Fens and their rare plants in the Beartooth Mountains, Shoshone National Forest, Wyoming
Bonnie Heidel; Walter Fertig; Sabine Mellmann-Brown; Kent E. Houston; Kathleen A. Dwire
2017-01-01
Fens are common wetlands in the Beartooth Mountains on the Shoshone National Forest, Clarks Fork Ranger District, in Park County, Wyoming. Fens harbor plant species found in no other habitats, and some rare plants occurring in Beartooth fens are found nowhere else in Wyoming. This report summarizes the studies on Beartooth fens from 1962 to 2009, which have contributed...
Kinematics of the eastern flank of the Beartooth Mountains, Montana and Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connel, P.
1991-03-01
Three miles west of Red Lodge, Montana, well data, gravity data, and surface data indicate the Beartooth fault is dipping at 25{degree} to 30{degree} southwest and is trending northwest-southeast. South of the Maurice tear fault, the Beartooth fault changes to a north-south trend. The intersection of these two trends forms the Red Lodge 'corner.' With the northeast vergence of the Beartooth fault, the eastern flank of the mountains presents an interpretational dilemma between horizontal compression and vertical uplift models. The interpretation of reverse right-oblique slip has been applied to the north-south-trending segment of the Beartooth fault. This necessitates a reinterpretationmore » of the left-lateral strike-slip motion of the Maurice tear fault to include a component of reverse oblique motion. The Bennett Creek flatiron represents an asymmetric syncline created as part of a back-limb fold by early stages of northeast movement. As northeast vergence continued, the north-south segment of the Beartooth fault cut this structure, leaving the southeast continuation of the structure buried in the basin or under the basement overhang. These potential hydrocarbon traps are targets for future exploration. As the Beartooth fault is traced further southward, displacement begins to die out as it nears Clarks Fork Canyon. The Beartooth fault appears to propagate into the Canyon Mouth Anticline as fault displacement diminishes toward the Bighorn basin. Compressional features seen at the crest of the Canyon Mouth Anticline seem to negate a vertical component of movement previously suggested at this southeast corner of the Beartooth Block.« less
Foreland structure - Beartooth Mountains, Montana and Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D.M.
1996-06-01
Analysis of public drilling records from the AMOCO Beartooth Number 1 and 1 A sidetrack boreholes (SW1/4, SE1/4, Section 19, T.8 S., R.20 E., Carbon County, Montana) continues. Several additional inferences are made about this large foreland structure, and subsequent interpretation of the structural model of the northeast corner of the Beartooth Mountain Block and structural relationship with the Big Horn Basin. The structure is described as a large recumbent to sub-horizontal, synclinal fold with the overturned upper limb out diagonally by the Beartooth Thrust or Thrust Zone and a complex thrust fault zone below the Beartooth Thrust. The singlemore » recorded dip angle and direction of the Beartooth Thrust at depth was 19 degrees to the northwest(?). The dipmeter dip angle on the Beartooth Thrust, 19 degrees, validates foreland structural theory of decreasing dip angles at a vertical depth of 8,232 feet (2,509 m), in the Precambrian crystalline basement. The northwest dip direction may be attributable to secondary structural folding. The record of northwest, southeast, and southwest dip of bedding surfaces and faults in sections of the overturned upper limb, in both boreholes, suggests possible, less intense secondary folding, after thrust fault deformation. Given the overall geometry of this large foreland structure, there is little doubt that the average direction of maximum principal stress (sigma 1) was oriented in a northeast - southwest direction.« less
BEARTOOTH PRIMITIVE AREA AND VICINITY, MONTANA AND WYOMING.
Simons, Frank S.; Van Noy, Ronald M.
1984-01-01
The Beartooth area comprises about 600 sq mi in the central part of the Beartooth Mountains in South-central Montana and northwestern Wyoming just northeast of Yellowstone National Park. A mineral-resource survey concluded that one area of probable and one of substantiated mineral-resource potential are present in the Beartooth area. Three small mining districts (Red Lodge, Stillwater, and Independence) and one possibly major district (Cooke City) adjoin the Beartooth area but lie almost entirely outside it; the northern part of the Cooke City mining district, around Goose Lake, is within the area. This area has substantiated resource potential for copper, silver, gold, and platinum-group elements. The Red Lodge mining district extends into the eastern part of the area and has a probable chrome resource potential. There is little promise for the discovery of energy resources in the area.
NASA Technical Reports Server (NTRS)
Wooden, J. L.; Mueller, P. A.
1988-01-01
Compositionally diverse Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains (Montana and Wyoming) were studied and shown to have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial values lower than predicted for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. A model involving subduction of continental detritus and contamination of the overlying mantle is suggested.
Anthony R. Fiorillo
2000-01-01
The Beartooth Butte Formation is found in many mountain ranges throughout central Montana and northern Wyoming. This study combines a variety of geologic data to provide a clearer understanding of the fossil fauna and environmental setting of this rock unit. Results show not all exposures of this unit are fossil-bearing and where present, faunal...
NASA Technical Reports Server (NTRS)
Mogk, D. W.; Kain, L.
1985-01-01
The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.
Development of the Earth's early crust: Implications from the Beartooth Mountains
NASA Technical Reports Server (NTRS)
Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.
1983-01-01
The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablinski, J.D.; Holst, T.B.
1992-09-01
Archean metasedimentary rocks of the South Snowy Block of the Beartooth Mountains, in the vicinity of Jardine, Montana, consist predominantly of schistose rocks with rare iron formation. These rocks are intruded by Precambrian granitic stocks and minor mafic dikes and sills. Evidence for three phases of folding and late-stage kinking is found within the metasedimentary rocks, whereas rocks of the Crevice Mountain stock (2,700 Ma) are unaffected by any of these events. The first folding event involved the development of isoclinal, recumbent folds of varying scale. F[sub 1] fold hinges are rare, most commonly observed underground in Mineral Hill. Anmore » S[sub 1] schistosity has developed axial planar to these folds. This schistosity, which is subparallel to bedding, is very well developed and ubiquitous in the metasedimentary rocks of the Jardine region. Two later phases of folding are also recognized. F[sub 2] folds are nearly upright with gently to moderately plunging fold hinges. Temperature and pressure conditions during deformation, as revealed by calculations from microprobe analyses, suggest that the peak of metamorphism occurred at a temperature of about 560 C and a pressure of 2.9 kb. Thin section observations indicate that the metamorphic peak accompanied the formation of S[sub 1] schistosity. Structural, metamorphic, and geochemical data are consistent with the hypothesis that the metasedimentary rock of the Jardine region are allochthonous and constitute one of a number of tectonostratigrphic terranes in the western Beartooth Mountains that were juxtaposed tectonically against the western margin of an Archean continent during a Late Archean collisional event.« less
NASA Astrophysics Data System (ADS)
Neely, Thomas G.; Erslev, Eric A.
2009-09-01
Horizontally-shortened, basement-involved foreland orogens commonly exhibit anastomosing networks of bifurcating basement highs (here called arches) whose structural culminations are linked by complex transition zones of diversely-oriented faults and folds. The 3D geometry and kinematics of the southern Beartooth arch transition zone of north-central Wyoming were studied to understand the fold mechanisms and control on basement-involved arches. Data from 1581 slickensided minor faults are consistent with a single regional shortening direction of 065°. Evidence for oblique-slip, vertical axis rotations and stress refraction at anomalously-oriented folds suggests formation over reactivated pre-existing weaknesses. Restorable cross-sections and 3D surfaces, constrained by surface, well, and seismic data, document blind, ENE-directed basement thrusting and associated thin-skinned backthrusting and folding along the Beartooth and Oregon Basin fault systems. Between these systems, the basement-cored Rattlesnake Mountain backthrust followed basement weaknesses and rotated a basement chip toward the basin before the ENE-directed Line Creek fault system broke through and connected the Beartooth and Oregon Basin fault systems. Slip was transferred at the terminations of the Rattlesnake Mountain fault block by pivoting to the north and tear faulting to the south. In summary, unidirectional Laramide compression and pre-existing basement weaknesses combined with fault-propagation and rotational fault-bend folding to create an irregular yet continuous basement arch transition.
Wooden, J.L.; Mueller, P.A.
1988-01-01
A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.
Paleomagnetism of the Wyoming Craton: A Pre-Laurentian Puzzle
NASA Astrophysics Data System (ADS)
Kilian, T.; Chamberlain, K.; Mitchell, R. N.; Evans, D. A.; Bleeker, W.; Lecheminant, A. N.
2010-12-01
The Archean Wyoming craton is mostly buried beneath Phanerozoic sediments in the Rocky Mountains of the west central United States. Exposures of the craton are entirely in thrust-bounded Laramide uplifts and contain numerous swarms of Neoarchean-Proterozoic mafic dikes. U-Pb ages from these dikes include ~2685 Ma from a dike in the Owl Creek Mountains (Frost et al., 2006) as well as another in the Bald Mountain region of the Bighorn Mountains (this study), ~2170 Ma from the Wind River Mountain quartz diorite (Harlan et al., 2003), ~2110 Ma from a dike in the Granite Mountains (Bowers and Chamberlain, 2006), ~2010 Ma from a Kennedy dike in the Laramie Range (Cox et al., 2000), and ~780 Ma for dikes in the Beartooth and Teton Mountains (Harlan et al., 1997). These possible age ranges of magmatic events will allow a detailed comparison with other cratons, especially Superior and Slave. Prior to the assembly of Laurentia, Wyoming may have been connected with Slave in supercraton Sclavia (Bleeker, 2003; Frost et al., 2007), or alternatively, Wyoming may have been attached to the present southern margin of Superior in the supercraton Superia, as judged by similarities of the thrice-glaciated Huronian and Snowy Pass sedimentary successions (Roscoe and Card, 1993). Paleomagnetic results will be presented from over 150 dikes in the Wyoming craton. All dikes were from the basement uplifts of the Beartooth Mountains, Bighorn Mountains, Owl Creek Mountains, Granite Mountains, Ferris Mountains and Laramie Range. Dikes range in widths from 1 to >100 meters, and trends vary across all orientations. Stable remanence is observed in majority of sites with at least 8 different directions from the various uplifts. Structural corrections are applied when necessary to restore shallowly dipping Cambrian strata to horizontal. The paleomagnetic study is being integrated with precise U-Pb geochronology of dikes that bear stable remanence directions. Results will eventually allow a comparison of results from both Slave and Superior cratons throughout the Archean and Proterozoic. The data will test the prior connections, or lack thereof, among the Archean cratons in Laurentia, and help assess whether there was a supercontinent during the Archean-Proterozoic transition.
NASA Astrophysics Data System (ADS)
Armenta, M.; Carrapa, B.; DeCelles, P. G.
2014-12-01
Timing of exhumation of Laramide basement uplifts can be used as a proxy for tectonic processes associated with thick-skinned deformation resulting from flat-slab subduction. Despite its significance, the timing and pattern of Laramide deformation remains poorly constrained in Montana. Thermochronological data from Wyoming indicate exhumation of Laramide ranges during the late Cretaceous and Paleogene. Whereas a few data exist for the Bearthooth Range in Montana; the exhumation history of most of the Montana ranges remains unexplored preventing testing of current tectonic models. We report apatite fission track thermochronologic (AFT) data from modern river sands derived from Laramide ranges, bedrock basement samples, and synorogenic conglomerate clasts to determine the regional exhumation history of the Beartooth, Gravelly, Tobacco Root, Ruby, the Highland Mountains, and the Wind River Range. AFT permits reconstruction of thermal histories and rates of erosion of the upper few kilometers of the crust. In particular detrital AFT of river sands provides information on regional exhumation of the drainage area. AFT detrital ages derived from the southern end of the Beartooth Range are dominated by a 60-80 Ma signal, consistent with ages reported for bedrock basement samples in the Beartooth Range. A Cenozoic synorogenic conglomerate clast was obtained from the Highland Mountains, AFT results show a 69.56 +/- 5.45 Ma cooling age. In the Wind River Range, Wyoming AFT data from a Cenozoic synorogenic conglomerate clast from the Wind River Formation indicates a 59.32 +/- 4.83 Ma cooling age. This age is consistent with AFT ages from Gannett Peak indicating rapid cooling at ~60 Ma and ~50 Ma (Fan and Carrapa, 2014). Overall, samples from the easternmost ranges, the Beartooth and Bighorn, clearly preserve a Cretaceous signal; samples from Wind River Range and the rest of southwest Montana mainly record a Cenozoic signal. This suggests deeper and younger exhumation to the west than to the east. These results combined with thermal modeling provide additional constraints on the tectono-thermal history of Laramide ranges. In addition, these results allow for a temporal-spatial comparison between cooling and exhumation in the Montana and Wyoming Laramide regions and help test current models of the Laramide Orogeny.
Geology and water resources of the Bighorn Basin, Wyoming
Fisher, C.A.
1906-01-01
A general account of the surface waters is given, including a statement of their present and proposed uses for irrigation, and the economic products of a geologic nature are also described. The region considered comprises the Bighorn basin, a part of the Clark Fork basin, and the slopes of the adjoining mountain ranges, the entire area comprising 8,500 square miles. As shown on fig. 1, it is situated mainly in Bighorn County, in the northwestern part of Wyoming, and includes the greater portion of the area lying between meridians 107° 15' and 109° 15' and parallels 43° 40' and 45°. It is bounded on the north by Montana, on the east by the Bighorn Mountains, on the south by Bighorn and Owl Creek mountains, and on the west by Shoshone, Absaroka, and Beartooth mountains.
3. 96 Ga zircons from an Archean quartzite, Beartooth Mountains, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, P.A.; Wooden, J.L.; Nutman, A.P.
1992-04-01
U-Pb isotopic systematics of detrital zircons incorporated in a middle Archean quartzite from the Beartooth Mountains, Montana, were investigated with the SHRIMP ion microprobe. These new data reveal an extended and previously unrecognized record of crustal evolution for the northern Wyoming province. Seventy-eight analyses of 67 grains yielded a range of {sup 207}Pb/{sup 206}Pb ages from 2.69 to 3.96 Ga. Concordant analyses from 43 separate grains defined a maximum age for the deposition of the quartzite of 3.30 Ga; other provenance ages extend to 3.96 Ga. Ages of < 3.30 Ga are generally discordant, and appear to reflect late Archeanmore » disturbance of the U-Pb system, including metamorphism at {approximately}2.8 Ga. The predominance of ages at {approximately}3.3 Ga is interpreted to represent the last major episode of crust formation prior to deposition of the quartzite. The concordant analyses of > 3.30 Ga indicate that older crustal components with ages up to 3.96 Ga, or detritus from them, were also in the provenance of this quartzite. This older age is equivalent to that of the oldest known rock from the Acasta gneisses of the Slave province and is exceeded only by the > 4.0 Ga age of detrital zircons of the Yilgarn block of Western Australia. These data support an increased probability for the survival of sialic crust created before the cessation of the late bombardment at 3.8 to 3.9 Ga.« less
Tysdal, R.G.; Dyman, T.S.; Nichols, D.J.
1989-01-01
The Vaughn Member, newly assigned to the Mowry Shale in this report, comprises strata that crop out in the Greenhorn, Gravelly, Madison, and Gallatin ranges, and the Centennial and Beartooth mountains of southwestern Montana. Herein the member is correlated with the Vaughn Member of the Blackleaf Formation, which crops out to the west in the Lima Peaks area, Snowcrest Range, and Pioneer Mountains. Strata assigned to the Vaughn Member of the Blackleaf Formation in southwestern Montana exhibit the same contrasting relationships that exist in northwestern Montana. The Vaughn Member of the Mowry is late Albian in age, determined by bracketing with shallow water marine bivalves in the Muddy Sandstone below and palynomorphs in Mowry strata above. Palynomorphs from the Vaughn Member itself are typically mid-Cretaceous, but do not permit a more exact determination of age. -from Authors
NASA Technical Reports Server (NTRS)
Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.
1974-01-01
The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooden, J.L.; Mueller, P.A.; Graves, M.A.
1985-01-01
Late Archean rocks of the eastern Beartooth Mountains range in composition from basaltic andesite to granite and were emplaced 2.73-2.80 Ga ago in a middle to early Archean terrane as indicated by U-Pb zircon studies. Although trace element abundances are extremely variable for this group of rocks, their initial Pb, Sr, and Nd isotopic compositions are remarkably homogenous. A composite Rb-Sr isochron (>30 samples) yield an age of 2.79/plus minus/0.04 Ga with an initial ratio of 0.7022/plus minus/2 while /epsilon/Nd 2.78 Ga ago ranges from -1.5 to -3.1 (av. -2.2). Whole-rock Pb data for these rocks scatter about a 2.75more » Ga isochron and feldspar Pb data suggest initial 206/204 = 13.88, 207/204 = 14.96, and 208/204 = 34.3. These values lie well above values for average crustal leads 2.78 Ga ago as modeled by Stacey and Kramer (1975) and would require development in a reservior with /mu/= 12 from 3.7-2.8 Ga (/mu/= 7.2, 4.5-3.7 Ga). The marked differences between these values and those of the late Archean mantle require that an early to middle Archean crust played a role in the genesis of these rocks. The compositional variety and isotopic homogeneity may have developed as the result of crust-mantle mixing similar to that observed in modern volcanic-plutonic arcs along continental margins where crustal materials can be subducted, and fluids derived from these materials added to the overlying mantle wedge and lower crust. During this period, contaminated mantle may have been generated on a regional scale as evidenced by the isotopic systematics of young mafic volcanics from the northwestern U.S. (e.g. Snake River Plain, Yellowstone, Columbia River).« less
Mueller, P.A.; Wooden, J.L.; Mogk, D.W.; Nutman, A.P.; Williams, I.S.
1996-01-01
The Beartooth-Bighorn magmatic zone (BBMZ) and the Montana metasedimentary province (MMP) are two major subprovinces of the Archean Wyoming province. In the northwestern Beartooth Mountains, these subprovinces are separated by a structurally, lithologically and metamorphically complex assemblage of lithotectonic units that include: (1) a strongly deformed complex of trondhjemitic gneiss and interlayered amphibolites; and (2) an amphibolite facies mafic unit that occurs in a nappe that structurally overlies the gneiss complex. Zircons from a trondhjemitic blastomylonite in the gneiss complex yield concordant U-Pb ages of 3.5 Ga, establishing it as the oldest rock yet documented in the Wyoming province. Two younger events are also recorded by zircons in this rock: (1) an apparently protracted period of high-grade metamorphism and/or intrusion of additional magmas at ??? 3.25 Ga; and (2) growth of hydrothermal zircon at ??? 2.55 Ga, apparently associated with ductile deformation that immediately preceded structural emplacement of the gneiss. Although this latter event appears confined to areas along the BBMZ-MMP boundary, evidence of ??? 3.25 Ga igneous activity is found in the overlying amphibolite (3.24 Ga) and throughout the MMP. These data suggest that this boundary first developed as a major intracratonic zone of displacement at or before 3.25 Ga. The limited occurrences of 2.8 Ga magmatic activity in the MMP suggest that it had a controlling influence on late Archean magmatism as well.
Mountain-front recharge along the eastern side of the Middle Rio Grande Basin, central New Mexico
Anderholm, Scott K.
2000-01-01
Mountain-front recharge, which generally occurs along the margins of alluvial basins, can be a large part of total recharge to the aquifer system in such basins. Mountain-front recharge occurs as the result of infiltration of flow from streams that have headwaters in the mountainous areas adjacent to alluvial basins and ground- water flow from the aquifers in the mountainous areas to the aquifer in the alluvial basin. This report presents estimates of mountain-front recharge to the basin-fill aquifer along the eastern side of the Middle Rio Grande Basin in central New Mexico. The basin is a structural feature that contains a large thickness of basin-fill deposits, which compose the main aquifer in the basin. The basin is bounded along the eastern side by mountains composed of crystalline rocks of Precambrian age and sedimentary rocks of Paleozoic age. Precipitation is much larger in the mountains than in the basin; many stream channels debouch from the mountainous area to the basin. Chloride-balance and water-yield regression methods were used to estimate mountain-front recharge. The chloride-balance method was used to calculate a chloride balance in watersheds in the mountainous areas along the eastern side of the basin (subareas). The source of chloride to these watersheds is bulk precipitation (wet and dry deposition). Chloride leaves these watersheds as mountain-front recharge. The water-yield regression method was used to determine the streamflow from the mountainous watersheds at the mountain front. This streamflow was assumed to be equal to mountain-front recharge because most of this streamflow infiltrates and recharges the basin-fill aquifer. Total mountain-front recharge along the eastern side of the Middle Rio Grande Basin was estimated to be about 11,000 acre- feet per year using the chloride-balance method and about 36,000 and 38,000 acre-feet per year using two water-yield regression equations. There was a large range in the recharge estimates in a particular subarea using the different methods. Mountain-front recharge ranged from 0.7 to 15 percent of total annual precipitation in the subareas (percent recharge). Some of the smallest values of percent recharge were in the subareas in the southern part of the basin, which generally have low altitudes. The larger percent-recharge values were from subareas with higher altitudes. With existing information, determining which of the mountain- front recharge estimates is most accurate and the reasons for discrepancies among the different estimates is not possible. The chloride-balance method underestimates recharge if the chloride concentration used in the calculations for precipitation is too small or the chloride concentration in recharge is too large. Water-yield regression methods overestimate recharge if the amount of evapotranspiration of water that infiltrates into the channel bed of arroyos during runoff from summer thunderstorms is large.
VIEW, FRONT ELEVATION, LOOKING SOUTHSOUTHEAST Mountain Home Air Force ...
VIEW, FRONT ELEVATION, LOOKING SOUTH-SOUTHEAST - Mountain Home Air Force Base 1958 Senior Officers' Housing, Colonel's Residence, Tuck Street (originally Locust Street), Mountain Home, Elmore County, ID
OBLIQUE VIEW, FRONT ELEVATION, LOOKING WESTSOUTHWEST Mountain Home Air ...
OBLIQUE VIEW, FRONT ELEVATION, LOOKING WEST-SOUTHWEST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID
Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex
NASA Technical Reports Server (NTRS)
Mccallum, I. S.
1988-01-01
The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.
Finn, Thomas M.; Pawlewicz, Mark J.
2014-01-01
The Bighorn Basin is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny, a period of crustal instability and compressional tectonics that began in latest Cretaceous time and ended in the Eocene. The basin is nearly 180 mi long, 100 mi wide, and encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana. The basin is bounded on the northeast by the Pryor Mountains, on the east by the Bighorn Mountains, and on the south by the Owl Creek Mountains). The north boundary includes a zone of faulting and folding referred to as the Nye-Bowler lineament. The northwest and west margins are formed by the Beartooth Mountains and Absaroka Range, respectively. Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary. In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs in the deeper parts of the basin. It has been suggested by numerous authors that various Cretaceous marine shales are the principal source rock for these accumulations. Numerous studies of various Upper Cretaceous marine shales in the Rocky Mountain region have led to the general conclusion that these rocks have generated or are capable of generating oil and (or) gas. In recent years, advances in horizontal drilling and multistage fracture stimulation have resulted in increased exploration and completion of wells in Cretaceous marine shales in other Rocky Mountain Laramide basins that were previously thought of only as hydrocarbon source rocks. Important parameters controlling hydrocarbon production from these shale reservoirs include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for selected Upper Cretaceous marine shales in the Bighorn Basin.
Data on morphotectonic indices of Dashtekhak district, Iran.
Fadaie Kermani, Ali; Derakhshani, Reza; Shafiei Bafti, Shahram
2017-10-01
Morphotectonic indices by representing the longer period of time than recorded earthquake data, are useful in evaluating the tectonic activity of a region. Dashtkhak area is located in Kerman province of Iran, where one of the most active faults, Kouhbanan strike slip fault, passes through. This data article provides a precise level data on mountain fronts and valleys of Dashtkhak region that is fundamental for morphotectonic investigations of the relationship among geomorphology and tectonic activity. This data is valuable in the field of geology and geography. Mountain fronts and valleys data is more relevant in the field of tectonics and geomorphology. It helps to evaluate a region from the viewpoint of tectonic activity. The data which are presented for 31 mountain fronts and 61 valleys, is taken by processing of remotely sensed Landsat satellite data, photogeology of areal photographs, measuring on topographic maps and controlled by field checking. This data is useful for calculating of some morphotectonic indices such as sinuosity of mountain fronts ( s mf ), mountain front faceting percentage (Facet%), the ratio of valley floor width to valley height ( V f ) and the valley ratio ( V ).
2. NORTH (FRONT) AND WEST SIDE ELEVATIONS, LOOKING SOUTHEAST, (WITH ...
2. NORTH (FRONT) AND WEST SIDE ELEVATIONS, LOOKING SOUTHEAST, (WITH TOM SHAW IN PHONE BOOTH) - Paris Mountain State Park, Bathhouse, Paris Mountain State Park, off SC Route 253, Greenville, Greenville, SC
Using noble gases to investigate mountain-front recharge
Manning, A.H.; Solomon, D.K.
2003-01-01
Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.
Water chemistry of Rocky Mountain Front Range aquatic ecosystems
Robert C. Musselman; Laura Hudnell; Mark W. Williams; Richard A. Sommerfeld
1996-01-01
A study of the water chemistry of Colorado Rocky Mountain Front Range alpine/subalpine lakes and streams in wilderness ecosystems was conducted during the summer of 1995 by the USDA Forest Service Arapaho and Roosevelt National Forests and Rocky Mountain Forest and Range Experiment Station, and the University of Colorado Institute of Alpine and Arctic Research. Data...
Rocky Mountain National Park intelligent transportation system evaluation plan.
DOT National Transportation Integrated Search
2011-07-01
Rocky Mountain National Park (ROMO) has maintained a consistent level of visitation over the : last few years, approximately 3 million annual visitors (1). About 40% of these visitors come : from the front range. The front range includes ...
Linear geologic structure and magic rock discrimination as determined from infrared data
NASA Technical Reports Server (NTRS)
Offield, T. W.; Rowan, L. C.; Watson, R. D.
1970-01-01
Color infrared photographs of the Beartooth Mountains, Montana show the distribution of mafic dikes and amphibolite bodies. Lineaments that cross grassy plateaus can be identified as dikes by the marked constrast between the dark rocks and the red vegetation. Some amphibolite bodies in granitic terrain can also be detected by infrared photography and their contacts can be accurately drawn due to enchanced contrast of the two types of rock in the near infrared. Reflectance measurements made in the field for amphibolite and granite show that the granite is 25% to 50% more reflective in the near infrared than in the visible region. Further enhancement is due to less atmospheric scattering than in the visible region. Thermal infrared images of the Mill Creek, Oklahoma test site provided information on geologic faults and fracture systems not obtainable from photographs. Subtle stripes that cross outcrop and intervening soil areas and which probably record water distribution are also shown on infrared photographs.
NASA Astrophysics Data System (ADS)
Shuman, Bryan N.; Serravezza, Marc
2017-10-01
The paleohydrologic record of western North America since the last glacial maximum reveals a wide range of hydroclimatic variability in time and space. To improve the understanding of abrupt hydroclimatic shifts and millennial-scale hydrologic changes in the central Rocky Mountains, we reconstruct the lake-level histories of two small lakes in the Beartooth and Bighorn Mountains in northern Wyoming over the past 17 ka. To do so, we use ground-penetrating radar (GPR) and sediment cores to track the elevations of shoreline sediments within the lakes through time. We compare the stratigraphies with those from four other lakes in Wyoming and Colorado, and find widespread evidence for a Terminal Pleistocene Drought from 15 to 11 ka, an early Holocene humid period from 11 to 8 ka, and mid-Holocene aridity from 8 to 5.5 ka. The northern Wyoming lakes also provide evidence of high levels in the Pleistocene, possibly before ca. 15 ka, and rapid hydroclimatic changes that may have correlated with Heinrich Event 1 (ca. 16.8 ka). We place the changes in a broad context by summarizing and mapping water-level changes from 107 additional, previously studied lakes. Important patterns include 1) extensive drying across the western U.S. after 15 ka; 2) sub-regional differences during the Pleistocene-Holocene transition; 3) a north-south contrast from 9 to 6 ka consistent with a northward shift in storm tracks as the influence of the Laurentide Ice Sheet diminished; and 4) rapid increases in effective moisture across much of western North America from 6 to 4 ka.
NASA Astrophysics Data System (ADS)
Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro
2017-04-01
Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the mountain front along the Sesseri, Siluk, Siku, Siang, Mingo, Sileng, Dikari, and Simen rivers. At some such junctions, landforms associated with the active right-lateral strike-slip faults are superposed over the earlier landforms formed by transverse normal faults. In addition to linear transverse features, we see evidence that the fold-thrust belt of the frontal part of the Arunachal Himalaya has also been affected by the neotectonically active NW-SE trending major fold known as the Siang antiform that again is aligned transverse to the mountain front. The folding of the HFT and MBT along this antiform has reshaped the landscape developed between its two western and eastern limbs running N-S and NW-SE, respectively. The transverse faults are parallel to the already reported deep-seated transverse seismogenic strike-slip fault. Therefore, a single take home message is that any true manifestation of the neotectonics and seismic hazard assessment in the Himalayan region must take into account the role of transverse tectonics.
Atmospheric Science Data Center
2014-05-15
article title: Front Range of the Rockies View ... north and east. Denver is situated just east of the Front Range of the Rocky Mountains, located in the lower right of the images. The ... of erosion. Scattered cumulus clouds floating above the mountain peaks are visible in these images, and stand out most dramatically in ...
Tectonic evolution of the central Brooks Range mountain front: Evidence from the Atigun Gorge region
Mull, C.G.; Glenn, R.K.; Adams, K.E.
1997-01-01
Atigun Gorge, at the northern front of the eastern Endicott Mountains, contains well-exposed rocks of the upper part of the Endicott Mountains allochthon and rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. These allochthons contain rocks as young as Early Cretaceous (Valanginian) and are separated by a nearly vertical fault zone that contains exotic blocks of Triassic and Jurassic chert and silicified mudstone. Siliceous rocks of this type are not present in the Endicott Mountains allochthon but are characteristic of the Picnic Creek, Ipnavik River, and some of the other allochthons that structurally overlie the Endicott Mountains allochthon in the central and western Brooks Range. These exotic blocks, therefore indicate that structurally higher rocks of either the Picnic Creek or Ipnavik River allochthon were emplaced during the Early Cretaceous and are preserved along the northern flank of the eastern Endicott Mountains. The deformed thickness of this higher allochthon in the subsurface north of the mountains is unknown but probably exceeds 2 kilometers. Similar relations are mapped east of Atigun Gorge in an area of structural transition from the eastern Endicott Mountains into the northern Philip Smith Mountains, which are formed by the parautochthonous North Slope stratigraphic assemblage. The allochthonous rocks at the mountain front are regionally unconformably overlain by proximal Lower Cretaceous (Albian) foredeep conglomerate at the southern flank of the Colville basin, but at Atigun Gorge, the base of these deposits is interpreted as a possible back thrust at a triangle zone. Conglomerate clasts in the foredeep deposits are dominantly chert, mafic igneous rock, and other lithologies characteristic of the Picnic Creek and Ipnavik River allochthons and scattered clasts from the Endicott Mountains allochthon. The conglomerates show that the chert-rich allochthonous rocks and the Endicott Mountains allochthon were emplaced in the north-central Brooks Range by large-scale crustal shortening (>300 km) between the Valanginian and Albian (??135 to ??112 Ma). This orogenic event significantly postdates early stages of Brooks Range orogeny but predates later stages of orogeny documented by stratigraphic and apatite fission-track data. These relations reduce the magnitude of shortening inferred at the triangle zone at the Brooks Range mountain front. The outcrop data suggest that some of the strata preserved at a structurally low level north of the mountain front and visible in the seismic data of the Trans-Alaska Crustal Transect (TACT) may consist of clastic sedimentary rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. Copyright 1997 by the American Geophysical Union.
3. Oblique view of the south front and west side ...
3. Oblique view of the south front and west side of the chapel, facing northeast. Postal building and roof line of 366th wing headquarters are visible to the left of the chapel - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID
Jennifer G. Klutsch; Russell D. Beam; William R. Jacobi; Jose F. Negron
2008-01-01
In the ponderosa pine forests of the northern Front Range of Colorado, downed woody debris amounts, fuel arrangement, and stand characteristics were assessed in areas infested with southwestern dwarf mistletoe (Arceuthobium vaginatum subsp. cryptopodum), mountain pine beetle (Dendroctonus ponderosae) and
Topographic expression of active faults in the foothills of the Northern Apennines
NASA Astrophysics Data System (ADS)
Picotti, Vincenzo; Ponza, Alessio; Pazzaglia, Frank J.
2009-09-01
Active faults that rupture the earth's surface leave an imprint on the topography that is recognized using a combination of geomorphic and geologic metrics including triangular facets, the shape of mountain fronts, the drainage network, and incised river valleys with inset terraces. We document the presence of a network of active, high-angle extensional faults, collectively embedded in the actively shortening mountain front of the Northern Apennines, that possess unique geomorphic expressions. We measure the strain rate for these structures and find that they have a constant throw-to-length ratio. We demonstrate the necessary and sufficient conditions for triangular facet development in the footwalls of these faults and argue that rock-type exerts the strongest control. The slip rates of these faults range from 0.1 to 0.3 mm/yr, which is similar to the average rate of river incision and mountain front unroofing determined by corollary studies. The faults are a near-surface manifestation of deeper crustal processes that are actively uplifting rocks and growing topography at a rate commensurate with surface processes that are eroding the mountain front to base level.
Earth observations taken during the STS-103 mission
1999-12-23
STS103-730-032 (19-27 December 1999) --- One of the astronauts aboard the Earth-orbiting Space Shuttle Discovery used a handheld 70mm camera to capture the southern to middle Rocky Mountains in low sunlight. The middle Rockies include the Big Horn range of Wyoming (snow capped range almost center of horizon) and the Unita Mountains of northeastern Utah (snow capped range left side of horizon). The southern Rockies includes the Front Range, Sangre de Cristo Mountains, Sawatch Ranges, and the San Juan Mountains. The eastern (Front Range, Sangre de Cristo) and western ranges (Sawatch, San Juan's) are separated by intermontane basins. The southernmost basin (near center of the image) is the San Luis Valley of Colorado. On the eastern edge of the San Luis Valley are the Sangre de Cristo Mountains.
View of the highway, looking west towards Little Bear Lake ...
View of the highway, looking west towards Little Bear Lake Fen where the fen bridge will be installed on the existing alignment - Beartooth Highway, Red Lodge, Montana to Cooke City, Montana, Cody, Park County, WY
View of the highway crossing Little Bear Lake Fen, looking ...
View of the highway crossing Little Bear Lake Fen, looking northeast. The fen bridge will be installed on the existing alignment - Beartooth Highway, Red Lodge, Montana to Cooke City, Montana, Cody, Park County, WY
Rafferty, Sharon A.; Arnold, L.R.; Char, Stephen J.
2002-01-01
The U.S. Geological Survey developed this dataset as part of the Colorado Front Range Infrastructure Resources Project (FRIRP). One goal of the FRIRP was to provide information on the availability of those hydrogeologic resources that are either critical to maintaining infrastructure along the northern Front Range or that may become less available because of urban expansion in the northern Front Range. This dataset extends from the Boulder-Jefferson County line on the south, to the middle of Larimer and Weld Counties on the North. On the west, this dataset is bounded by the approximate mountain front of the Front Range of the Rocky Mountains; on the east, by an arbitrary north-south line extending through a point about 6.5 kilometers east of Greeley. This digital geospatial dataset consists of digitized contours of unconsolidated-sediment thickness (depth to bedrock).
Moore, Stephanie J.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
Infiltration events in channels that flow only sporadically produce focused recharge to the Tesuque aquifer in the Española Basin. The current study examined the quantity and timing of streamflow and associated infiltration in Arroyo Hondo, an unregulated mountain-front stream that enters the basin from the western slope of the Sangre de Cristo Mountains. Traditional methods of stream gaging were combined with environmental-tracer based methods to provide the estimates. The study was conducted during a three-year period, October 1999–October 2002. The period was characterized by generally low precipitation and runoff. Summer monsoonal rains produced four brief periods of streamflow in water year 2000, only three of which extended beyond the mountain front, and negligible runoff in subsequent years. The largest peak flow during summer monsoon events was 0.59 cubic meters per second. Snowmelt was the main contributor to annual streamflow. Snowmelt produced more cumulative flow downstream from the mountain front during the study period than summer monsoonal rains.The presence or absence of streamflow downstream of the mountain front was determined by interpretation of streambed thermographs. Infiltration rates were estimated by numerical modeling of transient vertical streambed temperature profiles. Snowmelt extended throughout the instrumented reach during the spring of 2001. Flow was recorded at a station two kilometers downstream from the mountain front for six consecutive days in March. Inverse modeling of this event indicated an average infiltration rate of 1.4 meters per day at this location. For the entire study reach, the estimated total annual volume of infiltration ranged from 17,100 to 246,000 m3 during water years 2000 and 2001. During water year 2002, due to severe drought, streamflow and streambed infiltration in the study reach were both zero.
Niswonger, R.G.; Prudic, David E.; Pohll, G.; Constantz, J.
2005-01-01
Seepage losses along numerous mountain front streams that discharge intermittently onto alluvial fans and piedmont alluvial plains are an important source of groundwater in the Basin and Range Province of the Western United States. Determining the distribution of seepage loss along mountain front streams is important when assessing groundwater resources of the region. Seepage loss along a mountain front stream in northern Nevada was evaluated using a one-dimensional unsteady streamflow model. Seepage loss was incorporated into the spatial derivatives of the streamflow equations. Because seepage loss from streams is dependent on stream depth, wetted perimeter, and streambed properties, a two-dimensional variably saturated flow model was used to develop a series of relations between seepage loss and stream depth for each reach. This method works when streams are separated from groundwater by variably saturated sediment. Two periods of intermittent flow were simulated to evaluate the modeling approach. The model reproduced measured flow and seepage losses along the channel. Seepage loss in the spring of 2000 was limited to the upper reaches on the alluvial plain and totaled 196,000 m3, whereas 64% of the seepage loss in the spring of 2004 occurred at the base of the alluvial plain and totaled 273,000 m3. A greater seepage loss at the base of the piedmont alluvial plain is attributed to increased streambed hydraulic conductivity caused by less armoring of the channel. The modeling approach provides a method for quantifying and distributing seepage loss along mountain front streams that cross alluvial fans or piedmont alluvial plains. Copyright 2005 by the American Geophysical Union.
Comparative chronology of Archean HT/UHT crustal metamorphism
NASA Astrophysics Data System (ADS)
Caddick, Mark; Dragovic, Besim; Guevara, Victor
2017-04-01
Attainment of high crustal heat fluxes and consequent partial melting is critical to the stabilization of continental roots. Understanding the processes and timescales behind partial melting of continental crust in the Archean is thus paramount for understanding Archean tectonic modes and how stable cratons formed. High-temperature (HT) to ultrahigh-temperature (UHT) metamorphic rocks can record evidence for dynamic processes that result in advective heat fluxes and a substantial deviation from normal crustal geothermal gradients. Examination of the pressure-temperature conditions and timescales of HT/UHT metamorphism is thus essential to understanding the tectonic processes behind extreme crust heat fluxes and the formation of stable cratonic crust. Here, utilizing both traditional and nontraditional petrologic and geochronologic techniques, we compare the pressure-temperature-time paths of two Neoarchean terranes: the eastern Beartooth Mountains of the Wyoming Craton and the Pikwitonei Granulite Domain of the Superior Province. The Beartooth Mountains of Montana, USA, expose Archean rocks of the Wyoming Craton that are dominated by an ˜2.8 Ga calc-alkaline granitoid batholith known as the Long Lake Magmatic Complex (LLMC). The LLMC contains widespread, up to km-scale metasedimentary roof pendants, with ID-TIMS Sm-Nd garnet geochronology and laser ablation split stream (LASS) monazite geochronology suggesting that metamorphism occurred almost 100 Ma after entrainment by the LLMC [1]. Phase equilibria modeling and Zr-in-rutile thermometry constrain peak pressures and temperatures of ˜6-7 kbar and ˜780-800˚ C. Major element diffusion modeling of garnet suggest that granulite-facies temperatures were only maintained for a short duration, < 2 Ma. In contrast, the Pikwitonei Granulite Domain consists of >150,000 km2 of high-grade metamorphic rocks situated in the NW Superior Province. Phase equilibria modeling and trace element thermometry constrain peak temperatures in the southernmost part of the PGD to ˜760˚ C, while across the vast central and western parts of the PGD, peak temperatures range from 900-1000°C. LASS monazite and zircon ages, combined with ID-TIMS zircon and Sm-Nd garnet ages range from ˜2720 Ma to ˜2600 Ma, and combined with the thermometry, suggest that temperatures of >700˚ C were maintained region-wide for over 100 Ma, and that this was punctuated by thermal perturbations exceeding 900-950˚ C and occurring over substantially shorter timescales. The depths, temperatures and timescales inferred here suggest that although these regions were experiencing metamorphism within ˜100 Ma of each other, the primary driver for this metamorphism was different in each case. Timescale of metamorphism might be the most important constrained parameter here, highlighting the benefit of high resolution isotopic and geospeedometry approaches. [1] Dragovic et al., 2016. Precamb. Res., 283, 24-49. [2] Guevara et al., 2016. AGU abstracts with programs.
Folk Culture History of the Blue Ridge Mountains
ERIC Educational Resources Information Center
Wilhelm, Gene, Jr.
1975-01-01
The article covers the historic period between 1730 (the earliest proof of initial European settlement in the district) and 1800 (the closing of the pioneer stage of mountain development) of the Blue Ridge Mountains from Front Royal to Waynesboro, Virginia. (NQ)
NASA Astrophysics Data System (ADS)
Fitzgerald, Paul G.
1992-06-01
A fission track study of the Transantarctic Mountains (TAM) in the Granite Harbour and Wilson Piedmont Glacier areas of southern Victoria Land reveals information on the timing of uplift, the amount of uplift and erosion, and the structure of the mountains, especially the onshore Transantarctic Mountain Front (TAM Front), which represents the boundary between East and West Antarctica. Apatite ages are < 175 Ma and represent a thermal regime established after heating accompanying Jurassic magmatism. An apatite age profile from Mount England records a break in slope indicating uplift began at ˜55 Ma. Horizontal sampling traverses, plus fieldwork, delineate the structure of the TAM Front as a zone of north-south striking, steeply dipping normal faults, with displacements, dominantly down to the east, of 40-1000 m. The overall structure of the mountains in the area studied can be envisaged as a large tilt block or flexure. Its westerly limb dips gently under the ice cap, compared to its faulted eastern edge, the TAM Front. The bounding structure to the south is the Ferrar fault and to the north is a graben through which the Mackay Glacier drains the polar plateau. The edge of the flexure, or axis of maximum uplift, lies at Mount Termination, ˜30 km west of the McMurdo Sound coast. There has been ˜6 km of uplift since the early Cenozoic and 4.5-5 km of erosion along this axis. The amount of uplift decreases to the west at the same rate as the decrease in dip of the Kukri Peneplain, but the amount of erosion decreases more quickly as indicated by the increasing height of the mountains to the west. The axis of maximum uplift is traced north to Granite Harbour. The axis does not parallel the coast but has a more northerly trend. North-south striking longitudinal faults that delineate the structure of the TAM Front lie at an acute angle to the axis, indicating a dextral component to the dominantly east-west extension in the Ross Embayment. Architecture of the TAM typifies the features of an upper plate passive mountain range, whereas the Ross Embayment has the characteristics of a lower plate. The TAM Front represents an upper plate breakaway zone. Transfer faults may exist up major outlet glaciers that cut the TAM. The inflection point in the coastline at the southern end of McMurdo Sound may be due to the presence of a major transfer fault up or near the Skelton Glacier.
NASA Astrophysics Data System (ADS)
Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.
2017-12-01
We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (<20 Ωm) in the midcrust to lower crust that is centered beneath the highest elevations of the southern Rocky Mountains and (2) hydrated lithospheric mantle beneath the Great Plains with water content in excess of 100 ppm. We interpret the high conductivity region of the lower crust as a zone of partially molten basalt and associated deep-crustal fluids that is the result of recent (less than 10 Ma) tectonic activity in the region. The recent supply of volatiles and/or heat to the base of the crust in the late Cenozoic implies that modern-day tectonic activity in the western United States extends to at least the western margin of the Great Plains. The transition from conductive to resistive upper mantle is caused by a gradient in lithospheric modification, likely including hydration of nominally anhydrous minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.
5. INTERIOR OF FRONT SECTION OF BUILDING 431. VIEW TO ...
5. INTERIOR OF FRONT SECTION OF BUILDING 431. VIEW TO EAST. - Rocky Mountain Arsenal, Ethylene Dryer-Compressor Refrigeration Building, December Seventh Avenue & D Street, Commerce City, Adams County, CO
Geologic Map of the Sulphur Mountain Quadrangle, Park County, Colorado
Bohannon, Robert G.; Ruleman, Chester A.
2009-01-01
The main structural element in the Sulphur Mountain quadrangle is the Elkhorn thrust. This northwest-trending fault is the southernmost structure that bounds the west side of the Late Cretaceous and early Tertiary Front Range basement-rock uplift. The Elkhorn thrust and the Williams Range thrust that occurs in the Dillon area north of the quadrangle bound the west flank of the Williams Range and the Front Range uplift in the South Park area. Kellogg (2004) described widespread, intense fracturing, landsliding, and deep-rooted scarps in the crystalline rocks that comprise the upper plate of the Williams Range thrust. The latter thrust is also demonstrably a low-angle structure upon which the fractured bedrock of the upper plate was translated west above Cretaceous shales. Westward thrusting along the border of the Front Range uplift is probably best developed in that area. By contrast, the Elkhorn in the Sulphur Mountain quadrangle is poorly exposed and occurs in an area of relatively low relief. The thrust also apparently ends in the central part of the quadrangle, dying out into a broad area of open, upright folds with northwest axes in the Sulphur Mountain area.
A race against beetles: Conservation of limber pine
Anna Schoettle; Kelly Burns; Sheryl Costello; Jeff Witcosky; Brian Howell; Jeff Connor
2008-01-01
The Rocky Mountain Research Station, Forest Health Management, Rocky Mountain National Park, Arapaho-Roosevelt National Forest, and the Medicine Bow NF are coordinating efforts to conserve limber pine along the Front Range of the southern Rockies. Mountain pine beetle (MPB) populations are increasing dramatically in the area and killing limber pines in their...
NASA Astrophysics Data System (ADS)
Bresciani, Etienne; Cranswick, Roger H.; Banks, Eddie W.; Batlle-Aguilar, Jordi; Cook, Peter G.; Batelaan, Okke
2018-03-01
Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR) or subsurface flow from the mountain (mountain-block recharge, MBR). While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC) data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream-aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC) data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.
Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005
Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.
2009-01-01
The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and stable isotopes of hydrogen and oxygen. Water samples from all 36 wells were analyzed for dissolved-gas concentration including noble gases and tritium/helium-3. Within the basin fill, dissolved-solids concentration generally increases with distance along flowpaths from recharge areas, and shallower flowpaths tend to have higher concentrations than deeper flowpaths. Nitrate concentrations generally are at or below natural background levels. Dissolved-gas recharge temperature data support the conceptual model of the basin-fill aquifers and highlight complexities of recharge patterns in different parts of the valley. Dissolved-gas data indicate that the highest elevation recharge sources for the basin-fill aquifer are subsurface inflow derived from recharge in the adjacent mountain block between the mouths of American Fork and Provo Canyons. Apparent ground-water ages in the basin-fill aquifer, as calculated using tritium/helium-3 data, range from 2 to more than 50 years. The youngest waters in the valley occur near the mountain fronts with apparent ages generally increasing near the valley lowlands and discharge area around Utah Lake. Flowpaths are controlled by aquifer properties and the location of the predominant recharge sources, including subsurface inflow and recharge along the mountain front. Subsurface inflow is distributed over a larger area across the interface of the subsurface mountain block and basin-fill deposits. Subsurface inflow occurs at a depth deeper than that at which mountain-front recharge occurs. Recharge along the mountain front is often localized and focused over areas where streams and creeks enter the valley, and recharge is enhanced by the associated irrigation canals.
NASA Astrophysics Data System (ADS)
Shuman, B. N.; Serravezza, M.
2016-12-01
The paleohydrologic record of western North America since the last glacial maximum reveals a wide range of hydroclimatic variability and distinctive patterns associated with abrupt climate changes. To evaluate the sequence of abrupt hydroclimatic shifts and centennial-to-millennial hydrologic variability in western North America over the past 17 ka, we reconstruct lake-level histories from two high-elevation lakes in the Beartooth and Bighorn Mountains. The lakes represent the headwaters of the Missouri River drainage in northern Wyoming, but also have the potential to capture regional hydroclimate variability that links the northern Rocky Mountains to the mid-continent, Pacific Northwest, and the Great Basin. We first discuss the stratigraphic record of lake-level changes in small mid-latitude lakes and then use ground-penetrating radar (GPR) and sediment cores to track the elevations of shoreline sediments within the lakes through time. We compare the stratigraphies to the records from four other lakes in Wyoming and Colorado, and find widespread evidence for a Terminal Pleistocene Drought from 15-11 ka, an early Holocene humid period from 11-8 ka, and a period of severe mid-Holocene aridity from 8-5.7 ka. The northern Wyoming lakes also provide evidence of high levels before ca. 15 ka, including rapid hydroclimatic changes at ca. 16.8 ka during Heinrich Event 1. We place the changes in a broad context by summarizing and mapping water-level changes from 107 additional, previously studied lakes. Important patterns include 1) extensive drying across the western U.S. after 15 ka; 2) coherent sub-regional differences during the Younger Dryas and Pleistocene-Holocene transition; 3) a north-south contrast from 9-6 ka consistent with a northward shift in storm tracks as the influence of the Laurentide Ice Sheet diminished; and 4) rapid increases in effective moisture across much of western North America from 6-4 ka.
Interior view to the south of computer work stations in ...
Interior view to the south of computer work stations in front of elevated work area 1570 on left and elevated glassed in work area 1870 on right - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID
NASA Astrophysics Data System (ADS)
Peyton, Sara Lynn
This dissertation contains two studies that use very different techniques to investigate the Mesozoic and Cenozoic tectonics of the western USA. The first study investigates shortening in the Sevier thrust belt of northeast Utah and southwest Wyoming using cross sections and seismic reflection data. The second study investigates the low-temperature thermochronology of the Laramide Ranges using apatite (U-Th)/He dating. We used cross sections and seismic reflection data to investigate bed length discrepancies within the hanging wall of the Absaroka thrust in the Sevier thrust belt of northeast Utah and southwest Wyoming. Restoration of cross sections suggests that there was ˜8-14 km of pre-Absaroka-thrust shortening above the Jurassic Preuss salt detachment, but not below it, in the hanging wall of the Absaroka thrust. Reflection seismic data over the hanging wall of the Crawford thrust show that the Crawford thrust is not offset along the Preuss salt detachment, indicating that the additional shortening on the Absaroka plate was transferred east before main movement on the Crawford thrust. Although early displacement on the Crawford thrust cannot be ruled out as the cause of the extra shortening, surface and subsurface geology suggests slip from the western thrust system (Willard and Lost Creek thrusts) was transferred several tens of kilometers east along the Jurassic Preuss salt detachment between ˜102-90 Ma, to the future location of the Absaroka thrust hanging wall. The lack of deformation of the Crawford thrust on the seismic data, along with shortening and extension estimates from cross sections, also indicate that the magnitude of Paleocene and post-early Eocene shortening on the Medicine Butte thrust was essentially offset by subsequent extension on the middle Eocene to late Oligocene Almy-Acocks normal-fault system. For the second study in this dissertation, we dated 91 borehole and surface samples from Laramide-age, basement-cored uplifts of the Rocky Mountain foreland (Wind River, Beartooth, Bighorn and Laramie Ranges) and the Uncompahgre Uplift using the apatite (U-Th)/He system. Apatite (U-Th)/He ages generally decrease with increasing subsurface depth (decreasing elevation) and most samples show age dispersion ranging from tens to hundreds of Myr. Additionally, several samples show correlations between apatite (U-Th)/He age and effective U concentration (eU = [U] + 0.235[Th]) of the crystal, indicating that radiation damage has affected He diffusivity, and hence (U-Th)/ He age. Many surface and near-surface samples have apatite (U-Th)/He ages that are older than corresponding apatite fission-track ages. Forward modeling of Laramide-type thermal histories using a radiation damage diffusion model showed that (U-Th)/He ages may be widely dispersed, and may be older than corresponding apatite fission-track ages within a fossil He partial retention zone. Most of our samples, however, do not show the correlation between (U-Th)/He age and eU predicted by radiation damage diffusion models. We investigated the influence of both grain size and eU content and show that the effects of grain size can obscure (U-Th)/ He age-eU correlations and, similarly, the effect of eU variation can obscure (U-Th)/ He age-grain size correlations. (U-Th)/He ages that are older than fission-track ages from high peaks in the Wind River Range, and from some samples from the Beartooth Range, are most likely the result of He implantation from high eU phases. Best-fit thermal histories from the inversion of age-eU pairs were extrapolated to other elevations to create model age-elevation profiles for a range of eU concentrations. These model profiles approximate our real data. Inverse modeling of (U-Th)/He age data suggests that rapid exhumation within the Laramide province likely began earlier in the Bighorn Mountains (before ˜71 Ma) than the Beartooth Range (before ˜58 Ma), and that the borehole at the northern end of the Laramie Range penetrated a fault sliver at depth.
16. VIEW OF ROAD AND LEVELED AREA IN FRONT OF ...
16. VIEW OF ROAD AND LEVELED AREA IN FRONT OF HATCH ADIT (FEATURE B-28) WHICH IS ON THE RIGHT SIDE OF PHOTOGRAPH. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
NASA Astrophysics Data System (ADS)
Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan
2016-04-01
On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.
NASA Astrophysics Data System (ADS)
Parker, Don F.; White, John C.; Ren, Minghua; Barnes, Melanie
2017-11-01
Voluminous silicic lava flows, erupted 37.4 Ma from widespread centers within the Davis Mountains Volcanic Field (DMVF), covered approximately 10,000 km2 with an initial volume as great as 1000 km3. Lava flows form three major stratigraphic units: the Star Mountain Rhyolite (minimum 220 km3) of the eastern Davis Mountains and adjacent Barilla Mountains, the Crossen Formation ( 75 km3) of the southern Davis Mountains, and the Bracks Rhyolite ( 75 km3) of the Rim Rock region west of the Davis Mountains proper. Similar extensive rhyolite lava also occurs in slightly younger units (Adobe Canyon Rhyolite, 125 km3, 37.1 Ma), Sheep Pasture Formation ( 125 km3, 36 Ma) and, less voluminously, in the Paisano central volcano ( 36.9 Ma) and younger units in the Davis Mountains. Individual lava flows from these units formed fields as extensive as 55 km and 300-m-thick. Flood rhyolite lavas of the Davis Mountains are marginally peralkaline quartz trachyte to low-silica rhyolite. Phenocrysts include alkali feldspar, clinopyroxene, FeTi oxides, and apatite, and, rarely, fayalite, as well as zircon in less peralkaline units. Many Star Mountain flows may be assigned to one of four geochemical groupings. Temperatures were moderately high, ranging from 911 to 860 °C in quartz trachyte and low silica rhyolite. We suggest that flood rhyolite magma evolved from trachyte magma by filter pressing processes, and trachyte from mafic magma in deeper seated plutons. The Davis Mountains segment of Trans-Pecos Texas overlies Grenville basement and is separated from the older Southern Granite and Rhyolite Province to the north by the Grenville Front, and from the younger Coahuila terrane to the south by the Ouachita Front. We suggest that basement structure strongly influenced the timing and nature of Trans-Pecos magmatism, probably in varying degrees of impeding the ascent of mantle-derived mafic magmas, which were produced by upwelling of asthenospheric mantle above the foundered Farallon slab. Basalt was able to penetrate Coahuila crust in the Big Bend region. Thicker Grenville crust under the Davis Mountains retarded ascent of mafic magmas, allowing mafic plutons to differentiate into silicic magma that was eventually erupted as flood lava. North of the Grenville Front, magmatism was further delayed and thicker, older crust there may have helped concentrate magmatism under the Davis Mountain region. Only after the onset of Basin and Range faulting was true basalt erupted over much of the Trans Pecos.
A. W. Schoettle
2004-01-01
Limber pine and Rocky Mountain bristlecone pine are currently threatened by the non-native pathogen white pine blister rust (WPBR). Limber pine is experiencing mortality in the Northern Rocky Mountains and the infection front continues to move southward. The first report of WPBR on Rocky Mountain bristlecone pine was made in 2003 (Blodgett and Sullivan 2004), at a site...
Saltus, Richard W.; Stanley, Richard G.; Haeussler, Peter J.; Jones, James V.; Potter, Christopher J.; Lewis, Kristen A.
2016-01-01
The Cenozoic Susitna basin lies within an enigmatic lowland surrounded by the Central Alaska Range, Western Alaska Range (including the Tordrillo Mountains), and Talkeetna Mountains in south-central Alaska. Some previous interpretations show normal faults as the defining structures of the basin (e.g., Kirschner, 1994). However, analysis of new and existing geophysical data shows predominantly (Late Oligocene to present) thrust and reverse fault geometries in the region, as previously proposed by Hackett (1978). A key example is the Beluga Mountain fault where a 50-mGal gravity gradient, caused by the density transition from the igneous bedrock of Beluga Mountain to the >4-km-thick Cenozoic sedimentary section of Susitna basin, spans a horizontal distance of ∼40 km and straddles the topographic front. The location and shape of the gravity gradient preclude a normal fault geometry; instead, it is best explained by a southwest-dipping thrust fault, with its leading edge located several kilometers to the northeast of the mountain front, concealed beneath the shallow glacial and fluvial cover deposits. Similar contractional fault relationships are observed for other basin-bounding and regional faults as well. Contractional structures are consistent with a regional shortening strain field inferred from differential offsets on the Denali and Castle Mountain right-lateral strike-slip fault systems.
NASA Astrophysics Data System (ADS)
Mogk, D. W.
1984-12-01
Six major rock units in the North Snowy Block in an Archean mobile belt are recognized between all units representing discontinuities in metamorphic grade, structural style, geochemistry, and isotopic ages. Four of the units occur in NE trending linear belts; the Basement Gneiss; the phyllitic Davis Creek Schist; the mount cowen augen gneis; the Paragneiss unit. Overlying the linear units is the 3.2 Ga old Pine Creek Nappe Complex, an isoclinally folded, middle to upper amphibolite facies, thrust nappe consisting of the Barney Creek Amphibolite, George Lake Marble and Jewel Quartzite. The highest structural units, including a thick sequence of upper amphibolite grade supracrustal rocks and a lower section of injected 3.4 Ga old granitic to tonalitic migmatitic rocks were emplaced on the Columbine Thrust. It is shown that there was secular variation in tectonic style in the Archean of southwest Montana. Three stages are recognized: (1) melting of ancient matic crust produced trondhjemitic continental nuclei; (2) numerous ensialic basins were created and destroyed, resulting in high grade metamorphism and mignatization of supracrustal rocks; and (3) contemporary style plate tectonics resulted in generation of large volumes of andesities and calc-alkaline granitic rocks, transcurrent faulting, and thrust faulting.
Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.
2006-01-01
The U.S. Geological Survey (USGS) conducted a study from 2002 through 2003 through its National Water-Quality Assessment (NAWQA) Program to determine the effects of urbanization on the physical, chemical, and biological characteristics of stream ecosystems along the Front Range of the Rocky Mountains. The objectives of the study were to (1) examine physical, chemical, and biological responses at sites ranging from minimally to highly developed; (2) determine the major physical, chemical, and landscape variables affecting aquatic communities at these sites; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin.
Mountain Plains Learning Experience Guide: Automotive Repair. Course: Suspension Systems.
ERIC Educational Resources Information Center
Schramm, C.; Osland, Walt
One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, maintenance, and repair of front-end suspension and steering mechanisms. The course is comprised of five units: (1) Tire Balancing, (2) Manual Steering Gears, (3) Power Steering, (4) Fundamentals of Suspension, and (5) Front-End…
NASA Technical Reports Server (NTRS)
Sullivan, John T.; McGee, Thomas J.; Langford, Andrew O.; Alvarez, Raul J., II; Senff, Christoph; Reddy, Patrick J.; Thompson, Anne M.; Twigg, Laurence W.; Sumnicht, Grant K.; Lee, Pius;
2016-01-01
A high-ozone (O3) pollution episode was observed on 22 July 2014 during the concurrent Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) and Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns in northern Colorado. Surface O3 monitors at three regulatory sites exceeded the Environmental Protection Agency (EPA) 2008 National Ambient Air Quality Standard (NAAQS) daily maximum 8h average (MDA8) of 75ppbv. To further characterize the polluted air mass and assess transport throughout the event, measurements are presented from O3 and wind profilers, O3-sondes, aircraft, and surface-monitoring sites. Observations indicate that thermally driven upslope flow was established throughout the Colorado Front Range during the pollution episode. As the thermally driven flow persisted throughout the day, O3 concentrations increased and affected high-elevation Rocky Mountain sites. These observations, coupled with modeling analyses, demonstrate a westerly return flow of polluted air aloft, indicating that the mountain-plains solenoid circulation was established and impacted surface conditions within the Front Range.
Growth and gravitational collapse of a mountain front of the Eastern Cordillera of Colombia
NASA Astrophysics Data System (ADS)
Kammer, Andreas; Montana, Jorge; Piraquive, Alejandro
2016-04-01
The Eastern Cordillera of Colombia is bracketed between the moderately east-dipping flank of the Central Cordillera on its western and the gently bent Guayana shield on its eastern side. It evolved as a response to a considerable displacement transfer from the Nazca to the Southamerican plate since the Oligocene break-up of the Farallon plate. One of its distinctive traits refers to its significant shortening by penetrative strain at lower and folding at higher structural levels, approximating a wholesale pure-shear in analogy to a vice model or a crustal welt sandwiched between rigid buttresses. This contrasting behavior may be explained by the spatial coincidence between Neogene mountain belt and a forebulge that shaped the foreland trough during a Cretaceous subduction cycle and was very effective in localizing a weakening of the backarc region comprised between two basin margin faults. In this paper we examine a two-phase evolution of the Eastern mountain front. Up to the late Miocene deformation was restrained by the inherited eastern basin margin fault and as the cordilleran crust extruded, a deformation front with an amplitude similar the present structural relief of up to 10.000 m may have built up. In the Pliocene convergence changed from a roughly strike-perpendicular to an oblique E-W direction and caused N-S trending faults to branch off from the deformation front. This shortening was partly driven by a gravitational collapse of the Miocene deformation front, that became fragmented by normal faults and extruded E on newly formed Pliocene thrust faults. Normal faults display displacements of up to 3000 m and channelized hydrothermal fluids, leading to the formation of widely distributed fault breccias and giving rise to a prolific Emerald mineralization. In terms of wedge dynamics, the Pliocene breaching of the early formed deformation front helped to establish a critical taper.
Russell T. Graham
2003-01-01
In 2002 much of the Front Range of the Rocky Mountains in Colorado was rich in dry vegetation as a result of fire exclusion and the droughty conditions that prevailed in recent years. These dry and heavy fuel loadings were continuous along the South Platte River corridor located between Denver and Colorado Springs on the Front Range. These topographic and fuel...
Denning, A. Scott
1993-01-01
We explored the seasonal characteristics in wet deposition chemistry for two sites located at different elevations along the east slope of the Colorado Front Range in Rocky Mountain National Park. Seasonally separated precipitation was stratified into highly concentrated (high salt), dilute (low salt), or acid-dominated precipitation groups. These groups and unstratified precipitation data were related to mean easterly or westerly zonal winds to determine direction of local transport. Strong acid anion associations were also determined for the stratified and unstratified precipitation data sets. We found that strong acid anions, acidity, ammonium, and high salt concentrations originate to the east of Rocky Mountain National Park, and are transported via up-valley funneling winds or convective instability from differential heating of the mountains and the plains to the east. These influence the composition of precipitation at Beaver Meadows, the low elevation site, throughout the year, while their effect on precipitation at Loch Vale, the high elevation site, is felt most strongly during the summer. During the winter, Loch Vale precipitation is very dilute, and occurs in conjunction with westerly winds resulting from the southerly location of the jet stream.
Nitrogen saturation in the Rocky Mountains
Mark W. Williams; Jill S. Baron; Nel Caine; Richard Sommerfeld; Robert Sanford
1996-01-01
Nitrogen saturation is occurring throughout high-elevation catchments of the Colorado Front Range. Annual inorganic N loading in wet deposition to the Front Range of ~4 kg ha-1 yr-1 is about twice that of the Pacific States and similar to many sites in the northeastern United States. In the last ten years at Niwot Ridge/Green Lakes Valley and Glacier Lakes, annual...
Geologic map of the greater Denver area, Front Range urban corridor, Colorado
Trimble, Donald E.; Machette, Michael N.
1979-01-01
This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.
Physical Controls on Delta Formation and Carbon Storage in Mountain Lakes
NASA Astrophysics Data System (ADS)
Scott, D.; Wohl, E.
2014-12-01
Carbon acts as a component in greenhouse gases that regulate global climate. It is imperative to understand the transport and storage of carbon in order to understand and manage climate change. We examine terrestrial carbon storage in mountain lake deltas as a way of furthering our understanding of the terrestrial carbon sink, which is a poorly understood but significant contributor to the global carbon cycle. We examined subalpine lake deltas in the Washington Cascade Range and Colorado Front Range to test the following hypotheses: 1) The size of the deltaic carbon sink is strongly correlated with incision at the outlet of the lake and the topography of the basin. 2) Areas of high exhumation rates will have smaller and fewer deltas because a high exhumation rate should lead to more confined basins and more colluvium available to dam lake outlets, preventing lake level drop and corresponding delta formation. 3) High-energy deltas will transport more carbon to lakes, avoiding the deltaic carbon sink. At 27 lakes, we surveyed mountain lake deltas and took sediment samples, surveyed lake outlets in the field, and measured lake valley confinement in GIS to test hypotheses 1 and 3. Across the Snoqualmie and Skykomish watersheds in the Washington Cascades and the Colorado Front Range, we took a census of the number of natural lakes and the proportion of those lakes with deltas to test hypothesis 2. Preliminary results indicate that the Washington Cascades (high exhumation rate) have a higher density of lakes, but fewer deltas, than the Colorado Front Range (low exhumation rate). We also suspect that deltas in the Washington Cascades will have a lower carbon content than the Colorado Front Range due to generally higher energy levels on deltas. Finally, we found a substantial difference in the geomorphology and sediment type between beaver-affected and non-beaver-affected lakes in the Colorado Front Range.
Robert R. Alexander
1986-01-01
Guidelines are provided to help forest managers and silviculturists develop even- and/or uneven-aged cutting practices needed to convert old-growth and mixed ponderosa pine forests in the Front Range into managed stands for a variety of resource needs. Guidelines consider stand conditions, and insect and disease susceptibility. Cutting practices are designed to...
NASA Astrophysics Data System (ADS)
Peyton, S. L.; Reiners, P. W.
2007-12-01
We dated borehole and surface samples from the Wind River and Beartooth Laramide-age, basement-cored uplifts of the Rocky Mountain foreland using the apatite (U-Th)/He (AHe) system. Comparison of these results to previously published apatite fission-track (AFT) data along with the incorporation of new He diffusion models (Shuster et al., 2006), reveals several new insights into, and poses new interpretational challenges for, the shallow exhumation histories of these ranges. Deep (2.2-2.8 km below surface) borehole samples from the Wind River Range have AHe ages of 9-12 Ma, and suggest at least 600 m of rapid exhumation during the Miocene. Shallower samples range from 35-66 Ma and are consistent with exhumation of a fossil partial retention zone. Previously-published apatite fission track (AFT) data from the same borehole show at least 2 km of rapid exhumation at ~45-38 Ma at depths where AHe ages are 9-50 Ma. This contrasts with the AHe ages which show slow exhumation between 12-66 Ma and have a trend on an age-elevation plot that appears to cut across the AFT age trend. Forward modeling of the cooling ages of these data using well-constrained thermal histories and conventional Durango apatite He diffusion data cannot explain these coupled AFT-AHe age-elevation relationships. However, modeling using diffusion kinetics of the Shuster et al. radiation-damage trapping model can explain the observed age trends, including the apparent presence of a 45-38 Ma exhumation event in the AFT data and its absence in the AHe data. In the model the shallow samples do not reach high enough temperatures for annealing of accumulated radiation damage, so He is trapped and ages are much older than predicted by conventional diffusion models. Previously-published AFT data from the Beartooth Range also show a large Laramide-age exhumation event, dated at 57-52 Ma. Similar to our observations from the Wind River Range, this event is not represented in our AHe results from borehole samples, which instead show slow cooling between at least 63-10 Ma. The trapping model predicts that the observed AHe age of a single apatite grain will be proportional to its effective Uranium content (eU), a proxy for radiation damage. Multiple single-grain replicates from a sample from the Wind River borehole are consistent with this, showing a strong correlation with eU. Although the trapping-diffusion model explains the coupled AFT-AHe data of borehole samples, surface samples from the Fremont Peak area in the Wind River Range have AHe ages that are older than the corresponding previously-published AFT ages over the 1.2 km elevation traverse sampled. AFT ages show ~1 km of rapid exhumation at ~62-58 Ma; corresponding AHe ages are as much as 20 Myr older. Although the radiation damage trapping model predicts that some AHe ages may be older than the corresponding AFT ages, thermal- diffusion forward models cannot explain these large age differences over such a large sampling interval, even if trapping model kinetic parameters are varied by 5%. Thus, discrepancies in AFT and AHe ages of these surficial samples remain problematic. The thermal histories required to approximate the borehole data require burial up to the end of the Cretaceous of ~3-4 km followed by at least two phases of cooling and exhumation. The first and larger cooling event of several tens of degrees (~3-4 km of exhumation) occurred during the Paleocene-Eocene, followed by a smaller cooling event of a few tens of degrees (~1 km of exhumation) during the Miocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.D. LeCain; N. lu; M. Kurzmack
Temperature and air-pressure monitoring in a vertical borehole located in Pagany Wash, a normally dry stream-carved channel northeast of Yucca Mountain, Nevada, indicated that the annual temperature wave was measurable to a depth of 11.1 m. Temperature depressions were measured at depths of 3.1, 6.1, 9.2, and 11.1 m below ground surface. The temperature depressions were interpreted to be the result of infiltration associated with the 1997-1998 El Nino precipitation. A pressure differential, of approximately 2 kiloPascals, between stations located 11.1 and 24.5 m below ground surface was interpreted to be the result of compressed air ahead of the wettingmore » front. The pressure differences between stations indicated that the wetting front migrated deeper than 35.2 m and that the Yucca Mountain Tuff retarded the downward movement of the wetting front. An analytical method indicated that the infiltration flux through the Pagany Wash alluvium due to the 1997-1998 El Nino precipitation was approximately 940 mm. A one-dimensional numerical model indicated that the infiltration flux was approximately 1000 mm. Sensitivity analysis indicated that the potential temperature decrease due to conduction was minimal and that cooler surface temperatures could not account for the measured subsurface temperature depressions.« less
Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30'-22°S
NASA Astrophysics Data System (ADS)
Hoke, Gregory D.; Isacks, Bryan L.; Jordan, Teresa E.; Blanco, NicoláS.; Tomlinson, Andrew J.; Ramezani, Jahandar
2007-10-01
The western Andean mountain front forms the western edge of the central Andean Plateau. Between 18.5° and 22°S latitude, the mountain front has ˜3000 m of relief over ˜50 km horizontal distance that has developed in the absence of major local Neogene deformation. Models of the evolution of the plateau, as well as paleoaltimetry estimates, all call for continued large-magnitude uplift of the plateau surface into the late Miocene (i.e., younger than 10 Ma). Longitudinal river profiles from 20 catchments that drain the western Andean mountain front contain several streams with knickpoint-bounded segments that we use to reconstruct the history of post-10 Ma surface uplift of the western flank of the central Andean Plateau. The generation of knickpoints is attributed to tectonic processes and is not a consequence of base level change related to Pacific Ocean capture, eustatic change, or climate change as causes for creating the knickpoint-bounded stream segments observed. Minor valley-filling alluvial gravels intercalated with the 5.4 Ma Carcote ignimbrite suggest uplift related river incision was well under way by 5.4 Ma. The maximum age of river incision is provided by the regionally extensive, approximately 10 Ma El Diablo-Altos de Pica paleosurface. The river profiles reveal that relative surface uplift of at least1 km occurred after 10 Ma.
Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy)
NASA Astrophysics Data System (ADS)
Tavani, Stefano; Storti, Fabrizio; Bausã, Jordi; MuñOz, Josep A.
2012-08-01
Thrust-related anticlines exposed at the mountain front of the Cenozoic Appenninic thrust-and-fold belt share the presence of hinterlandward dipping extensional fault zones running parallel to the hosting anticlines. These fault zones downthrow the crests and the backlimbs with displacements lower than, but comparable to, the uplift of the hosting anticline. Contrasting information feeds a debate about the relative timing between thrust-related folding and beginning of extensional faulting, since several extensional episodes, spanning from early Jurassic to Quaternary, are documented in the central and northern Apennines. Mesostructural data were collected in the frontal anticline of the Sibillini thrust sheet, the mountain front in the Umbria-Marche sector of the northern Apennines, with the aim of fully constraining the stress history recorded in the deformed multilayer. Compressional structures developed during thrust propagation and fold growth, mostly locating in the fold limbs. Extensional elements striking about perpendicular to the shortening direction developed during two distinct episodes: before fold growth, when the area deformed by outer-arc extension in the peripheral bulge, and during a late to post thrusting stage. Most of the the extensional deformation occurred during the second stage, when the syn-thrusting erosional exhumation of the structures caused the development of pervasive longitudinal extensional fracturing in the crestal sector of the growing anticline, which anticipated the subsequent widespread Quaternary extensional tectonics.
NASA Astrophysics Data System (ADS)
Bush, Meredith A.; Horton, Brian K.; Murphy, Michael A.; Stockli, Daniel F.
2016-09-01
New geochronological constraints on upper crustal exhumation in the southern Rocky Mountains help delineate the latest Cretaceous-Paleogene history of drainage reorganization and landscape evolution during Laramide flat-slab subduction beneath western North America. Detrital zircon U-Pb results for the Raton basin of southern Colorado and northern New Mexico define the inception of coarse-grained siliciclastic sedimentation and a distinctive shift in provenance, from distal to proximal sources, that recorded shortening-related uplift and unroofing along the Laramide deformation front of the northern Sangre de Cristo Mountains. This Maastrichtian-early Paleocene ( 70-65 Ma) change—from distal foreland accumulation of sediment derived from the thin-skinned Cordilleran (Sevier) fold-thrust belt to coarse-grained sedimentation proximal to a Laramide basement block uplift—reflects cratonward (eastward) deformation advance and reorganization of drainage systems that supplied a large volume of Paleocene-lower Eocene sediments to the Gulf of Mexico. The timing of unroofing along the eastern deformation front is synchronous with basement-involved shortening across the interior of the Laramide province, suggesting abrupt wholesale uplift rather than a systematic inboard advance of deformation. The growth and infilling of broken foreland basins within the interior and margins of the Laramide province had a significant impact on continental-scale drainage systems, as several ponded/axial Laramide basins trapped large volumes of sediment and induced reorganization of major source-to-sink sediment pathways.
Wasiolek, Maryann
1995-01-01
Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.
Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.
2007-01-01
Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.
NASA Astrophysics Data System (ADS)
Thompson, T. B.; Meade, B. J.
2015-12-01
The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.
Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.
2003-01-01
This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.
View east over the Rocky Mountains and Great Plains
1974-02-01
SL4-138-3875 (February 1974) --- A color oblique photograph looking east over the Rocky Mountains and Great Plains. This view covers a portion of the States of Colorado, Wyoming, and Nebraska. A Skylab 4 crewmen took this picture with a hand-held 70mm Hasselblad camera. This entire region, covered with a blanket of snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Man's only apparent change to the snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. Grand Junction, Colorado on the western slope of the Rocky Mountains is just off the photograph at left center bottom. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton and Yale form the high region of the Collegiate Range which is the pronounced mountain area in the right center. Snow cover not only enhances mountain features but also the drainage patterns. East of Denver (right corner) the sinuous trace of the South Platte River (center) and its junction with the North Platte River near North Platte, Nebraska. Lake McConaughy in Nebraska is the body of water (black) near the river intersection. The trace of the Republic River in southern Nebraska is visible near the right corner of the photography. Geologic and hydro logic studies using this photograph will be conducted by Dr. Roger Morrison, U.S. Geological Survey. Photo credit: NASA
High Flight: History of the U.S. Air Force Academy
2009-09-01
Albuquerque: University of New Mexico , 1999. (NA 6610.C66 U565 1999 Spec Coll) Netsch, Walter. Walter A. Netsch, FAIA: A Critical Appreciation and...Uniting Mountain & Plain: Cities, Law, and Environmental Change along the Front Range. Albuquerque: University of New Mexico Press, 2002. (Being...Rocky Mountain Regions of Southern Wyoming, Colorado, and Northern New Mexico . San Francisco: Sierra Club Books, 1991. (QH 104.5 .R6 B46 1991
NASA Astrophysics Data System (ADS)
Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo
2018-02-01
A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.
NASA Astrophysics Data System (ADS)
Heale, C. J.; Bossert, K.; Snively, J. B.; Fritts, D. C.; Pautet, P.-D.; Taylor, M. J.
2017-01-01
A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a λx=200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25-28 km) waves within the warm phase of the large mountain wave. The simulation results show rapid breaking above 70 km altitude, with the preferential formation of almost-stationary vortical instabilities within the warm phase front of the mountain wave. An OH airglow model is used to identify the presence of small-scale wave-like structures generated in situ by the breaking of the mountain wave that are consistent with those seen in the observations. While it is easy to interpret these feature as waves in OH airglow data, a considerable fraction of the features are in fact instabilities and vortex structures. Simulations suggest that a combination of a large westward perturbation velocity and shear, in combination with strong perturbation temperature gradients, causes both dynamic and convective instability conditions to be met particularly where the wave wind is maximized and the temperature gradient is simultaneously minimized. This leads to the inevitable breaking and subsequent generation of smaller-scale waves and instabilities which appear most prominent within the warm phase front of the mountain wave.
3-D image of urban areas and mountains of the northern Front Range, Colorado
Fishman, N.S.; Evans, J.M.; Olmstead, R.J.; Langer, W.H.
2000-01-01
Over the past 30 years, communities in the Northern Front Range of Colorado have experienced tremendous growth rivaling or surpassing that in other parts of the United States. This growth has challenged businesses as well as city, county, State, and Federal planners to meet the increasing demands for natural resources necessary for growth. Such resources include construction aggregate (stone, sand, and gravel), water, oil, and natural gas. The Front Range Infrastructure Resources Project (FRIRP) of the U.S. Geological Survey (USGS) is in the process of studying these resources, and this publication is the first in a series (USGS Geologic Investigations Series I-2750) that deals with resources in the northern Front Range urban corridor.
Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme
2003-01-01
Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...
NASA Astrophysics Data System (ADS)
Singh, Vimal; Tandon, S. K.
2008-12-01
The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT. Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills. Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.
ERIC Educational Resources Information Center
Bull, William B.
1984-01-01
Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…
NASA Astrophysics Data System (ADS)
Počakal, Damir; Večenaj, Željko; Štalec, Janez
Settled in the mid latitudes of the Northern Hemisphere, Croatia is exposed to the frequent occurrence of severe thunderstorms and hail, especially in the continental part between Sava, Drava and Mura rivers (Panonian basin). On the basis of hail data collected in continental part of Croatia (26,800 km 2) in period 1981-2006, it is found that in this area of Croatia which is protected from hail, two different areas can be identified: western (hilly) part with the greatest number of days with hail, and eastern (generally flat) part which has mostly minimum days with hail. Through spatial distribution of hailfall duration, it is shown that majority of quadrants with longer average duration of hailfall is in front of the mountain, and concerning the analysis of Cb-cells movement, it is also found that the areas with greater diameter of hail can be found in front of the mountain.
NASA Technical Reports Server (NTRS)
Bloom, A. L.; Strecker, M. R.; Fielding, E. J.
1984-01-01
A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.
Groundwater availability of the Denver Basin aquifer system, Colorado
Paschke, Suzanne
2011-01-01
The Denver Basin aquifer system is a critical water resource for growing municipal, industrial, and domestic uses along the semiarid Front Range urban corridor of Colorado. The confined bedrock aquifer system is located along the eastern edge of the Rocky Mountain Front Range where the mountains meet the Great Plains physiographic province. Continued population growth and the resulting need for additional water supplies in the Denver Basin and throughout the western United States emphasize the need to continually monitor and reassess the availability of groundwater resources. In 2004, the U.S. Geological Survey initiated large-scale regional studies to provide updated groundwater-availability assessments of important principal aquifers across the United States, including the Denver Basin. This study of the Denver Basin aquifer system evaluates the hydrologic effects of continued pumping and documents an updated groundwater flow model useful for appraisal of hydrologic conditions.
Earth Observations taken by the STS-112 crew
2002-10-12
STS112-708-002 (7-18 October 2002) --- This image, photographed from the Earth-orbiting Space Shuttle Atlantis, covers parts of Utah, Colorado, Wyoming and Idaho. The Front Range of the Rockies is the dark range crossing the bottom of the view, with Denver and neighboring cities (grays) situated in the gentle embayment of the mountains (bottom center of the view). Great Salt Lake in Utah appears as two colors of blue top left, with the snow-covered Uinta Mountains just below, in this northwesterly view. Most of the view encompasses the brown plains of western Wyoming (center) and the cluster of mountains around Yellowstone (top center, top right, with snow). Beyond the brown Snake River Plain, black rocks of the Sawtooth Mountains and neighboring ranges of central Idaho appear top center.
Jarrett, R.D.; Costa, J.E.
1988-01-01
A multidisciplinary study of precipitation and streamflow data and paleohydrologic studies of channel features was made to analyze the flood hydrology of foothill and mountain streams in the Front Range of Colorado, with emphasis on the Big Thompson River basin, because conventional hydrologic analyses do not adequately characterize the flood hydrology. In the foothills of Colorado, annual floodflows are derived from snowmelt at high elevations in the mountain regions, from rainfall at low elevation in the plains or plateau regions, or from a combination of rain falling on snow or mixed population hydrology. Above approximately 7,500 ft, snowmelt dominates; rain does not contribute to the flood potential. Regional flood-frequency relations were developed and compared with conventional flood-estimating technique results, including an evaluation of the magnitude and frequency of the probable maximum flood. Evaluation of streamflow data and paleoflood investigations provide an alternative for evaluating flood hydrology and the safety of dams. The study indicates the need for additional data collection and research to understand the complexities of the flood hydrology in mountainous regions, especially its effects on flood-plain management and the design of structures in the flood plain. (USGS)
NASA Astrophysics Data System (ADS)
Porter, Mason C.; Rutherford, Bradley S.; Speece, Marvin A.; Mosolf, Jesse G.
2016-04-01
Industry seismic reflection data spanning the Rocky Mountain Cordillera front ranges of northwest Montana were reprocessed and interpreted in this study. Five seismic profiles represent 160 km of deep reflection data collected in 1983 that span the eastern Purcell anticlinorium, Rocky Mountain Trench (RMT), Rocky Mountain Basal Décollement (RMBD), and Lewis thrust. The data were reprocessed using modern techniques including refraction statics, pre-stack time migration (PSTM), and pre- and post-stack depth migration. Results indicate the RMBD is 8-13 km below the Earth's surface and dip 3-10° west. Evidence for the autochthonous Mesoproterozoic Belt and basal Cambrian rocks beneath the RMBD is present in all of the profiles and appears to extend east of the RMT. The Lewis thrust was identified in the seismic profiles and appears to sole into the RMBD east of the RMT. The RMT fault system has a dip displacement of 3-4 km and forms a half graben filled with 1 km of unconsolidated Tertiary sedimentary deposits. The RMT and adjacent Flathead fault systems are interpreted to be structurally linked and may represent a synthetic, en echelon fault system.
Ashwal, L.D.; Wooden, J.L.; Emslie, R.F.
1986-01-01
We report Sr, Nd and Pb isotopic compositions of mid-Proterozoic anorthosites and related rocks (1.45-1.65 Ga) and of younger olivine diabase dikes (1.4 Ga) from two complexes on either side of the Grenville Front in Labrador. Anorthositic or diabasic samples from the Mealy Mountains (Grenville Province) and Harp Lake (Nain-Churchill Provinces) complexes have very similar major, minor and trace element compositions, but distinctly different isotopic signatures. All Mealy Mountains samples have ISr = 0.7025-0.7033, ??{lunate}Nd = +0.6 to +5.6 and Pb isotopic compositions consistent with derivation from a mantle source depleted with respect to Nd/Sm and Rb/Sr. Pb isotopic compositions for the Mealy Mountains samples are slightly more radiogenic than model mantle compositions. All Harp Lake samples have ISr = 0.7032-0.7066, ??{lunate}Nd = -0.3 to -4.4 and variable, but generally unradiogenic 207Pb 204Pb and 206Pb 204Pb compared to model mantle, suggesting mixing between a mantle-derived component and a U-depleted crustal contaminant. Crustal contaminants are probably a variety of Archean high-grade quartzofeldspathic gneisses with low U/Pb ratios and include a component that must be isotopically similar to the early Archean (>3.6 Ga) Uivak gneisses of Labrador or the Amitsoq gneisses of west Greenland. This would imply that the ancient gneiss complex of coastal Labrador and Greenland is larger than indicated by present surface exposure and may extend in the subsurface as far west as the Labrador Trough. If Harp Lake and Mealy Mountains samples were subjected to the same degree of contamination, as suggested by their chemical similarities, then the Mealy contaminants must be much younger, probably early or middle Proterozoic in age. The Labrador segment of the Grenville Front, therefore, appears to coincide with the southern margin of the Archean North Atlantic craton and may represent a pre mid-Proterozoic suture. ?? 1986.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.
Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to consider protection of critical groundwater recharge regions in their development decisions.« less
Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.
2014-06-01
Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to consider protection of critical groundwater recharge regions in their development decisions.« less
55. VIEW OF ROASTER ADDITION FROM NORTH. ELEVATOR/ORE BIN ADDITION ...
55. VIEW OF ROASTER ADDITION FROM NORTH. ELEVATOR/ORE BIN ADDITION TO RIGHT (WEST) WITH BAKER COOLER IN FRONT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
48. VIEW OF SKYLINE DRIVE FROM THE ROCKY PEAK OF ...
48. VIEW OF SKYLINE DRIVE FROM THE ROCKY PEAK OF STONY MAN MOUNTAIN (EL. 4,011). LOOKING NORTHEAST. STONY MAN OVERLOOK VISIBLE IN THE DISTANCE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA
Rocky Mountain Front Heritage Act of 2011
Sen. Baucus, Max [D-MT
2011-11-01
Senate - 03/22/2012 Committee on Energy and Natural Resources Subcommittee on Public Lands and Forests. Hearings held. With printed Hearing: S.Hrg. 112-642. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.; Staley, Dennis M.; Worstell, Bruce B.
2009-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 Station fire in Los Angeles County, southern California. Statistical-empirical models developed for postfire debris flows are used to estimate the probability and volume of debris-flow production from 678 drainage basins within the burned area and to generate maps of areas that may be inundated along the San Gabriel mountain front by the estimated volume of material. Debris-flow probabilities and volumes are estimated as combined functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 1-year-recurrence thunderstorm and to a 12-hour-duration, 2-year recurrence storm. Debris-flow inundation areas are mapped for scenarios where all sediment-retention basins are empty and where the basins are all completely full. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire. Tributary basins that drain into Pacoima Canyon, Big Tujunga Canyon, Arroyo Seco, West Fork of the San Gabriel River, and Devils Canyon were identified as having probabilities of debris-flow occurrence greater than 80 percent, the potential to produce debris flows with volumes greater than 100,000 m3, and the highest Combined Relative Debris-Flow Hazard Ranking in response to both storms. The predicted high probability and large magnitude of the response to such short-recurrence storms indicates the potential for significant debris-flow impacts to any buildings, roads, bridges, culverts, and reservoirs located both within these drainages and downstream from the burned area. These areas will require appropriate debris-flow mitigation and warning efforts. Probabilities of debris-flow occurrence greater than 80 percent, debris-flow volumes between 10,000 and 100,000 m3, and high Combined Relative Debris-Flow Hazard Rankings were estimated in response to both short recurrence-interval (1- and 2-year) storms for all but the smallest basins along the San Gabriel mountain front between Big Tujunga Canyon and Arroyo Seco. The combination of high probabilities and large magnitudes determined for these basins indicates significant debris-flow hazards for neighborhoods along the mountain front. When the capacity of sediment-retention basins is exceeded, debris flows may be deposited in neighborhoods and streets and impact infrastructure between the mountain front and Foothill Boulevard. In addition, debris flows may be deposited in neighborhoods immediately below unprotected basins. Hazards to neighborhoods and structures at risk from these events will require appropriate debris-flow mitigation and warning efforts.
NASA Astrophysics Data System (ADS)
Xiong, Jianguo; Li, Youli; Zhong, Yuezhi; Lu, Honghua; Lei, Jinghao; Xin, Weilin; Wang, Libo; Hu, Xiu; Zhang, Peizhen
2017-12-01
At the eastern Qilian Shan mountain front in the NE Tibetan Plateau, the Minle-Damaying Fault (MDF), the southernmost fault of the North Frontal Thrust (NFT) system, has previously been proposed as an inactive structure during the Holocene. Here we present a detailed record of six strath terraces of the Xie River that document the history of active deformation of the MDF. One optically stimulated luminescence dating sample constrains abandonment of the highest terrace T6 at 12.7 ± 1.4 ka. The formation ages of the lower terraces (T4-T1) are dated by AMS 14C dating. The cumulative vertical offsets of the MDF recorded by these terraces are determined as 12.2 ± 0.4 m (T6), 8.0 ± 0.4 m (T5), 6.4 ± 0.4 m (T4), 4.6 ± 0.1 m (T3), and 3.2 ± 0.2 m (T1c) by an unmanned aerial vehicle system, respectively. A long-term vertical slip rate of the MDF of 0.9 ± 0.2 mm/yr is then estimated from the above data of terrace age and vertical offset by a linear regression. Assuming that the fault dip of 35 ± 5° measured at the surface is representative for the depth-averaged fault dip, horizontal shortening rates of 0.83-1.91 mm/yr are inferred for the MDF. Our new data show that the proximal fault (the MDF) of the NFT system at the eastern Qilian Shan mountain front has remained active when the deformation propagated basinward, a different scenario from that observed at both the western and central Qilian Shan mountain front.
Campbell, D.H.; Nanus, L.; Böhlke, J.K.; Harlin, K.; Collett, J.
2007-01-01
Elevated levels of atmospheric N deposition are affecting terrestrial and aquatic ecosystems at high elevations in Rocky Mountain National Park and adjacent areas of the Front Range of Colorado. Federal and state agencies are now working together to develop cost-effective means for reducing atmospheric N deposition. A discussion on N saturation covers the need for better understanding of N emission source areas and source types that contribute to N deposition in the Rocky Mountains Front Range of Colorado; reductions in NO emissions that resulted from Clean Air Act Amendments, which caused NO3 deposition to decrease between 1984 and 2003; factors contributing to N deposition, e.g., rapid population growth and energy development; origins of NO3, e.g., as NO emissions from fossil fuel combustion, including stationary sources (e.g. emission from coal combustion in electric generating units), and mobile sources (vehicle emissions); disperse stationary sources from energy resource development, e.g., natural gas production; and the importance of incorporating local source characterization and finer spatial and temporal sampling into future studies, which could provide additional insight into N deposition source attribution. This is an abstract of a paper presented at the 100th Annual Conference and Exhibition of the Air and Waste Management Association (Pittsburgh, PA 6/26-29/2007).
Social perceptions versus meteorological observations of snow and winter along the Front Range
NASA Astrophysics Data System (ADS)
Milligan, William James, IV
This research aims to increase understanding of Front Range residents' perceptions of snow, winter and hydrologic events. This study also investigates how an individual's characteristics may shape perceptions of winter weather and climate. A survey was administered to determine if perceptions of previous winters align with observed meteorological data. The survey also investigated how individual characteristics influence perceptions of snow and winter weather. The survey was conducted primarily along the Front Range area of the state of Colorado in the United States of America. This is a highly populated semi-arid region that acts as an interface between the agricultural plains to the east that extend to the Mississippi River and the Rocky Mountains to the west. The climate is continental, and while many people recreate in the snowy areas of the mountains, most live where annual snowfall amounts are low. Precipitation, temperature, and wind speed datasets from selected weather stations were analyzed to determine correct survey responses. Survey analysis revealed that perceptions of previous winters do not necessarily align with observed meteorological data. The mean percentage of correct responses to all survey questions was 36.8%. Further analysis revealed that some individual characteristics (e.g. winter recreation, source of winter weather information) did influence correct responses to survey questions.
50. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS 100TON STEEL ...
50. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS 100-TON STEEL UNOXIDIZED ORE BIN, STEPHENS-ADAMSON 15 TON/HR INCLINED BUCKET ELEVATOR, AND DUST COLLECTION BIN IN UPPER RIGHT QUADRANT. THE ROD MILL CIRCUIT STOOD IN FRONT OF THE BUCKET ELEVATOR AND BEHIND THE BAKER COOLER (LEFT CENTER). MILL SOLUTION TANKS WERE IN FRONT OF THE CRUSHED OXIDIZED ORE BIN (CENTER), AND THE MILL FLOOR WAS THE NEXT LEVEL DOWN (RIGHT). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, P.A.; Shuster, R.D.; Wooden, J.L.
1993-04-01
The southern Madison Range of southwestern Montana contains two distinct Precambrian lithologic assemblages: (1) a complex of tonalitic to granitic gneisses that has been thrust over (2) a medium-grade metasupracrustal sequence dominated by pelitic schist. Crystallization ages for the protolith of a granodioritic gneiss that intruded the metasupracrustal sequence ([approximately]2.6 Ga)-along with an intercalated meta-andesite ([approximately]2.7 Ga) confirm the sequence as Archean. Chemical (major and trace element), isotopic (Rb-Sr, Sm-Nd, Pb-Pb), and geochronologic (U-Pb zircon) data for selected components of the gneiss complex indicate two groups of gneisses: an older, tonalitic to trondhjemitic group ([approximately]3.3 Ga) and a younger, mostlymore » granitic group ([approximately]2.7 Ga). Both groups of gneisses exhibit the radiogenic Pb and nonradiogenic Nd isotopic signature characteristic of Middle and Late Archean rocks from throughout the Wyoming province. The older gneisses, in particular, appear to be compositionally, isotopically, and chronologically comparable to other Middle Archean gneisses from the northern part of the province (for example, Beartooth Mountains). The Late Archean gneisses, however, exhibit some distinct differences relative to their temporal counterparts, including (1) trace-element patterns that are more suggestive of crustal melts than subduction activity and (2) higher initial Sr isotopic ratios that suggest more involvement of older crust in their petrogenesis. These comparisons suggest that the juxtaposition of Late Archean terranes in the northern Wyoming province was the result, at least in part, of intracratonic processes. 41 refs., 6 figs., 2 tabs.« less
Harlan, S.S.; Snee, L.W.; Geissman, J.W.
1996-01-01
Independence volcano is a major volcanic complex in the lower part of the Absaroka Volcanic Supergroup (AVS) of Montana and Wyoming. Recently reported Rb-Sr mineral dates from the complex give apparent ages of 91 and 84 Ma, whereas field relationships and the physical and compositional similarity of the rocks with other dated parts of the AVS indicate an Early to Middle Eocene age for eruption and deposition. To resolve the conflict between age assignments based on stratigraphic correlations and Rb-Sr dates, we report new paleomagnetic data and 40Ar/39Ar dates for Independence volcano. Paleomagnetic data for the stock and an and andesite plug that cuts the stock are well grouped, of reverse polarity, and yield a virtual geomagnetic pole that is essentially identical to Late Cretaceous and Tertiary reference poles. The reverse polarity indicates that the magnetization of these rocks is probably younger than the Cretaceous normal superchron, or less than about 83.5 Ma. Hornblende from a volcanic breccia near the base of the volcanic pile gives a 40Ar/39Ar age of 51.57 Ma, whereas biotites from a dacite sill and a granodiorite stock that forms the core of the volcano give dates that range from 49.96 to 48.50 Ma. These dates record the age of eruption and intrusion of these rocks and clearly show that the age of Independence volcano is Early to Middle Eocene, consistent with stratigraphic relations. We suggest that the Rb-Sr mineral dates from the Independence stock and related intrusions are unreliable.
ECOSYSTEM STRESS FROM CHRONIC EXPOSURE TO LOW-LEVELS OF NITRATE
Throughout the eastern United States, from the Front Range of the Rocky Mountains to the Atlantic Ocean, bioavailable nitrogen has been falling in the rain since the industrial revolution. Bioavailable nitrogen is a limiting nutrient throughout this region. While long-term resear...
31. VIEW FROM SOUTHWEST TO CORNER WHERE SAMPLING/CRUSHING ADDITIONS ABUT ...
31. VIEW FROM SOUTHWEST TO CORNER WHERE SAMPLING/CRUSHING ADDITIONS ABUT CRUSHED OXIDIZED ORE BIN. INTACT BARREN SOLUTION TANK VISIBLE IN FRONT OF CRUSHED ORE BIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
63. DETAIL OF TRAVELING CRANE TRUSS FROM NORTHEAST. TRUSS IS ...
63. DETAIL OF TRAVELING CRANE TRUSS FROM NORTHEAST. TRUSS IS IN FRONT OF CRUSHED OXIDIZED ORE BIN. THE BARREN SOLUTION TANK IS JUST VISIBLE IN RIGHT BACKGROUND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Normal Faulting in the 1923 Berdún Earthquake and Postorogenic Extension in the Pyrenees
NASA Astrophysics Data System (ADS)
Stich, Daniel; Martín, Rosa; Batlló, Josep; Macià, Ramón; Mancilla, Flor de Lis; Morales, Jose
2018-04-01
The 10 July 1923 earthquake near Berdún (Spain) is the largest instrumentally recorded event in the Pyrenees. We recover old analog seismograms and use 20 hand-digitized waveforms for regional moment tensor inversion. We estimate moment magnitude Mw 5.4, centroid depth of 8 km, and a pure normal faulting source with strike parallel to the mountain chain (N292°E), dip of 66° and rake of -88°. The new mechanism fits into the general predominance of normal faulting in the Pyrenees and extension inferred from Global Positioning System data. The unique location of the 1923 earthquake, near the south Pyrenean thrust front, shows that the extensional regime is not confined to the axial zone where high topography and the crustal root are located. Together with seismicity near the northern mountain front, this indicates that gravitational potential energy in the western Pyrenees is not extracted locally but induces a wide distribution of postorogenic deformation.
Burns, Douglas A.
2002-01-01
The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7 kilograms per hectare per year ((kg/ha)/yr) of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. The Rocky Mountain National Park, in its role of protecting air-quality related values under provisions of the Clean Air Act Amendments of 1977, has provided support for this synthesis and critical assessment of published literature on the effects of atmospheric N deposition. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but no region-wide increase during the past 2 decades, although the rate of atmospheric N deposition has increased at three sites east of the Continental Divide in the Front Range region since the mid-1980s. Much of the increase in atmospheric N deposition at all three sites has resulted from an increase in the ammonium concentrations of wet deposition; this suggests an increase in contributions from agricultural areas or from vehicle traffic east of the Rocky Mountains. Lakes at two study sites in the Front Range (Loch Vale and Green Lakes Valley) had NO3- concentrations of 30 to 40 micromoles per liter (µmol/L) during early spring snowmelt and remained at 5 to 10 µmol/L during summer. Retention of N in atmospheric wet deposition in some sub-catchments of these lakes was less than 50 percent, which reflects an advanced stage of N saturation. Nitrate concentrations in surface waters west of the Continental Divide were lower—often less than 10 µmol/L during snowmelt and less than 2 µmol/L during summer -- than surface waters east of the Divide, except in areas such as the Mt. Zirkel Wilderness that receive elevated amounts of atmospheric N deposition of 4 to 5 (kg/ha)/yr. Atmospheric N deposition in the Front Range east of the Divide may have altered the composition of alpine tundra-plant communities and lake diatoms, but additional studies would be needed to definitively demonstrate the hypothesized cause-and-effect relations. Rates of N-mineralization and nitrification in soils of the Front Range have increased in response to increased atmospheric N deposition. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. The likelihood of future increased N emissions along the Front Range warrants a continuation of existing long-term precipitation and surface-water chemistry monitoring programs, and an expansion of the networks into areas that receive large amounts of atmospheric N deposition, but currently lack adequate monitoring. Long-term study and expanded sampling are needed to address uncertainties about the effects of atmospheric N deposition on terrestrial plant communities, nutrient limitation in lake plankton, shifts of dominant species within diatom communities, and on amphibian response to episodic surface-water acidification.
Gold deposits of the southern Piedmont
Pardee, J.T.; Park, C.F.
1948-01-01
along the southeast front of the .:Appalachian Mountains from the Great Falls of the Potomac River to east-central Alabama, in the gently sloping region known as the Piedmont. The field work was done during parts of 1934 and 1935, on funds allotted by the Public Works Administration.
NASA Astrophysics Data System (ADS)
Cheloni, Daniele; D'Agostino, Nicola; Selvaggi, Giulio
2014-05-01
The interaction of the African, Arabian, and Eurasia plates in the "greater" Mediterranean region yields to a broad range of tectonic processes including active subduction, continental collision, major continental strike-slip faults and "intra-plate" mountain building. In this puzzling region the convergence between Adria microplate and Eurasia plate is partly or entirely absorbed within the South-Eastern Alps, where the Adriatic lithosphere underthrusts beneath the mountain belt. Historical seismicity and instrumentally recorded earthquakes show thrust faulting on north-dipping low-angle faults in agreement with geological observations of active mountain building and active fold growing at the foothills of the South-Eastern Alps. In this study, we use continuous GPS observations to document the geodetic strain accumulation across the South-Eastern Alps (NE Italy). We estimate the pattern of interseismic coupling on the intra-continental collision north-dipping thrust faults that separate the Eastern Alps and the Venetian-Friulian plain using the back-slip approach and discuss the seismic potential and earthquake recurrence. Comparison between the rigid-rotation predicted motion and the shortening observed across the studied area indicates that the South-Eastern Alpine thrust front absorbs about 80% of the total convergence rate between the Adria microplate and Eurasia plate. The modelled thrust fault is currently locked from the surface to a depth of approximately 10 km. The transition zone between locked and creeping portions of the fault roughly corresponds with the belt of microseismicity parallel and to the north of the mountain front. The estimated moment deficit rate is 1.27±0.14×10^17 Nm/yr. The comparison between the estimated moment deficit and that released historically by the earthquakes suggests that to account for the moment deficit the following two factors or their combination should be considered: (1) a significant part of the observed interseismic coupling is released aseismically by folding or creeping; (2) infrequent "large" events with long return period (>1000 years) and with magnitudes larger than the value assigned to the largest historical events (Mw≡6.7).
Brooks, Mark S.
2012-01-01
The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).
Throughout the eastern United States, from the Front Range of the Rocky Mountains to the Atlantic Ocean, bioavailable nitrogen has been falling in the rain since the industrial revolution. Bioavailable nitrogen is a limiting nutrient throughout this region. While long-term rese...
Throughout the eastern United States, from the Front Range of the Rocky Mountains to the Atlantic Ocean, bioavailable nitrogen has been falling in the rain since the industrial revolution. Bioavailable nitrogen is a limiting nutrient throughout this region. While long-term rese...
Skywatch: The Western Weather Guide.
ERIC Educational Resources Information Center
Keen, Richard A.
The western United States is a region of mountains and valleys with the world's largest ocean next door. Its weather is unique. This book discusses how water, wind, and environmental conditions combine to create the climatic conditions of the region. Included are sections describing: fronts; cyclones; precipitation; storms; tornadoes; hurricanes;…
Living with wildfire in Colorado
Patricia A. Champ; Nicholas Flores; Hannah Brenkert-Smith
2010-01-01
In this presentation, we describe results of a survey to homeowners living in wildfire-prone areas of two counties along the Front Range of the Rocky Mountains in Colorado. The survey was designed to elicit information on homeowners' experience with wildfire, perceptions of wildfire risk on their property and neighboring properties, mitigation efforts undertaken...
Communities, Cameras, and Conservation
ERIC Educational Resources Information Center
Patterson, Barbara
2012-01-01
Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…
Rocky Mountain Front Heritage Act of 2013
Sen. Baucus, Max [D-MT
2013-02-14
Senate - 06/02/2014 Placed on Senate Legislative Calendar under General Orders. Calendar No. 404. (All Actions) Notes: For further action, see H.R.3979, which became Public Law 113-291 on 12/19/2014. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
NASA Astrophysics Data System (ADS)
Mushkin, A.; Javkhlanbold, D.; Bayasgalan, A.; Gillespie, A.
2004-12-01
A sequence of paleo landslides at the Namalzah Hills, ˜70 km south of the town of Altay in southwestern Mongolia (45.8\\deg N, 96.5\\deg E) is associated with tectonic activity along the western part of the Gobi-Altay Fault system (GAFS). Three mobilized blocks of 0.5, 2.5 and 110 km2 suggest multiple events of sliding, and displaced alluvial fans across an adjacent fault trace at the front of the mountain range indicate left-lateral offset. The 110-km2 block has been translated ˜4.5 km down-slope north from the mountain range, with prominent scarps defining both the eastern and western boundaries of the landslide. Neogene deposits unconformably overlain by Quaternary alluvial sediments up to 200 m thick in places comprise this block, which is structurally characterized by a set of internally drained basins trending east-west, and corresponding terminal lake beds. Well-developed desert pavements characterize its surface. The 0.5- and 2.5-km2 blocks, which lie between the 110-km2 block and the source area, appear to be younger and thus suggest sliding events that postdate the mobilization of the large block. Elevated alluvial fans found along the mountain front indicate significant antithetic uplift north of the mountain-front fault trace as well as ˜2 km of cumulative left-lateral offset. Surface-composition mapping of the largest block suggests 1.0-1.5 km of left-lateral offset between it and the mountain range, while westward translation of the smallest mobilized block indicates ˜0.6 km of post-sliding, left-lateral offset. OSL samples were collected from the bottom of a lake bed on the largest block and from the underlying alluvial sediments to provide age constraints for the initiation of these sliding events. The good preservation of carbon recovered from the bottom of the lake bed suggests that the lake is relatively young. Accordingly, slip-rates higher than the 1.2 mm/yr constrained by Ritz et al. (1995) along the eastern part of the GAFS, may be required to accommodate the 1.0-1.5 km of inferred offset between the largest block and the mountain range. While another landslide of similar magnitude has been described by Philip and Ritz (1999) ˜400 km to the east along the GAFS, the well-preserved sequence of mobilized blocks and closely related offset alluvial fans of the Namalzah Hills offers a good opportunity to improve our understanding of Quaternary displacement along this part of the GAFS, as well as study the complex relation between tectonic activity and landsliding in such intra-continental environments.
Summary of Quaternary geology of the Municipality of Anchorage, Alaska
Schmoll, H.R.; Yehle, L.A.; Updike, R.G.
1999-01-01
Quaternary geology of the Upper Cook Inlet region is dominated by deposits of glacier retreats that followed repeated advances from both adjacent and more distant mountains. At several levels high on the mountains, there are remnant glacial deposits and other features of middle or older Pleistocene age. Late Pleistocene lateral moraines along the Chugach Mountain front represent successively younger positions of ice retreat from the last glacial maximum. As the trunk glacier retreated northeastward up the Anchorage lowland, Cook Inlet transgressed the area, depositing the Bootlegger Cove Formation and Tudor Road deposits. The glacier then readvanced to form the latest Pleistocene Elmendorf Moraine, a prominent feature that trends across the Anchorage lowland. Extensive alluvium was deposited both concurrently and somewhat later as Cook Inlet regressed. Mountain valleys contain (1) locally preserved moraines possibly of early Holocene age; (2) poorly preserved moraine remnants of older late Holocene age; and (3) well-preserved moraines formed mainly during the Little Ice Age. Glaciers still occupy large parts of the mountains, the upper ends of some mountain valleys, and small cirques. Holocene landslide deposits, including those formed during the great Alaska earthquake of 1964, occur throughout the area, especially along bluffs containing the Bootlegger Cove Formation.
Mountain lions prey selectively on prion-infected mule deer
Krumm, Caroline E.; Conner, Mary M.; Hobbs, N. Thompson; Hunter, Don O.; Miller, Michael W.
2010-01-01
The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions (Puma concolor) selectively prey upon mule deer (Odocoileus hemionus) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (≥2 years old) deer with prevalence among sympatric deer taken by hunters in the vicinity of kill sites. Hunter-killed female deer were less likely to be infected than males (odds ratios (OR) = 0.2, 95% confidence intervals (CI) = 0.1–0.6; p = 0.015). However, both female (OR = 8.5, 95% CI = 2.3–30.9) and male deer (OR = 3.2, 95% CI = 1–10) killed by a mountain lion were more likely to be infected than same-sex deer killed in the vicinity by a hunter (p < 0.001), suggesting that mountain lions in this area actively selected prion-infected individuals when targeting adult mule deer as prey items. PMID:19864271
Suspended sediment chemistry from large Himalayan Rivers
NASA Astrophysics Data System (ADS)
Tipper, E.; Bickle, M.; Bohlin, M.; Andermann, C.
2016-12-01
Recent work has demonstrated that weathering in areas with the highest physical erosion rates are the most sensitive to climatic feedback parameters (both rainfall and temperature) because they are not limited by a supply of material. The Himalayan region is central to this work because of 1) the high erosion rates, 2) high monsoonal rainfall, and 3) high temperatures in the Ganges plain in front of the main range, where much of the weathering takes place. The material that is weathered in the Ganges plain is delivered as sediment from the mountain front. Therefore, detailed understanding of the chemistry of the sediment leaving the high mountains is essential. Interest has been renewed not least because of the magnitude 7.8 (25/4/15) and 7.3 (12/5/2015) earthquakes in Nepal in 2015 which triggered thousands of landslides, likely causing major perturbations to sediment and chemical loads carried by the local Himalayan rivers. We collected both sediment and water samples in 2015 and 2016 in a transect across Nepal, including depth profiles of suspended sediment in the Narayani, Kosi and Karnali Rivers. The Narayani and Kosi rivers which drain the earthquake-hit area carry > 40% of the total bicarbonate flux input to the Ganges from the Himalayan mountains. Here we present our initial findings on the chemistry of the sediment from the 2015 and 2016 field seasons and compare it to published data sets.
Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.
2005-01-01
The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.
Formation of a katabatic induced cold front at the east Andean slopes
NASA Astrophysics Data System (ADS)
Trachte, K.; Nauss, T.,; Rollenbeck, R.; Bendix, J.
2009-04-01
Within the DFG research unit 816, climate dynamics in a tropical mountain rain forest in the national reserve of the Reserva Biósfera de San Francisco in South Ecuador are investigated. Precipitation measurements in the mountain environment of the Estación Científica de San Francisco (ECSF) with a vertical rain radar profiler have been made over the last seven years. They reveal unexpected constant early morning rainfall events. On the basis of cloud top temperatures from corresponding GOES satellite imageries, a Mesoscale Convective System could be derived. Its formation region is located south-east of the ECSF in the Peruvian Amazon basin. The generation of the MCS is assumed to results from an interaction of both local and mesoscale conditions. Nocturnal drainage air from the Andean slopes and valleys confluences in the Amazon basin due to the concave lined terrain. This cold air converges with the warm-moist air of the Amazon inducing a local cold front. This process yields to deep convection resulting in a MCS. With the numerical model ARPS the hypothesized formation of a cloud cluster due to a katabatic induced cold front is shown in an ideal case study. Therefor an ideal terrain model representing the features of the Andes in the target area has been used. The simplification of the oprography concerns a concave lined slope and a valley draining into the basin. It describes the confluence of the cold drainage air due to the shape of the terrain. Inside the basin the generation of a local cold front is shown, which triggers the formation of a cloud cluster.
NASA Astrophysics Data System (ADS)
Chiarabba, Claudio; De Gori, Pasquale; Improta, Luigi; Lucente, Francesco Pio; Moretti, Milena; Govoni, Aladino; Di Bona, Massimo; Margheriti, Lucia; Marchetti, Alessandro; Nardi, Anna
2014-12-01
The evolution of the Apennines thrust-and-fold belt is related to heterogeneous process of subduction and continental delamination that generates extension within the mountain range and compression on the outer front of the Adria lithosphere. While normal faulting earthquakes diffusely occur along the mountain chain, the sparse and poor seismicity in the compressional front does not permit to resolve the ambiguity that still exists about which structure accommodates the few mm/yr of convergence observed by geodetic data. In this study, we illustrate the 2012 Emilia seismic sequence that is the most significant series of moderate-to-large earthquakes developed during the past decades on the compressional front of the Apennines. Accurately located aftershocks, along with P-wave and Vp/Vs tomographic models, clearly reveal the geometry of the thrust system, buried beneath the Quaternary sediments of the Po Valley. The seismic sequence ruptured two distinct adjacent thrust faults, whose different dip, steep or flat, accounts for the development of the arc-like shape of the compressional front. The first shock of May 20 (Mw 6.0) developed on the middle Ferrara thrust that has a southward dip of about 30°. The second shock of May 29 (Mw 5.8) ruptured the Mirandola thrust that we define as a steep dipping (50-60°) pre-existing (Permo-Triassic) basement normal fault inverted during compression. The overall geometry of the fault system is controlled by heterogeneity of the basement inherited from the older extension. We also observe that the rupture directivity during the two main-shocks and the aftershocks concentration correlate with low Poisson ratio volumes, probably indicating that portions of the fault have experienced intense micro-damage.
Human impacts to mountain streams
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2006-09-01
Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel connections, process domains, physical and ecological roles of disturbance, and stream resilience.
Russell Graham; Mark Finney; Chuck McHugh; Jack Cohen; Dave Calkin; Rick Stratton; Larry Bradshaw; Ned Nikolov
2012-01-01
The Fourmile Canyon Fire burned in the fall of 2010 in the Rocky Mountain Front Range adjacent to Boulder, Colorado. The fire occurred in steep, rugged terrain, primarily on privately owned mixed ponderosa pine and Douglas-fir forests. The fire started on September 6 when the humidity of the air was very dry (¡Ã
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-06-01
The Ecological Monitoring Program (EcMP) was designed to investigate the long-term ecological trends in terrestrial and aquatic ecosystems at the US Department of energy`s (DOE`s) Rocky Flats Environmental Technology Site (Site) (DOE 1993). Field sampling was conducted during 1993, 1994, and 1995, until the program was terminated in late 1995. This report presents the terrestrial vegetation data that were gathered by the EcMP. The site is located on the Colorado Piedmont, east of the Front Range, between Boulder and Golden, approximately 25 km (16 miles) northwest of Denver. The topography and proximity of the Site to the mountain front resultmore » in an interesting mixture of prairie and mountain plant species. The Site is one of the few large, relatively undisturbed areas of its kind that remains along the Colorado Piedmont. Until 1989, the primary mission of the Site was the production of nuclear weapons components (DOE 1993). After production ceased, Site personnel shifted their focus to cleanup and closure.« less
Emsian synorogenic paleogeography of the Maine Applachians
Bradley, D.; Tucker, R.
2002-01-01
The Acadian deformation front in the northern Appalachians of Maine and New Hampshire can now be closely located during the early Emsian (Early Devonian; 408-406 Ma). Tight correlations between paleontologically and isotopically dated rocks are possible only because of a new 408-Ma time scale tie point for the early Emsian. The deformation front lay between a belt of Lower Devonian flysch and molasse that were deposited in an Acadian foreland basin and had not yet been folded and a belt of early Emsian plutons that intruded folded Lower Devonian rocks. This plutonic belt includes the newly dated Ore Mountain gabbro (U/Pb; 406 Ma), which hosts magmatic-sulfide mineralization. Along the deformation front, a 407-Ma pluton that locally truncates Acadian folds (Katahdin) was the feeder to volcanic rocks (Traveler Rhyolite; 406-407 Ma) that are part of the foreland-basin succession involved in these same folds. The Emsian igneous rocks thus define a syncollisional magmatic province that straddled the deformation front. These findings bear on three alternative subduction geometries for the Acadian collision.
NASA Astrophysics Data System (ADS)
Eppes, M. C.; McFadden, L. D.; Matti, J.; Powell, R.
2002-03-01
Soil development can significantly influence the topographic evolution of a tectonically deforming mountain piedmont. Faults and folds associated with the North Frontal thrust system deform piedmont sediments of variable compositions along the north flank of the San Bernardino Mountains. The topographic expressions of folds with similar structural characteristics diverge appreciably, primarily as a function of differences in sediment composition and associated soil development. Soils with petrocalcic horizons in limestone- rich deposits are resistant to erosion, and anticlinal folds form prominent ridges. Folds forming in granite-derived deposits with argillic soil horizons are eroded and/or buried and are therefore topographically less pronounced. We propose that these landform contrasts can be explained by differences in soil-controlled hydrologic and erosion characteristics of deposits without calling upon changes in tectonic style along the mountain front.
Petrology and isotopic geochemistry of the Archaean basement lithologies near Gardiner, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, R.E.; Sinha, A.K.
1985-01-01
In an attempt to recognize potential source rocks for some of the rhyolites of the Yellowstone Rhyolite Plateau, four major exposures of Precambrian rocks have been analyzed for major and trace elements and isotopic composition. The terrain is characterized by granitic gneisses with subordinant mica schist, quartzite, amphibolite, and two-mica granite. The gneiss units from the northern (Yankee Jim Canyon) and eastern (Lamar Canyon) outcrops are characterized by k-feldspar augen in a gneissic groundmass of two-feldspar--quartz--mica--epidote. The feldspar compositions are Or/sub 95/ and An/sub 5-15/ indicating metamorphic re-equilibration. Mafic phases are iron-rich with Fe:Mg of 1.0 in epidote, 0.7 inmore » pyroxene, and 0.5 in biotite. Sr isotopic analyses yield present day values of 0.7201-0.7519 for Lamar Canyon, 0.7157-0.7385 for Yankee Jam Canyon, and 0.7200-0.7679 for mica schist from the western and northern outcrops. Rb-Sr whole-rock data indicate a complicated isotopic history with ages ranging from 2800 to 3600 my. The 2800 my ages are consistent with ages for the Tobacco Root and Ruby Mountains to the NW (James and Hedge, 1980) and the Beartooth Range to the NE (Nunes and Tilton, 1971) while the 3600 my age may be related to the formation of the protolith. The rhyolites of the northern Yellowstone Rhyolite Plateau (Sr/sub I/=0.7100) cannot be derived from the exposed Archaean rocks based on Sr isotopic and whole-rock chemistry, and must be derived from lithologies not exposed in the area. This study shows that care must be taken when using surface lithologies to model potential sources materials for volcanic rocks in an associated terrain.« less
McGuire, Chris R; Nufio, César R; Bowers, M Deane; Guralnick, Robert P
2012-01-01
Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953-2008) and a shorter 20-year (1989-2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change.
McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.
2012-01-01
Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change. PMID:22970205
2014-11-10
Mountain peaks through the ice cover on Thurston Island off of western Antarctica as seen on the IceBridge flight on Nov. 5, 2014. Image Credit: NASA/Jim Yungel NASA’s Operation IceBridge collected some rare images on a flight out of Punta Arenas, Chile on Nov. 5, 2014, on a science flight over western Antarctica dubbed Ferrigno-Alison-Abbott 01. The crew snapped a few shots of a calving front of the Antarctic ice sheet. This particular flight plan was designed to collect data on changes in ice elevation along the coast near the Ferrigno and Alison ice streams, on the Abbot Ice Shelf, and grounded ice along the Eights Coast.
Integrating soils and geomorphology in mountains - An example from the Front Range of Colorado
Birkeland, P.W.; Shroba, R.R.; Burns, S.F.; Price, A.B.; Tonkin, P.J.
2003-01-01
Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected. The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 ??C mean annual temperature (MAT) in the plains to 102 cm and -4 ??C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0-1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it lingers on the landscape. An important parent material factor is airborne dust, which results in fine-grained surface horizons and, if infiltrated, contributes to clay accumulation in some Bt horizons. The time factor is evaluated by soil chronosequence studies of Quaternary deposits in tundra, upper forest, and plains grassland. Few soils in the study area are >10,000 years old in the tundra, >100,000 years old in the forest, and >2 million years old in the grassland. Stages of granite weathering vary with distance from the Continental Divide and the best developed is grus near the sedimentary/granitic rock contact just west of the mountain front. Grus takes a minimum of 100,000 years to form. Some of the relations indicated by the soil map patterns are: (1) parts of the erosion surface have been stable for 100,000 years or more; (2) development of grus near the mountain front could be due in part to pre-Pennsylvanian weathering; (3) a few soil properties reflect Quaternary paleoclimate; and (4) a correlation between soil development in the canyons and stream incision rates. ?? 2003 Elsevier Science B.V. All rights reserved.
Quilt-Making in the Elementary Class
ERIC Educational Resources Information Center
Nixon, Monica
2013-01-01
As our world becomes more and more technological, it is essential that we remember that one of the main ways the child's brain develops is through meaningful work of the hand. Monica Nixon, the founder and director of Mountain Laurel Montessori School in Front Royal, VA, as well as a quilter and knitter, describes her experience of teaching her…
Hayman Fire Case Study: Summary [RMRS-GTR-115
Russell T. Graham
2003-01-01
This publication summarizes the findings in the 400-page companion document, Hayman Fire Case Study, Gen. Tech. Rep. RMRS-GTR-114. This summary document's purpose is to convey information quickly and succinctly to a wide array of audiences.In 2002 much of the Front Range of the Rocky Mountains in Colorado was rich in dry vegetation as a...
Jed Cohen; Christine E. Blinn; Kevin J. Boyle; Tom Holmes; Klaus Moeltner
2016-01-01
In hedonic valuation studies the policy-relevant environmental quality attribute of interest is often costly to measure, especially under pronounced spatial and temporal variability. However, in many cases this attribute affects home prices and consumer preferences solely through its impact on a readily observable, spatially delineated, and time-invariant feature of...
Active rollback in the Gibraltar Arc: Evidences from CGPS data in the western Betic Cordillera
NASA Astrophysics Data System (ADS)
Gonzalez-Castillo, L.; Galindo-Zaldivar, J.; de Lacy, M. C.; Borque, M. J.; Martinez-Moreno, F. J.; García-Armenteros, J. A.; Gil, A. J.
2015-11-01
The Gibraltar Arc, located in the western Mediterranean Sea, is an arcuate Alpine orogen formed by the Betic and Rif Cordilleras, separated by the Alboran Sea. New continuous GPS data (2008-2013) obtained in the Topo-Iberia stations of the western Betic Cordillera allow us to improve the present-day deformation pattern related to active tectonics in this collision area between the Eurasian and African plates. These data indicate a very consistent westward motion of the Betic Cordillera with respect to the relatively stable Iberian Massif foreland. The displacement in the Betics increases toward the south and west, reaching maximum values in the Gibraltar Strait area (4.27 mm/yr in Ceuta, CEU1, and 4.06 mm/yr in San Fernando, SFER), then progressively decreasing toward the northwestern mountain front. The recent geological structures and seismicity evidence moderate deformation in a roughly NW-SE to WNW-ESE compressional stress setting in the mountain frontal areas, and moderate extension toward the internal part of the cordillera. The mountain front undergoes progressive development of folds affecting at least up to Pliocene deposits, with similar recent geological and geodetical rates. This folded strip helps to accommodate the active deformation with scarce associated seismicity. The displacement pattern is in agreement with the present-day clockwise rotation of the tectonic units in the northern branch of the Gibraltar Arc. Our data support that the westward emplacement of the Betic Cordillera continues to be active in a rollback tectonic scenario.
de la Torre, Laura; Nieto, Raquel; Noguerol, Marta; Añel, Juan Antonio; Gimeno, Luis
2008-12-01
Regions of the occurrence of different phenomena related to the development of baroclinic disturbances are reviewed for the Northern Hemisphere extratropics, using National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. The occurrence of height lows appears to be related to the orography near the earth's surface and with surface- and upper-air cyclogenesis in the upper troposphere. Over the cyclone tracks, the surface maxima appear to be trapped by land masses, whereas over the Mediterranean Sea they are located on the lee side of mountain ranges. The forcing terms of the geopotential tendency and omega equations mark the genesis (and, by the vorticity advection terms, the path) of the extratropical cyclones on the storm track. They occur mostly over the western coast of the oceans, beginning and having maxima on the lee side of the Rocky Mountains and the Tibetan Plateau. Their associated fronts form from the cold air coming from the continents and converging with the warm air over the Gulf and Kuroshio currents. Evident trends are found only for the Atlantic cyclone track (positive) and the Pacific cyclone track (negative) until the last decade when the tendency reverses. Over the southern Pacific, the number of fronts is lower during 1978-1997, coinciding with a period of strong El Niño Southern Oscillation episodes. This information is important for validating numerical models in order to predict changes associated with climate change and to study the behavior of extratropical cyclones and fronts.
Eolian additions to late Quaternary alpine soils, Indian Peaks Wilderness Area, Colorado Front Range
Muhs, D.R.; Benedict, J.B.
2006-01-01
Surface horizons of many alpine soils on Quaternary deposits in high-mountain settings are enriched in silt. The origin of these particles has been debated, particularly in the Rocky Mountain region of North America. The most common explanations are frost shattering of coarser particles and eolian additions from distant sources. We studied soil A horizons on alpine moraines of late-glacial (Satanta Peak) age in the Colorado Front Range. Surface horizons of soils on these moraines are enriched in silt and have a particle size distribution that resembles loess and dust deposits found elsewhere. The compositions of sand and silt fractions of the soils were compared to possible local source rocks, using immobile trace elements Ti, Nb, Zr, Ce, and Y. The sand fractions of soils have a wide range of trace element ratios, similar to the range of values in the local biotite gneiss bedrock. In contrast, silt fractions have narrower ranges of trace element ratios that do not overlap the range of these ratios in biotite gneiss. The particle size and geochemical results support an interpretation that silts in these soils are derived from airborne dust. Eolian silts were most likely derived from distant sources, such as the semiarid North Park and Middle Park basins to the west. We hypothesize that much of the eolian influx to soils of the Front Range occurred during an early to mid-Holocene warm period, when sediment availability in semiarid source basins was at a maximum.
NASA Astrophysics Data System (ADS)
Foster, D. A.; Vogl, J.; Min, K. K.; Bricker, A.; Gelato, P. W.
2013-12-01
Passage of North America over the Yellowstone hotspot has had a profound influence on the topography of the northern Rocky Mountains. One of the most prominent topographic features is the Yellowstone crescent of high topography, which comprises two elevated shoulders bounding the eastern Snake River Plain (SRP) and converging at a topographic swell centered on the Yellowstone region. Kilometer-scale erosion has occurred locally within the topographic crescent, but it is unclear if rock exhumation is due to surface uplift surrounding the propagating hot spot, subsidence of the Snake River Plain after passage of the hot spot, or relief initiated by extension in the Northern Basin and Range Province. We have applied (U-Th/He) apatite (AHe) thermochronology to the Pioneer-Boulder Mountains (PBM) on the northern flank of the SRP, and the southern Beartooth Mountains (BM) directly north of the modern Yellowstone caldera, to constrain the timing, rates, and spatial distribution of exhumation. AHe ages from the PBM indicate that >2-3 km of exhumation occurred in the core of this topographic culmination since ~11 Ma. Age-elevation relationships suggest an exhumation rate of ~0.3 mm/yr between ~11 and 8 Ma. Eocene Challis volcanic rocks are extensively preserved and Eocene topographic highs are locally preserved to the north and south of the PBM, indicating minimal erosion adjacent to the PBM culmination. Spatial patterns of both exhumation and topography indicate that faulting was not the primary control on uplift and exhumation. Regional exhumation at 11-8 Ma was synchronous with silicic eruptions from the ~10.3 Ma Picabo volcanic field located immediately to the south and with S-tilting of the southern flank of the PBM that is likely the result of loading of the ESRP by mid-crustal mafic intrusions. AHe data from Archean rocks of the southern BM reveal Miocene-Pliocene cooling ages and include samples as young as ~2-6 Ma. Discordant single grain ages in samples with Miocene mean ages suggest that exhumation is now reaching to depths of the Miocene He partial retention zone. Miocene-Pliocene erosional exhumation of the South Snowy block is partly attributed to integration of the Yellowstone River drainage system and incision of the Yellowstone Canyon. The thermochronology of these two locations shows that localized uplift, exhumation and incision occurred progressively as NA moved over the hot spot, but that exhumation is not uniform and not always controlled by Neogene basin-bounding faults. This suggests a causal relationship between hotspot processes and exhumation through potential contributions of flexure and mantle dynamics to uplift, and changes in drainage networks and base-level associate with uplift and/or extension.
Mammoth Mountain and its mafic periphery—A late Quaternary volcanic field in eastern California
Hildreth, Wes; Fierstein, Judith; Champion, Duane E.; Calvert, Andrew T.
2014-01-01
The trachydacite complex of Mammoth Mountain and an array of contemporaneous mafic volcanoes in its periphery together form a discrete late Pleistocene magmatic system that is thermally and compositionally independent of the adjacent subalkaline Long Valley system (California, USA). The Mammoth system first erupted ca. 230 ka, last erupted ca. 8 ka, and remains restless and potentially active. Magmas of the Mammoth system extruded through Mesozoic plutonic rocks of the Sierra Nevada batholith and extensive remnants of its prebatholith wall rocks. All of the many mafic and silicic vents of the Mammoth system are west or southwest of the structural boundary of Long Valley caldera; none is inboard of the caldera’s buried ring-fault zone, and only one Mammoth-related vent is within the zone. Mammoth Mountain has sometimes been called part of the Inyo volcanic chain, an ascription we regard inappropriate and misleading. The scattered vent array of the Mammoth system, 10 × 20 km wide, is unrelated to the range-front fault zone, and its broad nonlinear footprint ignores both Long Valley caldera and the younger Mono-Inyo range-front vent alignment. Moreover, the Mammoth Mountain dome complex (63%–71% SiO2; 8.0%–10.5% alkalies) ended its period of eruptive activity (100–50 ka) long before Holocene inception of Inyo volcanism. Here we describe 25 silicic eruptive units that built Mammoth Mountain and 37 peripheral units, which include 13 basalts, 15 mafic andesites, 6 andesites, and 3 dacites. Chemical data are appended for nearly 900 samples, as are paleomagnetic data for ∼150 sites drilled. The 40Ar/39Ar dates (230–16 ka) are given for most units, and all exposed units are younger than ca. 190 ka. Nearly all are mildly alkaline, in contrast to the voluminous subalkaline rhyolites of the contiguous long-lived Long Valley magma system. Glaciated remnants of Neogene mafic and trachydacitic lavas (9.1–2.6 Ma) are scattered near Mammoth Mountain, but Quaternary equivalents older than ca. 230 ka are absent. The wide area of late Quaternary Mammoth magmatism remained amagmatic during the long interval (2.2–0.3 Ma) of nearby Long Valley rhyolitic eruptions.
Historic avalanches in the northern front range and the central and northern mountains of Colorado
M. Martinelli; Charles F. Leaf
1999-01-01
Newspaper accounts of avalanche accidents from the 1860s through 1950 have been compiled, summarized, and discussed. Many of the avalanches that caused fatalities came down rather small, innocuous-looking paths. Land use planners can use historical avalanche information as a reminder of the power of snow avalanches and to assure rational development in the future....
Jennifer Gene Klutsch
2008-01-01
The effect of forest disturbances, such as bark beetles and dwarf mistletoes, on fuel dynamics is important for understanding forest dynamics and heterogeneity. Fuel loads and other fuel parameters were assessed in areas of ponderosa pine (Pinus ponderosa Laws.) infested with southwestern dwarf mistletoe (Arceuthobium vaginatum...
Joel W. Homan; Charles H. Luce; James P. McNamara; Nancy F. Glenn
2011-01-01
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain-front scale is important for improvements in large-scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snowcovered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale-up snowmelt models....
Migration of tree species in New England based on elevational and regional analyses
Dale S. Solomon; William B. Leak
1994-01-01
With field measurements of migration patterns, we used two complementary approaches to examine tree-species movement after a documented increase in temperatures. The advancing-front theory was used to examine age trends over distance and elevation for both a mountain site in New Hampshire and a regional comparison across the State of Maine. Well-defined stationary...
3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, ...
3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, c. 1908-10. SHOWS EXPOSED CRUSHER HOUSE IN FRONT OF (SOUTH) CRUDE ORE BIN AND SNOW SHED ADDED OVER TRAM TRACKS. NOTE LACK OF EAST OR WEST CRUDE ORE BINS. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Relationship between glacier melting and atmospheric circulation in the southeast Siberia
NASA Astrophysics Data System (ADS)
Osipova, O. P.; Osipov, E. Y.
2018-01-01
The interaction between climate and cryosphere is a key issue in recent years. Changes in surface mass balance of mountain glaciers closely correspond to differential changes in atmospheric circulation. Mountain glaciers in southeast Siberia located on East Sayan, Baikalsky and Kodar ridges have been continuously shrinking since the end of the Little Ice Age. In this study we used daily synoptic weather maps (Irkutsk Center of Hydrometeorology and Environmental Monitoring), 500 hPa, 700 hPa and 850 hPa geopotential height and air temperature data of NCEP/NCAR reanalysis to assess relationships between atmospheric circulation patterns and the sum of positive temperature (SPT), a predictor of summer ice/snow ablation. Results show that increased SPT (ablation) is generally associated with anticyclones and anticyclonic pressure fields (with cloudless weather conditions) and warm atmospheric fronts. Decreased SPT (ablation) is strongly correlated with cyclones and cyclonic type pressure fields, cold atmospheric fronts and air advections. Significant correlations have been found between ablation and cyclonic/anticyclonic activity. Revealed decreasing trends in the SPT in three glaciarized ridges at the beginning of the 21st century led to changes of air temperature and snow/ice melt climates.
Use of TOPSAR digital elevation data to determine the 3-dimensional shape of an alluvial fan
NASA Technical Reports Server (NTRS)
Farr, Tom G.
1995-01-01
Landforms in arid regions record the interplay between tectonic forces and climate. Alluvial fans are a common landform in desert regions where the rate of uplift is greater than weathering or sedimentation. Changes in uplift rate or climatic conditions can lead to isolation of the currently forming fan surface through entrenchment and construction of another fan either further from the mountain front (decreased uplift or increased runoff) or closer to the mountain front (increased uplift or decreased runoff). Thus, many alluvial fans are made up of a mosaic of fan units of different age, some older than 1 million years. For this reason, determination of the stages of fan evolution can lead to a history of uplift and runoff. In an attempt to separate the effects of tectonic (uplift) and climatic (weathering, runoff, sedimentation) processes on the shapes of alluvial fan units, a modified conic equation developed by Troeh (1965) was fitted to TOPSAR digital topographic data for the Trail Canyon alluvial fan in Death Valley, California. This allows parameters for the apex position, slope, and radial curvature to be compared with unit age.
Blue Mountain and The Gas Rocks: Rear-Arc Dome Clusters on the Alaska Peninsula
Hildreth, Wes; Fierstein, Judy; Calvert, Andrew T.
2007-01-01
Behind the single-file chain of stratovolcanoes on the Alaska Peninsula, independent rear-arc vents for mafic magmas are uncommon, and for silicic magmas rarer still. We report here the characteristics, compositions, and ages of two andesite-dacite dome clusters and of several nearby basaltic units, all near Becharof Lake and 15 to 20 km behind the volcanic front. Blue Mountain consists of 13 domes (58-68 weight percent SiO2) and The Gas Rocks of three domes (62-64.5 weight percent SiO2) and a mafic cone (52 weight percent SiO2). All 16 domes are amphibole-biotite-plagioclase felsite, and nearly all are phenocryst rich and quartz bearing. Although the two dome clusters are lithologically and chemically similar and only 25 km apart, they differ strikingly in age. The main central dome of Blue Mountain yields an 40Ar/39Ar age of 632?7 ka, and two of the Gas Rocks domes ages of 25.7?1.4 and 23.3?1.2 ka. Both clusters were severely eroded by glaciation; surviving volumes of Blue Mountain domes total ~1 km3, and of the Gas Rocks domes 0.035 km3. Three basaltic vents lie close to The Gas Rocks, another lies just south of Blue Mountain, and a fifth is near the north shore of Becharof Lake. A basaltic andesite vent 6 km southeast of The Gas Rocks appears to be a flank vent of the arc-front center Mount Peulik. The basalt of Ukinrek Maars has been called transitionally alkalic, but all the other basaltic rocks are subalkaline. CO2-rich gas emissions near the eponymous Gas Rocks domes are not related to the 25-ka dacite dome cluster but, rather, to intracrustal degassing of intrusive basalt, one batch of which erupted 3 km away in 1977. The felsic and mafic vents all lie along or near the Bruin Bay Fault where it intersects a broad transverse structural zone marked by topographic, volcanologic, and geophysical discontinuities.
Earth Observations taken by Expedition 38 crewmember
2014-01-30
ISS038-E-039032 (30 Jan. 2014) --- Prince Albert, South Africa is featured in this image photographed by an Expedition 38 crew member on the International Space Station. Space station crews sometimes take detailed images with an 800mm lens, such as this view of the small town of Prince Albert (population just more than 7,000). The town lies at the foot of the mountains known as the Great Swartberg in southern South Africa, about 220 miles (355 kilometers) east of Cape Town. Prince Albert, named after Queen Victoria's husband, appears as a cluster of whitewashed buildings (left) at the foot of the mountains, larger dwellings nearer the steep mountain front and smaller dwellings further away. Despite its small size, the dry climate and the water supply from gorges immediately upstream (a small reservoir appears extreme left) have made it well-known as a productive point in the Karroo semidesert. Olive groves especially, with other crops, flourish on the valleys floors, surrounded by sheep and ostrich ranches. Founded 250 years ago, this small town retains more than a dozen registered historic buildings in the Victorian and Cape Dutch styles. Based on this and other small Karroo towns as get-aways from South Africa's large, crowded cities, tourism has developed significantly in the last 20 years. Swartberg means Black Mountain in Afrikaans, and winter snow (not visible in this image) along the mountain tops (4,500-6,500 feet; 1,370-1,980 meters, above the town) makes for spectacular scenery. The mountains are part of the ancient Cape Fold Mountain Belt. Gorges through the mountains provide impressive side-on views of tightly folded and broken rock layers associated with the mountain-building episode.
Influence of orographic precipitation on the incision within a mountain-piedmont system
NASA Astrophysics Data System (ADS)
Zavala, Valeria; Carretier, Sébastien; Bonnet, Stephane
2017-04-01
The geomorphological evolution of a mountain-piedmont system depends both on tectonics and climate, as well as on couplings between the mountain and its piedmont. Although the interactions between climate and tectonics are a fundamental point for understanding the landscape evolution, the erosion of a mountain range and the sediment deposition at the mountain front, or piedmont, have been poorly studied as a coupled system. Here we focus on the conditions driving an incision within such a system. Classically, it is thought that incision results from a change in climate or uplift rates. However, it is not clear which are the specific conditions that favor the occurrence of river incision in the piedmont. In particular, studies have shown that the presence of a piedmont can modify the incision patterns, and even drive autogenic incision, without any change in external forcings. This is a crucial issue in order to interpret natural incisions in terms of uplift or climatic modifications. Such a problem is further complicated by the modification of local precipitations and temperatures during uplift, because the progressive effect of climate change may superimpose to uplift. In this work we explore the hypothesis that a mountain-piedmont coupled system may develop incision in its piedmont as a result of enhanced orographic precipitations during surface uplift. We use a landscape evolution model, Cidre, in order to explore the response of a mountain-piemont system in which the mountain is continuously uplifted but in which precipitation rates depend on elevations. Thus precipitation amounts change during the mountain uplift. We test different peaks and amplitudes of the orographic precipitation pattern, maintaining the other conditions constant. Preliminary results show that elevation-dependent precipitations drive temporary but pronounced incisions of the main rivers within the piedmont, contrary to experiments without orographic precipitations.
Earth Observations taken by the Expedition 17 Crew
2008-06-18
ISS017-E-009598 (18 June 2008) --- The Sentinel Volcanic Field in Arizona is featured in this image photographed by an Expedition 17 crewmember on the International Space Station. This detailed view depicts a portion of the Gila River channel (center) between the Sentinel Volcanic Field and Oatman Mountain in south-central Arizona. The northernmost boundary of the Sentinel field is visible in the image, recognizable by the irregular flow fronts, or leading edge, of thin basalt lava flows erupted from low volcanic cones approximately 3.3--1.3 million years ago, according to scientists. Coloration of the lava flow tops ranges from dark brown exposed rock to a tan, carbonate-rich soil cover. Active agricultural fields along the Gila River are a rich green set against the surrounding desert. In contrast to the gentle topography of the Sentinel Volcanic Field, Oatman Mountain (upper left) rises from the Gila River channel to an elevation of approximately 560 meters. While Oatman Mountain is located close to the Sentinel field, it represents an earlier phase of volcanic activity in the area. Volcanic rocks comprising Oatman Mountain were more viscous, leading to shorter, stronger flows that are weathered into stream channels and scarps on the mountain slopes. The mountain is a popular hang gliding destination due to abundant thermal currents rising from the surrounding desert floor and lava surfaces.
Seismic experiment ross ice shelf 1990/91: Characteristics of the seismic reflection data
1993-01-01
The Transantarctic Mountains, with a length of 3000-3500 km and elevations of up to 4500 m, are one of the major Cenozoic mountain ranges in the world and are by far the most striking example of rift-shoulder mountains. Over the 1990-1991 austral summer Seismic Experiment Ross Ice Shelf (SERIS) was carried out across the Transantarctic Mountain front, between latitudes 82 degrees to 83 degrees S, in order to investigate the transition zone between the rifted area of the Ross Embayment and the uplifted Transantarctic Mountains. This experiment involved a 140 km long seismic reflection profile together with a 96 km long coincident wide-angle reflection/refraction profile. Gravity and relative elevation (using barometric pressure) were also measured along the profile. The primary purpose was to examine the boundary between the rift system and the uplifted rift margin (represented by the Transantarctic Mountains) using modern multi-channel crustal reflection/refraction techniques. The results provide insight into crustal structure across the plate boundary. SERIS also represented one of the first large-scale and modern multi-channel seismic experiments in the remote interior of Antarctica. As such, the project was designed to test different seismic acquisition techniques which will be involved in future seismic exploration of the continent. This report describes the results from the analysis of the acquisition tests as well as detailing some of the characteristics of the reflection seismic data. (auths.)
3. VIEW OF CENTRAL AVENUE LOOKING WEST FROM JUST EAST ...
3. VIEW OF CENTRAL AVENUE LOOKING WEST FROM JUST EAST OF THE INTERSECTION OF CENTRAL AVENUE AND THE EAST PERIMETER ROAD. THE ROCKY FLATS PLANT IS ABOUT 16 MILES NORTHWEST OF DENVER ON A PLATEAU AT THE EASTERN EDGE OF THE FRONT RANGE OF THE ROCKY MOUNTAINS. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
"Twentytwo horses struggling with the 30,000 pound load on the ...
"Twenty-two horses struggling with the 30,000 pound load on the mountain road. Eighteen animals are in front and four are on the push-pole behind." San Joaquin Light and Power Magazine, Vol. 1, No. 12, December 1913, p. 551 - Tule River Hydroelectric Complex, CA Highway 190 at North Fork of Middle Fork of Tule River, Springville, Tulare County, CA
Wild Fire Computer Model Helps Firefighters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canfield, Jesse
2012-09-04
A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.
Wild Fire Computer Model Helps Firefighters
Canfield, Jesse
2018-02-14
A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.
Gulf of Antalya, Southern Turkish Coastline
1984-10-13
41G-120-053 (5-13 Oct. 1984) --- Turkey and a portion of the Mediterranean Sea, with the city of Antalya visible, were photographed with a medium format camera during the 41-G mission aboard the space shuttle Challenger. Numerous eddies and an ocean front can be observed in the sun's glint off the water's surface. The folded mountains indicate the rugged topography in this region. Photo credit: NASA
Enhancement in secondary particulate matter production due to mountain trapping
NASA Astrophysics Data System (ADS)
Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.
2014-10-01
As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be originated from the PRD and transported back resulting in significant increase of secondary PM concentration, and provides new insight into PM production and transport mechanism in the PRD.
Sinuous Ridge on the Orson Welles Bajada
2015-04-22
Alluvial fans are piles of debris dumped by rivers when they emerge from the mountains and enter a mostly dry valley as seen by NASA Mars Reconnaissance Orbiter. A bajada (such as this example named after the famous American filmmaker) consists of a series of coalescing alluvial fans along a mountain front. On the surface of this bajada, one can see many sinuous ridges. These ridges mark the path that streams of water took as they flowed into this crater. The sinuosity of the ridges tells us something about the speed of the water flow. Fast moving flows tend to be straighter than slow-moving. Observations like this help us build a picture of how rivers behaved on ancient Mars. http://photojournal.jpl.nasa.gov/catalog/PIA19366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isachsen, Y.W.
1978-09-27
Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similarmore » dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.« less
Colton, Roger B.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.
2003-01-01
This digital map shows bedding attitude data displayed over the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 (U.S.Geological Survey Map I-855-G) under the Front Range Urban Corridor Geology Program. Colton used his own mapping and published geologic maps having varied map unit schemes to compile one map with a uniform classification of geologic units. The resulting published color paper map was intended for planning for use of land in the Front Range Urban Corridor. In 1997-1999, under the USGS Front Range Infrastructure Resources Project, Colton's map was digitized to provide data at 1:100,000 scale to address urban growth issues(see cross-reference). In general, the west part of the map shows a variety of Precambrian igneous and metamorphic rocks, major faults and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The eastern and central part of the map (Colorado Piedmont) depicts a mantle of Quaternary unconsolidated deposits and interspersed Cretaceous or Tertiary-Cretaceous sedimentary rock outcrops. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone and shale formations (and sparse limestone) form hogbacks, intervening valleys, and in range-front folds, anticlines, and fault blocks. Localized dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.
Transport of pollutants from cow feedlots in eastern Colorado into Rocky Mountain alpine lakes
NASA Astrophysics Data System (ADS)
Pina, A.; Denning, S.; Schumacher, R. S.
2012-12-01
Concentrated Animal Feeding Operations (CAFOs), also called factory farms, are known for raising tens of millions head of livestock including cows (beef and dairy), swine, and poultry. With as many as 250 head of cattle per acre, a United States Department of Agriculture's (USDA) Agricultural Research Service (ARS) report showed beef cattle from CAFOs in the United States produce as much as 24.1 million tons of manure annually. Gases released from cow manure include methane (CH4), nitrous oxide (N2O), hydrogen sulfide (H2S), and ammonia (NH3). During boreal summers Colorado experiences fewer synoptic weather systems, allowing the diurnal cycle to exert greater control of meteorological events along the mountain-plains interface. Anabatic, or upslope winds induced by the diurnal cycle, contribute largely to the transport of gases and particulates from feedlots in eastern Colorado into the Rocky Mountains, presenting a potential harm to natural alpine ecosystems. This study focuses on locating the source of transport of gases from feedlots along the eastern Front Range of Colorado into alpine lakes of the Rocky Mountains. Source regions are approximated using backward time simulation of a Lagrangian Transport model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yan; Fan, Jiwen; Leung, L. Ruby
Significant reduction in precipitation in the past decades has been documented over many mountain ranges such as those in central and eastern China. Consistent with the increase of air pollution in these regions, it has been argued that the precipitation trend is linked to aerosol microphysical effect on suppressing warm rain. Rigorous quantitative investigations on the reasons responsible for the precipitation reduction are lacking. Here in this study, we employed an improved Weather Research and Forecasting (WRF) model with online coupled chemistry (WRF-Chem) and conducted simulations at the convection-permitting scale to explore the major mechanisms governing changes in precipitation frommore » orographic clouds in the Mountain (Mt.) Hua area in Central China. We find that anthropogenic pollution contributes to a ~ 40% reduction of precipitation over Mt. Hua during the one-month summer time period. The reduction is mainly associated with precipitation events associated with valleymountain circulation and a mesoscale cold front event. In this Part I paper, we scrutinize the mechanism leading to significant reduction for the cases associated with valley-mountain circulation. We find that the valley breeze is weakened by aerosols due to absorbing aerosol induced warming aloft and cooling near the surface as a result of aerosol-radiation interaction (ARI). The weakened valley breeze along with reduced water vapor in the valley due to reduced evapotranspiration as a result of surface cooling significantly reduce the transport of water vapor from the valley to mountain and the relative humidity over the mountain, thus suppressing convection and precipitation in the mountain.« less
110. MILL APPROACH FROM EAST. THE TRAM LINE RANT TO ...
110. MILL APPROACH FROM EAST. THE TRAM LINE RANT TO THE RIGHT (NORTH) OF THE ROAD AND REACHED THE CRUDE ORE BINS AROUND THE FAR BEND. BUILDINGS FROM FRONT TO BACK ARE, ON RIGHT, OIL WAREHOUSE AND GASOLINE SHED, AND ON LEFT, GARAGE, CARPENTER'S SHOP, OIL SHED, AND MACHINE SHOP. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Klaus Moeltner; Christine E. Blinn; Thomas P. Holmes
2017-01-01
We examine the impact of measurement errors in geocoding of property locations and in the assessment of Mountain Pine Beetle-induced tree damage within the proximity of a given residence on estimated losses in home values. For our sample of homes in the wildland-urban interface of the Colorado front range and using a novel matching estimator with Bayesian regression...
Charles F. Leaf
1975-01-01
Summarizes a series of comprehensive reports on watershed management in five major vegetation zones: (1) the coniferous forest subalpine zone; (2) the Front Range ponderosa pine zone; (3) the Black Hills ponderosa pine zone; (4) the alpine zone; and (5) the big sagebrush zone. Includes what is known about the hydrology of these lands, what hydrologic principles are...
Giant landslide deposits in northwest Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauque, L.; Strecker, M.R.; Bloom, A.L.
1985-01-01
Giant Quaternary landslide deposits occur along mountain fronts in the structural transition zone between the high-angle reverse-fault-bounded Sierras Pampeanas and the low-angle thrust belt of the Sierras Subandinas. There are two modes of occurrence: (1) chaotic masses without distinct geometry, and (2) masses with distinct lobate geometry similar to glacial moraines. Type (1) deposits occur where the moving rock mass followed a narrow valley and blocked the drainage. Many of these caused subsequent formation of lakes and changed the sedimentation processes on pediments at the mountain fronts. In type (2) deposits, lateral and frontal ridges are up to 10 mmore » higher than the interior parts; in some places pressure ridges within the lobes are well preserved. Type (2) deposits show reverse grading and were deposited on relatively smooth pediments or alluvial fans. The lobate geometry strongly suggests that type (2) deposits are a product of flowage and are debris stream or sturzstrom deposits (sense of Heim, 1932 and Hsu, 1975). All investigated deposits occur in areas of demonstrated Quaternary faulting and are interpreted as the result of tectonic movements, although structural inhomogeneities in the source area may have been a significant factor for some of the landslides. No datable materials have yet been found associated with the deposits.« less
Full suspension mountain bike improves off-road cycling performance.
Nishii, T; Umemura, Y; Kitagawa, K
2004-12-01
The purpose of the present study was to determine the effects of suspension systems on the cycling performance of cyclists during off-road bicycling. Eight elite male cyclists (67.8+/-5.8 ml/min/kg of (.-)VO(2max)) performed 30-minute riding tests on bicycles with 2 different suspension setups: front suspension (FS) and front and rear suspension (FRS). Heart rate, blood lactate concentration, pedaling power, cadence, cycling velocity, and completed distance during the trial were measured creatin kinase (CK), lactic dehydrogenase (LDH) and glutamic-oxaloacetic transaminase (GOT) were measured before and after the trials. The average cadence during the trial was significantly higher (p<0.05) with the FRS (73.6+/-6.1 rpm) than the FS (70.2+/-6.2 rpm). Subjects rode significantly faster (p<0.05) on FRS (24.1+/-2.6 km/h) than FS bikes (22.9+/-2.4 km/h), although no significant difference was observed in pedaling power (240.7+/-26.6 W vs 242.2+/-28.8 W, FS vs FRS, respectively). Serum creatin kinase increased significantly (p<0.05) at 24 h after the trial when cyclists exercised with the FS bike. We conclude that the FRS improved cycling performance over rough terrain. FRS might therefore be more suitable for cross-country mountain bike races.
Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow
Plummer, Niel; Bexfield, L.M.; Anderholm, S.K.; Sanford, W.E.; Busenberg, E.
2004-01-01
Chemical and isotopic data for groundwater from throughout the Middle Rio Grande Basin, central New Mexico, USA, were used to identify and map groundwater flow from 12 sources of water to the basin,evaluate radiocarbon ages, and refine the conceptual model of the Santa Fe Group aquifer system. Hydrochemical zones, representing groundwater flow over thousands to tens of thousands of years, can be traced over large distances through the primarily siliciclastic aquifer system. The locations of the hydrochemical zones mostly reflect the "modern" predevelopment hydraulic-head distribution, but are inconsistent with a trough in predevelopment water levels in the west-central part of the basin, indicating that this trough is a transient rather than a long-term feature of the aquifer system. Radiocarbon ages adjusted for geochemical reactions, mixing, and evapotranspiration/dilution processes in the aquifer system were nearly identical to the unadjusted radiocarbon ages, and ranged from modern to more than 30 ka. Age gradients from piezometer nests ranged from 0.1 to 2 year cm-1 and indicate a recharge rate of about 3 cm year-1 for recharge along the eastern mountain front and infiltration from the Rio Grande near Albuquerque. There has been appreciably less recharge along the eastern mountain front north and south of Albuquerque. ?? Springer-Verlag 2004.
NASA Astrophysics Data System (ADS)
Macias Fauria, M.; Johnson, E. A.
2009-12-01
Altitudinal treelines occur on mountain slopes. The geological history of mountain systems sets both the distribution of slope angles, aspects and lengths, and the physical characteristics of the bedrock and regolith on which trees have to establish and grow. We show that altitudinal treeline is largely controlled at an ecosystem level by structural and slope (i.e. gravitational) geomorphic processes operating at a range of temporal and spatial scales, which have direct influence on the hydrological properties of the substrate (affecting the trees’ water and energy budget), as well as on substrate stability, both of which affect recruitment and growth of trees. The study was conducted over a relatively large area of > 200 km2 in the Front Ranges of the Canadian Rocky Mountains, selected to contain the regional diversity of slopes and substrates, which is the result of hundreds of millions of years of sea deposition, subsequent mountain building, and deep erosion by glaciations. Very high-resolution remote sensing data (LiDAR), aerial orthophotos taken at several times since the late 1940s, and ground truthing were employed to classify the terrain into process-based geomorphic units. High resolution, landscape-scale treeline studies are able avoid potential biases in site selection (i.e. selection of sites that are not representative of the overall regional treeline), and consequently capture the coupling between trees and the environment at an ecosystem (regional) level. Moreover, explicitly accounting for slope and substrate-related processes occurring in the studied mountain region is paramount in order to understand the dynamics of trees at their altitudinal distribution limit. Presence of trees in each unit was found to be controlled by a set of parameters relevant to both hydrological and slope processes, such as contributing area, slope angle, regolith transmissivity, and aspect. Our results show no treeline advance over the last 60 years in the region, as most of the area is controlled by geological processes and not by physiological temperature thresholds. Temperature could potentially affect presence of trees at high elevations through its effects on the physical properties of the slopes on which trees grow. However, this effect is at a much longer timescale than those implied in current studies of treeline response to global warming. Finally, continuous recruitment of trees following lightning-caused wildfires during the first half of the 20th century has resulted in increased high altitude forest stand density.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Zhang, Huai; Shi, Yaolin; Mary, Baptiste; Wang, Liangshu
2016-04-01
How to reconcile earthquake activities, for instance, the distributions of large-great event rupture areas and the partitioning of seismic-aseismic slips on the subduction interface, into geological mountain building period is critical in seismotectonics. In this paper, we try to scope this issue within a typical and special continental collisional mountain wedge within Himalayas across the 2015 Mw7.8 Nepal Himalaya earth- quake area. Based on the Critical Coulomb Wedge (CCW) theory, we show the possible predictions of large-great earthquake rupture locations by retrieving refined evolutionary sequences with clear boundary of coulomb wedge and creeping path inferred from interseismic deformation pattern along the megathrust-Main Himalaya Thrust (MHT). Due to the well-known thrusting architecture with constraints on the distribution of main exhumation zone and of the key evolutionary nodes, reasonable and refined (with 500 yr interval) thrusting sequences are retrieved by applying sequential limit analysis (SLA). We also use an illustration method-'G' gram to localize the relative positions of each fault within the tectonic wedge. Our model results show that at the early stage, during the initial wedge accumulation period, because of the small size of mountain wedge, there's no large earthquakes happens in this period. Whereas, in the following stage, the wedge is growing outward with occasionally out-of-sequence thrusting, four thrusting clusters (thrusting 'families') are clarified on the basis of the spatio-temporal distributions in the mountain wedge. Thrust family 4, located in the hinterland of the mountain wedge, absorbed the least amount of the total convergence, with no large earthquakes occurrence in this stage, contributing to the emplacement of the Greater Himalayan Complex. The slips absorbed by the remnant three thrust families result in large-great earthquakes rupturing in the Sub-Himalaya, Lesser Himalaya, and the front of Higher Himalaya. The portion rupturing in Sub-Himalaya is mainly great Himalaya earthquakes (M>8), with enough energy to rupture the whole MHT, while the thrusting family 2 and 3 will cause mainly large earthquakes. The averaged lifespan of single segment (inclined short lines) is growing from the deformation front to the hinterland, while the occurrence frequency is just in the opposite way. Thrusting slips in family 1-3 will enhance the coulomb wedge development resulting in mountain building. Note that, all the large earthquake behaviors described in this paper is a statistical characteristic, just the tendency distribution on the MHT in one interval. Although our research domain is a section of the Nepal Himalaya, the treatment proposed in this paper has universality in continental collisional orogenic belt which having the same interseismic pattern. We also summary the differences of seismogenic zones in oceanic subduction zone (Cascadia subduction zone) and arc-continental subduction zone (Taiwan area). The different types of interseismic pattern(mechanical patterns) are the controlling factors controlling seismic potential on megathrust and thus impacting the mountain building history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Steven K.; Sobieniak-Wiseman, L. Cheyanne; Kageyama, Stacy A.
2008-01-01
Arbuscular mycorrhizal (AM) and dark-septate endophytic (DSE) fungi were quantified in plant roots from high-elevation sites in the Cordillera Vilcanota of the Andes (Per ) and the Front Range of the Colorado Rocky Mountains (U.S.A.). At the highest sites in the Andes (5391 m) AM fungi were absent in the two species of plants sampled (both Compositae) but roots of both were heavily colonized by DSE fungi. At slightly lower elevations (5240 5250 m) AM fungi were present in roots while DSE fungi were rare in plants outside of the composite family. At the highest sites sampled in Colorado (4300more » m) AM fungi were present, but at very low levels and all plants sampled contained DSE fungi. Hyphae of coarse AM fungi decreased significantly in plant roots at higher altitude in Colorado, but no other structures showed significant decreases with altitude. These new findings indicate that the altitudinal distribution of mycorrhizal fungi observed for European mountains do not necessarily apply to higher and drier mountains that cover much of the Earth (e.g. the Himalaya, Hindu Kush, Andes, and Rockies) where plant growth is more limited by nutrients and water than in European mountains. This paper describes the highest altitudinal records for both AM and DSE fungi, surpassing previous reported altitudinal maxima by about 1500 meters.« less
Tusiime, Felly Mugizi; Gizaw, Abel; Wondimu, Tigist; Masao, Catherine Aloyce; Abdi, Ahmed Abdikadir; Muwanika, Vincent; Trávníček, Pavel; Nemomissa, Sileshi; Popp, Magnus; Eilu, Gerald; Brochmann, Christian; Pimentel, Manuel
2017-07-01
High tropical mountains harbour remarkable and fragmented biodiversity thought to a large degree to have been shaped by multiple dispersals of cold-adapted lineages from remote areas. Few dated phylogenetic/phylogeographic analyses are however available. Here, we address the hypotheses that the sub-Saharan African sweet vernal grasses have a dual colonization history and that lineages of independent origins have established secondary contact. We carried out rangewide sampling across the eastern African high mountains, inferred dated phylogenies from nuclear ribosomal and plastid DNA using Bayesian methods, and performed flow cytometry and AFLP (amplified fragment length polymorphism) analyses. We inferred a single Late Pliocene western Eurasian origin of the eastern African taxa, whose high-ploid populations in one mountain group formed a distinct phylogeographic group and carried plastids that diverged from those of the currently allopatric southern African lineage in the Mid- to Late Pleistocene. We show that Anthoxanthum has an intriguing history in sub-Saharan Africa, including Late Pliocene colonization from southeast and north, followed by secondary contact, hybridization, allopolyploidization and local extinction during one of the last glacial cycles. Our results add to a growing body of evidence showing that isolated tropical high mountain habitats have a dynamic recent history involving niche conservatism and recruitment from remote sources, repeated dispersals, diversification, hybridization and local extinction. © 2017 John Wiley & Sons Ltd.
Corn, Paul Stephen; Bury, R. Bruce
1986-01-01
We examined 63 specimens of Coluber constrictor from Colorado and Utah using eight external morphological characters that have been used to distinguish C. c. mormon from C. c. flaviventris. We grouped the snakes into three Operational Taxonomic Units (OTU's) in a transect across the Rocky Mountains: the eastern Front Range foothills in Colorado; the inter-mountain region (western slope of Colorado and northeastern Utah); and the western foothills of the Wasatch Mountains in Utah. Statistically significant variation among the OTU's was discovered for ration of tail length to total length, number of central and subcaudal scales, and number of dentary teeth. However, variation is clinal with nearly complete overlap from one end f the transect to the other for each character, suggesting a wide zone of intergradiation in the inter-mountain region. We do not believe reported differences in reproductive parameters between Great Plains and Great Basin racers are sufficient grounds for recognition of species, because clutch size is both geographically variable and dependent on the environment. The distribution of C. constrictor is similar to that of other reptiles with transmontane distributions in the western United States, and we suggest two possible routes of dispersal across the Continental Divide in southwestern Wyoming. Thus, elevation of C. c. mormon to species status is not supported by morphological, reproductive, or zoogeographic evidence.
SRTM Perspective View with Landsat Overlay: Santa Monica Bay to Mount Baden-Powell, California
NASA Technical Reports Server (NTRS)
2000-01-01
Los Angeles may be the world's entertainment capital, but it is a difficult place to locate television and radio antennas. The metropolitan area spreads from the Pacific Ocean to Southern California's upper and lower deserts, valleys, mountains, canyons and coastal plains. While this unique geography offers something for everyone in terms of urban, suburban, small-town, and even semi-rural living, reception of television and radio signals can be problematic where there is no line-of-sight to a transmitting antenna. Broadcasters must choose antenna sites carefully in order to reach the greatest number of customers. Most local television towers are located atop Mount Wilson (elevation 1740 m =5710 ft), which is located on the front range of the San Gabriel Mountains (indistinctly visible, just right of the image center). This site is preferable to the highest peak seen here (Mount Baden-Powell, 2865 m =9399 ft) because it's closer to the urban center and has fewer obstructing peaks. It is also situated at a protruding bend in the mountain front and has few obstructions to the left and right. Computer automated methods combined with elevation models produced by SRTM will quantitatively optimize such factors in the siting of future transmission antenna installations worldwide.This perspective view looks northeastward from the Santa Monica Bay. The San Fernando Valley is on the left, Pasadena is against the mountain front at right-center, and downtown Los Angeles is on the coastal plain directly in front of Mount Baden-Powell. This image was generated by draping a Landsat satellite image over a preliminary topographic map from the Shuttle Radar Topography Mission (SRTM). Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.The elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 29 kilometers (18 miles) view width, 70 kilometers (43 miles) view distance Location: 34.2 deg. North lat., 118.2 deg. West lon. Orientation: View toward the northeast, 3X vertical exaggeration Image: Landsat bands 1, 2&4, 3 as blue, green, and red, respectively Date Acquired: February 16, 2000 (SRTM), November 11, 1986 (Landsat)A Theoretical Study of Cold Air Damming.
NASA Astrophysics Data System (ADS)
Xu, Qin
1990-12-01
The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (northerly) jet trapped on the windward (eastern) side of the mountain. The interface between the two layers represents a coastal front-a sloping inversion layer coupling the trapped cold dome with the warm onshore flow above through pressure continuity.An analytical expression is obtained for the inviscid upper-layer flow with hydrostatic and moist adiabatic approximations. Blackadar's PBL parameterization of eddy viscosity is used in the lower-layer equations. Solutions for the mountain-parallel jet and its associated secondary transverse circulation are obtained by expanding asymptotically upon a small parameter proportional to the square root of the inertial aspect ratio-the ratio between the mountain height and the radius of inertial oscillation. The geometric shape of the sloping interface is solved numerically from a differential-integral equation derived from the pressure continuity condition imposed at the interface.The observed flow structures and force balances of cold air damming events are produced qualitatively by the model. In the cold dome the mountain-parallel jet is controlled by the competition between the mountain-parallel pressure gradient and friction: the jet is stronger with smoother surfaces, higher mountains, and faster mountain-normal geostrophic winds. In the mountain-normal direction the vertically averaged force balance in the cold dome is nearly geostrophic and controls the geometric shape of the cold dome. The basic mountain-normal pressure gradient generated in the cold dome by the negative buoyancy distribution tends to flatten the sloping interface and expand the cold dome upstream against the mountain-normal pressure gradient (produced by the upper-layer onshore wind) and Coriolis force (induced by the lower-layer mountain-parallel jet). It is found that the interface slope increases and the cold dome shrinks as the Froude number and/or upstream mountain-parallel geostrophic wind increase, or as the Rossby number, upper-layer depth, and/or surface roughness length decrease, and vice versa. The cold dome will either vanish or not be in a steady state if the Froude number is large enough or the roughness length gets too small. The theoretical findings are explained physically based on detailed analyses of the force balance along the inversion interface.
Climatology of winter transition days for the contiguous USA, 1951-2007
NASA Astrophysics Data System (ADS)
Hondula, David M.; Davis, Robert E.
2011-01-01
In middle and high latitudes, climate change could impact the frequency and characteristics of frontal passages. Although transitions between air masses are significant features of the general circulation that influence human activities and other surface processes, they are much more difficult to objectively identify than single variables like temperature or even extreme events like fires, droughts, and floods. The recently developed Spatial Synoptic Classification (SSC) provides a fairly objective means of identifying frontal passages. In this research, we determine the specific meteorological patterns represented by the SSC's Transition category, a "catch-all" group that attempts to identify those days that cannot be characterized as a single, homogeneous air mass type. The result is a detailed transition climatology for the continental USA. We identify four subtypes of the Transition category based on intra-day sea level pressure change and dew point temperature change. Across the contiguous USA, most transition days are identified as cold fronts and warm fronts during the winter season. Among the two less common subtypes, transition days in which the dew point temperature and pressure both rise are more frequently observed across the western states, and days in which both variables fall are more frequently observed in coastal regions. The relative frequencies of wintertime warm and cold fronts have changed over the period 1951-2007. Relative cold front frequency has significantly increased in the Northeast and Midwest regions, and warm front frequencies have declined in the Midwest, Rocky Mountain, and Pacific Northwest regions. The overall shift toward cold fronts and away from warm fronts across the northern USA arises from a combination of an enhanced ridge over western North America and a northward shift of storm tracks throughout the mid-latitudes. These results are consistent with projections of climate change associated with elevated greenhouse gas concentrations.
Field evidences for a Mesozoic palaeo-relief through the northern Tianshan
NASA Astrophysics Data System (ADS)
Gumiaux, Charles; Chen, Ke; Augier, Romain; Chen, Yan; Wang, Qingchen
2010-05-01
The modern Tianshan mountain belt, located in Central Asia, offers a natural laboratory to study orogenic processes linked with convergent geodynamical settings. Most of the previous studies either focused on the Paleozoic evolution of the range - subductions, arc accretions and continental collision - or on its Cenozoic intra-continental evolution linked with the India-Asia collision. At first order, the finite structure of this range obviously displays a remarkable uprising of Paleozoic "basement" rocks - as a crustal-scale ‘pop-up' - surrounded by two Cenozoic foreland basins. The present-day topography of the Tianshan is traditionally related to the latest intra-continental reactivation of the range. In contrast, the present field study of the northern Tianshan brings new and clear evidences for the existence of a significant relief, in this area, during Mesozoic times. The investigation zone is about 250 km long, from Wusu to Urumqi, along the northern flank of the Tianshan where the rivers deeply incised the topography. In such valleys, lithologies and structural relationships between Paleozoic basement rocks, Mesozoic and Cenozoic sedimentary series are particularly well exposed along several sections. Jurassic series are mostly characterized by coal-bearing, coarse-grained continental deposits. Within intra-mountain basins, sedimentary breccias, with clasts of Carboniferous basement rocks, have been locally found at the base of the series. This argues for the presence of a rather proximal palaeo-relief of basement rocks along the range front and the occurrence of proximal intra-mountain basins, during the Jurassic. Moreover, while a major thrust is mostly evoked between Jurassic deposits and the Paleozoic units, some of the studied sections show that the Triassic to Jurassic sedimentary series can be followed from the basin to the range. In these cases, the unconformity of the Mesozoic series on top of the Carboniferous basement has been locally clearly identified quite high in the mountain range or even, surprisingly, directly along the northern Tianshan "front" itself. Combining available information from geological maps, field investigations and numerous drilling wells, regional-scale cross-sections have been built. Some of them show "onlap" type deposit of the Triassic to Jurassic clastic sediments on top of the Paleozoic basement that was thus significantly sloping down to the North at that time. Our study clearly evidences, at different scales, the existence of a major palaeo-relief along the northern Tianshan range during Mesozoic, and particularly during Jurassic times. Such results are compatible with previous fission tracks and sedimentology studies. From this, the Tianshan's uplift and the movements associated with along its northern front structures, which are traditionally assigned to its Cenozoic reactivation, must be reduced. These new results question on the mode and timing of reactivation of structures and on the link between topography and intra-continental collisional settings.
Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.
2016-01-01
Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites. PMID:27991554
Zhang, Ming-Li; Zeng, Xiao-Qing; Sanderson, Stewart C; Byalt, Vyacheslav V; Sukhorukov, Alexander P
2017-01-01
The Tianshan Mountains play a significant role in the Central Asian flora and vegetation. Lagochilus has a distribution concentration in Tianshan Mountains and Central Asia. To investigate generic spatiotemporal evolution, we sampled most Lagochilus species and sequenced six cpDNA locations (rps16, psbA-trnH, matK, trnL-trnF, psbB-psbH, psbK-psbI). We employed BEAST Bayesian inference for dating, and S-DIVA, DEC, and BBM for ancestral area/biome reconstruction. Our results clearly show that the Tianshan Mountains, especially the western Ili-Kirghizia Tianshan, as well as Sunggar and Kaschgar, was the ancestral area. Ancestral biome was mainly in the montane steppe zone of valley and slope at altitudes of 1700-2700 m, and the montane desert zone of foothill and front-hill at 1000-1700 m. Here two sections Inermes and Lagochilus of the genus displayed "uphill" and "downhill" speciation process during middle and later Miocene. The origin and diversification of the genus were explained as coupled with the rapid uplift of the Tianshan Mountains starting in late Oligocene and early Miocene ca. 23.66~19.33 Ma, as well as with uplift of the Qinghai-Tibetan Plateau (QTP) and Central Asian aridification.
NASA Astrophysics Data System (ADS)
Santiago Pullarello, José; Derron, Marc-Henri; Penna, Ivanna; Leiva, Alicia; Jaboyadoff, Michel
2017-04-01
Active mountain fronts are subject to large scale slope collapses which have the capacity to run long distances on piedmont areas. Along time, fluvial activity and other gravitatory processes can intensively erode and mask primary features related to the collapses. Therefore, to reconstruct the history of their occurrence, further analyses are needed, e.g. sedimentologic analyses. This work focuses on the occurrence of large rock avalanches in the Vinchina region, La Rioja (28°43'27.81'' S / 68°00'25.42'' W) on the western side of the Famatina range(Argentina). Here, photointerpretation of high resolution satellite images (Google Earth) allowed us to identify two rock avalanches, main scarps developed at 2575 and 2750 m a.s.l. . There are no absolute ages for these deposits, however, comparing their preservation degree with those dated further north (in similar climatic and landscape dynamics contexts [i]), we can suggest these rock avalanches took place during the Pleistocene. We carried out a fieldwork survey in this remote area, including classical landslide mapping, structural analysis, deposits characterization and sampling. The deposits reach the valley bottom (at around 1700 m a.s.l.) with runouts about 5 and 5.3 km long. In one of the cases, the morphology of the deposit is well preserved, allowing to reconstruct accurately its extension. However, in the second case, the deposits are strongly eroded by courses draining the mountain front, therefore further analyses should be done to reconstruct its extension. In addition to morphologic interpretations, a multiscale grain-size analysis was done to differentiate rock avalanches from other hillslope deposits: (1) 3D surface models of surface plots (5x5m) have been built by SfM photogrammetry; 2) classical sieving and 3) laser grain-size analysis of deposits. Samples were collected on different parts of the slope, but also along cross sections through the avalanche deposit. This deposits characterization will be combined with results from mapping and image analysis in order to provide a first description of the sequence and extension of events related to the evolution of this mountain front. [i] Hermanns et Strecker, Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina, Geological Society of America Bulletin 1999.
Flash Flood Type Identification within Catchments in Beijing Mountainous Area
NASA Astrophysics Data System (ADS)
Nan, W.
2017-12-01
Flash flood is a common type of disaster in mountainous area, Flash flood with the feature of large flow rate, strong flushing force, destructive power, has periodically caused loss to life and destruction to infrastructure in mountainous area. Beijing as China's political, economic and cultural center, the disaster prevention and control work in Beijing mountainous area has always been concerned widely. According to the transport mechanism, sediment concentration and density, the flash flood type identification within catchment can provide basis for making the hazards prevention and mitigation policy. Taking Beijing as the study area, this paper extracted parameters related to catchment morphological and topography features respectively. By using Bayes discriminant, Logistic regression and Random forest, the catchments in Beijing mountainous area were divided into water floods process, fluvial sediment transport process and debris flows process. The results found that Logistic regression analysis showed the highest accuracy, with the overall accuracy of 88.2%. Bayes discriminant and Random forest had poor prediction effects. This study confirmed the ability of morphological and topography features to identify flash flood process. The circularity ratio, elongation ratio and roughness index can be used to explain the flash flood types effectively, and the Melton ratio and elevation relief ratio also did a good job during the identification, whereas the drainage density seemed not to be an issue at this level of detail. Based on the analysis of spatial patterns of flash flood types, fluvial sediment transport process and debris flow process were the dominant hazards, while the pure water flood process was much less. The catchments dominated by fluvial sediment transport process were mainly distributed in the Yan Mountain region, where the fault belts were relatively dense. The debris flow process prone to occur in the Taihang Mountain region thanks to the abundant coal gangues. The pure water flood process catchments were mainly distributed in the transitional mountain front.
NASA Astrophysics Data System (ADS)
Sueoka, Shigeru; Tagami, Takahiro; Kohn, Barry P.
2017-06-01
(U-Th)/He thermochronometric analyses were performed across the southern part of the Northeast Japan Arc for reconstructing the long-term uplift and denudation history in the region. Apatite (U-Th-Sm)/He ages ranged from 64.3 to 1.5 Ma, while zircon (U-Th)/He ages ranged between 39.6 and 11.0 Ma. Apatite (U-Th-Sm)/He ages showed obvious contrast among the morphostructural provinces; older ages of 64.3-49.6 Ma were obtained in the Abukuma Mountains on the fore-arc side, whereas younger ages of 11.4-1.5 Ma were determined in the Ou Backbone Range (OBR) along the volcanic front and the Asahi Mountains on the back-arc side. The age contrasts are basically interpreted to reflect the differences in the uplift and the denudation histories of the provinces considering the thermal effects of magmatism and timing of the known uplift episodes. Denudation rates were calculated to be <0.1 mm/year in the Abukuma Mountains, 0.1 to 1 mm/year in the Ou Backbone Range, and 0.1 to 0.3 mm/year in the Asahi Mountains. The denudation rates tend to increase from the mountain base to the ridges in the OBR (and the Asahi Mountains). This relationship shows a contrast with the previous findings in fault-block mountains in the Southwest (SW) Japan Arc, where the highest denudation rates were estimated near fault(s) along the base(s). This observation might reflect a difference in mountain uplift mechanisms between the NE and the SW Japan Arcs and imply that thermochronometric approaches are useful for constraining uplift and denudation histories at the scale of an island arc, as well as continental orogens. However, careful discussion of magmatic thermal effects is required.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Lehmkuhl, Frank; Nottebaum, Veit; Hülle, Daniela
2018-07-01
The reconstruction of geomorphological processes as a result of environmental change is approached by investigating and dating some fluvial, aeolian and lacustrine archives at specific locations that form a N-S basin and range transect across the Khangai Mountains south to the eastern Gobi Altai mountains in Mongolia. Geomorphological processes varied a) spatially with different climatic conditions and vegetation cover in relation to different elevation and latitude and b) temporally due to climatic shifts during the late Quaternary. In total, 15 sections from three distinct sub-regions along that transect were dated by 22 OSL ages. The Khangai Mountain sub-region exhibits mainly late Glacial to Holocene aeolian silty to sandy cover sediments mainly in the upper catchment reaches (>1800 m a.s.l.). Sections in the northern and central Gobi represent river terraces and alluvial fans in basin areas as well as aeolian sediments in the mountains above 2200 m a.s.l. The oldest terrace surface found in this study (T2; NGa1) dates to the penultimate Glacial cycle. The T1 terrace surfaces, on the northern Khangai Mountain front and in the central Gobi sub-region yield a maximum accumulation during the global Last Glacial Maximum (gLGM) and late Glacial time. During the gLGM phase represents rather sheetflow dominated transport built the alluvial fans and in late Glacial times the sediments exhibit more debrisflow controlled accumulation. Incision, forming the T1-terrace edges is therefore, supposed for the Pleistocene-Holocene transition and subsequent early Holocene. The geomorphic evidence is interpreted as stronger fluvial morphodynamics induced by enhanced humidity under beginning interglacial conditions. These processes coincided with the development of aeolian mantles at higher altitudes in the Khangai and Gobi Altai mountains where higher temperatures and humidities supported the formation of a vegetation cover, that served as a dust trap at least since late Glacial times and reduced the sediment supply on the alluvial fans.
Shallow temperature differences along the Deep Creek Range front, Idaho
NASA Astrophysics Data System (ADS)
Ore, H. T.; Wiegand, G. H.
1990-02-01
The extent of the solvolysis reaction of a tertiary butyl chloride solution placed in vials buried about 1.2 m below the ground surface is dependent on average temperature at that depth over the period of burial. This method is herein used to indicate differences in shallow temperature from the western flank of the Basin and Range Deep Creek Range front, about 5 km westward into Rockland Valley in southeastern Idaho. Ninety-three samples, distributed to allow determination of lateral and vertical sample-site variation in total reaction amount, were analyzed after being in place for 3 months. Results from two sample lines, 3.5 km apart, show that subsurface total reaction amount declines slightly for the first 1.6 km away from the mountain front, rises abruptly to several times initial reaction, slowly declines for the next several km, then tends to slowly rise again. Plots of extent of reaction vs distance for the two traverses are nearly parallel; in both the abrupt increase in total reaction coincides with a line of springs, suggesting that hydrologic activity is at least related to the effects noted.
NASA Astrophysics Data System (ADS)
Folguera, AndréS.; Ramos, VíCtor A.; Hermanns, Reginald L.; Naranjo, José
2004-10-01
The Antiñir-Copahue fault zone (ACFZ) is the eastern orogenic front of the Andes between 38° and 37°S. It is formed by an east vergent fan of high-angle dextral transpressive and transtensive faults, which invert a Paleogene intra-arc rift system in an out of sequence order with respect to the Cretaceous to Miocene fold and thrust belt. 3.1-1.7 Ma volcanic rocks are folded and fractured through this belt, and recent indicators of fault activity in unconsolidated deposits suggest an ongoing deformation. In spite of the absence of substantial shallow seismicity associated with the orogenic front, neotectonic studies show the existence of active faults in the present mountain front. The low shallow seismicity could be linked to the high volumes of retroarc-derived volcanic rocks erupted through this fault system during Pliocene and Quaternary times. This thermally weakened basement accommodates the strain of the Antiñir-Copahue fault zone, absorbing the present convergence between the South America and Nazca plates.
Research into Surface Wave Phenomena in Sedimentary Basins.
1981-12-31
150 km of the southerly extension of the Overthrust Belt, 350 km of the Green River Basin paralleling the Uinta Mountains and 150 km across the Front...WEIDLINGER ASSOCIATES O300 SAND HiLL ROAD BUILDING 4, SUITE 245 MENLO PARK, CALIFORNIA 9462 RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS BY...PARK, CALIFORNIA 94025 ! I RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS I Dy G.L. Wojcik J. Isenberg F. Ma E. Richardson Prepared for
Hurst, Howard Thomas; Sinclair, Jonathan; Atkins, Stephen; Rylands, Lee; Metcalfe, John
2017-07-01
This study aimed to investigate the influence of different mountain bike wheel diameters on muscle activity and whether larger diameter wheels attenuate muscle vibrations during cross-country riding. Nine male competitive mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) participated in the study. Riders performed one lap at race pace on 26, 27.5 and 29 inch wheeled mountain bikes. sEMG and acceleration (RMS) were recorded for the full lap and during ascent and descent phases at the gastrocnemius, vastus lateralis, biceps brachii and triceps brachii. No significant main effects were found by wheel size for each of the four muscle groups for sEMG or acceleration during the full lap and for ascent and descent (P > .05). When data were analysed between muscle groups, significant differences were found between biceps brachii and triceps brachii (P < .05) for all wheel sizes and all phases of the lap with the exception of for the 26 inch wheel during the descent. Findings suggest wheel diameter has no influence on muscle activity and vibration during mountain biking. However, more activity was observed in the biceps brachii during 26 inch wheel descending. This is possibly due to an increased need to manoeuvre the front wheel over obstacles.
Baseline report - tall upland shrubland at the Rocky Flats Environmental Technology Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Rocky Flats Environmental Technology Site (Site) is located on the Colorado Piedmont east of the Front Range between Boulder and Golden. At an elevation of approximately 6,000 feet, the Site contains a unique ecotonal mixture of mountain and prairie plant species, resulting from the topography and close proximity to the mountain front. The Buffer Zone surrounding the Industrial Area is one of the largest remaining undeveloped areas of its kind along the Colorado Piedmont. A number of plant communities at the Site have been identified as increasingly rare and unique by Site ecologists and the Colorado Natural Heritage Program (CNHP).more » These include the xeric tallgrass prairie, tall upland shrubland, wetlands, and Great Plains riparian woodland communities. Many of these communities support populations of increasingly rare animals as well, including the Preble`s meadow jumping mouse, grasshopper sparrow, loggerhead shrike, Merriam`s shrew, black crowned night heron, and Hops blue and Argos skipper butterflies. One of the more interesting and important plant communities at the Site is the tall upland shrubland community. It has been generally overlooked by previous Site ecological studies, probably due to its relatively small size; only 34 acres total. Although mentioned in a plant community ordination study conducted by Clark et al. and also in the Site baseline ecological study, few data were available on this plant community before the present study.« less
NASA Astrophysics Data System (ADS)
Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene
2013-01-01
The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.
Methods for estimating streamflow at mountain fronts in southern New Mexico
Waltemeyer, S.D.
1994-01-01
The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.
2004-03-11
Glacier Grey in front of the Cuernos del Paine mountains, photographed from Lago Grey (Grey Lake) during NASA's AirSAR 2004 campaign in Chile. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. Founded in 1959, Torres del Paine National Park encompasses 450,000 acres in the Patagonia region of Chile. This region is being studied by NASA using a DC-8 equipped with an Airborne Synthetic Aperture Radar (AirSAR) developed by scientists from NASA’s Jet Propulsion Laboratory. This is a very sensitive region that is important to scientists because the temperature has been consistently rising causing a subsequent melting of the region’s glaciers. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.
NASA Astrophysics Data System (ADS)
Pina, A.; Schumacher, R. S.; Denning, S.
2015-12-01
Rocky Mountain National Park (RMNP) is a Class I Airshed designated under the Clean Air Act. Atmospheric nitrogen (N) deposition in the Park has been a known problem since weekly measurements of wet deposition of inorganic N began in the 1980s by the National Atmospheric Deposition Program (NADP). The addition of N from urban and agriculture emissions along the Colorado Front Range to montane ecosystems degrades air quality/visibility, water quality, and soil pH levels. Based on NADP data during summers 1994-2014, wet N deposition at Beaver Meadows in RMNP exhibited a bimodal gamma distribution. In this study, we identified meteorological transport mechanisms for 3 high wet-N deposition events (all events were within the secondary peak of the gamma distribution) using the North American Regional Reanalysis (NARR) and the Weather Research and Forecasting (WRF) model. The NARR was used to identify synoptic-scale influences on the transport; the WRF model was used to analyze the convective transport of pollutants from a concentrated animal feeding operation near Greeley, Colorado, USA. The WRF simulation included a passive tracer from the feeding operation and a convection-permitting horizontal spacing of 4/3 km. The three cases suggest (a) synoptic-scale moisture and flow patterns are important for priming summer transport events and (b) convection plays a vital role in the transport of Front Range pollutants into RMNP.
Twining, Brian V.; Fisher, Jason C.
2015-01-01
Normalized mean head values were analyzed for all 11 multilevel monitoring wells for the period of record (2007–13). The mean head values suggest a moderately positive correlation among all boreholes and generally reflect regional fluctuations in water levels in response to seasonal climatic changes. Boreholes within volcanic rift zones and near the southern boundary (USGS 103, USGS 105, USGS 108, USGS 132, USGS 135, USGS 137A) display a temporal correlation that is strongly positive. Boreholes in the Big Lost Trough display some variations in temporal correlations that may result from proximity to the mountain front to the northwest and episodic flow in the Big Lost River drainage system. For example, during June 2012, boreholes MIDDLE 2050A and MIDDLE 2051 showed head buildup within the upper zones when compared to the June 2010 profile event, which correlates to years when surface water was reported for the Big Lost River several months preceding the measurement period. With the exception of borehole USGS 134, temporal correlation between MLMS wells completed within the Big Lost Trough is generally positive. Temporal correlation for borehole USGS 134 shows the least agreement with other MLMS boreholes located within the Big Lost Trough; however, borehole USGS 134 is close to the mountain front where tributary valley subsurface inflow is suspected.
Modeling the Colorado Front Range Flood of 2013 with Coupled WRF and WRF-Hydro System
NASA Astrophysics Data System (ADS)
Unal, E.; Ramirez, J. A.
2015-12-01
Abstract. Flash floods are one of the most damaging natural disasters producing large socio-economic losses. Projected impacts of climate change include increases in the magnitude and the frequency of flash floods all around the world. Therefore, it is important to understand the physical processes of flash flooding to enhance our capacity for prediction, prevention, risk management, and recovery. However, understanding these processes is ambitious because of small spatial scale and sudden nature of flash floods, interactions with complex topography and land use, difficulty in defining initial soil moisture conditions, non-linearity of catchment response, and high space-time variability of storm characteristics. Thus, detailed regional case studies are needed, especially with respect to the interactions between the land surface and the atmosphere. One such flash flood event occurred recently in the Front Range of the Rocky Mountains of Colorado during September 9-15, 2013 causing 10 fatalities and $3B cost in damages. An unexpected persistent and moist weather pattern located over the mountains and produced seven-day extreme rainfall fed by moisture input from the Gulf of Mexico. We used a coupled WRF-WRF-Hydro modeling system to simulate this event for better understanding of the physical process and of the sensitivity of the hydrologic response to storm characteristics, initial soil moisture conditions, and watershed characteristics.
Cole, James C.; Larson, Ed; Farmer, Lang; Kellogg, Karl S.
2008-01-01
The report contains the illustrated guidebook that was used for the fall field trip of the Colorado Scientific Society on September 6-7, 2008. It summarizes new information about the Tertiary geologic history of the northern Front Range and the Never Summer Mountains, particularly the late Oligocene volcanic and intrusive rocks designated the Braddock Peak complex. Minor modifications were made in response to technical reviews by D.J. Lidke and C.A. Ruleman (U.S. Geological Survey) regarding clarity and consistency, and text editing by M.A. Kidd. However, the text remains essentially similar to the guidebook that was circulated to the participants on the Colorado Scientific Society 2008 field trip. Several notes were added following the trip (as indicated) to address developments since the guidebook was written.
Areas Contributing Recharge to Wells in the Tafuna-Leone Plain, Tutuila, American Samoa
Izuka, Scot K.; Perreault, Jeff A.; Presley, Todd K.
2007-01-01
To address the concerns about the potential for contamination of drinking-water wells in the Tafuna-Leone Plain, Tutuila, American Samoa, a numerical ground-water flow model was developed and used to delineate areas contributing recharge to the wells (ACRWs). Surveys and analyses were conducted to obtain or compile certain essential hydrogeologic information needed for the model, such as groundwater production statistics, ground-water levels under current production, and an assessment of the distribution of groundwater recharge. The ground-water surveys indicate that total production from all wells in the Tafuna-Leone Plain between 1985 and 2005 averaged 6.1 Mgal/d and showed a gradual increase. A synoptic survey indicates that current water levels in the Tafuna-Leone Plain are highest near its inland boundary, decrease toward the coast, and are slightly depressed in high-production well fields. Ground-water levels showed little effect from the increased production because hydraulic conductivites are high and withdrawal is small relative to recharge. Analysis of ground-water recharge using a soil water-budget analysis indicates that the Tafuna-Leone Plain and adjacent areas receive about 280 Mgal/d of water from rainfall, of which 24 percent runs off to the ocean, 26 percent is removed by evapotranspiration, and 50 percent goes to ground-water recharge. Ground-water recharge per unit area is generally higher at the mountain crests than at the coast, but the highest recharge per unit area is in the mountain-front recharge zone at the juncture between the Tafuna-Leone Plain and the adjacent mountains. Surface water from the mountains also contributes to ground-water recharge in the eastern Tafuna-Leone Plain, in a process analogous to mountain-front recharge described in arid areas. Analysis of stream-gage data indicates that in the mountains of Tutuila, ground water discharges and contributes substantially to the total flow of the streams. In contrast, multiple lines of evidence indicate that in the eastern Tafuna-Leone Plain, surface water recharges the highly permeable underlying aquifer. Steady-state model simulations representing current ground-water production conditions in the Tafuna-Leone Plain indicate that most ACRWs extend less than a mile from the production wells; thus, travel distance between any point within an ACRW and its well is short. A simulation representing a condition in which all wells are operating at maximum capacity resulted in larger ACRWs, which demonstrates that increasing ground-water withdrawal from existing wells, or building and developing new wells, increases the surface area that could potentially contribute contaminants. In some places, such as in Malaeimi Valley, water can travel quickly via surface-water routes to an area where the water can infiltrate within the ACRWs of a well field.
Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona
Wohl, E.E.; Pearthree, P.P.
1991-01-01
Numerous debris flows occurred in the Huachuca Mountains of southeastern Arizona during the summer rainy season of 1988 in areas that were burned by a forest fire earlier in the summer. Debris flows occurred following a major forest fire in 1977 as well, suggesting a causal link between fires and debris flows. Abundant evidence of older debris flows preserved along channels and in mountain front fans indicates that debris flows have occurred repeteadly during the late Quaternary in this environment. Soil development in sequences of debris-flow deposits indicates that debris flows probably recur over time intervals of several hundred to a thousand years in individual drainage basins in the study area. Surface runoff in the steep drainage basins of the Huachuca Mountains is greatly enhanced following forest fires, as the hillslopes are denuded of their vegetative cover. Water and sediment eroded from the hillslope regolith are rapidly introduced into the upper reaches of tributary channels by widespread rilling and slope wash during rainfall events. This influx of water and sediment destabilizes regolith previously accumulated in the channel, triggering debris flows that scour the channel to bedrock in the upper reaches. Following a debris flow, the scoured, trapezoidally-shaped channel gradually assumes a swale shape and the percentage of exposed bedrock declines, as material is introduced from the slopes. Debris flows do a tremendous amount of work in a very short time, however, and are the major channel-forming events. Where the tributary channels enter larger, trunk channels, the debris flows serve as the main source of very coarse sediment. The local slope and coarse particle distribution of the trunk channel depend on the competence of water flows in the channel to transport the material introduced by debris flows. Where the smaller channels drain directly to the mountain front, debris flows create extensive alluvial fans which dominate the morphology of the basin-range boundary. Time intervals between debris flows in the drainage basins of the Huachuca Mountains are probably controlled by complex interactions among climate, forest fires and slope processes. Fires destroy the protective vegetation that stabilizes the upper catchment slopes and inhibits erosion. However, not every fire that burns a catchment causes debris flows, because sufficient weathered material must accumulate in the upper channel reaches to initiate a large debris flow. If such accumulation has not occurred, the material introduced to a channel following a forest fire will move only a short distance down the channel. Thus, the episodic nature of debris flows probably depends on rates of slope weathering and erosion, which are in turn controlled by climate, both directly and through vegetation and forest fires. ?? 1991.
Mountain Hydrology of the Semi-Arid Western U.S.: Research Needs, Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Bales, R.; Dozier, J.; Molotch, N.; Painter, T.; Rice, R.
2004-12-01
In the semi-arid Western U.S., water resources are being stressed by the combination of climate warming, changing land use, and population growth. Multiple consensus planning documents point to this region as perhaps the highest priority for new hydrologic understanding. Three main hydrologic issues illustrate research needs in the snow-driven hydrology of the region. First, despite the hydrologic importance of mountainous regions, the processes controlling their energy, water and biogeochemical fluxes are not well understood. Second, there exists a need to realize, at various spatial and temporal scales, the feedback systems between hydrological fluxes and biogeochemical and ecological processes. Third, the paucity of adequate observation networks in mountainous regions hampers improvements in understanding these processes. For example, we lack an adequate description of factors controlling the partitioning of snowmelt into runoff versus infiltration and evapotranspiration, and need strategies to accurately measure the variability of precipitation, snow cover and soil moisture. The amount of mountain-block and mountain-front recharge and how recharge patterns respond to climate variability are poorly known across the mountainous West. Moreover, hydrologic modelers and those measuring important hydrologic variables from remote sensing and distributed in situ sites have failed to bridge rifts between modeling needs and available measurements. Research and operational communities will benefit from data fusion/integration, improved measurement arrays, and rapid data access. For example, the hydrologic modeling community would advance if given new access to single rather than disparate sources of bundles of cutting-edge remote sensing retrievals of snow covered area and albedo, in situ measurements of snow water equivalent and precipitation, and spatio-temporal fields of variables that drive models. In addition, opportunities exist for the deployment of new technologies, taking advantage of research in spatially distributed sensor networks that can enhance data recovery and analysis.
Relationship between the parent material and the soil, in plain and mountainous areas
NASA Astrophysics Data System (ADS)
Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko
2013-04-01
One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.
Ground-Based GPS Sensing of Azimuthal Variations in Precipitable Water Vapor
NASA Technical Reports Server (NTRS)
Kroger, P. M.; Bar-Sever, Y. E.
1997-01-01
Current models for troposphere delay employed by GPS software packages map the total zenith delay to the line-of-sight delay of the individual satellite-receiver link under the assumption of azimuthal homogeneity. This could be a poor approximation for many sites, in particular, those located at an ocean front or next to a mountain range. We have modified the GIPSY-OASIS II software package to include a simple non-symmetric mapping function (MacMillan, 1995) which introduces two new parameters.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D stereo anaglyph image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists plan to use instruments at the end of the rover's robotic arm to examine the rock and understand how it formed.
Adirondack Under the Microscope
NASA Technical Reports Server (NTRS)
2004-01-01
This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.
2015-09-17
Ice (probably frozen nitrogen) that appears to have accumulated on the uplands on the right side of this 390-mile (630-kilometer) wide image is draining from Pluto's mountains onto the informally named Sputnik Planum through the 2- to 5-mile (3- to 8- kilometer) wide valleys. The flow front of the ice moving into Sputnik Planum is outlined by the blue arrows. The origin of the ridges and pits on the right side of the image remains uncertain. http://photojournal.jpl.nasa.gov/catalog/PIA19944
NASA Technical Reports Server (NTRS)
1993-01-01
An oblique westward view, across the wheat fields and cattle pastures, of eastern Colorado to the Front Range of the Rocky Mountains. Denver is bisected at the center of the right edge of the frame. Pikes Peak and Colorado Springs are left of center, and the Arkansas River Valley with Canyon City and the Royal Gorge are along the left edge of the frame. This view shows the startling contrast between the nearly-flat High Plains and the ancient geological uplift of the Rockies.
22. GENERAL VIEW OF MILL FROM SOUTHEAST. PROMINENT ARE THE ...
22. GENERAL VIEW OF MILL FROM SOUTHEAST. PROMINENT ARE THE 100-TON STEEL CRUSHED UNOXIDIZED ORE BIN, CENTER LEFT; STEPHENS-ADAMSON 15 TON/HR INCLINED BUCKET ELEVATOR IN FRONT OF THE STEEL ORE BIN; AND THE BAKER COOLER, LOWER RIGHT. THESE MACHINES AND OTHERS IN THE AREA WERE PART OF THE UNOXIDIZED ORE CIRCUIT. THE ROASTER IS OUT OF THE PICTURE TO THE RIGHT (EAST). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Geochronology and eruptive history of the Katmai volcanic cluster, Alaska Peninsula
Hildreth, Wes; Lanphere, Marvin A.; Fierstein, Judy
2003-01-01
In the Katmai district of the Alaska Peninsula, K–Ar and 40Ar/39Ar ages have been determined for a dozen andesite–dacite stratocones on the arc front and for 11 rear-arc volcanoes, 10 of which are monogenetic. Tied to mapping and stratigraphic studies, our dating emphasized proximal basal lavas that rest on basement rocks, in order to estimate ages of inception of each polygenetic cone. Oldest among arc-front cones is Alagogshak Volcano (690–43 ka), succeeded in the Holocene by the active Mount Martin cone. Mount Mageik consists of four overlapping subedifices, basal lavas of which give ages of 93, 71, and 59 ka, and Holocene. The three small prehistoric cones of Trident Volcano yield ages of 143, 101–58, and 44 ka. Falling Mountain and Mount Cerberus, dacite domes near the 1912 Novarupta vent, are related compositionally to the Trident group and give ages of 70 ka and 114 ka. Mount Katmai, which underwent caldera collapse in 1912, consists of two subedifices that overlapped in space and time, and is the only arc-front center here to include basalt and rhyolite; one cone began by 90 ka, the other by 47 ka. Snowy Mountain also consists of two contiguous cones, which started around 200 and 171 ka, respectively, the younger remaining active into the Holocene. Devils Desk, the only mafic cone on the arc front, was short-lived at about 245 ka. In the rear-arc, (1) Mount Griggs produced mafic-to-silicic andesite in several episodes between 292 ka and the Holocene; (2) the Savonoski River cluster includes a Pliocene dacite dome and five small mafic cones (390–88 ka); (3) Gertrude Creek cone (49.8% SiO2) yields an age of 500 ka; and (4) the Saddlehorn Creek cluster includes five Pliocene basalt-to-andesite remnants. Eruptive volumes were reconstructed, permitting estimates of average eruption rates for edifice lifetimes. Since the mid Pleistocene, total volume erupted along the arc front here is 210±47 km3 and in the rear-arc 39±6 km3, of which Mount Griggs alone accounts for 35±5 km3. Most productive has been Mount Katmai at 70±18 km3, yielding a rate of ∼1 km3/kyr, followed by Mount Mageik (0.33 km3/kyr) and Mount Griggs (0.3 km3/kyr since 50 ka).
Chronology of the last glacial maximum in the upper Bear River Basin, Utah
Laabs, B.J.C.; Munroe, Jeffrey S.; Rosenbaum, J.G.; Refsnider, K.A.; Mickelson, D.M.; Singer, B.S.; Caffee, M.W.
2007-01-01
The headwaters of the Bear River drainage were occupied during the Last Glacial Maximum (LGM) by outlet glaciers of the Western Uinta Ice Field, an extensive ice mass (???685 km2) that covered the western slope of the Uinta Mountains. A well-preserved sequence of latero-frontal moraines in the drainage indicates that outlet glaciers advanced beyond the mountain front and coalesced on the piedmont. Glacial deposits in the Bear River drainage provide a unique setting where both 10Be cosmogenic surface-exposure dating of moraine boulders and 14C dating of sediment in Bear Lake downstream of the glaciated area set age limits on the timing of glaciation. Limiting 14C ages of glacial flour in Bear Lake (corrected to calendar years using CALIB 5.0) indicate that ice advance began at 32 ka and culminated at about 24 ka. Based on a Bayesian statistical analysis of cosmogenic surface-exposure ages from two areas on the terminal moraine complex, the Bear River glacier began its final retreat at about 18.7 to 18.1 ka, approximately coincident with the start of deglaciation elsewhere in the central Rocky Mountains and many other alpine glacial localities worldwide. Unlike valleys of the southwestern Uinta Mountains, deglaciation of the Bear River drainage began prior to the hydrologie fall of Lake Bonneville from the Provo shoreline at about 16 ka. ?? 2007 Regents of the University of Colorado.
The Hydrological Response of Snowmelt Dominated Catchments to Climate Change
NASA Astrophysics Data System (ADS)
Arrigoni, A. S.; Moore, J. N.
2007-12-01
Hydrological systems dominated by snowmelt discharge contribute greater than half the freshwater resource available to the western United States. Globally, the contribution of mountain discharge to total runoff is twice the expected for their geographical coverage. Therefore, snowmelt dominated mountain catchments have proportionally a more prominent role than other systems to our freshwater resource. A changing climate, or even a more variable climate, could have a significant impact on these systems, and consequently on our freshwater resource. Ergo, a better understanding of how changes and variations in climate will influence mountain catchments is a necessity for improving future water management under predicted/proposed climate change. The research presented here is a first order analysis to improve our understanding of these systems by monitoring and analyzing high mountain catchments along the entirety of the Mission Mountain Front, Montana USA. The Mission Mountain Range is an ideal location for conducting this research as it runs directly north to south with elevations progressively increasing from 7600 feet in the northern section, to over 9700 feet at the southern end. The lower elevation catchments will be used as surrogates for variable climate change, while the high elevation catchments will be used as surrogates for a more stable, cooler, climate regime. We use a combination of USGS and Tribal stream gauges, as well as stage gauge loggers in the headwaters of the catchments, SNOTEL datasets, and weather station datasets. This information is used to determine if, how, and why the snowmelt hydrographs vary between catchments, within the catchments between the upper and lower segments, and the dominant driver or drivers of the hydrograph form in relation to changing climatic variables such as temperature and precipitation. This research will improve current comprehension of how mountain catchments respond to climatic variables, and additionally will expand upon the current understanding of general catchment hydrology.
Persistent Urban Impacts on Surface Water Quality Mediated by Stormwater Recharge
NASA Astrophysics Data System (ADS)
Gabor, R. S.; Brooks, P. D.; Neilson, B. T.; Bowen, G. J.; Jameel, M. Y.; Hall, S. J.; Eiriksson, D.; Millington, M. R.; Gelderloos, A.
2016-12-01
Growing population centers along mountain watersheds put added stress on sensitive hydrologic systems and create water quality impacts downstream. We examined the mountain-to-urban transition in watersheds on Utah's Wasatch Front to identify mechanisms by which urbanization impacts water resources. Rivers in the Wasatch flow from the mountains directly into an urban landscape, where they are subject to channelization, stormwater runoff systems, and urban inputs to water quality from sources such as road salt and fertilizer. As part of an interdisciplinary effort within the iUTAH project, multiple synoptic surveys were performed and a variety of measurements were made, including basic water chemistry along with discharge, water isotopes, and nutrients. Red Butte Creek, a stream in Salt Lake City, does not show significant urban impact to water quality until several kilometers after it enters the city where concentrations of solutes such as chloride and nitrate more than triple in a gaining reach. Groundwater springs discharging to this gaining section demonstrate urban-impacted water chemistry, suggesting that during baseflow a contaminated alluvial aquifer significantly controls stream chemistry. By combining hydrometric and hydrochemical observations we were able to estimate that these groundwater springs were 17-20% urban runoff. We were then able to predict the chemistry of urban runoff that feeds into the alluvial aquifer. Samples collected from storm culverts, roofs, and asphalt during storms had chemistry values within the range of those predicted by the mixing model. This evidence that urbanization affects the water quality of baseflow through impacted groundwater suggests that stormwater mitigation may not be sufficient for protecting urban watersheds, and quantifying these persistent groundwater mediated impacts is necessary to evaluate the success of restoration efforts. By comparing these results from Red Butte Creek with similar studies from other rivers in the Wasatch Front and other alluvial systems, we can quantify how characteristics such as discharge patterns and land-use determine alluvial recharge controls on surface water quality.
Burns, Douglas A.
2003-01-01
The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7kgha-1yr-1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000m) sites east of the Continental Divide in the Front Range. Much of this increase is the result of increased ammonium (NH4+) concentrations in wet deposition. This suggests an increase in contributions from agricultural areas or from vehicles east of the Rocky Mountains and is consistent with the results of previous studies that have suggested a significant eastern source for atmospheric N deposition to the Front Range. The four sites with the highest NH4+ concentrations in wet deposition were among the six easternmost NADP sites, which is also consistent with a source to the east of the Rockies. This analysis found an increase in N loads in wet deposition at Niwot Ridge of only 0.013kgha-1yr-1, more than an order of magnitude less than previously reported for this site. This lower rate of increase results from application of the non-parametric Seasonal Kendall trend test to mean monthly data, which failed a test for normality, in contrast to linear regression, which was applied to mean annual data in a previous study. Current upward trends in population growth and energy use in Colorado and throughout the west suggest a need for continued monitoring of atmospheric deposition of N, and may reveal more widespread trends in N deposition in the future.
Earth observation taken by the Expedition 11 crew
2005-09-30
ISS011-E-13889 (30 September 2005) --- Wasatch Range, Utah is featured in this image photographed by an Expedition 11 crewmember on the international space station. The Wasatch Range forms an impressive backdrop to the Salt Lake City metropolitan area, and is a frequent destination for hikers, backpackers, and skiers. The range is considered to be the westernmost part of the Rocky Mountains, and rises to elevations of approximately 3600 meters (12,000 feet) above sea level. This photograph, taken at the end of September, captures red- (maple trees) and gold-mantled (aspen trees) hill slopes along the western mountain front to the south of Salt Lake City. Other common tree species at these elevations include pine, fir, spruce, willow, birch, and oak. A portion of Draper City is visible in the left half of the image. The elevation of Lone Peak, visible at upper right, is approximately 3410 meters (11,253 feet).
Impact of recent extreme Arizona storms
Magirl, C.S.; Webb, R.H.; Schaffner, M.; Lyon, S.W.; Griffiths, P.G.; Shoemaker, C.; Unkrich, C.L.; Yatheendradas, S.; Troch, Peter A.; Pytlak, E.; Goodrich, D.C.; Desilets, S.L.E.; Youberg, A.; Pearthree, P.A.
2007-01-01
Heavy rainfall on 27–31 July 2006 led to record flooding and triggered an historically unprecedented number of debris flows in the Santa Catalina Mountains north of Tucson, Ariz. The U.S. Geological Survey (USGS) documented record floods along four watercourses in the Tucson basin, and at least 250 hillslope failures spawned damaging debris flows in an area where less than 10 small debris flows had been documented in the past 25 years. At least 18 debris flows destroyed infrastructure in the heavily used Sabino Canyon Recreation Area (http://wwwpaztcn.wr.usgs.gov/rsch_highlight/articles/20061 l.html). In four adjacent canyons, debris flows reached the heads of alluvial fans at the boundary of the Tucson metropolitan area. While landuse planners in southeastern Arizona evaluate the potential threat of this previously little recognized hazard to residents along the mountain front, an interdisciplinary group of scientists has collaborated to better understand this extreme event.
Stevens, M.R.; Bossong, C.R.; Rupert, M.G.; Ranalli, A.J.; Cassidy, E.W.; Druliner, A.D.
2008-01-01
Following a wildfire, such as the 2002 Missionary Ridge fire, a number of hydrologic hazards may develop that can have an important impact on water resources, businesses, homes, reservoirs, roads, and utilities in the wildland urban interface (areas where homes and commercial developments are interspersed with wildlands) in mountainous areas of the Western United States. This fact sheet describes these hazards and identifies approaches to quantify them, thus enabling land and resource managers to plan for and mitigate the effects of these hazards. The fact sheet has been produced in association with the U.S. Geological Survey (USGS) Fire Science Thrust program and the Colorado Front Range Demonstration Project (CFRDP). The current (2007) focus of the CFRDP is on the Three Lakes watershed in Grand County, Colorado, which has applicability to many similar forested, mountain areas in the Western United States.
Quaternary low-angle slip on detachment faults in Death Valley, California
Hayman, N.W.; Knott, J.R.; Cowan, D.S.; Nemser, E.; Sarna-Wojcicki, A. M.
2003-01-01
Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29??-36?? and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.
Golden, A M; Franco, J; Jatala, P; Astogaza, E
1983-07-01
Thecavermiculatus andinus n.sp. is described and illustrated from Oxalis tuberosa originally collected in the vicinity of Lake Titicaca high in the Andes mountains of southern Peru. This new species differs markedly front the other two species in the genus, especially in having a much greater female vulval-anal distance and annules with lined punctation on most of the female body with a lacelike pattern restricted to the posterior portion, particularly at the vulva and anus which do not protrude. Females are essentially spherical with protruding neck, white to yellowish in color, and can easily be mistaken for potato cyst nematodes. Among the dozen or more known weed and crop host plants are potato and eggplant. In order to accommodate this new species, the genus Thecavermieulatus is emended. A key to the species of this genus is presented.
Golden, A. M.; Franco, J.; Jatala, P.; Astogaza, E.
1983-01-01
Thecavermiculatus andinus n.sp. is described and illustrated from Oxalis tuberosa originally collected in the vicinity of Lake Titicaca high in the Andes mountains of southern Peru. This new species differs markedly front the other two species in the genus, especially in having a much greater female vulval-anal distance and annules with lined punctation on most of the female body with a lacelike pattern restricted to the posterior portion, particularly at the vulva and anus which do not protrude. Females are essentially spherical with protruding neck, white to yellowish in color, and can easily be mistaken for potato cyst nematodes. Among the dozen or more known weed and crop host plants are potato and eggplant. In order to accommodate this new species, the genus Thecavermieulatus is emended. A key to the species of this genus is presented. PMID:19295818
Sp and Ps Receiver Function Imaging of the Cenozoic and Precambrian US
NASA Astrophysics Data System (ADS)
Keenan, James; Thurner, Sally; Levander, Alan
2013-04-01
Using teleseismic USArray data we have made Ps and Sp receiver function common conversion point stacked image volumes that extend from the Pacific coast to approximately the Mississippi River. We have used iterative time-domain deconvolution, water-level frequency-domain deconvolution, and least squares inverse filtering to form receiver functions in various frequency bands (Ps: 1.0 and, 0.5 Hz, Sp: 0.2 and 0.1 Hz). The receiver functions were stacked to give an image volume for each frequency band using a hybrid velocity model made by combining Crust2.0 (Bassin et al., 2000) and finite-frequency P and S wave tomography models (Schmandt and Humphreys, 2010; and Schmandt, unpublished). We contrast the lithospheric and asthenospheric structure of the western U.S., modified by Cenozoic tectonism, with that of the Precambrian central U.S. Here we describe 2 notable features: (1) In the Sp image volumes the upper mantle beneath the western U.S. differs dramatically from that to the east of the Rocky Mountain front. In the western U.S. the lithosphere is either thin, or highly variable in thickness (40-140 km) with neither the lithosphere nor asthenosphere having much internal structure (e.g., Levander and Miller, 2012). In contrast, east of the Rocky Mountain front the lithosphere steadily deepens to > 150 km and shows relatively strong internal layering. Individual positive and negative conversions are coherent over 100's of kilometers, suggesting the thrust stacking model of cratonic formation. (2) Beneath parts of the Archean Wyoming Province (Henstock et al, 1998; Snelson et al., 1998; Gorman et al., 2002; Mahan et al, 2012), much of the Great Plains and part of the Midwest lies a vast variable thickness (up to ~25 km) high velocity crustal layer. This layer lies roughly north of the Grenville Front, underlying much of the Yavapai-Mazatzal Province east of the Rockies, parts of the Superior Province, and possibly parts of the Trans-Hudson province.
Some findings on prospect and refuge: I.
Stamps, Arthur E
2008-02-01
Prospect and refuge theory suggests that preferences for environments are based on prospect (the unimpeded opportunity to see) and refuge (the opportunity to hide). This article reports two experiments on how well four factors derived from prospect and refuge theory predicted responses of comfort or liking. The factors were prospect (depth of view), refuge (presence of protective regions in front of the observer or occluding edges that might indicate possibilities of escape), direction of light (either front lighting or back lighting), and venue (natural or built environments). Exp. 1 had 16 landscape scenes and 29 participants; Exp. 2 had 16 landscapes, 14 rooms, and 18 participants. Empirical support was obtained for the claim that people will like gazing out over scenes of distant mountains. For venue, built scenes were preferred over scenes of nature. Results for refuge were ambiguous, and those for di rection of light were nill.
Aurbach, Annika; Schmid, Baptiste; Liechti, Felix; Chokani, Ndaona; Abhari, Reza
2018-06-03
Crossing of large ecological barriers, such as mountains, is in terms of energy considered to be a demanding and critical step during bird migration. Besides forming a geographical barrier, mountains have a profound impact on the resulting wind flow. We use a novel framework of mathematical models to investigate the influences of wind and topography on nocturnal passerine bird behaviour, and to assess the energy costs for different flight strategies for crossing the Jura Mountains. The mathematical models include three biological models of bird behaviour: i) wind drift compensation; ii) adaptation of flight height for favourable winds; and, iii) avoidance of obstacles (cross over and/or circumvention of an obstacle following a minimum energy expenditure strategy), which are assessed separately and in combination. Further, we use a mesoscale weather model for high-resolution predictions of the wind fields. We simulate the broad front nocturnal passerine migration for autumn nights with peak migration intensities. The bird densities retrieved from a weather radar are used as the initial intensities and to specify the vertical distributions of the simulated birds. It is shown that migration over complex terrain represents the most expensive flight option in terms of energy expenditure, and wind is seen to be the main factor that influences the energy expenditure in the bird's preferred flight direction. Further, the combined effects of wind and orography lead to a high concentration of migratory birds within the favourable wind conditions of the Swiss lowlands and north of the Jura Mountains. Copyright © 2018 Elsevier Ltd. All rights reserved.
Geologic map of the Boulder-Fort Collins-Greeley Area, Colorado
Colton, Roger B.
1978-01-01
This digital map shows the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 under the Front Range Urban Corridor Geology Program. Colton used his own geologic mapping and previously published geologic maps to compile one map having a single classification of geologic units. The resulting published color paper map (USGS Map I-855-G, Colton, 1978) was intended for land-use planning and to depict the regional geology. In 1997-1999, another USGS project designed to address urban growth issues was undertaken. This project, the USGS Front Range Infrastructure Resources Project, undertook to digitize Colton's map at 1:100,000 scale, making it useable in Geographical Information Systems (GIS). That product is described here. In general, the digitized map depicts in its western part Precambrian igneous and metamorphic rocks, Pennsylvanian and younger sedimentary rock units, major faults, and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The central and eastern parts of the map (Colorado Piedmont) show a mantle of Quaternary unconsolidated deposits and interspersed outcrops of sedimentary rock of Cretaceous or Tertiary age. A surficial mantle of unconsolidated deposits of Quaternary age is differentiated and depicted as eolium (wind-blown sand and silt), alluvium (river gravel, sand, and silt of variable composition), colluvium, and a few landslide deposits. At the mountain front, north-trending, Paleozoic and Mesozoic formations of sandstone, shale, and minor limestone dip mostly eastward and form folds, fault blocks, hogbacks and intervening valleys. Local dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.
NASA Astrophysics Data System (ADS)
Augustine, John A.; Cornwall, Christopher R.; Hodges, Gary B.; Long, Charles N.; Medina, Carlos I.; Deluisi, John J.
2003-02-01
Over the past decade, networks of Multifilter Rotating Shadowband Radiometers (MFRSR) and automated sun photometers have been established in the United States to monitor aerosol properties. The MFRSR alternately measures diffuse and global irradiance in six narrow spectral bands and a broadband channel of the solar spectrum, from which the direct normal component for each may be inferred. Its 500-nm channel mimics sun photometer measurements and thus is a source of aerosol optical depth information. Automatic data reduction methods are needed because of the high volume of data produced by the MFRSR. In addition, these instruments are often not calibrated for absolute irradiance and must be periodically calibrated for optical depth analysis using the Langley method. This process involves extrapolation to the signal the MFRSR would measure at the top of the atmosphere (I0). Here, an automated clear-sky identification algorithm is used to screen MFRSR 500-nm measurements for suitable calibration data. The clear-sky MFRSR measurements are subsequently used to construct a set of calibration Langley plots from which a mean I0 is computed. This calibration I0 may be subsequently applied to any MFRSR 500-nm measurement within the calibration period to retrieve aerosol optical depth. This method is tested on a 2-month MFRSR dataset from the Table Mountain NOAA Surface Radiation Budget Network (SURFRAD) station near Boulder, Colorado. The resultant I0 is applied to two Asian dust-related high air pollution episodes that occurred within the calibration period on 13 and 17 April 2001. Computed aerosol optical depths for 17 April range from approximately 0.30 to 0.40, and those for 13 April vary from background levels to >0.30. Errors in these retrievals were estimated to range from ±0.01 to ±0.05, depending on the solar zenith angle. The calculations are compared with independent MFRSR-based aerosol optical depth retrievals at the Pawnee National Grasslands, 85 km to the northeast of Table Mountain, and to sun-photometer-derived aerosol optical depths at the National Renewable Energy Laboratory in Golden, Colorado, 50 km to the south. Both the Table Mountain and Golden stations are situated within a few kilometers of the Front Range of the Rocky Mountains, whereas the Pawnee station is on the eastern plains of Colorado. Time series of aerosol optical depth from Pawnee and Table Mountain stations compare well for 13 April when, according to the Naval Aerosol Analysis and Prediction System, an upper-level Asian dust plume enveloped most of Colorado. Aerosol optical depths at the Golden station for that event are generally greater than those at Table Mountain and Pawnee, possibly because of the proximity of Golden to Denver's urban aerosol plume. The dust over Colorado was primarily surface based on 17 April. On that day, aerosol optical depths at Table Mountain and Golden are similar but are 2 times the magnitude of those at Pawnee. This difference is attributed to meteorological conditions that favored air stagnation in the planetary boundary layer along the Front Range, and a west-to-east gradient in aerosol concentration. The magnitude and timing of the aerosol optical depth measurements at Table Mountain for these events are found to be consistent with independent measurements made at NASA Aerosol Robotic Network (AERONET) stations at Missoula, Montana, and at Bondville, Illinois.
Geologic Map of the Denver West 30' x 60' Quadrangle, North-Central Colorado
Kellogg, Karl S.; Shroba, Ralph R.; Bryant, Bruce; Premo, Wayne R.
2008-01-01
The Denver West quadrangle extends east-west across the entire axis of the Front Range, one of numerous uplifts in the Rocky Mountain region in which Precambrian rocks are exposed. The history of the basement rocks in the Denver West quadrangle is as old as 1,790 Ma. Along the east side of the range, a sequence of sedimentary rocks as old as Pennsylvanian, but dominated by Cretaceous-age rocks, overlies these ancient basement rocks and was upturned and locally faulted during Laramide (Late Cretaceous to early Tertiary) uplift of the range. The increasingly coarser grained sediments up section in rocks of latest Cretaceous to early Tertiary age record in remarkable detail this Laramide period of mountain building. On the west side of the range, a major Laramide fault (Williams Range thrust) places Precambrian rocks over Cretaceous sedimentary rocks. The geologic history of the quadrangle, therefore, can be divided into four major periods: (1) Proterozoic history, (2) Pennsylvanian to pre-Laramide, Late Cretaceous history, (3) Late Cretaceous to early Tertiary Laramide mountain building, and (4) post-Laramide history. In particular, the Quaternary history of the Denver West quadrangle is described in detail, based largely on extensive new mapping.
Ponce, David A.; Glen, Jonathan M.G.; Egger, Anne E.; Bouligand, Claire; Watt, Janet T.; Morin, Robert L.
2009-01-01
From May 2006 to August 2007, the U.S. Geological Survey (USGS) collected 793 gravity stations, about 102 line-kilometers of truck-towed and ground magnetometer data, and about 325 physical-property measurements in northeastern California, northwestern Nevada, and southern Oregon. Gravity, magnetic, and physical-property data were collected to study regional crustal structures and geology as an aid to understanding the geologic framework of the Surprise Valley geothermal area and, in general, geothermal systems throughout the Great Basin. The Warner Mountains and Surprise Valley mark the transition from the extended Basin and Range province to the unextended Modoc Plateau. This transition zone, in the northwestern corner of the Basin and Range, is relatively diffuse compared to other, more distinct boundaries, such as the Wasatch front in Utah and the eastern Sierran range front. In addition, this transition zone is the site of a geothermal system with potential for development, and previous studies have revealed a complex structural setting consisting of several obliquely oriented fault sets. As a result, this region has been the subject of several recent geological and geophysical investigations. The gravity and magnetic data presented here support and supplement those studies, and although the study area is composed predominantly of Tertiary volcanic rocks of the Modoc Plateau rocks, the physical properties of these and others rocks create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer subsurface geologic structure.
Macdermid, Paul W; Miller, Matthew C; Fink, Philip W; Stannard, Stephen R
2017-11-01
Cross-country mountain bike suspension reportedly enhances comfort and performance through reduced vibration and impact exposure. This study analysed the effectiveness of three different front fork systems at damping accelerations during the crossing of three isolated obstacles (stairs, drop, and root). One participant completed three trials on six separate occasions in a randomised order using rigid, air-sprung, and carbon leaf-sprung forks. Performance was determined by time to cross obstacles, while triaxial accelerometers quantified impact exposure and damping response. Results identified significant main effect of fork type for performance time (p < 0.05). The air-sprung and leaf-sprung forks were significantly slower than the rigid forks for the stairs (p < 0.05), while air-sprung suspension was slower than the rigid for the root protocol (p < 0.05). There were no differences for the drop protocol (p < 0.05). Rigid forks reduced overall exposure (p < 0.05), specifically at the handlebars for the stairs and drop trials. More detailed analysis presented smaller vertical accelerations at the handlebar for air-sprung and leaf-sprung forks on the stairs (p < 0.05), and drop (p < 0.05) but not the root. As such, it appears that the suspension systems tested were ineffective at reducing overall impact exposure at the handlebar during isolated aspects of cross-country terrain features which may be influenced to a larger extent by rider technique.
NASA Astrophysics Data System (ADS)
Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol
2016-09-01
The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly above the imaged LVZs, suggesting that these anomalies are also the source of Cenozoic volcanic rocks throughout the study area.
Large Fluvial Fans: Aspects of the Attribute Array
NASA Technical Reports Server (NTRS)
Wilkinson, Justin M.
2015-01-01
In arguing for a strict definition of the alluvial fan (coarse-grained with radii less than10 km, in mountain-front settings), Blair and McPherson (1994) proposed that there is no meaningful difference between large fluvial fans (LFF) and floodplains, because the building blocks of both are channel-levee-overbank deposits. Sediment bodies at the LFF scale (greater than 100 km long, fan-shaped in planform), are relatively unstudied although greater than 160 are now identified globally. The following perspectives suggest that the significance of LFF needs to be reconsidered.
1993-10-30
STS058-89-013 (18 Oct-1 Nov 1993) --- An oblique westward view, across the wheat fields and cattle pastures, of eastern Colorado to the Front Range of the Rocky Mountains. Denver is bisected at the center of the right edge of the frame. Pikes Peak and Colorado Springs are left of center, and the Arkansas River Valley with Canyon City and the Royal Gorge are along the left edge of the frame. This view shows the startling contrast between the nearly-flat High Plains and the ancient geological uplift of the Rockies.
Rainfall-Runoff Dynamics Following Wildfire in Mountainous Headwater Catchments, Alberta, Canada.
NASA Astrophysics Data System (ADS)
Williams, C.; Silins, U.; Bladon, K. D.; Martens, A. M.; Wagner, M. J.; Anderson, A.
2015-12-01
Severe wildfire has been shown to increase the magnitude and advance the timing of rainfall-generated stormflows across a range of hydro-climate regions. Loss of canopy and forest floor interception results in increased net precipitation which, along with the removal of forest organic layers and increased shorter-term water repellency, can result in strongly increased surface flow pathways and efficient routing of precipitation to streams. These abrupt changes have the potential to exacerbate flood impacts and alter the timing of runoff delivery to streams. However, while these effects are well documented in drier temperate mountain regions, changes in post-fire rainfall-runoff processes are less well understood in colder, more northern, snowfall dominated regimes. The objectives of this study are to explore longer term precipitation and runoff dynamics of burned and unburned (reference) watersheds from the Southern Rockies Watershed Project (SRWP) after the 2003 Lost Creek wildfire in the front-range Rocky Mountains of southwestern Alberta, Canada. Streamflow and precipitation were measured in 5 watersheds (3.7 - 10.4 km2) for 10 years following the wildfire (2005-2014). Measurements were collected from a dense network of meteorological and hydrometric stations. Stormflow volume, peak flow, time to peak flow, and total annual streamflow were compared between burned and reference streams. Event-based data were separated into 3 post-fire periods to detect changes in rainfall-runoff dynamics as vegetation regenerated. Despite large increases in post-fire snowpacks and net summer rainfall, rainfall-generated runoff from fire-affected watersheds was not large in comparison to that reported from more temperate snowfall-dominated Rocky Mountain hydrologic settings. High proportions of groundwater contribution to annual runoff regimes (as opposed to surface flow pathways) and groundwater storage were likely contributors to greater watershed resistance to wildfire effects in these northern Rocky Mountain catchments.
Slylab (SL)-3 View - North Central Wyoming (WY) - Southern Montana (MT)
1973-08-15
S73-35081 (July-September 1973) --- A view of approximately 3,600 square miles of north central Wyoming and southern Montana is seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The Big Horn River following northward crosses between the northwest trending Big Horn Mountains and the Pryor Mountains. Yellowtail Reservoir, named after a former chief of the Crow Indian tribe in the center of the picture is impounded by a dam across the small rectangular crop area along the Big Horn River (upper right) and the strip farming (yellow) practiced on the rolling hill along the Big Horn River and its tributaries (upper left corner and right edge). The low sun angle enhances the structural features of the mountains as well as the drainage patterns in the adjacent basins. Rock formation appears in this color photograph as they would to the eye from this altitude. The distinctive redbeds can be traced along the front of the Pryor Mountains and indicate the folding that occurred during mountain building. EREP investigators, Dr. Houston of the University of Wyoming and Dr. Hoppin of the University of Iowa, will analyze the photograph and use the results in geological mapping and mineral resource studies. Lowell, Wyoming (lower left corner) and Hardin, Montana (upper right corner) can be recognized. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. (Alternate number SL3-86-337) Photo credit: NASA
NASA Astrophysics Data System (ADS)
Collett, J. L.; Lee, T.; Yu, X.; Sullivan, A.; Kreidenweis, S. M.; Malm, W.
2006-12-01
Many of our nation's National Parks, wilderness areas and other visually protected environments are located in regions where urban, agricultural, and other anthropogenic emissions periodically exert strong impacts on local air quality. In this presentation we will use high time resolution (15 min) measurements of particle composition to examine the frequency and magnitude of these impacts and to elucidate changes in aerosol chemistry occurring during transitions between periods of strong anthropogenic impact and periods when atmospheric composition is more strongly influenced by natural emissions and/or regional air quality. Highlights will be drawn from a series of field campaigns at locations around the U.S., including Yosemite National Park (downwind of the Central Valley of California), San Gorgonio Wilderness Area (downwind of the Los Angeles basin), Bondville, Illinois (a rural Midwestern site), Great Smoky Mountains National Park (a rural, mountain location in the polluted southeast U.S.), Brigantine National Wildlife Refuge, New Jersey (a coastal site on the U.S. eastern seaboard), and Rocky Mountain National Park, Colorado (located in the mountains west of the Colorado Front Range urban corridor). Particle composition measurements were made using a Particle Into Liquid Sampler (PILS) coupled to two on-line ion chromatographs. We will demonstrate how air quality at these locations is strongly influenced by local and regional transport phenomena and illustrate the influence of anthropogenic emissions on both fine and coarse particle concentrations and speciation.
Earth Observation taken by the Expedition 20 crew
2009-09-06
ISS020-E-039083 (6 Sept. 2009) --- Glacier outlet in the Southern Patagonian Ice Field of Chile is featured in this image photographed by an Expedition 20 crew member on the International Space Station. The Southern Patagonian Ice Field of Chile and Argentina hosts a spectacular array of glaciers and associated glacial features within the southern Andes Mountains. Glaciers flowing downhill on the eastern side of the mountains have outlets into several large freshwater lakes. On the western side of the mountains, glaciers release ice into the Pacific Ocean via an intricate network of fjords. Fjords are steep valleys originally cut by glaciers during periods of lower sea level that are now inundated. As glaciers flow into the fjord, ice at the front of the glacier begins to break off and form icebergs that can float out to sea ? a process known as calving. This detailed photograph shows the merged outlet of Penguin Glacier and HPS 19 into a fjord carved into the snow-covered mountains of the southern Andes. The designation HPS stands for Hielo Patagonico Sur (e.g. Southern Patagonian Ice field) and is used to identify glaciers that have no other geographic name. Ice flowing into the fjord begins to break up at center, forming numerous icebergs ? the largest visible in this image is approximately 2 kilometers in width. The large ice masses visible at center have a coarse granular appearance due to variable snow cover, and mixing and refreezing of ice fragments prior to floating free.
Magirl, Christopher S.; Shoemaker, Craig; Webb, Robert H.; Schaffner, Mike; Griffiths, Peter G.; Pytlak, Erik
2007-01-01
Ample geologic evidence indicates early Holocene and Pleistocene debris flows from the south side of the Santa Catalina Mountains north of Tucson, Arizona, but few records document historical events. On July 31, 2006, an unusual set of atmospheric conditions aligned to produce record floods and an unprecedented number of debris flows in the Santa Catalinas. During the week prior to the event, an upper-level area of low pressure centered near Albuquerque, New Mexico generated widespread heavy rainfall in southern Arizona. After midnight on July 31, a strong complex of thunderstorms developed over central Arizona in a deformation zone that formed on the back side of the upper-level low. High atmospheric moisture (2.00' of precipitable water) coupled with cooling aloft spawned a mesoscale thunderstorm complex that moved southeast into the Tucson basin. A 15-20 knot low-level southwesterly wind developed with a significant upslope component over the south face of the Santa Catalina Mountains advecting moist and unstable air into the merging storms. National Weather Service radar indicated that a swath of 3-6' of rainfall occurred over the lower and middle elevations of the southern Santa Catalina Mountains. This intense rain falling on saturated soil triggered over 250 hillslope failures and debris flows throughout the mountain range. Sabino Canyon, a heavily used recreation area administered by the U.S. Forest Service, was the epicenter of mass wasting, where at least 18 debris flows removed structures, destroyed the roadway in multiple locations, and closed public access for months. The debris flows were followed by streamflow floods which eclipsed the record discharge in the 75-year gaging record of Sabino Creek. In five canyons adjacent to Sabino Canyon, debris flows approached or excited the mountain front, compromising floow conveyance structures and flooding some homes.
Innovating the Experience of Peer Learning and Earth Science Education in the Field
NASA Astrophysics Data System (ADS)
Scoates, J. S.; Hanano, D. W.; Weis, D.; Bilenker, L.; Sherman, S. B.; Gilley, B.
2017-12-01
The use of active learning and collaborative strategies is widely gaining momentum at the university level and is ideally suited to field instructional settings. Peer learning, when students learn with and from each other, is based on the principle that students learn in a more profound way by explaining their ideas to others and by participating in activities in which they can learn from their peers. The Multidisciplinary Applied Geochemistry Network (MAGNET), an NSERC Collaborative Research and Training Experience (CREATE) initiative in Canada, recently experimented with this approach during its fourth annual workshop in August 2016. With a group of 25 geochemistry graduate students from universities across Canada, three remarkable field sites in Montana and Wyoming were explored: the Stillwater Complex, the Beartooth Mountains, and Yellowstone National Park. Rather than developing a rigorous teaching curriculum led by faculty, groups of students were tasked with designing and delivering half-day teaching modules that included field activities at each of the locations. Over the course of two months and with feedback from mentors, the graduate students transformed their ideas into formal lesson plans, complete with learning goals, a schedule of teaching activities, equipment lists, and plans for safety and environmental mitigation. This shift, from teacher-centered to learner-centered education, requires students to take greater initiative and responsibility for their own learning and development. We highlight the goals, structure and implementation of the workshop, as well as some of the successes and challenges. We also present the results of participant feedback taken immediately after each lesson and both pre- and post-trip surveys. The outdoor classroom and hands-on activities accelerated learning of field techniques and enhanced understanding of complex geological systems and processes. The trainee-led format facilitated peer knowledge transfer and the development of professional skills in three key areas: (1) project and time management, (2) teamwork and communication, and (3) critical thinking and problem-solving. The MAGNET experience with peer learning represents a model that can readily be adapted for future field instruction in the Earth Sciences.
Upper Cretaceous molluscan record along a transect from Virden, New Mexico, to Del Rio, Texas
Cobban, W.A.; Hook, S.C.; McKinney, K.C.
2008-01-01
Updated age assignments and new collections of molluscan fossils from lower Cenomanian through upper Campanian strata in Texas permit a much refined biostratigraphic correlation with the rocks of New Mexico and the Western Interior. Generic names of many Late Cretaceous ammonites and inoceramid bivalves from Texas are updated to permit this correlation. Strata correlated in the west-to-east transect include the lower Cenomanian Beartooth Quartzite and Sarten Sandstone of southwest New Mexico, and the Eagle Mountains Formation, Del Rio Clay, Buda Limestone, and. basal beds of the Chispa Summit, Ojinaga, and Boquillas Formations of the Texas-Mexico border area. Middle Cenomanian strata are lacking in southwestern New Mexico but are present in the lower parts of the Chispa Summit and Boquillas Formations in southwest Texas. Upper Cenomanian and lower Turonian rocks are present at many localities in New Mexico and Texas in the Mancos Shale and Chispa Summit, Ojinaga, and Boquillas Formations. Middle Turonian and younger rocks seem to be entirely nonmarine in southwestern New Mexico, but they are marine in the Rio Grande area in the Chispa. Summit, Ojinaga, and Boquillas Formations. The upper part of the Chispa Summit and Boquillas contain late Turonian fossils. Rocks of Coniacian and Santonian age are present high in the Chispa Summit, Ojinaga, and Boquillas Formations, and in the lower part of the Austin. The San Carlos, Aguja, Pen, and Austin Formations contain fossils of Campanian age. Fossils representing at least 38 Upper Cretaceous ammonite zones are present along the transect. Collections made in recent years in southwestern New Mexico and at Sierra de Cristo Rey just west of downtown El Paso, Texas, have been well treated and do not need revision. Taxonomic names and zonations published in the pre-1970 literature on the Rio Grande area of Texas have been updated. New fossil collections from the Big Bend National Park, Texas, allow for a much refined correlation in the central part of the transect in Texas. Middle Turonian-Campanian zonation in southwest Texas is based mainly on ammonites of the Family Collignoniceratidae, as opposed to the scaphitid and baculitid ammonites that are especially abundant farther north in the Western Interior.
The Rome trough and evolution of the Iapetean margin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, D.; Hamilton-Smith, T.; Drahovzal, J.A.
1991-08-01
Recent structural mapping of the Rome trough suggests a complex structure very different from the symmetrical and laterally continuous graben commonly depicted. Early and Middle Cambrian extension in the Rome trough of eastern Kentucky and adjacent areas resulted in a series of alternately facing half-grabens with variable displacement. These half-grabens are bounded by southwest-northeast-trending normal faults (e.g., Kentucky River and Warfield faults), which are laterally continuous only on the order to tens of kilometers. The Rome trough is laterally segmented by north-south-trending faults (e.g., Lexington fault) commonly expressed as flexures in younger rocks (e.g., Burning Springs anticline and Floyd Countymore » channel). Many of these north-south-trending faults have significant left-lateral displacement, and probably represent reactivated thrust faults of the Grenville tectonic front. The Rome trough and the associated Mississippi Valley, Rough Creek, and Birmingham fault systems were initiated during an Early Cambrian shift in sea-floor spreading from the Blue Ridge-Pine Mountain rift to the Ouachita rift along the Alabama-Oklahoma transform fault. These fault systems have been proposed as having originated from extensional stress propagated northward from the Ouachita rift across the transform fault. In the alternate model proposed here, faulting was brittle, extensional failure resulting form subsidence and flexure of the continental margin to the east. Following initiation of sea-floor spreading at the Blue Ridge-Pine Mountain rift in the latest Proterozoic, margin subsidence in the presence of the Alabama-Oklahoma transform boundary and the inherited Grenville tectonic front resulted in this interior cratonic fault system.« less
The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis
Roberts, A J; Knippertz, P
2014-01-01
Haboobs are dust storms produced by the spreading of evaporatively cooled air from thunderstorms over dusty surfaces and are a major dust uplift process in the Sahara. In this study observations, reanalysis, and a high-resolution simulation using the Weather Research and Forecasting model are used to analyze the multiscale dynamics which produced a long-lived (over 2 days) Saharan mesoscale convective system (MCS) and an unusually large haboob in June 2010. An upper level trough and wave on the subtropical jet 5 days prior to MCS initiation produce a precipitating tropical cloud plume associated with a disruption of the Saharan heat low and moistening of the central Sahara. The restrengthening Saharan heat low and a Mediterranean cold surge produce a convergent region over the Hoggar and Aïr Mountains, where small convective systems help further increase boundary layer moisture. Emerging from this region the MCS has intermittent triggering of new cells, but later favorable deep layer shear produces a mesoscale convective complex. The unusually large size of the resulting dust plume (over 1000 km long) is linked to the longevity and vigor of the MCS, an enhanced pressure gradient due to lee cyclogenesis near the Atlas Mountains, and shallow precipitating clouds along the northern edge of the cold pool. Dust uplift processes identified are (1) strong winds near the cold pool front, (2) enhanced nocturnal low-level jet within the aged cold pool, and (3) a bore formed by the cold pool front on the nocturnal boundary layer. PMID:25844277
Gungle, Bruce
2006-01-01
Frequency, timing, and duration of streamflow were monitored in 20 ephemeral-stream channels across the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona, during an 18-month period. One channel (Walnut Gulch) had Agricultural Research Service streamflow-gaging stations in place. The sediments of the remaining 19 ephemeral-stream channels were instrumented with multiple temperature loggers along the channel lengths. A thermograph-interpretation technique was developed in order to determine frequency, timing, and duration of streamflow in these channels. Streamflow onset was characterized by exceedance of a critical minimum drop in temperature within the channel sediments during any 15-minute interval, whereas streamflow cessation was identified by the local temperature minimum that immediately followed the critical temperature drop. All data for the 18-month period from December 1, 2000, to May 31, 2002, were analyzed in terms of monsoon (June 1 to September 19) and nonmonsoon (September 20 to May 31) periods. Nonmonsoon precipitation during the 2000-2002 study period (excludes October and November 2000) was 82 percent and 39 percent of the 30-year average, respectively, whereas monsoon precipitation during 2001 was 99 percent of the 30-year average. Ephemeral streamflow was detected at least once during the monitoring period at 87 percent of the monitoring sites (45 of the 52 sites that returned useful data; includes 4 streamflow-gaging stations). The summer monsoon period accounted for 82 percent of all streamflow events by number and 71 percent of all events by total streamflow duration. Nonmonsoon streamflow events peaked in number, total streamflow duration, and mean streamflow duration midway between the Huachuca Mountains and the San Pedro River on the west side of the subwatershed. These three streamflow parameters dropped off sharply about 10 kilometers from the mountain front. The number and total duration of nonmonsoon streamflows on the east side of the subwatershed trended downward with increased distance from the mountain fronts. Monsoon streamflow events were more evenly distributed across the subwatershed than nonmonsoon events, and the number and duration of streamflows generally trended upward with distance from the mountain fronts. Additional years of data are needed to determine whether these patterns are consistent year to year, or were due to randomness in the spatial distribution of precipitation. Streamflows in three ephemeral-stream channels were analyzed in detail. More than two-thirds of the streamflow events detected in each of these channels occurred at no more than one monitoring site along the channel length. In only one of the three channels-Garden Canyon-was a streamflow event detected at all logger sites along its length. Five temperature loggers provided data from urbanized areas, and these loggers detected streamflow more than 50 percent more often and of a duration nearly three times greater than did temperature loggers across the rural parts of the subwatershed. Because historical records do not indicate that more precipitation occurs in the urbanized area than in the rural areas, the increased frequency of flow detection in the urban area is attributed to an increase in runoff from the impervious surfaces throughout the urbanized area.
Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China
NASA Astrophysics Data System (ADS)
Zheng, Min; Wu, Xiaozhi
2014-05-01
The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon fault system and finally present the current structural framework of "east uplift and west depression, south faulted and north overlapping". The Yabulai basin presented as a strike-slip pull-apart basin in Mesozoic and a compressional thrusting depression basin in Cenozoic. Particularly, the Mesozoic tectonic units were distributed at a big included angle with the long axis of the basin, while the Cenozoic tectonic units were developed in a basically consistent direction with the long axis. The sags are segmented. Major subsiding sags are located in the south, where Mesozoic Jurassic-Cretaceous systems are developed, with the thickest sedimentary rocks up to 5300m. Jurassic is the best developed system in this basin. Middle Jurassic provides the principal hydrocarbon-bearing assemblage in this basin, with Xinhe Fm. and Qingtujing Fm. dark mudstone and coal as the source rocks, Xinhe Fm. and Qingtujing Fm. sandstones as the reservoir formation, and Xinhe Fm. mudstones as the cap rocks. However, the early burial and late uplifting damaged the structural framework of the basin, thus leading to the early violent compaction and tightness of Jurassic sandstone reservoir and late hydrocarbon maturity. So, tectonic development period was unmatched to hydrocarbon expulsion period of source rocks. The hydrocarbons generated were mainly accumulated near the source rocks and entrapped in reservoir. Tight oil should be the major exploration target, which has been proved by recent practices.
Regional geomorphology and history of Titan's Xanadu province
Radebaugh, J.; Lorenz, R.D.; Wall, S.D.; Kirk, R.L.; Wood, C.A.; Lunine, J.I.; Stofan, E.R.; Lopes, R M.C.; Valora, P.; Farr, T.G.; Hayes, A.; Stiles, B.; Mitri, Giuseppe; Zebker, H.; Janssen, M.; Wye, L.; LeGall, A.; Mitchell, K.L.; Paganelli, F.; West, R.D.; Schaller, E.L.; ,
2011-01-01
Titan's enigmatic Xanadu province has been seen in some detail with instruments from the Cassini spacecraft. The region contains some of the most rugged, mountainous terrain on Titan, with relief over 2000 m. Xanadu contains evolved and integrated river channels, impact craters, and dry basins filled with smooth, radar-dark material, perhaps sediments from past lake beds. Arcuate and aligned mountain chains give evidence of compressional tectonism, yet the overall elevation of Xanadu is puzzlingly low compared to surrounding sand seas. Lineations associated with mountain fronts and valley floors give evidence of extension that probably contributed to this regional lowering. Several locations on Xanadu's western and southern margins contain flow-like features that may be cryovolcanic in origin, perhaps ascended from lithospheric faults related to regional downdropping late in its history. Radiometry and scatterometry observations are consistent with a water–ice or water–ammonia–ice composition to its exposed, eroded, fractured bedrock; both microwave and visible to near-infrared (v-nIR) data indicate a thin overcoating of organics, likely derived from the atmosphere. We suggest Xanadu is one of the oldest terrains on Titan and that its origin and evolution have been controlled and shaped by compressional and then extensional tectonism in the icy crust and ongoing erosion by methane rainfall.
Reiser, H.N.; Brosge, W.P.; Hamilton, T.D.; Singer, D.A.; Menzie, W. D.; Bird, K.J.; Cady, J.W.; Le Compte, J. R.; Cathrall, J.B.
1983-01-01
The geology and mineral resources of the Philip Smith Mountains quadrangle were virtually unexplored until the investigations for oil began in northern Alaska. Construction of the Trans-Alaskan Pipeline System has now made the quadrangle accessible by road. In 1975 and 1976 a team of geologists, geochemists, and geophysicists investigated the quadrangle in order to assess its mineral resource potential. This report is a guide to the resulting folio of twelve maps that describe the geology, stream sediment geochemistry, aeromagnetic features, Landsat imagery, and mineral resources of the area. The bedrock geology and aeromagnetic surveys show that mineral deposits associated with intrusive rocks are probably absent. However, the geology and geochemical anomalies do indicate the possibility of vein and strata-bound deposits of copper, lead, and zinc in the Paleozoic shale and carbonate rocks in the southern part of the quadrangle and of stratabound deposits of zinc and copper in the Permian and Mesozoic shales along the mountain front. The northwestern part of the quadrangle has a low to moderate potential for oil or gas; Mississippian carbonate rocks are the most likely reservoir. The only minerals produced to date have been construction materials.
A multidisciplinary decision support system for forest fire crisis management.
Keramitsoglou, Iphigenia; Kiranoudis, Chris T; Sarimveis, Haralambos; Sifakis, Nicolaos
2004-02-01
A wildland fire is a serious threat for forest ecosystems in Southern Europe affecting severely and irreversibly regions of significant ecological value as well as human communities. To support decision makers during large-scale forest fire incidents, a multidisciplinary system has been developed that provides rational and quantitative information based on the site-specific circumstances and the possible consequences. The system's architecture consists of several distinct supplementary modules of near real-time satellite monitoring and fire forecast using an integrated framework of satellite Remote Sensing, GIS, and RDBMS technologies equipped with interactive communication capabilities. The system may handle multiple fire ignitions and support decisions regarding dispatching of utilities, equipment, and personnel that would appropriately attack the fire front. The operational system was developed for the region of Penteli Mountain in Attika, Greece, one of the mountain areas in the country most hit by fires. Starting from a real fire incident in August 2000, a scenario is presented to illustrate the effectiveness of the proposed approach.
Dynamic coupling of volcanic CO2 flow and wind at the HorseshoeLake tree kill, Mammoth Mountain, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewicki, J.L.; Hilley, G.E.; Tosha, T.
2006-11-20
We investigate spatio-temporal relationships between soilCO2 flux (FCO2), meteorological variables, and topography over a ten-dayperiod (09/12/2006 to 09/21/2006) at the Horseshoe Lake tree kill,Mammoth Mountain, CA. Total CO2 discharge varied from 16 to 52 t d-1,suggesting a decline in CO2 emissions over decadal timescales. Weobserved systematic changes in FCO2 in space and time in association witha weather front with relatively high wind speeds from the west and lowatmospheric pressures. The largest FCO2 changes were observed inrelatively high elevation areas. The variations in FCO2 may be due todynamic coupling of wind-driven airflow through the subsurface and flowof source CO2 at depth.more » Our results highlight the influence of weatherfronts on volcanic gas flow in the near-surface environment and how thisinfluence can vary spatially within a study area.« less
Hazards of mountain flying: crashes in the Colorado Rockies.
Baker, S P; Lamb, M W
1989-06-01
Between 1964 and 1987, 232 airplanes crashed within 50 nautical miles of Aspen, CO; 90% were general aviation crashes. A total of 202 people died and 69 were seriously injured. The societal cost averaged more than $4 million annually. Most pilots were experienced and many were flight instructors, but 44% had flown less than 100 hours in the type of plane in which they crashed. Forty-one percent of the pilots were out-of-state residents. Crashes in the study area were more likely to be fatal than in the rest of Colorado. Airplanes with three or four occupants and low-powered four-seater aircraft were over-represented among crashes involving failure to outclimb rising terrain. In a subset of crashes examined for restraint use, 50% of the front seat occupants using only lap belts were killed, compared to 13% of those who also wore shoulder restraints. Preventive recommendations include shoulder restraint use and better training in mountain flying, with incentives provided by the FAA and insurance companies.
The Colorado front range: anatomy of a Laramide uplift
Kellogg, Karl; Bryant, Bruce; Reed, John C.
2004-01-01
Along a transect across the Front Range from Denver to the Blue River valley near Dillon, the trip explores the geologic framework and Laramide (Late Cretaceous to early Eocene) uplift history of this basement-cored mountain range. Specific items for discussion at various stops are (1) the sedimentary and structural record along the upturned eastern margin of the range, which contains several discontinuous, east-directed reverse faults; (2) the western structural margin of the range, which contains a minimum of 9 km of thrust overhang and is significantly different in structural style from the eastern margin; (3) mid- to late-Tertiary modifications to the western margin of the range from extensional faulting along the northern Rio Grande rift trend; (4) the thermal and uplift history of the range as revealed by apatite fission track analysis; (5) the Proterozoic basement of the range, including the significance of northeast-trending shear zones; and (6) the geologic setting of the Colorado mineral belt, formed during Laramide and mid-Tertiary igneous activity.
Dangles, O; Carpio, F C; Villares, M; Yumisaca, F; Liger, B; Rebaudo, F; Silvain, J F
2010-06-01
Participatory research has not been a conspicuous methodology in developing nations for studying invasive pests, an increasing threat to the sustainable development in the tropics. Our study presents a community-based monitoring system that focuses on three invasive potato tuber moth species (PTM). The monitoring was developed and implemented by young farmers in a remote mountainous area of Ecuador. Local participants collected data from the PTM invasion front, which revealed clear connection between the abundance of one of the species (Tecia solanivora) and the remoteness to the main market place. This suggests that mechanisms structuring invasive populations at the invasion front are different from those occurring in areas invaded for longer period. Participatory monitoring with local people may serve as a cost-effective early warning system to detect and control incipient invasive pest species in countries where the daily management of biological resources is largely in the hands of poor rural people.
Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.
2003-01-01
Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required the compilation of geographic, geologic, and hydrologic data and estimation of hydraulic properties and flows. The model was calibrated to historical surface-water and ground-water flow for the period 1891-1993. Sources of water to the regional ground-water flow system are natural and artificial recharge, coastal landward flow from the ocean (seawater intrusion), storage in the coarse-grained beds, and water from compaction of fine-grained beds (aquitards). Inflows used in the regional flow model simulation include streamflows routed through the major rivers and tributaries; infiltration of mountain-front runoff and infiltration of precipitation on bedrock outcrops and on valley floors; and artificial ground-water recharge of diverted streamflow, irrigation return flow, and treated sewage effluent. Most natural recharge occurs through infiltration (losses) of streamflow within the major rivers and tributaries and the numerous arroyos that drain the mountain fronts of the basin. Total simulated natural recharge was about 114,100 acre-feet per year (acre-ft/yr) for 1984-93: 27,800 acre-ft/yr of mountain-front and bedrock recharge, 24,100 acre-ft/yr of valley-floor recharge, and 62,200 acre-ft/yr of net streamflow recharge. Artificial recharge (spreading of diverted streamflow, irrigation return, and sewage effluent) is a major source of ground-water replenishment. During the 1984-93 simulation period, the average rate of artificial recharge at the spreading grounds was about 54,400 acre-ft/yr, 13 percent less than the simulated natural recharge rate for streamflow infiltration within the major rivers and tributaries. Estimated recharge from infiltration of irrigation return flow on the valley floors averaged about 51,000 acre-ft/yr, and treated sewage effluent averaged about 9,000 acre-ft/yr. Artificial recharge as streamflow diversion to the spreading grounds has occurred since 1929, and treated-sewage effluent has been discharged to stream channels since 1930. Under
Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.
1998-01-01
Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging.
Interaction of Shallow Cold Surges with Topography on Scales of 100-1000 Kilometers.
NASA Astrophysics Data System (ADS)
Toth, James John
1987-09-01
A shallow cold air mass is defined as one not extending to the top of the mountain ridge with which it interacts. The structure of such an airmass is examined using both observational data and a hydrostatic version of the Colorado State University Regional Atmospheric Modeling System. The prime constraint on a shallow cold surge is that the flow must ultimately be parallel to the mountain ridge. It is found that the effects of this constraint are altered significantly by surface sensible heat flux. Cold surges are slowed during the daylight hours, a result consistent with previous observational studies in Colorado east of the Continental Divide. Two case studies are described in detail, and several other events are cited. Since observations alone do not provide a complete description of diversion of the cold air by the mountain range, numerical model simulations provide additional insight into important mechanisms. A case study on 14 June 1985 is described using observational and model data. The model development of a deep boundary layer within the frontal baroclinic zone is consistent with the observations for this and other cases. This development is due to strong surface heating. Turning off the model shortwave radiation is seen to produce a rapid southward acceleration of the surface front, with very shallow cold air behind the front. Model simulations with specified surface temperature differences confirm the importance of upward heat flux from the surface in slowing the southward movement of the cold surge. It is concluded that the slowing is not due simply to the thermal wind developing in response to the heating of higher terrain to the west. Since surface heating is distributed over a deeper layer on the warm side of the temperature discontinuity, there is frontolysis at the surface. But this modification would develop even over flat terrain. Sloping terrain introduces additional effects. Heating at the western, upslope side of the cold surge inhibits the development of pressure gradients favorable to northerly flow. A second contribution comes from westerly winds at ridgetop level. These winds are heated over the higher terrain and flow downslope, further retarding the progression of the cold air at the surface.
Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.
2008-12-01
Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from <8° to 28°/my over 7my are attributed to unsteady fault slip along the roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute to the filling and deformation of the Po foreland, we hypothesize that climatically-modulated surface processes are reflected in the observed rates of fault slip and fold growth.
NASA Astrophysics Data System (ADS)
Paufique, Jérôme; Madec, Pierre-Yves; Kolb, Johann; Kuntschner, Harald; Argomedo, Javier; Kiekebusch, Mario J.; Donaldson, Robert H.; Arsenault, Robin; Siebenmorgen, Ralf; Soenke, Christian; Tordo, Sebastien; Conzelmann, Ralf D.; Jost, Andreas; Reyes-Moreno, Javier; Downing, Mark; Hibon, Pascale; Valenzuela, Jose Javier; Haguenauer, Pierre
2016-07-01
GRAAL is the adaptive optics module feeding the wide-field IR imager HAWK-I at the VLT observatory. As part of the adaptive optics facility, GRAAL is equipped with 4 Laser-guide star wave-front sensors and provides a large field-of-view, ground layer correction system to HAWK-I. After a successful testing in Europe, the module has been re-assembled in Chile and installed at the Nasmyth-A platform of Yepun, the fourth Unit telescope of the observatory. We report on the installation of GRAAL on the mountain and on its first testing in stand-alone and on-sky.
The Montana lobe of the Keewatin ice sheet
Calhoun, F.H.H.
1906-01-01
The area covered by this investigation lies along the eastern front of the Montana Rockies, between longitude 108° and 113° 40', and latitude 47° 15' and 49° 30'. Over the eastern and northern part of this area the ice from the northeast deposited its drift. Over the western part the ice from the Eockies pushed down the mountain valleys and, deploying on the plain, deposited large and well-defined terminal moraines. Extending from the Canadian line to the Missouri there is a strip of country, varying greatly in width, which the ice did not cover.
High Power Electromagnetic (HPEM) Threat Analysis
2008-04-01
WORK UNIT NUMBER DH10698 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT University of New Mexico, Department of...Mountain Rd., Saluda, NC 28773; Pro-Tech I1-C Orchard Court, Alamo, CA 94507-1541 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR...LU UJ WL L -2.50E+O1 -3.OOE+O 1 -3.6oE+o •A400E+ 0ŕ"’ -4.50E+ D1 -5.OOE+ O Fre que ncy( Hz) Figure 15. Effect of file cabinet in front of whiteboard
Moody, John A.
2016-03-21
Extreme rainfall in September 2013 caused destructive floods in part of the Front Range in Boulder County, Colorado. Erosion from these floods cut roads and isolated mountain communities for several weeks, and large volumes of eroded sediment were deposited downstream, which caused further damage of property and infrastructures. Estimates of peak discharge for these floods and the associated rainfall characteristics will aid land and emergency managers in the future. Several methods (an ensemble) were used to estimate peak discharge at 21 measurement sites, and the ensemble average and standard deviation provided a final estimate of peak discharge and its uncertainty. Because of the substantial erosion and deposition of sediment, an additional estimate of peak discharge was made based on the flow resistance caused by sediment transport effects.Although the synoptic-scale rainfall was extreme (annual exceedance probability greater than 1,000 years, about 450 millimeters in 7 days) for these mountains, the resulting peak discharges were not. Ensemble average peak discharges per unit drainage area (unit peak discharge, [Qu]) for the floods were 1–2 orders of magnitude less than those for the maximum worldwide floods with similar drainage areas and had a wide range of values (0.21–16.2 cubic meters per second per square kilometer [m3 s-1 km-2]). One possible explanation for these differences was that the band of high-accumulation, high-intensity rainfall was narrow (about 50 kilometers wide), oriented nearly perpendicular to the predominant drainage pattern of the mountains, and therefore entire drainage areas were not subjected to the same range of extreme rainfall. A linear relation (coefficient of determination [R2]=0.69) between Qu and the rainfall intensity (ITc, computed for a time interval equal to the time-of-concentration for the drainage area upstream from each site), had the form: Qu=0.26(ITc-8.6), where the coefficient 0.26 can be considered to be an area-averaged peak runoff coefficient for the September 2013 rain storms in Boulder County, and the 8.6 millimeters per hour to be the rainfall intensity corresponding to a soil moisture threshold that controls the soil infiltration rate. Peak discharge estimates based on the sediment transport effects were generally less than the ensemble average and indicated that sediment transport may be a mechanism that limits velocities in these types of mountain streams such that the Froude number fluctuates about 1 suggesting that this type of floodflow can be approximated as critical flow.
Ground water in Utah's densely populated Wasatch Front area - The challenge and the choices
Price, Don
1985-01-01
Utah's Wasatch Front area comprises about 4,000 square miles in the north-central part of the State. I n 1980, the area had a population of more than 1.1 million, or about 77 percent of Utah's total population. It contains several large cities, including Salt Lake City, Ogden, and Provo, and is commonly called Utah's urban corridor.Most of the water supply for the Wasatch Front area comes from streams that originate in the Wasatch Range and nearby Uinta Mountains; however, ground water has played an important role in the economic growth of the area. The principal source of ground water is the unconsolidated fill (sedimentary deposits) in the valleys of the Wasatch Front area northern Juab, Utah, Goshen, and Salt Lake Valleys; the East Shore area (a valley area east of the Great Salt Lake), and the Bear River Bay area. Maximum saturated thickness of the fill in the principal ground-water reservoirs in these valleys exceeds 6,000 feet, and the estimated volume of water that can be withdrawn from just the upper 100 feet of the saturated fill is about 8 million acre-feet. In most places the water is fresh, containing less than 1,000 milligrams per liter of dissolved solids; in much of the Bear River Bay area and most of Goshen Valley (and locally in the other valleys), the water is slightly to moderately saline, with 1,000 to 10,000 milligrams per liter of dissolved solids.The principal ground-water reservoirs receive recharge at an annual rate that is estimated to exceed 1 million acre-feet chiefly as seepage from consolidated rocks in the adjacent mountains from canals, ditches, and irrigated land, directly from precipitation, and from streams. Discharge during 1980 (which was chiefly from springs, seepage to streams, evapotranspiration, and withdrawal by wells) was estimated to be about 1.1 million acre-feet. Withdrawal from wells, which began within a few years after the arrival of the Mormon pioneers in the Salt Lake Valley in 1847, and had increased to about 320,000 acre-feet during 1979. Additional withdrawals from wells may cause water levels to decline, possibly leading to such problems as conflicts among water-right owners, increased pumping costs, land subsidence, and deterioration of ground-water quality. Some of these problems cannot be avoided if the principal ground-water reservoirs are to be fully used; however, management practices such as artificial ground-water recharge in intensivelypumped areas may help to alleviate those problems.
Active Tectonics Around Almaty and along the Zailisky Alatau Rangefront
NASA Astrophysics Data System (ADS)
Grützner, C.; Walker, R. T.; Abdrakhmatov, K. E.; Mukambaev, A.; Elliott, A. J.; Elliott, J. R.
2017-10-01
The Zailisky Alatau is a >250 km long mountain range in Southern Kazakhstan. Its northern rangefront around the major city of Almaty has more than 4 km topographic relief, yet in contrast to other large mountain fronts in the Tien Shan, little is known about its Late Quaternary tectonic activity despite several destructive earthquakes in the historical record. We analyze the tectonic geomorphology of the rangefront fault using field observations, differential GPS measurements of fault scarps, historical and recent satellite imagery, meter-scale topography derived from stereo satellite images, and decimeter-scale elevation models from unmanned aerial vehicle surveys. Fault scarps ranging in height from 2 m to >20 m in alluvial fans indicate that surface rupturing earthquakes occurred along the rangefront fault since the Last Glacial Maximum. Minimum estimated magnitudes for those earthquakes are M6.8-7. Radiocarbon dating results from charcoal layers in uplifted river terraces indicate a Holocene slip rate of 1.2-2.2 mm/a. We find additional evidence for active tectonic deformation all along the Almaty rangefront, basinward in the Kazakh platform, and in the interior of the Zailisky mountain range. Our data indicate that the seismic hazard faced by Almaty comes from a variety of sources, and we emphasize the problems related to urban growth into the loess-covered foothills and secondary earthquake effects. With our structural and geochronologic framework, we present a schematic evolution of the Almaty rangefront that may be applicable to similar settings of tectonic shortening in the mountain ranges of Central Asia.
NASA Astrophysics Data System (ADS)
Cheloni, D.; D'Agostino, N.; Selvaggi, G.
2014-05-01
Here we use continuous GPS observations to document the geodetic strain accumulation across the South-Eastern Alps (NE Italy). We estimate the interseismic coupling on the intracontinental collision thrust fault and discuss the seismic potential and earthquake recurrence. We invert the GPS velocities using the back slip approach to simultaneously estimate the relative angular velocity and the degree of interseismic coupling on the thrust fault that separates the Eastern Alps and the Venetian-Friulian plain. Comparison between the rigid rotation predicted motion and the shortening observed across the area indicates that the South-Eastern Alpine thrust front absorbs about 70% of the total convergence between the Adria and Eurasia plates. The coupling is computed on a north dipping fault following the continuous external seismogenic thrust front of the South-Eastern Alps. The modeled thrust fault is currently locked from the surface to a depth of ≈10 km. The transition zone between locked and creeping portions of the fault roughly corresponds with the belt of microseismicity parallel and to the north of the mountain front. The estimated moment deficit rate is 1.3 ± 0.4 × 1017 Nm/yr. The comparison between the estimated moment deficit and that released historically by the earthquakes suggests that to account for the moment deficit the following two factors or their combination should be considered: (1) a significant part of the observed interseismic coupling is released aseismically and (2) infrequent "large" events with long return period (> 1000 years) and with magnitudes larger than the value assigned to the largest historical events (Mw≈ 6.7).
Boundary-layer processes: key findings from MATERHORN-X field campaigns
NASA Astrophysics Data System (ADS)
Di Sabatino, Silvana; Leo, Laura S.; Pardyjak, Eric R.; Fernando, Harindra JS
2017-04-01
Understanding of atmospheric boundary-layer processes in complex terrain continues to be an active area of research considering its profound implications on numerical weather prediction (WP). It is largely recognized that nocturnal circulation, non-stationary processes involved in evening and morning transitions as well gusty conditions near mountains are poorly captured by current WP models. The search for novel understanding of boundary-layer phenomena especially in critical conditions for WP models has been one of the goals of the interdisciplinary Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program (2011-2016). The program developed with four main pillars: modelling (MATERHORN-M), experiments (MATERHORN-X), technology (MATERHORN-T), and parameterizations (MATERHORN-P), all synergistically working to meet new scientific challenges, address them effectively through dedicated field and laboratory studies, and transfer the acquired knowledge for model improvements. Specifically, MATERHORN-X is at the core of the MATERHORN program. It was built upon two major field experiments carried out in 31 September-October 2012 and in May 2013 at the Granite Mountain Atmospheric Science Testbed 32 (GMAST) of the Dugway Proving Ground (DPG). In this talk we will focus on results of data analyses from MATERHORN-X with emphasis on several aspects of the nocturnal circulation under low synoptic forcing when stable stratification occurs. The first part of the talk will discuss the evolution of nocturnal flows including both evening transitions on slopes and valleys as well as the occurrence of isolated flow bursts under very stable conditions. As far as the former is concerned we report on our latest understanding of mechanisms leading to evening transitions (e.g. shadow front, slab flow, and transitional front). As far as the latter is concerned, it is hypothesized that a link exists between isolated bursts in turbulent kinetic energy and low-level jets structure, a feature which is commonly found in the first 50-100 m from the ground. The second part of the talk will discuss the interaction between an isolated hill and an approaching (undisturbed) stably-stratified flow with emphasis on the dividing streamline concept. The hill was located northwest of and close to the Granite Mountain, and was approximately 60m in height. A suite of (smoke) flow-visualization, remote sensing and in-situ measurement assets were deployed. At small Froude numbers (Fr<1), a stratified flow approaching the hill either possesses sufficient kinetic energy to pass over the summit or else flows around the sides, with the dividing streamline separating the two scenarios. By applying a logarithmic approach velocity profile to the well-known Sheppard's formula based on simple energetics, an explicit representation for the dividing streamline height was derived and a new set of parameters were identified to determine the dividing streamline height. The analysis shows that there will always be a dividing streamline for real atmospheric stratified shear flows. This has relevant implications for modelling air-flow and dispersion in mountainous regions.
NASA Astrophysics Data System (ADS)
Macias-Fauria, M.; Johnson, E. A.; Forbes, B. C.; Willis, K. J.
2013-12-01
In cold ecosystems such as sub-alpine forests and forest-tundra, vegetation geographical ranges are expected to expand upward/northward in a warmer world. Such moving fronts have been predicted to 1) decrease the remaining alpine area in mountain systems, increasing fragmentation and extinction risk of many alpine taxa, and 2) fundamentally modify the energy budget of newly afforested areas, enhancing further regional warming due to a reduction in albedo. The latter is particularly significant in the forest-tundra, where changes over large regions can have regional-to-global effects on climate. An integral part of the expected range shifts is their velocity. Whereas range shifts across thermal gradients can theoretically be fast in an elevation gradient relative to climate velocity (i.e. rate of climate change) due to the short distances involved, large lags are expected over the flat forest-tundra. Mountain regions have thus been identified as buffer areas where species can track climate change, in opposition to flat terrain where climate velocity is faster. Thus, much shorter time-to-equilibrium are expected for advancing upslope sub-alpine forest than for advancing northern boreal forest. We contribute to this discussion by showing two mechanisms that might largely alter the above predictions in opposite directions: 1) In mountain regions, terrain heterogeneity not only allows for slower climate velocities, but slope processes largely affect the advance of vegetation. Indeed, such mechanisms can potentially reduce the climatic signal in vegetation distribution limits (e.g. treeline), precluding it from migrating to climatically favourable areas - since these areas occur in geologically unfavourable ones. Such seemingly local control to species range shifts was found to reduce the climate-sensitive treeline areas in the sub-alpine forest of the Canadian Rocky Mountains to ~5% at a landscape scale, fundamentally altering the predictions of vegetation response to climate warming in the region (Macias-Fauria & Johnson 20013, PNAS). 2) In the low arctic tundra, un-treed to treed landscapes have sprouted in several parts of the tundra in a matter of decades, as opposed to the previously predicted response times of several centuries for boreal forest to advance to its new climate optimum (migrational lags). This takes place not through very rapid moving fronts, but through phenotypic responses of extant vegetation with highly flexible life forms, such as woody deciduous shrubs (Salix, Alnus, Betula). The resulting vegetation response creates strong energy feedbacks while at the same time potentially further reduces the speed of northward displacement of the boreal forest, that has to compete with a new treed ecosystem (Macias-Fauria et al. 2012, Nature Climate Change). In conclusion, control of rates of migration by factors other than climate in mountain systems can largely reduce the ability of vegetation to track climate change, and emergence of structurally novel ecosystems in low arctic tundra might largely alter current predictions based on climate response of vegetation, by accelerating ecosystem change and reducing migrational rates simultaneously.
NASA Astrophysics Data System (ADS)
Burberry, C. M.; Cannon, D. L.; Engelder, T.; Cosgrove, J. W.
2010-12-01
The Sawtooth Range forms part of the Montana Disturbed Belt in the Front Ranges of the Rocky Mountains, along strike from the Alberta Syncline in the Canadian Rockies. The belt developed in the footwall to the Lewis Thrust during the Sevier orogeny and is similar in deformation style to the Canadian Foothills, with a series of stacked thrust sheets carrying Palaeozoic carbonates. The Sawtooth Range can be divided into an inner and outer deformed belt, separated by exposed fold structures in the overlying clastic sequence. Structures in the deformed belts plunge into the culmination of the NE-trending Scapegoat-Bannatyne trend, part of the Great Falls Tectonic Zone (GFTZ). Other mapped faults, including the Pendroy fault zone to the north, parallel this trend. A number of mechanisms have been proposed for the development of primary arcs in fold-thrust belts, including linkage of two thrust belts with different strikes, differential transport of segments of the belt, the geometry of the indentor, local plate heterogeneity and pre-existing basement configuration. Arcuate belts may also develop as a result of later bending of an initially straight orogen. In the Swift Dam area, part of the outer belt of the Sawtooth Range, the strike of the belt changes from 165 to 150. This apparent change in strike is accommodated by a sinistral lateral ramp in the Swift Dam Thrust. In addition, this outer belt becomes broader to the north in the Swift Dam region. However, the outer belt becomes extremely narrow in the Teton Canyon region to the south, and the deformation front is characterised by an intercutaneous wedge structure, rather than the trailing-edge imbricate fan seen to the north. A similar imbricate fan structure is seen to the south, in the Sun River Canyon region, corresponding well to the classic model of a deformation belt governed by a dominant thrust sheet, after Boyer & Elliot. The Sawtooth Range can be described as an active-roof duplex in the footwall to the dominant Lewis thrust slab. Analysis of the transport directions of the thrust sheets in the Range implies that the inner arcuate belt is a secondary arc, but that the later, outer arcuate belt formed by divergent transport. This two-stage development model is strongly influenced by the basement configuration. The deformation front of the outer arc is governed by NNW-striking Proterozoic normal fault structures. The entire Sawtooth Range duplex is uplifted over an earlier, NE-trending basement structure (the GFTZ), forming a termination in the Lewis slab. The interaction of these two fault trends allows the development of a linear deformation front in the foreland Jurassic-Cretaceous sequence, but an arcuate belt in the Palaeozoic carbonate sheets. Thus, the width and style of the outer arcuate belt also varies along the strike of the belt.
NASA Astrophysics Data System (ADS)
Steck, L.; Maceira, M.; Herrmann, R. B.; Ammon, C. J.
2012-12-01
Joint inversion of multiple datasets should produce more realistic images of Earth structure. Here we simultaneously invert surface wave dispersion, gravity, and receiver functions to determine structure of the crust and upper mantle of the western United States. To date our receiver function dataset, from the EARS system, spans California and western Nevada, but it will be expanded to include the entire study area as the project continues. Rayleigh and Love dispersion data come from multiple filter analysis of regional earthquakes, while the PACES and GRACE campaigns provide the gravity measurements. Our starting model is comprised of an oceanic PREM model west of the Pacific coast, a western US model between that and the eastern front of the Rocky Mountains, and a continental PREM model east of the Rocky Mountain Front. Our inversion reduces surface wave residuals by 57% and receiver function residuals by about 10%, when the two datasets are weighted equally. Gravity residuals are reduced to less than 3 Mgal. Results are consistent with numerous previous studies in the region. In general, the craton exhibits higher velocities than the tectonically active regions to its west. We see high mid-crustal velocities under the Snake River Plain and the Colorado Plateau. In the lower crust we observe lowest velocities in the western Basin and Range and under the Colorado Mineral Belt. At 80km depth we see broad low velocities fanning out from the Snake River Plain associated with the mantle plume feeding Yellowstone Caldera. Other high and low velocity anomalies along the west coast and to the east are likely related to ongoing subduction processes beneath the western US.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Gulick, S. P. S.; Montelli, A.; Jaeger, J. M.; Zellers, S.; Walczak, M. H.; Mix, A. C.
2015-12-01
Ongoing collision of the Yakutat (YAK) microplate with North America (NA) in southern Alaska has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), much of which is younger than 0.3 Ma. Age models within the trough indicated that initiation of active deformation away from the Bering Trough depocenter likely occurred since 0.3 Ma, suggesting that possible tectonic reorganization due to mass redistribution by glacial processes can occur at time scales on the order of 100kyr-1Myr.
NASA Astrophysics Data System (ADS)
Cartwright, Ian
Advection-dispersion fluid flow models implicitly assume that the infiltrating fluid flows through an already fluid-saturated medium. However, whether rocks contain a fluid depends on their reaction history, and whether any initial fluid escapes. The behaviour of different rocks may be illustrated using hypothetical marble compositions. Marbles with diverse chemistries (e.g. calcite + dolomite + quartz) are relatively reactive, and will generally produce a fluid during heating. By contrast, marbles with more restricted chemistries (e.g. calcite + quartz or calcite-only) may not. If the rock is not fluid bearing when fluid infiltration commences, mineralogical reactions may produce a reaction-enhanced permeability in calcite + dolomite + quartz or calcite + quartz, but not in calcite-only marbles. The permeability production controls the pattern of mineralogical, isotopic, and geochemical resetting during fluid flow. Tracers retarded behind the mineralogical fronts will probably be reset as predicted by the advection-dispersion models; however, tracers that are expected to be reset ahead of the mineralogical fronts cannot progress beyond the permeability generating reaction. In the case of very unreactive lithologies (e.g. pure calcite marbles, cherts, and quartzites), the first reaction to affect the rocks may be a metasomatic one ahead of which there is little pervasive resetting of any tracer. Centimetre-scale layering may lead to the formation of self-perpetuating fluid channels in rocks that are not fluid saturated due to the juxtaposition of reactants. Such layered rocks may show patterns of mineralogical resetting that are not predicted by advection-dispersion models. Patterns of mineralogical and isotopic resetting in marbles from a number of terrains, for example: Chillagoe, Marulan South, Reynolds Range (Australia); Adirondack Mountains, Old Woman Mountains, Notch Peak (USA); and Stephen Cross Quarry (Canada) vary as predicted by these models.
Substantial soil organic carbon retention along floodplains of mountain streams
NASA Astrophysics Data System (ADS)
Sutfin, Nicholas A.; Wohl, Ellen
2017-07-01
Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p < 0.001) indicates that percentage of silt and clay, sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.
Comparative Analysis of Glaciers in the Chugach-St.-Elias Mountains
NASA Astrophysics Data System (ADS)
Herzfeld, U. C.; Mayer, H.
2003-12-01
The phenomenon of glacier surges has to date been studied for only relatively few examples. 136 of the 204 surge-type glaciers in North America listed by Post (1969) are located in the St. Elias Mountains. In August 2003 we increased our data inventory of observations on surge glaciers by collecting material for 19 glaciers in the Glacier Bay area and neighboring regions in the eastern St. Elias Mountains, including 6 surge-type glaciers (Carroll, Rendu, Ferris, Grand Pacific, Margerie, and Johns Hopkins Glaciers). Analyses utilize digital video and photographic data, satellite data and GPS data. Geostatistical classification parameters and algebraic parameters characteristic of surge motions are derived for selected glaciers. During the 1993-1995 surge of Bering Glacier the entire surface of Alaska's longest glacier was crevassed and could be segmented into several dynamic provinces, where patterns changed as the surge progressed and the affected areas expanded downglacier and upglacier, finally affecting the Bagley Ice Field. The middle moraine of Grand Pacific and Ferris Glaciers is pushed over to the Grand Pacific side, caused by a recent surge of the heavily crevassed Ferris Glacier. The front of Johns Hopkins Glacier advances, as its lower reaches are affected by a surge. The surge history of Bering Glacier goes back to the Holocene, whereas Carroll and Rendu Glaciers have surged only 3-4 times. These observations pose questions on the possible relationship between surge dynamics and climatic changes.
The rainfall-triggered landslide and flash-flood disaster in northern Venezuela, December 1999
Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Heriberto Torres-Sierra,
2001-01-01
Rainstorms in December 1999 induced thousands of landslides along the northern slopes of the Cordillera de la Costa mountain range principally in the state of Vargas, Venezuela. Rainfall accumulation of 293 millimeters during the first 2 weeks ofDecember was followed by an additional 911 millimeters of rainfall on December 14 through 16. The landslides and floods inundated coastal communities resulting in a catastrophic death toll estimated at between 15,000 and 30,000 people. Debris flow damage to houses, buildings, and infrastructure in the narrow coastal zone was severe. Flash floods on alluvial fans at the mouths of rivers draining the coastal mountain range also contributed to the general destruction. In time scales spanning decades to centuries, the alluvial fans along this Caribbean coastline are areas of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise directly from the Caribbean Sea, the alluvial fans provide the only relatively flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. A limited assessment of the distribution and character of landslides is currently in progress by the U.S. Geological Survey in cooperation with the Venezuelan Ministry of Environment and Natural Resources.
NASA Astrophysics Data System (ADS)
Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.
2003-05-01
Plugging of flow paths caused by mineral precipitation in fractures above the potential repository at Yucca Mountain, Nevada could reduce the probability of water seeping into the repository. As part of an ongoing effort to evaluate thermal-hydrological-chemical (THC) effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation under anticipated temperature and pressure conditions in the repository. To replicate mineral dissolution by vapor condensate in fractured tuff, water was flowed through crushed Yucca Mountain tuff at 94 °C. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/l; silica was the dominant dissolved constituent. A portion of the steady-state mineralized water was flowed into a vertically oriented planar fracture in a block of welded Topopah Spring Tuff that was maintained at 80 °C at the top and 130 °C at the bottom. The fracture began to seal with amorphous silica within 5 days. A 1-D plug-flow numerical model was used to simulate mineral dissolution, and a similar model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The mineral precipitation simulations predicted the precipitation of amorphous silica at the base of the boiling front, leading to a greater than 50-fold decrease in fracture permeability in 5 days, consistent with the laboratory experiment. These results help validate the use of a numerical model to simulate THC processes at Yucca Mountain. The experiment and simulations indicated that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. However, differences in fluid flow rates and thermal gradients between the experimental setup and anticipated conditions at Yucca Mountain need to be factored into scaling the results of the dissolution/precipitation experiments and associated simulations to THC models for the potential Yucca Mountain repository.
NASA Astrophysics Data System (ADS)
Schubert, R.; Pluhar, C. J.; Carlson, C. W.; Jones, S. A.
2015-12-01
West of Bridgeport Valley near the Central Sierra Nevada crest, the Little Walker Caldera (LWC) erupted Stanislaus Group lavas and tuffs during the Late Miocene. Remnants of these rocks are now distributed from the western Sierra Nevada foothills across the range and into the Walker Lane. This wide distribution is attributed to the lavas flowing down paleochannels, which provide an excellent marker for deformation over the last 10 Ma. Priest (1978) identified a thick section of these lavas along Flatiron Ridge, the southeast margin of the LWC, which our preliminary data suggests may correlate with lavas in the Sweetwater Mountains to the northeast and at Rancheria Mtn near Hetch Hetchy to the southwest. The oldest unit in the Stanislaus group is the Table Mountain Formation, a trachyandesite. At Priest's measured section it is divided into three members. By our measurements, the Lower Member (Tmtl) is 256 meters thick, has a fine-grained groundmass with plagioclase and augite phenocrysts (<0.5 cm), and the presence of augite phenocrysts distinguishes it from the other members. Some Tmtl flows have chalcedony amigdules. Overlying this, the Large Plagioclase member (Tmtp) is 43.5 meters thick. Distinguished by (~1 cm) plagioclase and occasional small olivine phenocrysts. The Upper Member (Tmtu) is 116 meters thick, very fine-grained and often platy. Tmtl has a distinctive northwest-oriented normal polarity and geochemistry, similar to several localities at Rancheria Mtn. Tmtu has a reversed polarity similar to the polarity of Table Mountain Formation in the Sweetwater Mountains and lavas that directly underlie the ~9.5 Ma Tollhouse Flat member of the Eureka Valley Tuff at Rancheria Mtn. Thus, our preliminary data suggest that the lower member at Priest's Measured Section could correlate to the normal polarity samples at Rancheria Mtn. Also, that the upper Member reversed-polarity samples may correlate with lavas both at the Sweetwater Mountains and Rancheria Mtn. This correlation across about 60 km allows us to assess rotation between sites as well as estimate throw across some faults of the Eastern Sierra range front.
NASA Astrophysics Data System (ADS)
Samimi, S.; Gholami, E.
2017-03-01
At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts confirm the progressive deformation is dominant in this region that it increases from the east to the west.
Assessing Changes in Water Chemistry Along the Mountain to Urban Gradient
NASA Astrophysics Data System (ADS)
Gabor, R. S.; Brooks, P. D.; Neilson, B. T.; Barnes, M. L.; Stout, T.; Millington, M. R.; Gelderloos, A.; Tennant, H.; Eiriksson, D.
2015-12-01
Throughout the western US, growing population centers rely on mountain watersheds that are already sensitive to hydrologic stressors. We examined rivers along Utah's Wasatch Front over a range of spatial and discharge scales, confusing on the mountain-to-urban transition to identify how urbanization impacts water resources. The rivers we studied all originate in canyons with impact level ranging from minimal human disturbance to roads and open grazing cattle. Each river enters an urban area after leaving the canyon, where there is significantly more anthropogenic impact on the system. As part of an interdisciplinary effort with the iUTAH project, sample sites were selected at intervals along each river and a variety of measurements were made, including basic water chemistry along with discharge, water isotopes, nutrients, and organic matter analysis. By combining physical and chemical parameters we were able to quantify groundwater influence in gaining reaches and how those differ between the mountain and urban environments. We also identified how the urban system impacted hydrologic and biogeochemical processes in the catchment. For example, in Red Butte Creek discharge tripled through gaining reached in the canyon with only small corresponding changes in conductivity or nitrate levels. However in the urban stretch a gaining reach that tripled the discharge corresponded with a doubling in the conductivity and order of magnitude increase in nitrate. The fact that we first see this change in chemistry during a gaining reach, and not in an area full of storm culverts, suggests that urban impact to stream chemistry predominately occurs through the groundwater. Further work will incorporate ecological and climatic data along with the hydrologic and chemical datasets to identify how controls on water resources change along the mountain to urban gradient. By combining this physical information with sociological data we can identify green infrastructure solutions to mitigate urban impacts on our waterways.
NASA Astrophysics Data System (ADS)
Janke, Jason R.; Williams, Mark W.; Evans, Andrew
2012-02-01
The distribution of mountain permafrost along Trail Ridge Road (TRR) in Rocky Mountain National Park, Colorado, was modeled using 'frost numbers' and a 'temperature of permafrost model' (TTOP) in order to assess the accuracy of prediction models. The TTOP model is based on regional observations of air temperature and heat transfer functions involving vegetation, soil, and snow; whereas the frost number model is based on site-specific ratios of ground temperature measurements of frozen and thawed degree-days. Thirty HOBOtemperature data loggers were installed near the surface as well as at depth (30 to 85 cm). From mid-July 2008 to 2010, the mean annual soil temperature (MAST) for all surface sites was - 1.5 °C. Frost numbers averaged 0.56; TTOP averaged - 1.8 °C. The MAST was colder on western-facing slopes at high elevations. Surface and deeper probes had similar MASTs; however, deeper probes had less daily and seasonal variation. Another model developed at the regional scale based on proxy indicators of permafrost (rock glaciers and land cover) classified 5.1 km 2 of permafrost within the study area, whereas co-kriging interpolations of frost numbers and TTOP data indicated 2.0 km 2 and 4.6 km 2 of permafrost, respectively. Only 0.8 km 2 were common among all three models. Three boreholes drilled within 2 m of TRR indicate that permafrost does not exist at these locations despite each borehole being classified as containing permafrost by at least one model. Addressing model uncertainty is important because nutrients stored within frozen or frost-affected soils can be released and impact alpine water bodies. The uncertainty also exposes two fundamental problems: empirical models designed for high latitudes are not necessarily applicable to mountain permafrost, and the presence of mountain permafrost in the alpine tundra of the Colorado Front Range has not been validated.
40Ar/39Ar geochronology and petrogenesis of the Table Mountain Shoshonite, Golden, Colorado, U.S.A.
Millikin, Alexie E. G.; Morgan, Leah; Noblett, Jeffery
2018-01-01
The Upper Cretaceous and Lower Paleogene Table Mountain Shoshonite lava flows and their proposed source, the Ralston Buttes intrusions, provide insight into the volcanic history of the Colorado Front Range. This study affirms the long-held hypothesis linking the extrusive Table Mountain lava flows and their intrusive equivalents at Ralston Buttes through major- and trace- element geochemistry. Systematic 40Ar/39Ar geochronology from all flows and intrusive units refines the eruptive history, improves precision on previously reported ages, and provides tighter constraints on the position of the K-Pg boundary in this location. Four flows are recognized on North and South Table mountains outside of Golden, Colorado. Flow 1 (66.5 ± 0.3 Ma, all ages reported with 2σ uncertainty) is the oldest, most compositionally distinct flow and is separated from younger flows by approximately 35 m of sedimentary deposits of the Denver Formation. Stratigraphically adjacent flows 2 (65.8 ± 0.2 Ma), 3 (65.5 ± 0.3 Ma), and 4 (65.9 ± 0.3 Ma) are compositionally indistinguishable. Lavas (referred to here as unit 5) that form three cone-shaped structures (shown by this study to be volcanic vents of a new unit 5) on top of North Table Mountain are compositionally similar to other units, but yield an age almost 20 m.y. younger (46.94 ± 0.15 Ma). Geochemistry and geochronology suggest that the rim phase of the Ralston plug (65.4 ± 0.2 Ma) is a reasonable source for flows 2, 3, and 4. All units are shoshonites—potassic basalts containing plagioclase, augite, olivine, and magnetite phenocrysts—and plot in the continental-arc field in tectonic discrimination diagrams. A continental-arc setting coupled with Late Cretaceous to early Paleogene ages suggest the high-K magmatism is associated with Laramide tectonism.
Sources and composition of PM2.5 in the Colorado Front Range during the DISCOVER-AQ study
NASA Astrophysics Data System (ADS)
Valerino, M. J.; Johnson, J. J.; Izumi, J.; Orozco, D.; Hoff, R. M.; Delgado, R.; Hennigan, C. J.
2017-01-01
Measurements of particulate matter (PM2.5) chemical composition were carried out in Golden, CO, during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field study. Chemical composition was dominated by organic compounds, which comprised an average of 75% of the PM2.5 mass throughout the study. Most of the organic matter was secondary (i.e., secondary organic aerosol) and appears to derive predominantly from regional sources, rather than the Denver metropolitan area. The concentration and composition of PM2.5 in Golden were strongly influenced by highly regular wind patterns and the site's close proximity to the mountains ( 5 km). This second factor may be the cause of distinct differences between observations in Golden and those in downtown Denver, despite a distance between the sites of only 15 km. Concentrations of aerosol nitrate, ammonium, and elemental carbon increased significantly during the daytime when the winds were from the northeast, indicating a strong local source for these compounds. Local sources of dust appeared to minimally impact the Golden site, although this was not likely representative of other conditions in the Colorado Front Range. Conversely, dust that had undergone long-range transport from the southwestern U.S. likely impacted the entire Colorado Front Range, including Golden. During this event, water-soluble Ca2+ concentrations exceeded 1 µg m-3, and the PM2.5/PM10 ratio reached its lowest level throughout the study. The long-range transport of wildfire emissions also impacted the Colorado Front Range for 1-2 days during DISCOVER-AQ. The smoke event was characterized by high concentrations of organics and water-soluble K+. The results show a complex array of sources, and atmospheric processes influence summertime PM in the Colorado Front Range.
Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte
2016-01-01
The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to Quaternary reactivation of the old and deeply buried Picuris-Pecos faults. If so, then the Los Cordovas structures may extend southward under the Picuris piedmont, where they form growth faults as they merge downward into the Picuris-Pecos bedrock faults. The exceptionally high density of cross-cutting faults in the study area has severely disrupted the stratigraphy of the Picuris formation and the Santa Fe Group. The Picuris formation exists at the surface in the Miranda and Rio Grande del Rancho grabens, and locally along the top of the Picuris piedmont. In the subsurface, it deepens rapidly from the mountain front into the rift basin. In a similar manner, the Tesuque and Chamita Formations are shallowly exposed close to the mountain front, but are down dropped into the basin along the Embudo faults. The Ojo Caliente Sandstone Member of the Tesuque Formation appears to be thickest in the northwestern study area, and thins toward the south and the east. In the study area, the Lama formation thins westward and southward. The Servilleta Basalt is generally thickest to the north and northwest, thins under the Picuris piedmont, and terminates along a major, linear, buried strand of the Embudo fault zone, demonstrating that the Servilleta flows were spatially and temporally related to Embudo fault activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diggles, M.F.; Carter, K.E.
1993-04-01
The study area is underlain predominantly by granitoid rocks of the Sierra Nevada batholith. Metamorphic rocks are present in roof pendants mainly in the southwest corner of the study area and consist of quartz-biotite schist, phyllite, quartzite, marble, calc-silicate hornfels, and meta-dacite. Among the seven Triassic and (or) Jurassic plutons are three newly described units that consist of the gabbro of Deer Mountain, the tonalite of Falls Creek, and the quartz diorite of Round Mountain. The map shows one newly described unit that intrudes Triassic rocks: the granodiorite of Monache Creek which is a leucocratic, medium-grained, equi-granular, locally porphyritic biotitemore » hornblende granodiorite. Among the seven Cretaceous plutons are two newly described units. The Cretaceous rocks are generally medium- to coarse-grained, potassium-feldspar porphyritic granite with biotite and minor hornblende; it includes abundant pods of alaskite. The granite of Haiwee Creek is similar but only locally potassium-feldspar porphyritic and with only minor hornblende. Major-element data plotted on Harker diagrams show the older rocks to be higher in iron and magnesium and lower in silica than the younger rocks. There are abundant local pods of alaskite throughout the study area that consist of medium- to coarse-grained, leucocratic granite, alkali-feldspar granite and associated aplite and pegmatite bodies occurring as small pods and highly leucocratic border phases of nearby plutons. Tertiary and Quaternary volcanic rock include the rhyolite of Monache Mountain and Quaternary surficial deposits: fan, stream-channel, colluvium, talus, meadow-filling, rock-glacier, and glacial-moraine deposits. Important structures include the Sierran front fault and a possible extensional feature along which Bacon (1978) suggests Monache Mountain erupted.« less
NASA Astrophysics Data System (ADS)
Guilbaud, C.; Simoes, M.; Barrier, L.; Laborde, A.; van der Woerd, J.; Li, H.; Tapponnier, P.; Coudroy, T.; Murray, A. S.
2017-12-01
The Western Kunlun mountain range (Xinjiang, north-west China) is a slowly deforming intra-continental orogen where deformation rates are too low to be quantified from geodetic techniques. This region has recorded little historical seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold along the topographic mountain front in the epicentral area. Using field observations and a seismic profile, we derive a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr over the last 400 kyr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is then proposed by combining all structural, morphological and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of major M ≥ 8-8.5 earthquakes in the case that the whole decollement is presently seismically locked and fully ruptures in one single seismic event.
NASA Astrophysics Data System (ADS)
Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie; Laborde, Amandine; Van der Woerd, Jérôme; Li, Haibing; Tapponnier, Paul; Coudroy, Thomas; Murray, Andrew
2017-12-01
The Western Kunlun mountain range is a slowly converging intracontinental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive a structural cross section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces from field sampling, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is proposed by combining all structural, morphological, and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of M ≥ 8 earthquakes if the whole decollement across the southern Tarim Basin is seismically locked and ruptures in one single event.
NASA Technical Reports Server (NTRS)
Smith, R. B.; Bruhn, R. L.
1984-01-01
Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.'
NASA Technical Reports Server (NTRS)
Davis, R. E.; Champine, R. A.; Ehernberger, L. J.
1979-01-01
The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.
NASA Astrophysics Data System (ADS)
Worthington, Lindsay L.; Daigle, Hugh; Clary, Wesley A.; Gulick, Sean P. S.; Montelli, Aleksandr
2018-02-01
The southern Alaskan margin offshore the St. Elias Mountains has experienced the highest recorded offshore sediment accumulation rates globally. Combined with high uplift rates, active convergence and extensive temperate glaciation, the margin provides a superb setting for evaluating competing influences of tectonic and surface processes on orogen development. We correlate results from Integrated Ocean Drilling Program (IODP) Expedition 341 Sites U1420 and U1421 with regional seismic data to determine the spatial and temporal evolution of the Pamplona Zone fold-thrust belt that forms the offshore St. Elias deformation front on the continental shelf. Our mapping shows that the pattern of active faulting changed from distributed across the shelf to localized away from the primary glacial depocenter over ∼300-780 kyrs, following an order-of-magnitude increase in sediment accumulation rates. Simple Coulomb stress calculations show that the suppression of faulting is partially controlled by the change in sediment accumulation rates which created a differential pore pressure regime between the underlying, faulted strata and the overlying, undeformed sediments.
Apollo 15 - Extravehicular Activity (EVA) Panorama
1971-08-02
S71-43943 (2 Aug. 1971) --- Mosaic photographs which compose a 360-degree panoramic view of the Apollo 15 Hadley-Apennine landing site, taken near the close of the third lunar surface extravehicular activity (EVA) by astronauts David Scott and James Irwin. This group of photographs was designated the Rover "RIP" Pan because the Lunar Roving Vehicle was parked in its final position prior to the two crewmen returning to the Lunar Module. The astronaut taking the pan was standing 325 feet east of the Lunar Module (LM). The Rover was parked about 300 feet east of the LM. This mosaic covers a field of view from about north-northeast to about south. Visible on the horizon from left to right are: Mount Hadley; high peaks of the Apennine Mountains which are farther in the distance than either Mount Hadley or Hadley Delta Mountain; Silver Spur on the Apennine Front; and the eastern portion of Hadley Delta. Note Rover tracks in the foreground. The numbers of the other two views composing the 360-degree pan are S71-43940 and S71-43942.
Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.
1994-01-01
We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.
Wound-induced Oxidative Responses in Mountain Birch Leaves
RUUHOLA, TEIJA; YANG, SHIYONG
2006-01-01
• Aims The aim of the study was to examine oxidative responses in subarctic mountain birch, Betula pubescens subsp. czerepanovii, induced by herbivory and manual wounding. • Methods Herbivory-induced changes in polyphenoloxidase, peroxidase and catalase activities in birch leaves were determined. A cytochemical dye, 3,3-diaminobenzidine, was used for the in situ and in vivo detection of H2O2 accumulation as a response to herbivory and wounding. To localize peroxidase activity in leaves, 10 mm H2O2 was applied to the dye reagent. • Key Results Feeding by autumnal moth, Epirrita autumnata, larvae caused an induction in polyphenoloxidase and peroxidase activities within 24 h, and a concomitant decrease in the activity of antioxidative catalases in wounded leaves. Wounding also induced H2O2 accumulation, which may have both direct and indirect defensive properties against herbivores. Wound sites and guard cells showed a high level of peroxidase activity, which may efficiently restrict invasion by micro-organisms. • Conclusion Birch oxidases together with their substrates may form an important front line in defence against herbivores and pathogens. PMID:16254021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Brendan W.
In aquifers consisting of fractured or porous igneous rocks, as well as conglomerate and sandstone products of volcanic formations, silicate minerals actively dissolve and precipitate (Eby, 2004; Eriksson, 1985; Drever, 1982). Dissolution of hydrated volcanic glass is also known to influence the character of groundwater to which it is exposed (White et al., 1980). Hydrochemical evolution, within saturated zones of volcanic formations, is modeled here as a means to resolve the sources feeding a perched groundwater zone. By observation of solute mass balances in groundwater, together with rock chemistry, this study characterizes the chemical weathering processes active along recharge pathwaysmore » in a mountain front system. Inverse mass balance modeling, which accounts for mass fluxes between solid phases and solution, is used to contrive sets of quantitative reactions that explain chemical variability of water between sampling points. Model results are used, together with chloride mass balance estimation, to evaluate subsurface mixing scenarios generated by further modeling. Final model simulations estimate contributions of mountain block and local recharge to various contaminated zones.« less
The potential for retreating alpine glaciers to alter alpine ecosystems in the Colorado Front Range
NASA Astrophysics Data System (ADS)
Hall, E.; Baron, J.
2013-12-01
Glaciers are retreating at an unprecedented rate. In mid-latitude alpine ecosystems the presence of glaciers and rock glaciers govern rates and ecology of alpine and sub-alpine ecosystems. Changes in the thermal environment due to the loss of isothermal habitat and inputs from glacier melt chemistry are altering alpine ecosystems in unpredictable ways. In particular, glacier may be a source of nitrogen that is altering alpine ecosystem dynamics. Loch Vale Watershed (LVWS) located within Rocky Mountain National Park. LVWS contains a surface glacier (Andrew's glacier) and a rock glacier (Taylor's glacier) at the headwater of each of the two drainages within the watershed. We collected precipitation from a National Atmospheric Deposition Site and surface water from multiple alpine lakes and streams during a particularly high and low snow year in the Colorado Front Range. We also sampled stream and lake sediments at each site to analyze the associated microbial community. Concentrations of nitrate and ammonium, relative abundance of amoA (the gene responsible for a key step in the microbial nitrification pathway), and the dual isotope signal to nitrate all point to snow melt as a key deliverer of nitrogen to ecosystems along the Colorado Front Range. However, late summer surface water chemistry is isotopically similar to the chemistry of glacial ice. This suggests that retreating glacier may be an additional source of N to alpine ecosystems and have the potential to alter microbial community composition, biogeochemical rate processes, and ecosystem function. These dynamics are most likely not unique to the Colorado Front Range and should be globally distributed as glaciers continue to retreat in high altitude ecosystems around the world.
NASA Astrophysics Data System (ADS)
Zondlo, Mark; Pan, Da; Golston, Levi; Sun, Kang; Tao, Lei
2016-04-01
Ammonia (NH3) emissions from agricultural areas show extreme spatiotemporal variations, yet agricultural emissions dominate the global NH3 budget and ammoniated aerosols are a dominant component of unhealthy fine particulate matter. The emissions of NH3 and their deposition near and downwind of agricultural areas is complex. As part of a multi-year field intensive along the Colorado Front Range (including the NASA DISCOVER-AQ and NSF FRAPPE field experiments), we have examined temporal emissions of NH3 from feedlots, regional transport of ammonia and ammoniated aerosols from the plains to relatively pristine regions in Rocky Mountain National Park, and dry deposition and re-emission of grassland NH3 in the park. Eddy covariance measurements at feedlots and natural grasslands in the mountains were conducted with newly-developed open-path, eddy covariance laser-based sensors for NH3 (0.7 ng NH3/m2/s detection limit at 10 Hz). These measurements were coupled with other NH3/NHx measurements from mobile laboratories, aircraft, and satellite to examine the transport of NH3 from agricultural areas to cleaner regions downwind. At the farm level, eddy covariance NH3 fluxes showed a strong diurnal component correlated with temperature regardless of the season but with higher absolute emissions in summer than winter. While farm-to-farm variability (N=62 feedlots) was high, similar diurnal trends were observed at all sites regardless of individual farm type (dairy, beef, sheep, poultry, pig). Deposition at scales of several km showed relatively small deposition (10% loss) based upon NH3/CH4 tracer correlations, though the NH3 concentrations were so elevated (up to ppmv) that these losses should not be neglected when considering near-farm deposition. Ammonia was efficiently transported at least 150 km during upslope events to the Colorado Front Range (ele. 3000-4000 m) based upon aircraft, mobile laboratory, and model measurements. The gas phase lifetime of NH3 was estimated to be at least 12 hours. Eddy covariance measurements in the mountains showed deposition of 3.2 ng N/m2/s during upslope events from the agricultural areas. In contrast, during downslope events when clean, free tropospheric air was at the site, re-emission of NH3 to the atmosphere of a similar magnitude was observed. The strong correlations with wind direction, coupled to back trajectories and measurements, suggest that agricultural NH3 emissions are playing an important role in nitrogen deposition at Rocky Mountain National Park. These results will be compared to similar measurements by our group in the San Joaquin Valley in California and via TES/IASI satellite measurements elsewhere in the US.
NASA Astrophysics Data System (ADS)
Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto
2017-04-01
The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface exposure rates are rather due to gravitational and landsliding movements aided by weathering and slope degradation processes. The so far neglected slope degradation and other (sub)surface processes should thus be carefully taken into consideration before attempting to recover fault slip rates using surface gathered data. The results of the present studies have been recently published (Kastelic et al., 2016) and our research is ongoing, implementing the so-far results with newer measurements and other techniques in order to improve our knowledge on the magnitude of the exposure and its causative process(es). Kastelic, V., P. Burrato, M. M. C. Carafa, and R. Basili (2016), Repeated surveys reveal nontectonic exposure of supposedly active normal faults in the central Apennines, Italy, J. Geophys. Res. Earth Surf., 121, doi:10.1002/2016JF003953.
NASA Astrophysics Data System (ADS)
Cao, Kai; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Zhang, Ke-Xin
2015-12-01
How and when the northwestern Tibetan Plateau originated and developed upon pre-existing crustal and topographic features is not well understood. To address this question, we present an integrated analysis of detrital zircon U-Pb and fission-track double dating of Cenozoic synorogenic sediments from the Kekeya and Sanju sections in the southwestern Tarim Basin. These data help establishing a new chronostratigraphic framework for the Sanju section and confirm a recent revision of the chronostratigraphy at Kekeya. Detrital zircon fission-track ages present prominent Triassic-Early Jurassic (∼250-170 Ma) and Early Cretaceous (∼130-100 Ma) static age peaks, and Paleocene-Early Miocene (∼60-21 Ma) to Eocene-Late Miocene (∼39-7 Ma) moving age peaks, representing source exhumation. Triassic-Early Jurassic static peak ages document unroofing of the Kunlun terrane, probably related to the subduction of Paleotethys oceanic lithosphere. In combination with the occurrence of synorogenic sediments on both flanks of the Kunlun terrane, these data suggest that an ancient West Kunlun range had emerged above sea level by Triassic-Early Jurassic times. Early Cretaceous fission-track peak ages are interpreted to document exhumation related to thrusting along the Tam Karaul fault, kinematically correlated to the Main Pamir thrust further west. Widespread Middle-Late Mesozoic crustal shortening and thickening likely enhanced the Early Mesozoic topography. Paleocene-Early Eocene fission-track peak ages are presumably partially reset. Limited regional exhumation indicates that the Early Cenozoic topographic and crustal pattern of the West Kunlun may be largely preserved from the Middle-Late Mesozoic. The Main Pamir-Tam Karaul thrust belt could be a first-order tectonic feature bounding the northwestern margin of the Middle-Late Mesozoic to Early Cenozoic Tibetan Plateau. Toward the Tarim basin, Late Oligocene-Early Miocene steady exhumation at a rate of ∼0.9 km/Myr is likely related to initial thrusting of the Tiklik fault and reactivation of the Tam Karaul thrust. Thrusting together with upper crustal shortening in the mountain front indicates basinward expansion of the West Kunlun orogen at this time. This episode of exhumation and uplift, associated with magmatism across western Tibet, is compatible with a double-sided lithospheric wedge model, primarily driven by breakoff of the Indian crustal slab. Accelerated exhumation of the mountain front at a rate of ∼1.1 km/Myr since ∼15 Ma supports active compressional deformation at the margins of the northwestern Tibetan Plateau. We thus propose that the West Kunlun Mountains are a long-lived topographic unit, dating back to Triassic-Early Jurassic times, and have experienced Middle-Late Mesozoic to Early Cenozoic rejuvenation and Late Oligocene-Miocene expansion.
Saltwater Intrusion and its Long-Term Consequences in a Coastal Alluvial Aquifer of Northern Oman
NASA Astrophysics Data System (ADS)
Weyhenmeyer, C. E.; Waber, H. N.
2002-12-01
The alluvial aquifer of the Eastern Batinah coastal plain supplies water for the most densely populated, cultivated and industrialized areas in the Sultanate of Oman. In recent years, overexploitation of these groundwater resources has resulted in a drastic lowering of the groundwater table and consequent seawater intrusion into the coastal aquifer sections. During recent drilling operations near the coast (~3 km) groundwater samples were taken at depths intervals of 2-5 m. The front of the saline intrusion wedge was encountered at a depth of 70-80 mbs as suggested by sudden changes in groundwater chemistry and isotope values. Groundwater near the saline intrusion front is characterized by lower Na/Cl and higher Ca/Mg ratios compared to ion ratios expected from groundwater mixing calculations between fresh- and saltwater. The observed changes in ion ratios suggest that Na is removed from the groundwater and replaced by Ca from cation exchange surfaces in the aquifer (e.g., clay particles), which is an indication that the saline front is still migrating inland. To date, a deterioration of overall groundwater quality can be recognized as far inland as 15 km and Cl and Na concentrations in these areas are well above the general quality standards for drinking water. Estimates of infiltration rates based on isotope ratios (Sr, O, H) suggest that less than 10% of the total groundwater recharge occurs on the coastal plain itself, with the remaining 90% originating in the adjacent Oman Mountains. Groundwater residence times on the coastal plain are in the order of a few hundred to several thousand years as suggested by a number of radioactive isotopes (3H, 85Kr, 39Ar, 14C). Therefore, these groundwater resources essentially have to be considered non-renewable and there is a pressing requirement for the development of sustainable groundwater management strategies. Attempts to artificially increase infiltration on the coastal plain by the construction of large recharge dams has not yet proven successful because infiltration on the alluvial plain is severely inhibited by extensive layers of highly cemented gravel and clay accumulations and by a groundwater table as low as 80 mbs. At present, water conservation and possibly groundwater exploitation in the mountainous areas appear to be the only viable strategies to slow down the rapid decline of available groundwater resources in the Eastern Batinah region
Abrasion-set limits on Himalayan gravel flux.
Dingle, Elizabeth H; Attal, Mikaël; Sinclair, Hugh D
2017-04-26
Rivers sourced in the Himalayan mountain range carry some of the largest sediment loads on the planet, yet coarse gravel in these rivers vanishes within approximately 10-40 kilometres on entering the Ganga Plain (the part of the North Indian River Plain containing the Ganges River). Understanding the fate of gravel is important for forecasting the response of rivers to large influxes of sediment triggered by earthquakes or storms. Rapid increase in gravel flux and subsequent channel bed aggradation (that is, sediment deposition by a river) following the 1999 Chi-Chi and 2008 Wenchuan earthquakes reduced channel capacity and increased flood inundation. Here we present an analysis of fan geometry, sediment grain size and lithology in the Ganga Basin. We find that the gravel fluxes from rivers draining the central Himalayan mountains, with upstream catchment areas ranging from about 350 to 50,000 square kilometres, are comparable. Our results show that abrasion of gravel during fluvial transport can explain this observation; most of the gravel sourced more than 100 kilometres upstream is converted into sand by the time it reaches the Ganga Plain. These findings indicate that earthquake-induced sediment pulses sourced from the Greater Himalayas, such as that following the 2015 Gorkha earthquake, are unlikely to drive increased gravel aggradation at the mountain front. Instead, we suggest that the sediment influx should result in an elevated sand flux, leading to distinct patterns of aggradation and flood risk in the densely populated, low-relief Ganga Plain.
Wolfe, A.P.; Van Gorp, A.C.; Baron, Jill S.
2003-01-01
Dated sediment cores from five alpine lakes (>3200 m asl) in Rocky Mountain National Park (Colorado Front Range, USA) record near-synchronous stratigraphic changes that are believed to reflect ecological and biogeochemical responses to enhanced nitrogen deposition from anthropogenic sources. Changes in sediment proxies include progressive increases in the frequencies of mesotrophic planktonic diatom taxa and diatom concentrations, coupled with depletions of sediment δ15N and C : N values. These trends are especially pronounced since approximately 1950. The most conspicuous diatoms to expand in recent decades are Asterionella formosa and Fragilaria crotonensis. Down-core species changes are corroborated by a year-long sediment trap experiment from one of the lakes, which reveals high frequencies of these two taxa during autumn and winter months, the interval of peak annual limnetic [NO3-]. Although all lakes record recent changes, the amplitude of stratigraphic shifts is greater in lakes east of the Continental Divide relative to those on the western slope, implying that most nitrogen enrichment originates from urban, industrial and agricultural sources east of the Rocky Mountains. Deviations from natural trajectories of lake ontogeny are illustrated by canonical correspondence analysis, which constrains the diatom record as a response to changes in nitrogen biogeochemistry. These results indicate that modest rates of anthropogenic nitrogen deposition are fully capable of inducing directional biological and biogeochemical shifts in relatively pristine ecosystems.
View of portion of "relatively fresh" crater as photographed by Apollo 15
1971-07-31
AS15-82-11082 (2 Aug. 1971) --- A close-up view of a portion of a "relatively fresh" crater, looking southeast, as photographed during the third Apollo 15 lunar surface extravehicular activity (EVA), on Aug. 2, 1971, at EVA Station No. 9, near Scarp Crater. The crater pictured is unnamed. The Apennine Front is in the background, and Hadley Delta Mountain is in the right background. While astronauts David R. Scott, commander, and James B. Irwin, lunar module pilot, descended in the Lunar Module (LM) "Falcon" to explore the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
7. VIEW OF TIP TOP AND PHILLIPS MINES. PHOTO MADE ...
7. VIEW OF TIP TOP AND PHILLIPS MINES. PHOTO MADE FROM THE 'NOTTINGHAM' SADDLE VISIBLE IN PHOTOGRAPHS ID-31-3 AND ID-31-6. CAMERA POINTED NORTHEAST TIP TOP IS CLEARLY VISIBLE IN UPPER RIGHT; RUNNING A STRAIGHT EDGE THROUGH THE TRUNK LINE OF SMALL TREE IN LOWER RIGHT THROUGH TRUNK LINE OF LARGER TREE WILL DIRECT ONE TO LIGHT AREA WHERE TIP TOP IS LOCATED; BLACK SQUARE IS THE RIGHT WINDOW ON WEST SIDE (FRONT) OF STRUCTURE. PHILLIPS IS VISIBLE BY FOLLOWING TREE LINE DIAGONALLY THROUGH IMAGE TO FAR LEFT SIDE. SULLIVAN IS HIDDEN IN THE TREE TO THE RIGHT OF PHILLIPS. - Florida Mountain Mining Sites, Silver City, Owyhee County, ID
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and is interpreted by some to mean 'They of the great rocks.'
Mineral resources of the Cabinet Mountains Wilderness, Lincoln and Sanders Counties, Montana
Lindsey, David A.; Wells, J.D.; Van Loenen, R. E.; Banister, D.P.; Welded, R.D.; Zilka, N.T.; Schmauch, S.W.
1978-01-01
This report describes the differential array, of seismometers recently installed at the Hollister, California, Municipal Airport. Such an array of relatively closely spaced seismometers has already been installed in El Centro and provided useful information for both engineering and seismological applications from the 1979 Imperial Valley earthquake. Differential ground motions, principally due to horizontally propagating surface waves, are important in determining the stresses in such extended structures as large mat foundations for nuclear power stations, dams, bridges and pipelines. Further, analyses of the records of the 1979 Imperial Valley earthquake from the differential array have demonstrated the utility of short-baseline array data in tracking the progress of the rupture wave front of an earthquake.
Variational analysis of temperature and moisture advection in a severe storm environment
NASA Technical Reports Server (NTRS)
Mcfarland, M. J.; Sasaki, Y. K.
1977-01-01
Horizontal wind components, potential temperature, and mixing ratio fields associated with a severe storm environment in the south central United States were objectively analyzed from synoptic upper air observations with a nonhomogeneous anisotropic weighting function. The particular case study discussed here is the tornado producting squall line which moved through eastern Oklahoma 26 May 1973. The synoptic situation which preceded squall line development was cyclogenesis and frontogenesis in the lee-of-mountain trough, which produced a well-defined surface dry line (or dew point front) and a pronounced mid-level dry air intrusion. It is shown that the intrusion was also characterized by warm air, with a lapse rate approaching the dry adiabatic.
Assessment of geothermal resources at Newcastle, Utah
Blackett, Robert E.; Shubat, Michael A.; Chapman, David S.; Forster, Craig B.; Schlinger, Charles M.
1989-01-01
Integrated geology, geophysics, and geochemistry studies in the Newcastle area of southwest Utah are used to develop a conceptual geologic model of a blind, moderate-temperature hydrothermal system. Studies using 12 existing and 12 new, thermal gradient test holes, in addition to geologic mapping, gravity surveys, and other investigations have helped define the thermal regime. Preliminary results indicate that the up-flow region is located near the west-facing escarpment of an adjacent mountain range, probably related to the bounding range-front fault. Chemical geothermometers suggest equilibration temperatures ranging from 140??C to 170??C. The highest temperature recorded in the system is 130??C from an exploration well drilled by the Unocal Corporation.
Simultaneous miocene extension and shortening in the himalayan orogen.
Hodges, K V; Parrish, R R; Housh, T B; Lux, D R; Burchfiel, B C; Royden, L H; Chen, Z
1992-11-27
The South Tibetan detachment system separates the high-grade metamorphic core of the Himalayan orogen from its weakly metamorphosed suprastructure. It is thought to have developed in response to differences in gravitational potential energy produced by crustal thickening across the mountain front. Geochronologic data from the Rongbuk Valley, north of Qomolangma (Mount Everest) in southern Tibet, demonstrate that at least one segment of the detachment system was active between 19 and 22 million years ago, an interval characterized by large-scale crustal thickening at lower structural levels. These data suggest that decoupling between an extending upper crust and a converging lower crust was an important aspect of Himalayan tectonics in Miocene time.
NASA Astrophysics Data System (ADS)
Ballato, Paolo; Landgraf, Angela; Schildgen, Taylor F.; Stockli, Daniel F.; Fox, Matthew; Ghassemi, Mohammad R.; Kirby, Eric; Strecker, Manfred R.
2015-09-01
The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from ∼36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from ∼6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a ∼3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last ∼5 Ma.
NASA Astrophysics Data System (ADS)
Mills, Hugh H.
1990-06-01
Seismic refraction was used to determine the variation in thickness and seismic velocities of regolith on boulder-mantled mountain flanks underlain by shale in the Valley and Ridge province near Mountain Lake, southwestern Virginia. Emphasis was on cross-slope variations, particularly the difference between dells (hollows) and noses. Four types of material were distinguished on the basis of seismic velocity. Soil material within 1-2 m of the ground surface affected by pedogenesis had a velocity generally less than 400 m/s. Unconsolidated bouldery colluvium, up to 6 m thick, had a velocity of about 400-800 m/s. Old, weathered and consolidated colluvium had a velocity of 800-2000 m/s. Bedrock residuum and highly weathered bedrock showed similar velocities, however, so that all material in this range was collectively termed "weathered regolith." Its thickness exceeded 30 m in places. Relatively unweathered bedrock showed velocities of at least 2000 m/s. On average, seismic profiles showed regolith thicknesses in excess of 10 m, the greater part being residuum or weathered bedrock. This finding contrasts with one study near the glacial border in Pennsylvania, which showed that colluvium generally directly overlies bedrock. This difference may reflect less-intense Pleistocene periglacial erosion in Virginia than in Pennsylvania. Topography generally was not a good predictor of regolith thickness. Hollows showed greater thicknesses of ypung colluvium than did noses, but dells and noses showed little difference in total regolith thickness. Both dells and noses showed great variation in regolith thickness. The largest systematic difference was found between dell floors (or parts thereof) that seemed to be undergoing long-term downcutting and those that appeared to be relict features no longer associated with active drainageways. The former were underlain by a mean of 5.5 m of weathered regolith, whereas the latter were underlain by a mean of 14.0 m, indicative of a greater depth of weathering and therefore a greater antiquity. On three noses, closely spaced seismic profiles were used to demonstrate asymmetric distribution of regolith thickness in a direction transverse to nose axes. Findings are compatible with the concept that noses and dells on the boulder-mantled mountain slopes undergo topographic inversion during long-term retreat of the mountain front.
NASA Astrophysics Data System (ADS)
Ramirez, C.; Nyblade, A.; Emry, E. L.; Julià, J.; Sun, X.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Winberry, P.; Wilson, T.
2017-12-01
A uniform set of crustal parameters for seismic stations deployed on rock in West Antarctica and the Transantarctic Mountains (TAM) has been obtained to help elucidate similarities and differences in crustal structure within and between several tectonic blocks that make up these regions. P-wave receiver functions have been analysed using the H-κ stacking method to develop estimates of thickness and bulk Poisson's ratio for the crust, and jointly inverted with surface wave dispersion measurements to obtain depth-dependent shear wave velocity models for the crust and uppermost mantle. The results from 33 stations are reported, including three stations for which no previous results were available. The average crustal thickness is 30 ± 5 km along the TAM front, and 38 ± 2 km in the interior of the mountain range. The average Poisson's ratios for these two regions are 0.25 ± 0.03 and 0.26 ± 0.02, respectively, and they have similar average crustal Vs of 3.7 ± 0.1 km s-1. At multiple stations within the TAM, we observe evidence for mafic layering within or at the base of the crust, which may have resulted from the Ferrar magmatic event. The Ellsworth Mountains have an average crustal thickness of 37 ± 2 km, a Poisson's ratio of 0.27, and average crustal Vs of 3.7 ± 0.1 km s-1, similar to the TAM. This similarity is consistent with interpretations of the Ellsworth Mountains as a tectonically rotated TAM block. The Ross Island region has an average Moho depth of 25 ± 1 km, an average crustal Vs of 3.6 ± 0.1 km s-1 and Poisson's ratio of 0.30, consistent with the mafic Cenozoic volcanism found there and its proximity to the Terror Rift. Marie Byrd Land has an average crustal thickness of 30 ± 2 km, Poisson's ratio of 0.25 ± 0.04 and crustal Vs of 3.7 ± 0.1 km s-1. One station (SILY) in Marie Byrd Land is near an area of recent volcanism and deep (25-40 km) seismicity, and has a high Poisson's ratio, consistent with the presence of partial melt in the crust.
NASA Astrophysics Data System (ADS)
Alpers, Werner; Wong, Wai Kin; Dagestad, Knut-Frode; Chan, Pak Wai
2015-10-01
Wind fronts associated with cold-air outbreaks from the Chinese continent in the winter are often observed over the northern South China Sea and are well studied. However, wind fronts caused by another type of synoptic setting, the sudden increase or freshening of the north-east monsoon, which is caused by the merging of two anticyclonic regions over the Chinese continent, are also frequently encountered over the northern South China Sea. For the first time, such an event is investigated using multi-sensor satellite data, weather radar images, and a high-resolution atmospheric numerical model. It is shown that the wind front generated by the freshening of the north-east monsoon is quite similar to wind fronts generated by cold-air outbreaks. Furthermore, we investigate fine-scale features of the wind front that are visible on synthetic aperture radar (SAR) images through variations of the small-scale sea-surface roughness. The SAR image was acquired by the Advanced SAR of the European Envisat satellite over the South China Sea off the coast of Hong Kong and has a resolution of 150 m. It shows notches (dents) in the frontal line and also radar signatures of embedded rain cells. This (rare) SAR image, together with a quasi-simultaneously acquired weather radar image, provide excellent data with which to test the performance of the pre-operational version of the Atmospheric Integrated Rapid-cycle (AIR) forecast model system of the Hong Kong Observatory with respect to modelling rain cells at frontal boundaries. The calculations using a horizontal resolution with 3-km resolution show that the model reproduces quite well the position of the notches where rain cells are generated. The model shows further that at the position of the notches the vorticity of the airflow is increased leading to the uplift of warmer, moister air from the sea-surface to higher levels. With respect to the 10-km resolution model, the comparison of model data with the near-surface wind field derived from the SAR image shows that the AIR model overestimates the wind speed in the lee of the coastal mountains east of Hong Kong, probably due to the incorrect inclusion of the coastal topography.
Orographic enhancement of rainfalls in the Rio San Francisco valley in southern Ecuador
NASA Astrophysics Data System (ADS)
Trachte, K.; Rollenbeck, R.; Bendix, J.
2012-04-01
In a tropical mountain rain forest in southern Ecuador diurnal dynamics of cloud development and precipitation behavior is investigated in the framework of the DFG research unit 816. With automatic climate stations and rain radar rainfalls in the Rio San Francisco valley are recorded. The observations showed the typical tropical late afternoon convective precipitation as well as local events such as mountain valley breezes and luv-lee effects. Additionally, the data revealed an unusually early morning peak that could be recognized as convective rainfalls. On the basis of GOES-E satellite imagery these rainfalls could be traced back to nocturnal convective clouds at the eastern Andes Mountains. There are some explanations for the occurrence of the clouds: One already examined mechanism is a katabatic induced cold front at the foothills of the Andes in the Peruvian Amazon basin. In this region the mountains form a quasi-concave configuration that contributes to a convergence of cold air drainage with subsequent convective activities. Another explanation for the events is the orographic enhancement by a local seeder-feeder mechanism. Mesoscale convective systems from the Amazon basin are transported to the west via the trade winds. At the Andes Mountains the complex and massive orography acts like a barrier to the clouds. The result is a disconnection of the upper part of the cloud from the lower part. The latter rains out at the eastern slopes and the upper cloud is transported further to the west. There it acts like a seeder to lower level clouds, i. e. the feeder. With the numerical model ARPS (Advanced Regional Prediction System) this procedure is investigated on the basis of two case studies. The events are detected and selected through the analysis of GOES-E brightness temperatures. They are also used to compare and validate the results of the model. Finally, the orographic enhancement of the clouds is examined. By using a vertically pointing radar the development of the resulting precipitation is analyzed and discussed in the context of a seeder-feeder mechanism.
NASA Astrophysics Data System (ADS)
García Morabito, Ezequiel; Terrizzano, Carla; Zech, Roland; Willett, Sean; Yamin, Marcela; Haghipour, Negar; Wuethrich, Lorenz; Christl, Marcus; María Cortes, José; Ramos, Victor
2016-04-01
Understanding the deformation associated with active thrust wedges is essential to evaluate seismic hazard. How is active faulting distributed throughout the wedge, and how much deformation is taken up by individual structures? We address these questions for our study region, the central Andean backarc of Argentina. We combined a structural and geomorphological approach with surface exposure dating (10Be) of alluvial fans and strath terraces in two key localities at ~32° S: the Cerro Salinas, located in the active orogenic front of the Precordillera, and the Barreal block in the interior of the Andean mountain range. We analysed 22 surface samples and 6 depth profiles. At the thrust front, the oldest terrace (T1) yields an age of 100-130 ka, the intermediate terrace (T2) between 40-95 ka, and the youngest terrace (T3) an age of ~20 ka. In the Andean interior, T1´ dates to 117-146 ka, T2´ to ~70 ka, and T3´ to ~20 ka, all calculations assuming negligible erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. Vertical slip rates of fault offsets are 0.3-0.5 mm/yr and of 0.6-1.2 mm/yr at the thrust front and in the Andean interior, respectively. Our results highlight: i) fault activity related to the growth of the Andean orogenic wedge is not only limited to a narrow thrust front zone. Internal structures have been active during the last 150 ka, ii) deformation rates in the Andean interior are comparable or even higher that those estimated and reported along the emerging thrust front, iii) distribution of active faulting seems to account for unsteady state conditions, and iv) seismic hazards may be more relevant in the internal parts of the Andean orogen than assumed so far. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104: 424-439. Stone, J.O., 2000: Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105 (B10): 23753-23759
McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009
Richard Zehner
2009-01-01
This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.
NASA Astrophysics Data System (ADS)
Valdes-Galicia, J. F.; González, L. X.; Watanabe, K.; Muraki, Y.; Matsubara, Y.; Lopez, D.; Koga, K.; Kakimoto, F.; Sako, T.; Salinas, J., Sr.; Ticona, R.; Shibata, S.; Masuda, S.; Tunesada, S.
2016-12-01
An M 6.5-class flare was observed at N12E56 of the solar surface at 16:06 UT on July 8, 2014. In association with the flare, two neutron detectors located at high mountains: Mt. Sierra Negra in Mexico (4600m asl) and Mt. Chacaltaya in Bolivia (5200m asl) recorded two neutron pulses, separated approximately 30 minutes. Enhancements were also observed in the neutral channel detector onboard the International Space Station. We analyzed these data combined with solar images from the Atompspheric ImagingAssembly (AIA) onboard the SolarDynamicalObservatory (SDO). From our analysis we conclude that the production mechanism of neutrons cannot be explained by a single model: one of the enhancements may be explained by an electric field generated by the collision of magnetic loops, and the other by a shock acceleration mechanism at the front side of the observed CME. To the best of our knowledge, this is the first time that evidence is found for two different mechanisms present in a solar eruption leading to energetic solar neutron production.
Preliminary geologic map of the Bowen Mountain quadrangle, Grand and Jackson Counties, Colorado
Cole, James C.; Braddock, William A.; Brandt, Theodore R.
2011-01-01
The map shows the geology of an alpine region in the southern Never Summer Mountains, including parts of the Never Summer Wilderness Area, the Bowen Gulch Protection Area, and the Arapaho National Forest. The area includes Proterozoic crystalline rocks in fault contact with folded and overturned Paleozoic and Mesozoic sedimentary rocks and Upper Cretaceous(?) and Paleocene Middle Park Formation. The folding and faulting appears to reflect a singular contractional deformation (post-Middle Park, so probably younger than early Eocene) that produced en echelon structural uplift of the Proterozoic basement of the Front Range. The geologic map indicates there is no through-going \\"Never Summer thrust\\" fault in this area. The middle Tertiary structural complex was intruded in late Oligocene time by basalt, quartz latite, and rhyolite porphyry plugs that also produced minor volcanic deposits; these igneous rocks are collectively referred to informally as the Braddock Peak intrusive-volcanic complex whose type area is located in the Mount Richthofen quadrangle immediately north (Cole and others, 2008; Cole and Braddock, 2009). Miocene boulder gravel deposits are preserved along high-altitude ridges that probably represent former gravel channels that developed during uplift and erosion in middle Tertiary time.
Madsen, D.B.; Elston, R.G.; Bettinger, R.L.; Xu, C.; Zhong, K.
1996-01-01
Survey along the margins of the Helan Mountains in the Ningxia Hui and Nei Mongol Autonomous Regions discloses variability in the distribution and assemblage composition among 47 archaeological localities, and suggests a reduction in hunter-gatherer residential mobility through time. Late Palaeolithic tool assemblages are less frequent, smaller, and relatively uniform from site to site. They tend to be found near canyon mouths on the mountain front, or around springs in the middle to upper reaches of fans, suggesting limited variation in both length of stay and subsistence strategies. In contrast, early Neolithic sites, more abundant and variable in size and complexity, are located near fan toes or lower fan springs where water could be more easily diverted. Larger more diverse assemblages suggest long-term residential bases, while smaller specialized assemblages, devoid of microliths, indicate short-term camps and resource processing locations. This helps confirm a similar pattern identified in materials collected by the Sino-Swedish expedition, in the northern Alashan. Together they suggest that the trend towards decreased residential mobility is associated with increasingly intensive and specialized use of seed resources that may be related to the early development of plant husbandry. ?? 1996 Academic Press Limited.
Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data
NASA Technical Reports Server (NTRS)
Lee, K. (Principal Investigator); Hutchinson, R. M.; Prost, G. L.; Sawatzky, D. L.; Spoelhof, R. W.; Thigpen, J. B.
1974-01-01
The author has identified the following significant results. Discovery of three major north-trending, throughgoing faults in the Front Range, previously mapped only as isolated segments, demonstrates the utility of space photography and may lead to reinterpretation of the Front Range tectonic style. Faulting and alteration appear to be the most useful indicators of mineralization in central Colorado. These phenomena appear on Skylab photography as tonal lineaments and color anomalies. Twenty-three lineaments have been mapped in the San Juan Mountains, the longest of which is 156 km long. Twelve lineaments intersect or are tangent to calderas. Intrusive domes are aligned along lineaments, but calderas appear to occur at the intersections of major lineaments. Lineaments can be recognized on some EREP passes but not on other passes over the same area. The difference is attributed to solar elevation effects. Bedding attitudes can be photogeologically estimated down to surprisingly low dips, on the order of + or - 1-2 deg, and attitudes can be subdivided easily into quantitative groups. The primary application of Skylab photography to geologic mapping in montane areas is clearly limited to regional mapping at scales smaller than 1:24,000.
NASA Astrophysics Data System (ADS)
Mendez-Barroso, L. A.; Vivoni, E.; Robles-Morua, A.; Yepez, E. A.; Rodriguez, J. C.; Watts, C.; Saiz-Hernandez, J.
2013-05-01
Seasonal vegetation changes highly affect the energy and hydrologic fluxes in semiarid regions around the world. Accounting for different water use strategies among drought-deciduous ecosystems is important for understanding how these exploit the temporally brief and localized rainfall pulses of the North American Monsoon (NAM). Furthermore, quantifying these plant-water relations can help elucidate the spatial patterns of ecohydrological processes at catchment scale in the NAM region. In this effort, we focus on the San Miguel river basin (~ 3500 km2) in Sonora, Mexico, which exhibits seasonal vegetation greening that varies across ecosystems organized along mountain fronts. To assess the spatial variability of ecohydrological conditions, we relied on diverse tools that included multi-temporal remote sensing observations, model-based meteorological forcing, ground-based water and energy flux measurements and hydrologic simulations carried out at multiple scales. We evaluated the impact of seasonal vegetation dynamics on evapotranspiration (ET), its partitioning into soil evaporation (E) and plant transpiration (T), as well as their spatiotemporal patterns over the course of the NAM season. We utilized ground observations of soil moisture and evapotranspiration estimated by the eddy covariance method at two sites, as well as inferences of ET partitioning from stable isotope measurements, to test the numerical simulations. We found that ecosystem phenological differences lead to variations in the time to peak in transpiration during a season and in the overall seasonal ratio of transpiration to evapotranspiration (T/ET). A sensitivity analysis of the numerical simulations revealed that vegetation cover and the soil moisure threshold at which stomata close exert strong controls on the seasonal dominance of transpiration or evaporation. The dynamics of ET and its partitioning are then mapped spatially revealing that mountain front ecosystems utilize water differently. The results of this study aid in understanding how variations in water use and phenological strategies affect how soil water is returned to the atmosphere with implications on the watershed runoff response.
Reaching and abandoning the furthest ice extent during the Last Glacial Maximum in the Alps
NASA Astrophysics Data System (ADS)
Ivy-Ochs, Susan; Wirsig, Christian; Zasadni, Jerzy; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian
2016-04-01
During the Last Glacial Maximum (LGM) in the European Alps (late Würm) local ice caps and extensive ice fields in the high Alps fed huge outlet glaciers that occupied the main valleys and extended onto the forelands as piedmont lobes. Records from numerous sites suggest advance of glaciers beyond the mountain front by around 30 ka (Ivy-Ochs 2015 and references therein). Reaching of the maximum extent occurred by about 27-26 ka, as exemplified by dates from the Rhein glacier area (Keller and Krayss, 2005). Abandonment of the outermost moraines at sites north and south of the Alps was underway by about 24 ka. In the high Alps, systems of transection glaciers with transfluences over many of the Alpine passes dominated, for example, at Grimsel Pass in the Central Alps (Switzerland). 10Be exposure ages of 23 ± 1 ka for glacially sculpted bedrock located just a few meters below the LGM trimline in the Haslital near Grimsel Pass suggest a pulse of ice surface lowering at about the same time that the foreland moraines were being abandoned (Wirsig et al., 2016). Widespread ice surface lowering in the high Alps was underway by no later than 18 ka. Thereafter, glaciers oscillated at stillstand and minor re-advance positions on the northern forelands for several thousand years forming the LGM stadial moraines. Final recession back within the mountain front took place by 19-18 ka. Recalculation to a common basis of all published 10Be exposure dates for boulders situated on LGM moraines suggests a strong degree of synchrony for the timing of onset of ice decay both north and south of the Alps. Ivy-Ochs, S., 2015, Cuadernos de investigación geográfica 41: 295-315. Keller, O., Krayss, E., 2005, Vierteljahrschr. Naturforsch. Gesell. Zürich 150: 69-85. Wirsig, C. et al., 2016, J. Quat. Sci. 31: 46-59.
Prenni, Anthony J.; Sullivan, Amy P.; Evanoski-Cole, Ashley R.; Fischer, Emily V.; Callahan, Sara; Sive, Barkley C.; Zhou, Yong; Schichtel, Bret A.; Collett Jr, Jeffrey L.
2018-01-01
Human influenced atmospheric reactive nitrogen (RN) is impacting ecosystems in Rocky Mountain National Park (ROMO). Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date) of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ). Measurements included peroxyacetyl nitrate (PAN), C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4) as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30) was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate). All three species are challenging to measure routinely, especially at high time resolution.
Longitudinal Stream Profile Morphology and Patterns of Knickpoint Propagation in the Bighorn Range
NASA Astrophysics Data System (ADS)
Safran, E. B.; Anderson, R. S.; Riihimaki, C. A.; Armstrong, J.
2005-12-01
The northern U. S. Rocky Mountains and the adjacent sedimentary basins are in a transient state of response to regional, Late Cenozoic exhumation. Assembling the history of landscape change there requires interpreting the morphology and genesis of transient landforms such as knickpoints in longitudinal stream profiles. We used concavity and normalized channel steepness indices to quantify the longitudinal profile morphology of >75 streams draining the east side of the Bighorn Range and the adjacent Powder River Basin. Our analyses show that individual units in the range-margin sedimentary cover rock exert a strong influence on longitudinal profile morphology. In the Tongue River and Crazy Woman Creek drainages, more than 50% of the streams examined had knickpoints localized within a resistant, siliceous dolomite. Knickpoints on most streams with drainage areas greater than ~100 km2 at the range front have migrated headward into the gneissic and plutonic core of the range. In the Clear Creek drainage, where the lateral extent of sedimentary cover rock is more restricted than in the adjacent drainages, knickpoints do not align with any particular unit. River profiles in the Powder River Basin beyond 10-20 km from the range front exhibit concavities of ~0.3-0.6 and normalized channel steepness indices of 40-60 (using 0.45 as a reference concavity). All profiles analyzed that extend into the mountain range exhibit at least one reach with exceptionally high (>2) concavity and relatively high (100-600) normalized channel steepness index, highlighting zones of transient adjustment to local base-level drop in the basin. Headwater reaches of range-draining streams exhibit variable but moderate values of concavity (0.15-0.9) and normalized channel steepness index (20-100). The varied morphology of these reaches reflects their passage across a relict surface of low relief but also the effects of glaciation and/or the signature of the narrow summit spine that caps the range.
Phelps, G.A.
2008-01-01
This report describes some simple spatial statistical methods to explore the relationships of scattered points to geologic or other features, represented by points, lines, or areas. It also describes statistical methods to search for linear trends and clustered patterns within the scattered point data. Scattered points are often contained within irregularly shaped study areas, necessitating the use of methods largely unexplored in the point pattern literature. The methods take advantage of the power of modern GIS toolkits to numerically approximate the null hypothesis of randomly located data within an irregular study area. Observed distributions can then be compared with the null distribution of a set of randomly located points. The methods are non-parametric and are applicable to irregularly shaped study areas. Patterns within the point data are examined by comparing the distribution of the orientation of the set of vectors defined by each pair of points within the data with the equivalent distribution for a random set of points within the study area. A simple model is proposed to describe linear or clustered structure within scattered data. A scattered data set of damage to pavement and pipes, recorded after the 1989 Loma Prieta earthquake, is used as an example to demonstrate the analytical techniques. The damage is found to be preferentially located nearer a set of mapped lineaments than randomly scattered damage, suggesting range-front faulting along the base of the Santa Cruz Mountains is related to both the earthquake damage and the mapped lineaments. The damage also exhibit two non-random patterns: a single cluster of damage centered in the town of Los Gatos, California, and a linear alignment of damage along the range front of the Santa Cruz Mountains, California. The linear alignment of damage is strongest between 45? and 50? northwest. This agrees well with the mean trend of the mapped lineaments, measured as 49? northwest.
Formation of minor moraines in high-mountain environments independent of a primary climatic driver
NASA Astrophysics Data System (ADS)
Wyshnytzky, Cianna; Lukas, Sven
2016-04-01
Closely-spaced minor moraines allow observations of moraine formation and ice-marginal fluctuations on short timescales, helping to better understand glacier retreat and predict its geomorphological effects (e.g. Sharp, 1984; Boulton, 1986; Bradwell, 2004; Lukas, 2012). Some minor moraines can be classified as annual moraines given sufficient chronological control, which implies a seasonal climatic driver of minor ice-front fluctuations. This leads to annual moraines being utilised as very specific and short-term records of glacier fluctuations and climate change. However, such research is sparse in high-mountain settings (Hewitt, 1967; Ono, 1985; Beedle et al., 2009; Lukas, 2012). This study presents the detailed sedimentological results of minor moraines at two high-mountain settings in the Alps. Minor moraines at Schwarzensteinkees, Austria, formed as push moraines in two groups, separated by a flat area and sloping zone with scattered boulders and flutings. The existence of a former proglacial lake, evident from ground-penetrating radar surveys and geomorphological relationships, appears to have exerted the primary control on minor moraine formation. Minor moraines at Silvrettagletscher, Switzerland, exist primarily on reverse bedrock slopes. The presence of these bedrock slopes, and in some areas medial moraines emerging beyond the ice front, appear to exert the primary controls on minor moraine formation. These findings show that climate may only play a small role in minor moraine formation at these study sites, echoing similar findings from another glacier in the Alps (Lukas, 2012). These two glaciers and valleys are differentiated primarily by geometry, sedimentation, and mechanisms of minor moraine formation. Despite these crucial differences, valley geometry and pre-existing geomorphology play a large, if not dominant, role in minor moraine formation and are at odds with a primarily-climatic control of minor moraine formation in lowland settings. This compelling discrepancy requires further investigation. References Beedle, M.J., Menounos, B., Luckman, B.H., and Wheate, R., 2009, Annual push moraines as climate proxy: Geophysical Research Letters, v. 36, no. 20, p. L20501, doi: 10.1029/2009GL039533. Boulton, G.S., 1986, Push-moraines and glacier-contact fans in marine and terrestrial environments: Sedimentology, v. 33, p. 677-698. Bradwell, T., 2004, Annual Moraines and Summer Temperatures at Lambatungnajökull, Iceland: Arctice, Antarctic, and Alpine Research, v. 36, no. 4, p. 502-508. Hewitt, K., 1967, Ice-Front Deposition and the Seasonal Effect: A Himalayan Example: Transactions of the Institute of British Geographers, v. 42, p. 93-106. Lukas, S., 2012, Processes of annual moraine formation at a temperate alpine valley glacier: insights into glacier dynamics and climatic controls: Boreas, v. 41, no. 3, p. 463-480, doi: 10.1111/j.1502-3885.2011.00241.x. Ono, Y., 1985, Recent Fluctuations of the Yala (Dakpatsen) Glacier, Langtang Himal, Reconstructed From Annual Moraine Ridges: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 21, p. 251-258. Sharp, M., 1984, Annual moraine ridges at Skálafellsjökull, south-east Iceland: Journal of Glaciology, v. 30, no. 104, p. 82-93.
Tectonic controls on large landslide complex: Williams Fork Mountains near Dillon, Colorado
Kellogg, K.S.
2001-01-01
An extensive (~ 25 km2) landslide complex covers a large area on the west side of the Williams Fork Mountains in central Colorado. The complex is deeply weathered and incised, and in most places geomorphic evidence of sliding (breakaways, hummocky topography, transverse ridges, and lobate distal zones) are no longer visible, indicating that the main mass of the slide has long been inactive. However, localized Holocene reactivation of the landslide deposits is common above the timberline (at about 3300 m) and locally at lower elevations. Clasts within the complex, as long as several tens of meters, are entirely of crystalline basement (Proterozoic gneiss and granitic rocks) from the hanging wall of the Laramide (Late Cretaceous to Early Tertiary), west-directed Williams Range thrust, which forms the western structural boundary of the Colorado Front Range. Late Cretaceous shale and sandstone compose most footwall rocks. The crystalline hanging-wall rocks are pervasively fractured or shattered, and alteration to clay minerals is locally well developed. Sackung structures (trenches or small-scale grabens and upslope-facing scarps) are common near the rounded crest of the range, suggesting gravitational spreading of the fractured rocks and oversteepening of the mountain flanks. Late Tertiary and Quaternary incision of the Blue River Valley, just west of the Williams Fork Mountains, contributed to the oversteepening. Major landslide movement is suspected during periods of deglaciation when abundant meltwater increased pore-water pressure in bedrock fractures. A fault-flexure model for the development of the widespread fracturing and weakening of the Proterozoic basement proposes that the surface of the Williams Range thrust contains a concave-downward flexure, the axis of which coincides approximately with the contact in the footwall between Proterozoic basement and mostly Cretaceous rocks. Movement of brittle, hanging-wall rocks through the flexure during Laramide deformation pervasively fractured the hanging-wall rocks. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin
2017-04-01
Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.
The "normal" elongation of river basins
NASA Astrophysics Data System (ADS)
Castelltort, Sebastien
2013-04-01
The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)
High-mountain lakes as a hotspot of dissolved organic matter production in a changing climate
NASA Astrophysics Data System (ADS)
Abood, P. H.; Williams, M. W.; McKnight, D. M.; Hood, E. H.
2004-12-01
Changes in climate may adversely affect mountain environments before downstream ecosystems are affected. Steep topography, thin soils with limited extent, sparse vegetation, short growing seasons, and climatic extremes (heavy snowfalls, cold temperatures, high winds), all contribute to the sensitivity of high mountain environments to perturbations. Here we evaluate the role of oligatrophic high-elevation lakes as "hot spots" of aquatic production that may respond to changes in temperature, precipitation amount, and pollution deposition faster and more directly than co-located terrestrial ecosystems. Our research was conducted in the Rocky Mountains, USA. Water samples were collected for dissolved organic carbon (DOC), other solutes, and water isotopes over the course of the runoff season along a longitudinal transect of North Boulder Creek in the Colorado Front Range from the continental divide and alpine areas to downstream forested systems. Sources of DOC were evaluated using chemical fractionation with XAD-8 resins and fluorescence spectroscopy. There was net DOC production in the two alpine lakes but not for the forested subalpine lake. Oxygen-18 values showed that water residence times in lakes increased dramatically in late summer compared to snowmelt. Chemical fractionation of DOC showed there was a increase in the non-humic acid content across the summer of 2003 at all elevations, with alpine waters showing greater increases than subalpine waters. The fluorescence properties of DOC and water isotopes suggested that DOC in aquatic systems was primarily derived from terrestrial precursor material during snowmelt. However, fluorescence properties of DOC in high-elevation lakes on the recession limb of the hydrograph suggest DOC derived from algal and microbial biomass in the lakes was a more important source of DOC in late summer and fall. Alpine lakes produced 14 times more DOC on unit area basis compared to the surrounding terrestrial ecosystems. We hypothesize that much of the authochthonous production is a result of algal growth in alpine lakes caused by the increases in nitrogen deposition from wetfall.
NASA Astrophysics Data System (ADS)
Duvall, A. R.; Collett, C.; Flowers, R. M.; Tucker, G. E.; Upton, P.
2016-12-01
The 150 km wide Marlborough Fault System (MFS) and adjacent dextral-reverse Alpine Fault accommodate oblique convergence of the Australian and Pacific plates in a broad transform boundary that extends for much of the South Island New Zealand. Understanding the deformation history of the Marlborough region offers the opportunity to study topographic evolution in a strike-slip setting and a fuller picture of the evolving New Zealand plate boundary as the MFS lies at the transition from oceanic Pacific plate subduction to oblique continental collision. Here we present low-temperature thermochronology from the MFS to place new limits on the timing and style of mountain building. We sampled a range of elevations spanning 2 km within and adjacent to the Kaikoura Mountains, which stand high as topographic anomalies above active strike-slip faults. Young apatite (U-Th)/He ages ( 2-5 Ma) on both sides of range-bounding faults are consistent with regional distributed deformation since the Pliocene initiation of strike-slip faulting. However, large differences in both zircon helium and apatite fission track ages, from Paleogene/Neogene ages within hanging walls to unreset >100 Ma ages in footwalls, indicate an early phase of fault-related vertical exhumation. Thermal modeling using the QTQt program reveals two phases of exhumation within the Kaikoura Ranges: rapid cooling at 15-12 Ma localized to hanging wall rocks and regional rapid cooling reflected in all samples starting at 4-5 Ma. These results and landscape evolution models suggest that, despite the presence of active mountain front faults, much of the topographic relief in this region may predate the onset of strike-slip faulting and that portions of the Marlborough Faults are re-activated thrusts that coincide with the early development of the transpressive plate boundary. Regional exhumation after 5 Ma likely reflects increased proximity to the migrating Pacific plate subduction zone and the buoyant Chatham Rise.
Plummer, Niel; Bexfield, Laura M.; Anderholm, Scott K.; Sanford, Ward E.; Busenberg, Eurybiades
2004-01-01
and sulfur hexafluoride from 288 wells and springs in parts of the Santa Fe Group aquifer system. The surface-water data collected as part of this study include monthly measurements of major- and minor-element chemistry (30 elements), oxygen-18 and deuterium content of water, chlorofluorocarbons, and tritium content at 14 locations throughout the basin. Additional data include stable isotope analyses of precipitation and of ground water from City of Albuquerque production wells collected and archived from the early 1980?s, and other data on the chemical and isotopic composition of air, unsaturated zone air, plants, and carbonate minerals from throughout the basin. The data were used to identify 12 sources of water to the basin, map spatial and vertical extents of ground-water flow, map water chemistry in relation to hydrogeologic, stratigraphic, and structural properties of the basin, determine radiocarbon ages of ground water, and reconstruct paleo-environmental conditions in the basin over the past 30,000 years. The data indicate that concentrations of most elements and isotopes generally parallel the predominant north to south direction of ground-water flow. The radiocarbon ages of dissolved inorganic carbon in ground water range from modern (post-1950) to more than 30,000 years before present, and appear to be particularly well defined in the predominantly siliciclastic aquifer system. Major sources of water to the basin include (1) recharge from mountains along the north, east and southwest margins (median age 5,000-9,000 years); (2) seepage from the Rio Grande and Rio Puerco (median age 4,000-8,000 years), and from Abo and Tijeras Arroyos (median age 3,000-9,000 years); (3) inflow of saline water along the southwestern basin margin (median age 20,000 years); and (4) inflow along the northern basin margin that probably represents recharge from the Jemez Mountains during the last glacial period (median age 20,000 years). Water recharged from the Jemez Mountains during the last glacial period occurs at the water table in the central part of the basin and beneath younger recharge along the Rio Grande and the northern mountain front. In some parts of the basin, boundaries between hydrochemical zones appear to be near major faults that may affect ground-water flow. However, in other parts of the basin, such as along the east side of Albuquerque near the Sandia Fault zone, ground-water flow appears to be unaffected by major faults. Upward leakage of saline water occurs along some faults and can be a source of salinity and elevated arsenic concentrations in some ground water. A trough in the modern and predevelopment water table west of Albuquerque is centered along a zone of predominantly late Pleistocene age water through the center of the basin and is flanked and overlain along the trough boundary by water that infiltrated from the Rio Puerco on the west and the Rio Grande to the east. It is suggested that the groundwater trough is a relatively recent transient feature of the Santa Fe Group aquifer system. At Albuquerque, a distinct north-south boundary in deuterium content of ground water marks the division between recharge from the eastern mountain front and that from the Rio G
NASA Astrophysics Data System (ADS)
Musselman, Keith N.; Molotch, Noah P.; Margulis, Steven A.
2017-12-01
In a warmer climate, the fraction of annual meltwater produced at high melt rates in mountainous areas is projected to decline due to a contraction of the snow-cover season, causing melt to occur earlier and under lower energy conditions. How snowmelt rates, including extreme events relevant to flood risk, may respond to a range of warming over a mountain front is poorly known. We present a model sensitivity study of snowmelt response to warming across a 3600 m elevation gradient in the southern Sierra Nevada, USA. A snow model was run for three distinct years and verified against extensive ground observations. To simulate the impact of climate warming on meltwater production, measured meteorological conditions were modified by +1 to +6 °C. The total annual snow water volume exhibited linear reductions (-10 % °C-1) consistent with previous studies. However, the sensitivity of snowmelt rates to successive degrees of warming varied nonlinearly with elevation. Middle elevations and years with more snowfall were prone to the largest reductions in snowmelt rates, with lesser changes simulated at higher elevations. Importantly, simulated warming causes extreme daily snowmelt (99th percentiles) to increase in spatial extent and intensity, and shift from spring to winter. The results offer insight into the sensitivity of mountain snow water resources and how the rate and timing of water availability may change in a warmer climate. The identification of future climate conditions that may increase extreme melt events is needed to address the climate resilience of regional flood control systems.
NASA Astrophysics Data System (ADS)
Leeper, R. J.; Barth, N. C.; Gray, A. B.
2016-12-01
The frontal range of the San Gabriel Mountains immediately abuts the Los Angeles basin for approximately 110 km. Along this wildland-urban interface and throughout the mountain range multiple overlapping natural hazards can occur, the most frequent of which are postfire debris flows and floods triggered by intense rainfall events. Recent studies in southern California of burned basins with steep slopes show that the timing of postfire debris flows and floods during the first winter following a wildfire is closely tied to high-intensity rainfall events. Here, we explore short-term (seasonal/annual) controls on sediment production and flux after the 2014 Colby Fire, which burned 8 km2 of the southern San Gabriel front directly above the city of Glendora, CA. To understand how sediment flux changes as a basin recovers following a wildfire, we installed and monitored a dense network of rain gages and pressure transducers within the Englewild watershed ( 1 km2) during the second winter following the Colby Fire. Site visits were made following each rainstorm to download pressure transducer and rainfall data and analyze the geomorphic response within the channel network. Preliminary results indicate that rainfall intensity-duration thresholds (5-min) previously identified as postfire debris flow triggers were exceeded multiple times throughout the winter. However, we only one documented one debris flow. Understanding changes in the rainfall intensity thresholds relative to debris flow timing and occurrence with system rebound after wildfire is important to help reduce risk and increase hazard resilience.
Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue
NASA Astrophysics Data System (ADS)
Yagupsky, Daniel L.; Brooks, Benjamin A.; Whipple, Kelin X.; Duncan, Christopher C.; Bevis, Michael
2014-09-01
Numerical 2-D models based on the principle of minimum work were used to examine the space-time distribution of active faulting during the evolution of orogenic wedges. A series of models focused on thin-skinned thrusting illustrates the effects of arid conditions (no erosion), unsteady state conditions (accretionary influx greater than erosional efflux) and steady state conditions (accretionary influx balances erosional efflux), on the distribution of fault activity. For arid settings, a general forward accretion sequence prevails, although a significant amount of internal deformation is registered: the resulting fault pattern is a rather uniform spread along the profile. Under fixed erosional efficiency settings, the frontal advance of the wedge-front is inhibited, reaching a steady state after a given forward propagation. Then, the applied shortening is consumed by surface ruptures over a narrow frontal zone. Under a temporal increase in erosional efficiency (i.e., transient non-steady state mass balance conditions), a narrowing of the synthetic wedge results; a rather diffuse fault activity distribution is observed during the deformation front retreat. Once steady balanced conditions are reached, a single long-lived deformation front prevails. Fault activity distribution produced during the deformation front retreat of the latter scenario, compares well with the structural evolution and hinterlandward deformation migration identified in southern Bolivian Subandes (SSA) from late Miocene to present. This analogy supports the notion that the SSA is not in steady state, but is rather responding to an erosional efficiency increase since late Miocene. The results shed light on the impact of different mass balance conditions on the vastly different kinematics found in mountain ranges, suggesting that those affected by growing erosion under a transient unbalanced mass flux condition tend to distribute deformation along both frontal and internal faults, while others under balanced conditions would display focused deformation on a limited number of steady structures.
NASA Astrophysics Data System (ADS)
Kumar, S.; Biswal, S.; Parija, M. P.
2016-12-01
The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.
The University of Utah Urban Undertaking (U4)
NASA Astrophysics Data System (ADS)
Lin, J. C.; Mitchell, L.; Bares, R.; Mendoza, D. L.; Fasoli, B.; Bowling, D. R.; Garcia, M. A.; Buchert, M.; Pataki, D. E.; Crosman, E.; Horel, J.; Catharine, D.; Strong, C.; Ehleringer, J. R.
2015-12-01
The University of Utah is leading efforts to understand the spatiotemporal patterns in both emissions and concentrations of greenhouse gases (GHG) and criteria pollutants within urban systems. The urbanized corridor in northern Utah along the Wasatch Front, anchored by Salt Lake City, is undergoing rapid population growth that is projected to double in the next few decades. The Wasatch Front offers multiple advantages as an unique "urban laboratory": urban regions in multiple valleys spanning numerous orders of magnitude in population, each with unique airsheds, well-defined boundary conditions along deserts and tall mountains, strong signals during cold air pool events, seasonal contrasts in pollution, and a legacy of productive partnerships with local stakeholders and governments. We will show results from GHG measurements from the Wasatch Front, including one of the longest running continuous CO2 records in urban areas. Complementing this record are comprehensive meteorological observations and GHG/pollutant concentrations on mobile platforms: light rail, helicopter, and research vans. Variations in the GHG and pollutant observations illustrate human behavior and the resulting "urban metabolism" taking place on hourly, weekly, and seasonal cycles, resulting in a coupling between GHG and criteria pollutants. Moreover, these observations illustrate systematic spatial gradients in GHG and pollutant distributions between and within urban areas, traced to underlying gradients in population, energy use, terrain, and land use. Over decadal time scales the observations reveal growth of the "urban dome" due to expanding urban development. Using numerical models of the atmosphere, we further link concentrations of GHG and air quality-relevant pollutants to underlying emissions at the neighborhood scale as well as urban planning considerations.
Structure and Evolution of an Undular Bore on the High Plains and Its Effects on Migrating Birds.
NASA Astrophysics Data System (ADS)
Locatelli, John D.; Stoelinga, Mark T.; Hobbs, Peter V.; Johnson, Jim
1998-06-01
On 18 September 1992 a series of thunderstorms in Nebraska and eastern Colorado, which formed south of a synoptic-scale cold front and north of a Rocky Mountain lee trough, produced a cold outflow gust front that moved southeastward into Kansas, southeastern Colorado, and Oklahoma around sunset. When this cold outflow reached the vicinity of the lee trough, an undular bore developed on a nocturnally produced stable layer and moved through the range of the Dodge City WSR-88D Doppler radar. The radar data revealed that the undular bore, in the leading portion of a region of northwesterly winds about 45 km wide by 4 km high directly abutting the cold outflow, developed five undulations over the course of 3 h. Contrary to laboratory tank experiments, observations indicated that the solitary waves that composed the bore probably did not form from the enveloping of the head of the cold air outflow by the stable layer and the breaking off of the head of the cold air outflow. The synoptic-scale cold front subsequently intruded on the surface layer of air produced by the cold outflow, but there was no evidence for the formation of another bore.Profiler winds, in the region affected by the cold air outflow and the undular bore, contained signals from nocturnally, southward-migrating birds (most likely waterfowl) that took off in nonfavorable southerly winds and remained aloft for several hours longer than usual, thereby staying ahead of the turbulence associated with the undular bore.
Quantifying atmospheric nitrogen outflow from the Front Range of Colorado
NASA Astrophysics Data System (ADS)
Neuman, J. A.; Eilerman, S. J.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Herndon, S. C.; Holloway, J. S.; Nowak, J. B.; Roscioli, J. R.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Wild, R. J.
2015-12-01
Reactive nitrogen emitted to the atmosphere from urban, industrial, and agricultural sources can be transported and deposited far from the source regions, affecting vegetation, soils, and water of sensitive ecosystems. Mitigation of atmospheric nitrogen deposition requires emissions characterization and quantification. Ammonia (NH3), a full suite of gas-phase oxidized nitrogen compounds, and particulate matter were measured from an aircraft that flew downwind from concentrated animal feeding operations, oil and gas extraction facilities, and urban areas along the Colorado Front Range in March and April 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. Additionally, NH3 measurements from a fully instrumented aircraft that flew over the same region in July and August 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) are used to examine atmospheric nitrogen emission and transport. Cross-wind plume transects and altitude profiles were performed over the source regions and 60-240 km downwind. Plumes were transported in the boundary layer with large NH3 mixing ratios (typically 20-100 ppbv) and were tens of km wide. The NH3 in these plumes provided an atmospheric nitrogen burden greater than 0.2 kg N/ha. Nitrogen oxides and their oxidation products and particulate matter were also enhanced in the plumes, but with concentrations substantially less than NH3. With efficient transport followed by wet deposition, these plumes have the potential to provide a large nitrogen input to the neighboring Rocky Mountain National Park, where nitrogen deposition currently exceeds the ecological critical load of 1.5 kg N/ha/yr.
West, Daniel R.; Briggs, Jennifer S.; Jacobi, William R.; Negrón, José F.
2014-01-01
Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that originated in lodgepole pine expanded into mixed-conifer stands containing ponderosa pine, a related host. We evaluated the susceptibility of both hosts to successful MPB colonization in a survey of 19 sites in pine-dominated mixed-conifer stands spanning 140 km of the Front Range, CO, USA. In each of three 0.2-ha plots at each site, we (1) assessed trees in the annual flights of 2008–2011 to compare MPB-caused mortality between lodgepole and ponderosa pine; (2) recorded previous MPB-caused tree mortality from 2004–2007 to establish baseline mortality levels; and (3) measured characteristics of the stands (e.g. tree basal area) and sites (e.g. elevation, aspect) that might be correlated with MPB colonization. Uninfested average live basal area of lodgepole and ponderosa pine was 74% of total basal area before 2004. We found that for both species, annual percent basal area of attacked trees was greatest in one year (2009), and was lower in all other years (2004–2007, 2008, 2010, and 2011). Both pine species had similar average total mortality of 38–39% by 2011. Significant predictors of ponderosa pine mortality in a given year were basal area of uninfested ponderosa pine and the previous year’s mortality levels in both ponderosa and lodgepole pine. Lodgepole pine mortality was predicted by uninfested basal areas of both lodgepole and ponderosa pine, and the previous year’s lodgepole pine mortality. These results indicate host selection by MPB from lodgepole pine natal hosts into ponderosa pine the following year, but not the reverse. In both species, diameters of attacked trees within each year were similar, and were progressively smaller the last four years of the study period. Our results suggest that, in contrast to previous reports, ponderosa and lodgepole pine were equally susceptible to MPB infestation in the CO Front Range during our study period. This suggests that forest managers may anticipate similar impacts in both hosts during similar environmental conditions when epidemic-level MPB populations are active in mixed-pine stands.
Land-Cover Change Within the Peatlands Along the Rocky Mountain Front, Montana: 1937-2009
NASA Astrophysics Data System (ADS)
Klene, A. E.; Milbrath, J. T.; Shelly, J. S.
2013-12-01
While peatlands are globally abundant, the fens of the Rocky Mountain Front (RMF), are the eastern-most, rich, peatlands in Montana, and are unique wetland habitats in this region of semi-arid continental climate. The peatlands provide critical riparian connectivity between the mountains and the plains and are habitat for grizzly bears, wolves, and within just the 450 ha Pine Butte Fen at least 93 species of vascular plants, including seven of Montana's Plant Species of Concern. Aerial photographs of the nine peatlands along the RMF in Montana were analyzed in a GIS. The boundary of each wetland was hand-digitized and the area within was classified into land-cover types: total area, open fen, open water, woody vegetation, and non-wetland/agriculture. Changes in wetland extent and land-cover categories were evaluated from the earliest available imagery in 1937 to the last available imagery in 2009. Images prior to 1995 were orthorectified, and all georectified. Climate change, wildlife, and agriculture were examined as potential drivers of land-cover change at these sites. Results indicate little change in overall peatland area between 1937 and 2009 despite increasing air temperatures in the region. Approximately 16% of these peatlands is 'open fen' and that proportion remained stable over the last seventy years. Area of open water quadrupled and the number of ponds which could be delineated tripled over the study period, reflecting a recovering beaver population. The non-wetland/agricultural area halved over the course of the study, primarily due to declines in agriculture within the three largest remaining peatlands: Pine Butte Fen, McDonald Swamp, and the Blackleaf Creek wetland complex. Most of the first two fens were purchased outright by the Nature Conservancy (TNC) and they hold a conservation easement on the third (as well as two other fens), all of which have been been put in place since the late 1970s. One fen is owned by the State of Montana and another is located within the Lewis and Clark National Forest and is in a protected Research Natural Area. Conversely almost all of the once sprawling Theboe Lake wetland has been heavily cultivated since prior to 1937 and two-thirds of the Bynum wetland was heavily impacted since the middle of the study period. Together these represent a loss of ~27% of the total peatlands on the RMF in the early 1900s. This study quantified the impacts of changing management and conservation practices during the twentieth century in these critical peatlands.
Crust and Upper Mantle Structure of Antarctica from Rayleigh Wave Tomography
NASA Astrophysics Data System (ADS)
Wiens, D. A.; Heeszel, D. S.; Sun, X.; Chaput, J. A.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Wilson, T. J.; Huerta, A. D.
2012-12-01
We combine data from three temporary arrays of seismometers (AGAP/GAMSEIS 2007-2010, ANET/POLENET 2007-2012, TAMSEIS 2001-2003) deployed across Antarctica, along with permanent stations in the region, to produce a large scale shear velocity model of the continent extending from the Gamburtsev Subglacial Mountains (GSM) in East Antarctica, across the Transantarctic Mountains (TAM) and West Antarctic Rift System (WARS) to Marie Byrd Land (MBL) in West Antarctica. Our combined dataset consists of Rayleigh wave phase and amplitude measurements from 112 stations across the study region. We first invert for 2-D Rayleigh wave phase velocities using the two-plane wave method. These results are then inverted for shear velocity structure using crustal thicknesses derived from ambient noise tomography and teleseismic receiver functions. We refine our shear velocity model by performing a Monte Carlo simulation that explores the tradeoff between crustal thickness and upper mantle seismic velocities. The resulting model is higher resolution than previous studies (~150 km resolution length) and highlights significant differences in crustal and uppermost mantle structure between East and West Antarctica in greater detail than previously possible. East Antarctica is underlain by thick crust (reaching ~55 km beneath the GSM) and fast, cratonic lithosphere. West Antarctica is defined by thinner crust and slow upper mantle velocities indicative of its more recent tectonic activity. The observed boundary in crustal thickness closely follows the TAM front. MBL is underlain by a thicker lithosphere than that observed beneath the WARS, but slow mantle velocities persist to depths greater than 200 km, indicating a 'deep seated' (i.e. deeper than the deepest resolvable features of our model) thermal source for volcanism in the region. The slowest seismic velocities at shallow depths are observed in the Terror Rift region of the Ross Sea along an arc following the TAM front, where the most recent extension has occurred, and in another region of active volcanism. The Ellsworth-Whitmore Mountains are underlain by relatively thick crust and an intermediate thickness lithosphere, consistent with its hypothesized origin as a remnant Precambrian crustal block. We also produce upper mantle viscosity models for the study region using a temperature-dependent rheology, assuming that mantle seismic anomalies are dominated by temperature variations. Initial results closely correlate with the velocity model, with viscosities beneath West Antarctica inferred to be orders of magnitude lower than beneath East Antarctica. These viscosity results have important implications for our understanding of glacial isostatic adjustment, which is of particular interest in producing models of past and future changes in the Antarctic Ice Sheets.
Ground-water resources and geology of northern and central Johnson County, Wyoming
Whitcomb, Harold A.; Cummings, T. Ray; McCullough, Richard A.
1966-01-01
Northern and central Johnson County, Wyo., is an area of about 2,600 square miles that lies principally in the western part of the Powder River structural basin but also includes the east flank of the Bighorn Mountains. Sedimentary rocks exposed range in age from Cambrian to Recent and have an average total thickness of about 16,000 feet. Igneous and metamorphic rocks of Precambrian age crop out in the Bighorn Mountains. Rocks of pre-Tertiary age, exposed on the flanks and in the foothills of the Bighorns, dip steeply eastward and lie at great depth in the Powder River basin. The rest of the project area is underlain by a thick sequence of interbedded sandstone, siltstone, and shale of Paleocene and Eocene age. Owing to the regional structure, most aquifers in Johnson County contain water under artesian pressure. The Madison Limestone had not been tapped for water in Johnson County at the time of the present investigation (1963), but several wells in eastern Big Horn and Washakie Counties, on the west flank of the Bighorn Mountains, reportedly have flows ranging from 1,100 to 2,800 gallons per minute. Comparable yields can probably be obtained from the Madison in Johnson County in those areas where the limestone is fractured or cavernous. The Tensleep Sandstone reportedly yields 600 gallons per minute to a pumped irrigation well near its outcrop in the southwestern part of the project area. Several flowing wells tap the formation on the west flank of the Bighorn Mountains. The Madison Limestone and the Tensleep Sandstone have limited potential as sources of water because they can be developed economically only in a narrow band paralleling the Bighorn Mountain front in the southwestern part of the project area. Overlying the Tensleep Sandstone is about 6,000 feet of shale, siltstone, and fine-grained sandstone that, with a few exceptions, normally yields only small quantities of water to wells. The Cloverly Formation and the Newcastle Sandstone may yield moderate quantities of water to wells; but, in some areas, properly constructed wells tapping both formations might yield large quantities of water. The Shannon Sandstone Member of the Cody Shale will probably yield only small quantities of water to Wells, but it is the best potential source of ground water in the stratigraphic interval between the Newcastle and Parkman Sandstones. The Parkman Sandstone and the Lance Formation yield water to relatively shallow wells principally in the southwestern part of the project area. The Fort Union Formation yields adequate supplies of water for stock and domestic use from relatively shallow wells near its outcrop almost everywhere in the county. A few deep wells tap the Fort Union along the Powder River valley in the northeastern part of Johnson County. Some of these wells flow, but their flows rarely exceed 10 gallons per minute; larger yields could be undoubtedly be obtained by pumping. The Wasatch Formation is the principal source of ground water in Johnson County. It yields adequate supplies to many relatively shallow stock and domestic wells, some of which flow, but much larger yields probably would require pumping lifts that are prohibitive for most purposes. The Kingsbury Conglomerate and Moncrief Members of the Wasatch Formation, though, may yield moderate quantities of water in some places. Alluvial deposits underlying the valleys of the Powder River and Crazy Woman, Clear, and Piney Creeks are potential sources of moderate to large supplies of water in the Powder River drainage basin. The permeability of these deposits decreases with distance from the Bighorn Mountain front, so that largest yields can probably be obtained along the upper reaches of these streams. Most ground water utilized in the project area is for domestic and stock supplies and is obtained from drilled wells and from springs. Water for irrigation is obtained almost entirely by diverting flows of perennial streams. The discharge of wel
Aeromagnetic map of northwest Utah and adjacent parts of Nevada and Idaho
Langenheim, Victoria
2016-01-01
Two aeromagnetic surveys were flown to promote further understanding of the geology and structure in northwest Utah and adjacent parts of Nevada and Idaho by serving as a basis for geophysical interpretations and by supporting geological mapping, water and mineral resource investigations, and other topical studies. Although this area is in general sparsely populated, (except for cities and towns along the Wasatch Front such as Ogden and Brigham City), it encompasses metamorphic core complexes in the Grouse Creek and Raft River Mountains (figure 1) of interest to earth scientists studying Cenozoic extension. The region was shaken in 1909 and 1934 by M6+ earthquakes east of the Hansel Mountains (Doser, 1989; Arabasz and others, 1994); damage from the 1934 earthquake occurred as far east as Logan, Utah (http:// www.seis.utah.edu/lqthreat/nehrp_htm/1934hans/n1934ha1. shtml#urbse). The presence of Quaternary shield volcanoes and bimodal Pleistocene volcanism in Curlew Valley (Miller and others, 1995; Felger and others, 2016) as well as relatively high temperature gradients encountered in the Indian Cove drillhole in the north arm of Great Salt Lake (Blackett and others, 2014) may indicate some potential for geothermal energy development in the area (Miller and others, 1995). The area also hosts four significant mining districts, in the northern Pilot Range, the Goose Creek Mountains in the northwest corner of the map, the southern end of the Promontory Mountains, and the southwest part of the Raft River Mountains, although production notably waned after World War II (Doelling, 1980). Other prospects of interest include those in the southern Grouse Creek Mountains, Silver Island, and the northern Newfoundland Mountains.Large areas of northwest Utah are covered by young, surficial deposits or by Great Salt Lake or are down-dropped into deep Cenozoic basins, making extrapolation of bedrock geology from widely spaced exposures difficult or tenuous (figure 1). Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Magnetic data reflect magnetization variations within the crust and are well suited for mapping the distribution of mafic igneous rocks, although felsic igneous rocks, some mineralized zones, and other rock types also can produce measurable magnetic anomalies. For these reasons, the U.S. Geological Survey (USGS) and Utah Geological Survey (UGS) contracted for the collection of aeromagnetic data in this area.
NASA Astrophysics Data System (ADS)
Serrano, Enrique; José González-Trueba, Juan; Pellitero, Ramón; González-García, María; Gómez-Lende, Manuel
2014-05-01
In Northern Iberian Peninsula are located the Cantabrian Mountains, a mountain system of 450 km length, reaching 2648 m in the Picos de Europa. It is an Atlantic mountain in the North slope, with a Atlantic Mediterranean transitional climate in the South slope.More than thirty-five massifs developed glaciers during the Pleistocene. Studies on glacial morphology are known from the XIX century and they have focused mainly on the maximum extent of glaciers. Nowadays there are detailed geomorphological maps, morphostratigraphic surveys and estimation of Equilibrium Line Altitude in different massifs and on different stages. During the last decade studies on glacial evolution and glaciation phases have been made, and the first chronological data have been published. In this work we presents the reconstruction of the glacial evolution in the Cantabrian Mountains during the Pleistocene and Holocene, based on recent chronological data (30 dates made using OSL, AMS and C14) and morphostratigraphic correlations obtained by several research groups. The number of reconstructed glacial stages varies among the different massifs, form one to four different stages. The highest massifs located in the central portion of the Cantabrian Mountains have the most complex glacial features, with at least four different moraine complexes stepped between the 400 m a.s.l in the Northern slope and 800 m a.s.l. in the Southern slope for the lowest moraine complexes, and the highest and youngest, located above 2100 m a.s.l. An ancient glacial phase has been pointed to MIS 12 -more than 400 ka-, disconnected from the present day glacial morphology. During Upper Pleistocene three main stages have been identified. The first one, the local glacial maximum, could be prior to the LGM, as all dates refer to chronologies prior to 28-38 ka. Some authors locate this stage prior to 45 and 65 ka, during the 50-70 ka cold stage. It could be a wet stage, when the main fronts reached the Iberian Peninsula from the SW. The second stage is located to around 30 ka, and point to a dryer stage when glaciers was shorter but thicker. The third stage is located at 20-18 ka, contemporary from the LGM. Glaciers are located inside of glacier-shaped mountain valleys. A few moraine complexes located in the highest massif have been related to Lateglacial, coinciding with cold phases (Dryas) recorded in the Picos de Europa lakes and paleolakes. Finally, during the Holocene only small glaciers developed in the Picos de Europa, which have been assigned to LIA. Nowadays there are still glacial ice remains in four glacial cirques of Picos de Europa, close to the LIA moraines.
NASA Astrophysics Data System (ADS)
Moser, K. A.; Hundey, E. J.; Porinchu, D. F.
2007-12-01
Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant cover. Paleolimnological analyses of well dated sediments from selected lakes indicate that some of these high elevation sites have undergone rapid and dramatic change beginning in the late 1800s to early 1900s. Many of these lakes have become more productive as indicated by loss-on-ignition and diatom analyses. Although the exact mechanism of these changes is uncertain, the timing closely follows recent increases in air and chironomid-inferred surface water temperatures, and increased fossil fuel burning in the region. Regardless of the exact mechanism, our results clearly indicate dramatic changes at these high elevation sites, which threaten critical water resources.
Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.
2003-01-01
Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.
Mahlknecht, Jürgen; Daessle, Luis Walter; Esteller, Maria Vicenta; Torres-Martinez, Juan Antonio; Mora, Abrahan
2018-04-30
With the increasing population, urbanization and industry in the arid area of Tecate, there is a concomitant increase in contaminants being introduced into the Tecate River and its aquifer. This contamination is damaging the usable groundwater supply and making local residents and commercial enterprises increasingly dependent on imported water from the Colorado River basin. In this study we apply a suite of chemical and isotopic tracers in order to evaluate groundwater flow and assess contamination trends. Groundwater recharge occurs through mountain-block and mountain-front recharge at higher elevations of the ranges. Groundwater from the unconfined, alluvial aquifer indicates recent recharge and little evolution. The increase in salinity along the flow path is due to interaction with weathering rock-forming silicate minerals and anthropogenic sources such as urban wastewater, residual solids and agricultural runoff from fertilizers, livestock manure and/or septic tanks and latrines. A spatial analysis shows local differences and the impact of the infiltration of imported waters from the Colorado River basin. The general trend of impaired water quality has scarcely been documented in the last decades, but it is expected to continue. Since the groundwater system is highly vulnerable, it is necessary to protect groundwater sources.
Space Radar Image of Karakax Valley, China 3-D
1999-04-15
This three-dimensional perspective of the remote Karakax Valley in the northern Tibetan Plateau of western China was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are helpful to scientists because they reveal where the slopes of the valley are cut by erosion, as well as the accumulations of gravel deposits at the base of the mountains. These gravel deposits, called alluvial fans, are a common landform in desert regions that scientists are mapping in order to learn more about Earth's past climate changes. Higher up the valley side is a clear break in the slope, running straight, just below the ridge line. This is the trace of the Altyn Tagh fault, which is much longer than California's San Andreas fault. Geophysicists are studying this fault for clues it may be able to give them about large faults. Elevations range from 4000 m (13,100 ft) in the valley to over 6000 m (19,700 ft) at the peaks of the glaciated Kun Lun mountains running from the front right towards the back. Scale varies in this perspective view, but the area is about 20 km (12 miles) wide in the middle of the image, and there is no vertical exaggeration. http://photojournal.jpl.nasa.gov/catalog/PIA01800
Daessle, Luis Walter; Esteller, Maria Vicenta; Torres-Martinez, Juan Antonio; Mora, Abrahan
2018-01-01
With the increasing population, urbanization and industry in the arid area of Tecate, there is a concomitant increase in contaminants being introduced into the Tecate River and its aquifer. This contamination is damaging the usable groundwater supply and making local residents and commercial enterprises increasingly dependent on imported water from the Colorado River basin. In this study we apply a suite of chemical and isotopic tracers in order to evaluate groundwater flow and assess contamination trends. Groundwater recharge occurs through mountain-block and mountain-front recharge at higher elevations of the ranges. Groundwater from the unconfined, alluvial aquifer indicates recent recharge and little evolution. The increase in salinity along the flow path is due to interaction with weathering rock-forming silicate minerals and anthropogenic sources such as urban wastewater, residual solids and agricultural runoff from fertilizers, livestock manure and/or septic tanks and latrines. A spatial analysis shows local differences and the impact of the infiltration of imported waters from the Colorado River basin. The general trend of impaired water quality has scarcely been documented in the last decades, but it is expected to continue. Since the groundwater system is highly vulnerable, it is necessary to protect groundwater sources. PMID:29710847
NASA Technical Reports Server (NTRS)
Cotton, Michelle M.; Bruhn, Ronald L.; Sauber, Jeanne; Burgess, Evan; Forster, Richard R.
2014-01-01
The Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1earthquakes in September 1899.
Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T
2000-06-20
A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).
NASA Astrophysics Data System (ADS)
Aronoff, R.; Andronicos, C.; Vervoort, J. D.; Hunter, R. A.
2014-12-01
Lu-Hf garnet dating of Proterozoic rocks of the southwestern United States provides constraints on the timing and geographic extent of metamorphism associated with the Yavapai, Mazatzal, and newly recognized Picuris orogenies. Prior work focusing on U-Pb dating of plutons and Ar geochronology has left the timing of prograde metamorphism ambiguous, particularly in northern New Mexico and southern Colorado. Because the Lu-Hf system dates the onset of garnet growth, it can constrain the timing of the prograde P-T path. Garnet schist samples from central and northern New Mexico exhibit garnet growth restricted to the time period between ~1460 and 1400 Ma. In the Picuris and Manzano mountains, the oldest Lu-Hf garnet ages predate the U-Pb ages of ~1.4 Ga plutons located near the dated samples. This implies that garnet growth, and therefore the onset of amphibolite facies metamorphism, cannot be driven by contact metamorphism, as has been previously inferred. Garnet-bearing samples from the Needle and Wet Mountains in southern Colorado display a range of garnet ages between ~1750 and 1470 Ma. A garnet gneiss from the Needle Mountains in southwestern Colorado yields an age of 1748 Ma, which is consistent with the Yavapai orogeny. This Lu-Hf garnet age has not been reset by contact metamorphism associated with the emplacement of the ~1.4 Ga Eolus batholith. Anatectic garnet in an orthogneiss from the northern Wet Mountains yields an age of 1601 Ma and is interpreted to date partial melting at the close of the Mazatzal orogeny. A 1476 Ma garnet age from the aureole of the 1440 Ma Oak Creek pluton is interpreted to date upper amphibolite facies metamorphism. The age distribution of these samples shows that rocks in Colorado underwent a complex, poly-metamorphic history, while rocks in New Mexico underwent a single progressive metamorphic event. This contrast implies that the boundary between rocks deformed and metamorphosed during the ~1800-1600 Ma Yavapai and Mazatzal orogenies and those only deformed and metamorphosed during the ~1460-1400 Ma Picuris orogeny lies in northern New Mexico, along what has previously been considered the Mazatzal front. By using Lu-Hf geochronology to directly date a rock-forming mineral, we are better able to reconstruct the tectonic history of this region.
NASA Astrophysics Data System (ADS)
Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.
2013-12-01
Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit of the ISS results in varying illumination angles and fix-point spotlight imaging results in varying viewing angles, ideal for viewing steep slopes on glaciers and adjacent areas. Rapid events may be observed in progress by correlating changes in images over a single pass or between passes. We present a working design, data acquisition parameters, science objectives, and data processing strategy for a conceptual instrument, MUIR (Mission to Understand Ice Retreat).
NASA Astrophysics Data System (ADS)
Guest, Bernard; Horton, Brian K.; Axen, Gary J.; Hassanzadeh, Jamshid; McIntosh, William C.
2007-12-01
Oligocene-Miocene strata preserved in synclinal outcrop belts of the western Alborz Mountains record the onset of Arabia-Eurasia collision-related deformation in northern Iran. Two stratigraphic intervals, informally named the Gand Ab and Narijan units, represent a former basin system that existed in the Alborz. The Gand Ab unit is composed of marine lagoonal mudstones, fluvial and alluvial-fan clastic rocks, fossiliferous Rupelian to Burdigalian marine carbonates, and basalt flows yielding 40Ar/39Ar ages of 32.7 ± 0.3 and 32.9 ± 0.2 Ma. The Gand Ab unit is correlated with the Oligocene-lower Miocene Qom Formation of central Iran and is considered a product of thermal subsidence following Eocene extension. The Narijan unit unconformably overlies the Gand Ab unit and is composed of fluvial-lacustrine and alluvial fan sediments exhibiting contractional growth strata. We correlate the Narijan unit with the middle to upper Miocene Upper Red Formation of central Iran on the basis of lithofacies similarities, stratigraphic position, and an 8.74 ± 0.15 Ma microdiorite dike (40Ar/39Ar) that intruded the basal strata. Deformation timing is constrained by crosscutting relationships and independent thermochronological data. The Parachan thrust system along the eastern edge of the ancestral Taleghan-Alamut basin is cut by dikes dated at 8.74 ± 0.15 Ma to 6.68 ± 0.07 Ma (40Ar/39Ar). Subhorizontal gravels that unconformably overlie tightly folded and faulted Narijan strata are capped by 2.86 ± 0.83 Ma (40Ar/39Ar) andesitic lava flows. These relationships suggest that Alborz deformation had migrated southward into the Taleghan-Alamut basin by late Miocene time and shifted to its present location along the active range front by late Pliocene time. Data presented here demonstrate that shortening in the western Alborz Mountains had started by late middle Miocene time. This estimate is consistent with recent thermochronological results that place the onset of rapid exhumation in the western Alborz at ˜12 Ma. Moreover, nearly synchronous Miocene contraction in the Alborz, Zagros Mountains, Turkish-Iranian plateau, and Anatolia suggests that the Arabia-Eurasia collision affected a large region simultaneously, without a systematic outward progression of mountain building away from the collision zone.
NASA Astrophysics Data System (ADS)
Brenn, G.; Hansen, S. E.; Park, Y.
2016-12-01
Stretching 3500 km across Antarctica, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth. It has been suggested that the TAMs may have served as a nucleation point for the large-scale glaciation of Antarctica, and understanding their tectonic history has important implications for ice sheet modeling. However, the origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; δVP= -2.0%; δVS=-1.5% to -4.0%) and Terra Nova Bay (TNB; δVP=-1.5% to -2.0%; δVS= -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (δVP=0.5% to 2%; δVS=1.5% to 4.0%). A low velocity region (δVP= -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.
NASA Astrophysics Data System (ADS)
Howard, M. J.; Silins, U.; Anderson, A.
2016-12-01
Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, John; Turnipseed, A.; Guenther, Alex B.
2014-01-01
The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen (BEACHON) project seeks to understand the feedbacks and interrelationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was established in 2008 by the National Center for Atmospheric Research to address many of the BEACHON research objectives, and it now provides a fixed field site with significant infrastructure. MEFO is a mountainous, semi-arid ponderosa pine-dominated forest site that is normally dominated by clean continental air but is periodically influenced by anthropogenic sources from Colorado Front Range cities.more » This article summarizes the past and ongoing research activities at the site, and highlights some of the significant findings that have resulted from these measurements. These activities include – soil property measurements; – hydrological studies; – measurements of high-frequency turbulence parameters; – eddy covariance flux measurements of water, energy, aerosols and carbon dioxide through the canopy; – determination of biogenic and anthropogenic volatile organic compound emissions and their influence on regional atmospheric chemistry; – aerosol number and mass distributions; – chemical speciation of aerosol particles; – characterization of ice and cloud condensation nuclei; – trace gas measurements; and – model simulations using coupled chemistry and meteorology. In addition to various long-term continuous measurements, three focused measurement campaigns with state-of-the-art instrumentation have taken place since the site was established, and two of these studies are the subjects of this special issue: BEACHON-ROCS (Rocky Mountain Organic Carbon Study, 2010) and BEACHON-RoMBAS (Rocky Mountain Biogenic Aerosol Study, 2011).« less
Lewis, Reed S.; Smith, Keegan L.; Gaschnig, Richard M.; LaMaskin, Todd A.; Lund, Karen; Gray, Keith D.; Tikoff, Basil; Stetson-Lee, Tor; Moore, Nicholas
2014-01-01
This field guide covers geology across north-central Idaho from the Snake River in the west across the Bitterroot Mountains to the east to near Missoula, Montana. The regional geology includes a much-modified Mesozoic accretionary boundary along the western side of Idaho across which allochthonous Permian to Cretaceous arc complexes of the Blue Mountains province to the west are juxtaposed against autochthonous Mesoproterozoic and Neoproterozoic North American metasedimentary assemblages intruded by Cretaceous and Paleogene plutons to the east. The accretionary boundary turns sharply near Orofino, Idaho, from north-trending in the south to west-trending, forming the Syringa embayment, then disappears westward under Miocene cover rocks of the Columbia River Basalt Group. The Coolwater culmination east of the Syringa embayment exposes allochthonous rocks well east of an ideal steep suture. North and east of it is the Bitterroot lobe of the Idaho batholith, which intruded Precambrian continental crust in the Cretaceous and Paleocene to form one of the classical North American Cordilleran batholiths. Eocene Challis plutons, products of the Tertiary western U.S. ignimbrite flare-up, intrude those batholith rocks. This guide describes the geology in three separate road logs: (1) The Wallowa terrane of the Blue Mountains province from White Bird, Idaho, west into Hells Canyon and faults that complicate the story; (2) the Mesozoic accretionary boundary from White Bird to the South Fork Clearwater River east of Grangeville and then north to Kooskia, Idaho; and (3) the bend in the accretionary boundary, the Coolwater culmination, and the Bitterroot lobe of the Idaho batholith along Highway 12 east from near Lewiston, Idaho, to Lolo, Montana.
Neogene collision and deformation of convergent margins along the backbone of the Americas
von Huene, Roland E.; Ranero, C.R.
2009-01-01
Along Pacific convergent margins of the Americas, high-standing relief on the subducting oceanic plate "collides" with continental slopes and subducts. Features common to many collisions are uplift of the continental margin, accelerated seafloor erosion, accelerated basal subduction erosion, a flat slab, and a lack of active volcanism. Each collision along America's margins has exceptions to a single explanation. Subduction of an ???600 km segment of the Yakutat terrane is associated with >5000-m-high coastal mountains. The terrane may currently be adding its unsubducted mass to the continent by a seaward jump of the deformation front and could be a model for docking of terranes in the past. Cocos Ridge subduction is associated with >3000-m-high mountains, but its shallow subduction zone is not followed by a flat slab. The entry point of the Nazca and Juan Fernandez Ridges into the subduction zone has migrated southward along the South American margin and the adjacent coast without unusually high mountains. The Nazca Ridge and Juan Fernandez Ridges are not actively spreading but the Chile Rise collision is a triple junction. These collisions form barriers to trench sediment transport and separate accreting from eroding segments of the frontal prism. They also occur at the separation of a flat slab from a steeply dipping one. At a smaller scale, the subduction of seamounts and lesser ridges causes temporary surface uplift as long as they remain attached to the subducting plate. Off Costa Rica, these features remain attached beneath the continental shelf. They illustrate, at a small scale, the processes of collision. ?? 2009 The Geological Society of America. All rights reserved.
The effect of mountain bike suspensions on vibrations and off-road uphill performance.
Faiss, R; Praz, M; Meichtry, A; Gobelet, C; Deriaz, O
2007-06-01
This study evaluates the effect of front suspension (FS) and dual suspension (DS) mountain-bike on performance and vibrations during off-road uphill riding. Thirteen male cyclists (27+/-5 years, 70+/-6 kg, VO(2max)59+/-6 mL.kg(-1).min(-1), mean+/-SD) performed, in a random sequence, at their lactate threshold, an off-road uphill course (1.69 km, 212 m elevation gain) with both type of bicycles. Variable measured: a) VO(2) consumption (K4b2 analyzer, Cosmed), b) power output (SRM) c) gain in altitude and d) 3-D accelerations under the saddle and at the wheel (Physilog, EPFL, Switzerland). Power spectral analy- sis (Fourier) was performed from the vertical acceleration data. Respectively for the FS and DS mountain bike: speed amounted to 7.5+/-0.7 km.h(-1) and 7.4+/-0.8 km.h(-1), (NS), energy expenditure 1.39+/-0.16 kW and 1.38+/-0.18, (NS), gross efficiency 0.161+/-0.013 and 0.159+/-0.013, (NS), peak frequency of vibration under the saddle 4.78+/-2.85 Hz and 2.27+/-0.2 Hz (P<0.01) and median-frequency of vertical displacements of the saddle 9.41+/-1.47 Hz and 5.78+/-2.27 Hz (P<0.01). Vibrations at the saddle level of the DS bike are of low frequencies whereas those of the FS bike are mostly of high frequencies. In the DS bike, the torque produced by the cyclist at the pedal level may generate low frequency vibrations. We conclude that the DS bike absorbs more high frequency vibrations, is more comfortable and performs as well as the FS bicycle.
Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone Dial
NASA Technical Reports Server (NTRS)
Sullivan, John T.; McGee, Thomas J.; Hoff, Raymond M.; Sumnicht, Grant; Twigg, Laurence
2015-01-01
Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZDIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins,Colorado.The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase a loft during recirculation episodes has been historically difficult, results indicate that an increase of 20 -30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region.
Morton, Andrew C.
1993-01-01
Heavy mineral assemblages in rivers in the Apure River drainage basin of Venezuela and Colombia closely reflect the nature of the source regions, which lie in the Andean orogenic terranes to the west and northwest. The Caribbean Mountains, largely composed of greenschist-facies pelites, phyllites, carbonates, and metavolcanics, supply assemblages dominated by epidote and calcic amphibole. Minor amounts of the high-pressure index minerals glaucophane and lawsonite indicate the presence of blueschistfacies rocks, reflecting the origin of the Caribbean Mountains by subduction-related tectonism. The northern Mérida Andes, which comprise basement gneisses and granites overlain by unmetamorphosed to low-grade metamorphosed clastics, supply two types of assemblage reflecting these two lithological types: garnet-sillimanite-staurolite-amphibole suites from the basement rocks, and epidote-amphibole suites from the overlying cover sequence. The southern Mérida Andes supply stable heavy mineral suites reflecting recycling from the extensive unmetamorphosed sandstones that occur at outcrop. By considering suites from different physiographical provinces, the effects of short-term alluvial storage in the Llanos on heavy mineral assemblages have been evaluated. Weathering during alluvial storage appears to be effective in modifying the apatite-tourmaline ratio, which shows a steady, marked decline with distance from the mountain front, resulting from the removal of apatite during weathering. Clinopyroxene and garnet may also show evidence of loss through weathering, although the trends are poorly constrained statistically. Epidote and amphibole proportions remain essentially constant, possibly through a balance between loss through weathering and continual resupply from the breakdown of rock fragments. In general, the heavy mineral assemblages are less affected than the bulk mineralogy by alluvial storage on the Llanos.
NASA Astrophysics Data System (ADS)
Winnick, M.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Maher, K.
2016-12-01
Although important for solute production and transport, the varied interactions between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the headwaters of the East River, CO, a high-elevation shale-dominated catchment system in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with well-defined clockwise hysteresis, indicating the mobilization and depletion of DOC in the upper soil horizons and highlighting the importance of shallow flowpaths through the snowmelt period. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both carbonic acid and sulfuric acid derived from oxidation of pyrite in the shale bedrock. Sulfuric acid weathering in the deep subsurface dominates during base flow conditions when waters have infiltrated below the hypothesized pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during the snowmelt period as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This increase in CO2(aq) at the expense of HCO3- results in outgassing of CO2 when waters equilibrate to surface conditions, and reduces the export of carbon and alkalinity from the East River by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering therefore have the capacity to substantially alter the cycling of carbon in the East River catchment. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.
Characteristics of radar-derived hailstreaks across Central Europe
NASA Astrophysics Data System (ADS)
Kunz, Michael; Fluck, Elody; Schmidberger, Manuel; Jürgen Punge, Heinz; Baumstark, Sven
2017-04-01
Hailstorms are among the most damaging natural disasters in various parts of Europe. For example, two supercells in Germany, on 27 and 28 July 2013, bearing hailstones with a diameter of up to 10 cm, caused economic losses of around 4.0 billion EUR. Despite the large damage potential of severe hailstorms, knowledge about the probability and severity of hail events and hailstorm-favoring conditions in Europe still is limited. A large event set of past severe thunderstorms that occurred between 2004 and 2014 was identified for Germany, France, Belgium, and Luxembourg from radar data considering a lower threshold of 55 dBZ of the maximum Constant Altitude Plan Position Indicator (maxCAPPI). Additional filtering with lightning data and applying a cell tracking algorithm improves the reliability of the detected severe thunderstorm tracks. The obtained statistics show a gradual increase of the track density with increasing distance to the Atlantic and several local-scale maxima, mostly around the mountains. Both the seasonal and daily cycle of severe thunderstorms show large differences across the investigation area. For example, while in Southern France most events occur in June, the peak month in Northern Germany is August, which can be plausibly explained by differences in convective energy due to the large-scale circulation. Furthermore, ambient conditions in terms of convection-related quantities (e.g., CAPE, wind shear, lapse rate) and prevailing synoptic scale fronts were studied both for the entire event set and a subset, where radar-derived storm tracks were combined with hail observations provided by the European Severe Weather Database ESWD. Over Northern Germany, for example, up to 40% of all radar-derived thunderstorm tracks were associated with cold fronts, while in Southern Germany the ratio is only around 20%. Overall, around 25% of all hail streaks were associated with cold fronts.
Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range
Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.
2003-01-01
Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.
Mars - A large highland volcanic province revealed by Viking images
NASA Technical Reports Server (NTRS)
Scott, D. H.; Tanaka, K. L.
1982-01-01
Many of the mountains in the rugged highland terrain of the Phaethontis and Thaumasia quadrangles are believed to be of volcanic origin. Those provisionally mapped as volcanoes have diagnostic characteristics such as lobate flow fronts around their bases, depressed central areas, or have massive, bulbous accumulations of material of no determinable origin other than volcanic. Most of the volcanoes are younger than materials forming the highlands but are older than early lava flows from Arsia Mons. Many are aligned along older fault and ridge systems that are transverse to the more recent and prominent faults transecting the region. The older faults are generally buried by plains lava flows but their traces are visible in several places in the highlands. These faults are relatively short in length.
Dike rocks of the Apishapa Quadrangle, Colorado
Cross, Whitman
1915-01-01
The Apishapa quadrangle, the geographic relations of which are shown by Plate IV, is situated on the plains south of Arkansas River, in Colorado, about 24 miles east of the mountain front. The geology of the Pueblo, Walsenburg, Spanish Peaks, and Elmoro quadrangles, adjoining it on the northwest, west, southwest, and south, respectively, has been described in folios of the Geologic Atlas. G. K. Gilbert, assisted by F. P. Gulliver and G. W. Stose, took up the survey of the Apishapa area in 1894. The Apishapa folio was completed by Stose and was issued in 1913. The rocks to be described in this paper were collected by Gilbert and his assistants, the present writer never having visited the area. The following description of the occurrence of the has been kindly furnished by Mr. Stose.
NASA Astrophysics Data System (ADS)
Alcántara-Ayala, I.
2008-01-01
Landslides disasters in Mexico caused more than 3500 deaths between 1935 and 2006. Such disasters have been mainly associated to intense precipitation events derived from hurricanes, tropical storms and their interactions with cold fronts, although earthquake triggered landslides have also occurred to a lesser extent. The impact of landsliding in Mexico is basically determined by the geomorphic features of mountain ranges and dissected plateaus inhabited by vulnerable communities. The present contribution provides a comprehensive temporal assessment of historical landslide disasters in Mexico. Moreover, it aims at exploring the future directions of risk management and disaster prevention, in order to reduce the impact of landslides on populations as a result of climatic change, urban sprawl, land use change and social vulnerability.
Hydrology of the middle San Pedro area, southeastern Arizona
Cordova, Jeffrey T.; Dickinson, Jesse; Beisner, Kimberly R.; Hopkins, Candice B.; Kennedy, Jeffrey R.; Pool, Donald R.; Glenn, Edward P.; Nagler, Pamela L.; Thomas, Blakemore E.
2015-05-05
In the middle San Pedro Watershed in southeastern Arizona, groundwater is the primary source of water supply for municipal, domestic, industrial, and agricultural use. The watershed comprises two smaller subareas, the Benson subarea and the Narrows-Redington subarea. Early 21st century projections for heavy population growth in the watershed have not yet become a reality, but increased groundwater withdrawals could have undesired consequences - such as decreased base flow to the San Pedro River, and groundwater-level declines - that would lead to the need to deepen existing wells. This report describes the hydrology, hydrochemistry, water quality, and development of a groundwater budget for the middle San Pedro Watershed, focusing primarily on the elements of groundwater movement that could be most useful for the development of a groundwater modelPrecipitation data from Tombstone, Arizona, and base flow at the stream-gaging station on the San Pedro River at Charleston both show relatively dry periods during the 1960s through the mid-1980s and in the mid-1990s to 2009, and wetter periods from the mid-1980s through the mid-1990s. Water levels in four out of five wells near the mountain fronts show cyclical patterns of recharge, with rates of recharge greatest in the early 1980s through the mid-1990s. Three wells near the San Pedro River recorded their lowest levels during the 1950s to the mid-1960s. The water-level record from one well, completed in the confined part of the coarse-grained lower basin fill, showed a decline of approximately 21 meters.Annual flow of the San Pedro River, measured at the Charleston and Redington gages, has decreased since the 1940s. The median annual streamflow and base flow at the gaging station on the river near Tombstone has decreased by 50 percent between the periods 1968–1986 and 1997–2009. Estimates of streamflow infiltration along the San Pedro River during 1914–2009 have decreased 44 percent, with the largest decreases in the months June–October in the Benson subarea. In the Narrows-Redington subarea, streamflow infiltration has decreased about 65 percent during 1914–2009.The average annual outflow (27.6 hm3/year [cubic hectometers per year]) from the Benson subarea aquifer for water years 2001 through 2009 exceeded the inflows (20.0 hm3/ yr) by 7.60 hm3/yr. In the Narrows-Redington subarea for the same period, the average annual outflow (15.7 hm3/yr) from the aquifer system exceeded the inflows (13.8 hm3/yr) by nearly 2 hm3/yr. The largest withdrawals of groundwater in both subareas are for irrigation; these withdrawals peaked in 1973 and have been steadily decreasing since then. Recharge from streamflow infiltration exceeded recharge from the mountain-front and from ephemeral channels in the Benson subarea. In the Narrows-Redington subarea, however, recharge from mountain-front and ephemeral channel recharge exceeded recharge from streamflow infiltration. Evapotranspiration by phreatophytes accounts for the largest outflow of groundwater for both subareas—78 percent of the outflow in the Narrows-Redington subarea and 62 percent of the outflow in the Benson subarea.Precipitation, surface-water, and groundwater chemistry and isotope data indicated the relative age and residence time of groundwater, the amount of interaction between geologic sources and groundwater, and how recharge elevation and season were related to the presence of modern water. The bedrock aquifer receives modern recharge (
Tooker, Edwin W.
2005-01-01
The Oquirrh Mountains are located in north central Utah, in the easternmost part of the Basin and Range physiographic province, immediately south of the Great Salt Lake. The range consists of a northerly trending alignment of peaks 56 km long. Tooele and Rush Valleys flank the Oquirrh Mountains on the western side and Salt Lake and Cedar Valleys lie on the eastern side. The world class Bingham mine in the central part of the range hosts disseminated copper-bearing porphyry, skarn, base-and precious-metal vein and replacement ore deposits. The district includes the outlying Barneys Canyon disseminated-gold deposits. Disseminated gold in the Mercur mining district in the southern part of the range has become exhausted. The Ophir and Stockton base- and precious-metal mining districts in the range north of Mercur also are inactive. A geologic map of the range (Tooker and Roberts, 1998), available at a scale of 1:50,000, is a summation of U.S. Geological Survey (USGS) studies. Information about the range and its mining areas is scattered. This report summarizes map locations, new stratigraphic and structural data, and reexamined data from an extensive published record. Unresolved controversial geological interpretations are considered, and, for the first time, the complete geological evidence provides a consistent regional basis for the location of the ore deposits in the range. The geological setting and the siting of mineral deposits in the Oquirrh Mountains began with the formation of a Precambrian craton. Exposures of folded Proterozoic basement rocks of the craton, in the Wasatch Mountains east of Salt Lake City, were accreted and folded onto an Archean crystalline rock terrane. The accretion suture lies along the north flank of the Uinta Mountains. The western part of the accreted block was offset to northern Utah along a north-trending fault lying approximately along the Wasatch Front (Nelson and others, 2002), thereby creating a prominant basement barrier or buttress east of the Salt Lake area. The accretion suture along the north flank of the Uinta Anticline overlaps an earlier Precambrian east-west mobile zone, the Uinta trend (Erickson, 1976, Bryant and Nichols, 1988 and John, 1989), which extends westward across western Utah and into Nevada. A trace of the trend underlies the middle part of the Oquirrh Mountains. Its structure is recognized by disrupted Paleozoic stratigraphic units and fold and fault evidence of thrust faulting, intermittent local uplift and erosion, the alignment of Tertiary intrusives and associated ore deposits. Geologic readjustments along the trend continued intermittently through the Paleozoic, Cenozoic, Tertiary, and the development of clastic deposits along the shores of Pleistocene Lake Bonneville. Paleozoic sedimentary rocks were deposited on the craton platform shelf in westernmost Utah and eastern Nevada as the shelf subsided gradually and differentially. Debris was shed into two basins separated by the uplifted Uinta trend, the Oquirrh Basin on the south and Sublette Basin on the north. Sediments were derived from the craton to the east, the Antler orogenic zone on the west (Roberts, 1964), and locally from uplifted parts of the trend itself. Thick accumulations of clastic calcareous quartzite, shale, limestone, and dolomite of Lower and Upper Paleozoic ages are now exposed in the Oquirrh Mountains, the result of thrust faults. Evidence of decollement thrust faults in in the Wasatch Mountains during the Late Cretaceous Sevier orogeny, recognized by Baker and others (1949) and Crittenden (1961, is also recognized in the Oquirrh Mountains by Roberts and others (1965). During the late Cretaceous Sevier Orogeny, nappes were thrust sequentially along different paths from their western hinterland to the foreland. Five distinct nappes converged over the Uinta trend onto an uplifted west-plunging basement buttress east of the Oquirrh Mountains area: the Pass Canyon, Bingham,
NASA Astrophysics Data System (ADS)
Steck, L.; Maceira, M.; Ammon, C. J.; Herrmann, R. B.
2013-12-01
Joint inversion of multiple datasets should produce more realistic images of Earth structure. Here we simultaneously invert surface wave dispersion, receiver functions, and gravity to determine structure of the crust and upper mantle of the western United States. Our target region is comprised of a one-degree grid that spans latitudes from 30 to 50 degrees North and longitudes from 95 to 125 degrees West. Receiver functions come from the Earthscope Automated Receiver system, and are stacked to produce an average model for each cell. Rayleigh and Love dispersion data come from multiple filter analysis of regional earthquakes, while the gravity observations are extracted from the EGM2008 model. Our starting model is comprised of an oceanic PREM model west of the Pacific coast, a western US model between that and the eastern front of the Rocky Mountains, and a continental PREM model east of the Rocky Mountain Front. Several different velocity/density relationships have been tested and all result in very similar models. Our inversion reduces RMS surface wave residuals by 58% and receiver function misfits by about 18%. Gravity residuals are reduced by more than 90%. While the reduction in residuals for receiver functions is not as profound as for surface waves or gravity, they are meaningful and produce sharper boundaries for the observed crustal anomalies. The addition of gravity produces subtle changes to the final model. Our final results are consistent with numerous previous studies in the region. In general, the craton exhibits higher velocities than the tectonically active regions to its west. We see high mid-crustal velocities under the Snake River Plain and the Colorado Plateau. In the lower crust we observe lowest velocities in the western Basin and Range and under the Colorado Mineral Belt. At 80km depth we see broad low velocities fanning out from the Snake River Plain associated with the mantle plume feeding Yellowstone Caldera. Additionally we see high and low velocity anomalies along the west coast that reflect ongoing subduction processes beneath the western US, including the subducting slab and slab window.
Damage From the Nahrin, Afghanistan, Earthquake of 25 March, 2002
NASA Astrophysics Data System (ADS)
Madden, C. L.; Yeats, R. S.
2002-12-01
On 25 March, 2002, a destructive earthquake of mb = 6.1 struck the city of Nahrin and nearby villages in Baghlan Province in northeastern Afghanistan. The earthquake occurred on a southeast-dipping reverse fault that parallels the linear northeast-trending range front of the Hindu Kush Mountains, east of Nahrin. Field reconnaissance showed no disturbance of the ground by surface rupture, liquefaction, or lateral spreading, and virtually no evidence of landsliding or rockfall. United Nations and Afghan authorities estimate the death toll from the earthquake to be over 2000, with about 20,000 families impacted by the earthquake. We conducted a survey of damage in 68 villages affected by the earthquake and found that areas within 25 km of the epicenter experienced modified Mercalli intensities of between VI and VII. Shaking intensities were strong enough to cause complete building collapse in many villages. Site conditions were an important factor in the distribution of damage in the Nahrin area. Houses built on the narrow crests of ridges eroded in loess suffered major damage due to the focusing of near-surface seismic waves on ridge-tops. Houses on low fluvial terraces along the Nahrin River also suffered major damage, likely due to their close proximity to the water table. Structures built on metamorphic bedrock and alluvial fans along the range front of the Hindu Kush Mountains or on high terraces along the Nahrin River suffered comparatively less damage. Building failure was predominantly caused by the mud-block construction, characteristic of much of Afghanistan and adjacent countries. Most houses are built of mud blocks made from reworked loess, which contains a relatively low percentage of clay. The walls contain no bracing against lateral shear, and wall corners are not tied together, leading to failure at corners and roof collapse. In several villages, mosques were constructed to a higher standard and suffered significantly less damage than surrounding mud structures. The mosques often had concrete foundations and structural supports tied to the foundations. Had houses been built to the same standards as most mosques, loss of life would have been greatly reduced.
Caine, Jonathan S.; Tomusiak, S.R.A.
2003-01-01
Expansion of the Denver metropolitan area has resulted in substantial residential development in the foothills of the Rocky Mountain Front Range. This type of sub-urban growth, characteristic of much of the semiarid intermountain west, often relies on groundwater from individual domestic wells and is exemplified in the Turkey Creek watershed. The watershed is underlain by complexly deformed and fractured crystalline bedrock in which groundwater resources are poorly understood, and concerns regarding groundwater mining and degradation have arisen. As part of a pilot project to establish quantitative bounds on the groundwater resource, an outcrop-based geologic characterization and numerical modeling study of the brittle structures and their controls on the flow system was initiated. Existing data suggest that ground-water storage, flow, and contaminant transport are primarily controlled by a heterogeneous array of fracture networks. Inspections of well-permit data and field observations led to a conceptual model in which three dominant lithologic groups underlying sparse surface deposits form the aquifer system-metamorphic rocks, a complex array of granitic intrusive rocks, and major brittle fault zones. Pervasive but variable jointing of each lithologic group forms the "background" permeability structure and is an important component of the bulk storage capacity. This "background" is cut by brittle fault zones of varying structural styles and by pegmatite dikes, both with much higher fracture intensities relative to "background" that likely make them spatially complex conduits. Probabilistic, discrete-fracture-network and finite-element modeling was used to estimate porosity and permeability at the outcrop scale using fracture network data collected in the field. The models were conditioned to limited aquifer test and borehole geophysical data and give insight into the relative hydraulic properties between locations and geologic controls on storage and flow. Results from this study reveal a complex aquifer system in which the upper limits on estimated hydraulic properties suggest limited storage capacity and permeability as compared with many sedimentary-rock and surficial-deposit aquifers.
Miocene shale tectonics in the Moroccan margin (Alboran Sea)
NASA Astrophysics Data System (ADS)
Do Couto, D.; El Abbassi, M.; Ammar, A.; Gorini, C.; Estrada, F.; Letouzey, J.; Smit, J.; Jolivet, L.; Jabour, H.
2011-12-01
The Betic (Southern Spain) and Rif (Morocco) mountains form an arcuate belt that represents the westernmost termination of the peri-mediterranean Alpine mountain chain. The Miocene Alboran Basin and its subbasins is located in the hinterland of the Betic-Rif belt. It is considered to be a back-arc basin that developed during the coeval westward motion of the Alboran domain and the extensional collapse of previously thickened crust of the Betic-Rif belt. The Western Alboran Basin (WAB) is the major sedimentary depocenter with a sediment thickness in excess of 10 km, it is bordered by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge. Part of the WAB is affected by shale tectonics and associated mud volcanism. High-quality 2D seismic profiles acquired on the Moroccan margin of the Alboran Basin during the last decade reveal the multiple history of the basin. This study deals with the analysis of a number of these seismic profiles that are located along and orthogonal to the Moroccan margin. Seismic stratigraphy is calibrated from industrial wells. We focus on the interactions between the gravity-driven tectonic processes and the sedimentation in the basin. Our seismic interpretation confirms that the formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). The fast subsidence of the basin floor coeval to massive sedimentation induced the undercompaction of early miocene shales during their deposition. Downslope migration of these fine-grained sediments initiated during the deposition of the Langhian siliciclastics. This gravity-driven system was accompanied by continuous basement subsidence and induced disharmonic deformation in Mid Miocene units (i.e. not related to basement deformation). The development of shale-cored anticlines and thrusts in the deep basin is the result of compressive deformation at the front of the gravity-driven system and lasted for ca. 15 Ma. The compressive front has been re-activated by strong siliciclastic deposition, such as in the Serravalian-Tortonian period or more recently during the Quaternary contourites deposition. The Messinian dessication of the Mediterranean Sea and the following catastrophic Pliocene reflooding caused or enhanced re-activation of the deformation.
NASA Technical Reports Server (NTRS)
Rubin, Charles
1997-01-01
This report summarizes one year of funding for NASA contract NAGW-3691, Application of High Resolution Topography and Remote Sensing: Imagery to the Kinematics of Fold-and-Thrust Belts. I never received year three from NASA. The funds were to support on going tectonic and topographic studies along the front of the central Transverse Ranges and expand the topographic studies to the north. Below are results from the first two years of actual funds that I received from NASA (see attached Federal Cash Transaction Reports). The main focus of this contract was to define and understand the major tectonic processes affecting the formation and evolution of the topography in convergent tectonic settings. The results will be used to test ongoing space-based geodetic measurements and will be compared with present-day seismicity in the central Transverse Ranges and adjacent basins. Two major factors that controls topography in active regions are (1) tectonic uplift due to fault-normal compression and (2) subsequent erosion. The central Transverse and Temblor Ranges are excellent regions for these focused topographic studies. The tectonic processes leading to the mountain building are relatively straightforward and thus are easy to model. Available evidence suggests that the topography in this region is relatively young, - 3.5 Ma or less. In addition,, erosional processes may be relatively easier to model compared to larger and more ancient mountain belts. For example, in larger mountain belts, topographic relief may cause significant orographic effects and high elevation may result in part of the topography located above snowline. Both factors complicate interpretation of erosional processes that may be controlled by elevation. Mountain ranges that are significantly older may have experienced a much wider variety of erosional or climatic conditions over their lifetime. While erosion rates have certainly not been consistent in the Transverse or Temblor ranges over its 3.5 Ma lifetime, we are sure that the region was spared the Pleistocene glaciation that affected parts of the Sierra Nevada Range.
Propagation of gravity waves across the tropopause
NASA Astrophysics Data System (ADS)
Bense, Vera; Spichtinger, Peter
2015-04-01
The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause characteristics are changed and the impact on vertically propagating gravity waves, such as change in wavelength, partial reflection or wave trapping can be studied. References Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142. Durran, D.R., 1990: Mountain Waves and Downslope Winds, Atmospheric Processes over Complex Terrain. Meteorological Monographs, Vol 23, No. 45 Plougonven, R. and F. Zhang, 2013: Gravity Waves From Atmospheric Jets and Fronts. Rev. Geophys. doi:10.1002/2012RG000419 Clark, T., T. Hauf, and J. Kuettner, 1986: Convectively forced internal gravity waves: results from two- dimensional numerical experiments, Q.J.R. Meteorol. Soc., 112, 899-925. Smolarkiewicz, P. and L. Margolin, 1997.: On forward-in-time differencing for fluids: an Eulerian/Semi- Lagrangian non-hydrostatic model for stratified flows, Atmos.-Ocean., 35, 127-152.
Can we use ice calving on glacier fronts as a proxy for rock slope failures?
NASA Astrophysics Data System (ADS)
Abellan, Antonio; Penna, Ivanna; Daicz, Sergio; Carrea, Dario; Derron, Marc-Henri; Jaboyedoff, Michel; Riquelme, Adrian; Tomas, Roberto
2015-04-01
Ice failures on glacier terminus show very similar fingerprints to rock-slope failure (RSF) processes, nevertheless, the investigation of gravity-driven instabilities that shape rock cliffs and glacier's fronts are currently dissociated research topics. Since both materials (ice and rocks) have very different rheological properties, the development of a progressive failure on mountain cliffs occurs at a much slower rate than that observed on glacier fronts, which leads the latter a good proxy for investigating RSF. We utilized a terrestrial Laser Scanner (Ilris-LR system from Optech) for acquiring successive 3D point clouds of one of the most impressive calving glacier fronts, the Perito Moreno glacier located in the Southern Patagonian Ice Fields (Argentina). We scanned the glacier terminus during five days (from 10th to 14th of March 2014) with very high accuracy (0.7cm standard deviation of the error at 100m) and a high density of information (200 points per square meter). Each data series was acquired at a mean interval of 20 minutes. The maximum attainable range for the utilized wavelength of the Ilris-LR system (1064 nm) was around 500 meters over massive ice (showing no-significant loss of information), being this distance considerably reduced on crystalline or wet ice short after the occurrence of calving events. As for the data treatment, we have adapted our innovative algorithms originally developed for the investigation of both precursory deformation and rockfalls to study calving events. By comparing successive three-dimensional datasets, we have investigated not only the magnitude and frequency of several ice failures at the glacier's terminus (ranging from one to thousands of cubic meters), but also the characteristic geometrical features of each failure. In addition, we were able to quantify a growing strain rate on several areas of the glacier's terminus shortly after their final collapse. For instance, we investigated the spatial extent of the differential pre-failure deformation, together with its length and duration, showing very similar acceleration patterns than that observed on rock slopes at their 3rd creep stage. We then documented the differential strain rates observed at different parts of the glacier's terminus, and correlated the areas affected with a progressive acceleration on the strain rate with those that had finally calved. Finally, we also observed that, similarly as it occurs on rock slopes, the investigation of the mechanical discontinuities (crevasses) observed at the glacier controlled the different front failure mechanisms observed at the glacier front. Thanks to the so-built analogies between rock and ice gravity driven instability phenomena, this interdisciplinary research could constitute a great insight in the investigation of RSF endangering human population and infrastructures.
The immature thrust belt of the northern front of the Tianshan
NASA Astrophysics Data System (ADS)
Chen, Ke; Gumiaux, Charles; Augier, Romain; Chen, Yan; Wang, Qingchen
2010-05-01
The modern Tianshan (central Asia), which extends east-west on about 2500 km long with an average of more than 2000 m in altitude, is considered as a direct consequence of the reactivation of a Paleozoic belt due to the India - Asia collision. At first order, the finite structure of this range obviously displays a significant uprising of Paleozoic "basement" rocks - as a crustal-scale ‘pop-up' - surrounded by two Cenozoic foreland basins. In order to characterize the coupling history of this Cenozoic orogeny with its northern foreland basin (Junggar basin), a detailed structural field work has been carried out on the northern piedmont of Tianshan. From Wusu to Urumqi, on about 250 km long, the thrusting of the Paleozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is remarkably exposed along several river valleys. In contrast, in other sections, the Triassic to Jurassic sedimentary series can be followed from the basin to the range where they unconformably overlie on the Carboniferous basement. These series are only gently folded along the "range front". These features imply that, at regional-scale, the Cenozoic reactivation of the Tianshan has not produced important deformation along its contact with the juxtaposed Junggar basin. The shortening ascribed to the Cenozoic intra-continental collision would either be localized in the range, mostly accommodated by reactivated Paleozoic structures or faults in the basement units, or in the distal parts of the Junggar basin, by folds and faults within the Cenozoic sedimentary series. Alternative hypothesis would be that the Tianshan uplift and the movements associated with along its northern front structures, which are traditionally assigned to its Cenozoic reactivation, might be reduced. Such characteristic significantly differs from other well-known orogenic ranges, such as the Canadian Rocky Mountains, the Appalachians, the Pyrenees which display highly folded foreland basins and thrust belts with rather well developed range front structures. This suggests that the Tianshan intra-continental range is rather "young" and still at a primary stage of its orogenic evolution. In other words, its front may be considered as an immature thrust belt. If considering the available tomographic data across the Tianshan, its actual uplift may probably be produced by an asymmetric intracontinental deformation mechanism, i.e. a deeper subduction of the Tarim plate below the Tianshan (to the south), with respect to the one of Junggar plate to the north of the range. Consequently, the Tianshan range offers an excellent natural laboratory to study the processes of the on-going orogeny-foreland basin coupling, ancient structures reactivation as well as initiation and development of range front structures.
The Mesozoic palaeo-relief and immature front belt of northern Tianshan
NASA Astrophysics Data System (ADS)
Chen, K.; Gumiaux, C.; Augier, R.; Chen, Y.; Wang, Q.
2012-04-01
The modern Tianshan (central Asia) extends east-west on about 2500 km long with an average of more than 2000 m in altitude. At first order, the finite structure of this range obviously displays a crust-scale 'pop-up' of Palaeozoic rocks surrounded by two Cenozoic foreland basins. Up to now, this range is regarded as a direct consequence of the Neogene to recent reactivation of a Palaeozoic belt due to the India - Asia collision. This study focuses on the structure of the northern front area of Tianshan and is mainly based on field structural works. In particular, relationships in between sedimentary cover and basement units allow discussing the tectonic and morphological evolution of the northern Tianshan during Mesozoic and Cenozoic times. The study area is about 250 km long, from Wusu to Urumqi, along the northern piedmont of the Tianshan. Continental sedimentary series of the basin as well as structure of the cover/basement interface can well be observed along several incised valleys. Sedimentological observations argue for a limited transport distance for Lower and Uppermost Jurassic deposits that are preserved within intra-mountainous basins or within the foreland basin, along the range front. Moreover, some of the studied geological sections show that Triassic to Jurassic sedimentary series can be continuously followed from the basin to the range where they unconformably overlie the Carboniferous basement. Such onlap type structures of the Jurassic series, on top of the Palaeozoic rock units, can also be observed at more local-scale (~a few 100 m). At different scales, our observations thus clearly evidence i) the existence of a substantial relief during Mesozoic times and ii) very limited deformation, after Mesozoic, along some segments of the northern range front. Yet, thrusting of the Palaeozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is also well exposed along some other river valleys. As a consequence, the northern front of Tianshan displays as very uncylindrical with rapid lateral transitions from one type to the other. This study shows that the Cenozoic reactivation of the Tianshan range has not yielded important deformation along its contact with the juxtaposed Junggar basin, into the studied segment. Besides, the topography of the current northern Tianshan area can not be considered as the unique consequence of Cenozoic reactivation. Finally, from a compilation of structural field observations with available seismic geophysical data, regional cross sections show only moderate shortening in the deformed belt of the northern piedmont of Tianshan. Structure of the fold-and-thrust belt looks controlled by several basement thrusts faults separating rigid blocks. This study suggests that the northern front of the intra-continental Tianshan range may be considered as an immature thrust belt and is still at an early developing stage of its orogenic evolution.
NASA Technical Reports Server (NTRS)
Waco, D. E.
1979-01-01
The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized from a meteorological viewpoint in a two-volume technical memorandum. The missions were part of the NASA Langley Research Center's MAT (Measurement of Atmospheric Turbulence) program, which was conducted between March 1974, and September 1975, at altitudes ranging up to 15 km. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encountered on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D perspective image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because it has a flat surface and is relatively free of dust - ideal conditions for grinding into the rock to expose fresh rock underneath. Clean surfaces also are better for examining a rock's top coating.Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.' Data from the panoramic camera's red, green and blue filters were combined to create this approximate true color image.
Seismicity of the Earth 1900-2007, Nazca Plate and South America
Rhea, Susan; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Tarr, Arthur C.; Benz, Harley
2010-01-01
The South American arc extends over 7,000 km, from the Chilean triple junction offshore of southern Chile to its intersection with the Panama fracture zone, offshore the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their decent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 mm/yr in the south to approximately 70mm/yr in the north.
Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming
Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.
2015-01-01
The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.
STREAMFLOW LOSSES IN THE SANTA CRUZ RIVER, ARIZONA.
Aldridge, B.N.
1985-01-01
The discharge and volume of flow in a peak decrease as the peak moves through an 89-mile (143 km) reach of the Santa Cruz River. An average of three peaks per year flow the length of the reach. Of 17,500 acre-ft (21,600 dam**3) that entered the upstream end of the reach, 2300 acre-ft (2,840 dam**3), 13 percent of the inflow, left the reach as streamflow. The remainder was lost through infiltration. Losses in a reach of channel were estimated by relating losses to the discharge at the upstream end of the reach. Tributary inflow was estimated through the use of synthesized duration curves. Streamflow losses along mountain fronts were estimated through the use of an electric analog model and by relating losses shown by the model to the median altitude of the contributing area.
NASA Astrophysics Data System (ADS)
Oldani, K. M.; Mladenov, N.; Williams, M. W.
2013-12-01
The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.
Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.
2001-01-01
Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela
Morphotectonic study of the Brahmaputra basin using geoinformatics
NASA Astrophysics Data System (ADS)
Nath Sarma, Jogendra; Acharjee, Shukla; murgante, Beniamino
2013-04-01
The Brahmaputra River basin occupies an area of 580,000 km2 lying in Tibet (China), Bhutan, India and Bangladesh. It is bounded on the north by the Nyen-Chen-Tanghla mountains, on the east by the Salween River basin and Patkari range of hills, on the south by Nepal Himalayas and the Naga Hills and on the west by the Ganga sub-basin. Brahmaputra river originates at an elevation of about 5150 m in south-west Tibet and flows for about 2900 km through Tibet (China), India and Bangladesh to join the Ganga.. The Brahmaputra River basin is investigated to examine the influence of active structures by applying an integrated study on geomorphology, morphotectonics, Digital Elevation Model (DEM) using topographic map, satellite data, SRTM, and seismic data. The indices for morphotectonic analysis, viz. basin elongation ratio (Re) indicated tectonically active, transverse topographic symmetry (T = 0.018-0.664) indicated asymmetric nature, asymmetric factor (AF=33) suggested tilt, valley floor width to valley height ratio (Vf = 0.0013-2.945) indicated active incision and mountain-front sinuosity (Smf = 1.11-1.68) values indicated active tectonics in the area. A great or major earthquake in the modern times, in this region may create havoc with huge loss of life and property due to high population density and rapidly developing infrastructure. Keywords: .Morphotectonic, Brahmaputra river, earthquake
Longevity and progressive abandonment of the Rocky Flats surface, Front Range, Colorado
NASA Astrophysics Data System (ADS)
Riihimaki, Catherine A.; Anderson, Robert S.; Safran, Elizabeth B.; Dethier, David P.; Finkel, Robert C.; Bierman, Paul R.
2006-08-01
The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to ˜ 400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.
Gardner, Philip M.; Kirby, Stefan
2011-01-01
The water resources of Rush Valley were assessed during 2008–2010 with an emphasis on refining the understanding of the groundwater-flow system and updating the groundwater budget. Surface-water resources within Rush Valley are limited and are generally used for agriculture. Groundwater is the principal water source for most other uses including supplementing irrigation. Most groundwater withdrawal in Rush Valley is from the unconsolidated basin-fill aquifer where conditions are generally unconfined near the mountain front and confined at lower altitudes near the valley center. Productive aquifers also occur in fractured bedrock along the valley margins and beneath the basin-fill deposits in some areas.Drillers’ logs and geophysical gravity data were compiled and used to delineate seven hydrogeologic units important to basin-wide groundwater movement. The principal basin-fill aquifer includes the unconsolidated Quaternary-age alluvial and lacustrine deposits of (1) the upper basin-fill aquifer unit (UBFAU) and the consolidated and semiconsolidated Tertiary-age lacustrine and alluvial deposits of (2) the lower basin-fill aquifer unit (LBFAU). Bedrock hydrogeologic units include (3) the Tertiary-age volcanic unit (VU), (4) the Pennsylvanian- to Permian-age upper carbonate aquifer unit (UCAU), (5) the upper Mississippian- to lower Pennsylvanian-age upper siliciclastic confining unit (USCU), (6) the Middle Cambrian- to Mississippian-age lower carbonate aquifer unit (LCAU), and (7) the Precambrian- to Lower Cambrian-age noncarbonate confining unit (NCCU). Most productive bedrock wells in the Rush Valley groundwater basin are in the UCAU.Average annual recharge to the Rush Valley groundwater basin is estimated to be about 39,000 acre-feet. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall within the mountains with smaller amounts occurring as infiltration of streamflow and unconsumed irrigation water at or near the mountain front. Groundwater generally flows from the higher altitude recharge areas toward two distinct valley-bottom discharge areas: one in the vicinity of Rush Lake in northern Rush Valley and the other located west and north of Vernon. Average annual discharge from the Rush Valley groundwater basin is estimated to be about 43,000 acre-feet. Most discharge occurs as evapotranspiration in the valley lowlands, as discharge to springs and streams, and as withdrawal from wells. Subsurface discharge outflow to Tooele and Cedar Valleys makes up only a small fraction of natural discharge.Groundwater samples were collected from 25 sites (24 wells and one spring) for geochemical analysis. Dissolved-solids concentrations in water from these sites ranged from 181 to 1,590 milligrams per liter. Samples from seven wells contained arsenic concentrations that exceed the Environmental Protection Agency Maximum Contaminant Level of 10 micrograms per liter. The highest arsenic levels are found north of Vernon and in southeastern Rush Valley. Stable-isotope ratios of oxygen and deuterium, along with dissolved-gas recharge temperatures, indicate that nearly all modern groundwater is meteoric and derived from the infiltration of high altitude precipitation in the mountains. These data are consistent with recharge estimates made using a Basin Characterization Model of net infiltration that shows nearly all recharge occurring as infiltration of precipitation and snowmelt within the mountains surrounding Rush Valley. Tritium concentrations between 0.4 and 10 tritium units indicate the presence of modern (less than 60 years old) groundwater at 7 of the 25 sample sites. Apparent 3H/3He ages, calculated for six of these sites, range from 3 to 35 years. Adjusted minimum radiocarbon ages of premodern water samples range from about 1,600 to 42,000 years with samples from 11 of 13 sites being more than 11,000 years. These data help to identify areas where modern groundwater is circulating through the hydrologic system on time scales of decades or less and indicate that large parts of the principal basin-fill and the bedrock aquifers are much less active and receive little to no modern recharge.
Hevesi, Joseph A.; Johnson, Tyler D.
2016-10-17
A daily precipitation-runoff model, referred to as the Los Angeles Basin watershed model (LABWM), was used to estimate recharge and runoff for a 5,047 square kilometer study area that included the greater Los Angeles area and all surface-water drainages potentially contributing recharge to a 1,450 square kilometer groundwater-study area underlying the greater Los Angeles area, referred to as the Los Angeles groundwater-study area. The recharge estimates for the Los Angeles groundwater-study area included spatially distributed recharge in response to the infiltration of precipitation, runoff, and urban irrigation, as well as mountain-front recharge from surface-water drainages bordering the groundwater-study area. The recharge and runoff estimates incorporated a new method for estimating urban irrigation, consisting of residential and commercial landscape watering, based on land use and the percentage of pervious land area.The LABWM used a 201.17-meter gridded discretization of the study area to represent spatially distributed climate and watershed characteristics affecting the surface and shallow sub-surface hydrology for the Los Angeles groundwater study area. Climate data from a local network of 201 monitoring sites and published maps of 30-year-average monthly precipitation and maximum and minimum air temperature were used to develop the climate inputs for the LABWM. Published maps of land use, land cover, soils, vegetation, and surficial geology were used to represent the physical characteristics of the LABWM area. The LABWM was calibrated to available streamflow records at six streamflow-gaging stations.Model results for a 100-year target-simulation period, from water years 1915 through 2014, were used to quantify and evaluate the spatial and temporal variability of water-budget components, including evapotranspiration (ET), recharge, and runoff. The largest outflow of water from the LABWM was ET; the 100-year average ET rate of 362 millimeters per year (mm/yr) accounted for 66 percent of the combined water inflow of 551 mm/yr, including 488 mm/yr from precipitation and 63 mm/yr from urban irrigation. The simulated ET rate varied from a minimum of 0 mm/yr for impervious areas to high values of more than 1,000 mm/yr for many areas, including the south-facing slopes of the San Gabriel Mountains, stream channels underlain by permeable soils and thick root zones, and pervious locations receiving inflows both from urban irrigation and surface water. Runoff was the next largest outflow, averaging 145 mm/yr for the 100-year period, or 26 percent of the combined precipitation and urban-irrigation inflow. Recharge averaged 45 mm/yr, or about 8 percent of the combined inflow from precipitation and urban irrigation.Simulation results indicated that recharge in response to urban irrigation was an important component of spatially distributed recharge, contributing an average of 56 percent of the total recharge to the eight LABWM subdomains containing the Los Angeles groundwater study area. The 100‑year average recharge rate for the eight subdomains was 41 mm/yr, or 8,473 hectare-meters per year (ha-m/yr), with urban irrigation included in the simulation compared to a recharge rate of 18 mm/yr, or 3,741 ha-m/yr, with urban irrigation excluded. In contrast to recharge, the effect of urban irrigation on runoff was slight; runoff was 72,667 ha-m/yr with urban irrigation included compared to 72,618 ha-m/yr with urban irrigation excluded, an increase of only 48 ha-m/yr (about 0.1 percent).Simulation results also indicated that potential recharge from hilly drainages outside of, but bordering and tributary to, the lower-lying area of the Los Angeles groundwater study area, in this study referred to as mountain-front recharge, could provide an important contribution to the total recharge for the groundwater basins. The time-averaged recharge rate was similar to the combined direct and mountain-front recharge components estimated in a previous study and used as input for a calibrated groundwater model. The annual (water year) recharge estimates simulated in this study, however, indicated much greater year-to-year variability, which was dependent on year-to-year variability in the magnitude and distribution of daily precipitation, compared to the previous estimates.
NASA Astrophysics Data System (ADS)
Brenn, Gregory Randall
Stretching 3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional continental mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; deltaVP ≈ -2.0%; deltaV S ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; deltaVP ≈ -1.5% to -2.0%; deltaVS ≈ -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (deltaVP ≈ 0.5% to 2%; deltaV S ≈ 1.5% to 4.0%). A low velocity region (deltaVP ≈ -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.
NASA Astrophysics Data System (ADS)
Isaksen, K.; Ødegård, R. S.; Eiken, T.; Sollid, J. L.
2009-04-01
An unusual synoptic situation with long periods of warm and humid southerlies produced record breaking temperatures in southern Norway during the period from July 2006 to June 2007, particularly late summer, autumn and early winter 2006-2007. For the one-year period, the temperature anomaly was 2.5-3.0 °C above the 1961-1990 average, with highest anomalies in the eastern and northern parts of southern Norway. The homogenised mean air temperature for the station Kjøremsgrende (62°06'N, 9°03'E, 626 m a.s.l.) was 2.9 °C above the 1961-1990 average. This is the warmest since records began in 1867. The most striking month was December 2006, when mean air temperature was 7.5 °C above the 1961-1990 average. At the official mountain station Fokstugu (62°11'N, 9°29'E, 972 m a.s.l.), on Dovrefjell, there were no days with temperatures below freezing in August and September. The late summer heat had a particularly strong impact on snow, ice and frozen ground in the mountains of southern Norway. Official mass balance investigations performed on three glaciers showed that they had their most negative net balances ever measured. Analysis of a leather shoe that melted out from a perennial snowfield at 2000 meters altitude was dated back 3,400 years old. Several complete arrows and a spade made from wood were also found in front of perennial snowfields. This study seeks to analyse the impact of the 2006-2007 air temperature anomaly on the ground thermal regime, including permafrost and seasonal frost, in the high mountains of Jotunheimen and Dovrefjell in southern Norway. In Jotunheimen, ground temperature data are monitored in a 129 m deep permafrost borehole, located at Juvvasshøe (61°40'N, 8°22'E, 1894 m a.s.l.), established within the PACE-project (Permafrost and Climate in Europe). On Dovrefjell ground temperatures are measured in a transect from deep seasonal frost at 1039 m a.s.l. to discontinuous mountain permafrost at 1505 m a.s.l. in 11 boreholes, 9 m deep. This is the first transect of this type set up in Scandinavia. The monitoring programmes were started in autumn 1999 in Jotunheimen and in autumn 2001 in Dovrefjell and will be continued for several decades, along with measurements from associated weather stations.
NASA Technical Reports Server (NTRS)
2002-01-01
On October 6, 2001, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) captured this true-color image of a large dust storm blowing northeastward across the Mediterranean Sea from Tunisia. According to Joseph Prospero, professor of atmospheric science at the University of Miami, there is an unusual arc-shaped 'front' to the dust cloud. The storm's shape suggests that the source of the dust is rather small and that the meteorology driving it rather unusual. The dust seems to be coming out of the wadis, dry lakebeds and riverbeds, at the base of the Tell Atlas Mountains in northern Tunisia and eastern Algeria. The dust appears to be blowing toward the island of Sicily, Italy (toward the upper righthand corner). Also notice there is a relatively thin plume of smoke emanating eastward from the top of Mount Etna on Sicily. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
A (very) Simple Model for the Aspect Ratio of High-Order River Basins
NASA Astrophysics Data System (ADS)
Shelef, E.
2017-12-01
The structure of river networks dictates the distribution of elevation, water, and sediments across Earth's surface. Despite its intricate shape, the structure of high-order river networks displays some surprising regularities such as the consistent aspect ratio (i.e., basin's width over length) of river basins along linear mountain fronts. This ratio controls the spacing between high-order channels as well as the spacing between the depositional bodies they form. It is generally independent of tectonic and climatic conditions and is often attributed to the initial topography over which the network was formed. This study shows that a simple, cross-like channel model explains this ratio via a requirement for equal elevation gain between the outlets and drainage-divides of adjacent channels at topographic steady state. This model also explains the dependence of aspect ratio on channel concavity and the location of the widest point on a drainage divide.
Protection against lightning on the geomagnetic observatory
NASA Astrophysics Data System (ADS)
Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.
2014-04-01
The Sinji Vrh Geomagnetic Observatory was built on the brow of the mountain Gora, above Ajdovščina, and all over Europe one may hardly find an area which is more often struck by lightning than this south-western part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes the additional electrical charge of stormy clouds. The reliability of operations performed in the every building of observatory could be increased by understanding the formation of lightning in the thunderstorm cloud, the application of already proven methods of protection against a strike of lightning and against its secondary effects. To reach this goal the following groups of experts have to co-operate: the experts in the field of protection against lightening phenomenon, the constructors and manufacturers of equipment and the observatory managers.
Protection against lightning at a geomagnetic observatory
NASA Astrophysics Data System (ADS)
Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.
2014-08-01
The Sinji Vrh Geomagnetic Observatory was built on the brow of Gora, the mountain above Ajdovščina, which is a part of Trnovo plateau, and all over Europe one can hardly find an area which is more often struck by lightning than this southwestern part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes an additional electrical charge of stormy clouds. The reliability of operations performed in every section of the observatory could be increased by understanding the formation of lightning in a thunderstorm cloud and the application of already-proven methods of protection against a stroke of lightning and against its secondary effects. To reach this goal the following groups of experts have to cooperate: experts in the field of protection against lightning, constructors and manufacturers of equipment and observatory managers.
Bankey, Viki; Grauch, V.J.S.; Drenth, B.J.; ,
2006-01-01
This report contains digital data, image files, and text files describing data formats and survey procedures for aeromagnetic data collected during high-resolution aeromagnetic surveys in southern Colorado and northern New Mexico in December, 2005. One survey covers the eastern edge of the San Luis basin, including the towns of Questa, New Mexico and San Luis, Colorado. A second survey covers the mountain front east of Santa Fe, New Mexico, including the town of Chimayo and portions of the Pueblos of Tesuque and Nambe. Several derivative products from these data are also presented as grids and images, including reduced-to-pole data and data continued to a reference surface. Images are presented in various formats and are intended to be used as input to geographic information systems, standard graphics software, or map plotting packages.
Elongate summit calderas as Neogene paleostress indicators in Antarctica
Paulsen, T.S.; Wilson, T.J.
2007-01-01
The orientations and ages of elongate summit calderas on major polygenetic volcanoes were compiled to document Miocene to Pleistocene Sh (minimum horizontal stress) directions on the western and northern flanks of the West Antarctic rift system. Miocene to Pleistocene summit calderas along the western Ross Sea show relatively consistent ENE long axis trends, which are at a high angle to the Transantarctic Mountain Front and parallel to the N77ºE Sh direction at Cape Roberts. The elongation directions of many Miocene to Pleistocene summit calderas in Marie Byrd Land parallel the alignment of polygenetic volcanoes in which they occur, except several Pleistocene calderas with consistent NNE to NE trends. The overall pattern of elongate calderas in Marie Byrd Land is probably due to a combination of structurally controlled orientations and regional stress fields in which Sh is oriented NNE to NE at a moderate to high angle to the trace of the West Antarctic rift system.
Dusek, Robert J.; Iko, William M.; Hofmeister, Erik K.; Paul, Ellen
2012-01-01
To assess the potential impacts of West Nile virus (WNV) on a wild population of free-ranging raptors, we investigated the prevalence and effects of WNV on American Kestrels (Falco sparverius) breeding along the Front Range of the Rocky Mountains in northern Colorado. We monitored kestrel nesting activity at 131 nest boxes from March to August 2004. Of 81 nest attempts, we obtained samples from 111 adults and 250 young. We did not detect WNV in sera; however, 97.3% (108/111) of adults tested positive for WNV neutralizing antibodies, which possibly represented passive transfer of maternal antibodies. Clutch size, hatching, and fledging success in our study did not differ from that previously reported for this species, suggesting that previous WNV exposure in kestrels did not have an effect on reproductive parameters measured in the breeding populations we studied in 2004.
Schmidt, Kevin M.; Ellen, Stephen D.; Haugerud, Ralph A.; Peterson, David M.; Phelps, Geoffery A.
1995-01-01
Damage to pavement and near-surface utility pipes, caused by the October 17, 1989, Loma Prieta earthquake, provide indicators for ground deformation in a 663 km2 area near the southwest margin of the Santa Clara Valley, California. The spatial distribution of 1284 sites of such damage documents the extent and distribution of detectable ground deformation. Damage was concentrated in four zones, three of which are near previously mapped faults. The zone through Los Gatos showed the highest concentration of damage, as well as evidence for pre- and post-earthquake deformation. Damage along the foot of the Santa Cruz Mountains reflected shortening that is consistent with movement along reverse faults in the region and with the hypothesis that tectonic strain is distributed widely across numerous faults in the California Coast Ranges.
Validation/Calibration of SMOS L2 Soil Moisture in Crop Area, Eastern China
NASA Astrophysics Data System (ADS)
Cui, Huizhen; Jiang, Lingmei; Yang, Na; Lu, Zheng
2016-08-01
The Soil Moisture and Ocean Salinity (SMOS) is the worldwide satellite dedicated to retrieve soil moisture information at the global scale, with a high temporal resolution, and from space borne L-band 2-D interferometry radiometer. Product validation for the accuracy of data and utilization is a crucial step. At present, the validation work carried out in China was mainly concentrated in the Tibetan Plateau. The study of this paper mainly focused on the validation of SMOS L2 soil moisture data products in the north of Henan province plain region. This region is in front of Taihang Mountains. Results from the average-average and node- site comparison show that the correlation coefficients (R) between 0.20 and 0.40, also the existence of dry bias mainly concentrated in the 0.07 0.11m3m-3. Finally, this paper analysed the influence factors on the quality of SMOS soil moisture products.
NASA Astrophysics Data System (ADS)
Kueppers, L. M.; Molotch, N. P.; Meromy, L.; Moyes, A. B.; Conlisk, E.; Castanha, C.
2015-12-01
The extent and density of forest trees in mountain landscapes is a first order control on watershed function, affecting patterns of snow accumulation, timing of snowmelt, and amount and quality of run-off, through alterations of surface energy and water fluxes and wind. Climate change is increasingly affecting the density and distribution of mature forests through changes to disturbance regimes, increases in physiological stress and increases in mortality due to warmer temperatures. In addition, climate change is likely altering patterns of regeneration and driving establishment of trees in high elevation meadows and alpine tundra. Though hard to detect in current forestry datasets, changes in tree establishment are critical to the future of forests. Experimental approaches, such as our climate warming experiment in the Colorado Front Range, can provide valuable data regarding seedling sensitivity to climate variability and change across important landscape positions. We've found that warming enhances negative effects of water stress across forest, treeline and alpine sites, reducing recruitment in the absence of additional summer moisture. At the lowest elevation, reductions with warming have reduced Engelmann spruce recruitment to zero. Species differ in their responses to warming in the alpine, but together confirm the importance of seed dispersal to upward forest shifts. The presence of trees or other vegetation can facilitate tree establishment by modifying microclimates, especially at and above treeline. Ultimately, these ecological and demographic processes govern the timescales of tree and forest responses to climate variability and change. For the long-lived species that dominate high elevation watersheds, these processes can take decades or centuries to play out, meaning many tree populations are and will continue to be out of equilibrium with a rapidly changing climate. Projecting changes in tree distributions and abundances across mountain landscapes requires integration of changes in hydroclimatic conditions across diverse topoclimatic settings; the sensitivity of recruitment, growth and mortality to climate; and feedbacks between trees and microclimate into modeling tools that represent time-explicit ecological and demographic processes.
Binkley, Dan; Olsson, U.; Rochelle, R.; Stohlgren, T.; Nikolov, N.
2003-01-01
Old-growth forests of Engelmann spruce (Picea engelmannii Parry ex. Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) dominate much of the landscape of the Rocky Mountains. We characterized the structure, biomass and production of 18 old-growth (200-450-year-old) spruce/fir forests in Rocky Mountain National Park, Colorado, as well as the stand-level supply and use of light and nitrogen. Stands were chosen to span a broad range of elevation, aspect, and topography. Aboveground tree biomass in these old-growth forests averaged 253 Mg/ha (range 130-488 Mg/ha), with aboveground net primary production of 3700 kg ha-1 yr-1 (range from 2700 to 5200 kg ha-1 yr-1). Within stands, trees >35 cm in diameter accounted for 70% of aboveground biomass, but trees <35 cm contributed 70% of the production of woody biomass. Differences in slope and aspect among sites resulted in a range of incoming light from 58 to 74 TJ ha-1 yr-1, and tree canopies intercepted an average of 71% of incoming light (range 50-90%). Aboveground net primary production (ANPP) of trees did not relate to the supply of light or N, but ANPP correlated strongly with the amount of light and N used (r2 = 0.45-0.54, P < 0.01). Uptake of 1 kg of N was associated with about 260 kg of ANPP, and one TJ of intercepted shortwave radiation produced about 78 kg of ANPP. Across these old-growth stands, stands with greater biomass showed higher rates of both ANPP and resource use; variation in aboveground biomass was associated with 24% of the variation in N use (P = 0.04), 44% of the light use (P = 0.003), and 45% of the ANPP (P = 0.002). ?? 2002 Elsevier Science B.V. All rights reserved.
Intrinsic And Extrinsic Controls On Unsteady Deformation Rates, Northern Apennine Mountains, Italy
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Gunderson, K. L.; Pazzaglia, F. J.; Kodama, K. P.
2017-12-01
The slip rates of faults in the Northern Apennine Mountains were unsteady at 104-105 year timescales during the Neogene and Quaternary. Fault slip rates were recovered from growth strata and uplifted fluvial terraces associated with the Salsomaggiore, Quatto Castella, and Castevetro fault-related folds, sampled along the Stirone, Enza, and Panaro Rivers, respectively. The forelimb stratigraphy of each anticline was dated using rock magnetic-based cyclostratigraphy, which varies with Milankovitch periodicity, multispecies biostratigraphy, magnetostratigraphy, OSL luminescence dating, TCN burial dating, and radiocarbon dating of uplifted and folded fluvial terraces. Fault slip magnitudes were constrained with trishear forward models. We observed decoupled deformation and sediment accumulation rates at each structure. From 3.5Ma deformation of a thick and thin-skinned thrusts was temporally variable and controlled by intrinsic rock processes, whereas, the more regional Pede-Apenninic thrust fault, a thick-skinned thrust underlying the mountain front, was likely activated because of extrinsic forcing from foreland basin sedimentation rate accelerations since 1.4Ma. We found that reconstructed slip rate variability increased as the time resolution increased. The reconstructed slip history of the thin-skinned thrust faults was characterized relatively long, slow fold growth and associated fault slip, punctuated by shorter, more rapid periods limb rotation, and slip on the underlying thrust fault timed asynchronously. Thrust fault slip rates slip rates were ≤ 0.1 to 6 mm/yr at these intermediate timescales. The variability of slip rates on the thrusts is likely related to strain partitioning neighboring faults within the orogenic wedge. The studied structures slowed down at 1Ma when there was a switch to slower synchronous fault slip coincident with orogenic wedge thickening due to the emplacement of the out of sequence Pene-Apenninic thrust fault that was emplaced at 1.4±0.7 mm/yr. Both tectonic control and climate controlled variability on syntectonic sedimentation was observed in the growth sections.
NASA Astrophysics Data System (ADS)
Jaberi, Maryam; Ghassemi, Mohammad R.; Shayan, Siavosh; Yamani, Mojtaba; Zamanzadeh, Seyed Mohammad
2018-01-01
The Alborz mountain chain is a region of active deformation within the Arabia-Eurasia continental collision zone. The southern part of central Alborz Mountains, in the north of Iran, represents complex tectonics because it is located at the border of two developing continental sedimentary basins between southern central Alborz and Central Iran. An arid and semi-arid climate, a large extent of Quaternary sediments, rugged topography, salt domes and faults with historical seismicity influence the Habble-Rud River catchment. In the present research, a number of tectonic geomorphologic indices were extracted from satellite imagery and 10 m DEM (digital elevation model) data in order to identify relative tectonic activity within the basin. The indices include: stream length-gradient index (Sl), drainage basin asymmetry (Af), index of mountain front sinuosity (Smf), hypsometric integral (Hi), index of drainage basin shape (Bs), ratio of valley-floor width to valley height (Vf), and fault density (Fd). Due to the presence of heterogeneous indices for all sections of the catchment causing large extension of Habble-Rud (3260 km2), all of the variables such as extremely erodible formations, faults and folds and salt tectonics on the Southern part; were put into a matrix table. As a new approach, the variables were put into the SAW (simple additive model) model as one of MADM (multi-attribute decision-making models) techniques. The study area was divided into four regions according to the values of SAW. These classes include very high (%11), high (48.3%), moderate (34.7%), and low activity (3.4%). The result of the model suggests that the study area is located on a changing tectonic trend in central Alborz from NW-SE to NE-SW. The regions with high relative tectonic activity in HR catchment correspond to the active Garmsar and Sorkhe-Kalout faults and diapirs.
NASA Technical Reports Server (NTRS)
2008-01-01
The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.NASA Astrophysics Data System (ADS)
Cao, K.; Wang, G.; Zeng, Z.; Replumaz, A.
2016-12-01
In this study, we report newly-discovered potassic plutons emplaced at 11 Ma in the SE Pamir. Together with recently-reported volcanism at 12 Ma in the West Kunlun Mts. (Cao et al., 2015), it can be inferred that Late Miocene magmas extend from the north-central Tibet to the central Pamir. Furthermore, our new apatite fission-track analysis in the SE Pamir-West Kunlun Mountains present uniform ages clustering at 11-6 Ma. Forward and inverse modeling indicate Late Miocene ( 11-6 Ma) rapid exhumation of the SE Pamir-West Kunlun Mountains, concurrent with accelerated exhumation of the Shakhdara dome (Stübner et al., 2013), initial doming of the Muztagata massif (Robinson et al., 2007; Sobel et al., 2011; Cao et al., 2013), and thrusting of the front faults along Pamir-West Kunlun Mts. (Bershaw et al., 2012; Cao et al., 2013, 2015). The simultaneous doming and potassic magmatism could attributed to stress relaxation of the upper crust at that time, possibly driven by the thinning of lower lithosphere beneath Pamir-West Kunlun Mts.. Such plausible mechanisms could be responsible for Neogene magmatism, rock exhumation and plateau growth in northwestern Tibet. At the continental scale, our results support that the Tibetan Plateau underwent a Late Miocene phase of deformation and developed outward and upward since then (Molnar et al., 2012). Three representative models are proposed to account for Late Miocene magmatism and crustal deformation in northern Tibet, including 1) southward subduction of the Tarim lithosphere mantle (Matte et al., 1996; Wittlinger et al., 2004), 2) convective removal of lower lithosphere (Molnar et al., 1993; Turner et al., 1993, 1996), and 3) penetration of molten crust into Kunlun terrane (Le Pape et al., 2012; Wang et al., 2012). Our results allow to discuss these competing models in the western Tibet, to better understand the intracontinent orogenesis in central Asia, in which the lithospheric processes have led to upper crust deformation.
Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.
NASA Astrophysics Data System (ADS)
Malatesta, L. C.; Lamb, M. P.
2014-12-01
Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.
Projecting 21st Century Snowpack Trends in the Western United States using Variable-Resolution CESM
NASA Astrophysics Data System (ADS)
Rhoades, A.; Huang, X.; Zarzycki, C. M.; Ullrich, P. A.
2015-12-01
The western USA is integrally reliant upon winter season snowpack, which supplies 3/4 of the region's fresh water and buffers against seasonal aridity on agricultural, ecosystem, and urban water demands. By the end of the 21st century, western USA snowpack (SWE) could decline by 40-70%, snowfall by 25-40%, more winter storms could tend towards rain rather than snow, and the peak timing of snowmelt will shift several weeks earlier in the season. Further, there has been evidence that mountain ranges could face more accelerated warming (elevational dependent warming) due to climate change. These future trends have largely been derived from global climate models (CMIP5) which can't resolve some of the more relatively narrow mountain ranges, like the California Sierra Nevada, in great detail. Therefore, due to the importance of orographic uplift on weather fronts, eastern Pacific sea-surface temperature anomalies, atmospheric river events, and mesoscale convective systems, high-resolution global scale modeling techniques are necessary to properly resolve western USA mountain range climatology. Variable-resolution global climate models (VRGCMs) are a promising next-generation technique to analyze both past and future hydroclimatic trends in the region. VRGCMs serve as a bridge between regional and global models by allowing for high-resolution in areas of interest, eliminate lateral boundary forcings (and resultant model biases), allow for more dynamically inclusive large-scale climate teleconnections, and require smaller simulation times and lower data storage demand (compared to conventional global models). This presentation focuses on validating these next-generation models as well as projecting future climate change scenario impacts on several of the western USA's key hydroclimate metrics (e.g., two-meter surface temperature, snow cover, snow water equivalent, and snowfall) to inform water managers and policy makers and offer resilience to climate change impacts facing the region.
Houseknecht, David W.; Schenk, Christopher J.
2005-01-01
Upper Cretaceous strata of the upper part of the Nanushuk Formation, the Seabee Formation, and the lower part of the Tuluvak Formation are exposed along the Colville River on the east flank of Umiat Mountain in north-central Alaska. The Ninuluk sandstone, which is the uppermost unit of the Nanushuk Formation, displays a vertical succession of facies indicative of deposition in an upward-deepening estuarine through shoreface setting. A marine-flooding surface lies between the Ninuluk sandstone and organic-rich shale of the basal part of the Seabee Formation. The Ninuluk sandstone and the lower part of the Seabee Formation are interpreted as components of a transgressive-systems tract. The lowest, well-exposed strata in the Seabee Formation are a succession of shoreface sandstone beds in the middle of the formation. Integration of outcrop information and the Umiat No. 11 well log suggests that this sandstone succession rests on a sequence boundary and is capped by a marine-flooding surface. The sandstone succession is interpreted as a lowstand-systems tract. The upper part of the Seabee Formation includes a thick interval of organic-rich shale deposited in a dysaerobic offshore environment, and the gradational Seabee-Tuluvak contact is a coarsening-upward shale-to-sandstone succession deposited in a prodelta/delta-front environment. The observation that the upper part of the Seabee Formation correlates with seismic clinoforms suggests that dysaerobic conditions extended well up onto the prodelta slope during intervals of transgression and highstand. Correlation of the Umiat Mountain outcrop section with well logs and seismic data suggests that sequence boundaries and lowstand shoreface deposits may be common in the Seabee Formation and that wave action may have been important in transporting sand to the paleoshelf margin. These conclusions may contribute to an enhanced understanding of sand distribution in prospective lowstand turbidite deposits in the subsurface of the central North Slope of Alaska.
Changes in contaminant loading and hydro-chemical storm behavior after the Station Fire
NASA Astrophysics Data System (ADS)
Burke, M. P.; Hogue, T. S.; Barco, J.; Wessel, C. J.
2010-12-01
The 2009 Station Fire, currently noted as the largest fire in Los Angeles County history, consumed over 650 square kilometers of National Forest land in the San Gabriel Mountain Range. These mountains, located on the east side (leeward) of the Los Angeles basin, are known to have some of the highest deposition rates of atmospheric pollutants in the nation. Even pre-fire, urban-fringe basins in this mountain range serve as an upstream source of contaminants to downstream urban streams. Burned watersheds undergo significant physical and chemical changes that dramatically alter hydrologic flowpaths, erosion potential, surface soil chemistry, and pollutant delivery. Much of the degradation in water quality is attributed to the extensive soil erosion during post-fire runoff events which carry large sediment loads, mobilizing and transporting contaminants to and within downstream waters. High resolution storm samples collected from a small front range watershed provide a unique opportunity to investigate the impacts of wildfire contaminant loading in a watershed that is significantly impacted by high atmospheric deposition of urban contaminates. Data includes four events from WY 2009 (pre-fire) and WY 2010 (post-fire), along with inter-storm grab samples from each storm season. Samples were analyzed for basic anions, nutrients, trace metals, and total suspended solids. Following the fire, storms with similar precipitation patterns yielded loads up to three orders of magnitude greater than pre-fire for some toxic metals, including lead and cadmium. Dramatic increases were also observed in trace metal concentrations typically associated with particulates, while weathering solute concentrations decreased. Post fire intra-storm dynamics exhibited a shift back toward pre-fire behavior by the end of the first rainy season for most of the measured constituents. Additionally, some unexpected behaviors were observed; specifically mercury loads continued to increase throughout the first post-fire rainy season regardless of storm size.
The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.
2012-12-01
The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.
Local-scale analysis of temperature patterns over Poland during heatwave events
NASA Astrophysics Data System (ADS)
Krzyżewska, Agnieszka; Dyer, Jamie
2018-01-01
Heatwaves are predicted to increase in frequency, duration, and severity in the future, including over Central Europe where populations are sensitive to extreme temperature. This paper studies six recent major heatwave events over Poland from 2006 through 2015 using regional-scale simulations (10-km grid spacing, hourly frequency) from the Weather Research and Forecast (WRF) model to define local-scale 2-m temperature patterns. For this purpose, a heatwave is defined as at least three consecutive days with maximum 2-m air temperature exceeding 30 °C. The WRF simulations were validated using maximum daily 2-m temperature observations from 12 meteorological stations in select Polish cities, which were selected to have even spatial coverage across the study area. Synoptic analysis of the six study events shows that the inflow of tropical air masses from the south is the primary driver of heatwave onset and maintenance, the highest temperatures (and most vulnerable areas) occur over arable land and artificial surfaces in central and western Poland, while coastal areas in the north, mountain areas in the south, and forested and mosaic areas of smaller fields and pastures of the northwest, northeast, and southeast are less affected by prolonged periods of elevated temperatures. In general, regional differences in 2-m temperature between the hottest and coolest areas is about 2-4 °C. Large urban areas like Warsaw, or the large complex of artificial areas in the conurbation of Silesian cities, are also generally warmer than surrounding areas by roughly 2-4 °C, and even up to 6 °C, especially during the night. Additionally, hot air from the south of Poland flows through a low-lying area between two mountain ranges (Sudetes and Carpathian Mountains)—the so-called Moravian Gate—hitting densely populated urban areas (Silesian cities) and Cracow. These patterns occur only during high-pressure synoptic conditions with low cloudiness and wind and without any active fronts or mesoscale convective disturbances.
Reconstruction of the glacial maximum recorded in the central Cantabrian Mountains (N Iberia)
NASA Astrophysics Data System (ADS)
Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María
2014-05-01
The Cantabrian Mountains is a coastal range up to 2648 m altitude trending parallel to northern Iberian Peninsula edge at a maximum distance of 100 km inland (~43oN 5oW). Glacial sediments and landforms are generally well-preserved at altitudes higher than 1600 m, evidencing the occurrence of former glaciations. Previous research supports a regional glacial maximum prior to ca 38 cal ka BP and an advanced state of deglaciation by the time of the global Last Glacial Maximum (Jiménez-Sánchez et al., 2013). A geomorphological database has been produced in ArcGIS (1:25,000 scale) for an area about 800 km2 that partially covers the Redes Natural Reservation and Picos de Europa Regional Park. A reconstruction of the ice extent and flow pattern of the former glaciers is presented for this area, showing that an ice field was developed on the study area during the local glacial maximum. The maximum length of the ice tongues that drained this icefield was remarkably asymmetric between both slopes, recording 1 to 6 km-long in the northern slope and up to 19 km-long in southern one. The altitude difference between the glacier fronts of both mountain slopes was ca 100 m. This asymmetric character of the ice tongues is related to geologic and topo-climatic factors. Jiménez-Sánchez, M., Rodríguez-Rodríguez, L., García-Ruiz, J.M., Domínguez-Cuesta, M.J., Farias, P., Valero-Garcés, B., Moreno, A., Rico, M., Valcárcel, M., 2013. A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last glacial cycle. Geomorphology 196, 50-64. Research funded by the CANDELA project (MINECO-CGL2012-31938). L. Rodríguez-Rodríguez is a PhD student with a grant from the Spanish national FPU Program (MECD).
Basaltic Dike Propagation at Yucca Mountain, Nevada, USA
NASA Astrophysics Data System (ADS)
Gaffney, E. S.; Damjanac, B.; Warpinski, N. R.
2004-12-01
We describe simulations of the propagation of basaltic dikes using a 2-dimensional, incompressible hydrofracture code including the effects of the free surface with specific application to potential interactions of rising magma with a nuclear waste repository at Yucca Mountain, Nevada. As the leading edge of the dike approaches the free surface, confinement at the crack tip is reduced and the tip accelerates relative to the magma front. In the absence of either excess confining stress or excess gas pressure in the tip cavity, this leads to an increase of crack-tip velocity by more than an order of magnitude. By casting the results in nondimensional form, they can be applied to a wide variety of intrusive situations. When applied to an alkali basalt intrusion at the proposed high-level nuclear waste repository at Yucca Mountain, the results provide for a description of the subsurface phenomena. For magma rising at 1 m/s and dikes wider than about 0.5 m, the tip of the fissure would already have breached the surface by the time magma arrived at the nominal 300-m repository depth. An approximation of the effect of magma expansion on dike propagation is used to show that removing the restriction of an incompressible magma would result in even greater crack-tip acceleration as the dike approached the surface. A second analysis with a distinct element code indicates that a dike could penetrate the repository even during the first 2000 years after closure during which time heating from radioactive decay of waste would raise the minimum horizontal compressive stress above the vertical stress for about 80 m above and below the repository horizon. Rather than sill formation, the analysis indicates that increased pressure and dike width below the repository cause the crack tip to penetrate the horizon, but much more slowly than under in situ stress conditions. The analysis did not address the effects of either anisotropic joints or heat loss on this result.
NASA Astrophysics Data System (ADS)
Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.
2014-12-01
During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about event-based sedimentation and to expand these rates to annual and decadal scales.
Normal Faulting at the Western Margin of the Altiplano Plateau, Southern Peru
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Hodges, K. V.; Whipple, K. X.; Perignon, M.; Smith, T. M.
2004-12-01
Although the western margin of the Altiplano Plateau is commonly used to illustrate the marked differences in the evolution of a mountain range with strong latitudinal and longitudinal precipitation gradients, the nature of tectonism in this semi-arid region is poorly understood and much debated. The western margin of the Altiplano in southern Peru and northern Chile marks an abrupt transition from the forearc region of the Andes to the high topography of the Cordillera Occidental. This transition has been interpreted by most workers as a monocline, with modifications due to thrust faulting, normal faulting, and gravity slides. Based on recent fieldwork and satellite image analysis, we suggest that, at least in the semi-arid climate of southern Peru, this transition has been the locus of significant high-angle normal faulting related to the block uplift of the Cordillera Occidental. We have focused our initial work in the vicinity of 15\\deg S latitude, 71\\deg W longitude, where the range front crosses Colca Canyon, a major antecedent drainage northwest of Arequipa. In that area, Oligocene to Miocene sediments of the Moquegua Formation, which were eroded from uplifted terrain to the northeast, presently dip to the northeast at angles between 2 and 10º. Field observations of a normal fault contact between the Moquegua sedimentary rocks and Jurassic basement rocks, as well as 15-m resolution 3-D images generated from ASTER satellite imagery, show that the Moquegua units are down-dropped to the west across a steeply SW-dipping normal fault of regional significance. Morphology of the range front throughout southern Peru suggests that normal faulting along the range front has characterized the recent tectonic history of the region. We present geochronological data to constrain the timing of movement both directly from the fault zone as well as indirectly from canyon incision that likely responded to fault movement.
NASA Astrophysics Data System (ADS)
Xie, Z.; Zeng, Y.; Liu, S.; Gao, J.; Jia, B.; Qin, P.
2017-12-01
Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. And the movement of frost and thaw fronts (FTFs) affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere. In this study, schemes describing groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts were developed and incorporated into the Community Land Model 4.5. Then the model was applied in Heihe River Basin(HRB), an arid and semiarid region, northwest China. High resolution ( 1 km) numerical simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the HRB and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions. In addition, the simulated FTFs depth compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen ground). Over the HRB, the upstream area is permafrost region with maximum thawed depth at 2.5 m and lower region is seasonal frozen ground region with maximum frozen depth at 3 m.
NASA Astrophysics Data System (ADS)
Ivy-Ochs, Susan; Braakhekke, Jochem; Monegato, Giovanni; Gianotti, Franco; Forno, Gabriella; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian
2017-04-01
The Last Glacial Maximum (LGM) in the Alps saw much of the mountains inundated by ice. Several main accumulation areas comprising local ice caps and plateau icefields fit into a picture of transection glaciers flowing into huge valley glaciers. In the north the valley glaciers covered long distances (hundreds of kilometers) to reach the forelands where they spread out in fan-shaped piedmont lobes tens of kilometers across, e.g. the Rhine glacier. In the south travel distances to the mountain front were often shorter, the pathway steeper. Nevertheless, not all glaciers even reached beyond the front, as the temperatures were notably warmer in the south. For example at Orta the glacier snout remained within the mountains. Where glaciers reached the forelands they stopped abruptly and the moraine amphitheaters were constructed, e.g. at Ivrea and Rivoli-Avigliana. Sets of stacked moraines built-up as glacier advance was directly confined by the older moraines. We may temporally and spatially identify the culmination of the last glacial cycle by pinpointing the outermost moraines that date to the LGM (generally about 26-24 ka). On the other hand, the timing of abandonment of foreland positions is given by ages of the innermost, often lake-bounding, moraines (about 19-18 ka). Between the two, glacier fluctuations left the stadial moraines. In the Linth-Rhine system three stadials have been recognized: Killwangen, Schlieren and Zurich. Nevertheless, already in the Swiss sector correlation of the LGM stadials among the several foreland lobes is not unambiguous. Across the Alps, not only north to south but also west to east, how do the timing and extent of glaciers during the LGM vary? Recent glacier modelling by Seguinot et al. (2017) informs and suggests the possibility of differences in timing for reaching of the maximum extent and for the number of oscillations of individual lobes during the LGM. At present few sites in the Alps have detailed enough geomorphological constraints with well-dated ice-marginal positions for in depth discussion of outermost, innermost and in between moraines. Where locations of the LGM farthest extent are conflicting depending on author, we are trying to establish the precise location of the most extensive LGM position by directly dating moraine boulders with cosmogenic 10Be. Here we present 10Be data from the Orta and Rivoli-Avigliana amphitheatres. A key comparison is with the Tagliamento amphitheatre to the east, where dating testifies to a two-phase maximum (Monegato et al. 2007). Furthermore, comparison is made to sites north of the Alps including previously unpublished data. Monegato G. et al. 2007. Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research 68: 284-302. Seguinot J. et al. 2017. Modelling last glacial cycle ice dynamics in the Alps. EGU2017-8982
Supporting Ecological Research With a Flexible Satellite Sensornet Gateway
NASA Astrophysics Data System (ADS)
Silva, F.; Rundel, P. W.; Graham, E. A.; Falk, A.; Ye, W.; Pradkin, Y.; Deschon, A.; Bhatt, S.; McHenry, T.
2007-12-01
Wireless sensor networks are a promising technology for ecological research due to their capability to make continuous and in-situ measurements. However, there are some challenges for the wide adoption of this technology by scientists, who may have various research focuses. First, the observation system needs to be rapidly and easily deployable at different remote locations. Second, the system needs to be flexible enough to meet the requirements of different applications and easily reconfigurable by scientists, who may not always be technology experts. To address these challenges, we designed and implemented a flexible satellite gateway for using sensor networks. Our first prototype is being deployed at Stunt Ranch in the Santa Monica Mountains to support biological research at UCLA. In this joint USC/ISI-UCLA deployment, scientists are interested in a long-term investigation of the influence of the 2006-07 southern California drought conditions on the water relations of important chaparral shrub and tree species that differ in their depth of rooting. Rainfall over this past hydrologic year in southern California has been less than 25% of normal, making it the driest year on record. In addition to core measurements of air temperature, relative humidity, wind speed, solar irradiance, rainfall, and soil moisture, we use constant-heating sap flow sensors to continuously monitor the flow of water through the xylem of replicated stems of four species to compare their access to soil moisture with plant water stress. Our gateway consists of a front-end data acquisition system and a back-end data storage system, connected by a long-haul satellite communication link. At the front-end, all environmental sensors are connected to a Compact RIO, a rugged data acquisition platform developed by National Instruments. Sap flow sensors are deployed in several locations that are 20 to 50 meters away from the Compact RIO. At each plant, a Hobo datalogger is used to collect sap flow sensor readings. A Crossbow mote interfaces with the Hobo datalogger to collect data from it and send the data to the Compact RIO through wireless communication. The Compact RIO relays the sensor data to the back- end system over the satellite link. The back-end system stores the data in a database and provides interfaces for easy data retrieval and system reconfiguration. We have developed data exchange and management protocols for reliable data transfer and storage. We have also developed tools to support remote operation, such as system health monitoring and user reconfiguration. Our design emphasizes a modular software architecture that is flexible, to support various scientific applications. This poster illustrates our system design and describes our first deployment at Stunt Ranch. Stunt Ranch is a 310-acre reserve in the Santa Monica Mountains, located within the Santa Monica Mountains National Recreation Area of the National Park Service. The reserve includes mixed communities of chaparral, live oak woodland, and riparian habitats. Stunt Ranch is managed by UCLA as part of the University of California Natural Reserve System.
Lawton, T.F.; Sprinkel, D.A.; Decelles, P.G.; Mitra, G.; Sussman, A.J.; Weiss, M.P.
1997-01-01
The Sevier orogenic belt in central Utah comprises four north-northwest trending thrust plates and two structural culminations that record crustal shortening and uplift in late Mesozoic and early Tertiary time. Synorogenic clastic rocks, mostly conglomerate and sandstone, exposed within the thrust belt were deposited in wedge-top and foredeep depozones within the proximal part of the foreland-basin system. The geologic relations preserved between thrust structures and synorogenic deposits demonstrate a foreland-breaking sequence of thrust deformation that was modified by minor out-of-sequence thrust displacement. Structural culminations in the interior part of the thrust belt deformed and uplifted some of the thrust sheets following their emplacement. Strata in the foreland basin indicate that the thrust sheets of central Utah were emplaced between latest Jurassic and Eocene time. The oldest strata of the foredeep depozone (Cedar Mountain Formation) are Neocomian and were derived from the hanging wall of the Canyon Range thrust. The foredeep depozone subsided most rapidly during Albian through Santonian or early Campanian time and accumulated about 2.5 km of conglomeratic strata (Indianola Group). The overlying North Horn Formation accumulated in a wedge-top basin from the Campanian to the Eocene and records propagation of the Gunnison thrust beneath the former foredeep. The Canyon Range Conglomerate of the Canyon Mountains, equivalent to the Indianola Group and the North Horn Formation, was deposited exclusively in a wedge-top setting on the Canyon Range and Pavant thrust sheets. This field trip, a three day, west-to-east traverse of the Sevier orogenic belt in central Utah, visits localities where timing of thrust structures is demonstrated by geometry of cross-cutting relations, growth strata associated with faults and folds, or deformation of foredeep deposits. Stops in the Canyon Mountains emphasize geometry of late structural culminations and relationships of the Canyon Range thrust to growth strata deposited in the wedge-top depozone. Stops in the San Pitch Mountains illustrate deposits of the foredeep depozone and younger, superjacent wedge-top depozone. Stops in the Sanpete Valley and western part of the Wasatch Plateau examine the evolution of the foreland-basin system from foredeep to wedge-top during growth of a triangle zone near the front of the Gunnison thrust.
Scientific Outreach for K-6 Students: The LTER Schoolyard Children's Book Series
NASA Astrophysics Data System (ADS)
Williams, M.; McKnight, D.
2009-04-01
Here we present information on the many steps involved in writing and publishing a science book for children. This talk builds on the success of the children's' book: My Water Comes from the Mountains, written by Tiffany Fourment and illustrated by Dorothy Emerling, and sponsored by the NWT LTER outreach program. The narrative of the book takes children of ages 7-10 on an illustrative journey from glacial and snowpack sources high on the Continental Divide to the plains and water in their faucet tap, introducing them to the distinctive wildlife and ecosystems along the way, including the diverse uses and human impact of water in Boulder Creek and St. Vrain watersheds. We then talk about developing and distributing a teachers guide and materials packet developed for instructional use in the classroom and based on the children's book: MY H2O: My Water Comes from the Mountains Teacher's Curriculum Guide and Kit; edited by Colleen Flanagan, organizational authors Colleen Flanagan, Kenneth Nova, and Tiffany Fourment. The Teacher's Guide adds accompanying lessons, incorporation of water-wise sustainability in the classroom and community, and improvement of environmental education teaching skills with exemplary projects and practical edification. Direct feedback from the teachers was incorporated into the Guide, and their questions about the water cycle in the Front Range were addressed thoroughly. Utilizing local expertise and resources, the Guide encompassed four themes: 1) Water cycle, 2) Watershed, 3) Flora/Fauna/Life Zones, and 4) Human Interaction/Impact with Water. Each section includes a thorough explanation of 7-8 interactive projects, along with corresponding background information, suggested approaches and the book's parallel page number(s) for supplementary purposes. We end by showing how this model was used to develop the children's book "The Lost Seal (http://www.mcmlter.org/lostseal/) as the next stage in a national program. The Lost Seal children's story, written by Antarctic scientist Diane McKnight, describes the first documented encounter with a live seal in the remote McMurdo Dry Valleys of Antarctica. Additional website information on the children's book "My Water Comes from the Mountains" is available at http://intranet.lternet.edu/archives/documents/Newsletters/NetworkNews/fall04/fall04_pg15.htm. All 433 pieces of orginal artwork for My Water Comes from the Mountains can be viewed at http://culter.colorado.edu/exec/Mywater/mywater_search_page.cgi.
NASA Astrophysics Data System (ADS)
de la Torre, Alejandro; Hierro, Lic. R.; Llamedo, Lic. P.; Rolla, Lic. A.; Alexander, Peter
In addition to an environmental lapse rate conditionally unstable and sufficient available mois-ture, some process by which a parcel is lifted to its LFC is required for the occurrence of deep convection. Since rising motions associated with synoptic scale processes are too weak to lift a moist parcel to its LFC, some strong sub-synoptic mechanism such us upward motion over a frontal zone, anabatic/katabatic winds or mountain waves are required to supply the necessary energy to trigger deep convection. We analyze here, two selected recent severe storms developed in the absence of fronts and registered at the south of Mendoza, Argentina, a semiarid region situated at midlatitudes (roughly between 32S and 36S) at the east of the highest Andes tops. The storms were initiated at the same local time. In both cases, large amplitude stationary mountain waves with similar wavelengths were generated through the forcing of the NW wind by the Andes Range, just before the first cell was detected in the S-band radar. Mesoscale model simulatons (WRF3V, three domains, inner at 4 km) were conducted. The wave pat-tern was analyzed at several constant pressure levels with a Morlet wavelet. This wavelet has proven to be a useful technique for this purpose, as propagating mountain waves are well local-ized within a horizontal domain of some hundred kilometers. The simulated evolution in space and time of vertical wind oscillations (even better than reflectivity) reveal their influence in the genesis zone of both storms. The synoptic conditions observed (low-pressure system over the NW of Argentina, slow displacement of anticyclones in Pacific and Atlantic oceans, a low level jet carrying warm and moist air from the N and geopotential distribution at 1000, 500 and 300 hPa) are consistent with earlier works. We describe and discuss, in both cases, i) the vertical and horizontal wavelengths, ii) the direction of propagation of the main wave modes, iii) their lineal polarization and phase relation between wind and temperature, iv) the Scorer parame-ter and v) the validation of WRF results with two measured COSMIC GPS radio occultation temperature profiles in the inner domain along their lines-of-sight.
Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.
2012-01-01
Rapid growth and development within Carson Valley in Douglas County, Nevada, and Alpine County, California, has caused concern over the continued availability of groundwater, and whether the increased municipal demand could either impact the availability of water or result in decreased flow in the Carson River. Annual pumpage of groundwater has increased from less than 10,000 acre feet per year (acre-ft/yr) in the 1970s to about 31,000 acre-ft/yr in 2004, with most of the water used in agriculture. Municipal use of groundwater totaled about 10,000 acre-feet in 2000. In comparison, average streamflow entering the valley from 1940 to 2006 was 344,100 acre-ft/yr, while average flow exiting the valley was 297,400 acre-ft/yr. Carson Valley is underlain by semi-consolidated Tertiary sediments that are exposed on the eastern side and dip westward. Quaternary fluvial and alluvial deposits overlie the Tertiary sediments in the center and western side of the valley. The hydrology of Carson Valley is dominated by the Carson River, which supplies irrigation water for about 39,000 acres of farmland and maintains the water table less than 5 feet (ft) beneath much of the valley floor. Perennial and ephemeral watersheds drain the Carson Range and the Pine Nut Mountains, and mountain-front recharge to the groundwater system from these watersheds is estimated to average 36,000 acre-ft/yr. Groundwater in Carson Valley flows toward the Carson River and north toward the outlet of the Carson Valley. An upward hydraulic gradient exists over much of the valley, and artesian wells flow at land surface in some areas. Water levels declined as much as 15 ft since 1980 in some areas on the eastern side of the valley. Median estimated transmissivities of Quaternary alluvial-fan and fluvial sediments, and Tertiary sediments are 316; 3,120; and 110 feet squared per day (ft2/d), respectively, with larger transmissivity values in the central part of the valley and smaller values near the valley margins. A groundwater-flow model of Quaternary and Tertiary sediments in Carson Valley was developed using MODFLOW and calibrated to simulate historical conditions from water years 1971 through 2005. The 35-year transient simulation represented quarterly changes in precipitation, streamflow, pumping and irrigation. Inflows to the groundwater system simulated in the model include mountain-front recharge from watersheds in the Carson Range and Pine Nut Mountains, valley recharge from precipitation and land application of wastewater, agricultural recharge from irrigation, and septic-tank discharge. Outflows from the groundwater system simulated in the model include evapotranspiration from the water table and groundwater withdrawals for municipal, domestic, irrigation and other water supplies. The exchange of water between groundwater, the Carson River, and the irrigation system was represented with a version of the Streamflow Routing (SFR) package that was modified to apply diversions from the irrigation network to irrigated areas as recharge. The groundwater-flow model was calibrated through nonlinear regression with UCODE to measured water levels and streamflow to estimate values of hydraulic conductivity, recharge and streambed hydraulic-conductivity that were represented by 18 optimized parameters. The aquifer system was simulated as confined to facilitate numerical convergence, and the hydraulic conductivity of the top active model layers that intersect the water table was multiplied by a factor to account for partial saturation. Storage values representative of specific yield were specified in parts of model layers where unconfined conditions are assumed to occur. The median transmissivity (T) values (11,000 and 800 ft2/d for the fluvial and alluvial-fan sediments, respectively) are both within the third quartile of T values estimated from specific-capacity data, but T values for Tertiary sediments are larger than the third quartile estimated from specific-capacity data. The estimated vertical anisotropy for the Quaternary fluvial sediments (9,000) is comparable to the value estimated for a previous model of Carson Valley. The estimated total volume of mountain-front recharge is equivalent to a previous estimate from the Precipitation-Runoff Modeling System (PRMS) watershed models, but less recharge is estimated for the Carson Range and more recharge is estimated for the Pine Nut Mountains than the previous estimate. Simulated flow paths indicate that groundwater flows faster through the center of Carson Valley and slower through the lower hydraulic-conductivity Tertiary sediments to the east. Shallow flow in the center of the valley is towards drainage channels, but deeper flow is generally directed toward the basin outlet to the north. The aquifer system is in a dynamic equilibrium with large inflows from storage in dry years and large outflows to storage in wet years. Pumping has historically been less than 10 percent of outflows from the groundwater system, and agricultural recharge has been less than 10 percent of inflows to the groundwater system. Three principal sources of uncertainty that affect model results are: (1) the hydraulic characteristics of the Tertiary sediments on the eastern side of the basin, (2) the composition of sediments beneath the alluvial fans and (3) the extent of the confining unit represented within fluvial sediments in the center of the basin. The groundwater-flow model was used in five 55-year predictive simulations to evaluate the long-term effects of different water-use scenarios on water-budget components, groundwater levels, and streamflow in the Carson River. The predictive simulations represented water years 2006 through 2060 using quarterly stress periods with boundary conditions that varied cyclically to represent the transition from wet to dry conditions observed from water years 1995 through 2004. The five scenarios included a base scenario with 2005 pumping rates held constant throughout the simulation period and four other scenarios using: (1) pumping rates increased by 70 percent, including an additional 1,340 domestic wells, (2A) pumping rates more than doubled with municipal pumping increased by a factor of four over the base scenario, (2B) pumping rates of 2A with 2,040 fewer domestic wells, and (3) pumping rates of 2A with 3,700 acres removed from irrigation. The 55-year predictive simulations indicate that increasing groundwater withdrawals under the scenarios considered would result in as much as 40 ft and 60 ft of water-table decline on the west and east sides of Carson Valley, respectively. The water table in the central part of the valley would remain essentially unchanged, but water-level declines of as much as 30 ft are predicted for the deeper, confined aquifer. The increased withdrawals would reduce the volume of groundwater storage and decrease the mean downstream flow in the Carson River by as much as 16,500 acre-ft/yr. If, in addition, 3,700 acres were removed from irrigation, the reduction in mean downstream flow in the Carson River would be only 6,500 acre-ft/yr. The actual amount of flow reduction is uncertain because of potential changes in irrigation practices that may not be accounted for in the model. The projections of the predictive simulations are sensitive to rates of mountain-front recharge specified for the Carson Range and the Pine Nut Mountains. The model provides a tool that can be used to aid water managers and planners in making informed decisions. A prudent management approach would include continued monitoring of water levels on both the east and west sides of Carson Valley to either verify the predictions of the groundwater-flow model or to provide additional data for recalibration of the model if the predictions prove inaccurate.
NASA Astrophysics Data System (ADS)
Anderson, Suzanne P.; Foster, Melissa A.; Anderson, Scott W.; Dühnforth, Miriam; Anderson, Robert S.
2015-04-01
Erosion rates are expected vary with lithology, climate, and topographic slope, yet assembling these variations for an entire landscape is rarely done. The Front Range of the southern Rocky Mountains in Colorado, USA, exhibits contrasts in all three parameters. The range comprises ~2300 m in relief from the Plains to the crags of the Continental Divide. Its abrupt mountain front coincides closely with the boundary between marine sedimentary rocks to the east and Proterozoic crystalline rocks (primarily granodiorite and gneiss) to the west. Mean annual temperature declines and mean annual precipitation increases with elevation, from ~11° C/490 mm at the western edge of the Plains to -3.7° C/930 mm on Niwot Ridge near the range crest. The range contains regions of low relief with rolling topography, in which slopes rarely exceed 20° , as well as deeply incised glacial valleys and fluvial canyons lined by steep slopes (>25° ). Cosmogenic 10Be based erosion rates vary by a factor of ~5 within crystalline rock across the range. The lowest rates (5-10 mm/ka) are found on low relief summit tors in the alpine, where temperatures are low and precipitation is high. Slightly higher erosion rates (20-30 mm/ka) are found in low relief crystalline rock areas with montane forest cover. Taken together, these rates suggest that on low slopes, rock-weathering rates (which place a fundamental limit on erosion rates) are lower in cold alpine settings. Over the 40-150 ka averaging time of 10Be erosion rates, lower rates are found where periglacial/tundra conditions have prevailed, while moderate rates occur where conditions have varied from periglacial/tundra in the past to frigid regime/montane forest in the Holocene. Higher basin-averaged erosion rates of 40-60 mm/ka are reported for 'canyon edge' basins (Dethier et al., 2014, Geology), which are small, steep basins responding to fluvial bedrock incision that formed the canyons in the late Cenozoic. Are higher erosion rates in canyon-edge basins evidence that topographic slope affects weathering rates? We argue that it is more likely that these high erosion rates reflect faster weathering in areas with thinner soil cover. A recent major storm unleashed landslides and debris flows from ~10% of these canyon-edge basins. On average, the volume of material evacuated in these basins was equivalent to ~300 years of soil production by weathering at these rates, approximately the recurrence interval of the storm. The conceptual model that emerges is that agents that cut into rock (bedrock rivers, glaciers) set the pace for exhumation. Adjoining hillslopes erode at a pace set by weathering in the prevailing climate/vegetation regime, conditioned by the ability of sediment transport processes to limit soil thickness on the slopes.
Vorticity and turbulence observations during a wildland fire on sloped terrain
NASA Astrophysics Data System (ADS)
Contezac, J.; Clements, C. B.; Hall, D.; Seto, D.; Davis, B.
2013-12-01
Fire-atmosphere interactions represent an atmospheric boundary-layer regime typically associated with complex circulations that interact with the fire front. In mountainous terrain, these interactions are compounded by terrain-driven circulations that often lead to extreme fire behavior. To better understand the role of complex terrain on fire behavior, a set of field experiments was conducted in June 2012 in the Coast Range of central California. The experiments were conducted on steep valley sidewalls to allow fires to spread upslope. Instrumentation used to measure fire-atmosphere interactions included three micrometeorological towers arranged along the slope and equipped with sonic anemometers, heat flux radiometers, and fine-wire thermocouples. In addition, a scanning Doppler lidar was used to measured winds within and above the valley, and airborne video imagery was collected to monitor fire behavior characteristics. The experimental site was located on the leeside of a ridge where terrain-induced flow and opposing mesoscale winds aloft interacted to create a zone of high wind shear. During the burn, the interaction between the fire and atmosphere caused the generation of several fire whirls that develop as a result of several environmental conditions including shear-generated vorticity and fire front geometry. Airborne video imagery indicated that upon ignition, the plume tilted in the opposite direction from the fire movement suggesting that higher horizontal momentum from aloft was brought to the surface, resulting in much slower fire spread rates due to opposing winds. However, after the fire front had passed the lowest tower located at the base of the slope, a shift in wind speed and direction caused a fire whirl to develop near an L-shaped kink in the fire front. Preliminary results indicate that at this time, winds at the bottom of the slope began to rotate with horizontal vorticity values of -0.2 s^-1. Increased heat flux values at this time indicated that winds were continuing to transport heat towards the slope. As the winds shifted with the fire whirl, heat flux values returned to ambient indicating the passage of the fire plume. A 0.15 hPa decrease in pressure was also observed at the first tower during this period. Further analyses to be presented include vorticity estimates from the Doppler lidar and turbulence kinetic energy measurements from the in situ towers.
Systems and Sensors for Debris-flow Monitoring and Warning
Arattano, Massimo; Marchi, Lorenzo
2008-01-01
Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828
NASA Astrophysics Data System (ADS)
Barnhart, T. B.; Vukomanovic, J.; Bourgeron, P.; Molotch, N. P.
2017-12-01
Land-cover change at the alpine-subalpine interface has the potential to change the water balance of mountainous, snow-dominated catchments due to the influence of vegetation on blowing snow, effective precipitation, evapotranspiration, and other processes. Understanding how land-cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce a disproportionate amount of runoff relative to their land area. We coupled the LANdscape DIsturbance and Succession (LANDIS-II) model with a spatially explicit, physics-based, watershed process model, the Regional Hydro-Ecologic Simulation System (RHESSys), to simulate land-cover change and its impact on the water balance in a 6.6 km2 headwater catchment that spans the alpine-subalpine transition on the Colorado Front Range. We simulated two potential futures of air temperature warming (+4 °C/century) to 2100: a) increased precipitation (+15%, MP) and b) decreased precipitation (-15%, LP). As the LANDIS-II model simulates forest succession in a stochastic manner, we use three LANDIS-II model runs each for the MP and LP future forcing conditions. For both MP and LP, the RHESSys forcing data set was updated to reflect the changes in precipitation and temperature used to generate the land-cover futures. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Somewhat surprisingly, this increase in forest cover led to mean increases in streamflow production of 9% for MP and 3% for LP in 2050. In 2100, mean streamflow production increased by 15% and 6% for the MP and LP scenarios, respectively. This is likely due to increases in effective precipitation as the catchment forested and blowing snow decreased. Indeed, catchment effective precipitation increased from 94% in 2000 to 97% and 99% in 2050 and 2100, respectively, for both MP and LP conditions. This result counters previous work as runoff production increased with forested area, highlighting the need to better understand the impacts of forest expansion on blowing snow and effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land-cover change is of critical importance due to the potential water resources impacts in downstream regions.
Nishie, Hitonaru; Nakamura, Michio
2018-01-01
This study reports on the first observed case of a wild chimpanzee infant being snatched immediately after delivery and consequently cannibalized by an adult male in the Mahale Mountains, Tanzania. We demonstrate "maternity leave" from long-term data from the Mahale M group and suggest that it functions as a possible counterstrategy of mother chimpanzees against the risk of infanticide soon after delivery. The subjects of this study were the M group chimpanzees at Mahale Mountains, Tanzania. The case of cannibalism was observed on December 2, 2014. We used the long-term daily attendance record of the M group chimpanzees between 1990 and 2010 to calculate the lengths of "maternity leave," a perinatal period during which a mother chimpanzee tends to hide herself and gives birth alone. We observed a very rare case of delivery in a wild chimpanzee group. A female chimpanzee gave birth in front of other members, and an adult male snatched and cannibalized the newborn infant immediately after birth. Using the long-term data, we demonstrate that the length of "maternity leave" is longer than that of nonmaternity leave among adult and adolescent female chimpanzees. We argue that this cannibalism event immediately after birth occurred due to the complete lack of "maternity leave" of the mother chimpanzee of the victim, who might lack enough experience of delivery. We suggest that "maternity leave" taken by expecting mothers may function as a possible counterstrategy against infanticide soon after delivery. © 2017 Wiley Periodicals, Inc.
A morning transition case between the land and the sea breeze regimes
NASA Astrophysics Data System (ADS)
Jiménez, Maria A.; Simó, Gemma; Wrenger, Burkhard; Telisman-Prtenjak, Maja; Guijarro, Jose A.; Cuxart, Joan
2015-04-01
To better understand the diurnal cycle of the Sea-Breeze (SB) in the island of Mallorca, during September 2013 the Mallorca Sea Breeze experimental field campaign (MSB13) took place in the Campos basin (located in the south side of the island). Measurements in the lower boundary layer (captive balloon and multicopter) and close to the surface were taken in a site close to the coast (500m inland). In this work an observed morning transition of the SB is further analysed through the observations and a high-resolution mesoscale simulation of this selected case. With the combined inspection of model results and observations, it is found that during the night-time the air flows out of the island: a land-breeze is found near the coast and downslope winds at the mountain slopes. After sunrise and during the previous phase (0600-0800 UTC) the temperature difference between land and sea is reduced meanwhile the wind has the land-breeze direction. During the preparatory phase (0800-1000 UTC) the land surface temperature is warmer than the sea and the wind weakens and veers towards the SB direction. Finally, during the development phase (1000-1200 UTC) the SB front propagates through the center of the Campos basin to the end of the basin, enhanced by the mountain upslope winds. Therefore, the radiative warming stops. The temperature, momentum and TKE budgets are used to understand the most relevant physical processes involved in each of the phases.
From coastal barriers to mountain belts - commonalities in fundamental geomorphic scaling laws
NASA Astrophysics Data System (ADS)
Lazarus, E.
2016-12-01
Overwash is a sediment-transport process essential to the form and resilience of coastal barrier landscapes. Driven by storm events, overwash leaves behind distinctive sedimentary features that, although intensively studied, have lacked unifying quantitative descriptions with which to compare their morphological attributes across documented examples or relate them to other morphodynamic phenomena. Geomorphic scaling laws quantify how measures of shape and size change with respect to another - information that helps to constrain predictions of future change and reconstructions of past environmental conditions. Here, a physical model of erosional and depositional overwash morphology yields intrinsic, allometric scaling laws involving length, width, area, volume, and alongshore spacing. Corroborative comparisons with natural washover morphology indicate scale invariance spanning several orders of magnitude. Several observers of the physical model remarked that the overwashed barrier resembled a dissected linear mountain front with an alluvial apron - an intriguing reimagining of the intended analog. Indeed, that resemblance is reflected quantitatively in these new scaling relationships, which align with canonical scaling laws for terrestrial and marine drainage basins and alluvial fans on Earth and Mars. This finding suggests disparate geomorphic systems that share common allometric properties may be related dynamically, perhaps by an influence more fundamental than characteristic erosion and deposition processes. Such an influence could come from emergent behavior at the intersection of advection and diffusion. Geomorphic behaviors at advection-diffusion transitions (and vice versa), specifically, could be the key to disentangling mechanistic causality from acausality in physical landscape patterns.
High-resolution dust modelling over complex terrains in West Asia
NASA Astrophysics Data System (ADS)
Basart, S.; Vendrell, L.; Baldasano, J. M.
2016-12-01
The present work demonstrates the impact of model resolution in dust propagation in a complex terrain region such as West Asia. For this purpose, two simulations using the NMMB/BSC-Dust model are performed and analysed, one with a high horizontal resolution (at 0.03° × 0.03°) and one with a lower horizontal resolution (at 0.33° × 0.33°). Both model experiments cover two intense dust storms that occurred on 17-20 March 2012 as a consequence of strong northwesterly Shamal winds that spanned over thousands of kilometres in West Asia. The comparison with ground-based (surface weather stations and sunphotometers) and satellite aerosol observations (Aqua/MODIS and MSG/SEVIRI) shows that despite differences in the magnitude of the simulated dust concentrations, the model is able to reproduce these two dust outbreaks. Differences between both simulations on the dust spread rise on regional dust transport areas in south-western Saudi Arabia, Yemen and Oman. The complex orography in south-western Saudi Arabia, Yemen and Oman (with peaks higher than 3000 m) has an impact on the transported dust concentration fields over mountain regions. Differences between both model configurations are mainly associated to the channelization of the dust flow through valleys and the differences in the modelled altitude of the mountains that alters the meteorology and blocks the dust fronts limiting the dust transport. These results demonstrate how the dust prediction in the vicinity of complex terrains improves using high-horizontal resolution simulations.
Adria/Europe collision effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balla, Z.
1988-08-01
In the Senonian, the Adriatic promontory of the African plate lay between two transform faults which joined the north-vergent Alpine-Carpathian front with the south-vergent Apenninic and Hellenic fronts. In the late Eocene it collided with the European continent. The head of the promontory was crushed by compression in the Oligocene and lengthened in a west-east direction. This initiated formation of the West Alpine and West Carpathian arcs. A bay of thin European crust in the area now occupied by the Carpathians facilitated a more pronounced advance of the eastern arc. A wedge-shaped body with the Bakony Mountains in its rigidmore » core was pressed out from the Alpine region. The eastern Alps and the West Carpathians as well as the Southern Alps and the middle Pannonian units suffered sinistral and dextral shear, respectively, which resulted in their lengthening and zonality. In the early-middle Miocene in the Adriatic promontory was broken up. Its northern part suffered counterclockwise rotation in connection with the opening of the Ligurian Sea while the southern part only shifted relative to Africa. Rotation of the northern microplate forced the Dinaric-Hellenic arc to change its shape from convex to concave, and the intra-Carpathian units advanced toward the northeast and rotated toward each other. This completed the Carpathian arc and initiated subsidence in the Pannonian basin. Since the late Miocene the Adriatic promontory has acted again as a part of Africa with a maximum 60-km shift toward the west, caused by the escaping Turkish microplate.« less
Differentiation of debris-flow and flash-flood deposits: implications for paleoflood investigations
Waythomas, Christopher F.; Jarrett, Robert D.; ,
1993-01-01
Debris flows and flash floods are common geomorphic processes in the Colorado Rocky Mountain Front Range and foothills. Usually, debris flows and flash floods are associated with excess summer rainfall or snowmelt, in areas were unconsolidated surficial deposits are relatively thick and slopes are steep. In the Front Range and foothills, flash flooding is limited to areas below about 2300m whereas, debris flow activity is common throughout the foothill and alpine zones and is not necessarily elevation limited. Because flash floods and debris flows transport large quantities of bouldery sediment, the resulting deposits appear somewhat similar even though such deposits were produced by different processes. Discharge estimates based on debris-flow deposits interpreted as flash-flood deposits have large errors because techniques for discharge retrodiction were developed for water floods with negligible sediment concentrations. Criteria for differentiating between debris-flow and flash-flood deposits are most useful for deposits that are fresh and well-exposed. However, with the passage of time, both debris-flow and flash-flood deposits become modified by the combined effects of weathering, colluviation, changes in surface morphology, and in some instances removal of interstitial sediment. As a result, some of the physical characteristics of the deposits become more alike. Criteria especially applicable to older deposits are needed. We differentiate flash-flood from debris-flow and other deposits using clast fabric measurements and other morphologic and sedimentologic techniques (e.g., deposit morphology, clast lithology, particle size and shape, geomorphic setting).
Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability
NASA Astrophysics Data System (ADS)
Schlutow, Mark; Klein, Rupert
2017-04-01
Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.
Tillman, Fred D.; Cordova, Jeffrey T.; Leake, Stanley A.; Thomas, Blakemore E.; Callegary, James B.
2011-01-01
Executive Summary: Arizona is located in an arid to semiarid region in the southwestern United States and is one of the fastest growing States in the country. Population in Arizona surpassed 6.5 million people in 2008, an increase of 140 percent since 1980, when the last regional U.S. Geological Survey (USGS) groundwater study was done as part of the Regional Aquifer System Analysis (RASA) program. The alluvial basins of Arizona are part of the Basin and Range Physiographic Province and cover more than 73,000 mi2, 65 percent of the State's total land area. More than 85 percent of the State's population resides within this area, accounting for more than 95 percent of the State's groundwater use. Groundwater supplies in the area are expected to undergo further stress as an increasing population vies with the State's important agricultural sector for access to these limited resources. To provide updated information to stakeholders addressing issues surrounding limited groundwater supplies and projected increases in groundwater use, the USGS Groundwater Resources Program instituted the Southwest Alluvial Basins Groundwater Availability and Use Pilot Program to evaluate the availability of groundwater resources in the alluvial basins of Arizona. The principal products of this evaluation of groundwater resources are updated groundwater budget information for the study area and a proof-of-concept groundwater-flow model incorporating several interconnected groundwater basins. This effort builds on previous research on the assessment and mapping of groundwater conditions in the alluvial basins of Arizona, also supported by the USGS Groundwater Resources Program. Regional Groundwater Budget: The Southwest Alluvial Basins-Regional Aquifer System Analysis (SWAB-RASA) study produced semiquantitative groundwater budgets for each of the alluvial basins in the SWAB-RASA study area. The pilot program documented in this report developed new quantitative estimates of groundwater budget components using recent (2000-2007) data and methods of data analysis. Estimates of inflow components, including mountain-front recharge, incidental recharge from irrigation of agriculture, managed recharge from recharge facilities, interbasin underflow from upgradient basins, and streamflow losses, are quantified for recent time periods. Mountain-front recharge is the greatest inflow component to the groundwater system and was estimated using two methods: a basin characteristic model and new precipitation information used in a previously developed regression equation. Annual mountain-front recharge for the study area for 1940-2007 estimated by the two methods is 730,000 acre-ft for the basin characteristic model and 643,000 acre-ft for the regression equation, representing 1.5 percent and 1.3 percent of precipitation, respectively. Outflow components, including groundwater withdrawals, evapotranspiration, and interbasin flow to downgradient basins, are also presented for recent time periods. Groundwater withdrawals accounted for the largest share of the water budget, with nearly 2.4 million acre-ft per year withdrawn from the study area in recent years. Evapotranspiration from groundwater was estimated at nearly 1.3 million acre-ft per year for the study area using a newly developed method incorporating vegetation indices from satellite images and land cover information. For water-budget components with temporal variation that could be assessed from available data, estimates for intervening time periods since before development were also developed. An estimate of aquifer storage change, representing both gains to and losses from the groundwater system since before development, was derived for the most developed basins in the study area using available estimates of groundwater-level changes and storage coefficients. An overall storage loss of 74.5 million acre-ft was estimated for these basins within the study area. Demonstration
Temporal patterns of glacial lake evolution in high-mountain environments
NASA Astrophysics Data System (ADS)
Mergili, Martin; Emmer, Adam; Viani, Cristina; Huggel, Christian
2017-04-01
Lakes forming at the front of retreating glaciers are characteristic features of high-mountain areas in a warming climate. Typically, lakes shift from the proglacial phase (lake is in direct contact with glacier) to a glacier-detached (no direct contact) and finally to a non-glacial phase (lake catchment is completely deglaciated) of lake evolution. Apart from changing glacier-lake interactions, each stage is characterized by particular features of lake growth, and by the lake's susceptibility to sudden drainage (lake outburst flood). While this concept appears to be valid globally, some mountain areas are rich in dynamically evolving proglacial lakes, while in others most lakes have already shifted to the glacier-detached or even non-glacial phase. In the present contribution we (i) explore and quantify the history of glacial lake formation and evolution over the past up to 70 years; (ii) assess the current situation of selected contrasting mountain areas (eastern and western European Alps, southern and northern Pamir, Cordillera Blanca); and (iii) link the patterns of lake evolution to the prevailing topographic and glaciological characteristics in order to improve the understanding of high-mountain geoenvironmental change. In the eastern Alps we identify only very few lakes in the proglacial stage. While many lakes appeared and dynamically evolved until the 1980s between 2550 m and 2800 m asl, most of them have lost glacier contact until the 2000s, whereas very few new proglacial lakes appeared at the same time. Even though a similar trend is observed in the higher western Alps, a more dynamic glacial lake evolution is observed there. The arid southern Pamir is characterized by a high number of proglacial lakes, mainly around 4500 m asl. There is strong evidence that glacial lake evolution is, after a highly dynamic phase between the 1970s and approx. 2000, decelerating. Few proglacial lakes exist in the higher and more humid, heavily glacierized northern Pamir, even though there is some evidence for a the recent trend of lake formation and growth. The tropical Cordillera Blanca displays a high, but gradually decreasing share of proglacial lakes. A significant shift of lake elevation was observed: tmost lakes were situated between 4250 m and 4600 m asl in 1950s, while almost half of the lakes are currently situated above 4600 m asl, confirming post-LIA climate change forcing. We attempt to explain the observed trends by investigating the relation of the timing of lake evolution with an interplay of the broad-scale elevational patterns of glaciers and topography, and the local conditions. The findings will assist in anticipating possible future patterns of lake evolution at different scales, relevant for lake outburst risks and water management issues.
Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.
2010-01-01
This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment preserved in the Colorado Headwaters Basin, suggesting this basin may have remained closed throughout the Paleocene and early Eocene. The field trip also addresses middle Eocene(?) folding of the late Laramide basin-fill strata, related to steep reverse faults that offset the Proterozoic crystalline basement. Late Oligocene magmatic activity is indicated by dikes, plugs, and eruptive volcanic rocks in the Rabbit Ears Range and the Never Summer Mountains that span and flank the Colorado Headwaters Basin. These intrusions and eruptions were accompanied by extensional faulting along predominantly northwesterly trends. Erosion accompanied the late Oligocene igneous activity and faulting, leading to deposition of boulder conglomerates and sandstones of the North Park Formation and high-level conglomerates across the landscape that preserve evidence of a paleo-drainage network that drained the volcanic landscape.
NASA Astrophysics Data System (ADS)
Balling, Philipp; Ballato, Paolo; Dunkl, István; Zeillinger, Gerold; Heidarzadeh, Ghasem; Ghasemi, Mohammad; Strecker, Manfred R.
2014-05-01
The Iranian Plateau is situated in the collision zone between the Arabian and Eurasian plates and forms a NW-SE elongated, 40- to 50-km-thick crustal block, delimited to the north by the Urmieh Dokhtar Volcanic Zone and to south by the High Zagros Mountains. The plateau is characterized by a series of basins and mountain ranges bounded by reverse and transpressive faults. These mountain ranges reflect a history of strong collisional deformation, with intensely faulted and folded Pre-Cambrian (basement) to Miocene (terrestrial sediments of the Upper Red Formation) rocks. Based on the structural evolution, high mean elevation of 2 km, and a crustal thickness of up to 56 km, the realm of the present-day plateau must have absorbed a significant fraction of past plate convergence between Eurasia and Arabia. However, according to seismic and GPS data active deformation is rather limited. In addition, the exact timing and style of deformation, the extent of crustal shortening and thickening on the northern Iranian Plateau during continental collision remain unclear. To address these issues we collected structural data and modeled deformation scenarios cross four mountain ranges that constitute the northern margin of the Iranian Plateau (NW Iran). The Tarom, Mah Neshan and Sultanije mountain ranges are NW-SE oriented, while the northernmost (Bozgosh) is E-W aligned. Due to the lack of subsurface data, several forward and backward models were generated with MOVE (Midland Valley, structural modelling software). The model with the simplest and most robust geological explanation of the field data was chosen. In addition, we combined our structural work with an apatite (U-Th)/He study (AHe) along two transects (Bozgosh, Mah Neshan) and Zircon (U-Th)/He data (ZHe) on higher exhumed locations. In the northern sector of the plateau late Cretaceous (or Paleocene?) rocks had been deposited unconformably onto older, deformed rocks. This suggests that the Arabia-Eurasia collision was predated by at least one contractional episode, which was most likely associated with the deposition of red continental conglomerates (Fajan Fm.). Consequently, some of the major faults affecting Tertiary units in the region may be inherited structures, reactivated during collisional deformation. Our structural results indicate that the different mountain ranges constituting the northern plateau are characterized by thick-skinned deformation (tectonics) with major deep-seated faults exposing basement rocks. Locally, thin-skinned tectonics occurred, with multiple detachment horizons within evaporites of the Lower and Upper Red formations (Oligo-Miocene), and shales of the Shemshak (Jurassic), and the Barut (Cambrian) formations. The first obtained AHe cooling ages for this area suggest that the more internal sectors of the Iranian Plateau (SW of the Mah Neshan profile) record an early cooling phase at 25-20 Ma. This was followed by outward propagation of deformation fronts to the north and northeast from approximately 12 to 8 Ma. This resulted in the development of a contractional basin and range morphology of the Iranian Plateau.
Tomescu, Alexandru M. F.
2017-01-01
Abstract Background and Aims Fossil plants are found as fragmentary remains and understanding them as natural species requires assembly of whole-organism concepts that integrate different plant parts. Such concepts are essential for incorporating fossils in hypotheses of plant evolution and phylogeny. Plants of the Early Devonian are crucial to reconstructing the initial radiation of tracheophytes, yet few are understood as whole organisms. Methods This study assembles a whole-plant concept for the Early Devonian lycophyte Sengelia radicans gen. et sp. nov., based on morphometric data and taphonomic observations from >1000 specimens collected in the Beartooth Butte Formation (Wyoming, USA). Key Results Sengelia radicans occupies a key position between stem-group and derived lycophyte lineages. Sengelia had a rooting system of downward-growing root-bearing stems, formed dense monotypic mats of prostrate shoots in areas that experienced periodic flooding, and was characterized by a life-history strategy adapted for survival after floods, dominated by clonality, and featuring infrequent sexual reproduction. Conclusions Sengelia radicans is the oldest among the very few early tracheophytes for which a detailed, rigorous whole-plant concept integrates morphology, growth habit, life history and growth environment. This plant adds to the diversity of body plans documented among lycophytes and may help elucidate patterns of morphological evolution in the clade. PMID:28334100
NASA Astrophysics Data System (ADS)
Skeets, B.; Barnard, H. R.; Byers, A.
2011-12-01
The influence of vegetation on the hydrological cycle and the possible effect of roots in geomorphological processes are poorly understood. Gordon Gulch watershed in the Front Range of the Rocky Mountains, Colorado, is a montane climate ecosystem of the Boulder Creek Critical Zone Observatory whose study adds to the database of ecohydrological work in different climates. This work sought to identify the sources of water used by different tree species and to determine how trees growing in rock outcrops may contribute to the fracturing and weathering of rock. Stable isotopes (18O and 2H) were analyzed from water extracted from soil and xylem samples. Pinus ponderosa on the south-facing slope consumes water from deeper depths during dry periods and uses newly rain-saturated soils, after rainfall events. Pinus contorta on the north -facing slope shows a similar, expected response in water consumption, before and after rain. Two trees (Pinus ponderosa) growing within rock outcrops demonstrate water use from cracks replenished by new rains. An underexplored question in geomorphology is whether tree roots growing in rock outcrops contribute to long-term geomorphological processes by physically deteriorating the bedrock. The dominant roots of measured trees contributed approximately 30 - 80% of total water use, seen especially after rainfall events. Preliminary analysis of root growth rings indicates that root growth is capable of expanding rock outcrop fractures at an approximate rate of 0.6 - 1.0 mm per year. These results demonstrate the significant role roots play in tree physiological processes and in bedrock deterioration.
Zaprowski, Brent J.; Evenson, Edward B.; Pazzaglia, Frank J.; Epstein, Jack B.
2001-01-01
Geomorphic research in the Black Hills and northern High Plains poses an intriguing hypothesis for the Cenozoic evolution of this salient of the Laramide Rockies. Most recently, geologists have appealed to late Cenozoic epeirogenic uplift or climate change to explain the post-Laramide unroofing of the Rockies. On the basis of field mapping and the interpretation of long-valley profiles, we conclude that the propagation of knickzones is the primary mechanism for exhumation in the Black Hills. Long profiles of major drainages show discrete breaks in the slope of the channel gradient that are not coincident with changes in rock type. We use the term knickzones to describe these features because their profiles are broadly convex over tens of kilometers. At and below the knickzone, the channel is incising into bedrock, abandoning a flood plain, and forming a terrace. Above the knickzone, the channel is much less incised, resulting in a broad valley bottom. Numerous examples of stream piracy are documented, and in each case, the capture is recorded in the same terrace level. These observations are consistent with migrating knickzones that have swept through Black Hills streams, rearranging drainages in their wake. We demonstrate there are two knickzone fronts associated with mapped terraces. Preliminary field evidence of soil development shows that these terraces are time transgressive in nature. Our data strongly suggest that knickzone propagation must be considered a viable mechanism driving late Cenozoic fluvial incision and exhumation of the northern High Plains and adjacent northern Rocky Mountains.
Schmidt, Kevin M.; Hanshaw, M.N.; Howle, James F.; Kean, Jason W.; Staley, Dennis M.; Stock, Jonathan D.; Bawden, Gerald W.
2011-01-01
To investigate rainfall-runoff conditions that generate post-wildfire debris flows, we instrumented and surveyed steep, small watersheds along the tectonically active front of the San Gabriel Mountains, California. Fortuitously, we recorded runoff-generated debris-flows triggered by one spatially restricted convective event with 28 mm of rainfall falling over 62 minutes. Our rain gages, nested hillslope overland-flow sensors and soil-moisture probes, as well as a time series of terrestrial laser scanning (TLS) revealed the effects of the storm. Hillslope overland-flow response, along two ~10-m long flow lines perpendicular to and originating from a drainage divide, displayed only a 10 to 20 minute delay from the onset of rainfall with accumulated totals of merely 5-10 mm. Depth-stratified soil-moisture probes displayed a greater time delay, roughly 20- 30 minutes, indicating that initial overland flow was Hortonian. Furthermore, a downstream channel-monitoring array recorded a pronounced discharge peak generated by the passage of a debris flow after 18 minutes of rainfall. At this time, only four of the eleven hillslope overlandflow sensors confirmed the presence of surface-water flow. Repeat TLS and detailed field mapping using GPS document how patterns of rainsplash, overland-flow scour, and rilling contributed to the generation of meter-scale debris flows. In response to a single small storm, the debris flows deposited irregular levees and lobate terminal snouts on hillslopes and caused widespread erosion of the valley axis with ground surface lowering exceeding 1.5 m.
Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America
NASA Astrophysics Data System (ADS)
Neff, K.; Meixner, T.; De La Cruz, L.
2014-12-01
Groundwater recharge is the primary source of aquifer replenishment, an important source of freshwater for human consumption and riparian area sustainability in semi-arid regions. It is critical to understand the current groundwater recharge regimes in groundwater basins throughout the Western U.S. and how those regimes might shift in the face of climate change, land use change and management manipulations that impact the availability and composition of groundwater resources. Watersheds in the Basin and Range Province are characterized by a variable precipitation regime of wet winters, and variable summer precipitation. The horst-graben structure of these basins lends itself to orographic and continental precipitation effects that make mountain block and mountain front recharge critical components of annual recharge. The current assumption is that the relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation dominating in the northern parts of the region, and summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon extends its influence. To test this hypothesis, stable water isotope data of groundwater and precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to characterize and compare groundwater recharge regimes throughout the region. Preliminary stable water isotope results from the southernmost Rio San Miguel Basin in Sonora, Mexico indicate that groundwater is composed of 64%±14% summer monsoon precipitation, in contrast to more northern basins where winter precipitation is the source of 79-90% of basin groundwater.
Caine, Jonathan S.; Ridley, John; Wessel, Zachary R.
2010-01-01
The eastern central Front Range of the Rocky Mountains in Colorado has long been a region of geologic interest because of Laramide-age hydrothermal polymetallic vein-related ores. The region is characterized by a well-exposed array of geologic structures associated with ductile and brittle deformation, which record crustal strain over 1.7 billion years of continental growth and evolution. The mineralized areas lie along a broad linear zone termed the Colorado Mineral Belt. This lineament has commonly been interpreted as following a fundamental boundary, such as a suture zone, in the North American Proterozoic crust that acted as a persistent zone of weakness localizing the emplacement of magmas and associated hydrothermal fluid flow. However, the details on the controls of the location, orientation, kinematics, density, permeability, and relative strength of various geological structures and their specific relationships to mineral deposit formation are not related to Proterozoic ancestry in a simple manner. The objectives of this field trip are to show key localities typical of the various types of structures present, show recently compiled and new data, offer alternative conceptual models, and foster dialogue. Topics to be discussed include: (1) structural history of the eastern Front Range; (2) characteristics, kinematics, orientations, and age of ductile and brittle structures and how they may or may not relate to one another and mineral deposit permeability; and (3) characteristics, localization, and evolution of the metal and non–metal-bearing hydrothermal systems in the eastern Colorado Mineral Belt.
The influence of terrain forcing on the initiation of deep convection over Mediterranean islands
NASA Astrophysics Data System (ADS)
Barthlott, Christian; Kirshbaum, Daniel
2013-04-01
The influence of mountainous islands on the initiation of deep convection is investigated using the Consortium for Small-scale Modeling (COSMO) model. The study day is 26 August 2009 on which moist convection occurred over both the Corsica and Sardinia island in the Mediterranean Sea. Sensitivity runs with systematically modified topography are explored to evaluate the relative importance of the land-sea contrast and the terrain height for convection initiation. Whereas no island precipitation is simulated when the islands are completely removed, all simulations that represent these land surfaces develop convective precipitation. Although convection initiates progressively earlier in the day over taller islands, the precipitation rates and accumulations do not show a fixed relationship with terrain height. This is due to the competing effects of different physical processes. First, whereas the forcing for low-level ascent increases over taller islands, the boundary-layer moisture supply decreases, which diminishes the conditional instability and precipitable water. Second, whereas taller islands enhance the inland propagation speeds of sea-breeze fronts, they also mechanically block these fronts and prevent them from reaching the island interior. As a result, the island precipitation is rather insensitive to island terrain height except for one particular case in which the island precipitation increases considerably due to an optimal superposition of the sea breeze and upslope flow. These results demonstrate the complexity of interactions between sea breezes and orography and reinforce that an adequate representation of detailed topographic features is necessary to account for thermally induced wind systems that initiate deep convection.
GPS and InSAR Observations of Active Mountain Growth Across the Sierra Nevada/Great Basin Transition
NASA Astrophysics Data System (ADS)
Hammond, W. C.; Blewitt, G.; Li, Z.; Kreemer, C. W.; Plag, H.
2010-12-01
Topographic relief across the Sierra Nevada Mountains and Great Basin of the western United States is dominated by mountain ranges and valleys that are the product of active tectonic deformation. The contemporary rate of uplift of the Sierra Nevada via slip on range front faults and/or tilting of the Sierra Nevada/Great Valley microplate (SNGV) has been the subject of controversy. For example, geologic estimates of the age of the modern range topography vary by one order of magnitude, from 3 to 30 million years. With present elevations near 3 km, the more rapid of these implied rates is large enough to be detected by the most precise GPS measurements. We use GPS vertical and horizontal components, and InSAR time series analysis to address these long standing questions about the rates of Sierran uplift. The data are from western U.S. high precision GPS networks including the EarthScope Plate Boundary Observatory, its nucleus networks, the University of Nevada Mobile Array of GPS for Nevada Transtension, and from integrated InSAR+GPS time series analysis of ERS and ENVISAT scenes acquired between 1992 and 2010 from the GeoEarthScope and WinSAR data archives. GPS data are processed using the GIPSY OASIS II software, with ambiguities resolved, ocean tidal loading, latest GMF troposphere model and antenna calibrations applied. InSAR time series analysis results provide enhanced geographic resolution, improving our ability to locate the boundary of SNGV block-like behavior. Vertical velocities from long-running continuous stations in eastern Nevada are very similar to one another, averaging -0.1 mm/yr, with standard deviation of 0.27 mm/yr, placing an upper bound on the uncertainty in vertical rates. We find agreement between the results of InSAR time series analysis aligned to GPS and GPS line of site rates at the level of 0.35 mm/yr, placing an upper bound on the uncertainty of InSAR time series results. Because we seek to infer long-term uplift rates, applicable over millions of years, we correct the geodetic velocity field for postseismic transients from earthquakes that can cause long-wavelength distortions of the GPS velocity field. The signal of viscoelastic relaxation from historic earthquakes in Central Nevada is clearly visible in the data. We remove this transient relaxation by subtracting the predictions from a published model, although the effect on SNGV vertical motion is negligible. There is general agreement among stations on the west slope of the Sierra Nevada, near the central and southern Sierra between latitude 36° and 39°, that the rates are between 0.8 and 1.6 mm/yr upward with respect to eastern Nevada. These rates are in broad agreement with normal slip rates on the range front faults along the eastern edge of the SNGV estimated using block models constrained by horizontal GPS measurements. Thus our results agree with models that call for a Sierra Nevada uplift rate near 1 mm/yr, and a younger Sierra Nevada whose age is on the order of 3 Ma.
Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle; Martin, Peter
2011-01-01
Agua Caliente Spring, in downtown Palm Springs, California, has been used for recreation and medicinal therapy for hundreds of years and currently (2008) is the source of hot water for the Spa Resort owned by the Agua Caliente Band of the Cahuilla Indians. The Agua Caliente Spring is located about 1,500 feet east of the eastern front of the San Jacinto Mountains on the southeast-sloping alluvial plain of the Coachella Valley. The objectives of this study were to (1) define the geologic structure associated with the Agua Caliente Spring; (2) define the source(s), and possibly the age(s), of water discharged by the spring; (3) ascertain the seasonal and longer-term variability of the natural discharge, water temperature, and chemical characteristics of the spring water; (4) evaluate whether water-level declines in the regional aquifer will influence the temperature of the spring discharge; and, (5) estimate the quantity of spring water that leaks out of the water-collector tank at the spring orifice.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko
2007-10-01
The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.
NASA Astrophysics Data System (ADS)
Cheng, T.; Xu, Z.; Hong, S.
2017-12-01
Flood disasters frequently attack the urban area in Jinan City during past years, and the city is faced with severe road flooding which greatly threaten pedestrians' safety. Therefore, it is of great significance to investigate the pedestrian risk during floods under specific topographic condition. In this study, a model coupled hydrological and hydrodynamic processes is developed in the study area to simulate the flood routing process on the road for the "7.18" rainstorm and validated with post-disaster damage survey information. The risk of pedestrian is estimated with a flood risk assessment model. The result shows that the coupled model performs well in the rainstorm flood process. On the basis of the simulation result, the areas with extreme risk, medium risk, and mild risk are identified, respectively. Regions with high risk are generally located near the mountain front area with steep slopes. This study will provide scientific support for the flood control and disaster reduction in Jinan City.
Drenth, B.J.; Grauch, V.J.S.; Bankey, Viki; New Sense Geophysics, Ltd.
2009-01-01
This report contains digital data, image files, and text files describing data formats and survey procedures for two high-resolution aeromagnetic surveys in south-central Colorado: one in the eastern San Luis Valley, Alamosa and Saguache Counties, and the other in the southern Upper Arkansas Valley, Chaffee County. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve and extends south along the mountain front to the foot of Mount Blanca. In the Upper Arkansas Valley, the Poncha Springs survey covers the town of Poncha Springs and vicinity. The digital files include grids, images, and flight-line data. Several derivative products from these data are also presented as grids and images, including two grids of reduced-to-pole aeromagnetic data and data continued to a reference surface. Images are presented in various formats and are intended to be used as input to geographic information systems, standard graphics software, or map plotting packages.
Seasonal Snow Cold Content Dynamics in the Alpine and Sub-Alpine, Niwot Ridge, Colorado, USA
NASA Astrophysics Data System (ADS)
Jennings, K. S.; Molotch, N. P.
2015-12-01
Cold content represents the energy required to warm a sub-freezing snowpack to an isothermal 0°C. Across daily and seasonal time scales it is a dynamic interplay between the forces of snowpack accumulation/cooling and warming. Cold content determines snowmelt timing and is an important component of the annual energy budget of mountain sites with seasonal snowpacks. However, little is understood about seasonal snowpack cold content dynamics as calculating cold content requires depth-weighted snowpack temperature and snow water equivalent (SWE) measurements, which are scarce. A spatially distributed network of snow pits has been sampled since 1993 at the Niwot Ridge Long Term Ecological Research site on the eastern slope of the Continental Divide in Colorado's Front Range mountains. This study uses data from 3 pit sites that have at least 8 years of observations and represent alpine and sub-alpine environments. For these pits, cold content is strongly related to SWE during the cold content accumulation phase, here defined as December, January, and February. Average peak cold content ranges between -2.5 MJ m-2 and -9.2 MJ m-2 for the three sites and is strongly related to peak SWE. On average, cold content reaches its maximum on February 26, which is 61 days before the average date of peak SWE (i.e., the snowpack's cold content is satisfied over an average of 61 days). At the alpine site, later peak cold content and SWE was observed relative to the lower elevation sub-alpine sites. Interestingly, the alpine site had a smaller gap between peak cold content and SWE (55 days versus 67 days for the alpine and sub-alpine sites, respectively). The gap between peak cold content and peak SWE is primarily a function of the increase in SWE between the two dates. Hence, persistent snowfall after the date of peak cold content can delay the onset of snowmelt even if peak cold content was relatively low. Improving our understanding of seasonal cold content dynamics in mountain environments will enable us to better model the future effects of climate change on snowmelt timing and associated hydrologic response.
Space Radar Image of Salt Lake City, Utah
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
NASA Astrophysics Data System (ADS)
Arita, Kazunori; Ikawa, Takashi; Ito, Tanio; Yamamoto, Akihiko; Saito, Matsuhiko; Nishida, Yasunori; Satoh, Hideyuki; Kimura, Gaku; Watanabe, Teruo; Ikawa, Takeshi; Kuroda, Toru
1998-05-01
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of ˜7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9-6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.
NASA Astrophysics Data System (ADS)
Dickson Cunningham, W.; Windley, Brian F.; Dorjnamjaa, D.; Badamgarov, G.; Saandar, M.
1996-02-01
We present results from the first detailed geological transect across the Mongolian Western Altai using modern methods of structural geology and fault kinematic analysis. Our purpose was to document the structures responsible for Cenozoic uplift of the range in order to better understand processes of intracontinental mountain building. Historical right-lateral strike-slip and oblique-slip earthquakes have previously been documented from the Western Altai, and many mountain fronts are marked by active fault scarps indicating current tectonic activity and uplift. The dominant structures in the range are long (>200 km) NNW trending right-lateral strike-slip faults. Our transect can be divided into three separate domains that contain active, right-lateral strike-slip master faults and thrust faults with opposing vergence. The current deformation regime is thus transpressional. Each domain has an asymmetric flower structure cross-sectional geometry, and the transect as a whole is interpreted as three separate large flower structures. The mechanism of uplift along the transect appears to be horizontal and vertical growth of flower structures rooted into the dominant right-lateral strike-slip faults. The major Bulgan Fault forms the southern structural boundary to the range and is a 3.5-km-wide brittle-ductile zone that has accommodated reverse and left-lateral strike-slip displacements. It appears to be linked to the North Gobi Fault Zone to the east and Irtysh Fault zone to the west and thus may be over 900 km in length. Two major ductile left-lateral extensional shear zones were identified in the interior of the range that appear to be preserved structures related to a regional Paleozoic or Mesozoic extensional event. Basement rocks along the transect are dominantly metavolcanic, metasedimentary, or intrusive units probably representing a Paleozoic accretionary prism and arc complex. The extent to which Cenozoic uplift has been accommodated by reactivation of older structures and inversion of older basins is unknown and will require further study. As previously suggested by others, Cenozoic uplift of the Altai is interpreted to be due to NE-SW directed compressional stress resulting from the Indo-Eurasian collision 2500 km to the south.
Coastal-change and glaciological map of the Ross Island area, Antarctica
Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.
2010-01-01
Reduction in the area and volume of Earth?s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. The Ross Island area map is bounded by long 141? E. and 175? E. and by lat 76? S. and 81? S. The map covers the part of southern Victoria Land that includes the northwestern Ross Ice Shelf, the McMurdo Ice Shelf, part of the polar plateau and Transantarctic Mountains, the McMurdo Dry Valleys, northernmost Shackleton Coast, Hillary Coast, the southern part of Scott Coast, and Ross Island. Little noticeable change has occurred in the ice fronts on the map, so the focus is on glaciological features. In the western part of the map area, the polar plateau of East Antarctica, once thought to be a featureless region, has subtle wavelike surface forms (megadunes) and flow traces of glaciers that originate far inland and extend to the coast or into the Ross Ice Shelf. There are numerous outlet glaciers. Glaciers drain into the McMurdo Dry Valleys, through the Transantarctic Mountains into the Ross Sea, or into the Ross Ice Shelf. Byrd Glacier is the largest. West of the Transantarctic Mountains are areas of blue ice, readily identifiable on Landsat images, that have been determined to be prime areas for finding meteorites. Three subglacial lakes have been identified in the map area. Because McMurdo Station, the main U.S. scientific research station in Antarctica, is located on Ross Island in the map area, many of these and other features in the area have been studied extensively. The paper version of this map is available for purchase from the USGS Store.
NASA Astrophysics Data System (ADS)
Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.
2017-12-01
The upper mantle and transition zone beneath Antarctica and the surrounding ocean are among the poorest seismically imaged regions of the Earth's interior. Over the last 1.5 decades researchers have deployed several large temporary broadband seismic arrays focusing on major tectonic features in the Antarctic. The broader international community has also facilitated further instrumentation of the continent, often operating stations in additional regions. As of 2016, waveforms are available from almost 300 unique station locations. Using these stations along with 26 southern mid-latitude seismic stations we have imaged the seismic structure of the upper mantle and transition zone using full waveform adjoint techniques. The full waveform adjoint inversion assimilates phase observations from 3-component seismograms containing P, S, Rayleigh, and Love waves, including reflections and overtones, from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) that occurred between 2001-2003 and 2007-2016. We present the major results of the full waveform adjoint inversion following 20 iterations, resulting in a continental-scale seismic model (ANT_20) with regional-scale resolution. Within East Antarctica, ANT_20 reveals internal seismic heterogeneity and differences in lithospheric thickness. For example, fast seismic velocities extending to 200-300 km depth are imaged beneath both Wilkes Land and the Gamburtsev Subglacial Mountains, whereas fast velocities only extend to 100-200 km depth beneath the Lambert Graben and Enderby Land. Furthermore, fast velocities are not found beneath portions of Dronning Maud Land, suggesting old cratonic lithosphere may be absent. Beneath West Antarctica slow upper mantle seismic velocities are imaged extending from the Balleny Island southward along the Transantarctic Mountains front, and broaden beneath the southern and northern portion of the mountain range. In addition, slow upper mantle velocities are imaged beneath the West Antarctic coast extending from Marie Byrd Land to the Antarctic Peninsula. This region of slow velocity only extends to 150-200 km depth beneath the Antarctic Peninsula, while elsewhere it extends to deeper upper mantle depths and possibly into the transition zone as well as offshore, suggesting two different geodynamic processes are at play.
NASA Astrophysics Data System (ADS)
OBrien, V. J.; Kirschner, D. L.
2001-12-01
It is widely accepted that fluids play a fundamental role in the movement of thrust faults in foreland fold-and-thrust belts. We have begun a combined structure-geochemistry study of faults in the Rocky Mountain fold-and-thrust belt in order to provide more insight into the occurrence and role(s) of fluid in the deformation of thrust faults. We focus on faults exposed in the Sun River Canyon of Montana, an area that contains some of the best exposures of the Rocky Mountain fold-and-thrust belt in the U.S. Samples were collected from two well exposed thrusts in the Canyon -- the Diversion and French thrusts. Both faults have thrust Mississippian dolostones over Cretaceous shales. Displacement exceeds several kilometers. Numerous small-displacement, subsidiary faults characterize the deformation in the hanging wall carbonates. The footwall shales accommodated more penetrative deformation, resulting in well developed foliation and small-scale folds. Stable isotope data have been obtained from host rock samples and veins from these faults. The data delimit an arcuate trend in oxygen-carbon isotope space. Approximately 50 host rock carbonate samples from the hanging walls have carbon and oxygen isotope values ranging from +3 to 0 and 28 to 19 per mil, respectively. There is no apparent correlation between isotopic values and distance from thrust fault at either locality. Fifteen samples of fibrous slickensides on small-displacement faults in the hanging walls have similar carbon and lower oxygen isotope values (down to 16 per mil). And 15 veins that either post-date thrusting or are of indeterminate origin have carbon and oxygen isotope values down to -3 and12 per mil, respectively. The isotopic data collected during the initial stages of this project are similar to some results obtained several hundred kilometers north in the Front Ranges of the Canadian Rockies (Kirschner and Kennedy, JGR 2000) and in carbonate fold-thrust belts of the Swiss Helvetic Alps and Italian Apennines. These data are consistent with limited infiltration of fluid through fractures and minor faults into hanging walls of large-displacement thrust faults.
Synoptic Control of Cross-Barrier Precipitation Ratios
NASA Astrophysics Data System (ADS)
Mass, C.; Vargas, R.
2013-12-01
The substantial precipitation contrasts across mountain barriers, with windward enhancement on one side and leeward reduction on the other, have been the subject of several studies and reviews, both observational and theoretical. A lesser number of papers have examined the temporal variability of the orographic precipitation contrasts, including the origins of such variability. For example, Siler et al. (2013) examined the variability of the rain-shadow effect across the Cascade Mountains of Washington State. They found that the intensity of the winter-mean rain shadow was weaker in El Nino than La Nina years, and suggested that the strongest (weakest) rain shadows occurred for warm-sector (warm-frontal) situations. Dettinger et al. (2004) examined the synoptic controls of varying orographic precipitation ratios across the Sierra Nevada of California, with ratios defined by the difference in precipitation between the Central Valley and the western slopes of the barrier. They found increased ratios when the flow was more normal to the terrain and when vertical stability was less, with higher ratios after cold frontal passage compared to the warm sectors of midlatitude cyclones. The latter result appears to contradict the findings of Siler et al (2013). This presentation explores the temporal variations in the intensity of the precipitation gradient across the Cascade Mountains of Washington State and describes the synoptic conditions associated with periods in which precipitation is heavier on the western side, heavier on the eastern side, or nearly equal across the barrier. The talk will begin by summarizing the temporal variations of precipitation on the windward and leeward sides of the Cascades for a several year period. Segregating the hours when precipitation is substantially greater on the windward side, greater on the leeward side, or roughly equal, provides a series of dates used for synoptic composites for these three situations. It is shown that there are coherent and significant synoptic differences between the three precipitation ratio regimes, and these differences are illustrated for several case studies. For example, windward enhancement is greater after the passage of cold or occluded fronts, when stability is reduced and the flow is more westerly. Finally, the physical connection between synoptic flow and the changing cross-barrier precipitation contrasts are discussed.
Space Radar Image of Salt Lake City, Utah
1999-04-15
This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program. http://photojournal.jpl.nasa.gov/catalog/PIA01798
Williams, M.W.; Brooks, P.D.; Seastedt, T.
1998-01-01
We have implemented a long-term snow-fence experiment at the Niwot Ridge Long-Term Ecological Research (NWT) site in the Colorado Front Range of the Rocky Mountains, U.S.A., to assess the effects of climate change on alpine ecology and biogeochemical cycles. The responses of carbon (C) and nitrogen (N) dynamics in high-elevation mountains to changes in climate are investigated by manipulating the length and duration of snow cover with the 2.6 x 60 m snow fence, providing a proxy for climate change. Results from the first year of operation in 1994 showed that the period of continuous snow cover was increased by 90 d. The deeper and earlier snowpack behind the fence insulated soils from winter air temperatures, resulting in a 9??C increase in annual minimum temperature at the soil surface. The extended period of snow cover resulted in subnivial microbial activity playing a major role in annual C and N cycling. The amount of C mineralized under the snow as measured by CO2 production was 22 g m-2 in 1993 and 35 g m-2 in 1994, accounting for 20% of annual net primary aboveground production before construction of the snow fence in 1993 and 31% after the snow fence was constructed in 1994. In a similar fashion, maximum subnivial N2O flux increased 3-fold behind the snow fence, from 75 ??g N m-2 d-1 in 1993 to 250 ??g N m-2 d-1 in 1994. The amount of N lost from denitrification was greater than the annual atmospheric input of N in snowfall. Surface litter decomposition studies show that there was a significant increase in the litter mass loss under deep and early snow, with no significant change under medium and little snow conditions. Changes in climate that result in differences in snow duration, depth, and extent may therefore produce large changes in the C and N soil dynamics of alpine ecosystems.
Caine, Jonathan S.; Bove, Dana J.
2010-01-01
During the 2004 to 2008 field seasons, approximately 200 hand samples of fault and polymetallic vein-related rocks were collected for geochemical and mineralogical analyses. The samples were collected by the U.S. Geological Survey as part of the Evolution of Brittle Structures Task under the Central Colorado Assessment Project (CCAP) of the Mineral Resources Program (http://minerals.cr.usgs.gov/projects/colorado_assessment/index.html). The purpose of this work has been to characterize the relation between epithermal, polymetallic mineral deposits, paleostress, and the geological structures that hosted fluid flow and localization of the deposits. The data in this report will be used to document and better understand the processes that control epithermal mineral-deposit formation by attempting to relate the geochemistry of the primary structures that hosted hydrothermal fluid flow to their heat and fluid sources. This includes processes from the scale of the structures themselves to the far field scale, inclusive of the intrusive bodies that have been thought to be the sources for the hydrothermal fluid flow. The data presented in this report are part of a larger assessment effort on public lands. The larger study area spans the region of the southern Rocky Mountains in Colorado from the Wyoming to New Mexico borders and from the eastern boundary of the Front Range to approximately the longitude of Vail and Leadville, Colorado. Although the study area has had an extensive history of geological mapping, the mapping has resulted in a number of hypotheses that are still in their infancy of being tested. For example, the proximity of polymetallic veins to intrusive bodies has been thought to reflect a genetic relation between the two features; however, this idea has not been well tested with geochemical indicators. Recent knowledge regarding the coupled nature of stress, strain, fluid flow, and geochemistry warrant new investigations and approaches to test a variety of ideas regarding the genetic processes associated with ore-deposit formation. The central part of the eastern Front Range has excellent exposures of fault zones and polymetallic fault veins, subsequently resulting in some of the most detailed mapping and associated data sets in the region. Thus, the area was chosen for detailed data compilation, new sample and data collection, and a variety of structural and geochemical analyses. The data presented in this report come from samples of fault-related exposures in the Front Range and include elemental chemistry and mineralogy from the outcrop-scale study localities within the larger CCAP study area.
Coes, A.L.; Pool, D.R.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
The timing and location of streamflow in the San Pedro River are partially dependent on the aerial distribution of recharge in the Sierra Vista subwatershed. Previous investigators have assumed that recharge in the subwatershed occurs only along the mountain fronts by way of stream-channel infiltration near the contact between low-permeability rocks of the mountains and the basin fill. Recent studies in other alluvial basins of the Southwestern United States, however, have shown that significant recharge can occur through the sediments of ephemeral stream channels at locations several kilometers distant from the mountains. The purpose of this study was to characterize the spatial distribution of infiltration and subsequent recharge through the ephemeral channels in the Sierra Vista subwatershed.Infiltration fluxes in ephemeral channels and through the basin floor of the subwatershed were estimated by using several methods. Data collected during the drilling and coring of 16 boreholes included physical, thermal, and hydraulic properties of sediments; chloride concentrations of sediments; and pore-water stable-isotope values and tritium activity. Surface and subsurface sediment temperatures were continuously measured at each borehole.Twelve boreholes were drilled in five ephemeral stream channels to estimate infiltration within ephemeral channels. Active infiltration was verified to at least 20 meters at 11 of the 12 borehole sites on the basis of low sediment-chloride concentrations, high soil-water contents, and pore-water tritium activity similar to present-day precipitation. Consolidated sediments at the twelfth site prevented core recovery and estimation of infiltration. Analytical and numerical methods were applied to determine the surface infiltration flux required to produce the observed sediment-temperature fluctuations at six sites. Infiltration fluxes were determined for summer ephemeral flow events only because no winter flows were recorded at the sites during the monitoring period.Four boreholes were drilled in the basin floor to estimate infiltration in areas between ephemeral channels. Infiltration fluxes through the basin floor ranged from less than 1 centimeter to 6 centimeters per year. At a site in semiconsolidated to consolidated basin-fill conglomerate, the long-term infiltration fluxes were very low (less than 1 centimeter per year). Chloride, tritium, and stable-isotope data indicate long periods of no net deep downward percolation flux beneath the basin floor. At a site in unconsolidated to semiconsolidated basin-fill sand and gravel, infiltration fluxes were high (2 to 6 centimeters per year). Chloride, tritium, and stable-isotope data indicate active infiltration to 8 meters, and a decrease in infiltration below 8 meters. The change in the infiltration rate below 8 meters is controlled by an increase in the silt and clay content of the sediment.Ephemeral-channel recharge for the entire subwatershed was estimated by upscaling the calculated infiltration fluxes and weighting the fluxes by streamflow duration, evaporation, and transpiration. In contrast to previous assumptions, recharge from ephemeral-streamflow infiltration occurs not only near the mountain fronts, but also along significant lengths of ephemeral channels. Although most of the ephemeral streams in the subwatershed flow less than a few days per year, the available streamflow quickly infiltrates past depths where it is available for evapotranspiration. This water likely stays in the unsaturated zone until it is vertically displaced by infiltrated water from subsequent streamflows and eventually recharges the regional aquifer. Ephemeral-channel infiltration during 2001 and 2002 was estimated to account for about 12 to 19 percent of the estimated average annual recharge in the Sierra Vista subwatershed.
Bexfield, Laura M.; Anderholm, Scott K.
2002-01-01
Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not well mixed, even in areas of large vertical gradients. Water levels in most piezometers respond to short-term variations in ground-water withdrawals and to the cumulative effect of long-term withdrawals throughout the area. In most piezometers screened below the water table, water levels respond clearly to seasonal variations in ground-water withdrawals. Water levels decline from about April through July and rise from about September through January. Water levels seem to be declining in most piezometers at a rate less than 1 foot per year. Water-quality data for unfiltered samples collected over a 10-year period from 93 City of Albuquerque drinking-water supply wells were examined for variability and temporal trends in 10 selected parameters. Variability generally was found to be greatest in the Western and Northeast water-quality regions of the study area. For the 10 parameters investigated, temporal trends were found in 5 to 57 wells. Dissolved-solids, sodium, sulfate, chloride, and silica concentrations showed more increasing than decreasing trends; calcium, bicarbonate, and arsenic concentrations, field pH, and water temperature showed more decreasing than increasing trends. The median magnitudes of most of these trends over a 1-year period were not particularly large (generally less than 1.0 milligram per liter), although the magnitudes for a few individual wells were significant. For the 10 parameters investigated, correlations with monthly pumpage volumes were found in 10 to 32 wells. Calcium and sulfate concentrations, field pH, and water temperature showed more positive than negative correlations with monthly pumpage; dissolved-solids, sodium, bicarbonate, chloride, silica, and arsenic concentrations showed more negative than positive correlations. An increase in pumpage in an individual well appears to increase the contribution
Constraining the Fore-Arc Flux Along the Central America Margin
NASA Astrophysics Data System (ADS)
Hilton, D. R.; Barry, P. H.; Ramirez, C. J.; Kulongoski, J. T.; Patel, B. S.; Blackmon, K.
2014-12-01
The transport of carbon to the deep mantle via subduction zones is interrupted by outputs via the fore-arc, volcanic front, and back-arc regions. Whereas output fluxes for the front and back-arc locales are well constrained for Central America (CA) [1], the fore-arc flux via cold seeps and groundwaters is virtually unknown. We present new He and CO2 data for the inner fore-arc of Costa Rica and western Panama to complement our study [2] of offshore CO2fluxes on the outer-forearc. On the Nicoya Peninsula, the Costa Rica Pacific coastline (including the Oso Peninsula) and the Talamanca Mountain Range, as well as coastal seeps in Panama, coupled CO2-He studies allow recognition of mantle (3He/4He up to 6RA) and crustal inputs to the volatile inventory. We associate the crustal component with CO2 derived from limestone (L) and organic sediments (S) on the subducting slab, and see a decrease in the L/S ratio trench-ward with the lowest values akin to those of diatomaceous ooze in the uppermost sequence of the subducting sediment package. This observation is consistent with the removal of the uppermost organic-rich sediment from deep subduction by under-plating. As the input carbon fluxes of the individual sedimentary layers are well constrained [3], we can limit the potential steady-state flux of carbon loss at the subaerial fore-arc to ~ 6 × 107 gCkm-1yr-1, equivalent to ~88% of the input flux of C associated with the ooze, or <4% of the total incoming sedimentary C. This study confirms that the greatest loss of slab-derived carbon at the CA margin occurs at the volcanic front with recycling efficiencies between 12% (Costa Rica) and 29% (El Salvador) of the sedimentary input [1]. It also demonstrates the utility of the coupled He-CO2approach for mass balance studies at subduction zones. [1] De Leeuw et al., EPSL, 2007; [2] Furi et al., G-cubed, 2010; [3] Li and Bebout, JGR, 2005.
Fine-grained linings of leveed channels facilitate runout of granular flows
Kokelaar, B.P.; Graham, R. L.; Gray, J.M.N.T.; Vallance, James W.
2014-01-01
Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300–425 μm) mixed with spherical fine ballotini (150–250 μm), on rough slopes of 27–29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30–40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow–substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.
NASA Astrophysics Data System (ADS)
Rogers, M. A.; Schranz, S.
2017-12-01
The Front Range of the Rocky Mountains in Colorado is a region particularly susceptable to both wildfire and flash flooding. As the population of Colorado continues to boom, it is critical to enhance the familiarity of resources that are available to the general public to understand, predict, and react to these dangers. At the Cooperative Institute for Research in the Atmosphere (CIRA), a NOAA Cooperative Institute in partnership with Colorado State University, several research products related fire and precipitation processes have been evaluated and developed for public use. As part of a pilot program under development at CIRA, extensive use of CIRA public-facing products are now being used as part of teacher professional development programs available to educators on an ad-hoc basis along the Front Range. These PD programs address state standards in weather prediction, hazard mitigation, and natural disaster awareness, and are designed to incorporate NOAA resources into the classroom, including use of satellite imagery products such as the Satellite Loop Interactive Data Explorer in Real-Time (SLIDER) package, fire weather products developed at the Earth Systems Research Laboratory, and others. Resilience-focused efforts are drawn from fire weather training resources developed for and used by NWS IMET teams, and state suggestions for fire and flood mitigation efforts, tying in these concepts to the basic science made observable using NOAA products. Teachers become proficient in using products as teaching elements in the classroom, with the end goal of improving both awareness and resiliency while improving the awareness of NOAA products. Citizen science programs also incorporate these elements in ad-hoc presentations to museum groups and through partnerships with citizen science networks along the Front Range. Subject-matter expert presentations to community members of local organizations such as the Soaring Eagle Ecology Center and the Anythink Library Network stimulates interest and helps build community connections to increase awareness about the dangers of fire flood and drought. Examples and lessons learned from both programs will be presented.
Fine-grained linings of leveed channels facilitate runout of granular flows
NASA Astrophysics Data System (ADS)
Kokelaar, B. P.; Graham, R. L.; Gray, J. M. N. T.; Vallance, J. W.
2014-01-01
Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300-425 μm) mixed with spherical fine ballotini (150-250 μm), on rough slopes of 27-29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30-40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow-substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.
Active Tectonics of the Far North Pacific Observed with GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Mazzotti, S.
2017-12-01
The idea that the tectonics of the northeastern Pacific is defined by relatively discrete deformation along the boundary between the Pacific and North American plates has given way to a more complex picture of broad plate boundary zones and distributed deformation. This is due in large part to the Plate Boundary Observatory and several focused GPS studies, which have greatly increased the density of high-quality GPS data throughout the region. We will present an updated GPS velocity field in a consistent reference frame as well as a new, integrated block model that sheds light on regional tectonics and provides improved estimates of motion along faults and their potential seismic hazard. Crustal motions in southern Alaska are strongly influenced by the collision and flat-slab subduction of the Yakutat block along the central Gulf of Alaska margin. In the area nearest to the collisional front, small blocks showing evidence of internal deformation are required. East of the front, block motions show clockwise rotation into the Canadian Cordillera while west of the front there are counterclockwise rotations that extend along the Alaska forearc, suggesting crustal extrusion. Farther from the convergent margin, the crust appears to move as rigid blocks, with uniform motion over large areas. In western Alaska, block motions show a southwesterly rotation into the Bering Sea. Arctic Alaska displays southeasterly motions that gradually transition into easterly motion in Canada. Much of the southeastern Alaska panhandle and coastal British Columbia exhibit northwesterly motions. Although the relative plate motions are mainly accommodated along major faults systems, including the Fairweather-Queen Charlotte transform system, the St. Elias fold-and-thrust belt, the Denali-Totschunda system, and the Alaska-Aleutian subduction zone, a number of other faults accommodate lesser but still significant amounts of motion in the model. These faults include the eastern Denali/Duke River system, the Castle Mountain fault, the western Denali fault, the Kaltag fault, and the Kobuk fault. Based on the expanded GPS data set, locked or partially locked sections of the Alaska subduction zone may extend as far north and east as the eastern Alaska Range.
Trans-Himalayan water contributions to river discharge
NASA Astrophysics Data System (ADS)
Andermann, Christoff; Stieglitz, Thomas; Schuessler, Jan A.; Parajouli, Binod
2017-04-01
Hydrological processes in high mountains are not well understood. Groundwater is commonly considered to be of little importance in the mountain water balance, while direct runoff, snow and ice melt are thought to be the principal hydrological buffer. We present new insights into hydrological fluxes between major reservoirs in a trans-Himalayan catchment. The study area is the Kali Gandaki catchment, rising in the dry Tibetan interior, carving through the high Himalayas and draining the full width of the foothills to the Ganges foreland. The catchment has a well-defined monsoon climate, with pronounced annual wet and dry seasons and a clear separation of wind- and leeward regions. We have sampled the main river and its tributaries as well as several springs during the four hydrological seasons (winter, pre-monsoon, monsoon, post-monsoon). We have measured major element abundances as well as 222Rn in situ, as a tracer for groundwater contribution. These measurements are placed in a context of topographic analyses as well as continuous discharge and precipitation measurements. Furthermore, we have equipped two sites with continuous water samplers, sampling over > 4 monsoon seasons, allowing us to resolve the seasonal hydrological dynamic range on a very high temporal resolution. Chemical fluxes vary spatially over several orders of magnitude, showing a systematic downstream dilution trend for most major elements during all hydrological seasons. High initial concentrations derive from evaporite deposits in the uppermost part of the catchment, constituting a large scale, natural salt tracer experiment. The well-defined decline of solute concentrations along the main river, paired with constraints on the composition of lateral water inputs downstream allow the calculation of the spatial distribution of additional hydrological fluxes, by applying end member mixing modeling. Continuous river stage and bulk dissolved load (electrical conductivity) monitoring depict well-defined diurnal cycles in water temperature, stage level and water chemistry. These diurnal cycles have a profound impact on the chemical concentrations and need to be corrected for to estimate representative geochemical fluxes for the full river and end member mixing modeling. Radon and trace element data indicate that groundwater contributions are primarily associated with the main tectonic structures of the Himalayan range, but also concentrate on the steep southern mountain front, and that groundwater outflow from the Lesser Himalayas is limited during baseflow season. Over the seasons the chemical dilution signature across the Himalayan range is persistent. However, specific elements have temporally distinct dilution signatures highlighting the alternating contribution of different hydrological compartments over the annual hydrological cycle. Our analysis allows to decipher the hydrological contribution of different water reservoirs to the surface water discharge in rivers, along a major Himalayan stream. Our results highlight the volumetric importance of a high mountain deep-groundwater storage compartment across the Himalayan mountain belt and provides first order quantification of groundwater contribution to stream flow.
NASA Astrophysics Data System (ADS)
Kelly, P. J.; Anderson, S. P.; Anderson, R. S.; Blum, A.; Foster, M. A.; Langston, A. L.
2011-12-01
Weathering processes drive mobile regolith production at the surface of the earth. Chemical and physical weathering weakens rock by creating porosity, opening fractures, and transforming minerals. Increased porosity provides habitat for living organisms, which aid in further breakdown of the rock, leaving it more susceptible to displacement and transport. In this study, we test mechanical and chemical characteristics of weathered profiles to better understand weathering processes. We collect shallow bedrock cores from tors and isovolumetrically weathered bedrock in lower Gordon Gulch to characterize the mechanical strength, mineralogy, and bulk chemistry of samples to track changes in the subsurface as bedrock weathers to mobile regolith. Gordon Gulch is a small (2.7 km2), E-W trending catchment within the Boulder Creek Critical Zone Observatory underlain by Pre-Cambrian gneiss and granitic bedrock. The basin is typical of the "Rocky Mountain Surface" of the Front Range, characterized by low relief, a lack of glacial or fluvial incision, and deep weathering. Although the low-curvature, low-relief Rocky Mountain Surface would appear to indicate a landscape roughly in steady-state, shallow seismic surveys (Befus et al., 2011, Vadose Zone Journal) indicate depth to bedrock is highly variable. Block style release of saprolite into mobile regolith could explain this high variability and should be observable in geotechnical testing. Gordon Gulch also displays a systematic slope-aspect dependent control on weathering, with N-facing hillslopes exhibiting deeper weathering profiles than the S-facing hillslope. We believe comparisons of paired geotechnical-testing, XRD, and XRF analyses may explain this hillslope anisotropy. Rock quality designation (RQD) values, a commonly used indicator of rock mass quality (ASTM D6032), from both N- and S- facing aspects in Gordon Gulch indicate that granitic bedrock in both outcrop and saprolitic rock masses is poor to very poor. Brazilian tensile testing of outcrop core samples show relatively low tensile failure forces, and exhibit a roughly logarithmic increase in failure force, and hence tensile strength, with depth. For many of the granitic strength profiles, the point of greatest curvature is around 0.5 m depth. Tests reveal small-scale variation in the tensile strength, suggesting that the tight fracture-spacing bounding blocks of saprolite plays an important role in regolith production. The origin of the micro- and macro-fractures is unclear. Preliminary results do not correlate clear depth-trends in mineralogy or bulk chemistry with mechanical strength. The lack of a strong signature from chemical or mineralogical weathering suggests that mechanical processes, such as frost cracking or biotite hydration, may dominate.
NASA Astrophysics Data System (ADS)
Borderie, Sandra; Graveleau, Fabien; Witt, César; Vendeville, Bruno C.
2016-04-01
Accretionary wedges are generally segmented both across and along strike because of diverse factors including tectonic and stratigraphic inheritance. In fold-and-thrust belts, along-strike stratigraphic changes in the foreland sequence are classically observed and cause a curvature of the deformation front. Although the parameters controlling this curvature are well documented, the structural interactions and mutual influences between adjacent provinces are much less analyzed. To investigate this question, we deformed analogue models in a compressional box equipped with digital cameras and a topographic measurement apparatus. Models where shortened above a basal frictional detachment (glass microbeads) and segmentation was tested by having a region in which we added an interbedded viscous level (silicone polymer) within the sedimentary cover (dry sand). By changing the number (2 or 3) and the relative width of the purely frictional and viscous provinces, our goal was to characterize geometrically and kinematically the interactions between the viscous and the purely frictional provinces. We used a commercial geomodeller to generate 3-D geometrical models. The results indicate that regardless of the relative width of the purely frictional vs. viscous provinces, the deformation style in the frictional province is not influenced by the presence of the adjacent viscous province. On the contrary, the structural style and the deformation kinematics in the viscous province is significantly impacted by the presence or absence of an adjacent purely frictional province. At first order, the deformation style in the viscous province depends on its width, and three structural styles can be defined along strike. Far from the frictional area, structures are primarily of salt-massif type, and they do not seem to be influenced by the frictional wedge province. Towards the frictional province, deformation changes gradually to a zone of purely forethrusts (foreland verging), and finally to a highly faulted zone with both fore- and backthrusts (hinterland verging). In addition, a kinematic analysis indicates that narrow viscous provinces are strongly influenced by the presence of an adjacent frictional province. Indeed, propagation of shallow thrusts occurs in sequence and the deformation front reaches lately the external décollement pinchout. On the contrary, the deformation front of the wide viscous provinces propagates rapidly to the external décollement pinchout, then younger thrusts form out of sequence. Along-strike segmentation also affects the deep structures (thrusts detaching on the basal frictional décollement). In the viscous province, the presence of an upper viscous décollement opposes the advance of the basal deformation front. There, the rear of the wedge is characterized by imbrications of thrusts sheets (antiformal stacks), and the deep deformation front is convex towards the hinterland. Our experiments allow to better understand the dynamics of salt-controlled fold-and-thrust belts such as in the Huallaga (Peru) and Kuqa (China) basins or the Franklin Mountains (NW Canada).
Towards understanding carbon recycling at subduction zones - lessons from Central America
NASA Astrophysics Data System (ADS)
Hilton, D. R.; Barry, P. H.; Fischer, T. P.
2010-12-01
Subduction zones provide the essential pathways for input of carbon from Earth’s external reservoirs (crust, sediments, oceans) to the mantle. However, carbon input to the deep interior is interrupted by outputs via the fore-arc, volcanic front, and back-arc regions. Coupled CO2 and He isotope data for geothermal fluids from throughout Central American (CA) are used to derive estimates of the output carbon flux for comparison with inputs estimated for the subducting Cocos Plate. The carbon flux carried by the incoming sediments is ~1.6 × 109 gCkm-1yr-1[1], as is the ratio of input carbon derived from pelagic limestone (L) and organic sediment (S), i.e., L/S ~10.7. Additionally, the upper 7 km of oceanic (crustal) basement supplies ~9.1 × 108 gCkm-1yr-1[2]: this flux is dominated by L-derived CO2. In terms of output, measured carbon concentrations coupled with flow rates for submarine cold seeps sites at the Costa Rica outer forearc yield CO2 and CH4 fluxes of ~ 6.1 × 103 and 8.0 × 105 (gCkm-1yr-1), respectively [3]. On the Nicoya Peninsula, the Costa Rica Pacific coastline (including the Oso Peninsula) and the Talamanca Mountain Range, coupled CO2-He studies allow recognition of a deep input (3He/4He up to 4RA) and resolution of CO2 into L- and S-components. There is an increase in the L/S ratio arc-ward with the lowest values lying close to diatomaceous ooze in the uppermost sequence of subducting sediment package. This observation is consistent with under-plating and removal of the uppermost organic-rich sediment from deeper subduction. As the input carbon fluxes of the individual sedimentary layers are well constrained [1], we can limit the potential steady-state flux of carbon loss at the subaerial fore-arc to ~ 6 × 107 gCkm-1yr-1, equivalent to ~88% of the input flux of the diatomaceous ooze, or < 4% of the total incoming sedimentary carbon. The greatest loss of slab-derived carbon occurs at the volcanic front. Estimates of the output CO2 flux along the CA front - 2-5 (× 108 gCkm-1yr-1) [4-5] together with identification of a slab origin (~90%) of the CO2, gives output estimates between 12% (Costa Rica) and 29% (El Salvador) of the sedimentary input [6]. The low L/S ratio found along the entire strike of the volcanic front precludes a significant C-contribution from oceanic basement of the subducting slab. Finally, arc-like L/S ratios behind the volcanic front in Honduras [6] indicates the back-arc inventory is composed of either entrained or ancient CO2 but not slab carbon released beyond the region of arc magma generation. Thus, at the CA subduction zone, significant carbon influx to the mantle can occur due to limited fore-arc and back-arc losses and modest C-outputs via the volcanic front. These observations are compared with other subduction zones where sediment lithologies, thermal conditions and water budgets differ, to address the question of understanding intrinsic and extrinsic controls on the mass balance of the mantle carbon reservoir. [1] Li and Bebout, JGR, 2005; [2] Hilton et al., Rev. Min. Geochem., 2002; [3] Furi et al., G-cubed, 2010; [4] Rodriguez et al., JVGR, 2004; [5] Zimmer et al., G-cubed, 2004; [6] De Leeuw et al., EPSL, 2007.
The Dauki Thrust Fault and the Shillong Anticline: An incipient plate boundary in NE India?
NASA Astrophysics Data System (ADS)
Ferguson, E. K.; Seeber, L.; Steckler, M. S.; Akhter, S. H.; Mondal, D.; Lenhart, A.
2012-12-01
The Shillong Massif is a regional contractional structure developing across the Assam sliver of the Indian plate near the Eastern Syntaxis between the Himalaya and Burma arcs. Faulting associated with the Shillong Massif is a major source of earthquake hazard. The massif is a composite basement-cored asymmetric anticline and is 100km wide, >350km long and 1.8km high. The high relief southern limb preserves a Cretaceous-Paleocene passive margin sequence despite extreme rainfall while the gentler northern limb is devoid of sedimentary cover. This asymmetry suggests southward growth of the structure. The Dauki fault along the south limb builds this relief. From the south-verging structure, we infer a regional deeply-rooted north-dipping blind thrust fault. It strikes E-W and obliquely intersects the NE-SW margin of India, thus displaying three segments: Western, within continental India; Central, along the former passive margin; and Eastern, overridden by the west-verging Burma accretion system. We present findings from recent geologic fieldwork on the western and central segments. The broadly warped erosional surface of the massif defines a single anticline in the central segment, east of the intersection with the hinge zone of the continental margin buried by the Ganges-Brahmaputra Delta. The south limb of the anticline forms a steep topographic front, but is even steeper structurally as defined by the Cretaceous-Eocene cover. Below it, Sylhet Trap Basalts intrude and cover Precambrian basement. Dikes, presumably parallel to the rifted margin, are also parallel to the front, suggesting thrust reactivation of rift-related faults. Less competent Neogene clastics are preserved only near the base of the mountain front. Drag folds in these rocks suggest north-vergence and a roof thrust above a blind thrust wedge floored by the Dauki thrust fault. West of the hinge zone, the contractional structure penetrates the Indian continent and bifurcates. After branching into the Dapsi Fault, the Dauki Fault continues westward as the erosion-deposition boundary combined with a belt of N-S shortening. The Dapsi thrust fault strikes WNW across the Shillong massif and dips NNE. It is mostly blind below a topographically expressed fold involving basement and passive-margin cover. Recent fieldwork has shown that the fault is better exposed in the west, where eventually Archean basement juxtaposes folded and steeply dipping fluvial sediment. Both Dauki and Dapsi faults probably continue beyond the Brahmaputra River, where extreme fluvial processes mask them. The area between the two faults is a gentle southward monocline with little or no shortening. Thus uplift of this area stems from slip on the Dauki thrust fault, not from pervasive shortening. The Burma foldbelt overrides the Shillong Plateau and is warped but continuous across the eastern segment of the Dauki fault. The Haflong-Naga thrust front north of the Dauki merges with the fold-thrust belt in the Sylhet basin to the south, despite >150km of differential advance due to much greater advance of the accretionary prism in the basin. Where the Dauki and Haflong-Naga thrusts cross, the thrust fronts are nearly parallel and opposite vergence. We trace a Dauki-related topographic front eastward across the Burma Range. This and other evidence suggest that the Dauki Fault continues below the foldbelt.
Monitoring Stone Degradation on Coastal Structures in the Great Lakes - Summary Report
2005-06-01
Iron Mountain Quarry, Iron Mountain, MI). The Iron Mountain Quarry produces taconite . c. Quarry sample microstructural analyses. Microstructural...Iron Mountain Quarry, Iron Mountain, MI. The Iron Mountain Quarry produces taconite . Also, stone from a tenth quarry (Cedarville Quarry, Cedarville, MI...Quarry, Iron Mountain, MI). The Iron Mountain Quarry produces taconite . Samples of taconite from the Iron Mountain Quarry also were evaluated by
Rasmussen, Kristen L.; Zuluaga, Manuel D.; Brodzik, Stella R.
2015-01-01
Abstract For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three‐dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems generally have less intense embedded convection but can form very wide stratiform regions. Continental mesoscale systems often have more intense embedded convection. Some of the most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi‐uniform precipitation with strong melting layers connected with intense convection. In monsoons and the Intertropical Convergence Zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation. PMID:27668295
Nadeau, Simon; Godbout, Julie; Lamothe, Manuel; Gros-Louis, Marie-Claude; Isabel, Nathalie; Ritland, Kermit
2015-08-01
• Premises of the study: Understanding the influence of recent glacial and postglacial periods on species' distributions is key for predicting the effects of future environmental changes. We investigated the influence of two physiographic landscapes on population structure and postglacial colonization of two white pine species of contrasting habitats: P. monticola, which occurs in the highly mountainous region of western North America, and P. strobus, which occurs in a much less mountainous area in eastern North America.• To characterize the patterns of genetic diversity and population structure across the ranges of both species, 158 and 153 single nucleotide polymorphism (SNP) markers derived from expressed genes were genotyped on range-wide samples of 61 P. monticola and 133 P. strobus populations, respectively.• In P. monticola, a steep latitudinal decrease in genetic diversity likely resulted from postglacial colonization involving rare long-distance dispersal (LDD) events. In contrast, no geographic patterns of diversity were detected in P. strobus, suggesting recolonization via a gradually advancing front or frequent LDD events. For each species, structure analyses identified two distinct southern and northern genetic groups that likely originated from two different glacial lineages. At a finer scale, and for the two species, smaller subgroups were detected that could be remnants of cryptic refugia.• During postglacial colonization, the western and eastern North American landscapes had different impacts on genetic signatures in P. monticola compared with P. strobus. We discuss the importance of our findings for conservation programs and predictions of species' response to climate change. © 2015 Her Majesty the Queen in Right of Canada. Published by the Botanical Society of America.
August 2014 Hiroshima landslide disaster and its societal impact
NASA Astrophysics Data System (ADS)
Fukuoka, Hiroshi; Sassa, Kyoji; Wang, Chunxiang
2015-04-01
In the early morning of August 20, 2014, Hiroshima city was hit by a number of debris flows along a linear rain band which caused extreme downpour. This disaster claimed 74 death, although this city experienced very similar disaster in 1999, claiming more than 30 residents lives. In the most severely affected debris flow torrent, more than 50 residents were killed. Most of the casualties arose in the wooden, vulnerable houses constructed in front of the exit of torrents. Points and lessons learnt from the disaster are as follows: 1. Extreme rainfall events : geology and geomorphology does not much affect the distribution of landslides initiation sites. 2. Area of causative extreme rainfall is localized in 2 km x 10 km along the rain band. 3. Authors collected two types of sands from the source scar of the initial debris slides which induced debris flows. Tested by the ring shear apparatus under pore-pressure control condition, clear "Sliding surface liquefaction" was confirmed for both samples even under small normal stress, representing the small thickness of the slides. These results shows even instant excess pore pressure could initiate the slides and trigger slide-induced debris flow by undrained loading onto the torrent deposits. 4. Apparently long-term land-use change affected the vulnerability of the community. Residential area had expanded into hill-slope (mountainous / semi-mountainous area) especially along the torrents. Those communities were developed on the past debris flow fan. 5. As the devastated area is very close to downtown of Hiroshima city, it gave gigantic societal impact to the Japanese citizens. After 1999 Hiroshima debris flow disaster, the Landslide disaster reduction law which intends to promote designation of landslide potential risk zones, was adopted in 2000. Immediately after 2014 disaster, national diet approved revision of the bill.
NASA Astrophysics Data System (ADS)
Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.
2010-12-01
On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.
NASA Astrophysics Data System (ADS)
Peng, Tsung-Ren; Zhan, Wen-Jun; Tong, Lun-Tao; Chen, Chi-Tsun; Liu, Tsang-Sen; Lu, Wan-Chung
2018-03-01
A study in eastern Taiwan evaluated the importance of montane water contribution (MC) to adjacent valley-plain groundwater (VPG) in a tectonic suture zone. The evaluation used a ternary natural-tracer-based end-member mixing analysis (EMMA). With this purpose, VPG and three end-member water samples of plain precipitation (PP), mountain-front recharge (MFR), and mountain-block recharge (MBR) were collected and analyzed for stable isotopic compositions (δ 2H and δ 18O) and chemical concentrations (electrical conductivity (EC) and Cl-). After evaluation, Cl- is deemed unsuitable for EMMA in this study, and the contribution fractions of respective end members derived by the δ 18O-EC pair are similar to those derived by the δ 2H-EC pair. EMMA results indicate that the MC, including MFR and MBR, contributes at least 70% (679 × 106 m3 water volume) of the VPG, significantly greater than the approximately 30% of PP contribution, and greater than the 20-50% in equivalent humid regions worldwide. The large MC is attributable to highly fractured strata and the steep topography of studied catchments caused by active tectonism. Furthermore, the contribution fractions derived by EMMA reflect the unique hydrogeological conditions in the respective study sub-regions. A region with a large MBR fraction is indicative of active lateral groundwater flow as a result of highly fractured strata in montane catchments. On the other hand, a region characterized by a large MFR fraction may possess high-permeability stream beds or high stream gradients. Those hydrogeological implications are helpful for water resource management and protection authorities of the studied regions.
Sierra Nevada Mountain Range as seen from STS-58
1994-10-20
STS058-72-004 (18 Oct-1 Nov 1993) --- The Sierra Nevada Mountain Range can be seen in this north-looking high oblique view taken in October, 1993, by the STS-58 crew. Visible in the view to the west of the Sierra Nevada are the San Joaquin and Sacramento Valleys of central California. The San Francisco/Oakland Bay Area can be seen to the west of the valley at the extreme left of the photograph. To the east or right of the Sierra Nevada, the basin and Range Region of central and northern Nevada is visible. Mono Lake, Lake Tahoe and Pyramid Lake are also visible in this scene. The long northwest/southeast trending Walker Lane Shear Zone, which lies just to the east (right) of the Sierra Nevada is also visible. Near the top of the view (near the horizon), the snow covered volcanic peak Mount Shasta can be seen. Over 645 kilometers (400 miles) long and from 65 to 130 kilometers (40 to 80 miles) wide, the Sierra Nevada have many peaks in excess of 3,300 meters (11,000 feet) above sea level. A titled fault block in structure (the largest in the United States) and shaped by glaciers during the last ice age over 12,000 years ago, the Sierra Nevada eastern front rises sharply from the Great Basin of Nevada, while its western slope descends gradually to the hills bordering the Central Valley of California. Snow-fed streams supply much of the irrigation water to the Central Valley and to western Nevada and also generate hydroelectricity. Recent above normal precipitation (snowfall) of the last two years has helped in alleviating the drought conditions that had prevailed throughout most of California in the mid and late 1980's and early 1990's.
NASA Astrophysics Data System (ADS)
von Hagke, C.; Luijendijk, E.; Hindle, D.
2017-12-01
In contrast to the internal zones of orogens, where the stacking of thrust sheets can overwhelm more subtle signals, foreland basins can record long-wavelength subsidence or uplift signals caused by mantle processes. We use a new and extensive compilation of geological and thermochronology data from the North Alpine Foreland Basin to understand the dynamics of foreland basins and their interaction with surface and geodynamic processes. We quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model, pybasin. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. Uncertainty analysis shows that thermochronometers can be explained by cooling starting as early as the Miocene or as late as the Pleistocene. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. We suggest that new (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.
Carcaillet, Christopher; Latil, Jean-Louis; Abou, Sébastien; Ali, Adam; Ghaleb, Bassam; Magnin, Frédéric; Roiron, Paul; Aubert, Serge
2018-06-01
Up to now, the most widely accepted idea of the periglacial environment is that of treeless ecosystems such as the arctic or the alpine tundra, also called the tabula rasa paradigm. However, several palaeoecological studies have recently challenged this idea, that is, treeless environments in periglacial areas where all organisms would have been exterminated near the glacier formed during the Last Glacial Maximum, notably in the Scandinavian mountains. In the Alps, the issue of glacial refugia of trees remains unanswered. Advances in glacier reconstructions show that ice domes did not cover all upper massifs, but glaciers filled valleys. Here, we used fossils of plant and malacofauna from a travertine formation located in a high mountain region to demonstrate that trees (Pinus, Betula) grew with grasses during the Lateglacial-Holocene transition, while the glacier fronts were 200-300 m lower. The geothermal travertine started to accumulate more than 14,500 years ago, but became progressively more meteogene about 11,500 years ago due to a change in groundwater circulation. With trees, land snails (gastropods) associated to woody or open habitats and aquatic mollusc were also present at the onset of the current interglacial, namely the Holocene. The geothermal spring, due to warm water and soil, probably favoured woody glacial ecosystems. This new finding of early tree growth, combined with other scattered proofs of the tree presence before 11,000 years ago in the western Alps, changes our view of the tree distribution in periglacial environments, supporting the notion of tree refugia on nunataks in an ocean of glaciers. Therefore, the tabula rasa paradigm must be revisited because it has important consequences on the global changes, including postglacial plant migrations and biogeochemical cycles. © 2018 John Wiley & Sons Ltd.
Thingsgaard, K
2001-10-01
Nineteen populations of Sphagnum affine were included in a study of genetic diversity and structure in fragmented and less fragmented landscapes, and differentiation at intercontinental and three regional levels. Isozyme electrophoresis of eight enzyme systems revealed 12 variable loci, which could be used for haplotype identification. A hierachical analysis of variance (AMOVA) revealed no significant intercontinental differentiation, and very limited differentiation among European regions. A trend of decreasing diversity with increasing latitude was apparent. Gametic phase disequilibria was high, suggesting nonrandom mating and regionally high incidences of inbreeding. The partitioning of genetic variation within and among populations in each region varied among regions, the northernmost populations having 86% of the total variation among populations, the southernmost in Scandinavia having 25% of the variation among populations, whereas the American populations displayed 89% of the variation within populations. Fifteen alleles at eight loci occurred in the U.S.A. which were not encountered in Europe, whereas only three European alleles at one locus in three populations were not encountered in U.S.A. The differences in diversity between North America and Europe may result from loss of genetic diversity caused by founder effects during postglacial recolonization of northern Europe. In Europe, the main mountain ranges extend E-W, posing severe barriers to northwards migration of lowland species, compared to the N-S trend of mountain ranges in North America. The decline in genetic diversity and increase in population differentiation and gametic phase disequilibria towards the north in Scandinavia may be caused by a series of founder effects during postglacial migration. These may have corresponded to minor climatic oscillations that influenced the migration front/leading edge in the suboceanic lowlands of Norway. According to this model random genetic drift will be an increasingly important structuring factor with latitude.
Geologic map of the Skykomish River 30- by 60-minute quadrangle, Washington
Tabor, R.W.; Frizzell, D.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.
1993-01-01
From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, it's correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks ot the Puget Group crop out farther to the west. Rocks of the Cascade magmatic arc are mostly represented by Miocene and Oligocene plutons, including the Grotto, Snoqualmie, and Index batholiths. Alpine river valleys in the quadrangle record multiple advances and retreats of alpine glaciers. Multiple advances of the Cordilleran ice sheet, originating in the mountains of British Columbia, Canada, have left an even more complex sequence of outwash and till along the western mountain front, up these same alpine river valleys, and over the Puget Lowland.
Climate-induced changes in high elevation stream nitrate dynamics
Baron, Jill S.; Schmidt, T.M.; Hartman, M.D.
2009-01-01
Mountain terrestrial and aquatic ecosystems are responsive to external drivers of change, especially climate change and atmospheric deposition of nitrogen (N). We explored the consequences of a temperature-warming trend on stream nitrate in an alpine and subalpine watershed in the Colorado Front Range that has long been the recipient of elevated atmospheric N deposition. Mean annual stream nitrate concentrations since 2000 are higher by 50% than an earlier monitoring period of 1991-1999. Mean annual N export increased by 28% from 2.03 kg N ha-1yr-1 before 2000 to 2.84 kg N ha-1yr-1 in Loch Vale watershed since 2000. The substantial increase in N export comes as a surprise, since mean wet atmospheric N deposition from 1991 to 2006 (3.06 kg N ha-1 yr-1) did not increase. There has been a period of below average precipitation from 2000 to 2006 and a steady increase in summer and fall temperatures of 0.12??C yr-1 in both seasons since 1991. Nitrate concentrations, as well as the weathering products calcium and sulfate, were higher for the period 2000-2006 in rock glacier meltwater at the top of the watershed above the influence of alpine and subalpine vegetation and soils. We conclude the observed recent N increases in Loch Vale are the result of warmer summer and fall mean temperatures that are melting ice in glaciers and rock glaciers. This, in turn, has exposed sediments from which N produced by nitrification can be flushed. We suggest a water quality threshold may have been crossed around 2000. The phenomenon observed in Loch Vale may be indicative of N release from ice features such as rock glaciers worldwide as mountain glaciers retreat. ?? 2009 Blackwell Publishing Ltd.
Curry, Magdalena A. E.; Barnes, Jason B.; Colgan, Joseph P.
2016-01-01
Common fault growth models diverge in predicting how faults accumulate displacement and lengthen through time. A paucity of field-based data documenting the lateral component of fault growth hinders our ability to test these models and fully understand how natural fault systems evolve. Here we outline a framework for using apatite (U-Th)/He thermochronology (AHe) to quantify the along-strike growth of faults. To test our framework, we first use a transect in the normal fault-bounded Jackson Mountains in the Nevada Basin and Range Province, then apply the new framework to the adjacent Pine Forest Range. We combine new and existing cross sections with 18 new and 16 existing AHe cooling ages to determine the spatiotemporal variability in footwall exhumation and evaluate models for fault growth. Three age-elevation transects in the Pine Forest Range show that rapid exhumation began along the range-front fault between approximately 15 and 11 Ma at rates of 0.2–0.4 km/Myr, ultimately exhuming approximately 1.5–5 km. The ages of rapid exhumation identified at each transect lie within data uncertainty, indicating concomitant onset of faulting along strike. We show that even in the case of growth by fault-segment linkage, the fault would achieve its modern length within 3–4 Myr of onset. Comparison with the Jackson Mountains highlights the inadequacies of spatially limited sampling. A constant fault-length growth model is the best explanation for our thermochronology results. We advocate that low-temperature thermochronology can be further utilized to better understand and quantify fault growth with broader implications for seismic hazard assessments and the coevolution of faulting and topography.
Physical limits on ground motion at Yucca Mountain
Andrews, D.J.; Hanks, T.C.; Whitney, J.W.
2007-01-01
Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.
The Roles of Tectonics and Climate in Driving Erosion Rates in the Eastern Himalaya
NASA Astrophysics Data System (ADS)
Larsen, I. J.; Montgomery, D.; Stone, J. O.
2016-12-01
Landslide erosion governs the flux of sediment from non-glaciated mountains. Hence patterns in landslide erosion rates have the potential to reveal how such landscapes respond to spatially-varying climatic and tectonic forcing. Across strong spatial gradients in precipitation and exhumation rates in the eastern Himalaya, we mapped 27,611 landslides and measured 10Be in river sediment in a swath spanning from the Himalayan mountain front northward to the Yarlung Tsangpo Gorge. For the entire landscape, landslide erosion and 10Be-based denudation rates are not correlated with mean annual precipitation. However, erosion and denudation rates increase non-linearly as a function of mean hillslope angles, which is diagnostic of tectonic-driven landslide erosion on threshold hillslopes. Dividing the landscape into distinct geologic-tectonic terranes reveals that erosion rates scale positively with both mean hillslope angles and exhumation rates, but also that threshold topography has not developed throughout the region. Mean annual precipitation rates range from 0.5 to 3 m across the terranes, and erosion rates are highest in the relatively dry Yarlung Tsangpo Gorge, which receives 1.5 m of precipitation annually. However, for areas south of the Gorge, where moisture sources from the south first interact with the orographic barrier of the Himalaya, there is a modest linear increase in erosion rate with increasing mean annual rainfall. These results indicate that tectonics is the main control on spatial patterns of erosion in the eastern Himalaya, but that climate may play a modulating role. Hence the relative roles tectonics and climate play in driving erosion rates likely vary at the sub-orogen scale.
NASA Astrophysics Data System (ADS)
Korjenkov, A. M.; Povolotskaya, I. E.; Mamyrov, E.
2007-03-01
The Tien Shan is one of the most active intracontinental mountain belts exhibiting numerous examples of Quaternary fault-related folding. To provide insight into the deformation of the Quaternary intermontane basins, the territory of the northwestern Ysyk-Köl region, where the growing Ak-Teke Anticline divided the piedmont apron of alluvial fans, is studied. It is shown that the Ak-Teke Hills are a sharply asymmetric anticline, which formed as a result of tectonic uplift and erosion related to motions along the South Ak-Teke Thrust Fault. The tectonic uplift gave rise to the local deviation of the drainage network in front of the northern limb of the fold. Optical (luminescent) dating suggests that the tectonic uplifting of the young anticline and the antecedent downcutting started 157 ka ago. The last upthrow of the high floodplain of the Toru-Aygyr River took place 1300 years ago. The structure of the South Ak-Teke Fault is examined by means of seismologic trenching and shallow seismic profiling across the fault. A laser tachymeter is applied to determine the vertical deformation of alluvial terraces in the Toru-Aygyr River valley at its intersection with the South Ak-Teke Fault. The rates of vertical deformation and an inferred number of strong earthquakes, which resulted in the upthrow of Quaternary river terraces of different ages, are calculated. The study territory is an example of changes in fluvial systems on growing folds in piedmont regions. As a result of shortening of the Earth’s crust in the mountainous belt owing to thrusting, new territories of previous sedimentation are involved in emergence. The tectonic activity migrates with time from the framing ridges toward the axial parts of intramontane basins.
Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation
NASA Astrophysics Data System (ADS)
Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.
2004-12-01
Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.
O'Sullivan, P. B.; Murphy, J.M.; Blythe, A.E.
1997-01-01
Apatite fission track data are used to evaluate the thermal and tectonic history of the central Brooks Range and the North Slope foreland basin in northern Alaska along the northern leg of the Trans-Alaska Crustal Transect (TACT). Fission track analyses of the detrital apatite grains in most sedimentary units resolve the timing of structures and denudation within the Brooks Range, ranging in scale from the entire mountain range to relatively small-scale folds and faults. Interpretation of the results indicates that rocks exposed within the central Brooks Range cooled rapidly from paleotemperatures 110?? to 50??C during discrete episodes at ???100??5 Ma, ???60??4 Ma, and ???24??3 Ma, probably in response to kilometer-scale denudation. North of the mountain front, rocks in the southern half of the foreland basin were exposed to maximum paleotemperatures 110??C in the Late Cretaceous to early Paleocene as a result of burial by Upper Jurassic and Cretaceous sedimentary rocks. Rapid cooling from these elevated paleotemperatures also occurred due to distinct episodes of kilometer-scale denudation at ???60??4 Ma, 46??3 Ma, 35??2 Ma, and ???24??3 Ma. Combined, the apatite analyses indicate that rocks exposed along the TACT line through the central Brooks Range and foreland basin experienced episodic rapid cooling throughout the Late Cretaceous and Cenozoic in response to at least three distinct kilometer-scale denudation events. Future models explaining orogenic events in northern Alaska must consider these new constraints from fission track thermochronology. Copyright 1997 by the American Geophysical Union.
Zhang, Yunqi; Long, Yi; An, Juan; Yu, Xingxiu; Wang, Xiaoli
2014-10-01
The Yimeng Mountains is one of China's most susceptible regions to soil erosion. In this region, slopes are composed of granite- or gneiss-derived soils that are commonly cultivated using earth-banked terraces. Based on the (137)Cs measurement for nine reference cores, the present study analysed the spatial patterns of (137)Cs inventory and soil erosion using 105 sampling points in a seven-level earth-banked terrace system. The mean (137)Cs inventory, standard deviation, coefficient of variation, and allowable error for the nine reference cores were 987 Bq m(-2), 71 Bq m(-2), 7%, and 6%, respectively, values that may reflect the heterogeneity of the initial (137)Cs fallout deposit. Within each terrace, the (137)Cs inventory generally increases from the rear edge to the front edge, accompanied by a decrease in the erosion rate. This results from planation by tillage and rainfall runoff during the development of the earth-banked terraces. Across the entire seven-level terrace system, (137)Cs inventories decrease from the highest terrace downwards, but increase in the lower terraces, whereas erosion rate displays the opposite trend. These trends are the result of the combined effects of the earth-bank segmented hillslope, the limited protection of the earth banks, and rainfall runoff in combination with tillage. The high coefficients of variation of (137)Cs inventories for the 21 sampling rows, with a mean value of 44%, demonstrate the combined effects of variations in original microtopography, anthropogenic disturbance, the incohesive soils weathered from underlying granite, and the warm climate. Although earth-banked terraces can reduce soil erosion to some extent, the estimated erosion rates for the study area are still very high. Copyright © 2014 Elsevier Ltd. All rights reserved.
Glaciation as a destructive and constructive control on mountain building.
Thomson, Stuart N; Brandon, Mark T; Tomkin, Jonathan H; Reiners, Peter W; Vásquez, Cristián; Wilson, Nathaniel J
2010-09-16
Theoretical analysis predicts that enhanced erosion related to late Cenozoic global cooling can act as a first-order influence on the internal dynamics of mountain building, leading to a reduction in orogen width and height. The strongest response is predicted in orogens dominated by highly efficient alpine glacial erosion, producing a characteristic pattern of enhanced erosion on the windward flank of the orogen and maximum elevation controlled by glacier equilibrium line altitude, where long-term glacier mass gain equals mass loss. However, acquiring definitive field evidence of an active tectonic response to global climate cooling has been elusive. Here we present an extensive new low-temperature thermochronologic data set from the Patagonian Andes, a high-latitude active orogen with a well-documented late Cenozoic tectonic, climatic and glacial history. Data from 38° S to 49° S record a marked acceleration in erosion 7 to 5 Myr ago coeval with the onset of major Patagonian glaciation and retreat of deformation from the easternmost thrust front. The highest rates and magnitudes of erosion are restricted to the glacial equilibrium line altitude on the windward western flank of the orogen, as predicted in models of glaciated critical taper orogens where erosion rate is a function of ice sliding velocity. In contrast, towards higher latitudes (49° S to 56° S) a transition to older bedrock cooling ages signifies much reduced late Cenozoic erosion despite dominantly glacial conditions here since the latest Miocene. The increased height of the orogenic divide at these latitudes (well above the equilibrium line altitude) leads us to conclude that the southernmost Patagonian Andes represent the first recognized example of regional glacial protection of an active orogen from erosion, leading to constructive growth in orogen height and width.
Klein, Douglas P.
1983-01-01
Examples of aeromagnetic and gravity data over 1? x 2? areas are presented for regions near the Cripple Creek mining area, Colorado, and the Lordsburg-Tyrone-Silver City mining areas, southern New Mexico and Arizona. These data indicate broad crustal structures and compositional variations that are marked by magnetization and density contrasts. The focus is on anomalies that may signal large-dimension controlling structures for the emplacement of economic mineral deposits. An example is a continuous, quasi-linear, north-trending gradient in both gravity and magnetic data located west of Cripple Creek area along long. 105? 30? W. This trend correlates with two mineral deposits of the Southern Rocky Mountains Front Range. It also correlates in part with an area of volcanic rock and with a mapped fault complex (Elkhorn-Currant Creek-Else-Westcliffe). The trend is interpreted to indicate a continuous crustal fault system, although exposures of this system are discontinuous between areas of alluvium and volcanic-rock cover. Similar geophysical trends exist in the Silver City to Tyrone area, where northeast-and northwest-trending anomalies appear to be marked by intrusion and mineralization. In this area, northwest-trending alluvial basins favor the use of geophysics to infer economically accessible but hidden bedrock whose association with exposed mineralization seems possible. An example of an inferred broad and relatively shallow, but hidden bedrock complex in association with more areally-limited mineralization is the Victorio Mountains area about 34 mi (55 km) south-southeast of Tyrone, New Mexico. The mineralization is within faulted sediments whose outcrop covers a small portion of the geophysical anomaly-complex.
Klein, Douglas P.
1983-01-01
Examples of aeromagnetic and gravity data over 1? x 2? areas are presented for regions near the Cripple Creek mining area, Colorado, and the Lordsburg-Tyrone-Silver City mining areas, southern New Mexico and Arizona. These data indicate broad crustal structures and compositional variations that are marked by magnetization and density contrasts. The focus is on anomalies that may signal large-dimension controlling structures for the emplacement of economic mineral deposits. An example is a continuous, quasi-linear, north-trending gradient in both gravity and magnetic data located west of Cripple Creek area along long. 105? 30? W. This trend correlates with two mineral deposits of the Southern Rocky Mountains Front Range. It also correlates in part with an area of volcanic rock and with a mapped fault complex (Elkhorn-Currant Creek-Else-Westcliffe). The trend is interpreted to indicate a continuous crustal fault-system, although exposures of this system are discontinuous between areas of alluvium and volcanic-rock cover. Similar geophysical trends exist in the Silver City to Tyrone area, where northeast-and northwest-trending anomalies appear to be marked by intrusion and mineralization. In this area, northwest-trending alluvial basins favor the use of geophysics to infer economically accessible but hidden bedrock whose association with exposed mineralization seems possible. An example of an inferred broad and relatively shallow, but hidden bedrock complex in association with more areally-limited mineralization is the Victorio Mountains area about 34 mi (55 km) south-southeast of Tyrone, New Mexico. The mineralization is within faulted sediments whose outcrop covers a small portion of the geophysical anomaly-complex.
NASA Astrophysics Data System (ADS)
Landgraf, A.; Dzhumabaeva, A.; Abdrakhmatov, K. E.; Strecker, M. R.; Macaulay, E. A.; Arrowsmith, Jr.; Sudhaus, H.; Preusser, F.; Rugel, G.; Merchel, S.
2016-05-01
The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.
Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less
NASA Astrophysics Data System (ADS)
Foster, Melissa A.; Anderson, Robert S.; Gray, Harrison J.; Mahan, Shannon A.
2017-10-01
The response of erosional landscapes to Quaternary climate oscillations is recorded in fluvial terraces whose quantitative interpretation requires numerical ages. We investigate gravel-capped strath terraces along the western edge of Colorado's High Plains to constrain the incision history of this shale-dominated landscape. We use 10Be and 26Al cosmogenic radionuclides (CRNs), optically stimulated luminescence (OSL), and thermally transferred OSL (TT-OSL) to date three strath terraces, all beveled in shale bedrock and then deposited upon by Lefthand Creek, which drains the crystalline core of the Front Range. Our study reveals: (i) a long history (hundreds of thousands of years) of fluvial occupation of the second highest terrace, T2 (Table Mountain), with fluvial abandonment at 92 ± 3 ka; (ii) a brief occupation of a narrow and spatially confined terrace, T3, at 98 ± 7 ka; and (iii) a 10-25 thousand year period of cutting and fluvial occupation of a lower terrace, T4, marked by the deposition of a lower alluvial unit between 59 and 68 ka, followed by deposition of an upper alluvial package at 40 ± 3 ka. In conjunction with other recent CRN studies of strath terraces along the Colorado Front Range (Riihimaki et al., 2006; Dühnforth et al., 2012), our data reveal that long periods of lateral planation and fluvial occupation of strath terraces, sometimes lasting several glacial-interglacial cycles, are punctuated by brief episodes of rapid vertical bedrock incision. These data call into question what a singular terrace age represents, as the strath may be cut at one time (its cutting-age) and the terrace surface may be abandoned at a much later time (its abandonment age), and challenge models of strath terraces that appeal to simple pacing by the glacial-interglacial cycles.
NASA Astrophysics Data System (ADS)
Smith, T. M.; Saylor, J. E.; Lapen, T. J.
2015-12-01
The Ancestral Rocky Mountains (ARM) encompass multiple crustal provinces with characteristic crystallization ages across the central and western US. Two driving mechanisms have been proposed to explain ARM deformation. (1) Ouachita-Marathon collision SE of the ARM uplifts has been linked to an E-to-W sequence of uplift and is consistent with proposed disruption of a larger Paradox-Central Colorado Trough Basin by exhumation of the Uncompahgre Uplift. Initial exhumation of the Amarillo-Wichita Uplift to the east would provide a unique ~530 Ma signal absent from source areas to the SW, and result in initial exhumation of the Ancestral Front Range. (2) Alternatively, deformation due to flat slab subduction along a hypothesized plate boundary to the SW suggests a SW-to-NE younging of exhumation. This hypothesis suggests a SW-derived Grenville signature, and would trigger uplift of the Uncompahgre first. We analyzed depositional environments, sediment dispersal patterns, and sediment and basement zircon U-Pb and (U-Th)/He ages in 3 locations in the Paradox Basin and Central Colorado Trough (CCT). The Paradox Basin exhibits an up-section transition in fluvial style that suggests a decrease in overbank stability and increased lateral migration. Similarly, the CCT records a long-term progradation of depositional environments from marginal marine to fluvial, indicating that sediment supply in both basins outpaced accommodation. Preliminary provenance results indicate little to no input from the Amarillo-Wichita uplift in either basin despite uniformly westward sediment dispersal systems in both basins. Results also show that the Uncompahgre Uplift was the source for sediment throughout Paradox Basin deposition. These observations are inconsistent with the predictions of scenario 1 above. Rather, they suggest either a synchronous response to tectonic stress across the ARM provinces or an SW-to-NE pattern of deformation.
Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.; ...
2017-03-01
Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less
Belt, Edward S.; Lyons, P.C.
1990-01-01
Two differential depositional sequences are recognized within a 37-m-thick lowermost section of the Conemaugh Group of Late Pennsylvanian (Westphalian D) age in the southern part of the Upper Potomac coal field (panhandle of Maryland and adjacent West Virginia). The first sequence is dominated by the Upper Freeport coal bed and zone (UF); the UF consists of a complex of interfingered thick coal beds and mudrocks. The UF underlies the entire 500 km2 study area (approximately 40 km in a NE-SW direction). The second sequence is dominated by medium- to coarse-grained sandstone and pebbly sandstone. They were deposited in channel belts that cut into and interfingered laterally with mudrock and fine- to medium-grained sandstone facies of floodbasin and crevasse-lobe origin. Thin lenticular coals occur in the second sequence. Nowhere in the study area does coarse-grained sandstone similar to the sandstone of the channel belts of the second sequence occur within the UF. However, 20 km north of the study area, coarse channel belts are found that are apparently synchronous with the UF (Lyons et al., 1984). The southeastern margin of the study are is bounded by the Allegheny Front. Between it and the North Mountain thrust (75 km to the southeast), lie at least eight other thrusts of unknown extent (Wilson, 1887). All these thrusts are oriented northwest; Devonian and older strata are exposed at the surface between the Allegheny Front and the North Mountain thrust. A blind-thrust ridge model is proposed to explain the relation of the two markedly depositional sequences to the thrusts that lie to the southeast of the Upper Potomac coal field. This model indicates that thrust ridges diverted coarse clastics from entering the swamp during a period when the thick Upper Freeport peat accumulated. Anticlinal thrust ridges and associated depressions are envisioned to have developed parallel to the Appalachian orogen during Middle and early Late Pennsylvanian time. A blind thrust developed from one of the outboard ridges, and it was thrust farther outboard ahead of the main body of the orogen. Sediment derived from the orogen was diverted into a sediment trap inboard of the ridge (Fig. 1). The ridge prevented sediment from entering the main peat-forming swamp. Sediment shed from the orogen accumulated in the sediment trap was carried out of the ends of the trap by steams that occupied the shear zone at the ends of the blind-thrust ridge (Fig. 1). Remnants of blind-thrust ridges occurs in the Sequatchie Valley thrust and the Pine Mountain thrust of the southern Appalachians. The extent, parallel to the orogen, of the thick areally extensive UF coal is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastics that entered the main basin from the east. Further tectonism caused the thrust plane to emerge to the surface of the blind-thrust ridge. Peat accumulation was then terminated by the rapid erosion of the blind-thrust ridge and by the release of trapped sediment behind it. The peat was buried by sediments from streams from closely spaced channel belts] with intervening floodbasins. The model was implications for widespread peat (coal) deposits that developed in tropical regions, a few hundred kilometers inland from the sea during Pennsylvanian time (Belt and Lyons, 1989). ?? 1990.
Matsunaga, Kelly K S; Tomescu, Alexandru M F
2017-05-01
Fossil plants are found as fragmentary remains and understanding them as natural species requires assembly of whole-organism concepts that integrate different plant parts. Such concepts are essential for incorporating fossils in hypotheses of plant evolution and phylogeny. Plants of the Early Devonian are crucial to reconstructing the initial radiation of tracheophytes, yet few are understood as whole organisms. This study assembles a whole-plant concept for the Early Devonian lycophyte Sengelia radicans gen. et sp. nov., based on morphometric data and taphonomic observations from >1000 specimens collected in the Beartooth Butte Formation (Wyoming, USA). Sengelia radicans occupies a key position between stem-group and derived lycophyte lineages. Sengelia had a rooting system of downward-growing root-bearing stems, formed dense monotypic mats of prostrate shoots in areas that experienced periodic flooding, and was characterized by a life-history strategy adapted for survival after floods, dominated by clonality, and featuring infrequent sexual reproduction. Sengelia radicans is the oldest among the very few early tracheophytes for which a detailed, rigorous whole-plant concept integrates morphology, growth habit, life history and growth environment. This plant adds to the diversity of body plans documented among lycophytes and may help elucidate patterns of morphological evolution in the clade. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com