aspects of this new surface muon beamline and the present status of the beam commissioning are presented.

  6. The development of W-PBPM at diagnostic beamline

    NASA Astrophysics Data System (ADS)

    Kim, Seungnam; Kim, Myeongjin; Kim, Seonghan; Shin, Hocheol; Kim, Jiwha; Lee, Chaesun

    2017-12-01

    The photon beam position monitor (PBPM) plays a critically important role in the accurate monitoring of the beam position. W (Wire)-PBPMs are installed at the front end and photon transfer line (PTL) of the diagnostic beamline and detect the change of position and angle of the beam orbit applied to the beamline. It provides beam stability and position data in real time, which can be used in feedback system with BPM in storage-ring. Also it provides beam profile, which makes it possible to figure out the specifications of beam. With two W-PBPMs, the angle information of beam could be acquired and the results coupled with beam profile are used with orbit correction. The W-PBPM has been designed and installed in the diagnostic beamline at Pohang Light Source. Herein the details of the design, analysis and performance for the W-PBPM will be reported.

  7. CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS

    NASA Astrophysics Data System (ADS)

    Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.

    2017-06-01

    The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.

  8. Construction and performance of combustion beamline at NSRL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Xuewei; Wei, Shen; Du, Liangliang

    2016-07-27

    An undulator-based VUV beamline BL03U is constructed at the National Synchrotron Radiation Laboratory. Optical design and performance test results are presented in this paper. The monochromator is a Czerny–Turner configuration with a toroidal collimating mirror, two plane gratings, and a toroidal focusing mirror. Plane gratings with line densities of 200 and 400 l/mm are used to cover the photon energy range of 5–21 eV. A gas absorption spectrum is used to evaluate the beamline performance. The photon energy resolving power (E/ΔE) of the beamline is approximately 3900 at 7.3 eV for the 200 l/mm grating and 4200 at 14.6 eVmore » for the 400 l/mm grating. The photon flux is approximately 5×10{sup 12} photons/s/300 mA at energy of 10 eV.« less

  9. NSLS-II biomedical beamlines for micro-crystallography, FMX, and for highly automated crystallography, AMX: New opportunities for advanced data collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Martin R., E-mail: mfuchs@bnl.gov; Bhogadi, Dileep K.; Jakoncic, Jean

    We present the final design of the x-ray optics and experimental stations of two macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source-II. The microfocusing FMX beamline will deliver a flux of ∼5×10{sup 12} ph/s at 1 Å into a 1 – 20 µm spot, its flux density surpassing current MX beamlines by up to two orders of magnitude. It covers an energy range from 5 – 30 keV. The highly automated AMX beamline is optimized for high throughput, with beam sizes from 4 – 100 µm, an energy range of 5 – 18 keV and a flux atmore » 1 Å of ∼10{sup 13} ph/s. A focus in designing the beamlines lay on achieving high beam stability, for example by implementing a horizontal bounce double crystal monochromator at FMX. A combination of compound refractive lenses and bimorph mirror optics at FMX supports rapid beam size changes. Central components of the in-house developed experimental stations are horizontal axis goniometers with a target sphere of confusion of 100 nm, piezo-slits for dynamic beam size changes during diffraction experiments, dedicated secondary goniometers for data collection from specimen in crystallization plates, and next generation pixel array detectors. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and room temperature data collection of crystals in trays.« less

  10. Risk factors for tibial implant malpositioning in total knee arthrosplasty-consecutive series of one thousand, four hundred and seventeen cases.

    PubMed

    Gaillard, Romain; Cerciello, Simone; Lustig, Sebastien; Servien, Elvire; Neyret, Philippe

    2017-04-01

    Total knee arthroplasty (TKA) malalignment may result in pain and limited range of motion. The present study assessed the influence of different surgeon's and patient's related factors on the post-operative tibial tray coronal alignment. The charts and the x-rays of a continuous prospective series of 1417 TKAs operated upon between 1987 and 2015 were retrospectively reviewed. The long-leg AP views were performed at two months post-op and the tibial mechanical angle of the tibial tray was measured. Three groups were defined: varus (≤87° n = 167), valgus (≥93° n = 55) and well alignment (88° to 92° n = 1195). The influence of several pre-operative and peri-operative factors was investigated: surgeon handedness and experience (junior or senior), previous tibial osteotomies, Ahlbäck stage of osteoarthritits, pre-operative alignment, height and weight, age at surgery, approach (medial, lateral or tibial tubercle osteotomy), generation of implants, tray fixation, size of the tray and stem lenght. Univariate then multivariate analysis were performed to find out any correlation. Multivariate analysis showed a strong correlation between varus alignment of the tibial tray and pre-operative varus of the lower limb (p = 0.037), increased BMI (p = 0.016) and operated side opposite to the dominant surgeon's arm (p = 0.006). In a similar way a strong correlation was found between valgus alignment and pre-operative valgus of the limb (p = 0.026). Poor alignment of the tibial tray after TKA was associated with pre-operative malalignment of the lower limb, increased BMI and an index knee which was opposite to surgeon's dominant arm.

  11. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventturini, M.; Corlett, J.; Emma, P.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  12. The Status of the Taiwan Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. C.; Wang, J. P.; Chen, J. R.

    2010-06-23

    NSRRC has been operating a 1.5 GeV synchrotron light source, the Taiwan Light Source (TLS), for over 15 years and has established a large user community. For the future development of synchrotron radiation research in Taiwan, a feasibility study report to construct a 3.0 GeV low-emittance storage ring, the Taiwan Photon Source (TPS), was issued in July 2005. The government approval of the TPS project was obtained in December 2007 and the machine will be built at current site of NSRRC. The project has progressed steadily since and reached several major milestones now: the architect firm has finished the sitemore » plan and civil design, the accelerator design has been fixed, and purchase of long-lead items begins its course. The TPS storage ring has a circumference of 518.4 meters with a concentric booster of 496.8 meters. The storage ring adopted a 24-cell double-bend structure with a 1.6 nm-rad natural emittance. There are six 12-m and eighteen 7-m ID straights. For user research, five new beamlines have been selected for the Phase I operations: the micro protein crystallography, the materials sub-micron diffraction, the inelastic soft x-ray scattering, the coherent x-ray scattering, and the nano probe beamlines. The civil construction is getting ready to start. The commissioning of the TPS storage ring is targeted for 2013.« less

  13. Demonstration of high-energy 2 omega (526.5 nm) operation on the National Ignition Facility Laser System.

    PubMed

    Heestand, G M; Haynam, C A; Wegner, P J; Bowers, M W; Dixit, S N; Erbert, G V; Henesian, M A; Hermann, M R; Jancaitis, K S; Knittel, K; Kohut, T; Lindl, J D; Manes, K R; Marshall, C D; Mehta, N C; Menapace, J; Moses, E; Murray, J R; Nostrand, M C; Orth, C D; Patterson, R; Sacks, R A; Saunders, R; Shaw, M J; Spaeth, M; Sutton, S B; Williams, W H; Widmayer, C C; White, R K; Whitman, P K; Yang, S T; Van Wonterghem, B M

    2008-07-01

    A single beamline of the National Ignition Facility (NIF) has been operated at a wavelength of 526.5 nm (2 omega) by frequency converting the fundamental 1053 nm (1 omega) wavelength with an 18.2 mm thick type-I potassium dihydrogen phosphate (KDP) second-harmonic generator (SHG) crystal. Second-harmonic energies of up to 17.9 kJ were measured at the final optics focal plane with a conversion efficiency of 82%. For a similarly configured 192-beam NIF, this scales to a total 2 omega energy of 3.4 MJ full NIF equivalent (FNE).

  14. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicabilitymore » in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.« less

  15. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    PubMed

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  16. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian

    2016-01-01

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less

  17. Size–strain separation in diffraction line profile analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scardi, P.; Ermrich, M.; Fitch, A.

    Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensitymore » values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.« less

  18. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  19. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less

  20. Prospects for a Muon Spin Resonance Facility in the Fermilab MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.; Johnstone, Carol

    This paper investigates the feasibility of re-purposing the MuCool Test Area (MTA) beamline and experimental hall to support a Muon Spin Resonance (MuSR) facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing high- intensity beam absorber and, another, upgraded stage, that implements an optimized production target pile,more » a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H$^-$ beam into a micropulse substructure – a muon creation timing scheme – which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.« less

  1. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE PAGES

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...

    2016-07-01

    We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  2. Size–strain separation in diffraction line profile analysis

    DOE PAGES

    Scardi, P.; Ermrich, M.; Fitch, A.; ...

    2018-05-29

    Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensitymore » values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.« less

  3. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source

    PubMed Central

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-01-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103

  4. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  5. Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Borghesi, M.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Doria, D.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-02-01

    Laser-accelerated ion beams could represent the future of particle acceleration in several multidisciplinary applications, as for instance medical physics, hadrontherapy and imaging field, being a concrete alternative to old paradigm of acceleration, characterized by huge and complex machines. In this framework, following on from the ELIMED collaboration, launched in 2012 between INFN-LNS and ELI-Beamlines, in 2014 a three-years contract has been signed between the two institutions for the design and the development of a complete transport beam-line for high-energy ion beams (up to 60 MeV) coupled with innovative diagnostics and in-air dosimetry devices. The beam-line will be installed at the ELI-Beamlines facility and will be available for users. The measurement of the beam characteristics, such as energy spectra, angular distributions and dose-rate is mandatory to optimize the transport as well as the beam delivery at the irradiation point. In order to achieve this purpose, the development of appropriate on-line diagnostics devices capable to detect high-pulsed beams with high accuracy, represents a crucial point in the ELIMED beamline development. The diagnostics solution, based on the use of silicon carbide (SiC) and diamond detectors using TOF technique, will be presented together with the preliminary results obtained with laser-accelerated proton beams.

  6. Characterization of the X-ray coherence properties of an undulator beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Guangxu; Highland, Matthew J.; Thompson, Carol

    In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less

  7. Characterization of the X-ray coherence properties of an undulator beamline at the Advanced Photon Source

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Thompson, Carol; ...

    2018-06-13

    In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less

  8. The High Energy Materials Science Beamline (HEMS) at PETRA III

    NASA Astrophysics Data System (ADS)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, René; Kiehn, Rüdiger; Müller, Martin; Schreyer, Andreas

    2010-06-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  9. Analysing the performance of personal computers based on Intel microprocessors for sequence aligning bioinformatics applications.

    PubMed

    Nair, Pradeep S; John, Eugene B

    2007-01-01

    Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.

  10. Using Quasi-Horizontal Alignment in the absence of the actual alignment.

    PubMed

    Banihashemi, Mohamadreza

    2016-10-01

    Horizontal alignment is a major roadway characteristic used in safety and operational evaluations of many facility types. The Highway Safety Manual (HSM) uses this characteristic in crash prediction models for rural two-lane highways, freeway segments, and freeway ramps/C-D roads. Traffic simulation models use this characteristic in their processes on almost all types of facilities. However, a good portion of roadway databases do not include horizontal alignment data; instead, many contain point coordinate data along the roadways. SHRP 2 Roadway Information Database (RID) is a good example of this type of data. Only about 5% of this geodatabase contains alignment information and for the rest, point data can easily be produced. Even though the point data can be used to extract actual horizontal alignment data but, extracting horizontal alignment is a cumbersome and costly process, especially for a database of miles and miles of highways. This research introduces a so called "Quasi-Horizontal Alignment" that can be produced easily and automatically from point coordinate data and can be used in the safety and operational evaluations of highways. SHRP 2 RID for rural two-lane highways in Washington State is used in this study. This paper presents a process through which Quasi-Horizontal Alignments are produced from point coordinates along highways by using spreadsheet software such as MS EXCEL. It is shown that the safety and operational evaluations of the highways with Quasi-Horizontal Alignments are almost identical to the ones with the actual alignments. In the absence of actual alignment the Quasi-Horizontal Alignment can easily be produced from any type of databases that contain highway coordinates such geodatabases and digital maps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Planar harmonic polynomials of type B

    NASA Astrophysics Data System (ADS)

    Dunkl, Charles F.

    1999-11-01

    The hyperoctahedral group acting on icons/Journals/Common/BbbR" ALT="BbbR" ALIGN="TOP"/>N is the Weyl group of type B and is associated with a two-parameter family of differential-difference operators {Ti:1icons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> iicons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> N}. These operators are analogous to partial derivative operators. This paper finds all the polynomials h on icons/Journals/Common/BbbR" ALT="BbbR" ALIGN="TOP"/>N which are harmonic, icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/>Bh = 0 and annihilated by Ti for i>2, where the Laplacian 0305-4470/32/46/308/img1" ALT="(sum). They are given explicitly in terms of a novel basis of polynomials, defined by generating functions. The harmonic polynomials can be used to find wavefunctions for the quantum many-body spin Calogero model.

  12. Self-aligned gated field emission devices using single carbon nanofiber cathodes

    NASA Astrophysics Data System (ADS)

    Guillorn, M. A.; Melechko, A. V.; Merkulov, V. I.; Hensley, D. K.; Simpson, M. L.; Lowndes, D. H.

    2002-11-01

    We report on the fabrication and operation of integrated gated field emission devices using single vertically aligned carbon nanofiber (VACNF) cathodes where the gate aperture has been formed using a self-aligned technique based on chemical mechanical polishing. We find that this method for producing gated cathode devices easily achieves structures with gate apertures on the order of 2 mum that show good concentric alignment to the VACNF emitter. The operation of these devices was explored and field emission characteristics that fit well to the Fowler-Nordheim model of emission was demonstrated.

  13. Bimodal Imaging at ICON Using Neutrons and X-rays

    NASA Astrophysics Data System (ADS)

    Kaestner, A. P.; Hovind, J.; Boillat, P.; Muehlebach, C.; Carminati, C.; Zarebanadkouki, M.; Lehmann, E. H.

    For experiments with low contrast between the relevant features it can be beneficial to add a second modality to reduce ambiguity. At Paul Scherrer Institut the two neutron imaging facilities NEUTRA (thermal neutrons) and ICON (cold neutrons) we have installed X-ray beamlines for on-site bimodal imaging with neutrons and X-rays. This allows us to leave the sample untouched in the sample environment throughout an experiment and to reduce the waiting times between acquisitions using each modality. The applications and energy ranges of the X-ray installations are different at the two facilities. At NEUTRA larger samples are intended (60-320 kV) and at ICON small samples and simultaneous acquisition are intended (40-150 kV). Here, we report the more recent installation at ICON. The X-ray beamline uses a cone beam source and is arranged across the neutron beamline. The beamline is designed to allow up to ten times magnification. This matches the voxel-size that can be achieved with the micro-setup for neutrons. The oblique arrangement of the X-ray beamline further makes real-time acquisition possible since both modalities have a free view of the sample at any time. Reconstruction of cone beam data requires more knowledge about the beam geometry and sample position. Therefore, the beamline is equipped with laser based distance sensors and a calibration procedure has been developed to increase the accuracy of the reconstruction. The purpose of using multimodal acquisition is to fuse the data in a way that enhances the output of the experiment. We demonstrate the current system performance and provide a basic analysis with experiment data.

  14. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum.

    PubMed

    de Oliveira, N; Joyeux, D; Phalippou, D; Rodier, J C; Polack, F; Vervloet, M; Nahon, L

    2009-04-01

    We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of delta(sigma)=0.33 cm-1 (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to lambda=58 nm with an ultimate resolving power of 500,000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He-Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator-based synchrotron radiation beamline (Super-ACO facility, LURE, Orsay, France). A high resolution spectrum of O2 (the Schumann-Runge absorption bands, 185-200 nm) was computed from recorded interferograms using the beamline monochromator at the zeroth order to feed the instrument with an 11% relative bandwidth "white" beam (2003). These UV measurements are very close to those found in the literature, showing nominal performances of the FT spectrometer that should translate into an unprecedented resolving power at shortest VUV wavelengths. A recent upgrade (2007) and future developments will be discussed in light of the current installation of the upgraded FT spectrometer as a permanent endstation for ultrahigh resolution absorption spectrometry on the VUV beamline DESIRS at SOLEIL, the new French third generation synchrotron facility.

  15. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOEpatents

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  16. Neutron Imaging at the Oak Ridge National Laboratory: Application to Biological Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilheux, Hassina Z; Cekanova, Maria; Bilheux, Jean-Christophe

    2014-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate (NScD) has recently installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beamline supports a broad range of user research spanning from engineering to material research, energy storage, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. The beamline performance (spatial resolution, field of view, etc.) and its utilization for biological research are presented. The NScD is also considering a proposal to build the VENUS imaging beamline (beam port 10) at the Spallation Neutron Source (SNS). Unlike CG-1D which provides cold neutrons, VENUS willmore » offer a broad range of neutron wavelengths, from epithermal to cold, and enhanced contrast mechanisms. This new capability will also enable the imaging of thicker biological samples than is currently available at CG-1D. A brief overview of the VENUS capability for biological research is discussed.« less

  17. X-ray optics simulation and beamline design for the APS upgrade

    NASA Astrophysics Data System (ADS)

    Shi, Xianbo; Reininger, Ruben; Harder, Ross; Haeffner, Dean

    2017-08-01

    The upgrade of the Advanced Photon Source (APS) to a Multi-Bend Achromat (MBA) will increase the brightness of the APS by between two and three orders of magnitude. The APS upgrade (APS-U) project includes a list of feature beamlines that will take full advantage of the new machine. Many of the existing beamlines will be also upgraded to profit from this significant machine enhancement. Optics simulations are essential in the design and optimization of these new and existing beamlines. In this contribution, the simulation tools used and developed at APS, ranging from analytical to numerical methods, are summarized. Three general optical layouts are compared in terms of their coherence control and focusing capabilities. The concept of zoom optics, where two sets of focusing elements (e.g., CRLs and KB mirrors) are used to provide variable beam sizes at a fixed focal plane, is optimized analytically. The effects of figure errors on the vertical spot size and on the local coherence along the vertical direction of the optimized design are investigated.

  18. Noise reduction efforts for the ALS infrared beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarvie, Tom; Andresen, Nord; Baptiste, Ken

    2003-08-10

    The quality of infrared microscopy and spectroscopy data collected at synchrotron based sources is strongly dependent on signal-to-noise. We have successfully identified and suppressed several noise sources affecting Beamlines 1.4.2, 1.4.3, and 1.4.4 at the Advanced Light Source (ALS), resulting in a significant increase in the quality of FTIR spectra obtained. In this paper, we present our methods of noise source analysis, the negative effect of noise on the infrared beam quality, and the techniques used to reduce the noise. These include reducing the phase noise in the storage ring radio-frequency (RF) system, installing an active mirror feedback system, analyzingmore » and changing physical mounts to better isolate portions of the beamline optics from low-frequency environmental noise, and modifying the input signals to the main ALS RF system. We also discuss the relationship between electron beam energy oscillations at a point of dispersion and infrared beamline noise.« less

  19. Noise Reduction Efforts for the ALS Infrared Beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarvie, Tom; Andresen, Nord; Baptiste, Ken

    2004-05-12

    The quality of infrared microscopy and spectroscopy data collected at synchrotron based sources is strongly dependent on signal-to-noise. We have successfully identified and suppressed several noise sources affecting Beamlines 1.4.2, 1.4.3, and 1.4.4 at the Advanced Light Source (ALS), resulting in a significant increase in the quality of FTIR spectra obtained. In this paper, we present our methods of noise source analysis, the negative effect of noise on the infrared beam quality, and the techniques used to reduce the noise. These include reducing the phase noise in the storage ring radio-frequency (RF) system, installing an active mirror feedback system, analyzingmore » and changing physical mounts to better isolate portions of the beamline optics from low-frequency environmental noise, and modifying the input signals to the main ALS RF system. We also discuss the relationship between electron beam energy oscillations at a point of dispersion and infrared beamline noise.« less

  20. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF

    PubMed Central

    von Stetten, David; Giraud, Thierry; Carpentier, Philippe; Sever, Franc; Terrien, Maxime; Dobias, Fabien; Juers, Douglas H.; Flot, David; Mueller-Dieckmann, Christoph; Leonard, Gordon A.; de Sanctis, Daniele; Royant, Antoine

    2015-01-01

    The analysis of structural data obtained by X-ray crystallo­graphy benefits from information obtained from complementary techniques, especially as applied to the crystals themselves. As a consequence, optical spectroscopies in structural biology have become instrumental in assessing the relevance and context of many crystallographic results. Since the year 2000, it has been possible to record such data adjacent to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This paper reports the current status of the Cryobench, which is now located on the MAD beamline ID29 and is thus called the ID29S-Cryobench (where S stands for ‘spectroscopy’). It also reviews the diverse experiments that can be performed at the Cryobench, highlighting the various scientific questions that can be addressed. PMID:25615856

  1. Inflight alignment of payload inertial reference from Shuttle navigation system

    NASA Astrophysics Data System (ADS)

    Treder, A. J.; Norris, R. E.; Ruprecht, R.

    Two methods for payload attitude initialization from the STS Orbiter have been proposed: body axis maneuvers (BAM) and star line maneuvers (SLM). The first achieves alignment directly through the Shuttle star tracker, while the second, indirectly through the stellar-updated Shuttle inertial platform. The Inertial Upper Stage (IUS) with its strapdown navigation system is used to demonstrate in-flight alignment techniques. Significant accuracy can be obtained with minimal impact on Orbiter operations, with payload inertial reference potentially approaching the accuracy of the Shuttle star tracker. STS-6 flight performance parameters, including alignment stability, are discussed and compared with operational complexity. Results indicate overall alignment stability of .06 deg, 3 sigma per axis.

  2. Angular distribution measurement of fragment ions from a molecule using a new beamline consisting of a Grasshopper monochromator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, N.; Suzuki, I. H.; Onuki, H.

    1989-07-01

    Optical characteristics of a new beamline consisting of a premirror, a Grasshopper monochromator, and a refocusing mirror have been investigated. The intensity of the monochromatic soft x-ray was estimated to be about 10/sup 8/ photons/(s 100 mA) at 500 eV with the storage electron energy of 600 MeV and the minimum slit width. This slit width provides a resolution of about 500. Angular distributions of fragment ions from an inner-shell excited nitrogen molecule have been measured with a rotatable time-of-flight mass spectrometer by using this beamline.

  3. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Y. M., E-mail: yxiao@carnegiescience.edu; Chow, P.; Boman, G.

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  4. Diamond anvils with a round table designed for high pressure experiments in DAC

    NASA Astrophysics Data System (ADS)

    Dubrovinsky, Leonid; Koemets, Egor; Bykov, Maxim; Bykova, Elena; Aprilis, Georgios; Pakhomova, Anna; Glazyrin, Konstantin; Laskin, Alexander; Prakapenka, Vitali B.; Greenberg, Eran; Dubrovinskaia, Natalia

    2017-10-01

    Here, we present new Diamond Anvils with a Round Table (DART-anvils) designed for applications in the diamond anvil cell (DAC) technique. The main features of the new DART-anvil design are a spherical shape of both the crown and the table of a diamond and the position of the centre of the culet exactly in the centre of the sphere. The performance of DART-anvils was tested in a number of high pressure high-temperature experiments at different synchrotron beamlines. These experiments demonstrated a number of advantages, which are unavailable with any of the hitherto known anvil designs. Use of DART-anvils enables to realise in situ single-crystal X-ray diffraction experiments with laser heating using stationary laser-heating setups; eliminating flat-plate design of conventional anvils, DART-anvils make the cell alignment easier; working as solid immersion lenses, they provide additional magnification of the sample in a DAC and improve the image resolution.

  5. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  6. The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results

    PubMed Central

    Rosenbaum, Gerd; Alkire, Randy W.; Evans, Gwyndaf; Rotella, Frank J.; Lazarski, Krzystof; Zhang, Rong-Guang; Ginell, Stephan L.; Duke, Norma; Naday, Istvan; Lazarz, Jack; Molitsky, Michael J.; Keefe, Lisa; Gonczy, John; Rock, Larry; Sanishvili, Ruslan; Walsh, Martin A.; Westbrook, Edwin; Joachimiak, Andrzej

    2008-01-01

    The 19ID undulator beamline of the Structure Biology Center has been designed and built to take full advantage of the high flux, brilliance and quality of X-ray beams delivered by the Advanced Photon Source. The beamline optics are capable of delivering monochromatic X-rays with photon energies from 3.5 to 20 keV (3.5–0.6 Å wavelength) with fluxes up to 8–18 × 1012 photons s−1 (depending on photon energy) onto cryogenically cooled crystal samples. The size of the beam (full width at half-maximum) at the sample position can be varied from 2.2 mm × 1.0 mm (horizontal × vertical, unfocused) to 0.083 mm × 0.020 mm in its fully focused configuration. Specimen-to-detector distances of between 100 mm and 1500 mm can be used. The high flexibility, inherent in the design of the optics, coupled with a κ-geometry goniometer and beamline control software allows optimal strategies to be adopted in protein crystallographic experiments, thus maximizing the chances of their success. A large-area mosaic 3 × 3 CCD detector allows high-quality diffraction data to be measured rapidly to the crystal diffraction limits. The beamline layout and the X-ray optical and endstation components are described in detail, and the results of representative crystallographic experiments are presented. PMID:16371706

  7. Patient-specific instrumentation for total knee arthroplasty does not match the pre-operative plan as assessed by intra-operative computer-assisted navigation.

    PubMed

    Scholes, Corey; Sahni, Varun; Lustig, Sebastien; Parker, David A; Coolican, Myles R J

    2014-03-01

    The introduction of patient-specific instruments (PSI) for guiding bone cuts could increase the incidence of malalignment in primary total knee arthroplasty. The purpose of this study was to assess the agreement between one type of patient-specific instrumentation (Zimmer PSI) and the pre-operative plan with respect to bone cuts and component alignment during TKR using imageless computer navigation. A consecutive series of 30 femoral and tibial guides were assessed in-theatre by the same surgeon using computer navigation. Following surgical exposure, the PSI cutting guides were placed on the joint surface and alignment assessed using the navigation tracker. The difference between in-theatre data and the pre-operative plan was recorded and analysed. The error between in-theatre measurements and pre-operative plan for the femoral and tibial components exceeded 3° for 3 and 17% of the sample, respectively, while the error for total coronal alignment exceeded 3° for 27% of the sample. The present results indicate that alignment with Zimmer PSI cutting blocks, assessed by imageless navigation, does not match the pre-operative plan in a proportion of cases. To prevent unnecessary increases in the incidence of malalignment in primary TKR, it is recommended that these devices should not be used without objective verification of alignment, either in real-time or with post-operative imaging. Further work is required to identify the source of discrepancies and validate these devices prior to routine use. II.

  8. Mobile and replicated alignment of arrays in data-parallel programs

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.

  9. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST): V. Operational Alignment Updates

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Ha, Kong Q.; Shiri, Ron; Smith, J. Scott; Mosier, Gary; Muheim, Danniella

    2008-01-01

    This paper is part five of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory, and the fourth introduced the software toolkits used to perform much of the optical analysis for JWST. The work here models observatory operations by simulating line-of-sight image motion and alignment drifts over a two-week period. Alignment updates are then simulated using wavefront sensing and control processes to calculate and perform the corrections. A single model environment in Matlab is used for evaluating the predicted performance of the observatory during these operations.

  10. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  11. Optical Design and Performance of the Taiwan Inelastic X-Ray Scattering Beamline (BL12XU) at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.Q.; Chow, P.; Chen, C.C.

    2004-05-12

    As part of the Taiwan x-ray facility at SPring-8, we have designed, constructed and commissioned a dedicated Inelastic X-ray Scattering (IXS) beamline (BL12XU) for both resonant and non-resonant experiments on electronic excitations in correlated electron systems with energy resolution from 10-1000 meV. At the Si(555) near-backscattering energy of 9.886 keV, a total energy resolution of 70 meV has been achieved with flux of 1.5x1011 phs/sec/50meV. The optical design and performance of the beamline are presented and discussed with selected results from recent commissioning experiments.

  12. Motion control system of MAX IV Laboratory soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to runmore » the scans.« less

  13. A soft X-ray beamline for transmission X-ray microscopy at ALBA.

    PubMed

    Pereiro, E; Nicolás, J; Ferrer, S; Howells, M R

    2009-07-01

    The MISTRAL beamline is one of the seven phase-I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi-keV spectral regions for biological applications. The optics design consists of a plane-grating monochromator that has been implemented using variable-line-spacing gratings to fulfil the requirements of X-ray microscopy using a reflective condenser. For instance, a fixed-focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use.

  14. High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter

    2017-09-01

    The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline

  15. Reverse alignment "mirror image" visualization as a laparoscopic training tool improves task performance.

    PubMed

    Dunnican, Ward J; Singh, T Paul; Ata, Ashar; Bendana, Emma E; Conlee, Thomas D; Dolce, Charles J; Ramakrishnan, Rakesh

    2010-06-01

    Reverse alignment (mirror image) visualization is a disconcerting situation occasionally faced during laparoscopic operations. This occurs when the camera faces back at the surgeon in the opposite direction from which the surgeon's body and instruments are facing. Most surgeons will attempt to optimize trocar and camera placement to avoid this situation. The authors' objective was to determine whether the intentional use of reverse alignment visualization during laparoscopic training would improve performance. A standard box trainer was configured for reverse alignment, and 34 medical students and junior surgical residents were randomized to train with either forward alignment (DIRECT) or reverse alignment (MIRROR) visualization. Enrollees were tested on both modalities before and after a 4-week structured training program specific to their modality. Student's t test was used to determine differences in task performance between the 2 groups. Twenty-one participants completed the study (10 DIRECT, 11 MIRROR). There were no significant differences in performance time between DIRECT or MIRROR participants during forward or reverse alignment initial testing. At final testing, DIRECT participants had improved times only in forward alignment performance; they demonstrated no significant improvement in reverse alignment performance. MIRROR participants had significant time improvement in both forward and reverse alignment performance at final testing. Reverse alignment imaging for laparoscopic training improves task performance for both reverse alignment and forward alignment tasks. This may be translated into improved performance in the operating room when faced with reverse alignment situations. Minimal lab training can account for drastic adaptation to this environment.

  16. An undulator based soft x-ray source for microscopy on the Duke electron storage ring

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis Elgin

    1998-09-01

    This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the storage ring. A diagnostic beamline consisting of a transmission grating spectrometer and scanning wire beam profile monitor was constructed to measure the spatial and spectral characteristics of the undulator radiation. Test of the system with a circulating electron beam has confirmed the magnetic and focusing properties of the undulator, and verified that it can be used without perturbing the orbit of the beam.

  17. Development of a Tender-Energy Microprobe for Geosciences at NSLS and NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northrup, Paul A.

    This funding is to develop a new Synchrotron user facility for microbeam X-ray absorption spectroscopy (XAS) and quantitative X-ray fluorescence (XRF) imaging, at the National Synchrotron Light Source (NSLS) and NSLS-II. It includes design, purchase of components, and construction of the microprobe endstation and controls. Initial development, commissioning, and application is ongoing at NSLS Beamline X15B, with planned transition in 2014-15 to the NSLS-II TES (Tender-Energy Spatially Resolved X-ray Absorption Spectroscopy) beamline. It is optimized for the “tender” energy range of 1-5 keV, reaching up to 8 keV. Thus it uniquely covers the K absorption edges of critical elements Mg,more » Al, Si, P, S, Cl, and Ca, and can reach up to Co. A stable, high-flux microbeam focus, user-tunable from ~50 to ~5 microns, has been achieved using two-stage achromatic focusing. Existing beamline optics collimate, monochromate, and macro-focus the X-ray beam to ~1 mm at a secondary source aperture (SSA). Beam from the SSA is then re-focused by a pair of mirrors in KB geometry to the microbeam scale. Size of the microbeam is tunable, at the expense of flux, by adjusting the size of the SSA as a virtual source. The new experimental endstation consists of 1) a sample chamber operable as a radiation enclosure with helium atmosphere to facilitate measurements in this energy range, 2) the KB microfocusing optics, 3) a sample-positioning stage for raster-scanning and positioning the sample, 4) X-ray fluorescence detectors, an existing Ge detector for low-signal sensitivity and a new Si detector for high count rates, 5) an optical camera for viewing samples and locating target locations, 6) beam intensity monitors and diagnostics, and 7) controls and data acquisition system. An important aspect of this project is the added capability for fast, on-the-fly scanning of the monochromator (energy), required for fast XAS and advanced XAS imaging. This instrument will be available for initial PI and Co-I measurements, and for General Users to apply for beamtime to use, at NSLS X15B for the remaining operation of NSLS, to September 30, 2014. Phase two of this project will transition this facility, both the primary optics and the endstation, to NSLS-II after NSLS ceases operation. While this transition itself is beyond the scope of the current grant, preparation and planning for it is included.« less

  18. HARWI---A hard x-ray wiggler beam at DORIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graeff, W.; Bittner, L.; Brefeld, W.

    1989-07-01

    The construction of the wiggler W2 at DORIS is described together with the major components of the beamline. Details are given on the assembly and performance of the magnet structure. Three different monochromators are used in the beamline alternatively. One of them, a Laue--Bragg-type monochromator is described in more detail.

  19. X-ray nanoprobe project at Taiwan Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shih-Hung; Chen, Bo-Yi

    2016-07-27

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides versatile X-ray analysis techniques, with tens of nanometer resolution, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing Montel KB mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The two silica-made Montel mirrors are 45 degree cut and placed in a V-shape to eliminate the gap loss and the deformation caused by gravity. The slope error of the KB mirror pair is less than 0.04 µrad accomplished by elasticmore » emission machining (EEM) method. For the beamline, a horizontal DCM and two-stage focusing in horizontal direction is applied. For the endstation, a combination of SEM for quickly positioning the sample, a fly scanning system with laser interferometers, a precise temperature control system, and a load lock transfer system will be implemented. In this presentation, the design and construction progress of the beamline and endstation is reported. The endstation is scheduled to be in commissioning phase in 2016.« less

  20. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  1. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  2. Pulsed beam tests at the SANAEM RFQ beamline

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  3. Characterising the large coherence length at diamond’s beamline I13L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, U. H., E-mail: ulrich.wagner@diamond.ac.uk; Parsons, A.; Rahomaki, J.

    2016-07-27

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuringmore » a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.« less

  4. NE-CAT Upgrade of the Bending Magnet Beamline 8BM at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jun; Ogata, Craig; Yang Xiaochun

    2007-01-19

    NE-CAT, North East Collaborative Access Team, bending magnet beamline (8BM) is a beamline for protein crystallography. Recently, the beamline has undergone upgrades of its x-ray optics, control system, and the addition of a robot automounter. The first crystal of the double crystal monochromator was replaced by a new design offered by Oxford Danfysik with a micro-finned, direct water-cooled crystal assembly that would provide better cooling and reduced thermal distortion, pressure induced bulge, and residual strain. Gear reduced motors were added to enhance the torque of the bender and obtain better control. For measuring displacement of the bender directly, two linearmore » variable differential transformers (LVDT) were installed to the second crystal assembly. Early optics characterization and analysis has been carried out. Besides the upgrade of the optical components, the Blu-Ice control system originally developed at SSRL has been implemented. The installation of an automated robotic sample mounting system, from the ALS, was carried out in collaboration with the engineering group at LBNL. Preliminary results are presented.« less

  5. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  6. HYBRID Simulations of Diffraction-Limited Focusing with Kirkpatrick-Baez Mirrors for a Next-Generation In Situ Hard X-ray Nanoprobe

    NASA Astrophysics Data System (ADS)

    Maser, Jörg; Shi, Xianbo; Reininger, Ruben; Lai, Barry; Vogt, Stefan

    2016-12-01

    Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of Δ E/ E = 10-4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as Δ E/ E = 10-2 into a focal spot of 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. To quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software " HYBRID."

  7. Development of an embedded instrument for autofocus and polarization alignment of polarization maintaining fiber

    NASA Astrophysics Data System (ADS)

    Feng, Di; Fang, Qimeng; Huang, Huaibo; Zhao, Zhengqi; Song, Ningfang

    2017-12-01

    The development and implementation of a practical instrument based on an embedded technique for autofocus and polarization alignment of polarization maintaining fiber is presented. For focusing efficiency and stability, an image-based focusing algorithm fully considering the image definition evaluation and the focusing search strategy was used to accomplish autofocus. For improving the alignment accuracy, various image-based algorithms of alignment detection were developed with high calculation speed and strong robustness. The instrument can be operated as a standalone device with real-time processing and convenience operations. The hardware construction, software interface, and image-based algorithms of main modules are described. Additionally, several image simulation experiments were also carried out to analyze the accuracy of the above alignment detection algorithms. Both the simulation results and experiment results indicate that the instrument can achieve the accuracy of polarization alignment <±0.1 deg.

  8. Computational Analysis Supporting the Design of a New Beamline for the Mines Neutron Radiography Facility

    NASA Astrophysics Data System (ADS)

    Wilson, C.; King, J.

    The Colorado School of Mines installed a neutron radiography system at the United States Geological Survey TRIGA reactor in 2012. An upgraded beamline could dramatically improve the imaging capabilities of this system. This project performed computational analyses to support the design of a new beamline, with the major goals of minimizing beam divergence and maximizing beam intensity. The new beamline will consist of a square aluminum tube with an 11.43 cm (4.5 in) inner side length and 0.635 cm (0.25 in) thick walls. It is the same length as the original beam tube (8.53 m) and is composed of 1.22 m (4 ft) and 1.52 m (5 ft) flanged sections which bolt together. The bottom 1.22 m of the beamline is a cylindrical aluminum pre-collimator which is 0.635 cm (0.25 in) thick, with an inner diameter of 5.08 cm (2 in). Based on Monte Carlo model results, when a pre-collimator is present, the use of a neutron absorbing liner on the inside surface of the beam tube has almost no effect on the angular distribution of the neutron current at the collimator exit. The use of a pre-collimator may result in a non-uniform flux profile at the image plane; however, as long as the collimator is at least three times longer than the pre-collimator, the flux distortion is acceptably low.

  9. SNS Sample Activation Calculator Flux Recommendations and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples.more » The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.« less

  10. Development of Partially-Coherent Wavefront Propagation Simulation Methods for 3rd and 4th Generation Synchrotron Radiation Sources.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar O.; Berman, L; Chu, Y.S.

    2012-04-04

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, ismore » of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.« less

  11. Effect of screw fixation on acetabular component alignment change in total hip arthroplasty.

    PubMed

    Fujishiro, Takaaki; Hayashi, Shinya; Kanzaki, Noriyuki; Hashimoto, Shingo; Shibanuma, Nao; Kurosaka, Masahiro

    2014-06-01

    The use of screws can enhance immediate cup fixation, but the influence of screw insertion on cup position has not previously been measured. The purpose of this study was to quantitatively evaluate the effect of intra-operative screw fixation on acetabular component alignment that has been inserted with the use of a navigation system. We used a navigation system to measure cup alignment at the time of press-fit and after screw fixation in 144 hips undergoing total hip arthroplasty. We also compared those findings with factors measured from postoperative radiographs. The mean intra-operative change of cup position was 1.78° for inclination and 1.81° for anteversion. The intra-operative change of anteversion correlated with the number of screws. The intra-operative change of inclination also correlated with medial hip centre. The insertion of screws can induce changes in cup alignment, especially when multiple screws are used or if a more medial hip centre is required for rigid acetabular fixation.

  12. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor)

    2014-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  13. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor)

    2011-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  14. Determination of the resolution of the x-ray microscope XM-1 at beamline 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heck, J.M.; Meyer-Ilse, W.; Attwood, D.T.

    1997-04-01

    Resolution determination in x-ray microscopy is a complex issue which depends on many factors. Many different criteria and experimental setups are used to characterize resolution. Some of the important factors affecting resolution include the partial coherence and spectrum of the illumination. The purpose of this research has been to measure the resolution of XM-1 at beamline 6.1 taking into account these factors, and to compare the measurements to theoretical calculations. The x-ray microscope XM-1, built by the Center for X-ray Optics (CXRO), has been operational since 1994 at the Advanced Light Source at E.O. Lawrence Berkeley National Laboratory. It ismore » of the conventional (i.e. full-field) type, utilizing zone plate optics. ALS bending magnet radiation is focused by a condenser zone plate onto a monochromator pinhole immediately in front of the sample. X-rays transmitted through the sample are focused by a micro-zone plate onto a CCD camera. The pinhole and the condenser with a central stop constitute a linear monochromator. The spectral distribution of the light illuminating the sample has been calculated assuming geometrical optics.« less

  15. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghiringhelli, G.; Piazzalunga, A.; Dallera, C.

    We present a 5 m long spectrometer for soft x rays to be used at a synchrotron radiation beamline for resonant x-ray emission spectroscopy and resonant inelastic x-ray scattering in the 400-1600 eV energy range. It is based on a variable line spacing spherical grating (average groove density of 3200 mm{sup -1}, R=58.55 m) and a charge coupled device two dimensional detector. With an x-ray spot on the sample of 10 {mu}m, the targeted resolving power is higher than 10 000 at all energies below 1100 eV and better than 7000 at 1500 eV. The off-line tests made with Almore » and Mg K{alpha}{sub 1,2} fluorescence emissions indicate that the spectrometer can actually work at 12 000 and 17 000 resolving power at the L{sub 3} edges of Cu (930 eV) and of Ti (470 eV), respectively. SAXES (superadvanced x-ray emission spectrometer) is mounted on a rotating platform allowing to vary the scattering angle from 25 degree sign to 130 degree sign . The spectrometer will be operational at the ADRESS (advanced resonant spectroscopies) beamline of the Swiss Light Source from 2007.« less

  17. ELIMED: a new hadron therapy concept based on laser driven ion beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Margarone, Daniele; Maggiore, Mario; Anzalone, Antonello; Borghesi, Marco; Jia, S. Bijan; Bulanov, Stepan S.; Bulanov, Sergei; Carpinelli, Massimo; Cavallaro, Salvatore; Cutroneo, Mariapompea; Cuttone, Giacomo; Favetta, Marco; Gammino, Santo; Klimo, Ondrej; Manti, Lorenzo; Korn, Georg; La Malfa, Giuseppe; Limpouch, Jiri; Musumarra, Agatino; Petrovic, Ivan; Prokupek, Jan; Psikal, Jan; Ristic-Fira, Aleksandra; Renis, Marcella; Romano, Francesco P.; Romano, Francesco; Schettino, Giuseppe; Schillaci, Francesco; Scuderi, Valentina; Stancampiano, Concetta; Tramontana, Antonella; Ter-Avetisyan, Sargis; Tomasello, Barbara; Torrisi, Lorenzo; Tudisco, Salvo; Velyhan, Andriy

    2013-05-01

    Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility.

  18. Unveiling the Secrets of Archimedes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Manisha

    2008-03-13

    Progress has been made at the Stanford Linear Accelerator Center (SLAC) toward deciphering the remaining 10-20% of ancient Greek text contained in the Archimedes palimpsest. The text is known to contain valuable works by the mathematician, including the Method of Mechanical Theorems, the Equilibrium of Planes, On Floating Bodies, and several diagrams. The only surviving copy of the text was recycled into a prayer book in the Middle Ages. The ink used to write on the goat skin parchment is partly composed of iron, which is visible by x-ray radiation. To image the palimpsest pages, the parchment was framed andmore » placed in a stage that moved according to the raster method. When an x-ray beam was incident upon the parchment the iron in the ink was detected by a germanium detector. The resultant signal was converted to a gray-scale image. It was extremely important that each line of data was well aligned with the line that came before it. The objectives of this experiment were to determine the best parameters for producing well-aligned images and to reduce the scanning time. Imaging half a page of parchment during previous beam time for this project was achieved in thirty hours. Equations were produced to evaluate count time, shutter time, and the number of pixels in this experiment. On Beamline 6-2 at the Stanford Synchrotron Radiation Laboratory (SSRL), actual scanning time was reduced by one fourth. The remaining pages were successfully imaged and sent to ancient Greek experts for translation.« less

  19. Unveiling the Secrets of Archimedes

    NASA Astrophysics Data System (ADS)

    Turner, Manisha

    2008-03-01

    Progress has been made at the Stanford Linear Accelerator Center (SLAC) toward deciphering the remaining 10-20% of ancient Greek text contained in the Archimedes palimpsest. The text is known to contain valuable works by the mathematician, including the Method of Mechanical Theorems, the Equilibrium of Planes, On Floating Bodies, and several diagrams. The only surviving copy of the text was recycled into a prayer book in the Middle Ages. The ink used to write on the goat skin parchment is partly composed of iron, which is visible by x-ray radiation. To image the palimpsest pages, the parchment was framed and placed in a stage that moved according to the raster method. When an x-ray beam was incident upon the parchment the iron in the ink was detected by a germanium detector. The resultant signal was converted to a gray-scale image. It was extremely important that each line of data was well aligned with the line that came before it. The objectives of this experiment were to determine the best parameters for producing well-aligned images and to reduce the scanning time. Imaging half a page of parchment during previous beam time for this project was achieved in thirty hours. Equations were produced to evaluate count time, shutter time, and the number of pixels in this experiment. On Beamline 6-2 at the Stanford Synchrotron Radiation Laboratory (SSRL), actual scanning time was reduced by one fourth. The remaining pages were successfully imaged and sent to ancient Greek experts for translation.

  20. Strategic Planning to Conduct Joint Force Network Operations: A Content Analysis of NETOPS Organizations Strategic Plans

    DTIC Science & Technology

    2007-03-01

    information dominance , Joint Network Operations (NETOPS) organizations need to be strategically aligned. As result, to enhance the capabilities-based effects of NETOPS and reduce our NETOP infrastructures susceptibility to compromise. Once the key organizations were identified, their strategic plans were analyzed using a structured content analysis framework. The results illustrated that the strategic plans were aligned with the community of interests tasking to conduct NETOPS. Further research is required into the strategic alignment beyond the strategic

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, R.; Bailey, J.; Virgo, M.

    Argonne National Laboratory, in cooperation with Los Alamos National Laboratory, is developing technology with NorthStar Medical Technologies to produce 99Mo from the γ,n reaction on a 100Mo target in an electron accelerator. During production runs and thermal testing of the helium-cooled target, it became obvious that a production-scale beam-line configuration would need a collimator to protect the target from accidental beam misplacement or a beam-profile change. A prototype high-power collimator and beam stop were designed and fabricated. Testing indicated that they will be able to operate at full power in the production-scale accelerator.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.

    BESSY plans to go to topping up operation in the near future. A high injection efficiency is essential to avoid particle losses inside the undulator magnets and to ensure a low radiation background in the beamlines. Dynamic and static multipoles of the insertion devices have to be minimized to accomplish this requirement. APPLE II devices show strong dynamic multipoles in the elliptical and vertical polarization mode. Measurements before and after shimming of these multipoles are presented. The static multipoles of the BESSY UE56-2 which are due to systematic block inhomgeneities have successfully been shimmed recovering the full dynamic aperture.

  3. Development of a scanning transmission x-ray microscope for the beamline P04 at PETRA III DESY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrianov, Konstantin; Ewald, Johannes; Nisius, Thomas

    We present a scanning transmission x-ray microscope (STXM) built on top of our existing modular platform for high resolution imaging experiments. This platform consists of up to three separate vacuum chambers and custom designed piezo stages. These piezo stages are able to move precisely in x-, y- and z-direction, this makes it possible to adjust the components for different imaging modes. During recent experiments the endstation was operated mainly as a transmission x-ray microscope (TXM) [1, 2].

  4. High resolution microtomography for density and spatial infomation about wood structures

    Treesearch

    Barbara Illman; Betsy Dowd

    1999-01-01

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...

  5. Calibration and standards beamline 6.3.2 at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, J.H.; Gullikson, E.M.; Koike, M.

    1997-04-01

    More sophisticated optics for the x-ray, soft x-ray and far ultraviolet spectral regions being developed for synchrotron radiation research and many other applications, require accurate calibration and standards facilities for measuring reflectivity of mirrors and multilayer coatings, transmission of thin films, bandpass of multilayers, efficiency of gratings or detectors, etc. For this purpose beamline 6.3.2 was built at the ALS. Its energy coverage, versatility, simplicity and convenience also make it useful for a wide range of other experiments. The paper describes the components of this beamline, consisting of: a four jaw aperture; a horizontal focusing mirror; a monochromator; exit slit;more » vertical focusing mirror; mechanical and vacuum system; reflectometer; filter wheels; and data acquisition system.« less

  6. Considerations for NSLS-II Synchrotron Radiation Protection When Operating Damping Wigglers at Low Machine Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Podobedov, B.

    2015-12-30

    The NSLS-II storage ring vacuum chamber, including frontends (FE) and beamlines (BL), is protected from possible damage from synchrotron radiation (SR) emitted from insertion devices (IDs) by a dedicated active interlock system (AIS). The system monitors electron beam position and angle and triggers a beam dump if the beam orbit is outside of the active interlock envelope (AIE). The AIE was calculated under the assumptions of 3 GeV beam energy and ID gaps set to their minimum operating values (i.e. “fully closed”). Recently it was proposed to perform machine studies that would ramp the stored beam energy significantly below themore » nominal operational value of 3 GeV. These studies may potentially include the use of NSLS-II damping wigglers (DWs) for electron beam emittance reduction and control.« less

  7. The Fermilab Short-Baseline Program: MicroBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schukraft, Anne

    2016-01-01

    The MicroBooNE experiment is the first of three detectors of the Fermilab short-baseline neutrino program that started operation in the Booster Neutrino Beamline in October 2015 [1]. When completed, the three-detector lineup will explore short-baseline neutrino oscillations and will be sensitive to sterile neutrino scenarios. MicroBooNE in itself is now starting its own physics program, with the measurement of neutrino-argon cross sections in the ~1GeV range being one of its main physics goals. These proceedings describe the status of the detector, the start of operation, and the automated reconstruction of the first neutrino events observed with MicroBooNE. Prospects for upcomingmore » cross section measurements are also given.« less

  8. Correction of Depolarizing Resonances in ELSA

    NASA Astrophysics Data System (ADS)

    Steier, C.; Husmann, D.

    1997-05-01

    The 3.5 GeV electron stretcherring ELSA (ELectron Stretcher Accelerator) at Bonn University is operational since 1987, both as a continuous beam facility for external fixed target experiments and as a partially dedicated synchrotron light source. For the external experiments an upgrade to polarized electrons is under way. One source of polarized electrons (GaAs crystal, photoeffect using circular polarized laser light) is operational. The studies of minimizing the losses in polarization degree due to crossing of depolarizing resonances that necessarily exist in circular accelerators (storagerings) just started recently. Calculations concerning different correction schemes for the depolarizing resonances in ELSA are presented, and first results of measurements are shown (done by means of a Møller polarimeter in one of the external beamlines).

  9. Status and outlook of the CRYRING@ESR project

    NASA Astrophysics Data System (ADS)

    Geithner, W.; Andelkovic, Z.; Beck, D.; Bräuning, H.; Bräuning-Demian, A.; Danared, H.; Dimopoulou, C.; Engström, M.; Fedotova, S.; Gorda, O.; Herfurth, F.; Hess, R.; Källberg, A.; Kleffner, C.; Kotovskiy, N.; Kraus, I.; Lestinsky, M.; Litvinov, S.; Nolden, F.; Reiter, A.; Sieber, T.; Steck, M.; Vorobyev, G.

    2017-11-01

    Once operational, CRYRING@ESR will store and decelerate ions delivered by the experimental storage ring ESR at energies well below those of ESR. In addition to that, CRYRING@ESR has an electron cooler operating with an ultracold electron beam, allowing to provide cooled ion beams for precision experiments. These ions will be delivered to a broad range of experiments presently in preparation; either in-ring or extracted to a dedicated beamline for experiments. An overview and status report of the installation and commissioning of the CRYRING-@ESR storage ring for highly charged ions at the GSI Helmholtzzentrum für Schwerionenforschung is presented. The installation of this storage ring started in 2014 and was completing end of 2016, when this publication was written.

  10. Business-IT Alignment Maturity: The Correlation of Performance Indicators and Alignment Maturity within the Commercial Airline Industry

    ERIC Educational Resources Information Center

    Ryan, Timothy K.

    2010-01-01

    During the period from 1978 to 2009, more than 200 commercial airlines were forced to merge, cease operations, or file for bankruptcy protection. The purpose of this quantitative study is to evaluate the global commercial airline industry from an IT-business alignment perspective and correlate the alignment maturity level of each airline with…

  11. Pairwise Sequence Alignment Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Danielle; Siegbahn, Albert; Fallone, Gin

    Purpose: The BioMedical Imaging and Therapy (BMIT) beamlines at the Canadian Light Source offer the opportunity for investigating novel imaging and therapy applications of synchrotron radiation. A necessary component in advancing this research, and in progressing toward clinical applications, is the availability of accurate dosimetry that is traceable to a standards institution. However, dosimetry in this setting is challenging. These beams are typically small, non-uniform, and highly intense. This work describes air kerma rate measurements on a BMIT beamline using a free-air ionization chamber (FAC). Methods: The measurements were taken at the 05B1-1 beamline (∼8 – 100 keV) for severalmore » beam qualities with mean energies between 20.0 and 84.0 keV. The Victoreen Model 480 cylindrical FAC, with a specially fabricated 0.52 mm diameter aperture, was used to measure air kerma rates. The required correction factors were determined using a variety of methods: tabulated data, measurements, theoretical calculations and Monte Carlo simulations (EGSnrc user code egs-fac). Results: The experimental air kerma rates measured between 0.270 ± 13.6% and 312 ± 2.7% Gy/min. At lower energies (low filtration), the most impactful correction factors were those for ion recombination and for x-ray attenuation. Conclusions: These measurements marked the first absolute dosimetry performed at the BMIT beamlines. The experimental and Monte Carlo methods developed will allow air kerma rates to be measured under other experimental conditions, provide a benchmark to which other dosimeters will be compared, and provide a reference for imaging and therapy research programs on this beamline.« less

  13. Characterization of Beryllium Windows Using Coherent X-rays at 1-km Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Takahashi, Sunao

    2004-05-12

    Beryllium windows were characterized using coherent x-rays at the one-kilometer beamline of SPring-8. Non-uniformity of transmission x-ray images is largely due to Fresnel diffraction from deficiencies such as surface pits with diameter of order of one micron to ten microns, having no correlation with averaged surface roughness measured with an optical profilometer.

  14. Current advances in synchrotron radiation instrumentation for MX experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Robin L.; Juanhuix, Jordi; Fuchs, Martin

    2016-07-01

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choicemore » for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing.« less

  15. Current advances in synchrotron radiation instrumentation for MX experiments.

    PubMed

    Owen, Robin L; Juanhuix, Jordi; Fuchs, Martin

    2016-07-15

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choice for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing. Copyright © 2016. Published by Elsevier Inc.

  16. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source.

    PubMed

    MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A

    2004-11-01

    At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  17. A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source.

    PubMed

    Kunz, Martin; MacDowell, Alastair A; Caldwell, Wendel A; Cambie, Daniella; Celestre, Richard S; Domning, Edward E; Duarte, Robert M; Gleason, Arianna E; Glossinger, James M; Kelez, Nicholas; Plate, David W; Yu, Tony; Zaug, Joeseph M; Padmore, Howard A; Jeanloz, Raymond; Alivisatos, A Paul; Clark, Simon M

    2005-09-01

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.

  18. Current advances in synchrotron radiation instrumentation for MX experiments

    PubMed Central

    Owen, Robin L.; Juanhuix, Jordi; Fuchs, Martin

    2017-01-01

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choice for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualization and positioning, the sample environment, beam shaping, detectors and data acquisition and processing. PMID:27046341

  19. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    NASA Astrophysics Data System (ADS)

    Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.

    2016-10-01

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.

  20. HYBRID simulations of diffraction-limited focusing with Kirkpatrick-Baez mirrors for a next-generation In Situ hard X-ray nanoprobe

    DOE PAGES

    Maser, Jorg; Shi, Xianbo; Reininger, Ruben; ...

    2016-02-22

    Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of ΔE/E = 10 –4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as ΔE/E = 10 –2 into a focal spot ofmore » 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. Furthermore, to quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software “HYBRID.”« less

  1. ID16B: a hard X-ray nanoprobe beamline at the ESRF for nano-analysis

    PubMed Central

    Martínez-Criado, Gema; Villanova, Julie; Tucoulou, Rémi; Salomon, Damien; Suuronen, Jussi-Petteri; Labouré, Sylvain; Guilloud, Cyril; Valls, Valentin; Barrett, Raymond; Gagliardini, Eric; Dabin, Yves; Baker, Robert; Bohic, Sylvain; Cohen, Cédric; Morse, John

    2016-01-01

    Within the framework of the ESRF Phase I Upgrade Programme, a new state-of-the-art synchrotron beamline ID16B has been recently developed for hard X-ray nano-analysis. The construction of ID16B was driven by research areas with major scientific and societal impact such as nanotechnology, earth and environmental sciences, and bio-medical research. Based on a canted undulator source, this long beamline provides hard X-ray nanobeams optimized mainly for spectroscopic applications, including the combination of X-ray fluorescence, X-ray diffraction, X-ray excited optical luminescence, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques. Its end-station re-uses part of the apparatus of the earlier ID22 beamline, while improving and enlarging the spectroscopic capabilities: for example, the experimental arrangement offers improved lateral spatial resolution (∼50 nm), a larger and more flexible capability for in situ experiments, and monochromatic nanobeams tunable over a wider energy range which now includes the hard X-ray regime (5–70 keV). This paper describes the characteristics of this new facility, short-term technical developments and the first scientific results. PMID:26698084

  2. Far-infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Zhao, Jianbao; Billinghurst, Brant

    2017-06-01

    Far-infrared is a particularly useful technique for studies on lattice modes as they generally appear in the Far-infrared region. Far-infrared is also an important tool for gathering information on the electrical transport properties of metallic materials and the band gap of semiconductors. This poster will describe the horizontal microscope that has recently been built in the Far-infrared beamline at the Canadian Light Source Inc. (CLS). This microscope is specially designed for high-pressure Far-infrared absorbance and reflectance spectroscopic studies. The numerical aperture (0.5) and the long working distance (82.1 mm) in the microscope are good fits for Diamond Anvil Cell (DAC). The spectra are recorded using liquid helium cooled Si bolometer or Ge:Cu detector. The pressure in the DAC can be determined by using the fluorescence spectrometer available onsite. The Far-infrared beamline at CLS is a state-of-the-art synchrotron facility, offering significantly more brightness than conventional sources. Because of the high brightness of the synchrotron radiation, we can obtain the Far-infrared reflectance/absorbance spectra on the small samples with more throughput than with a conventional source. The Far-infrared beamline is open to users through peer review.

  3. Double crystal monochromator controlled by integrated computing on BL07A in New SUBARU, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okui, Masato, E-mail: okui@kohzu.co.jp; Laboratory of Advanced Science and Technology for Industry, University of Hyogo; Yato, Naoki

    2016-07-27

    The BL07A beamline in New SUBARU, University of Hyogo, has been used for many studies of new materials. A new double crystal monochromator controlled by integrated computing was designed and installed in the beamline in 2014. In this report we will discuss the unique features of this new monochromator, MKZ-7NS. This monochromator was not designed exclusively for use in BL07A; on the contrary, it was designed to be installed at low cost in various beamlines to facilitate the industrial applications of medium-scale synchrotron radiation facilities. Thus, the design of the monochromator utilized common packages that can satisfy the wide varietymore » of specifications required at different synchrotron radiation facilities. This monochromator can be easily optimized for any beamline due to the fact that a few control parameters can be suitably customized. The beam offset can be fixed precisely even if one of the two slave axes is omitted. This design reduces the convolution of mechanical errors. Moreover, the monochromator’s control mechanism is very compact, making it possible to reduce the size of the vacuum chamber can be made smaller.« less

  4. Current advances in synchrotron radiation instrumentation for MX experiments

    DOE PAGES

    Owen, Robin L.; Juanhuix, Jordi; Fuchs, Martin

    2016-04-01

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Moreover, it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choicemore » for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. One main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. Furthermore, we discuss the most critical optical components, aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing.« less

  5. SIBYLS - a SAXS and Protein Crystallography Beamline at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trame, C.; MacDowell, A.A.; Celestre, R.S.

    2004-05-12

    The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{delta}E{approx}1/110). Flux rates with Si(111) crystals for PX are measured as 2x1011 hv/sec through a 100{mu}m pinhole at 12.4KeV. For SAXS the flux is up to 3x1013photons/sec at 10KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less

  6. Beam Characterization at the Neutron Radiography Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarah Morgan; Jeffrey King

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured themore » beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.« less

  7. The quality assessment of radial and tangential neutron radiography beamlines of TRR

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Movafeghi, A.; Khalafi, H.; Kasesaz, Y.

    2017-07-01

    To achieve a quality neutron radiographic image in a relatively short exposure time, the neutron radiography beam must be of good quality and relatively high neutron flux. Characterization of a neutron radiography beam, such as determination of the image quality and the neutron flux, is vital for producing quality radiographic images and also provides a means to compare the quality of different neutron radiography facilities. This paper provides a characterization of the radial and tangential neutron radiography beamlines at the Tehran research reactor. This work includes determination of the facilities category according to the American Society for Testing and Materials (ASTM) standards, and also uses the gold foils to determine the neutron beam flux. The radial neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. The tangential beam is a Category IV neutron radiography facility. Gold foil activation experiments show that the measured neutron flux for radial beamline with length-to-diameter ratio (L/D) =150 is 6.1× 106 n cm-2 s-1 and for tangential beamline with (L/D)=115 is 2.4× 104 n cm-2 s-1.

  8. New Developments at the ALS High-Pressure Beamline 12.2.2

    NASA Astrophysics Data System (ADS)

    Kunz, M.; MacDowell, A. A.; Yan, J.; Beavers, C. C. G.; Doran, A.; Williams, Q. C.

    2015-12-01

    ALS-beamline 12.2.2 celebrated its 10-year anniversary as a beamline collaboratively operated by the ALS and COMPRES. The anniversary coincided with a major rebuild and expansion of its capabilities for in-situ high-pressure and high-temperature X-ray diffraction. A rebuild of the 12.2.2 laser heating table was completed and commissioned in the past year. The new design relies on a vertically positioned small (~1m x 1m) breadboard that is placed perpendicularly to the incident X-ray beam next to the sample stage. Upstream and downstream viewing-, IR-laser and pyrometry-optics are mounted on opposite surfaces of the breadboard. On-line ruby fluorescence optics including a blue diode laser are also mounted on the upstream surface. The much reduced dimensions of the design lead to smaller mechanical lever arms and thus to a significant suppression of vibrations. This was confirmed in the commissioning phase with high-quality optical images (~ 2 μm resolution) as well as a very stable hotspot in DAC samples. A further optimized pyrometry code was cross-calibrated against thermal expansions of Pt and Ta, and was found to agree with those values within experimental uncertainties. Pyrometry relies on imaging the full hot-spot onto a spectrometer and combining the thus obtained average temperature with an intensity map collected at 700 nm to produce a temperature contour map of the entire sample chamber. Besides axial laser heating, double-sided radial laser heating is also being developed and commissioned. The X-ray source of 12.2.2 makes it an ideal station to focus on high-pressure single crystal diffraction. The present set-up operates parasitically with a single rotation axis on the in-situ laser heating powder diffraction sample stage in concert with a fast (15 fps) amorphous silicon/diode array detector. Although this set-up poses limitations with respect to accessible reciprocal space, high pressure single crystal structure solution and refinements of organic compounds incl. anisotropic displacement parameters have been demonstrated. Imminent development plans aim for the installation of a rugged multi-axis diffractometer on its own dedicated end-station in combination with with a compact fast detector on the 2-theta arm. This will be capable of carrying state of the art wide opening angle DAC's (BX90).

  9. Aligning Plasma-Arc Welding Oscillations

    NASA Technical Reports Server (NTRS)

    Norris, Jeff; Fairley, Mike

    1989-01-01

    Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.

  10. 40 CFR 63.7525 - What are my monitoring, installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... audit, and an annual zero alignment audit of each COMS. (6) You must operate and maintain each COMS... assessment, a quarterly performance audit, or an annual zero alignment audit. (7) You must determine and... control activities (including, as applicable, calibration checks and required zero and span adjustments...

  11. 40 CFR 63.7525 - What are my monitoring, installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... audit, and an annual zero alignment audit of each COMS. (6) You must operate and maintain each COMS... assessment, a quarterly performance audit, or an annual zero alignment audit. (7) You must determine and... control activities (including, as applicable, calibration checks and required zero and span adjustments...

  12. Design of the soft x-ray tomography beamline at Taiwan photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yi-Jr, E-mail: su.yj@nsrrc.org.tw; Fu, Huang-Wen; Chung, Shih-Chun

    2016-07-27

    The optical design of the varied-line-spacing plane-grating monochromator for transmission full-field imaging of frozen-hydrated biological samples at NSRRC is presented. This monochromator consists of a plane mirror and three interchangeable gratings with groove densities 600, 1200 and 2400 l/mm to cover the energy range 260 – 2600 eV. The groove parameters of the varied-line-spacing plane gratings are designed to minimize the effect of coma and spherical aberration to maintain the exit slit in focus for any value of incident angle. All parameters of optical components at the beamline are verified with a ray-tracing method. In the beamline design, the calculatedmore » results from the ray-tracing codes and the expected performances are discussed.« less

  13. Energy resolution of pulsed neutron beam provided by the ANNRI beamline at the J-PARC/MLF

    NASA Astrophysics Data System (ADS)

    Kino, K.; Furusaka, M.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Furutaka, K.; Goko, S.; Hara, K. Y.; Harada, H.; Harada, M.; Hirose, K.; Kai, T.; Kimura, A.; Kin, T.; Kitatani, F.; Koizumi, M.; Maekawa, F.; Meigo, S.; Nakamura, S.; Ooi, M.; Ohta, M.; Oshima, M.; Toh, Y.; Igashira, M.; Katabuchi, T.; Mizumoto, M.; Hori, J.

    2014-02-01

    We studied the energy resolution of the pulsed neutron beam of the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) at the Japan Proton Accelerator Research Complex/Materials and Life Science Experimental Facility (J-PARC/MLF). A simulation in the energy region from 0.7 meV to 1 MeV was performed and measurements were made at thermal (0.76-62 meV) and epithermal energies (4.8-410 eV). The neutron energy resolution of ANNRI determined by the time-of-flight technique depends on the time structure of the neutron pulse. We obtained the neutron energy resolution as a function of the neutron energy by the simulation in the two operation modes of the neutron source: double- and single-bunch modes. In double-bunch mode, the resolution deteriorates above about 10 eV because the time structure of the neutron pulse splits into two peaks. The time structures at 13 energy points from measurements in the thermal energy region agree with those of the simulation. In the epithermal energy region, the time structures at 17 energy points were obtained from measurements and agree with those of the simulation. The FWHM values of the time structures by the simulation and measurements were found to be almost consistent. In the single-bunch mode, the energy resolution is better than about 1% between 1 meV and 10 keV at a neutron source operation of 17.5 kW. These results confirm the energy resolution of the pulsed neutron beam produced by the ANNRI beamline.

  14. Precision aligned split V-block

    DOEpatents

    George, Irwin S.

    1984-01-01

    A precision aligned split V-block for holding a workpiece during a milling operation having an expandable frame for allowing various sized workpieces to be accommodated, is easily secured directly to the mill table and having key lugs in one base of the split V-block that assures constant alignment.

  15. Introducing difference recurrence relations for faster semi-global alignment of long sequences.

    PubMed

    Suzuki, Hajime; Kasahara, Masahiro

    2018-02-19

    The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .

  16. Automation Improvements for Synchrotron Based Small Angle Scattering Using an Inexpensive Robotics Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintana, John P.

    This paper reports on the progress toward creating semi-autonomous motion control platforms for beamline applications using the iRobot Create registered platform. The goal is to create beamline research instrumentation where the motion paths are based on the local environment rather than position commanded from a control system, have low integration costs and also be scalable and easily maintainable.

  17. An Updated AP2 Beamline TURTLE Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gormley, M.; O'Day, S.

    1991-08-23

    This note describes a TURTLE model of the AP2 beamline. This model was created by D. Johnson and improved by J. Hangst. The authors of this note have made additional improvements which reflect recent element and magnet setting changes. The magnet characteristics measurements and survey data compiled to update the model will be presented. A printout of the actual TURTLE deck may be found in appendix A.

  18. Improvement of the efficient referencing and sample positioning system for micro focused synchrotron X-ray techniques

    NASA Astrophysics Data System (ADS)

    Spangenberg, T.; Göttlicher, J.; Steininger, R.

    2016-05-01

    An efficient referencing and sample positioning system is a basic tool for a micro focus beamline at a synchrotron. The seven years ago introduced command line based system was upgraded at SUL-X beamline at ANKA [1]. A new combination of current server client techniques offers direct control and facilitates unexperienced users the handling of this frequently used tool.

  19. SU-E-T-130: Are Proton Gantries Needed? An Analysis of 4332 Patient Proton Gantry Treatment Plans From the Past 10 Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Lu, H; Flanz, J

    2015-06-15

    Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/downmore » for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as gantries.« less

  20. Chunk Alignment for Corpus-Based Machine Translation

    ERIC Educational Resources Information Center

    Kim, Jae Dong

    2011-01-01

    Since sub-sentential alignment is critically important to the translation quality of an Example-Based Machine Translation (EBMT) system, which operates by finding and combining phrase-level matches against the training examples, we developed a new alignment algorithm for the purpose of improving the EBMT system's performance. This new…

  1. Does low-constraint mobile bearing knee prosthesis give satisfactory results for severe coronal deformities? A five to twelve year follow up study.

    PubMed

    Czekaj, Jaroslaw; Fary, Camdon; Gaillard, Thierry; Lustig, Sebastien

    2017-07-01

    Severe varus and valgus knee deformities traditionally are replaced with constrained implants, with a number of disadvantages. We present our results in this challenging group using a low constraint deep-dish mobile bearing implant design. One hundred fifty-four patients (170 arthroplasties) who underwent primary TKA using a deep-dish, mobile bearing posterior-stabilized implant for severe varus (HKA < 170°) or valgus (HKA > 190°) deformity between 2004 and 2009 were evaluated at a mean of 6.6 years post-operatively (minimum of 5 years). Alignment improved from a pre-operative mean (±SD) varus deformity of 167.4° (±2.6°) and a mean (±SD) valgus deformity of 194.1° (±4.0°) to an overall mean (±SD) post-operative mechanical alignment of 178.6° (±3.2°). Twenty-three patients had post-operative varus alignment, five patients had post-operative valgus alignment and 134 knees were in neutral alignment (within 3° spread). Clinical scores at final follow-up were excellent (IKS score 93.8 (±7.4) and function score 82.4 (±20.2)). Three patients were re-operated upon: one deep infection, one periprosthetic fracture and one revision at 144 months for aseptic loosening of the femoral component. No patient was revised for instability or implant failure. The survival rate at five years was 99.4% and at ten years 98.6%. Satisfactory outcomes can be achieved in patients with substantial varus or valgus deformities using low constraint deep-dish mobile bearing implant, standard approach and appropriate soft tissue releases.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV,more » respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.« less

  3. Diaphragm flange and method for lowering particle beam impedance at connected beam tubes of a particle accelerator

    DOEpatents

    Biallas, George Herman

    2017-07-04

    A diaphragm flange for connecting the tubes in a particle accelerator while minimizing beamline impedance. The diaphragm flange includes an outer flange and a thin diaphragm integral with the outer flange. Bolt holes in the outer flange provide a means for bolting the diaphragm flange to an adjacent flange or beam tube having a mating bolt-hole pattern. The diaphragm flange includes a first surface for connection to the tube of a particle accelerator beamline and a second surface for connection to a CF flange. The second surface includes a recessed surface therein and a knife-edge on the recessed surface. The diaphragm includes a thickness that enables flexing of the integral diaphragm during assembly of beamline components. The knife-edge enables compression of a soft metal gasket to provide a leak-tight seal.

  4. National Ignition Facility Comes to Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E

    2003-09-01

    First conceived of nearly 15 years ago, the National Ignition Facility (NIF) is up and running and successful beyond almost everyone's expectations. During commissioning of the first four laser beams, the laser system met design specifications for everything from beam quality to energy output. NIF will eventually have 192 laser beams. Yet with just 2% of its final beam configuration complete, NIF has already produced the highest energy laser shots in the world. In July, laser shots in the infrared wavelength using four beams produced a total of 26.5 kilojoules of energy per beam, not only meeting NIF's design energymore » requirement of 20 kilojoules per beam but also exceeding the energy of any other infrared laser beamline. In another campaign, NIF produced over 11.4 kilojoules of energy when the infrared light was converted to green light. An earlier performance campaign of laser light that had been frequency converted from infrared to ultraviolet really proved NIF's mettle. Over 10.4 kilojoules of ultraviolet energy were produced in about 4 billionths of a second. If all 192 beamlines were to operate at these levels, over 2 megajoules of energy would result. That much energy for the pulse duration of several nanoseconds is about 500 trillion watts of power, more than 500 times the US peak generating power.« less

  5. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    NASA Astrophysics Data System (ADS)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  6. System design considerations for a production-grade, ESR-based x-ray lithography beamline

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Melore, Dan; Cerrina, Franco; Cole, Richard K.

    1991-08-01

    As electron storage ring (ESR) based x-ray lithography technology moves closer to becoming an industrial reality, more and more attention has been devoted to studying problem areas related to its application in the production environment. A principle component is the x-ray lithography beamline (XLBL) and its associated design requirements. XLBL, an x-ray radiation transport system, is one of the three major subunits in the ESR-based x-ray lithography system (XLS) and has a pivotal role in defining performance characteristics of the entire XLS. Its major functions are to transport the synchrotron orbital radiation (SOR) to the lithography target area with defined efficiency and to modify SOR into the spectral distribution defined by the lithography process window. These functions must be performed reliably in order to satisfy the required high production rate and ensure 0.25 micron resolution lithography conditions. In this paper the authors attempt to answer some specific questions that arise during the formulation of an XLBL system design. Three principle issues that are essential to formulating a design are (1) Radiation transport efficiency, (2) X-ray optical configurations in the beamline, (3) Beamline system configurations. Some practical solutions to thee problem areas are presented, and the effects of these parameters on lithography production rate are examined.

  7. Single-crystal Raman spectroscopy and X-ray crystallography at beamline X26-C of the NSLS

    PubMed Central

    Stoner-Ma, Deborah; Skinner, John M.; Schneider, Dieter K.; Cowan, Matt; Sweet, Robert M.; Orville, Allen M.

    2011-01-01

    Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of ‘mystery density’, i.e. ambiguous or unknown features within the electron density maps, especially at ∼2 Å resolutions typical of most macromolecular structures. Beamline X26-C at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), provides researchers with the opportunity to not only determine the atomic structure of their samples but also to explore the electronic and vibrational characteristics of the sample before, during and after X-ray diffraction data collection. When samples are maintained under cryo-conditions, an opportunity to promote and follow photochemical reactions in situ as a function of X-ray exposure is also provided. Plans are in place to further expand the capabilities at beamline X26-C and to develop beamlines at NSLS-II, currently under construction at BNL, which will provide users access to a wide array of complementary spectroscopic methods in addition to high-quality X-ray diffraction data. PMID:21169688

  8. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    PubMed Central

    Alcock, Simon G.; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal; Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts. PMID:25537582

  9. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    PubMed

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  10. FinEstBeaMS - A wide-range Finnish-Estonian Beamline for Materials Science at the 1.5 GeV storage ring at the MAX IV Laboratory

    NASA Astrophysics Data System (ADS)

    Pärna, R.; Sankari, R.; Kukk, E.; Nõmmiste, E.; Valden, M.; Lastusaari, M.; Kooser, K.; Kokko, K.; Hirsimäki, M.; Urpelainen, S.; Turunen, P.; Kivimäki, A.; Pankratov, V.; Reisberg, L.; Hennies, F.; Tarawneh, H.; Nyholm, R.; Huttula, M.

    2017-07-01

    The FinEstBeaMS beamline is under construction at the 1.5 GeV storage ring of the MAX IV Laboratory at Lund, Sweden. It has been designed to cover an unusually wide energy range from ultraviolet (4.3 eV) to soft X-rays (1000 eV) but experiments will also be possible at the Mg and Al Kα energies. Instead of having two different insertion devices and optical schemes for low and high photon energy regions, we have based our design on a single long-period, elliptically polarizing undulator and a plane grating monochromator. This solution will provide very good conditions for planned experiments in the whole photon energy region. The beamline will have two branches: one will mainly be used to investigate free atoms, molecules and clusters with photoelectron/photoion coincidence spectroscopy as well as solids with photoluminescence spectroscopy whereas the other one will be dedicated to ultra-high vacuum studies of surfaces and interfaces, utilizing X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. This paper focuses on the optical design of the beamline and general design concepts of the gas phase and solid state end stations.

  11. SIBYLS - A SAXS and protein crystallography beamline at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trame, Christine; MacDowell, Alastair A.; Celestre, Richard S.

    2003-08-22

    The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{Delta}E {approx} 1/110). Flux rates with Si(111) crystals for PX are measured as 2 x 10{sup 11} hv/sec/400 mA through a 100 {micro}m pinhole at 12.4 KeV. For SAXS the flux is up to 3 x 10{sup 13} photons/sec at 10 KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less

  12. Beamlines of the Biomedical Imaging and Therapy Facility at the Canadian Light Source - Part 2

    NASA Astrophysics Data System (ADS)

    Wysokinski, T. W.; Chapman, D.; Adams, G.; Renier, M.; Suortti, P.; Thomlinson, W.

    2013-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides a world class facility with unique synchrotron-specific imaging and therapy capabilities. This paper describes Insertion Device (ID) beamline 05ID-2 with the beam terminated in the first experimental hutch: POE-2. The experimental methods available in POE-2 include: Microbeam Radiation Therapy (MRT), Synchrotron Stereotactic Radiation Therapy (SSRT) and absorption imaging (projection and Computed Tomography (CT)). The source for the ID beamline is a multi-pole superconductive 4.3 T wiggler, which can generate ~30 kW of radiative power and deliver dose as high as 3000 Gy/s required for MRT program. The optics in POE-1 hutch prepares either monochromatic or filtered white beam that is used in POE-2. The Double Crystal (DC), bent Laue monochromator will prepare a beam over 10 cm wide at sample point, while spanning an energy range appropriate for imaging studies of animals (20-100+ keV). The experimental hutch will have a flexible positioning system that can handle subjects up to 120 kg. Several different cameras will be available with resolutions ranging from 4 μm to 150 μm. The latest update on the status of 05B1-1 bending magnet (BM) beamline, described in Part 1 [1], is also included.

  13. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science andmore » Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.« less

  14. Automatic joint alignment measurements in pre- and post-operative long leg standing radiographs.

    PubMed

    Goossen, A; Weber, G M; Dries, S P M

    2012-01-01

    For diagnosis or treatment assessment of knee joint osteoarthritis it is required to measure bone morphometry from radiographic images. We propose a method for automatic measurement of joint alignment from pre-operative as well as post-operative radiographs. In a two step approach we first detect and segment any implants or other artificial objects within the image. We exploit physical characteristics and avoid prior shape information to cope with the vast amount of implant types. Subsequently, we exploit the implant delineations to adapt the initialization and adaptation phase of a dedicated bone segmentation scheme using deformable template models. Implant and bone contours are fused to derive the final joint segmentation and thus the alignment measurements. We evaluated our method on clinical long leg radiographs and compared both the initialization rate, corresponding to the number of images successfully processed by the proposed algorithm, and the accuracy of the alignment measurement. Ground truth has been generated by an experienced orthopedic surgeon. For comparison a second reader reevaluated the measurements. Experiments on two sets of 70 and 120 digital radiographs show that 92% of the joints could be processed automatically and the derived measurements of the automatic method are comparable to a human reader for pre-operative as well as post-operative images with a typical error of 0.7° and correlations of r = 0.82 to r = 0.99 with the ground truth. The proposed method allows deriving objective measures of joint alignment from clinical radiographs. Its accuracy and precision are on par with a human reader for all evaluated measurements.

  15. Determining the Cost-Savings Threshold and Alignment Accuracy of Patient-Specific Instrumentation in Total Ankle Replacements.

    PubMed

    Hamid, Kamran S; Matson, Andrew P; Nwachukwu, Benedict U; Scott, Daniel J; Mather, Richard C; DeOrio, James K

    2017-01-01

    Traditional intraoperative referencing for total ankle replacements (TARs) involves multiple steps and fluoroscopic guidance to determine mechanical alignment. Recent adoption of patient-specific instrumentation (PSI) allows for referencing to be determined preoperatively, resulting in less steps and potentially decreased operative time. We hypothesized that usage of PSI would result in decreased operating room time that would offset the additional cost of PSI compared with standard referencing (SR). In addition, we aimed to compare postoperative radiographic alignment between PSI and SR. Between August 2014 and September 2015, 87 patients undergoing TAR were enrolled in a prospectively collected TAR database. Patients were divided into cohorts based on PSI vs SR, and operative times were reviewed. Radiographic alignment parameters were retrospectively measured at 6 weeks postoperatively. Time-driven activity-based costing (TDABC) was used to derive direct costs. Cost vs operative time-savings were examined via 2-way sensitivity analysis to determine cost-saving thresholds for PSI applicable to a range of institution types. Cost-saving thresholds defined the price of PSI below which PSI would be cost-saving. A total of 35 PSI and 52 SR cases were evaluated with no significant differences identified in patient characteristics. Operative time from incision to completion of casting in cases without adjunct procedures was 127 minutes with PSI and 161 minutes with SR ( P < .05). PSI demonstrated similar postoperative accuracy to SR in coronal tibial-plafond alignment (1.1 vs 0.3 degrees varus, P = .06), tibial-plafond alignment (0.3 ± 2.1 vs 1.1 ± 2.1 degrees varus, P = .06), and tibial component sagittal alignment (0.7 vs 0.9 degrees plantarflexion, P = .14). The TDABC method estimated a PSI cost-savings threshold range at our institution of $863 below which PSI pricing would provide net cost-savings. Two-way sensitivity analysis generated a globally applicable cost-savings threshold model based on institution-specific costs and surgeon-specific time-savings. This study demonstrated equivalent postoperative TAR alignment with PSI and SR referencing systems but with a significant decrease in operative time with PSI. Based on TDABC and associated sensitivity analysis, a cost-savings threshold of $863 was identified for PSI pricing at our institution below which PSI was less costly than SR. Similar internal cost accounting may benefit health care systems for identifying cost drivers and obtaining leverage during price negotiations. Level III, therapeutic study.

  16. Low-energy ion beamline scattering apparatus for surface science investigations

    NASA Astrophysics Data System (ADS)

    Gordon, M. J.; Giapis, K. P.

    2005-08-01

    We report on the design, construction, and performance of a high current (monolayers/s), mass-filtered ion beamline system for surface scattering studies using inert and reactive species at collision energies below 1500 eV. The system combines a high-density inductively coupled plasma ion source, high-voltage floating beam transport line with magnet mass-filter and neutral stripping, decelerator, and broad based detection capabilities (ions and neutrals in both mass and energy) for products leaving the target surface. The entire system was designed from the ground up to be a robust platform to study ion-surface interactions from a more global perspective, i.e., high fluxes (>100μA/cm2) of a single ion species at low, tunable energy (50-1400±5eV full width half maximum) can be delivered to a grounded target under ultrahigh vacuum conditions. The high current at low energy problem is solved using an accel-decel transport scheme where ions are created at the desired collision energy in the plasma source, extracted and accelerated to high transport energy (20 keV to fight space charge repulsion), and then decelerated back down to their original creation potential right before impacting the grounded target. Scattered species and those originating from the surface are directly analyzed in energy and mass using a triply pumped, hybrid detector composed of an electron impact ionizer, hemispherical electrostatic sector, and rf/dc quadrupole in series. With such a system, the collision kinematics, charge exchange, and chemistry occurring on the target surface can be separated by fully analyzing the scattered product flux. Key design aspects of the plasma source, beamline, and detection system are emphasized here to highlight how to work around physical limitations associated with high beam flux at low energy, pumping requirements, beam focusing, and scattered product analysis. Operational details of the beamline are discussed from the perspective of available beam current, mass resolution, projectile energy spread, and energy tunability. As well, performance of the overall system is demonstrated through three proof-of-concept examples: (1) elastic binary collisions at low energy, (2) core-level charge exchange reactions involving Ne+20 with Mg /Al/Si/P targets, and (3) reactive scattering of CF2+/CF3+ off Si. These studies clearly demonstrate why low, tunable incident energy, as well as mass and energy filtering of products leaving the target surface is advantageous and often essential for studies of inelastic energy losses, hard-collision charge exchange, and chemical reactions that occur during ion-surface scattering.

  17. Initial experience with custom-fit total knee replacement: intra-operative events and long-leg coronal alignment.

    PubMed

    Spencer, Brian A; Mont, Michael A; McGrath, Mike S; Boyd, Bradley; Mitrick, Michael F

    2009-12-01

    New technology using magnetic resonance imaging (MRI) allows the surgeon to place total knee replacement components into each patient's pre-arthritic natural alignment. This study evaluated the initial intra-operative experience using this technique. Twenty-one patients had a sagittal MRI of their arthritic knee to determine component placement for a total knee replacement. Cutting guides were machined to control all intra-operative cuts. Intra-operative events were recorded and these knees were compared to a matching cohort of the senior surgeon's previous 30 conventional total knee replacements. Post-operative scanograms were obtained from each patient and coronal alignment was compared to previous studies using conventional and computer-assisted techniques. There were no intra-operative or acute post-operative complications. There were no differences in blood loss and there was a mean decrease in operative time of 14% compared to a cohort of patients with conventional knee replacements. The average deviation from the mechanical axis was 1.2 degrees of varus, which was comparable to previously reported conventional and computer-assisted techniques. Custom-fit total knee replacement appeared to be a safe procedure for uncomplicated cases of osteoarthritis.

  18. Operator Performance Support System (OPSS)

    DTIC Science & Technology

    1992-02-01

    both the military and the industry. The OPSS will propose practical application’ in how to more closely align the relationships between technical...industry. The OPSS will propose practical applications in how to more closely align the relationships between technical knowledge and equipment operator...commercial programs provide flexibility to suppori existing and futurc kourscware and "hardware enhancements. In the development process of the OPSS

  19. From the meso to the nanoscopic scale through synchrotron imaging approaches: advances and near future at the NSLS-II SRX beamline

    NASA Astrophysics Data System (ADS)

    De Andrade, V.; Thieme, J.; Ganne, J.; Beck, P.; Fayard, B.; Salomé, M.

    2012-12-01

    Earth and planetary samples are commonly complex polycrystalline systems with various scale-level chemical and structural heterogeneities. They can present various crystallinity states, fine mechanical mixings of phases within a micrometer cube, micro-domains differentially affected by diverse geodynamic events. During the last decade, many questions in Earth Sciences were addressed with synchrotron techniques. Indeed, these big instruments now worldwide spreads are well equipped for unraveling the wealth of information stored in geomaterials. A large spectrum of cutting edge techniques (enabling phase identification, 3D chemical imaging, elemental speciation determination…) is available with mm to ~10 nm large X-ray beams, with sensitivity in some cases below the ppm. In this presentation, we will first underscore the predominant contribution of a newly developed synchrotron imaging technique[1] to metamorphic rocks studies. The technique allows to perform hard X-rays full-field imaging spectroscopy with high spectral and spatial resolution (<1 μm). It is currently the unique method for providing mega-pixel redox maps with a large field of view (≈1 mm2), while conserving a sub-micrometer resolution. This approach is also revealed to be a powerful tool for local identification of phases in finely divided materials like clays. The potential of these high resolution XANES images is demonstrated through two studies concerning the aqueous alteration of CI and CM meteorites[2], and a Palaeoproterozoic greenstone belt from the West Africa Craton[3]. Here, the conjoint use of redox and EPMA X-ray fluorescence maps led to the first discovery of high pressure low temperature (blueschist) metamorphic conditions preserved within greenstone belts. These results suggest the existence of modern destructive plate boundaries at 2.15 Ga. At last, we will give an overview of the Submicron Resolution X-ray spectroscopy beamline[4] (SRX) that will be doubtless a very powerful instrument for Earth Sciences. SRX is one of the first 6 project beamlines of the new National Synchrotron Light Source II (NSLS-II). Operating from 4.65 to 28 keV, SRX will comprise a high flux station and a nanoprobe (switchable within a couple of minutes), both operating with a world leading flux. SRX will start early science experiments in spring 2014. References [1] De Andrade, V., Susini, et al., "Submicrometer Hyperspectral X-ray Imaging of Heterogeneous Rocks and Geomaterials: Applications at the Fe K-Edge," Analytical Chemistry, 83(11), 4220-4227 (2011). [2] Beck P., De Andrade V., et al., "The redox state of iron in the matrix of CI, CM and metamorphosed CM chondrites by XANES spectroscopy". In press GCA. [3] Ganne J., De Andrade, et al., "Modern-style plate subduction and HP-LT rocks preserved in the Palaeoproterozoic West African Craton," Nature Geosciences, 5, 60-65, (2012). [4] De Andrade V., Thieme, J, et al., "The sub-micron resolution X-ray spectroscopy beamline at NSLS-II", Nuclear Instruments and Methods in Physics Research Section A, 649(1), 46-48 (2011).

  20. Automated data collection based on RoboDiff at the ESRF beamline MASSIF-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurizzo, Didier, E-mail: Didier.nurizzo@esrf.fr; Guichard, Nicolas; McSweeney, Sean

    2016-07-27

    The European Synchrotron Radiation Facility has a long standing history in the automation of experiments in Macromolecular Crystallography. MASSIF-1 (Massively Automated Sample Screening and evaluation Integrated Facility), a beamline constructed as part of the ESRF Upgrade Phase I program, has been open to the external user community since July 2014 and offers a unique completely automated data collection service to both academic and industrial structural biologists.

  1. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.

  2. Chemical Crystallography at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Laura; Giordano, Nico; Teat, Simon

    Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.

  3. Chemical Crystallography at the Advanced Light Source

    DOE PAGES

    McCormick, Laura; Giordano, Nico; Teat, Simon; ...

    2017-12-18

    Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.

  4. Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale

    PubMed Central

    Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki

    2014-01-01

    A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910

  5. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  6. Interoperability and complementarity of simulation tools for beamline design in the OASYS environment

    NASA Astrophysics Data System (ADS)

    Rebuffi, Luca; Sanchez del Rio, Manuel

    2017-08-01

    In the next years most of the major synchrotron radiation facilities around the world will upgrade to 4th-generation Diffraction Limited Storage Rings using multi-bend-achromat technology. Moreover, several Free Electron Lasers are ready-to-go or in phase of completion. These events represent a huge challenge for the optics physicists responsible of designing and calculating optical systems capable to exploit the revolutionary characteristics of the new photon beams. Reliable and robust beamline design is nowadays based on sophisticated computer simulations only possible by lumping together different simulation tools. The OASYS (OrAnge SYnchrotron Suite) suite drives several simulation tools providing new mechanisms of interoperability and communication within the same software environment. OASYS has been successfully used during the conceptual design of many beamline and optical designs for the ESRF and Elettra- Sincrotrone Trieste upgrades. Some examples are presented showing comparisons and benchmarking of simulations against calculated and experimental data.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flechsig, U.; Follath, R.; Reiche, S.

    PHASE is a software tool for physical optics simulation based on the stationary phase approximation method. The code is under continuous development since about 20 years and has been used for instance for fundamental studies and ray tracing of various beamlines at the Swiss Light Source. Along with the planning for SwissFEL a new hard X-ray free electron laser under construction, new features have been added to permit practical performance predictions including diffraction effects which emerge with the fully coherent source. We present the application of the package on the example of the ARAMIS 1 beamline at SwissFEL. The X-raymore » pulse calculated with GENESIS and given as an electrical field distribution has been propagated through the beamline to the sample position. We demonstrate the new features of PHASE like the treatment of measured figure errors, apertures and coatings of the mirrors and the application of Fourier optics propagators for free space propagation.« less

  8. New Baseline Design of the ILC RTML System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Kapin, V. V.; Solyak, N.

    2012-05-01

    The new ILC baseline was proposed in 2009 (Strawman baseline - SB2009) to minimize cost of the machine and accommodate many changes made in the design of the accelerator systems. The biggest changes are made in the central area, where BDS, RTM L, DR, electron and positron sources are sharing the tunnels. A new layout of the compact DR and re-location of the electron and positron sources to the main tunnel requires a new lattice design for all beamlines in this area. The lattice design was coord inated between accelerator systems and Convention Facility and Siting (CFS) group to eliminatemore » conflicts between beamlines and satisfy construction requirements. In this paper we present a new design of the RTML electron and positron lattices in the centr al area and other modifications made in the RTML line to accommodate changes to the beamline layouts.« less

  9. 1993 CAT workshop on beamline optical designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following thesemore » presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.« less

  10. Aladdin: Transforming science at SRC

    NASA Astrophysics Data System (ADS)

    Bisognano, J.; Bissen, M.; Green, M.; Jacobs, K.; Moore, C.; Olson, E.; Severson, M.; Wehlitz, R.

    2011-09-01

    The Synchrotron Radiation Center (SRC) is dedicated to enabling of innovative research using IR, ultraviolet, and soft X-ray synchrotron radiation. It delivers beam time with high reliability (99%) and continues to improve the Aladdin storage ring complex. A lower emittance tuning has been commissioned to support a microfocus capability. SRC successfully installed an APPLE II undulator providing elliptically polarized light with lattice compensation for flexible scanning. Installation of a new IR beamline at SRC is providing synchrotron chemical imaging with unprecedented structural and chemical information, simultaneously. In addition, SRC has established a strong education and outreach program to bring the knowledge and power of light source science to a wider national community. It is moving forward into the future by developing a new micro focus beamline producing a diffraction-limited focus of about 500 nm at 22 eV, proposing an additional diffraction-limited chemical imaging beamline, and advancing the Wisconsin Free Electron Laser (WiFEL) concept.

  11. Performance of Saga-University Beamline with Planer Undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azuma, J.; Takahashi, K.; Kamada, M.

    2010-06-23

    A planer undulator consisted of 24 periods of an 85-mm length has been installed in a 2.7-m straight section of the SAGA-LS, in order to provide brilliant soft x-rays for advanced researches on nano-surfaces and interfaces at the Saga-university beamline BL13. The photon flux of 2x10{sup 11} photons/100 mA was obtained at 133 eV, and the available photon energy was beyond 800 eV using higher harmonics. The achieved resolving power of the varied-line-spacing (VLS) monochromator system was 8,670 at 130 eV with slits of 15 um. This agrees very well with the value of 8,790 expected from the ray-tracing calculation.more » The details in the performance tests will be reported, indicating the high performance of the beamline BL13 for photoelectron spectroscopy in the soft x-ray region.« less

  12. Phase space manipulation in high-brightness electron beams

    NASA Astrophysics Data System (ADS)

    Rihaoui, Marwan M.

    Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.

  13. Optical design and simulation of a new coherence beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.

    2017-08-01

    We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.

  14. 40 CFR 63.9632 - What are the installation, operation, and maintenance requirements for my monitoring equipment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... document is available on the EPA's Technology Transfer Network at http://www.epa.gov/ttn/emc/cem/tribo.pdf... alignment of each COMS. (3) You must operate and maintain each COMS according to § 63.8(e) and your quality... alignment audit. (4) You must determine and record the 6-minute average opacity for periods during which the...

  15. 40 CFR 63.9632 - What are the installation, operation, and maintenance requirements for my monitoring equipment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... document is available on the EPA's Technology Transfer Network at http://www.epa.gov/ttn/emc/cem/tribo.pdf... alignment of each COMS. (3) You must operate and maintain each COMS according to § 63.8(e) and your quality... alignment audit. (4) You must determine and record the 6-minute average opacity for periods during which the...

  16. 40 CFR 63.9632 - What are the installation, operation, and maintenance requirements for my monitoring equipment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... document is available on the EPA's Technology Transfer Network at http://www.epa.gov/ttn/emc/cem/tribo.pdf... alignment of each COMS. (3) You must operate and maintain each COMS according to § 63.8(e) and your quality... alignment audit. (4) You must determine and record the 6-minute average opacity for periods during which the...

  17. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA.

    PubMed

    Renson, Luc; Poilvache, Pascal; Van den Wyngaert, Hans

    2014-12-01

    Achieving accurate alignment in total knee arthroplasty (TKA) remains a concern. Patient-specific instrumentation (PSI) produced using preoperative 3D models was developed to offer surgeons a simplified, reliable, efficient and customised TKA procedure. In this prospective study, 60 patients underwent TKA with conventional instrumentation and 71 patients were operated on using PSI. The primary endpoint was surgical time. Secondary endpoints included operating room (OR) time, the number of instrument trays used and postoperative radiographic limb alignment. Compared to conventional instrumentation, PSI significantly reduced total surgical time by 8.9 ± 3.3 min (p=0.038), OR time by 8.6 ± 4.2 min (p=0.043), and the number of instrument trays by six trays (p<0.001). Mechanical axis malalignment of the lower limb of >3° was observed in 13% of PSI patients versus 29% with conventional instrumentation (p=0.043). PSI predicted the size of the femoral and tibial components actually used in 85.9% and 78.9% of cases, respectively. PSI improves alignment, surgical and OR time, reduces the number of instruments trays used compared to conventional instrumentation in patients undergoing TKA and results in fewer outliers in overall mechanical alignment in the coronal plane. Prospective comparative therapeutic study. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Practical, computer-aided registration of multiple, three-dimensional, magnetic-resonance observations of the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diegert, C.; Sanders, J.A.; Orrison, W.W. Jr.

    1992-12-31

    Researchers working with MR observations generally agree that far more information is available in a volume (3D) observation than is considered for diagnosis. The key to the new alignment method is in basing it on available information on surfaces. Using the skin surface is effective a robust algorithm can reliably extract this surface from almost any scan of the head, and a human operator`s exquisite sensitivity to facial features is allows him to manually align skin surfaces with precision. Following the definitions, we report on a preliminary experiment where we align three MR observations taken during a single MR examination,more » each weighting arterial, venous, and tissue features. When accurately aligned, a neurosurgeon can use these features as anatomical landmarks for planning and executing interventional procedures.« less

  19. Structure of the cyanobactin oxidase ThcOx from Cyanothece sp. PCC 7425, the first structure to be solved at Diamond Light Source beamline I23 by means of S-SAD.

    PubMed

    Bent, Andrew F; Mann, Greg; Houssen, Wael E; Mykhaylyk, Vitaliy; Duman, Ramona; Thomas, Louise; Jaspars, Marcel; Wagner, Armin; Naismith, James H

    2016-11-01

    Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize. Phasing of structures by measuring the anomalous diffraction from S atoms could in theory be almost universal since almost all proteins contain methionine or cysteine. Indeed, many structures have been solved by the so-called native sulfur single-wavelength anomalous diffraction (S-SAD) phasing method. However, the anomalous effect is weak at the wavelengths where data are normally recorded (between 1 and 2 Å) and this limits the potential of this method to well diffracting crystals. Longer wavelengths increase the strength of the anomalous signal but at the cost of increasing air absorption and scatter, which degrade the precision of the anomalous measurement, consequently hindering phase determination. A new instrument, the long-wavelength beamline I23 at Diamond Light Source, was designed to work at significantly longer wavelengths compared with standard synchrotron beamlines in order to open up the native S-SAD method to projects of increasing complexity. Here, the first novel structure, that of the oxidase domain involved in the production of the natural product patellamide, solved on this beamline is reported using data collected to a resolution of 3.15 Å at a wavelength of 3.1 Å. The oxidase is an example of a protein that does not crystallize as the selenium variant and for which no suitable homology model for molecular replacement was available. Initial attempts collecting anomalous diffraction data for native sulfur phasing on a standard macromolecular crystallography beamline using a wavelength of 1.77 Å did not yield a structure. The new beamline thus has the potential to facilitate structure determination by native S-SAD phasing for what would previously have been regarded as very challenging cases with modestly diffracting crystals and low sulfur content.

  20. Improving Robotic Operator Performance Using Augmented Reality

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Bowen, Charles K.; Pace, John W.

    2007-01-01

    The Special Purpose Dexterous Manipulator (SPDM) is a two-armed robot that functions as an extension to the end effector of the Space Station Robotics Manipulator System (SSRMS), currently in use on the International Space Station (ISS). Crew training for the SPDM is accomplished using a robotic hardware simulator, which performs most of SPDM functions under normal static Earth gravitational forces. Both the simulator and SPDM are controlled from a standard robotic workstation using a laptop for the user interface and three monitors for camera views. Most operations anticipated for the SPDM involve the manipulation, insertion, and removal of any of several types of Orbital Replaceable Unit (ORU), modules which control various ISS functions. Alignment tolerances for insertion of the ORU into its receptacle are 0.25 inch and 0.5 degree from nominal values. The pre-insertion alignment task must be performed within these tolerances by using available video camera views of the intrinsic features of the ORU and receptacle, without special registration markings. Since optimum camera views may not be available, and dynamic orbital lighting conditions may limit periods of viewing, a successful ORU insertion operation may require an extended period of time. This study explored the feasibility of using augmented reality (AR) to assist SPDM operations. Geometric graphical symbols were overlaid on one of the workstation monitors to afford cues to assist the operator in attaining adequate pre-insertion ORU alignment. Twelve skilled subjects performed eight ORU insertion tasks using the simulator with and without the AR symbols in a repeated measures experimental design. Results indicated that using the AR symbols reduced pre-insertion alignment error for all subjects and reduced the time to complete pre-insertion alignment for most subjects.

  1. Self-aligning biaxial load frame

    DOEpatents

    Ward, M.B.; Epstein, J.S.; Lloyd, W.R.

    1994-01-18

    An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.

  2. Self-aligning biaxial load frame

    DOEpatents

    Ward, Michael B.; Epstein, Jonathan S.; Lloyd, W. Randolph

    1994-01-01

    An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.

  3. Beamline front end for in-vacuum short period undulator at the photon factory storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyauchi, Hiroshi, E-mail: hiroshi.miyauchi@kek.jp; Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI; Tahara, Toshihiro, E-mail: ttahara@post.kek.jp

    The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum short period undulators. The first to fourth short period undulators SGU#17, SGU#03, SGU#01 and SGU#15 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006, 2009 and 2013, respectively. The beamline front end for SGU#15 is described in this paper.

  4. Induction Linacs and Free Electron Laser Amplifiers

    DTIC Science & Technology

    1986-03-20

    accelerated and the effects of space - charge force is minimized. EMnTANCE-PRESERVING BEAMLINE The beamline (Fig. 5) is designed to preserve the good beam...electrons and pushes them right out of the way leaving a bare ion cloud. With relativistic beams in vacuum, their space charge defocusing is offset by the...suspect, on why charged particle beams cannot be used in space . Now it is a fairly straight- forward extrapolation, already mentioned in Lou Marguet’s

  5. Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography.

    PubMed

    Doutch, James; Hough, Michael A; Hasnain, S Samar; Strange, Richard W

    2012-01-01

    The sulfur SAD phasing method allows the determination of protein structures de novo without reference to derivatives such as Se-methionine. The feasibility for routine automated sulfur SAD phasing using a number of current protein crystallography beamlines at several synchrotrons was examined using crystals of trimeric Achromobacter cycloclastes nitrite reductase (AcNiR), which contains a near average proportion of sulfur-containing residues and two Cu atoms per subunit. Experiments using X-ray wavelengths in the range 1.9-2.4 Å show that we are not yet at the level where sulfur SAD is routinely successful for automated structure solution and model building using existing beamlines and current software tools. On the other hand, experiments using the shortest X-ray wavelengths available on existing beamlines could be routinely exploited to solve and produce unbiased structural models using the similarly weak anomalous scattering signals from the intrinsic metal atoms in proteins. The comparison of long-wavelength phasing (the Bijvoet ratio for nine S atoms and two Cu atoms is ~1.25% at ~2 Å) and copper phasing (the Bijvoet ratio for two Cu atoms is 0.81% at ~0.75 Å) for AcNiR suggests that lower data multiplicity than is currently required for success should in general be possible for sulfur phasing if appropriate improvements to beamlines and data collection strategies can be implemented.

  6. Update on EUV radiometry at PTB

    NASA Astrophysics Data System (ADS)

    Laubis, Christian; Barboutis, Annett; Buchholz, Christian; Fischer, Andreas; Haase, Anton; Knorr, Florian; Mentzel, Heiko; Puls, Jana; Schönstedt, Anja; Sintschuk, Michael; Soltwisch, Victor; Stadelhoff, Christian; Scholze, Frank

    2016-03-01

    The development of technology infrastructure for EUV Lithography (EUVL) still requires higher levels of technology readiness in many fields. A large number of new materials will need to be introduced. For example, development of EUV compatible pellicles to adopt an approved method from optical lithography for EUVL needs completely new thin membranes which have not been available before. To support these developments, PTB with its decades of experience [1] in EUV metrology [2] provides a wide range of actinic and non actinic measurements at in-band EUV wavelengths as well as out of band. Two dedicated, complimentary EUV beamlines [3] are available for radiometric [4,5] characterizations benefiting from small divergence or from adjustable spot size respectively. The wavelength range covered reaches from below 1 nm to 45 nm [6] for the EUV beamlines [7] to longer wavelengths if in addition the VUV beamline is employed. The standard spot size is 1 mm by 1 mm with an option to go as low as 0.1 mm to 0.1 mm. A separate beamline offers an exposure setup. Exposure power levels of 20 W/cm2 have been employed in the past, lower fluencies are available by attenuation or out of focus exposure. Owing to a differential pumping stage, the sample can be held under defined gas conditions during exposure. We present an updated overview on our instrumentation and analysis capabilities for EUV metrology and provide data for illustration.

  7. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments.

    PubMed

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E; Kieffer, Jérôme; Bowler, Matthew W; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam

    2015-01-01

    Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.

  8. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments

    PubMed Central

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme; Bowler, Matthew W.; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam

    2015-01-01

    Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21. PMID:25615862

  9. Design and optimization of a compact laser-driven proton beamline.

    PubMed

    Scisciò, M; Migliorati, M; Palumbo, L; Antici, P

    2018-04-19

    Laser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 10 18  W·cm -2 ), represent a complementary if not outperforming source compared to conventional accelerators, due  to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread. In this paper, we report on beam dynamics simulations aiming at optimizing a laser-driven beamline - i.e. a laser-based proton source coupled to conventional magnetic beam manipulation devices - producing protons with a reduced energy spread, usable for applications. The energy range of investigation goes from 2 to 20 MeV, i.e. the typical proton energies that can be routinely obtained using commercial TW-power class laser systems. Our beamline design is capable of reducing the energy spread below 20%, still keeping the overall transmission efficiency around 1% and producing a proton spot-size in the range of 10 mm 2 . We briefly discuss the results in the context of applications in the domain of Cultural Heritage.

  10. Self-Aligning Mechanical And Electrical Coupling

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1993-01-01

    Two mating assemblies of mechanical and electrical coupling designed to align itself and so easy to use that robot can operate it. Rollers and v-grooves enforce required alignment when upper and lower assemblies brought into firm contact. Mechanism inside lower assembly provides spring preload between two assemblies plus mating of electrical connectors, all actuated by rotation of driver engaged with bolt via splines.

  11. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly

    PubMed Central

    Wala, Jeremiah; Beroukhim, Rameen

    2017-01-01

    Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768

  12. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.

    PubMed

    Wala, Jeremiah; Beroukhim, Rameen

    2017-03-01

    We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. High-Precision Coupling Mechanism Operable By Robots

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    Coupling mechanism has features making it easily operable by hand and suitable for operation by robots: tolerates some initial misalignment, imposes precise final alignment, and protects itself against overtightening. Typically used to mount equipment module on structure. Mechanism includes kinematic mounts, which tolerate small initial misalignment and enforce precise final alignment as two assemblies brought together. Clamping force applied to kinematic mounts via two flexible plates. Bolt and nut tightened on flexible plates to impose spring clamping load. Repeatability of interface tested and found to be better than forty-millionths of inch.

  14. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.

  15. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Űlkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.

  16. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK,more » and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.« less

  17. Beam alignment based on two-dimensional power spectral density of a near-field image.

    PubMed

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  18. Alignment system for SGII-Up laser facility

    NASA Astrophysics Data System (ADS)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  19. Study of clamping-induced deformations on SR optics by means of LTP

    NASA Astrophysics Data System (ADS)

    Cocco, Daniele; Sostero, Giovanni; Zangrando, Marco

    2001-01-01

    With the advent of third generation synchrotron radiation sources, more flux was available for the experimentalist. At the same time, the request in term of spot dimension and energy resolution rapidly increased. For this reason, opticians try to design beamlines with higher and higher performances. To this end the shape of every optical component of a beamline is specified to have very tight constrains, because every small figure error produces a sudden reduction in terms of the overall performance. Nevertheless, the necessity to positioning and cooling the components implies the presence of a safe clamping system which unavoidably would modifies the shape of the component, causing possible reduction of resolving power or increasing the spot dimension. Thus it is not sufficient to measure accurately the slope or the profile of a mirror in laboratory before the mounting, but it is useful to test it also after this procedure. We, at ELETTRA, have measured by means of a modified version of the LTP II (Long Trace Profiler) several mirrors and gratings before and after their clamping, in order to estimate the effect of the holder on the final performances of the beamlines. Since our LTP II measures directly the local slope of the surface under test with a repeatability better than 0.02 arcsec on a 1 meter long optical surface, it is very easy to single out any small distortion of the tangential profile introduced by the mounting system. Different kinds of supports for both small and large optical elements, were taken into consideration and the effect of the deformation induced by them on the beamline performance was simulated and will be presented here together with the results of each measurements. The results give us a way to select properly the kind of clamping and invite the opticians to try to take into consideration also this effect before designing a complex beamline.

  20. Studies on X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Miao, Huijie

    This dissertation includes three main parts: studies on coherence requirements for the diffraction microscopy experiments, ice formation on frozen-hydrated sample during data collection, and centering of the diffraction data sets. These three subjects are all in support of our groups overall goal of high resolution 3D imaging of frozen hydrated eukaryotic cells via x-ray diffraction microscopy. X-ray diffraction microscopy requires coherent illumination. However, the actual degree of coherence at some beamlines has never been tested. In research on coherence, our first aim is to determine the transverse coherence width at the sample plane at BL 9.0.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory. An analytical calculation of the coherence at the sample plane is presented. Experimental diffraction patterns of pinhole-pair samples were also taken at the beamline to determine the coherence. Due to the irregular shape of the pinholes and other optics complexity, it was very difficult to fit the data with known theoretical equations as it was traditionally done with 1D data. However, we found out that the auto-correlation function shows clearly three spots. Theoretical calculation have been carried out to show that the degree of coherence can be obtained from the intensities of the three spots. These results are compared with the results from the analytical calculation. We then perform a simulation, showing the required transverse coherence width for reconstructing samples with a given size. Ice accumulation has been a major problem in X-ray diffraction microscopy with frozen hydrated samples. Since the ice structure is different from point to point, we cannot subtract the scattering from ice, nor assume a completely "empty" region outside the finite support constraint area as required for reconstruction. Ice forms during the sample preparation and transfer. However, from the tests we did in September 2007, we found that the ice layer thickens significantly during the data collecting process. One of the tests we did was putting a dry room-temperature grid into the beam, cooling it down to liquid nitrogen temperature, and then collecting the diffraction pattern of it over time. This test showed that, after the cold grid remained in the chamber for a while, a ring could be observed in the diffraction pattern. The time necessary for this ring to be visible is highly dependent on the pressure and vacuum history of the chamber. We will discuss how the chamber pressure influences the ice accumulation rate, how an anti-contamination device can help to reduce the rate, and how this ring forms. The last part of the research is based on simulations and a real data set collected on beamline 9.0.1 at the ALS in Berkeley. In X-ray diffraction microscopy, one of the major challenges when processing the data is to accurately determine the true center of the recorded data; that is, the zero spatial frequency position. Simulations of reconstructing shifted data show that if the center of a 2D diffraction pattern is shifted by more than 3 pixels from its true center, the positivity constraint to the phase, which otherwise might be applied to improve the convergence of the reconstruction algorithm, cannot be imposed. Moreover, the phase unwrapping problem may appear during the reconstruction. These issues undermine the quality of the reconstruction of 2D data. Furthermore, the individual shift in each 2D pattern will lead to errors when assembling a 3D diffraction data cube, making the 3D reconstruction very difficult. We developed a method which uses power spectra of the partial diffraction pattern to pre-align the data. A reconstruction without severe phase unwrapping can then be obtained from the pre-aligned data. Next, the precise zero spatial frequency position can be found by examining the linear ramp present in the reconstructed phase. This method was applied to a freeze-dried yeast data set to show that this approach is effective with experimental data.

  1. Improvement of spinal alignment and quality of life after corrective surgery for spinal kyphosis in patients with osteoporosis: a comparative study with non-operated patients.

    PubMed

    Miyakoshi, N; Hongo, M; Kobayashi, T; Abe, T; Abe, E; Shimada, Y

    2015-11-01

    This study evaluated changes in spinal alignment and quality of life (QOL) after corrective spinal surgery for patients with postmenopausal osteoporosis and spinal kyphosis. Spinal global alignment and QOL were significantly improved after corrective spinal surgery but did not reach the level of non-operated controls. With the increased aging of society, the demand for corrective spinal instrumentation for spinal kyphosis in osteoporotic patients is increasing. However, previous studies have not focused on the improvement of quality of life (QOL) after corrective spinal surgery in patients with osteoporosis, compared to non-operated control patients. The purposes of this study were thus to evaluate changes in spinal alignment and QOL after corrective spinal instrumentation for patients with osteoporosis and spinal kyphosis and to compare these results with non-operated patients. Participants comprised 39 patients with postmenopausal osteoporosis ≥50 years old who underwent corrective spinal surgery using multilevel posterior lumbar interbody fusion (PLIF) for symptomatic thoracolumbar or lumbar kyphosis, and 82 age-matched patients with postmenopausal osteoporosis without prevalent vertebral fractures. Spinopelvic parameters were evaluated with standing lateral spine radiography, and QOL was evaluated with the Japanese Osteoporosis QOL Questionnaire (JOQOL), SF-36, and Roland-Morris Disability Questionnaire (RDQ). Lumbar kyphosis angle, sagittal vertical axis, and pelvic tilt were significantly improved postoperatively. QOL evaluated with all three questionnaires also significantly improved after 6 months postoperatively, particularly in domain and subscale scores for pain and general/mental health. However, these radiographic parameters, total JOQOL score, SF-36 physical component summary score, and RDQ score were significantly inferior compared with non-operated controls. The results indicate that spinal global alignment and QOL were significantly improved after corrective spinal surgery using multilevel PLIF for patients with osteoporosis and spinal kyphosis but did not reach the level of non-operated controls.

  2. Performance of multilayer coated diffraction gratings in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Gum, Jeffrey S.; Condor, Charles E.

    1990-01-01

    The effect of multilayer coating application on the performance of a diffraction grating in the EUV spectral region was evaluated by examining the performance of a 3600-line/mm and a 1200-line/mm replica blazed gratings, designed for operation in the 300-A spectral region in first order. A ten-layer IrSi multilayer optimized for 304 A was deposited using electron-beam evaporation. The grating efficiency was measured on the SURF II calibration beamline in a chamber designed for calibrating the solar EUV rocket telescope and spectrograph multilayer coatings. A significant (by a factor of about 7) enhancement in grating efficiency in the 300-A region was demonstrated.

  3. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    DOEpatents

    Douglas, David R [York County, VA

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  4. Development of the JT-60SA Neutral Beam Injectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanada, M.; Kojima, A.; Inoue, T.

    2011-09-26

    This paper describes the development of the neutral beam (NB) systems on JT-60SA, where 30-34 MW D{sup 0} beams are required to be injected for 100 s. A 30 s operation of the NB injectors suggests that existing beamline components and positive ion sources on JT-60U can be reused without the modifications on JT-60 SA. The JT-60 negative ion source was modified to improve the voltage holding capability, which leads to a successful acceleration of 2.8 A H{sup -} ion beam up to 500 keV of the rated acceleration energy for JT-60SA.

  5. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty.

    PubMed

    Voleti, Pramod B; Hamula, Mathew J; Baldwin, Keith D; Lee, Gwo-Chin

    2014-09-01

    The purpose of this systematic review and meta-analysis is to compare patient-specific instrumentation (PSI) versus standard instrumentation for total knee arthroplasty (TKA) with regard to coronal and sagittal alignment, operative time, intraoperative blood loss, and cost. A systematic query in search of relevant studies was performed, and the data published in these studies were extracted and aggregated. In regard to coronal alignment, PSI demonstrated improved accuracy in femorotibial angle (FTA) (P=0.0003), while standard instrumentation demonstrated improved accuracy in hip-knee-ankle angle (HKA) (P=0.02). Importantly, there were no differences between treatment groups in the percentages of FTA or HKA outliers (>3 degrees from target alignment) (P=0.7). Sagittal alignment, operative time, intraoperative blood loss, and cost were also similar between groups (P>0.1 for all comparisons). Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Current status of the Taiwan Photon Source project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Shih-Lin

    2014-03-05

    The progress of establishment of a high brightness and low emittance mid-energy storage ring is reported. The status of the 3 GeV Taiwan Photon Source (TPS) currently under construction will be presented. The progress on the civil construction, manufacturing of machine components, as well as the opportunity of using low emittace synchrotron source and phase I beamlines at TPS will be mentioned. The future planning of phase II beamlines and related research will be sketched. Future developments will be also briefly outlined.

  7. Active mirror amplifiers for HiPER kiloJoule beamlines

    NASA Astrophysics Data System (ADS)

    Chanteloup, J.-C.; Lucianetti, A.

    2013-11-01

    A major challenge the HiPER [1] project is facing is to derive laser architectures satisfying simultaneously all HiPER requirements; among them, high wall-plug efficiency (15 to 20%) and repetition rate (around 10 Hz) are the most challenging constraints. Several groups over the world are actively pursuing research in the field of High average power Diode Pumped Solid State Lasers (DPSSL) [2]. We propose a comprehensive solution for a 1 kJ DPSSL beamline as the unit brick of a 12 beams bundle.

  8. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  9. Commissioning of BL 7.2, the new diagnostic beam line at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Baum, Dennis; Biocca, Alan

    2004-06-29

    BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.

  10. Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation

    DOEpatents

    Trent, Jett B.; Murphy, Jimmy L.

    1981-01-01

    The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

  11. An Alignment Model for Collaborative Value Networks

    NASA Astrophysics Data System (ADS)

    Bremer, Carlos; Azevedo, Rodrigo Cambiaghi; Klen, Alexandra Pereira

    This paper presents parts of the work carried out in several global organizations through the development of strategic projects with high tactical and operational complexity. By investing in long-term relationships, strongly operating in the transformation of the competitive model and focusing on the value chain management, the main aim of these projects was the alignment of multiple value chains. The projects were led by the Axia Transformation Methodology as well as by its Management Model and following the principles of Project Management. As a concrete result of the efforts made in the last years in the Brazilian market this work also introduces the Alignment Model which supports the transformation process that the companies undergo.

  12. AGILE: Autonomous Global Integrated Language Exploitation

    DTIC Science & Technology

    2009-12-01

    combination, including METEOR-based alignment (with stemming and WordNet synonym matching) and GIZA ++ based alignment. So far, we have not seen any...parse trees and a detailed analysis of how function words operate in translation. This program lets us fix alignment errors that systems like GIZA ...correlates better with Pyramid than with Responsiveness scoring (i.e., it is a more precise, careful, measure) • BE generally outperforms ROUGE

  13. NOVEL CHAMBER DESIGN FOR AN IN-VACUUM CRYO-COOLED MINI-GAP UNDULATOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HU, J.-P.; FOERSTER, C.L.; SKARITKA, J.R.

    2006-05-24

    A stainless steel, Ultra-High Vacuum (UHV) chamber, featuring a large vertical rectangular port (53''W by 16''H), has been fabricated to house the one-meter magnet assembly of a newly installed undulator insertion device for beamline X-25 at the National Synchrotron Light Source. To achieve UHV, the new chamber is equipped with a differential ion pump, NEG pump, nude ion gauge, residual gas analyzer, and an all metal roughing valve. Temperature of the magnet assembly is maintained below 90 C during vacuum bake. The large rectangular port cover is sealed to the main flange of the chamber using a one-piece flat aluminummore » gasket and special sealing surfaces developed exclusively by Nor-Cal Products, Inc. The large flange provides easy access to the gap of the installed magnet girders for in situ magnetic measurements and shimming. Special window ports were designed into the cover and chamber for manipulation of optical micrometers external to the chamber to provide precise measurements of the in-vacuum magnet gap. The vacuum chamber assembly features independently vacuum-isolated feedthroughs that can be used for either water-or-cryogenic refrigeration-cooling of the monolithic magnet girders. This would allow for cryogenic-cooled permanent magnet operation and has been successfully tested within temperature range of +100 C to -150 C. Details of the undulator assembly for beamline X-25 is described in the paper.« less

  14. Optima HD Imax: Molecular Implant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tieger, D. R.; Splinter, P. R.; Hsieh, T. J.

    2008-11-03

    Molecular implantation offers semiconductor device manufacturers multiple advantages over traditional high current ion implanters. The dose multiplication due to implanting more than one atom per molecule and the transport of beams at higher energies relative to the effective particle energies result in significant throughput enhancements without risk of energy contamination. The Optima HD Imax is introduced with molecular implant capability and the ability to reach up to 4.2 keV effective {sup 11}B from octadecaborane (B{sub 18}H{sub 22}). The ion source and beamline are optimized for molecular species ionization and transport. The beamline is coupled to the Optima HD mechanically scannedmore » endstation. The use of spot beam technology with ionized molecules maximizes the throughput potential and produces uniform implants with fast setup time and with superior angle control. The implanter architecture is designed to run multiple molecular species; for example, in addition to B{sub 18}H{sub 22} the system is capable of implanting carbon molecules for strain engineering and shallow junction engineering. Source lifetime data and typical operating conditions are described both for high dose, memory applications such as dual poly gate as well as lower energy implants for source drain extension and contact implants. Throughputs have been achieved in excess of 50 wafers per hour at doses up to 1x10{sup 16} ions/cm{sup 2} and for energies as low as 1 keV.« less

  15. About a method for compressing x-ray computed microtomography data

    NASA Astrophysics Data System (ADS)

    Mancini, Lucia; Kourousias, George; Billè, Fulvio; De Carlo, Francesco; Fidler, Aleš

    2018-04-01

    The management of scientific data is of high importance especially for experimental techniques that produce big data volumes. Such a technique is x-ray computed tomography (CT) and its community has introduced advanced data formats which allow for better management of experimental data. Rather than the organization of the data and the associated meta-data, the main topic on this work is data compression and its applicability to experimental data collected from a synchrotron-based CT beamline at the Elettra-Sincrotrone Trieste facility (Italy) and studies images acquired from various types of samples. This study covers parallel beam geometry, but it could be easily extended to a cone-beam one. The reconstruction workflow used is the one currently in operation at the beamline. Contrary to standard image compression studies, this manuscript proposes a systematic framework and workflow for the critical examination of different compression techniques and does so by applying it to experimental data. Beyond the methodology framework, this study presents and examines the use of JPEG-XR in combination with HDF5 and TIFF formats providing insights and strategies on data compression and image quality issues that can be used and implemented at other synchrotron facilities and laboratory systems. In conclusion, projection data compression using JPEG-XR appears as a promising, efficient method to reduce data file size and thus to facilitate data handling and image reconstruction.

  16. AlignMe—a membrane protein sequence alignment web server

    PubMed Central

    Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.

    2014-01-01

    We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425

  17. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring

    DOE PAGES

    Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew; ...

    2017-08-01

    The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring,more » the transition region was redesigned. The control system was also updated to NSLS-II specifications. As a result, this paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.« less

  18. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew

    The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring,more » the transition region was redesigned. The control system was also updated to NSLS-II specifications. As a result, this paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.« less

  19. Speeding up the Raster Scanning Methods used in theX-Ray Fluorescence Imaging of the Ancient Greek Text of Archimedes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Manisha; /Norfolk State U.

    2006-08-24

    Progress has been made at the Stanford Linear Accelerator Center (SLAC) toward deciphering the remaining 10-20% of ancient Greek text contained in the Archimedes palimpsest. The text is known to contain valuable works by the mathematician, including the ''Method of Mechanical Theorems, the Equilibrium of Planes, On Floating Bodies'', and several diagrams as well. The only surviving copy of the text was recycled into a prayer book in the Middle Ages. The ink used to write on the goat skin parchment is partly composed of iron, which is visible by x-ray radiation. To image the palimpsest pages, the parchment ismore » framed and placed in a stage that moves according to the raster method. When an x-ray beam strikes the parchment, the iron in the ink is detected by a germanium detector. The resulting signal is converted to a gray-scale image on the imaging program, Rasplot. It is extremely important that each line of data is perfectly aligned with the line that came before it because the image is scanned in two directions. The objectives of this experiment were to determine the best parameters for producing well-aligned images and to reduce the scanning time. Imaging half a page of parchment during previous beam time for this project was achieved in thirty hours. Equations were produced to evaluate count time, shutter time, and the number of pixels in this experiment. On Beamline 6-2 at the Stanford Synchrotron Radiation Laboratory (SSRL), actual scanning time was reduced by one fourth. The remaining pages were successfully imaged and sent to ancient Greek experts for translation.« less

  20. Performance of NICER flight x-ray concentrator

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Soong, Yang; Balsamo, Erin R.; Enoto, Teruaki; Olsen, Larry; Koenecke, Richard; Lozipone, Larry; Kearney, John; Fitzsimmons, Sean; Numata, Ai; Kenyon, Steven J.; Arzoumanian, Zaven; Gendreau, Keith

    2016-07-01

    Neutron star Interior Composition ExploreR (NICER) is a NASA instrument to be onboard International Space Station, which is equipped with 56 pairs of an X-ray concentrator (XRC) and a silicon drift detector for high timing observations. The XRC is based on an epoxy replicated thin aluminum foil X-ray mirror, similar to those of Suzaku and ASTRO-H (Hitomi), but only a single stage parabolic grazing incidence optic. Each has a focal length of 1.085m and a diameter of 105 mm, with 24 confocally aligned parabolic shells. Grazing incident angles to individual shells range from 0.4 to 1.4 deg. The flight 56 XRCs have been completed and successfully delivered to the payload integration. All the XRC was characterized at the NASA/GSFC 100-m X-ray beamline using 1.5 keV X-rays (some of them are also at 4.5 keV). The XRC performance, effective area and point spread function, was measured by a CCD camera and a proportional counter. The average effective area is about 44 cm2 at 1.5 keV and about 18 cm2 at 4.5 keV, which is consistent with a micro-roughness of 0.5nm from individual shell reflectivity measurements. The XRC focuses about 91% of X-rays into a 2mm aperture at the focal plane, which is the NICER detector window size. Each XRC weighs only 325 g. These performance met the project requirement. In this paper, we will present summary of the flight XRC performance as well as co-alignment results of the 56 XRCs on the flight payload as it is important to estimate the total effective for astronomical observations.

Top