Sample records for beat tracking system

  1. A sensorimotor theory of temporal tracking and beat induction.

    PubMed

    Todd, N P McAngus; Lee, C S; O'Boyle, D J

    2002-02-01

    In this paper, we develop a theory of the neurobiological basis of temporal tracking and beat induction as a form of sensory-guided action. We propose three principal components for the neurological architecture of temporal tracking: (1) the central auditory system, which represents the temporal information in the input signal in the form of a modulation power spectrum; (2) the musculoskeletal system, which carries out the action and (3) a controller, in the form of a parieto-cerebellar-frontal loop, which carries out the synchronisation between input and output by means of an internal model of the musculoskeletal dynamics. The theory is implemented in the form of a computational algorithm which takes sound samples as input and synchronises a simple linear mass-spring-damper system to simulate audio-motor synchronisation. The model may be applied to both the tracking of isochronous click sequences and beat induction in rhythmic music or speech, and also accounts for the approximate Weberian property of timing.

  2. Coding for stable transmission of W-band radio-over-fiber system using direct-beating of two independent lasers.

    PubMed

    Yang, L G; Sung, J Y; Chow, C W; Yeh, C H; Cheng, K T; Shi, J W; Pan, C L

    2014-10-20

    We demonstrate experimentally Manchester (MC) coding based W-band (75 - 110 GHz) radio-over-fiber (ROF) system to reduce the low-frequency-components (LFCs) signal distortion generated by two independent low-cost lasers using spectral shaping. Hence, a low-cost and higher performance W-band ROF system is achieved. In this system, direct-beating of two independent low-cost CW lasers without frequency tracking circuit (FTC) is used to generate the millimeter-wave. Approaches, such as delayed self-heterodyne interferometer and heterodyne beating are performed to characterize the optical-beating-interference sub-terahertz signal (OBIS). Furthermore, W-band ROF systems using MC coding and NRZ-OOK are compared and discussed.

  3. Neural responses to sounds presented on and off the beat of ecologically valid music

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2013-01-01

    The tracking of rhythmic structure is a vital component of speech and music perception. It is known that sequences of identical sounds can give rise to the percept of alternating strong and weak sounds, and that this percept is linked to enhanced cortical and oscillatory responses. The neural correlates of the perception of rhythm elicited by ecologically valid, complex stimuli, however, remain unexplored. Here we report the effects of a stimulus' alignment with the beat on the brain's processing of sound. Human subjects listened to short popular music pieces while simultaneously hearing a target sound. Cortical and brainstem electrophysiological onset responses to the sound were enhanced when it was presented on the beat of the music, as opposed to shifted away from it. Moreover, the size of the effect of alignment with the beat on the cortical response correlated strongly with the ability to tap to a beat, suggesting that the ability to synchronize to the beat of simple isochronous stimuli and the ability to track the beat of complex, ecologically valid stimuli may rely on overlapping neural resources. These results suggest that the perception of musical rhythm may have robust effects on processing throughout the auditory system. PMID:23717268

  4. Neural entrainment to the rhythmic structure of music.

    PubMed

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  5. Losing the beat: deficits in temporal coordination.

    PubMed

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-12-19

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961-969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception-action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals.

  6. Losing the beat: deficits in temporal coordination

    PubMed Central

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-01-01

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals. PMID:25385783

  7. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.

    PubMed

    Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D

    2011-05-01

    Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

  8. Analysis of musical expression in audio signals

    NASA Astrophysics Data System (ADS)

    Dixon, Simon

    2003-01-01

    In western art music, composers communicate their work to performers via a standard notation which specificies the musical pitches and relative timings of notes. This notation may also include some higher level information such as variations in the dynamics, tempo and timing. Famous performers are characterised by their expressive interpretation, the ability to convey structural and emotive information within the given framework. The majority of work on audio content analysis focusses on retrieving score-level information; this paper reports on the extraction of parameters describing the performance, a task which requires a much higher degree of accuracy. Two systems are presented: BeatRoot, an off-line beat tracking system which finds the times of musical beats and tracks changes in tempo throughout a performance, and the Performance Worm, a system which provides a real-time visualisation of the two most important expressive dimensions, tempo and dynamics. Both of these systems are being used to process data for a large-scale study of musical expression in classical and romantic piano performance, which uses artificial intelligence (machine learning) techniques to discover fundamental patterns or principles governing expressive performance.

  9. Functional subdivisions in low-frequency primary auditory cortex (AI).

    PubMed

    Wallace, M N; Palmer, A R

    2009-04-01

    We wished to test the hypothesis that there are modules in low-frequency AI that can be identified by their responsiveness to communication calls or particular regions of space. Units were recorded in anaesthetised guinea pig AI and stimulated with conspecific vocalizations and a virtual motion stimulus (binaural beats) presented via a closed sound system. Recording tracks were mainly oriented orthogonally to the cortical surface. Some of these contained units that were all time-locked to the structure of the chutter call (14/22 tracks) and/or the purr call (12/22 tracks) and/or that had a preference for stimuli from a particular region of space (8/20 tracks with four contralateral, two ipsilateral and two midline), or where there was a strong asymmetry in the response to beats of different direction (two tracks). We conclude that about half of low-frequency AI is organized into modules that are consistent with separate "what" and "where" pathways.

  10. Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm.

    PubMed

    Nozaradan, Sylvie; Schwartze, Michael; Obermeier, Christian; Kotz, Sonja A

    2017-10-01

    How specific brain networks track rhythmic sensory input over time remains a challenge in neuroimaging work. Here we show that subcortical areas, namely the basal ganglia and the cerebellum, specifically contribute to the neural tracking of rhythm. We tested patients with focal lesions in either of these areas and healthy controls by means of electroencephalography (EEG) while they listened to rhythmic sequences known to induce selective neural tracking at a frequency corresponding to the most-often perceived pulse-like beat. Both patients and controls displayed neural responses to the rhythmic sequences. However, these response patterns were different across groups, with patients showing reduced tracking at beat frequency, especially for the more challenging rhythms. In the cerebellar patients, this effect was specific to the rhythm played at a fast tempo, which places high demands on the temporally precise encoding of events. In contrast, basal ganglia patients showed more heterogeneous responses at beat frequency specifically for the most complex rhythm, which requires more internal generation of the beat. These findings provide electrophysiological evidence that these subcortical structures selectively shape the neural representation of rhythm. Moreover, they suggest that the processing of rhythmic auditory input relies on an extended cortico-subcortico-cortical functional network providing specific timing and entrainment sensitivities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A mitral annulus tracking approach for navigation of off-pump beating heart mitral valve repair.

    PubMed

    Li, Feng P; Rajchl, Martin; Moore, John; Peters, Terry M

    2015-01-01

    To develop and validate a real-time mitral valve annulus (MVA) tracking approach based on biplane transesophageal echocardiogram (TEE) data and magnetic tracking systems (MTS) to be used in minimally invasive off-pump beating heart mitral valve repair (MVR). The authors' guidance system consists of three major components: TEE, magnetic tracking system, and an image guidance software platform. TEE provides real-time intraoperative images to show the cardiac motion and intracardiac surgical tools. The magnetic tracking system tracks the TEE probe and the surgical tools. The software platform integrates the TEE image planes and the virtual model of the tools and the MVA model on the screen. The authors' MVA tracking approach, which aims to update the MVA model in near real-time, comprises of three steps: image based gating, predictive reinitialization, and registration based MVA tracking. The image based gating step uses a small patch centered at each MVA point in the TEE images to identify images at optimal cardiac phases for updating the position of the MVA. The predictive reinitialization step uses the position and orientation of the TEE probe provided by the magnetic tracking system to predict the position of the MVA points in the TEE images and uses them for the initialization of the registration component. The registration based MVA tracking step aims to locate the MVA points in the images selected by the image based gating component by performing image based registration. The validation of the MVA tracking approach was performed in a phantom study and a retrospective study on porcine data. In the phantom study, controlled translations were applied to the phantom and the tracked MVA was compared to its "true" position estimated based on a magnetic sensor attached to the phantom. The MVA tracking accuracy was 1.29 ± 0.58 mm when the translation distance is about 1 cm, and increased to 2.85 ± 1.19 mm when the translation distance is about 3 cm. In the study on porcine data, the authors compared the tracked MVA to a manually segmented MVA. The overall accuracy is 2.37 ± 1.67 mm for single plane images and 2.35 ± 1.55 mm for biplane images. The interoperator variation in manual segmentation was 2.32 ± 1.24 mm for single plane images and 1.73 ± 1.18 mm for biplane images. The computational efficiency of the algorithm on a desktop computer with an Intel(®) Xeon(®) CPU @3.47 GHz and an NVIDIA GeForce 690 graphic card is such that the time required for registering four MVA points was about 60 ms. The authors developed a rapid MVA tracking algorithm for use in the guidance of off-pump beating heart transapical mitral valve repair. This approach uses 2D biplane TEE images and was tested on a dynamic heart phantom and interventional porcine image data. Results regarding the accuracy and efficiency of the authors' MVA tracking algorithm are promising, and fulfill the requirements for surgical navigation.

  12. Free Electron Lasers

    DTIC Science & Technology

    1991-01-09

    Linacs Duke a NIST/NRL UCSB Accelerator Storage ring race - track Electrostatic microtron Van de Graaf Status 1993 19 9 2 h 1990 Electron Energy 0.5-1... phase velocity slightly less than the electrons. This wave is called the "ponderomotive potential wave", which is generated by the beating of the...c is the speed of light. The beat wave has the same frequency as the radiation, but its wavenumber is k + k,. The phase velocity of the beat wave Vph

  13. Inside the beating heart: an in vivo feasibility study on fusing pre- and intra-operative imaging for minimally invasive therapy.

    PubMed

    Linte, Cristian A; Moore, John; Wedlake, Chris; Bainbridge, Daniel; Guiraudon, Gérard M; Jones, Douglas L; Peters, Terry M

    2009-03-01

    An interventional system for minimally invasive cardiac surgery was developed for therapy delivery inside the beating heart, in absence of direct vision. A system was developed to provide a virtual reality (VR) environment that integrates pre-operative imaging, real-time intra-operative guidance using 2D trans-esophageal ultrasound, and models of the surgical tools tracked using a magnetic tracking system. Detailed 3D dynamic cardiac models were synthesized from high-resolution pre-operative MR data and registered within the intra-operative imaging environment. The feature-based registration technique was employed to fuse pre- and intra-operative data during in vivo intracardiac procedures on porcine subjects. This method was found to be suitable for in vivo applications as it relies on easily identifiable landmarks, and hence, it ensures satisfactory alignment of pre- and intra-operative anatomy in the region of interest (4.8 mm RMS alignment accuracy) within the VR environment. Our initial experience in translating this work to guide intracardiac interventions, such as mitral valve implantation and atrial septal defect repair demonstrated feasibility of the methods. Surgical guidance in the absence of direct vision and with no exposure to ionizing radiation was achieved, so our virtual environment constitutes a feasible candidate for performing various off-pump intracardiac interventions.

  14. Tracking EEG changes in response to alpha and beta binaural beats.

    PubMed

    Vernon, D; Peryer, G; Louch, J; Shaw, M

    2014-07-01

    A binaural beat can be produced by presenting two tones of a differing frequency, one to each ear. Such auditory stimulation has been suggested to influence behaviour and cognition via the process of cortical entrainment. However, research so far has only shown the frequency following responses in the traditional EEG frequency ranges of delta, theta and gamma. Hence a primary aim of this research was to ascertain whether it would be possible to produce clear changes in the EEG in either the alpha or beta frequency ranges. Such changes, if possible, would have a number of important implications as well as potential applications. A secondary goal was to track any observable changes in the EEG throughout the entrainment epoch to gain some insight into the nature of the entrainment effects on any changes in an effort to identify more effective entrainment regimes. Twenty two healthy participants were recruited and randomly allocated to one of two groups, each of which was exposed to a distinct binaural beat frequency for ten 1-minute epochs. The first group listened to an alpha binaural beat of 10 Hz and the second to a beta binaural beat of 20 Hz. EEG was recorded from the left and right temporal regions during pre-exposure baselines, stimulus exposure epochs and post-exposure baselines. Analysis of changes in broad-band and narrow-band amplitudes, and frequency showed no effect of binaural beat frequency eliciting a frequency following effect in the EEG. Possible mediating factors are discussed and a number of recommendations are made regarding future studies, exploring entrainment effects from a binaural beat presentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Short-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats.

    PubMed

    Howarth, F C; Jacobson, M; Naseer, O; Adeghate, E

    2005-03-01

    A variety of contractility defects have been reported in the streptozotocin (STZ)-induced diabetic rat heart including alterations to the amplitude and time course of cardiac muscle contraction. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar lead II configuration. Electrocardiogram (ECG), physical activity and body temperature data were continuously recorded with a telemetry system before and following the administration of STZ (60 mg kg-1). Heart rate (HR), physical activity and body temperature declined rapidly 3-5 days after administration of STZ. The effects became more conspicuous with time and reached a new steady state approximately 10 days after STZ treatment when HR was 255+/-8 beats min-1 in diabetic rats compared to 348+/-17 beats min-1 in age-matched controls. Heart rate variability (HRV) was also significantly reduced after STZ treatment (18+/-3 beats min-1) compared to controls (36+/-3 beats min-1). Reduced physical activity and/or body temperature may partly underlie the reduction in HR and HRV. Reductions in power spectral density at higher frequencies (2.5-3.5 Hz) suggest that parasympathetic drive to the heart may be altered during the early stages of STZ-induced diabetes. Short-term diabetes-induced changes in vital signs can be effectively tracked by continuous recording using a telemetry system.

  16. Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists.

    PubMed

    Slater, Jessica; Ashley, Richard; Tierney, Adam; Kraus, Nina

    2018-01-01

    Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements "in time" and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.

  17. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis.

    PubMed

    Bottier, Mathieu; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Isabey, Daniel; Coste, André; Escudier, Estelle; Grotberg, James B; Papon, Jean-François; Filoche, Marcel; Louis, Bruno

    2017-07-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating.

  18. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis

    PubMed Central

    Bottier, Mathieu; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Coste, André; Escudier, Estelle; Grotberg, James B.; Papon, Jean-François

    2017-01-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating. PMID:28708889

  19. Flow Induced by Ex-Vivo Nasal Cilia: Developing an Index of Dyskinesis

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Bottier, Mathieu; Pena-Fernandez, Marta; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Isabey, Daniel; Coste, Andre; Escudier, Estelle; Papon, Jean-Francois; Filoche, Marcel; Louis, Bruno

    2017-11-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivomeasurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the steady velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. This compares well to a 2D mathematical model for ciliary fluid propulsion using an envelope model. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress is proposed as a new index for characterizing the efficiency of ciliary beating and diagnosing dyskinesis.

  20. 3D laser traking of a particle in 3DFM

    NASA Astrophysics Data System (ADS)

    Desai, Kalpit; Welch, Gregory; Bishop, Gary; Taylor, Russell; Superfine, Richard

    2003-11-01

    The principal goal of 3D tracking in our home-built 3D Magnetic Force Microscope is to monitor movement of the particle with respect to laser beam waist and keep the particle at the center of laser beam. The sensory element is a Quadrant Photo Diode (QPD) which captures scattering of light caused by particle motion with bandwidth up to 40 KHz. XYZ translation stage is the driver element which moves particle back in the center of the laser with accuracy of couple of nanometers and with bandwidth up to 300 Hz. Since our particles vary in size, composition and shape, instead of using a priori model we use standard system identification techniques to have optimal approximation to the relationship between particle motion and QPD response. We have developed position feedback control system software that is capable of 3-dimensional tracking of beads that are attached to cilia on living cells which are beating at up to 15Hz. We have also modeled the control system of instrument to simulate performance of 3D particle tracking for different experimental conditions. Given operational level of nanometers, noise poses a great challenge for the tracking system. We propose to use stochastic control theory approaches to increase robustness of tracking.

  1. Initial experience with mode switching in a dual sensor, dual chamber pacemaker in patients with paroxysmal atrial tachyarrhythmias.

    PubMed

    den Dulk, K; Dijkman, B; Pieterse, M; Wellens, H

    1994-11-01

    Mode switching algorithms have been developed to avoid tracking of atrial fibrillation (AF) or flutter (AFL) during DDD(R) pacing. Upon recognition of AF or AFL, the mode is switched to a nontracking, sensor driven mode. The Vitatron Diamond model 800 pacemaker does this on a beat-to-beat basis. Atrial events occurring within a "physiological range" (+/- 15 beats/min) calculated from a running average of the atrial rate are tracked. When atrial events are not tracked the escape interval is either determined by the sensor(s) or by a fallback algorithm thereby preventing large increases in V-V interval during mode switching. Loss of atrioventricular (AV) synchrony by atrial premature beats and after an episode of AF or AFL is prevented by atrial synchronization pulses (ASP), which are delivered after a safe interval (timed out from the sensed premature atrial event) has expired and before delivery of the next ventricular stimulus. We implanted 26 such devices in 18 men and 8 women with symptomatic second- or third-degree AV block and paroxysmal AF or AFL. Their ages ranged from 18-84 years (mean 60), and the follow-up ranged from 2-13 months (mean 8). During pacemaker check-up, exercise testing or 24-hour Holter monitoring one or more episodes of mode switching was documented in 8 patients. In these 8 patients a smooth transition (ventricular rate) from sinus rhythm to AF or AFL was documented on one or more occasions, without inappropriate increase in ventricular rate in the DDDR mode. None of the patients complained of palpitations.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    PubMed

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact.

  3. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    PubMed

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  4. Ultrasound based mitral valve annulus tracking for off-pump beating heart mitral valve repair

    NASA Astrophysics Data System (ADS)

    Li, Feng P.; Rajchl, Martin; Moore, John; Peters, Terry M.

    2014-03-01

    Mitral regurgitation (MR) occurs when the mitral valve cannot close properly during systole. The NeoChordtool aims to repair MR by implanting artificial chordae tendineae on flail leaflets inside the beating heart, without a cardiopulmonary bypass. Image guidance is crucial for such a procedure due to the lack of direct vision of the targets or instruments. While this procedure is currently guided solely by transesophageal echocardiography (TEE), our previous work has demonstrated that guidance safety and efficiency can be significantly improved by employing augmented virtuality to provide virtual presentation of mitral valve annulus (MVA) and tools integrated with real time ultrasound image data. However, real-time mitral annulus tracking remains a challenge. In this paper, we describe an image-based approach to rapidly track MVA points on 2D/biplane TEE images. This approach is composed of two components: an image-based phasing component identifying images at optimal cardiac phases for tracking, and a registration component updating the coordinates of MVA points. Preliminary validation has been performed on porcine data with an average difference between manually and automatically identified MVA points of 2.5mm. Using a parallelized implementation, this approach is able to track the mitral valve at up to 10 images per second.

  5. Measuring sperm movement within the female reproductive tract using Fourier analysis.

    PubMed

    Nicovich, Philip R; Macartney, Erin L; Whan, Renee M; Crean, Angela J

    2015-02-01

    The adaptive significance of variation in sperm phenotype is still largely unknown, in part due to the difficulties of observing and measuring sperm movement in its natural, selective environment (i.e., within the female reproductive tract). Computer-assisted sperm analysis systems allow objective and accurate measurement of sperm velocity, but rely on being able to track individual sperm, and are therefore unable to measure sperm movement in species where sperm move in trains or bundles. Here we describe a newly developed computational method for measuring sperm movement using Fourier analysis to estimate sperm tail beat frequency. High-speed time-lapse videos of sperm movement within the female tract of the neriid fly Telostylinus angusticollis were recorded, and a map of beat frequencies generated by converting the periodic signal of an intensity versus time trace at each pixel to the frequency domain using the Fourier transform. We were able to detect small decreases in sperm tail beat frequency over time, indicating the method is sensitive enough to identify consistent differences in sperm movement. Fourier analysis can be applied to a wide range of species and contexts, and should therefore facilitate novel exploration of the causes and consequences of variation in sperm movement.

  6. MPI as high temporal resolution imaging technique for in vivo bolus tracking of Ferucarbotran in mouse model

    NASA Astrophysics Data System (ADS)

    Jung, C.; Salamon, J.; Hofmann, M.; Kaul, M. G.; Adam, G.; Ittrich, H.; Knopp, T.

    2016-03-01

    Purpose: The goal of this study was to achieve a real time 3D visualisation of the murine cardiovascular system by intravenously injected superparamagnetic nanoparticles using Magnetic particle imaging (MPI). Material and Methods: MPI scans of FVB mice were performed using a 3D imaging sequence (1T/m gradient strength, 10mT drive-field strength). A dynamic scan with a temporal resolution of 21.5ms per 3D volume acquisition was performed. 50μl ferucarbotran (Resovist®, Bayer Healthcare AG) were injected into the tail vein after baseline MPI measurements. As MPI delivers no anatomic information, MRI scans at a 7T ClinScan (Bruker) were performed using a T2-weighted 2D TSE sequence. The reconstruction of the MPI data was performed on the MPI console (ParaVision 6.0/MPI, Bruker). Image fusion was done using additional image processing software (Imalytics, Philips). The dynamic information was extracted using custom software developed in the Julia programming environment. Results: The combined MRI-MPI measurements were carried out successfully. MPI data clearly demonstrated the passage of the SPIO tracer through the inferior vena cava, the heart and finally the liver. By co-registration with MRI the anatomical regions were identified. Due to the volume frame rate of about 46 volumes per second a signal modulation with the frequency of the heart beat was detectable and a heart beat of 520 beats per minute (bpm) has been assumed. Moreover, the blood flow velocity of approximately 5cm/s in the vena cava has been estimated. Conclusions: The high temporal resolution of MPI allows real-time imaging and bolus tracking of intravenous injected nanoparticles and offers a real time tool to assess blood flow velocity.

  7. Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone

    NASA Astrophysics Data System (ADS)

    Giménez, Marcos H.; Salinas, Isabel; Monsoriu, Juan A.; Castro-Palacio, Juan C.

    2017-10-01

    The resonance phenomenon is widely known in physics courses. Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and natural frequencies of the system are slightly different. The frequency of the beat is just the difference of the natural and driving frequencies. Beats are very familiar in acoustic systems. There are several works in this journal on visualizing the beats in acoustic systems. For instance, the microphone and the speaker of two mobile devices were used in previous work to analyze the acoustic beats produced by two signals of close frequencies. The formation of beats can also be visualized in mechanical systems, such as a mass-spring system or a double-driven string. Here, the mechanical beats in a smartphone-spring system are directly visualized in a simple way. The frequency of the beats is measured by means of the acceleration sensor of a smartphone, which hangs from a spring attached to a mechanical driver. This laboratory experiment is suitable for both high school and first-year university physics courses.

  8. Effect of acute ethanol administration on zebrafish tail-beat motion.

    PubMed

    Bartolini, Tiziana; Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2015-11-01

    Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. When Synchronizing to Rhythms Is Not a Good Thing: Modulations of Preparatory and Post-Target Neural Activity When Shifting Attention Away from On-Beat Times of a Distracting Rhythm.

    PubMed

    Breska, Assaf; Deouell, Leon Y

    2016-07-06

    Environmental rhythms potently drive predictive resource allocation in time, typically leading to perceptual and motor benefits for on-beat, relative to off-beat, times, even if the rhythmic stream is not intentionally used. In two human EEG experiments, we investigated the behavioral and electrophysiological expressions of using rhythms to direct resources away from on-beat times. This allowed us to distinguish goal-directed attention from the automatic capture of attention by rhythms. The following three conditions were compared: (1) a rhythmic stream with targets appearing frequently at a fixed off-beat position; (2) a rhythmic stream with targets appearing frequently at on-beat times; and (3) a nonrhythmic stream with matched target intervals. Shifting resources away from on-beat times was expressed in the slowing of responses to on-beat targets, but not in the facilitation of off-beat targets. The shifting of resources was accompanied by anticipatory adjustment of the contingent negative variation (CNV) buildup toward the expected off-beat time. In the second experiment, off-beat times were jittered, resulting in a similar CNV adjustment and also in preparatory amplitude reduction of beta-band activity. Thus, the CNV and beta activity track the relevance of time points and not the rhythm, given sufficient incentive. Furthermore, the effects of task relevance (appearing in a task-relevant vs irrelevant time) and rhythm (appearing on beat vs off beat) had additive behavioral effects and also dissociable neural manifestations in target-evoked activity: rhythm affected the target response as early as the P1 component, while relevance affected only the later N2 and P3. Thus, these two factors operate by distinct mechanisms. Rhythmic streams are widespread in our environment, and are typically conceptualized as automatic, bottom-up resource attractors to on-beat times-preparatory neural activity peaks at rhythm-on-beat times and behavioral benefits are seen to on-beat compared with off-beat targets. We show that this behavioral benefit is reversed when targets are more frequent at off-beat compared with on-beat times, and that preparatory neural activity, previously thought to be driven by the rhythm to on-beat times, is adjusted toward off-beat times. Furthermore, the effect of this relevance-based shifting on target-evoked brain activity was dissociable from the automatic effect of rhythms. Thus, rhythms can act as cues for flexible resource allocation according to the goal relevance of each time point, instead of being obligatory resource attractors. Copyright © 2016 the authors 0270-6474/16/367154-13$15.00/0.

  10. Beating time: How ensemble musicians' cueing gestures communicate beat position and tempo.

    PubMed

    Bishop, Laura; Goebl, Werner

    2018-01-01

    Ensemble musicians typically exchange visual cues to coordinate piece entrances. "Cueing-in" gestures indicate when to begin playing and at what tempo. This study investigated how timing information is encoded in musicians' cueing-in gestures. Gesture acceleration patterns were expected to indicate beat position, while gesture periodicity, duration, and peak gesture velocity were expected to indicate tempo. Same-instrument ensembles (e.g., piano-piano) were expected to synchronize more successfully than mixed-instrument ensembles (e.g., piano-violin). Duos performed short passages as their head and (for violinists) bowing hand movements were tracked with accelerometers and Kinect sensors. Performers alternated between leader/follower roles; leaders heard a tempo via headphones and cued their partner in nonverbally. Violin duos synchronized more successfully than either piano duos or piano-violin duos, possibly because violinists were more experienced in ensemble playing than pianists. Peak acceleration indicated beat position in leaders' head-nodding gestures. Gesture duration and periodicity in leaders' head and bowing hand gestures indicated tempo. The results show that the spatio-temporal characteristics of cueing-in gestures guide beat perception, enabling synchronization with visual gestures that follow a range of spatial trajectories.

  11. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    PubMed

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  12. Multiple capture locations for 3D ultrasound-guided robotic retrieval of moving bodies from a beating heart

    NASA Astrophysics Data System (ADS)

    Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra

    2012-02-01

    Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.

  13. Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.

    PubMed

    Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi

    2011-01-01

    Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.

  14. Augmented reality image guidance for minimally invasive coronary artery bypass

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Rueckert, Daniel; Hawkes, David; Casula, Roberto; Hu, Mingxing; Pedro, Ose; Zhang, Dong Ping; Penney, Graeme; Bello, Fernando; Edwards, Philip

    2008-03-01

    We propose a novel system for image guidance in totally endoscopic coronary artery bypass (TECAB). A key requirement is the availability of 2D-3D registration techniques that can deal with non-rigid motion and deformation. Image guidance for TECAB is mainly required before the mechanical stabilization of the heart, thus the most dominant source of non-rigid deformation is the motion of the beating heart. To augment the images in the endoscope of the da Vinci robot, we have to find the transformation from the coordinate system of the preoperative imaging modality to the system of the endoscopic cameras. In a first step we build a 4D motion model of the beating heart. Intraoperatively we can use the ECG or video processing to determine the phase of the cardiac cycle. We can then take the heart surface from the motion model and register it to the stereo-endoscopic images of the da Vinci robot using 2D-3D registration methods. We are investigating robust feature tracking and intensity-based methods for this purpose. Images of the vessels available in the preoperative coordinate system can then be transformed to the camera system and projected into the calibrated endoscope view using two video mixers with chroma keying. It is hoped that the augmented view can improve the efficiency of TECAB surgery and reduce the conversion rate to more conventional procedures.

  15. Accuracy of speckle tracking in the context of stress echocardiography in short axis view: An in vitro validation study.

    PubMed

    Hodzic, Amir; Chayer, Boris; Wang, Diya; Porée, Jonathan; Cloutier, Guy; Milliez, Paul; Normand, Hervé; Garcia, Damien; Saloux, Eric; Tournoux, Francois

    2018-01-01

    This study aimed to test the accuracy of a speckle tracking algorithm to assess myocardial deformation in a large range of heart rates and strain magnitudes compared to sonomicrometry. Using a tissue-mimicking phantom with cyclic radial deformation, radial strain derived from speckle tracking (RS-SpT) of the upper segment was assessed in short axis view by conventional echocardiography (Vivid q, GE) and post-processed with clinical software (EchoPAC, GE). RS-SpT was compared with radial strain measured simultaneously by sonomicrometers (RS-SN). Radial strain was assessed with increasing deformation rates (60 to 160 beats/min) and increasing pulsed volumes (50 to 100 ml/beat) to simulate physiological changes occurring during stress echocardiography. There was a significant correlation (R2 = 0.978, P <0.001) and a close agreement (bias ± 2SD, 0.39 ± 1.5%) between RS-SpT and RS-SN. For low strain values (<15%), speckle tracking showed a small but significant overestimation of radial strain compared to sonomicrometers. Two-way analysis of variance did not show any significant effect of the deformation rate. For RS-SpT, the feasibility was excellent and the intra- and inter-observer variability were low (the intraclass correlation coefficients were 0.96 and 0.97, respectively). Speckle tracking demonstrated a good correlation with sonomicrometry for the assessment of radial strain independently of the heart rate and strain magnitude in a physiological range of values. Though speckle tracking seems to be a reliable and reproducible technique to assess myocardial deformation variations during stress echocardiography, further studies are mandated to analyze the impact of angulated and artefactual out-of-plane motions and inter-vendor variability.

  16. Accuracy of speckle tracking in the context of stress echocardiography in short axis view: An in vitro validation study

    PubMed Central

    Chayer, Boris; Wang, Diya; Porée, Jonathan; Cloutier, Guy; Milliez, Paul; Normand, Hervé; Garcia, Damien; Saloux, Eric; Tournoux, Francois

    2018-01-01

    Aim This study aimed to test the accuracy of a speckle tracking algorithm to assess myocardial deformation in a large range of heart rates and strain magnitudes compared to sonomicrometry. Methods and results Using a tissue-mimicking phantom with cyclic radial deformation, radial strain derived from speckle tracking (RS-SpT) of the upper segment was assessed in short axis view by conventional echocardiography (Vivid q, GE) and post-processed with clinical software (EchoPAC, GE). RS-SpT was compared with radial strain measured simultaneously by sonomicrometers (RS-SN). Radial strain was assessed with increasing deformation rates (60 to 160 beats/min) and increasing pulsed volumes (50 to 100 ml/beat) to simulate physiological changes occurring during stress echocardiography. There was a significant correlation (R2 = 0.978, P <0.001) and a close agreement (bias ± 2SD, 0.39 ± 1.5%) between RS-SpT and RS-SN. For low strain values (<15%), speckle tracking showed a small but significant overestimation of radial strain compared to sonomicrometers. Two-way analysis of variance did not show any significant effect of the deformation rate. For RS-SpT, the feasibility was excellent and the intra- and inter-observer variability were low (the intraclass correlation coefficients were 0.96 and 0.97, respectively). Conclusions Speckle tracking demonstrated a good correlation with sonomicrometry for the assessment of radial strain independently of the heart rate and strain magnitude in a physiological range of values. Though speckle tracking seems to be a reliable and reproducible technique to assess myocardial deformation variations during stress echocardiography, further studies are mandated to analyze the impact of angulated and artefactual out-of-plane motions and inter-vendor variability. PMID:29584751

  17. Evidence for Multiple Rhythmic Skills

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  18. Experimental implementation of phase locking in a nonlinear interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.

    2015-09-21

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less

  19. Particle tracking velocimetry using echocardiographic data resolves flow in the left ventricle

    NASA Astrophysics Data System (ADS)

    Sampath, Kaushik; Abd, Thura T.; George, Richard T.; Katz, Joseph

    2015-11-01

    Two dimensional contrast echocardiography was performed on patients with a history of left ventricular (LV) thrombus. The 636 x 434 pixels electrocardiograms were recorded using a GE Vivid 9E system with (M5S-D and 4V-D) probes in a 2-D mode at a magnification of 0.3 mm/pix. The concentration of 2-4.5 micron seed bubbles was adjusted to obtain individually discernable traces, and a data acquisition rate of 60-90 fps kept the inter-frame displacements suitable for matching traces, and calculating vectors, but yet low enough to allow a scanning depth and width of upto 13 cm and 60 degrees respectively. Particle tracking velocimetry (PTV) guided by initial particle image velocimetry (PIV) was used to obtain the velocity distributions inside the LV with vector spacing of 3-5 mm. The data quality was greatly enhanced by implementing an iterative particle specific enhancement and tracking algorithm. Data covering 20 heart beats facilitated phase averaging. The results elucidated blood flow in the intra-ventricular septal region, lateral wall region, the apex of the LV and the mitral valve region.

  20. Efficient mucociliary transport relies on efficient regulation of ciliary beating.

    PubMed

    Braiman, Alex; Priel, Zvi

    2008-11-30

    The respiratory mucociliary epithelium is a synchronized and highly effective waste-disposal system. It uses mucus as a vehicle, driven by beating cilia, to transport unwanted particles, trapped in the mucus, away from the respiratory system. The ciliary machinery can function in at least two different modes: a low rate of beating that requires only ATP, and a high rate of beating regulated by second messengers. The mucus propelling velocity is linearly dependent on ciliary beat frequency (CBF). The linear dependence implies that a substantial increase in transport efficiency requires an equally substantial rise in CBF. The ability to enhance beating in response to various physiological cues is a hallmark of mucociliary cells. An intricate signaling network controls ciliary activity, which relies on interplay between calcium and cyclic nucleotide pathways.

  1. Classification of holter registers by dynamic clustering using multi-dimensional particle swarm optimization.

    PubMed

    Kiranyaz, Serkan; Ince, Turker; Pulkkinen, Jenni; Gabbouj, Moncef

    2010-01-01

    In this paper, we address dynamic clustering in high dimensional data or feature spaces as an optimization problem where multi-dimensional particle swarm optimization (MD PSO) is used to find out the true number of clusters, while fractional global best formation (FGBF) is applied to avoid local optima. Based on these techniques we then present a novel and personalized long-term ECG classification system, which addresses the problem of labeling the beats within a long-term ECG signal, known as Holter register, recorded from an individual patient. Due to the massive amount of ECG beats in a Holter register, visual inspection is quite difficult and cumbersome, if not impossible. Therefore the proposed system helps professionals to quickly and accurately diagnose any latent heart disease by examining only the representative beats (the so called master key-beats) each of which is representing a cluster of homogeneous (similar) beats. We tested the system on a benchmark database where the beats of each Holter register have been manually labeled by cardiologists. The selection of the right master key-beats is the key factor for achieving a highly accurate classification and the proposed systematic approach produced results that were consistent with the manual labels with 99.5% average accuracy, which basically shows the efficiency of the system.

  2. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography

    PubMed Central

    Penzel, Thomas; Kantelhardt, Jan W.; Bartsch, Ronny P.; Riedl, Maik; Kraemer, Jan F.; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave). PMID:27826247

  3. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography.

    PubMed

    Penzel, Thomas; Kantelhardt, Jan W; Bartsch, Ronny P; Riedl, Maik; Kraemer, Jan F; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave).

  4. Intracerebral evidence of rhythm transform in the human auditory cortex.

    PubMed

    Nozaradan, Sylvie; Mouraux, André; Jonas, Jacques; Colnat-Coulbois, Sophie; Rossion, Bruno; Maillard, Louis

    2017-07-01

    Musical entrainment is shared by all human cultures and the perception of a periodic beat is a cornerstone of this entrainment behavior. Here, we investigated whether beat perception might have its roots in the earliest stages of auditory cortical processing. Local field potentials were recorded from 8 patients implanted with depth-electrodes in Heschl's gyrus and the planum temporale (55 recording sites in total), usually considered as human primary and secondary auditory cortices. Using a frequency-tagging approach, we show that both low-frequency (<30 Hz) and high-frequency (>30 Hz) neural activities in these structures faithfully track auditory rhythms through frequency-locking to the rhythm envelope. A selective gain in amplitude of the response frequency-locked to the beat frequency was observed for the low-frequency activities but not for the high-frequency activities, and was sharper in the planum temporale, especially for the more challenging syncopated rhythm. Hence, this gain process is not systematic in all activities produced in these areas and depends on the complexity of the rhythmic input. Moreover, this gain was disrupted when the rhythm was presented at fast speed, revealing low-pass response properties which could account for the propensity to perceive a beat only within the musical tempo range. Together, these observations show that, even though part of these neural transforms of rhythms could already take place in subcortical auditory processes, the earliest auditory cortical processes shape the neural representation of rhythmic inputs in favor of the emergence of a periodic beat.

  5. Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background.

    PubMed

    Cirelli, Laura K; Spinelli, Christina; Nozaradan, Sylvie; Trainor, Laurel J

    2016-01-01

    Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age. However, it is not known how this is accomplished in the infant brain. An EEG frequency-tagging approach has been used successfully with adults to measure neural entrainment to auditory rhythms. The current study is the first to use this technique with infants in order to investigate how infants' brains encode rhythms. Furthermore, we examine how infant and parent music background is associated with individual differences in rhythm encoding. In Experiment 1, EEG was recorded while 7-month-old infants listened to an ambiguous rhythmic pattern that could be perceived to be in two different meters. In Experiment 2, EEG was recorded while 15-month-old infants listened to a rhythmic pattern with an unambiguous meter. In both age groups, information about music background (parent music training, infant music classes, hours of music listening) was collected. Both age groups showed clear EEG responses frequency-locked to the rhythms, at frequencies corresponding to both beat and meter. For the younger infants (Experiment 1), the amplitudes at duple meter frequencies were selectively enhanced for infants enrolled in music classes compared to those who had not engaged in such classes. For the older infants (Experiment 2), amplitudes at beat and meter frequencies were larger for infants with musically-trained compared to musically-untrained parents. These results suggest that the frequency-tagging method is sensitive to individual differences in beat and meter processing in infancy and could be used to track developmental changes.

  6. Asynchronous polar V1500 Cyg: orbital, spin and beat periods

    NASA Astrophysics Data System (ADS)

    Pavlenko, E. P.; Mason, P. A.; Sosnovskij, A. A.; Shugarov, S. Yu; Babina, Ju V.; Antonyuk, K. A.; Andreev, M. V.; Pit, N. V.; Antonyuk, O. I.; Baklanov, A. V.

    2018-06-01

    The bright Nova Cygni 1975 is a rare nova on a magnetic white dwarf (WD). Later it was found to be an asynchronous polar, now called V1500 Cyg. Our multisite photometric campaign occurring 40 years post eruption covered 26-nights (2015-2017). The reflection effect from the heated donor has decreased, but still dominates the optical radiation with an amplitude ˜1m.5. The 0m.3 residual reveals cyclotron emission and ellipsoidal variations. Mean brightness modulation from night-to-night is used to measure the 9.6-d spin-orbit beat period that is due to changing accretion geometry including magnetic pole-switching of the flow. By subtracting the orbital and beat frequencies, spin-phase dependent light curves are obtained. The amplitude and profile of the WD spin light curves track the cyclotron emitting accretion regions on the WD and they vary systematically with beat phase. A weak intermittent signal at 0.137613-d is likely the spin period, which is 1.73(1) min shorter than the orbital period. The O-C diagram of light curve maxima displays phase jumps every one-half beat period, a characteristic of asynchronous polars. The first jump we interpret as pole switching between regions separated by 180°. Then the spot drifts during ˜ 0.1 beat phase before undergoing a second phase jump between spots separated by less than 180°. We trace the cooling of the still hot WD as revealed by the irradiated companion. The post nova evolution and spin-orbit asynchronism of V1500 Cyg continues to be a powerful laboratory for accretion flows onto magnetic white dwarfs.

  7. Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background

    PubMed Central

    Cirelli, Laura K.; Spinelli, Christina; Nozaradan, Sylvie; Trainor, Laurel J.

    2016-01-01

    Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age. However, it is not known how this is accomplished in the infant brain. An EEG frequency-tagging approach has been used successfully with adults to measure neural entrainment to auditory rhythms. The current study is the first to use this technique with infants in order to investigate how infants' brains encode rhythms. Furthermore, we examine how infant and parent music background is associated with individual differences in rhythm encoding. In Experiment 1, EEG was recorded while 7-month-old infants listened to an ambiguous rhythmic pattern that could be perceived to be in two different meters. In Experiment 2, EEG was recorded while 15-month-old infants listened to a rhythmic pattern with an unambiguous meter. In both age groups, information about music background (parent music training, infant music classes, hours of music listening) was collected. Both age groups showed clear EEG responses frequency-locked to the rhythms, at frequencies corresponding to both beat and meter. For the younger infants (Experiment 1), the amplitudes at duple meter frequencies were selectively enhanced for infants enrolled in music classes compared to those who had not engaged in such classes. For the older infants (Experiment 2), amplitudes at beat and meter frequencies were larger for infants with musically-trained compared to musically-untrained parents. These results suggest that the frequency-tagging method is sensitive to individual differences in beat and meter processing in infancy and could be used to track developmental changes. PMID:27252619

  8. Gamification of active travel to school: A pilot evaluation of the Beat the Street physical activity intervention.

    PubMed

    Coombes, Emma; Jones, Andy

    2016-05-01

    Beat the Street aims to get children more active by encouraging them to walk and cycle in their neighbourhood using tracking technology with a reward scheme. This pilot study evaluates the impact of Beat the Street on active travel to school in Norwich, UK. Eighty children 8-10 yrs were recruited via an intervention and control school. They wore an accelerometer for 7 days at baseline, mid-intervention and post-intervention (+20 weeks), and completed a travel diary. Physical activity overall was not higher at follow-up amongst intervention children compared to controls. However, there was a positive association between moderate-to-vigorous physical activity (MVPA) during school commute times and the number of days on which children touched a Beat the Street sensor. This equated to 3.46min extra daily MVPA during commute times for children who touched a sensor on 14.5 days (the mean number of days), compared to those who did not engage. We also found weekly active travel increased at the intervention school (+10.0% per child) while it decreased at the control (-7.0%), p=0.056. Further work is needed to understand how improved engagement with the intervention might impact outcomes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. In-vivo cell tracking to quantify endothelial cell migration during zebrafish angiogenesis

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Rochon, Elizabeth R.; Roman, Beth L.

    2016-03-01

    The mechanism of endothelial cell migration as individual cells or collectively while remaining an integral component of a functional blood vessel has not been well characterized. In this study, our overarching goal is to define an image processing workflow to facilitate quantification of how endothelial cells within the first aortic arch and are proximal to the zebrafish heart behave in response to the onset of flow (i.e. onset of heart beating). Endothelial cell imaging was conducted at this developmental time-point i.e. ~24-28 hours post fertilization (hpf) when flow first begins, using 3D+time two-photon confocal microscopy of a live, wild-type, transgenic, zebrafish expressing green fluorescent protein (GFP) in endothelial cell nuclei. An image processing pipeline comprised of image signal enhancement, median filtering for speckle noise reduction, automated identification of the nuclei positions, extraction of the relative movement of nuclei between consecutive time instances, and finally tracking of nuclei, was designed for achieving the tracking of endothelial cell nuclei and the identification of their movement towards or away from the heart. Pilot results lead to a hypothesis that upon the onset of heart beat and blood flow, endothelial cells migrate collectively towards the heart (by 21.51+/-10.35 μm) in opposition to blood flow (i.e. subtending 142.170+/-21.170 with the flow direction).

  10. Significance of beating observed in earthquake responses of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet; Ghahari, S. F.; Taciroglu, E.

    2016-01-01

    The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking.

  11. Use of a Novel Cell Adhesion Method and Digital Measurement to Show Stimulus-dependent Variation in Somatic and Oral Ciliary Beat Frequency in Paramecium

    PubMed Central

    Bell, Wade E.; Hallworth, Richard; Wyatt, Todd A.; Sisson, Joseph H.

    2015-01-01

    When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. PMID:25066640

  12. The Mobile story: data-driven community efforts to raise graduation rates.

    PubMed

    Newell, Jeremiah; Akers, Carolyn

    2010-01-01

    Through sustained community organizing and strategic partnerships, the Mobile (Alabama) County Public School System is improving achievement and creating beat-the-odds schools that set and achieve high academic expectations despite the challenges of poverty and racial disparity. The authors chart how Mobile's Research Alliance for Multiple Pathways, funded through the U.S. Department of Labor's Multiple Pathways Blueprint Initiative, is identifying gaps in services throughout the community, analyzing the data about dropouts, benchmarking other communities, studying best practices, and mobilizing the community to expect and demand higher graduation rates. These activities are resulting in early identification of off-track students and coordination of school- and community-based reforms.

  13. Creating New Meanings in Leading Learning. Proceedings [of the] National Conference on Alternative and External Degree Programs for Adults (22nd, Pittsburgh, PA, October 9-12, 2002).

    ERIC Educational Resources Information Center

    American Council on Education, Washington, DC.

    These proceedings are comprised of 25 presentations divided into 5 "tracks." Section I, Diversity and Social Justice, has "Free to Learn with Body and Soul Jazz Divas, Beat Poets, and Street Preachers" (Ferrante, Belcastro); "Clashing Cultures in Our Classrooms" (Gabrich, Rothenberger); "Encouraging Adults in…

  14. On the use of Augmented Reality techniques in learning and interpretation of cardiologic data.

    PubMed

    Lamounier, Edgard; Bucioli, Arthur; Cardoso, Alexandre; Andrade, Adriano; Soares, Alcimar

    2010-01-01

    Augmented Reality is a technology which provides people with more intuitive ways of interaction and visualization, close to those in real world. The amount of applications using Augmented Reality is growing every day, and results can be already seen in several fields such as Education, Training, Entertainment and Medicine. The system proposed in this article intends to provide a friendly and intuitive interface based on Augmented Reality for heart beating evaluation and visualization. Cardiologic data is loaded from several distinct sources: simple standards of heart beating frequencies (for example situations like running or sleeping), files of heart beating signals, scanned electrocardiographs and real time data acquisition of patient's heart beating. All this data is processed to produce visualization within Augmented Reality environments. The results obtained in this research have shown that the developed system is able to simplify the understanding of concepts about heart beating and its functioning. Furthermore, the system can help health professionals in the task of retrieving, processing and converting data from all the sources handled by the system, with the support of an edition and visualization mode.

  15. A novel application of PageRank and user preference algorithms for assessing the relative performance of track athletes in competition.

    PubMed

    Beggs, Clive B; Shepherd, Simon J; Emmonds, Stacey; Jones, Ben

    2017-01-01

    Ranking enables coaches, sporting authorities, and pundits to determine the relative performance of individual athletes and teams in comparison to their peers. While ranking is relatively straightforward in sports that employ traditional leagues, it is more difficult in sports where competition is fragmented (e.g. athletics, boxing, etc.), with not all competitors competing against each other. In such situations, complex points systems are often employed to rank athletes. However, these systems have the inherent weakness that they frequently rely on subjective assessments in order to gauge the calibre of the competitors involved. Here we show how two Internet derived algorithms, the PageRank (PR) and user preference (UP) algorithms, when utilised with a simple 'who beat who' matrix, can be used to accurately rank track athletes, avoiding the need for subjective assessment. We applied the PR and UP algorithms to the 2015 IAAF Diamond League men's 100m competition and compared their performance with the Keener, Colley and Massey ranking algorithms. The top five places computed by the PR and UP algorithms, and the Diamond League '2016' points system were all identical, with the Kendall's tau distance between the PR standings and '2016' points system standings being just 15, indicating that only 5.9% of pairs differed in their order between these two lists. By comparison, the UP and '2016' standings displayed a less strong relationship, with a tau distance of 95, indicating that 37.6% of the pairs differed in their order. When compared with the standings produced using the Keener, Colley and Massey algorithms, the PR standings appeared to be closest to the Keener standings (tau distance = 67, 26.5% pair order disagreement), whereas the UP standings were more similar to the Colley and Massey standings, with the tau distances between these ranking lists being only 48 (19.0% pair order disagreement) and 59 (23.3% pair order disagreement) respectively. In particular, the UP algorithm ranked 'one-off' victors more highly than the PR algorithm, suggesting that the UP algorithm captures alternative characteristics to the PR algorithm, which may more suitable for predicting future performance in say knockout tournaments, rather than for use in competitions such as the Diamond League. As such, these Internet derived algorithms appear to have considerable potential for objectively assessing the relative performance of track athletes, without the need for complicated points equivalence tables. Importantly, because both algorithms utilise a 'who beat who' model, they automatically adjust for the strength of the competition, thus avoiding the need for subjective decision making.

  16. Use of a novel cell adhesion method and digital measurement to show stimulus-dependent variation in somatic and oral ciliary beat frequency in Paramecium.

    PubMed

    Bell, Wade E; Hallworth, Richard; Wyatt, Todd A; Sisson, Joseph H

    2015-01-01

    When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  17. Beat to beat variability in cardiovascular variables: noise or music?

    NASA Technical Reports Server (NTRS)

    Appel, M. L.; Berger, R. D.; Saul, J. P.; Smith, J. M.; Cohen, R. J.

    1989-01-01

    Cardiovascular variables such as heart rate, arterial blood pressure, stroke volume and the shape of electrocardiographic complexes all fluctuate on a beat to beat basis. These fluctuations have traditionally been ignored or, at best, treated as noise to be averaged out. The variability in cardiovascular signals reflects the homeodynamic interplay between perturbations to cardiovascular function and the dynamic response of the cardiovascular regulatory systems. Modern signal processing techniques provide a means of analyzing beat to beat fluctuations in cardiovascular signals, so as to permit a quantitative, noninvasive or minimally invasive method of assessing closed loop hemodynamic regulation and cardiac electrical stability. This method promises to provide a new approach to the clinical diagnosis and management of alterations in cardiovascular regulation and stability.

  18. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  19. Feeling the beat: premotor and striatal interactions in musicians and non-musicians during beat perception

    PubMed Central

    Grahn, Jessica A.; Rowe, James B.

    2009-01-01

    Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and non-musicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The ‘Volume’ condition strongly externally marked the beat with volume changes, the ‘Duration’ condition marked the beat with weaker accents arising from duration changes, and the ‘Unaccented’ condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared to nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC) and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than non-musicians. Importantly, the putamen's response to beat conditions was not due to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians. PMID:19515922

  20. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception.

    PubMed

    Grahn, Jessica A; Rowe, James B

    2009-06-10

    Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and nonmusicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The "volume" condition strongly externally marked the beat with volume changes, the "duration" condition marked the beat with weaker accents arising from duration changes, and the "unaccented" condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared with nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC), and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than nonmusicians. Importantly, the response of the putamen to beat conditions was not attributable to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians.

  1. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal

    PubMed Central

    López-Caballero, Fran; Escera, Carles

    2017-01-01

    When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal. PMID:29187819

  2. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal.

    PubMed

    López-Caballero, Fran; Escera, Carles

    2017-01-01

    When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.

  3. Digital computing cardiotachometer

    NASA Technical Reports Server (NTRS)

    Smith, H. E.; Rasquin, J. R.; Taylor, R. A. (Inventor)

    1973-01-01

    A tachometer is described which instantaneously measures heart rate. During the two intervals between three succeeding heart beats, the electronic system: (1) measures the interval by counting cycles from a fixed frequency source occurring between the two beats; and (2) computes heat rate during the interval between the next two beats by counting the number of times that the interval count must be counted to zero in order to equal a total count of sixty times (to convert to beats per minute) the frequency of the fixed frequency source.

  4. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor); Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1995-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  5. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  6. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity.

    PubMed

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2016-01-01

    Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.

  7. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity

    PubMed Central

    Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander

    2016-01-01

    Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task. PMID:27893766

  8. Frequency offset locking of AlGaAs semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Kuboki, Katsuhiko; Ohtsu, Motoichi

    1987-04-01

    Frequency offset locking is proposed as a technique for tracking and sweeping of a semiconductor laser frequency to improve temporal coherence in semiconductor lasers. Experiments were carried out in which a frequency stabilized laser (of residual frequency fluctuation value of 140 Hz at the integration time between 100 ms and 100 s) was used as a master laser, using a digital phase comparator of a large dynamic range (2 pi x 10 to the 11th rad) in the feedback loop to reduce the phase fluctuations of the beat signal between the master laser and the slave laser. As a result, residual frequency fluctuations of the beat signal were as low as 11 Hz at the integration time of 100 s (i.e., the residual frequency fluctuations of the slave laser were almost equal to those of the master laser).

  9. Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery.

    PubMed

    Bowthorpe, Meaghan; Tavakoli, Mahdi; Becher, Harald; Howe, Robert

    2014-01-01

    Performing surgery on fast-moving heart structures while the heart is freely beating is next to impossible. Nevertheless, the ability to do this would greatly benefit patients. By controlling a teleoperated robot to continuously follow the heart's motion, the heart can be made to appear stationary. The surgeon will then be able to operate on a seemingly stationary heart when in reality it is freely beating. The heart's motion is measured from ultrasound images and thus involves a non-negligible delay due to image acquisition and processing, estimated to be 150 ms that, if not compensated for, can cause the teleoperated robot's end-effector (i.e., the surgical tool) to collide with and puncture the heart. This research proposes the use of a Smith predictor to compensate for this time delay in calculating the reference position for the teleoperated robot. The results suggest that heart motion tracking is improved as the introduction of the Smith predictor significantly decreases the mean absolute error, which is the error in making the distance between the robot's end-effector and the heart follow the surgeon's motion, and the mean integrated square error.

  10. Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach.

    PubMed

    Sasaki, Ren; Kabir, Arif Md Rashedul; Inoue, Daisuke; Anan, Shizuka; Kimura, Atsushi P; Konagaya, Akihiko; Sada, Kazuki; Kakugo, Akira

    2018-04-05

    Self-organized structures of biomolecular motor systems, such as cilia and flagella, play key roles in the dynamic processes of living organisms, like locomotion or the transportation of materials. Although fabrication of such self-organized structures from reconstructed biomolecular motor systems has attracted much attention in recent years, a systematic construction methodology is still lacking. In this work, through a bottom-up approach, we fabricated artificial cilia from a reconstructed biomolecular motor system, microtubule/kinesin. The artificial cilia exhibited a beating motion upon the consumption, by the kinesins, of the chemical energy obtained from the hydrolysis of adenosine triphosphate (ATP). Several design parameters, such as the length of the microtubules, the density of the kinesins along the microtubules, the depletion force among the microtubules, etc., have been identified, which permit tuning of the beating frequency of the artificial cilia. The beating frequency of the artificial cilia increases upon increasing the length of the microtubules, but declines for the much longer microtubules. A high density of the kinesins along the microtubules is favorable for the beating motion of the cilia. The depletion force induced bundling of the microtubules accelerated the beating motion of the artificial cilia and increased the beating frequency. This work helps understand the role of self-assembled structures of the biomolecular motor systems in the dynamics of living organisms and is expected to expedite the development of artificial nanomachines, in which the biomolecular motors may serve as actuators.

  11. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    PubMed Central

    Meltzer, Benjamin; Reichenbach, Chagit S.; Braiman, Chananel; Schiff, Nicholas D.; Hudspeth, A. J.; Reichenbach, Tobias

    2015-01-01

    The brain’s analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, non-sensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces. PMID:26300760

  12. A microprocessor-based cardiotachometer

    NASA Technical Reports Server (NTRS)

    Donaldson, J. A.; Crosier, W. G.

    1979-01-01

    The development of a highly accurate and reliable cardiotachometer for measuring the heart rate of test subjects is discussed. It measures heart rate over the range of 30 to 250 beats/minute and gives instantaneous (beat to beat) updates on the system output so that occasional noise artifacts or ectopic beats could be more easily identified except that occasional missed beats caused by switching ECG leads should not cause a change in the output. The cardiotachometer uses an improved analog filter and R-wave detector and an Intel 8080A microprocessor to handle all of the logic and arithmetic necessary. By using the microprocessor, future hardware modifications could easily be made if functional changes were needed.

  13. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: Its mechanism, prediction and countermeasures

    NASA Astrophysics Data System (ADS)

    Zhang, Xun; Li, Xiaozhen; Hao, Hong; Wang, Dangxiong; Li, Yadong

    2016-04-01

    A side effect of high-speed railway and urban rail transit systems is the associated vibration and noise. Since the use of concrete viaducts is predominant in railway construction due to scarce land resources, low-frequency (20-200 Hz) structure-radiated noise from concrete bridges is a principal concern. Although it is the most commonly used bridge type, the mechanism of noise emission from box-shaped bridge girders when subjected to impact forces from moving trains, which sounds like beating a drum, has not been well studied. In this study, a field measurement was first made on a simply-supported box-shaped bridge to record the acceleration of the slabs and the associated sound pressures induced by running trains. These data indicated that a significant beat-wave noise occurred in the box-shaped cavity when the train speed was around 340 km/h, which arose from the interference between two sound waves of 75.0 Hz and 78.8 Hz. The noise leakage from the bridge expansion joint was serious and resulted in obvious noise pollution near the bridge once the beat-wave noise was generated in the cavity. The dominant frequency of the interior noise at 75.0 Hz was confirmed from the spectrum of the data and the modal analysis results, and originated from the peak vibration of the top slab due to resonance and the first-order vertical acoustic mode, which led to cavity resonance, amplifying the corresponding noise. The three-dimensional acoustic modes and local vibration modes of the slab were calculated by using the finite element method. A simplified vehicle-track-bridge coupling vibration model was then developed to calculate the wheel-rail interaction force in a frequency range of 20-200 Hz. Numerical simulations using the boundary element method confirmed the cavity resonance effect and the numerical results agreed well with the data. Based on the calibrated numerical model, three noise reduction measures, i.e., adding a horizontal baffle in the interior cavity, narrowing the width of top slab by reducing the inclination angle of the webs, and using a softer fastener on the track, were found to be effective and practical for reducing the noise generated by high-speed trains.

  14. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.

    PubMed

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-10-20

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  15. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-01-01

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596

  16. A forward model-based validation of cardiovascular system identification

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.

    2001-01-01

    We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.

  17. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills

    PubMed Central

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship between motor output and auditory input, we predicted that subjects better able to tap to the beat would perform better on attention tests. Second, since auditory-motor synchronization requires fine temporal precision within the auditory system for the extraction of a sound’s onset time, we predicted that subjects better able to tap to the beat would be less affected by backward masking, a measure of temporal precision within the auditory system. As predicted, tapping performance related to reading, attention, and backward masking. These results motivate future research investigating whether beat synchronization training can improve not only reading ability, but potentially executive function and basic auditory processing as well. PMID:23400117

  18. Effect of pseudoephedrine on 800-m-run times of female collegiate track athletes.

    PubMed

    Berry, Caroline; Wagner, Dale R

    2012-09-01

    Pseudoephedrine (PSE) is an over-the-counter decongestant that might have ergogenic effects. The World Anti-Doping Agency has prohibited large doses (>150 μg/mL) of PSE, while the National College Athletic Association (NCAA) does not include it on their banned-substance list. This study examined the effect of body-weight dosing of PSE on 800-m-run times of NCAA female runners. Fifteen NCAA female track athletes volunteered to participate in the randomized, double-blind, crossover design. Participants were given 2.5 mg/kg PSE or placebo in trials separated by a week. Ninety minutes postingestion, participants completed an 800-m individual time trial on an indoor track. Finishing time was recorded with an automated video timing device. Heart rate and anxiety state scores were recorded immediately after each trial. Fourteen runners completed both trials, and 1 was an outlier: N=13. Despite the dose being well above normal therapeutic levels (144±17 mg), there was no significant difference (P=.92) in 800-m times between PSE (2:39.447±9.584) and placebo (2:39.372±9.636) trials, in postexercise heart rate (P=.635; PSE=177.9±14.5 beats/min, placebo=178.4±18.5 beats/min), or in anxiety-state levels (P=.650; PSE=38.4±11.6, placebo=38.1±8.8). A 2.5-mg/kg dose of PSE had no effect on 800-m performance for female NCAA runners. More research is needed to determine if PSE should be a specified banned substance.

  19. Biological exhaust air treatment systems as a potential microbial risk for farm animals assessed with a computer simulation.

    PubMed

    Seedorf, Jens

    2013-09-01

    Livestock operations are under increasing pressure to fulfil minimum environmental requirements and avoid polluting the atmosphere. In regions with high farm animal densities, new farm buildings receive building permission only when biological exhaust air treatment systems (BEATS) are in place, such as biofilters. However, it is currently unknown whether BEATS can harbour pathogens such as zoonotic agents, which are potentially emitted via the purified gas. Because BEATS are located very close to the livestock building, it is assumed that BEATS-related microorganisms are aerially transported to farm animals via the inlet system of the ventilation system. To support this hypothesis, a computer simulation was applied to calculate the wind field around a facility consisting of a virtual livestock house and an adjacent biofilter. Under the chosen wind conditions (speed and direction), it can be shown that turbulences and eddies may occur in the near surrounding of a livestock building with an adjacent biofilter. Consequently, this might cause the entry of the released biofilter's purified gas into the barn, including possible microorganisms within this purified gas. If field investigations verify the results of the simulations, counter-measures must be taken to ensure biosecurity on farms with BEATS. © 2013 Society of Chemical Industry.

  20. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  1. Image-guided robotic surgery.

    PubMed

    Marescaux, Jacques; Solerc, Luc

    2004-06-01

    Medical image processing leads to an improvement in patient care by guiding the surgical gesture. Three-dimensional models of patients that are generated from computed tomographic scans or magnetic resonance imaging allow improved surgical planning and surgical simulation that offers the opportunity for a surgeon to train the surgical gesture before performing it for real. These two preoperative steps can be used intra-operatively because of the development of augmented reality, which consists of superimposing the preoperative three-dimensional model of the patient onto the real intraoperative view. Augmented reality provides the surgeon with a view of the patient in transparency and can also guide the surgeon, thanks to the real-time tracking of surgical tools during the procedure. When adapted to robotic surgery, this tool tracking enables visual serving with the ability to automatically position and control surgical robotic arms in three dimensions. It is also now possible to filter physiologic movements such as breathing or the heart beat. In the future, by combining augmented reality and robotics, these image-guided robotic systems will enable automation of the surgical procedure, which will be the next revolution in surgery.

  2. The role of the autonomic nervous system in the resting tachycardia of human hyperthyroidism.

    PubMed

    Maciel, B C; Gallo, L; Marin Neto, J A; Maciel, L M; Alves, M L; Paccola, G M; Iazigi, N

    1987-02-01

    The mechanisms that control resting heart rate in hyperthyroidism were evaluated in six patients before and after treatment with propylthiouracil. The patients were subjected to pharmacological blockade under resting conditions in two experimental sessions: first session, propranolol (0.2 mg/kg body weight); second session, atropine (0.04 mg/kg body weight) followed by propranolol (0.2 mg/kg body weight). All drugs were administered intravenously. Resting heart rate was significantly reduced from 100 +/- 6.5 beats/min to 72 +/- 2.5 beats/min (P less than 0.005) after clinical and laboratory control of the disease. After double blockade, intrinsic heart rate was reduced from 105 +/- 6.8 beats/min before treatment to 98 +/- 6.0 beats/min after treatment (P less than 0.025). The reduction in heart rate caused by propranolol was not significantly different before (-13 +/- 1.4 beats/min) and after (-9 +/- 1.0 beats/min) propylthiouracil. In contrast, atropine induced a higher elevation of heart rate after treatment (45 +/- 8.6 beats/min) than before treatment (26 +/- 4.0 beats/min). The present results suggest no appreciable participation of the sympathetic component of the autonomic nervous system in the tachycardia of hyperthyroidism, at least under the conditions of the present study. The small change observed in intrinsic heart rate, although significant, seems to indicate that this is not the most important mechanism involved in this tachycardia. Our results suggest that an important reduction in the efferent activity of the parasympathetic component participates in the mechanisms that modify resting heart rte in hyperthyroidism.

  3. Utilization of negative beat-frequencies for maximizing the update-rate of OFDR

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Botsev, Yakov; Hahami, Meir; Eyal, Avishay

    2015-07-01

    In traditional OFDR systems, the backscattered profile of a sensing fiber is inefficiently duplicated to the negative band of spectrum. In this work, we present a new OFDR design and algorithm that remove this redundancy and make use of negative beat frequencies. In contrary to conventional OFDR designs, it facilitates efficient use of the available system bandwidth and enables distributed sensing with the maximum allowable interrogation update-rate for a given fiber length. To enable the reconstruction of negative beat frequencies an I/Q type receiver is used. In this receiver, both the in-phase (I) and quadrature (Q) components of the backscatter field are detected. Following detection, both components are digitally combined to produce a complex backscatter signal. Accordingly, due to its asymmetric nature, the produced spectrum will not be corrupted by the appearance of negative beat-frequencies. Here, via a comprehensive computer simulation, we show that in contrast to conventional OFDR systems, I/Q OFDR can be operated at maximum interrogation update-rate for a given fiber length. In addition, we experimentally demonstrate, for the first time, the ability of I/Q OFDR to utilize negative beat-frequencies for long-range distributed sensing.

  4. ECG signal analysis through hidden Markov models.

    PubMed

    Andreão, Rodrigo V; Dorizzi, Bernadette; Boudy, Jérôme

    2006-08-01

    This paper presents an original hidden Markov model (HMM) approach for online beat segmentation and classification of electrocardiograms. The HMM framework has been visited because of its ability of beat detection, segmentation and classification, highly suitable to the electrocardiogram (ECG) problem. Our approach addresses a large panel of topics some of them never studied before in other HMM related works: waveforms modeling, multichannel beat segmentation and classification, and unsupervised adaptation to the patient's ECG. The performance was evaluated on the two-channel QT database in terms of waveform segmentation precision, beat detection and classification. Our waveform segmentation results compare favorably to other systems in the literature. We also obtained high beat detection performance with sensitivity of 99.79% and a positive predictivity of 99.96%, using a test set of 59 recordings. Moreover, premature ventricular contraction beats were detected using an original classification strategy. The results obtained validate our approach for real world application.

  5. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  6. Intertrial auditory neural stability supports beat synchronization in preschoolers

    PubMed Central

    Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2016-01-01

    The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457

  7. Motor contributions to the temporal precision of auditory attention

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.; Wyart, Valentin

    2014-01-01

    In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. PMID:25314898

  8. Motor contributions to the temporal precision of auditory attention.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin

    2014-10-15

    In temporal-or dynamic-attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory 'active sensing'.

  9. NASA Tech Briefs, July 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics covered include: Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System; Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure; Pattern Recognition Algorithm for High-Sensitivity Odorant Detection in Unknown Environments; Determining Performance Acceptability of Electrochemical Oxygen Sensors; Versatile Controller for Infrared Lamp and Heater Arrays; High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection; Ultra-Low-Power MEMS Selective Gas Sensors; Compact Receiver Front Ends for Submillimeter-Wave Applications; Dynamically Reconfigurable Systolic Array Accelerator; Blocking Losses With a Photon Counter; Motion-Capture-Enabled Software for Gestural Control of 3D Mod; Orbit Software Suite; CoNNeCT Baseband Processor Module Boot Code SoftWare (BCSW); Trajectory Software With Upper Atmosphere Model; ALSSAT Version 6.0; Employing a Grinding Technology to Assess the Microbial Density for Encapsulated Organisms; Demonstration of Minimally Machined Honeycomb Silicon Carbide Mirrors; Polyimide Aerogel Thin Films; Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites; Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass; Robust Tensioned Kevlar Suspension Design; Focal Plane Alignment Utilizing Optical CMM; Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass; Virtual Ultrasound Guidance for Inexperienced Operators; Beat-to-Beat Blood Pressure Monitor; Non-Contact Conductivity Measurement for Automated Sample Processing Systems; An MSK Radar Waveform; Telescope Alignment From Sparsely Sampled Wavefront Measurements Over Pupil Subapertures; Method to Remove Particulate Matter from Dusty Gases at Low Pressures; Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile; Measurement Via Optical Near-Nulling and Subaperture Stitching; 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System; Airborne Hyperspectral Imaging System; Heat Shield Employing Cured Thermal Protection Material Blocks Bonded in a Large-Cell Honeycomb Matrix; and Asymmetric Supercapacitor for Long-Duration Power Storage.

  10. The effect of binaural beats on verbal working memory and cortical connectivity.

    PubMed

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2017-04-01

    Synchronization in activated regions of cortical networks affect the brain's frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain's response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant's accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  11. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    PubMed

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  12. Effect of Propellant Feed System Coupling and Hydraulic Parameters on Analysis of Chugging

    NASA Technical Reports Server (NTRS)

    Wood, Don J.; Dorsch, Robert G.

    1967-01-01

    A digital distributed parameter model was used to study the effects of propellant-feed- system coupling and various hydraulic parameters on the analytical prediction of chugging instabilities. Coupling between the combustion chamber and feed system was controlled by varying the compliance of the injector-dome region. The coupling with the feed system above the pump was varied by changing the amount of cavitation compliance at the pump inlet. The stability limits and chugging frequencies proved to be strongly dependent on the degree of feed-system coupling. The maximum stability condition occurred with intermediate coupling. Under conditions of a high degree of feed-system-combustor coupling, the stability limits and chugging frequencies were primarily dependent on the feed-system characteristics; the responses were characterized by beating patterns. For the system analyzed, the pump suction line had little effect on the stability limits or chugging frequencies. Beating, present under the condition of near zero injector -dome compliance, was eliminated when the suction line was decoupled by employing a sufficiently high value of pump-inlet compliance. Under conditions of maximum feed-system coupling, the magnitude and distribution of line losses in the discharge line had a significant effect on the stability limits but had negligible effect on the chugging frequency and beating characteristics. Also, the length of the discharge line greatly affected the stability limits, chugging frequency, and beating characteristics. The length of the suction line, however, had little effect on the stability limits and chugging frequency but did influence the beating pattern. A resistive-shunt device attached to the pump discharge line to suppress chugging was investigated. The analysis showed that the device was effective under conditions of high feed-system coupling.

  13. A novel application of PageRank and user preference algorithms for assessing the relative performance of track athletes in competition

    PubMed Central

    Shepherd, Simon J.; Emmonds, Stacey; Jones, Ben

    2017-01-01

    Ranking enables coaches, sporting authorities, and pundits to determine the relative performance of individual athletes and teams in comparison to their peers. While ranking is relatively straightforward in sports that employ traditional leagues, it is more difficult in sports where competition is fragmented (e.g. athletics, boxing, etc.), with not all competitors competing against each other. In such situations, complex points systems are often employed to rank athletes. However, these systems have the inherent weakness that they frequently rely on subjective assessments in order to gauge the calibre of the competitors involved. Here we show how two Internet derived algorithms, the PageRank (PR) and user preference (UP) algorithms, when utilised with a simple ‘who beat who’ matrix, can be used to accurately rank track athletes, avoiding the need for subjective assessment. We applied the PR and UP algorithms to the 2015 IAAF Diamond League men’s 100m competition and compared their performance with the Keener, Colley and Massey ranking algorithms. The top five places computed by the PR and UP algorithms, and the Diamond League ‘2016’ points system were all identical, with the Kendall’s tau distance between the PR standings and ‘2016’ points system standings being just 15, indicating that only 5.9% of pairs differed in their order between these two lists. By comparison, the UP and ‘2016’ standings displayed a less strong relationship, with a tau distance of 95, indicating that 37.6% of the pairs differed in their order. When compared with the standings produced using the Keener, Colley and Massey algorithms, the PR standings appeared to be closest to the Keener standings (tau distance = 67, 26.5% pair order disagreement), whereas the UP standings were more similar to the Colley and Massey standings, with the tau distances between these ranking lists being only 48 (19.0% pair order disagreement) and 59 (23.3% pair order disagreement) respectively. In particular, the UP algorithm ranked ‘one-off’ victors more highly than the PR algorithm, suggesting that the UP algorithm captures alternative characteristics to the PR algorithm, which may more suitable for predicting future performance in say knockout tournaments, rather than for use in competitions such as the Diamond League. As such, these Internet derived algorithms appear to have considerable potential for objectively assessing the relative performance of track athletes, without the need for complicated points equivalence tables. Importantly, because both algorithms utilise a ‘who beat who’ model, they automatically adjust for the strength of the competition, thus avoiding the need for subjective decision making. PMID:28575009

  14. Non-whole beat correlation method for the identification of an unbalance response of a dual-rotor system with a slight rotating speed difference

    NASA Astrophysics Data System (ADS)

    Zhang, Z. X.; Wang, L. Z.; Jin, Z. J.; Zhang, Q.; Li, X. L.

    2013-08-01

    The efficient identification of the unbalanced responses in the inner and outer rotors from the beat vibration is the key step in the dynamic balancing of a dual-rotor system with a slight rotating speed difference. This paper proposes a non-whole beat correlation method to identify the unbalance responses whose integral time is shorter than the whole beat correlation method. The principle, algorithm and parameter selection of the proposed method is emphatically demonstrated in this paper. From the numerical simulation and balancing experiment conducted on horizontal decanter centrifuge, conclusions can be drawn that the proposed approach is feasible and practicable. This method makes important sense in developing the field balancing equipment based on portable Single Chip Microcomputer (SCMC) with low expense.

  15. Artificial gravity reveals that economy of action determines the stability of sensorimotor coordination.

    PubMed

    Carson, Richard G; Oytam, Yalchin; Riek, Stephan

    2009-01-01

    When we move along in time with a piece of music, we synchronise the downward phase of our gesture with the beat. While it is easy to demonstrate this tendency, there is considerable debate as to its neural origins. It may have a structural basis, whereby the gravitational field acts as an orientation reference that biases the formulation of motor commands. Alternatively, it may be functional, and related to the economy with which motion assisted by gravity can be generated by the motor system. We used a robotic system to generate a mathematical model of the gravitational forces acting upon the hand, and then to reverse the effect of gravity, and invert the weight of the limb. In these circumstances, patterns of coordination in which the upward phase of rhythmic hand movements coincided with the beat of a metronome were more stable than those in which downward movements were made on the beat. When a normal gravitational force was present, movements made down-on-the-beat were more stable than those made up-on-the-beat. The ubiquitous tendency to make a downward movement on a musical beat arises not from the perception of gravity, but as a result of the economy of action that derives from its exploitation.

  16. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.

    PubMed

    Zhang, Hanyu; Iijima, Kenichi; Huang, Jian; Walcott, Gregory P; Rogers, Jack M

    2016-07-26

    Cardiac optical mapping uses potentiometric fluorescent dyes to image membrane potential (Vm). An important limitation of conventional optical mapping is that contraction is usually arrested pharmacologically to prevent motion artifacts from obscuring Vm signals. However, these agents may alter electrophysiology, and by abolishing contraction, also prevent optical mapping from being used to study coupling between electrical and mechanical function. Here, we present a method to simultaneously map Vm and epicardial contraction in the beating heart. Isolated perfused swine hearts were stained with di-4-ANEPPS and fiducial markers were glued to the epicardium for motion tracking. The heart was imaged at 750 Hz with a video camera. Fluorescence was excited with cyan or blue LEDs on alternating camera frames, thus providing a 375-Hz effective sampling rate. Marker tracking enabled the pixel(s) imaging any epicardial site within the marked region to be identified in each camera frame. Cyan- and blue-elicited fluorescence have different sensitivities to Vm, but other signal features, primarily motion artifacts, are common. Thus, taking the ratio of fluorescence emitted by a motion-tracked epicardial site in adjacent frames removes artifacts, leaving Vm (excitation ratiometry). Reconstructed Vm signals were validated by comparison to monophasic action potentials and to conventional optical mapping signals. Binocular imaging with additional video cameras enabled marker motion to be tracked in three dimensions. From these data, epicardial deformation during the cardiac cycle was quantified by computing finite strain fields. We show that the method can simultaneously map Vm and strain in a left-sided working heart preparation and can image changes in both electrical and mechanical function 5 min after the induction of regional ischemia. By allowing high-resolution optical mapping in the absence of electromechanical uncoupling agents, the method relieves a long-standing limitation of optical mapping and has potential to enhance new studies in coupled cardiac electromechanics. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. moBeat: Using interactive music to guide and motivate users during aerobic exercising.

    PubMed

    van der Vlist, Bram; Bartneck, Christoph; Mäueler, Sebastian

    2011-06-01

    An increasing number of people are having trouble staying fit and maintaining a healthy bodyweight because of lack of physical activity. Getting people to exercise is crucial. However, many struggle with developing healthy exercising habits, due to hurdles like having to leave the house and the boring character of endurance exercising. In this paper, we report on a design project that explores the use of audio to motivate and provide feedback and guidance during exercising in a home environment. We developed moBeat, a system that provides intensity-based coaching while exercising, giving real-time feedback on training pace and intensity by means of interactive music. We conducted a within-subject comparison between our moBeat system and a commercially available heart rate watch. With moBeat, we achieved a comparable success rate: our system has a significant, positive influence on intrinsic motivation and attentional focus, but we did not see significant differences with regard to either perceived exertion or effectiveness. Although promising, future research is needed.

  18. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  19. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    PubMed Central

    McConnell, Patrick A.; Froeliger, Brett; Garland, Eric L.; Ives, Jeffrey C.; Sforzo, Gary A.

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18–29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation. PMID:25452734

  20. The effect of binaural beats on verbal working memory and cortical connectivity

    NASA Astrophysics Data System (ADS)

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander

    2017-04-01

    Objective. Synchronization in activated regions of cortical networks affect the brain’s frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain’s response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. Approach. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. Main results. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant’s accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Significance. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  1. Assessment of rhythmic entrainment at multiple timescales in dyslexia: evidence for disruption to syllable timing.

    PubMed

    Leong, Victoria; Goswami, Usha

    2014-02-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9-2.5 Hz, prosodic stress; 2.5-12 Hz, syllables; 12-40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words, the central cognitive characteristic of developmental dyslexia across languages. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Assessment of rhythmic entrainment at multiple timescales in dyslexia: Evidence for disruption to syllable timing☆

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2014-01-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9–2.5 Hz, prosodic stress; 2.5–12 Hz, syllables; 12–40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words, the central cognitive characteristic of developmental dyslexia across languages. This article is part of a Special Issue entitled . PMID:23916752

  3. Beat to beat 3-dimensional intracardiac echocardiography: theoretical approach and practical experiences.

    PubMed

    Stapf, Daniel; Franke, Andreas; Schreckenberg, Marcus; Schummers, Georg; Mischke, Karl; Marx, Nikolaus; Schauerte, Patrick; Knackstedt, Christian

    2013-04-01

    Three-dimensional (3D)-imaging provides important information on cardiac anatomy during electrophysiological procedures. Real-time updates of modalities with high soft-tissue contrast are particularly advantageous during cardiac procedures. Therefore, a beat to beat 3D visualization of cardiac anatomy by intracardiac echocardiography (ICE) was developed and tested in phantoms and animals. An electronic phased-array 5-10 MHz ICE-catheter (Acuson, AcuNav/Siemens Medical Solutions USA/64 elements) providing a 90° sector image was used for ICE-imaging. A custom-made mechanical prototype controlled by a servo motor allowed automatic rotation of the ICE-catheter around its longitudinal axis. During a single heartbeat, the ICE-catheter was rotated and 2D-images were acquired. Reconstruction into a 3D volume and rendering by a prototype software was performed beat to beat. After experimental validation using a rigid phantom, the system was tested in an animal study and afterwards, for quantitative validation, in a dynamic phantom. Acquisition of beat to beat 3D-reconstruction was technically feasible. However, twisting of the ICE-catheter shaft due to friction and torsion was found and rotation was hampered. Also, depiction of catheters was not always ensured in case of parallel alignment. Using a curved sheath for depiction of cardiac anatomy there was no congruent depiction of shape and dimension of static and moving objects. Beat to beat 3D-ICE-imaging is feasible. However, shape and dimension of static and moving objects cannot always be displayed with necessary steadiness as needed in the clinical setting. As catheter depiction is also limited, clinical use seems impossible.

  4. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis

    PubMed Central

    Patel, Aniruddh D.; Iversen, John R.

    2013-01-01

    Every human culture has some form of music with a beat: a perceived periodic pulse that structures the perception of musical rhythm and which serves as a framework for synchronized movement to music. What are the neural mechanisms of musical beat perception, and how did they evolve? One view, which dates back to Darwin and implicitly informs some current models of beat perception, is that the relevant neural mechanisms are relatively general and are widespread among animal species. On the basis of recent neural and cross-species data on musical beat processing, this paper argues for a different view. Here we argue that beat perception is a complex brain function involving temporally-precise communication between auditory regions and motor planning regions of the cortex (even in the absence of overt movement). More specifically, we propose that simulation of periodic movement in motor planning regions provides a neural signal that helps the auditory system predict the timing of upcoming beats. This “action simulation for auditory prediction” (ASAP) hypothesis leads to testable predictions. We further suggest that ASAP relies on dorsal auditory pathway connections between auditory regions and motor planning regions via the parietal cortex, and suggest that these connections may be stronger in humans than in non-human primates due to the evolution of vocal learning in our lineage. This suggestion motivates cross-species research to determine which species are capable of human-like beat perception, i.e., beat perception that involves accurate temporal prediction of beat times across a fairly broad range of tempi. PMID:24860439

  5. Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-09-05

    We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).

  6. Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainscough, C.; McLarty, D.; Sullivan, R.

    2013-10-01

    This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

  7. Simple phalanx pattern leads to energy saving in cohesive fish schooling.

    PubMed

    Ashraf, Intesaaf; Bradshaw, Hanaé; Ha, Thanh-Tung; Halloy, José; Godoy-Diana, Ramiro; Thiria, Benjamin

    2017-09-05

    The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. In this study, we use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri , which is known to swim in highly cohesive groups, to analyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, and stereoscopic video recordings are used to track the 3D positions of each individual in a school, as well as their tail-beating kinematics. Challenging the widespread idea of fish favoring a diamond pattern to swim more efficiently [Weihs D (1973) Nature 241:290-291], we observe that when fish are forced to swim fast-well above their free-swimming typical velocity, and hence in a situation where efficient swimming would be favored-the most frequent configuration is the "phalanx" or "soldier" formation, with all individuals swimming side by side. We explain this observation by considering the advantages of tail-beating synchronization between neighbors, which we have also characterized. Most importantly, we show that schooling is advantageous as compared with swimming alone from an energy-efficiency perspective.

  8. Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility.

    PubMed

    Soler, Carles; Picazo-Bueno, José Á; Micó, Vicente; Valverde, Anthony; Bompart, Daznia; Blasco, Francisco J; Álvarez, Juan G; García-Molina, Almudena

    2018-05-04

    Sperm motility is one of the most significant parameters in the prediction of male fertility. Until now, both motility analysis using an optical microscope and computer-aided sperm analysis (CASA-Mot) entailed the use of counting chambers with a depth to 20µm. Chamber depth significantly affects the intrinsic sperm movement, leading to an artificial motility pattern. For the first time, laser microscopy offers the possibility of avoiding this interference with sperm movement. The aims of the present study were to determine the different motility patterns observed in chambers with depths of 10, 20 and 100µm using a new holographic approach and to compare the results obtained in the 20-µm chamber with those of the laser and optical CASA-Mot systems. The ISAS®3D-Track results showed that values for curvilinear velocity (VCL), straight line velocity, wobble and beat cross frequency were higher for the 100-µm chambers than for the 10- and 20-µm chambers. Only VCL showed a positive correlation between chambers. In addition, Bayesian analysis confirmed that the kinematic parameters observed with the 100-µm chamber were significantly different to those obtained using chambers with depths of 10 and 20µm. When an optical analyser CASA-Mot system was used, all kinematic parameters, except VCL, were higher with ISAS®3D-Track, but were not relevant after Bayesian analysis. Finally, almost three different three-dimensional motility patterns were recognised. In conclusion, the use of the ISAS®3D-Track allows for the analysis of the natural three-dimensional pattern of sperm movement.

  9. Ventricular beat classifier using fractal number clustering.

    PubMed

    Bakardjian, H

    1992-09-01

    A two-stage ventricular beat 'associative' classification procedure is described. The first stage separates typical beats from extrasystoles on the basis of area and polarity rules. At the second stage, the extrasystoles are classified in self-organised cluster formations of adjacent shape parameter values. This approach avoids the use of threshold values for discrimination between ectopic beats of different shapes, which could be critical in borderline cases. A pattern shape feature conventionally called a 'fractal number', in combination with a polarity attribute, was found to be a good criterion for waveform evaluation. An additional advantage of this pattern classification method is its good computational efficiency, which affords the opportunity to implement it in real-time systems.

  10. The automated counting of beating rates in individual cultured heart cells.

    PubMed

    Collins, G A; Dower, R; Walker, M J

    1981-12-01

    The effect of drugs on the beating rate of cultured heart cells can be monitored in a number of ways. The simultaneous automated measurement of beating rates of a number of cells allows drug effects to be rapidly quantified. A photoresistive detector placed on a television image of a cell, when coupled to operational amplifiers, gives binary signals that can be processed by a microprocessor. On this basis, we have devised a system that is capable of simultaneously monitoring the individual beating of six single cultured heart cells. A microprocessor automatically processes data obtained under different experimental conditions and records it in suitable descriptive formats such as dose-response curves and double reciprocal plots.

  11. Automated processing of dynamic properties of intraventricular pressure by computer program and electronic circuit.

    PubMed

    Adler, D; Mahler, Y

    1980-04-01

    A procedure for automatic detection and digital processing of the maximum first derivative of the intraventricular pressure (dp/dtmax), time to dp/dtmax(t - dp/dt) and beat-to-beat intervals have been developed. The procedure integrates simple electronic circuits with a short program using a simple algorithm for the detection of the points of interest. The tasks of differentiating the pressure signal and detecting the onset of contraction were done by electronics, while the tasks of finding the values of dp/dtmax, t - dp/dt, beat-to-beat intervals and all computations needed were done by software. Software/hardware 'trade off' considerations and the accuracy and reliability of the system are discussed.

  12. Hypoxia, Monitoring, and Mitigation System

    DTIC Science & Technology

    2013-11-01

    on measured and predicted data. Given the beat-to-beat method in which oxygen saturation is measured via a pulse oximeter , a certain degree of...1108-12. The incidence of hypoxemia in the immediate postoperative period was determined using a pulse oximeter for continuous monitoring of...Oxygen Saturation Measured via Pulse - Oximeter TAILSS Tactical Aircrew Integrated Life Support System TUC Time of Useful Consciousness USN United

  13. Continuous and Noninvasive Recording of Cardiovascular Parameters with the Finapres Finger Cuff Enhances Undergraduate Student Understanding of Physiology

    ERIC Educational Resources Information Center

    Hodgson, Yvonne; Choate, Julia

    2012-01-01

    The Finapres finger cuff recording system provides continuous calculations of beat-to-beat variations in cardiac output (CO), total peripheral resistance, heart rate (HR), and blood pressure (BP). This system is unique in that it allows experimental subjects to immediately, continuously, and noninvasively visualize changes in CO at rest and during…

  14. Identifying increased risk of post-infarct people with diabetes using multi-lag Tone-Entropy analysis.

    PubMed

    Karmakar, Chandan; Jelinek, Herbert; Khandoker, Ahsan; Tulppo, Mikko; Makikallio, Timo; Kiviniemi, Antti; Huikuri, Heikki; Palaniswami, Marimuthu

    2012-01-01

    Diabetes mellitus is associated with multi-organ system dysfunction. One of the key causative factors is the increased blood sugar level that leads to an increase in free radical activity and organ damage including the cardiovascular and nervous system. Heart rhythm is extrinsically modulated by the autonomic nervous system and cardiac autonomic neuropathy or dysautonomia has been shown to lead to sudden cardiac death in people with diabetes due to the decrease in heart rate variability (HRV). Current algorithms for determining HRV describe only beat-to-beat variation and therefore do not consider the ability of a heart beat to influence a train of succeeding beats. Therefore mortality risk analysis based on HRV has often not been able to discern the presence of an increased risk. This study used a novel innovation of the tone-entropy algorithm by incorporating increased lag intervals and found that both the sympatho-vagal balance and total activity changed at larger lag intervals. Tone-Entropy was found to be better risk identifier of cardiac mortality in people with diabetes at lags higher than one and best at lag seven.

  15. Multivariate and multiorgan analysis of cardiorespiratory variability signals: the CAP sleep case.

    PubMed

    Bianchi, Anna M; Ferini-Strambi, Luigi; Castronovo, Vincenza; Cerutti, Sergio

    2006-10-01

    Signals from different systems are analyzed during sleep on a beat-to-beat basis to provide a quantitative measure of synchronization with the heart rate variability (HRV) signal, oscillations of which reflect the action of the autonomic nervous system. Beat-to-beat variability signals synchronized to QRS occurrence on ECG signals were extracted from respiration, electroencephalogram (EEG) and electromyogram (EMG) traces. The analysis was restricted to sleep stage 2. Cyclic alternating pattern (CAP) periods were detected from EEG signals and the following conditions were identified: stage 2 non-CAP (2 NCAP), stage 2 CAP (2 CAP) and stage 2 CAP with myoclonus (2 CAP MC). The coupling relationships between pairs of variability signals were studied in both the time and frequency domains. Passing from 2 NCAP to 2 CAP, sympathetic activation is indicated by tachycardia and reduced respiratory arrhythmia in the heart rate signal. At the same time, we observed a marked link between EEG and HRV at the CAP frequency. During 2 CAP MC, the increased synchronization involved myoclonus and respiration. The underlying mechanism seems to be related to a global control system at the central level that involves the different systems.

  16. Overnight non-contact continuous vital signs monitoring using an intelligent automatic beam-steering Doppler sensor at 2.4 GHz.

    PubMed

    Batchu, S; Narasimhachar, H; Mayeda, J C; Hall, T; Lopez, J; Nguyen, T; Banister, R E; Lie, D Y C

    2017-07-01

    Doppler-based non-contact vital signs (NCVS) sensors can monitor heart rates, respiration rates, and motions of patients without physically touching them. We have developed a novel single-board Doppler-based phased-array antenna NCVS biosensor system that can perform robust overnight continuous NCVS monitoring with intelligent automatic subject tracking and optimal beam steering algorithms. Our NCVS sensor achieved overnight continuous vital signs monitoring with an impressive heart-rate monitoring accuracy of over 94% (i.e., within ±5 Beats-Per-Minute vs. a reference sensor), analyzed from over 400,000 data points collected during each overnight monitoring period of ~ 6 hours at a distance of 1.75 meters. The data suggests our intelligent phased-array NCVS sensor can be very attractive for continuous monitoring of low-acuity patients.

  17. 3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model.

    PubMed

    Liu, Chao; Moreira, Pedro; Zemiti, Nabil; Poignet, Philippe

    2011-01-01

    Current cardiac surgery faces the challenging problem of heart beating motion even with the help of mechanical stabilizer which makes delicate operation on the heart surface difficult. Motion compensation methods for robotic-assisted beating heart surgery have been proposed recently in literature, but research on force control for such kind of surgery has hardly been reported. Moreover, the viscoelasticity property of the interaction between organ tissue and robotic instrument further complicates the force control design which is much easier in other applications by assuming the interaction model to be elastic (industry, stiff object manipulation, etc.). In this work, we present a three-dimensional force control method for robotic-assisted beating heart surgery taking into consideration of the viscoelastic interaction property. Performance studies based on our D2M2 robot and 3D heart beating motion information obtained through Da Vinci™ system are provided.

  18. Human-Robot Interaction: Intention Recognition and Mutual Entrainment

    DTIC Science & Technology

    2012-08-18

    A 3D model and its controller proposed by Shih et al. [35] guarantee the input-to-state stability during turning, but the model has point feet and...Music Research, vol. 30, no. 2, pp. 159-171, 2001. [21] Y. Shiu, N. Cho, P.-C. Chang, and C.-C. Kuo , “Robust On-Line Beat Tracking with Kalman...2009. [35] C.-L. Shih , J.W. Grizzle, and C. Chevallereau, “From Stable Walking to Steering of a 3D Bipedal Robot with Passive Point Feet,” Robotica

  19. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging

    PubMed Central

    Nozaradan, Sylvie

    2014-01-01

    The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain. PMID:25385771

  20. Improved cutback method measuring beat-length for high-birefringence optical fiber by fitting data of photoelectric signal

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Dong; Lin, Jian-Qiang; Bao, Huan-Huan; Liu, Shu; Xiang, Xue-Nong

    2008-03-01

    A photoelectric measurement system for measuring the beat length of birefringence fiber is set up including a set of rotating-wave-plate polarimeter using single photodiode. And two improved cutback methods suitable for measuring beat-length within millimeter range of high birefringence fiber are proposed through data processing technique. The cut length needs not to be restricted shorter than one centimeter so that the auto-cleaving machine is freely used, and no need to carefully operate the manually cleaving blade with low efficiency and poor success. The first method adopts the parameter-fitting to a saw-tooth function of tried beat length by the criterion of minimum square deviations, without special limitation on the cut length. The second method adopts linear-fitting in the divided length ranges, only restrict condition is the increment between different cut lengths less than one beat-length. For a section of holey high-birefringence fiber, we do experiments respectively by the two methods. The detecting error of beat-length is discussed and the advantage is compared.

  1. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    NASA Astrophysics Data System (ADS)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  2. Systems and methods for remote long standoff biometric identification using microwave cardiac signals

    NASA Technical Reports Server (NTRS)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)

    2012-01-01

    Systems and methods for remote, long standoff biometric identification using microwave cardiac signals are provided. In one embodiment, the invention relates to a method for remote biometric identification using microwave cardiac signals, the method including generating and directing first microwave energy in a direction of a person, receiving microwave energy reflected from the person, the reflected microwave energy indicative of cardiac characteristics of the person, segmenting a signal indicative of the reflected microwave energy into a waveform including a plurality of heart beats, identifying patterns in the microwave heart beats waveform, and identifying the person based on the identified patterns and a stored microwave heart beats waveform.

  3. Beat-to-beat estimation of LVET and QS2 indices of cardiac mechanics from wearable seismocardiography in ambulant subjects.

    PubMed

    Di Rienzo, Marco; Vaini, Emanuele; Castiglioni, Paolo; Meriggi, Paolo; Rizzo, Francesco

    2013-01-01

    Seismocardiogram (SCG) is the measure of the minute vibrations produced by the beating heart. We previously demonstrated that SCG, ECG and respiration could be recorded over the 24 h during spontaneous behavior by a smart garment, the MagIC-SCG system. In the present case study we explored the feasibility of a beat-to-beat estimation of two indices of heart contractility, the Left Ventricular Ejection Time (LVET) and the electromechanical systole (QS2) from SCG and ECG recordings obtained by the MagIC-SCG device in one subject. We considered data collected during outdoor spontaneous behavior (while sitting in the metro and in the office) and in a laboratory setting (in supine and sitting posture, and during recovery after 100 W and 140 W cycling). LVET was estimated from SCG as the time interval between the opening and closure of the aortic valve, QS2 as the time interval between the Q wave of the ECG and the closure of the aortic valve. In every condition, LVET and QS2 could be estimated on a beat-to-beat basis from the SCG collected by the smart garment. LVET and QS2 are characterized by important beat-to-beat fluctuations, with standard deviations in the same order of magnitude of RR Interval. In all settings, spectral profiles are different for LVET, QS2 and RR Interval. This suggests that the biological mechanisms impinging on the heart exert a differentiated influence on the variability of each of these three indices.

  4. Engineering studies of vectorcardiographs in blood pressure measuring systems

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The following projects involving cardiovascular instrumentation were conducted: (1) the development and fabrication of a three-dimensional display measurement system for vectorcardiograms, (2) the development and fabrication of a cardiovascular monitoring system to noninvasively monitor beat-by-beat the blood pressure and heart rate using aortic pulse wave velocity, (3) the development of software for an interactive system to analyze systolic time interval data, and (4) the development of microprocessor-based physiologic instrumentation, focussing initially on EKG rhythm analysis. Brief descriptions of these projects were given.

  5. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Electrocardiograms with pacemakers: accuracy of computer reading.

    PubMed

    Guglin, Maya E; Datwani, Neeta

    2007-04-01

    We analyzed the accuracy with which a computer algorithm reads electrocardiograms (ECGs) with electronic pacemakers (PMs). Electrocardiograms were screened for the presence of electronic pacing spikes. Computer-derived interpretations were compared with cardiologists' readings. Computer-drawn interpretations required revision by cardiologists in 61.3% of cases. In 18.4% of cases, the ECG reading algorithm failed to recognize the presence of a PM. The misinterpretation of paced beats as intrinsic beats led to multiple secondary errors, including myocardial infarctions in varying localization. The most common error in computer reading was the failure to identify an underlying rhythm. This error caused frequent misidentification of the PM type, especially when the presence of normal sinus rhythm was not recognized in a tracing with a DDD PM tracking the atrial activity. The increasing number of pacing devices, and the resulting number of ECGs with pacing spikes, mandates the refining of ECG reading algorithms. Improvement is especially needed in the recognition of the underlying rhythm, pacing spikes, and mode of pacing.

  7. Does Mckuer's Law Hold for Heart Rate Control via Biofeedback Display?

    NASA Technical Reports Server (NTRS)

    Courter, B. J.; Jex, H. R.

    1984-01-01

    Some persons can control their pulse rate with the aid of a biofeedback display. If the biofeedback display is modified to show the error between a command pulse-rate and the measured rate, a compensatory (error correcting) heart rate tracking control loop can be created. The dynamic response characteristics of this control loop when subjected to step and quasi-random disturbances were measured. The control loop includes a beat-to-beat cardiotachmeter differenced with a forcing function from a quasi-random input generator; the resulting error pulse-rate is displayed as feedback. The subject acts to null the displayed pulse-rate error, thereby closing a compensatory control loop. McRuer's Law should hold for this case. A few subjects already skilled in voluntary pulse-rate control were tested for heart-rate control response. Control-law properties are derived, such as: crossover frequency, stability margins, and closed-loop bandwidth. These are evaluated for a range of forcing functions and for step as well as random disturbances.

  8. Noninvasive identification of the total peripheral resistance baroreflex

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ramakrishna; Toska, Karin; Cohen, Richard J.

    2003-01-01

    We propose two identification algorithms for quantitating the total peripheral resistance (TPR) baroreflex, an important contributor to short-term arterial blood pressure (ABP) regulation. Each algorithm analyzes beat-to-beat fluctuations in ABP and cardiac output, which may both be obtained noninvasively in humans. For a theoretical evaluation, we applied both algorithms to a realistic cardiovascular model. The results contrasted with only one of the algorithms proving to be reliable. This algorithm was able to track changes in the static gains of both the arterial and cardiopulmonary TPR baroreflex. We then applied both algorithms to a preliminary set of human data and obtained contrasting results much like those obtained from the cardiovascular model, thereby making the theoretical evaluation results more meaningful. This study suggests that, with experimental testing, the reliable identification algorithm may provide a powerful, noninvasive means for quantitating the TPR baroreflex. This study also provides an example of the role that models can play in the development and initial evaluation of algorithms aimed at quantitating important physiological mechanisms.

  9. Realtime Multichannel System for Beat to Beat QT Interval Variability

    NASA Technical Reports Server (NTRS)

    Starc, Vito; Schlegel, Todd T.

    2006-01-01

    The measurement of beat-to-beat QT interval variability (QTV) shows clinical promise for identifying several types of cardiac pathology. However, until now, there has been no device capable of displaying, in real time on a beattobeat basis, changes in QTV in all 12 conventional leads in a continuously monitored patient. While several software programs have been designed to analyze QTV, heretofore, such programs have all involved only a few channels (at most) and/or have required laborious user interaction or offline calculations and postprocessing, limiting their clinical utility. This paper describes a PC-based ECG software program that in real time, acquires, analyzes and displays QTV and also PQ interval variability (PQV) in each of the eight independent channels that constitute the 12lead conventional ECG. The system also processes certain related signals that are derived from singular value decomposition and that help to reduce the overall effects of noise on the realtime QTV and PQV results.

  10. smRithm: Graphical user interface for heart rate variability analysis.

    PubMed

    Nara, Sanjeev; Kaur, Manvinder; Datta, Saurav

    2015-01-01

    Over the past 25 years, Heart rate variability (HRV) has become a non-invasive research and clinical tool for indirectly carrying out investigation of both cardiac and autonomic system function in both healthy and diseased. It provides valuable information about a wide range of cardiovascular disorders, pulmonary diseases, neurological diseases, etc. Its primary purpose is to access the functioning of the nervous system. The source of information for HRV analysis is the continuous beat to beat measurement of inter-beat intervals. The electrocardiography (ECG or EKG) is considered as the best way to measure inter-beat intervals. This paper proposes an open source Graphical User Interface (GUI): smRithm developed in MATLAB for HRV analysis that will apply effective techniques on the raw ECG signals to process and decompose it in a simpler manner to obtain more useful information out of signals that can be utilized for more powerful and efficient applications in the near future related to HRV.

  11. Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Hansen, Katrina J; Favreau, John T; Gershlak, Joshua R; Laflamme, Michael A; Albrecht, Dirk R; Gaudette, Glenn R

    2017-08-01

    Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.

  12. The impact of binaural beats on creativity

    PubMed Central

    Reedijk, Susan A.; Bolders, Anne; Hommel, Bernhard

    2013-01-01

    Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale—mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods. PMID:24294202

  13. The impact of binaural beats on creativity.

    PubMed

    Reedijk, Susan A; Bolders, Anne; Hommel, Bernhard

    2013-01-01

    Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale-mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods.

  14. Non-contact and noise tolerant heart rate monitoring using microwave doppler sensor and range imagery.

    PubMed

    Matsunag, Daichi; Izumi, Shintaro; Okuno, Keisuke; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2015-01-01

    This paper describes a non-contact and noise-tolerant heart beat monitoring system. The proposed system comprises a microwave Doppler sensor and range imagery using Microsoft Kinect™. The possible application of the proposed system is a driver health monitoring. We introduce the sensor fusion approach to minimize the heart beat detection error. The proposed algorithm can subtract a body motion artifact from Doppler sensor output using time-frequency analysis. The body motion artifact is a crucially important problem for biosignal monitoring using microwave Doppler sensor. The body motion speed is obtainable from range imagery, which has 5-mm resolution at 30-cm distance. Measurement results show that the success rate of the heart beat detection is improved about 75% on average when the Doppler wave is degraded by the body motion artifact.

  15. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  16. The Event Related Brain Potential as an Index of Information Processing, Cognitive Activity, and Skill Acquisition: A Program of Basic Research.

    DTIC Science & Technology

    1985-02-28

    psychophysiological function in question. For example, for most measurements of the cardiovascular system, data are available only at each heart beat ...function of the duration of the charging period, *i . and hence will be proportional to the inter- beat interval (and inversely °°. • .*~* 14 information (0... beat interval. Thus, the output will lag the input. 2.3 Computer Access to Voltage x Time Functions 2.3.1 Digital Input and Analog-to-Digital Conversion

  17. Highly efficient nonrigid motion‐corrected 3D whole‐heart coronary vessel wall imaging

    PubMed Central

    Atkinson, David; Henningsson, Markus; Botnar, Rene M.; Prieto, Claudia

    2016-01-01

    Purpose To develop a respiratory motion correction framework to accelerate free‐breathing three‐dimensional (3D) whole‐heart coronary lumen and coronary vessel wall MRI. Methods We developed a 3D flow‐independent approach for vessel wall imaging based on the subtraction of data with and without T2‐preparation prepulses acquired interleaved with image navigators. The proposed method corrects both datasets to the same respiratory position using beat‐to‐beat translation and bin‐to‐bin nonrigid corrections, producing coregistered, motion‐corrected coronary lumen and coronary vessel wall images. The proposed method was studied in 10 healthy subjects and was compared with beat‐to‐beat translational correction (TC) and no motion correction for the left and right coronary arteries. Additionally, the coronary lumen images were compared with a 6‐mm diaphragmatic navigator gated and tracked scan. Results No significant differences (P > 0.01) were found between the proposed method and the gated and tracked scan for coronary lumen, despite an average improvement in scan efficiency to 96% from 59%. Significant differences (P < 0.01) were found in right coronary artery vessel wall thickness, right coronary artery vessel wall sharpness, and vessel wall visual score between the proposed method and TC. Conclusion The feasibility of a highly efficient motion correction framework for simultaneous whole‐heart coronary lumen and vessel wall has been demonstrated. Magn Reson Med 77:1894–1908, 2017. © 2016 International Society for Magnetic Resonance in Medicine PMID:27221073

  18. Mismatch negativity to acoustical illusion of beat: how and where the change detection takes place?

    PubMed

    Chakalov, Ivan; Paraskevopoulos, Evangelos; Wollbrink, Andreas; Pantev, Christo

    2014-10-15

    In case of binaural presentation of two tones with slightly different frequencies the structures of brainstem can no longer follow the interaural time differences (ITD) resulting in an illusionary perception of beat corresponding to frequency difference between the two prime tones. Hence, the beat-frequency does not exist in the prime tones presented to either ear. This study used binaural beats to explore the nature of acoustic deviance detection in humans by means of magnetoencephalography (MEG). Recent research suggests that the auditory change detection is a multistage process. To test this, we employed 26 Hz-binaural beats in a classical oddball paradigm. However, the prime tones (250 Hz and 276 Hz) were switched between the ears in the case of the deviant-beat. Consequently, when the deviant is presented, the cochleae and auditory nerves receive a "new afferent", although the standards and the deviants are heard identical (26 Hz-beats). This allowed us to explore the contribution of auditory periphery to change detection process, and furthermore, to evaluate its influence on beats-related auditory steady-state responses (ASSRs). LORETA-source current density estimates of the evoked fields in a typical mismatch negativity time-window (MMN) and the subsequent difference-ASSRs were determined and compared. The results revealed an MMN generated by a complex neural network including the right parietal lobe and the left middle frontal gyrus. Furthermore, difference-ASSR was generated in the paracentral gyrus. Additionally, psychophysical measures showed no perceptual difference between the standard- and deviant-beats when isolated by noise. These results suggest that the auditory periphery has an important contribution to novelty detection already at sub-cortical level. Overall, the present findings support the notion of hierarchically organized acoustic novelty detection system. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A real-time approach for heart rate monitoring using a Hilbert transform in seismocardiograms.

    PubMed

    Jafari Tadi, Mojtaba; Lehtonen, Eero; Hurnanen, Tero; Koskinen, Juho; Eriksson, Jonas; Pänkäälä, Mikko; Teräs, Mika; Koivisto, Tero

    2016-11-01

    Heart rate monitoring helps in assessing the functionality and condition of the cardiovascular system. We present a new real-time applicable approach for estimating beat-to-beat time intervals and heart rate in seismocardiograms acquired from a tri-axial microelectromechanical accelerometer. Seismocardiography (SCG) is a non-invasive method for heart monitoring which measures the mechanical activity of the heart. Measuring true beat-to-beat time intervals from SCG could be used for monitoring of the heart rhythm, for heart rate variability analysis and for many other clinical applications. In this paper we present the Hilbert adaptive beat identification technique for the detection of heartbeat timings and inter-beat time intervals in SCG from healthy volunteers in three different positions, i.e. supine, left and right recumbent. Our method is electrocardiogram (ECG) independent, as it does not require any ECG fiducial points to estimate the beat-to-beat intervals. The performance of the algorithm was tested against standard ECG measurements. The average true positive rate, positive prediction value and detection error rate for the different positions were, respectively, supine (95.8%, 96.0% and ≃0.6%), left (99.3%, 98.8% and ≃0.001%) and right (99.53%, 99.3% and ≃0.01%). High correlation and agreement was observed between SCG and ECG inter-beat intervals (r  >  0.99) for all positions, which highlights the capability of the algorithm for SCG heart monitoring from different positions. Additionally, we demonstrate the applicability of the proposed method in smartphone based SCG. In conclusion, the proposed algorithm can be used for real-time continuous unobtrusive cardiac monitoring, smartphone cardiography, and in wearable devices aimed at health and well-being applications.

  20. Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone

    ERIC Educational Resources Information Center

    Giménez, Marcos H.; Salinas, Isabel; Monsoriu, Juan A.; Castro-Palacio, Juan C.

    2017-01-01

    The resonance phenomenon is widely known in physics courses. Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and…

  1. The Roles of Traditional Gender Myths and Beliefs About Beating on Self-Reported Partner Violence.

    PubMed

    Husnu, Shenel; Mertan, Biran E

    2015-08-24

    The aim of the current study was to investigate the roles of beliefs about beating, traditional gender myth endorsement, ambivalent sexism, and perceived partner violence in determining an individual's own reported violence toward his or her partner. The sample consisted of 205 (117 women; 88 men) Turkish and Turkish Cypriot undergraduate students, aged between 16 and 29 years. Participants completed measures of beliefs about beating, traditional gender myth endorsement, and ambivalent sexism and rated the extent to which they experienced abusive behaviors from their partner as well as the extent to which they were themselves abusive to their partners. Results showed that positive beliefs about beating, endorsing traditional gender myths, and experiencing partner abuse were all predictive of self-reported abuse to one's partner. Furthermore, the relationship between myth endorsement and self-abusive behavior was mediated by beliefs toward beating-only in men. Results are discussed in light of the traditional gender system evident in Turkish societal makeup. © The Author(s) 2015.

  2. Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development

    PubMed Central

    Li, Hanqing; Watson, Ash; Olechwier, Agnieszka; Anaya, Michael; Sorooshyari, Siamak K; Harnett, Dermott P; Lee, Hyung-Kook (Peter); Vielmetter, Jost; Fares, Mario A; Garcia, K Christopher; Özkan, Engin

    2017-01-01

    An ‘interactome’ screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we ‘deorphanized’ four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons. PMID:28829740

  3. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging.

    PubMed

    Nozaradan, Sylvie

    2014-12-19

    The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Neural Entrainment to Polyrhythms: A Comparison of Musicians and Non-musicians.

    PubMed

    Stupacher, Jan; Wood, Guilherme; Witte, Matthias

    2017-01-01

    Music can be thought of as a dynamic path over time. In most cases, the rhythmic structure of this path, such as specific sequences of strong and weak beats or recurring patterns, allows us to predict what and particularly when sounds are going to happen. Without this ability we would not be able to entrain body movements to music, like we do when we dance. By combining EEG and behavioral measures, the current study provides evidence illustrating the importance of ongoing neural oscillations at beat-related frequencies-i.e., neural entrainment-for tracking and predicting musical rhythms. Participants (13 musicians and 13 non-musicians) listened to drum rhythms that switched from a quadruple rhythm to a 3-over-4 polyrhythm. After a silent period of ~2-3 s, participants had to decide whether a target stimulus was presented on time with the triple beat of the polyrhythm, too early, or too late. Results showed that neural oscillations reflected the rhythmic structure of both the simple quadruple rhythm and the more complex polyrhythm with no differences between musicians and non-musicians. During silent periods, the observation of time-frequency plots and more commonly used frequency spectra analyses suggest that beat-related neural oscillations were more pronounced in musicians compared to non-musicians. Neural oscillations during silent periods are not driven by an external input and therefore are thought to reflect top-down controlled endogenous neural entrainment. The functional relevance of endogenous neural entrainment was demonstrated by a positive correlation between the amplitude of task-relevant neural oscillations during silent periods and the number of correctly identified target stimuli. In sum, our findings add to the evidence supporting the neural resonance theory of pulse and meter. Furthermore, they indicate that beat-related top-down controlled neural oscillations can exist without external stimulation and suggest that those endogenous oscillations are strengthened by musical expertise. Finally, this study shows that the analysis of neural oscillations can be a useful tool to assess how we perceive and process complex auditory stimuli such as polyrhythms.

  5. Simple phalanx pattern leads to energy saving in cohesive fish schooling

    PubMed Central

    Ashraf, Intesaaf; Bradshaw, Hanaé; Ha, Thanh-Tung; Halloy, José; Thiria, Benjamin

    2017-01-01

    The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. In this study, we use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri, which is known to swim in highly cohesive groups, to analyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, and stereoscopic video recordings are used to track the 3D positions of each individual in a school, as well as their tail-beating kinematics. Challenging the widespread idea of fish favoring a diamond pattern to swim more efficiently [Weihs D (1973) Nature 241:290–291], we observe that when fish are forced to swim fast—well above their free-swimming typical velocity, and hence in a situation where efficient swimming would be favored—the most frequent configuration is the “phalanx” or “soldier” formation, with all individuals swimming side by side. We explain this observation by considering the advantages of tail-beating synchronization between neighbors, which we have also characterized. Most importantly, we show that schooling is advantageous as compared with swimming alone from an energy-efficiency perspective. PMID:28839092

  6. Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.

    PubMed

    Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I

    2017-10-01

    To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.

  7. Model for the respiratory modulation of the heart beat-to-beat time interval series

    NASA Astrophysics Data System (ADS)

    Capurro, Alberto; Diambra, Luis; Malta, C. P.

    2005-09-01

    In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.

  8. Design and demonstration of a fish robot actuated by a SMA-driven actuation system

    NASA Astrophysics Data System (ADS)

    Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.

    2010-04-01

    This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.

  9. Cardiotachometer displays heart rate on a beat-to-beat basis

    NASA Technical Reports Server (NTRS)

    Rasquin, J. R.; Smith, H. E.; Taylor, R. A.

    1974-01-01

    Electronics for this system may be chosen so that complete calculation and display may be accomplished in a few milliseconds, far less than even the fastest heartbeat interval. Accuracy may be increased, if desired, by using higher-frequency timing oscillator, although this will require large capacity registers at increased cost.

  10. Translations on Eastern Europe, Political, Sociological and Military Affairs, Number 1603

    DTIC Science & Technology

    1978-11-01

    earlycniia hood with equal fluency while their hearts beat in unison and they share the same patriotic feelings. ThP noble idea of unity in the...moral judgment? If he as ’Wit"ChlreTef I" are inV°ked t0 the Credit °f the dividual while he as profit calculated on his own, brings a cement ...repaired with the mortar of words; it must be tracked down to its foundation and must be analyzed with lull attention and responsibility/without

  11. Flagellar coordination in Chlamydomonas cells held on micropipettes.

    PubMed

    Rüffer, U; Nultsch, W

    1998-01-01

    The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated internally, involving calcium-sensitive basal-body associated fibrous structures.

  12. Frequency-modulated laser ranging sensor with closed-loop control

    NASA Astrophysics Data System (ADS)

    Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin

    2018-02-01

    Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.

  13. Figures of merit for self-beating filtered microwave photonic systems.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-05-02

    We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and local oscillator tasks. General and simplified expressions are given and, as an example, we have considered their application to the design of a tunable RF MWP BS/UE front end for band selection, based on a Chebyshev Type-II optical filter. The applicability and usefulness of the model are also discussed.

  14. What makes a rhythm complex? The influence of musical training and accent type on beat perception

    PubMed Central

    Burgoyne, J. Ashley; Odijk, Daan; Honing, Henkjan; Grahn, Jessica A.

    2018-01-01

    Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are “missing” on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as not all listeners treat all rhythms alike. PMID:29320533

  15. What makes a rhythm complex? The influence of musical training and accent type on beat perception.

    PubMed

    Bouwer, Fleur L; Burgoyne, J Ashley; Odijk, Daan; Honing, Henkjan; Grahn, Jessica A

    2018-01-01

    Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are "missing" on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as not all listeners treat all rhythms alike.

  16. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using minimal external hardware and software modification through a single input channel, while still recording cardiac gating signals.« less

  17. Dysrhythmia of timed movements in Parkinson's disease and freezing of gait.

    PubMed

    Tolleson, Christopher M; Dobolyi, David G; Roman, Olivia C; Kanoff, Kristen; Barton, Scott; Wylie, Scott A; Kubovy, Michael; Claassen, Daniel O

    2015-10-22

    A well-established motor timing paradigm, the Synchronization-Continuation Task (SCT), quantifies how accurately participants can time finger tapping to a rhythmic auditory beat (synchronization phase) then maintain this rhythm after the external auditory cue is extinguished, where performance depends on an internal representation of the beat (continuation phase). In this study, we investigated the hypothesis that Parkinson's disease (PD) patients with clinical symptoms of freezing of gait (FOG) exhibit exaggerated motor timing deficits. We predicted that dysrhythmia is exacerbated when finger tapping is stopped temporarily and then reinitiated under the guidance of an internal representation of the beat. Healthy controls and PD patients with and without FOG performed the SCT with and without the insertion of a 7-s cessation of motor tapping between synchronization and continuation phases. With no interruption between synchronization and continuation phases, PD patients, especially those with FOG, showed pronounced motor timing hastening at the slowest inter-stimulus intervals during the continuation phase. The introduction of a gap prior to the continuation phase had a beneficial effect for healthy controls and PD patients without FOG, although patients with FOG continued to show pronounced and persistent motor timing hastening. Ratings of freezing of gait severity across the entire sample of PD tracked closely with the magnitude of hastening during the continuation phase. These results suggest that PD is accompanied by a unique dysrhythmia of measured movements, with FOG reflecting a particularly pronounced disruption to internal rhythmic timing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Monitoring nocturnal heart rate with bed sensor.

    PubMed

    Migliorini, M; Kortelainen, J M; Pärkkä, J; Tenhunen, M; Himanen, S L; Bianchi, A M

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". The aim of this study is to assess the reliability of the estimated Nocturnal Heart Rate (HR), recorded through a bed sensor, compared with the one obtained from standard electrocardiography (ECG). Twenty-eight sleep deprived patients were recorded for one night each through matrix of piezoelectric sensors, integrated into the mattress, through polysomnography (PSG) simultaneously. The two recording methods have been compared in terms of signal quality and differences in heart beat detection. On average, coverage of 92.7% of the total sleep time was obtained for the bed sensor, testifying the good quality of the recordings. The average beat-to-beat error of the inter-beat intervals was 1.06%. These results suggest a good overall signal quality, however, considering fast heart rates (HR > 100 bpm), performances were worse: in fact, the sensitivity in the heart beat detection was 28.4% while the false positive rate was 3.8% which means that a large amount of fast beats were not detected. The accuracy of the measurements made using the bed sensor has less than 10% of failure rate especially in periods with HR lower than 70 bpm. For fast heart beats the uncertainty increases. This can be explained by the change in morphology of the bed sensor signal in correspondence of a higher HR.

  19. Electrophysiological measurement of binaural beats: effects of primary tone frequency and observer age.

    PubMed

    Grose, John H; Mamo, Sara K

    2012-01-01

    The purpose of this study was to determine the reliability of the electrophysiological binaural beat steady state response as a gauge of temporal fine structure coding, particularly as it relates to the aging auditory system. The hypothesis was that the response would be more robust in a lower, than in a higher, frequency region and in younger, than in older, adults. Two experiments were undertaken. The first measured the 40 Hz binaural beat steady state response elicited by tone pairs in two frequency regions: lower (390 and 430 Hz tone pair) and higher (810 and 850 Hz tone pair). Frequency following responses (FFRs) evoked by the tones were also recorded. Ten young adults with normal hearing participated. The second experiment measured the binaural beat and FFRs in older adults but only in the lower frequency region. Fourteen older adults with relatively normal hearing participated. Response metrics in both experiments included response component signal-to-noise ratio (F statistic) and magnitude-squared coherence. Experiment 1 showed that FFRs were elicited in both frequency regions but were more robust in the lower frequency region. Binaural beat responses elicited by the lower frequency pair of tones showed greater amplitude fluctuation within a participant than the respective FFRs. Experiment 2 showed that older adults exhibited similar FFRs to younger adults, but proportionally fewer older participants showed binaural beat responses. Age differences in onset responses were also observed. The lower prevalence of the binaural beat response in older adults, despite the presence of FFRs, provides tentative support for the sensitivity of this measure to age-related deficits in temporal processing. However, the lability of the binaural beat response advocates caution in its use as an objective measure of fine structure coding.

  20. Feasibility of heart rate variability measurement from quadrature Doppler radar using arctangent demodulation with DC offset compensation.

    PubMed

    Massagram, Wansuree; Hafner, Noah M; Park, Byung-Kwan; Lubecke, Victor M; Host-Madsen, Anders; Boric-Lubecke, Olga

    2007-01-01

    This paper describes the experimental results of the beat-to-beat interval measurement from a quadrature Doppler radar system utilizing arctangent demodulation with DC offset compensation techniques. The comparison in SDNN and in RMSDD of both signals demonstrates the potential of using quadrature Doppler radar for HRV analysis.

  1. Sequential Markov chain Monte Carlo filter with simultaneous model selection for electrocardiogram signal modeling.

    PubMed

    Edla, Shwetha; Kovvali, Narayan; Papandreou-Suppappola, Antonia

    2012-01-01

    Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.

  2. Single-Trial Analysis of Inter-Beat Interval Perturbations Accompanying Single-Switch Scanning: Case Series of Three Children With Severe Spastic Quadriplegic Cerebral Palsy.

    PubMed

    Leung, Brian; Chau, Tom

    2016-02-01

    Single-switch access in conjunction with scanning remains a fundamental solution in restoring communication for many children with profound physical disabilities. However, untimely switch inaction and unintentional switch activations can lead to user frustration and impede functional communication. A previous preliminary study, in the context of a case series with three single-switch users, reported that correct, accidental and missed switch activations could elicit cardiac deceleration and increased phasic skin conductance on average, while deliberate switch non-use was associated with autonomic nonresponse. The present study investigated the possibility of using blood volume pulse recordings from the same three pediatric single-switch users to track the aforementioned switch events on a single-trial basis. Peaks of the line length time series derived from the empirical mode decomposition of the inter-beat interval time series matched, on average, a high percentage (above 80%) of single-switch events, while unmatched peaks coincided moderately (below 37%) with idle time during scanning. These results encourage further study of autonomic measures as complementary information channels to enhance single-switch access.

  3. Blood pulsation measurement using cameras operating in visible light: limitations.

    PubMed

    Koprowski, Robert

    2016-10-03

    The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing-allowing for the image filtration and stabilization (object location tracking); (2) main image processing-allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis-filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p < 0.01 and sunlight, or a slightly larger error (±3 beats per minute) for artificial lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b).

  4. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  5. Tempo and walking speed with music in the urban context

    PubMed Central

    Franěk, Marek; van Noorden, Leon; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement performance. PMID:25520682

  6. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  7. The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2015-01-01

    Beat phenomenon is occurred when two slightly different frequency waves interfere each other. The beat can also occur in the brain by providing two slightly different frequency waves separately each ear. This is called binaural beat. The brain responses to binaural beat are in discussion process whether the brain side and the brain area. Therefore, this study aims to figure out the brain responses to binaural beat by providing different binaural beat frequencies on 250 carrier tone continuously for 30 minutes to participants and using quantitative electroencephalography (QEEG) to interpret the data. The result shows that different responses appear in different beat frequency. Left hemisphere dominance occur in 3 Hz beat within 15 minutes and 15 Hz beat within 5 minutes. Right hemisphere dominance occurs in 10 Hz beat within 25 minute. 6 Hz beat enhances all area of the brain within 10 minutes. 8 Hz and 25 Hz beats have no clearly responses while 40 Hz beat enhances the responses in frontal lobe. These brain responses can be used for brain modulation application to induce the brain activity in further studies.

  8. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    ERIC Educational Resources Information Center

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  9. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    PubMed

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.

  10. On readout of vibrational qubits using quantum beats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyshlov, Dmytro; Babikov, Dmitri, E-mail: Dmitri.Babikov@mu.edu; Berrios, Eduardo

    2014-12-14

    Readout of the final states of qubits is a crucial step towards implementing quantum computation in experiment. Although not scalable to large numbers of qubits per molecule, computational studies show that molecular vibrations could provide a significant (factor 2–5 in the literature) increase in the number of qubits compared to two-level systems. In this theoretical work, we explore the process of readout from vibrational qubits in thiophosgene molecule, SCCl{sub 2}, using quantum beat oscillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding vibrational states to the electronically excited readout state with variable time-delay pulses. Themore » resulting oscillation of population of the readout state is then detected as a function of time delay. In principle, fitting the quantum beat signal by an analytical expression should allow extracting the values of probability amplitudes and the relative phases of the vibrational qubit states. However, we found that if this procedure is implemented using the standard analytic expression for quantum beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase error, and propose a new analytical expression to correct the phase error. The corrected expression fits the quantum beat signal very accurately, which may permit reading out the final state of vibrational qubits in experiments by combining the analytic fitting expression with numerical modelling of the readout process. The new expression is also useful as a simple model for fitting any quantum beat experiments where more accurate phase information is desired.« less

  11. Virtual and augmented medical imaging environments: enabling technology for minimally invasive cardiac interventional guidance.

    PubMed

    Linte, Cristian A; White, James; Eagleson, Roy; Guiraudon, Gérard M; Peters, Terry M

    2010-01-01

    Virtual and augmented reality environments have been adopted in medicine as a means to enhance the clinician's view of the anatomy and facilitate the performance of minimally invasive procedures. Their value is truly appreciated during interventions where the surgeon cannot directly visualize the targets to be treated, such as during cardiac procedures performed on the beating heart. These environments must accurately represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical tracking, and visualization technology in a common framework centered around the patient. This review begins with an overview of minimally invasive cardiac interventions, describes the architecture of a typical surgical guidance platform including imaging, tracking, registration and visualization, highlights both clinical and engineering accuracy limitations in cardiac image guidance, and discusses the translation of the work from the laboratory into the operating room together with typically encountered challenges.

  12. Common multifractality in the heart rate variability and brain activity of healthy humans

    NASA Astrophysics Data System (ADS)

    Lin, D. C.; Sharif, A.

    2010-06-01

    The influence from the central nervous system on the human multifractal heart rate variability (HRV) is examined under the autonomic nervous system perturbation induced by the head-up-tilt body maneuver. We conducted the multifractal factorization analysis to factor out the common multifractal factor in the joint fluctuation of the beat-to-beat heart rate and electroencephalography data. Evidence of a central link in the multifractal HRV was found, where the transition towards increased (decreased) HRV multifractal complexity is associated with a stronger (weaker) multifractal correlation between the central and autonomic nervous systems.

  13. Role of spatial heterogeneity in the collective dynamics of cilia beating in a minimal one-dimensional model

    NASA Astrophysics Data System (ADS)

    Dey, Supravat; Massiera, Gladys; Pitard, Estelle

    2018-01-01

    Cilia are elastic hairlike protuberances of the cell membrane found in various unicellular organisms and in several tissues of most living organisms. In some tissues such as the airway tissues of the lung, the coordinated beating of cilia induces a fluid flow of crucial importance as it allows the continuous cleaning of our bronchia, known as mucociliary clearance. While most of the models addressing the question of collective dynamics and metachronal wave consider homogeneous carpets of cilia, experimental observations rather show that cilia clusters are heterogeneously distributed over the tissue surface. The purpose of this paper is to investigate the role of spatial heterogeneity on the coherent beating of cilia using a very simple one-dimensional model for cilia known as the rower model. We systematically study systems consisting of a few rowers to hundreds of rowers and we investigate the conditions for the emergence of collective beating. When considering a small number of rowers, a phase drift occurs, hence, a bifurcation in beating frequency is observed as the distance between rower clusters is changed. In the case of many rowers, a distribution of frequencies is observed. We found in particular the pattern of the patchy structure that shows the best robustness in collective beating behavior, as the density of cilia is varied over a wide range.

  14. Deviations from uniform power law scaling in nonstationary time series

    NASA Technical Reports Server (NTRS)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  15. Recent advances in the field of super resolved imaging and sensing

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Borkowski, Amikam; Marom, Emanuel; Javidi, Bahram; Beiderman, Yevgeny; Micó, Vicente; García, Javier

    2011-05-01

    In this paper we start by presenting one recent development in the field of geometric super resolution. The new approach overcomes the reduction of resolution caused by the non ideal sampling of the image done by the spatial averaging of each pixel of the sampling array. Right after, we demonstrate a remote super sensing technique allowing monitoring, from a distance, the heart beats, blood pulse pressure and the glucose level in the blood stream of a patient by tracking the trajectory of secondary speckle patterns reflected from the skin of the wrist or from the sclera.

  16. Predictive control strategies for wind turbine system based on permanent magnet synchronous generator.

    PubMed

    Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba

    2016-05-01

    In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Left ventricular diastolic filling with an implantable ventricular assist device: beat to beat variability with overall improvement

    NASA Technical Reports Server (NTRS)

    Nakatani, S.; Thomas, J. D.; Vandervoort, P. M.; Zhou, J.; Greenberg, N. L.; Savage, R. M.; McCarthy, P. M.

    1997-01-01

    OBJECTIVES: We studied the effects of left ventricular (LV) unloading by an implantable ventricular assist device on LV diastolic filling. BACKGROUND: Although many investigators have reported reliable systemic and peripheral circulatory support with implantable LV assist devices, little is known about their effect on cardiac performance. METHODS: Peak velocities of early diastolic filling, late diastolic filling, late to early filling ratio, deceleration time of early filling, diastolic filling period and atrial filling fraction were measured by intraoperative transesophageal Doppler echocardiography before and after insertion of an LV assist device in eight patients. A numerical model was developed to simulate this situation. RESULTS: Before device insertion, all patients showed either a restrictive or a monophasic transmitral flow pattern. After device insertion, transmitral flow showed rapid beat to beat variation in each patient, from abnormal relaxation to restrictive patterns. However, when the average values obtained from 10 consecutive beats were considered, overall filling was significantly normalized from baseline, with early filling velocity falling from 87 +/- 31 to 64 +/- 26 cm/s (p < 0.01) and late filling velocity rising from 8 +/- 11 to 32 +/- 23 cm/s (p < 0.05), resulting in an increase in the late to early filling ratio from 0.13 +/- 0.18 to 0.59 +/- 0.38 (p < 0.01) and a rise in the atrial filling fraction from 8 +/- 10% to 26 +/- 17% (p < 0.01). The deceleration time (from 112 +/- 40 to 160 +/- 44 ms, p < 0.05) and the filling period corrected by the RR interval (from 39 +/- 8% to 54 +/- 10%, p < 0.005) were also significantly prolonged. In the computer model, asynchronous LV assistance produced significant beat to beat variation in filling indexes, but overall a normalization of deceleration time as well as other variables. CONCLUSIONS: With LV assistance, transmitral flow showed rapidly varying patterns beat by beat in each patient, but overall diastolic filling tended to normalize with an increase of atrial contribution to the filling. Because of the variable nature of the transmitral flow pattern with the assist device, the timing of the device cycle must be considered when inferring diastolic function from transmitral flow pattern.

  18. Can we still beat "buy-and-hold" for individual stocks?

    NASA Astrophysics Data System (ADS)

    Hui, Eddie C. M.; Kevin Chan, Ka Kwan

    2014-09-01

    Many investors seek for a trading strategy to beat the "buy-and-hold" strategy. In light of this, Hui and Yam (2014) and Hui et al. (2014) derived a trading strategy from the Shiryaev-Zhou index, and found that the resulting strategy outperformed the "buy-and-hold" strategy for western and Asian securitized real estate indices respectively. However, whether the trading strategy works on individual stocks or not is still unknown. This is the first study to test whether the trading strategy can beat the "buy-and-hold" strategy on individual stocks. We construct two trading strategies and compare the resulting profits with the profits arising from the "buy-and-hold" strategy on Hang Seng Index (HSI), Hang Seng Property (HSP) Index and 12 constituent stocks of HSI during the period December 29, 1995-December 31, 2013. The second strategy (Strategy 2) is a new strategy which incorporates short-selling, and has the effect of multiplying the profit. The results show that our trading strategies are less effective on individual stocks than on stock indices, and are more effective on property stocks than on non-property stocks. Moreover, our strategies outperform "buy-and-hold" by a larger extent on stocks of which the Shiryaev-Zhou indices fluctuate less frequently. Furthermore, by tracking the resulting profits of the three strategies at different times along the whole period of observation, our strategies work better during "bad times" than during "good times". This reflects that our trading strategies are especially useful in protecting investors from substantial loss during market downturns.

  19. Beating of grafted chains induced by active Brownian particles

    NASA Astrophysics Data System (ADS)

    Yang, Qiu-song; Fan, Qing-wei; Shen, Zhuang-lin; Xia, Yi-qi; Tian, Wen-de; Chen, Kang

    2018-06-01

    We study the interplay between active Brownian particles (ABPs) and a "hairy" surface in two-dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of a dynamic cluster of ABPs at large propelling forces. Meanwhile chains are stretched and pushed down due to the effective shear force by ABPs. The decrease of the average brush thickness with propelling force reflects the growth of the beating amplitude of chain bundles. Furthermore, the beating phenomenon is investigated in a simple single-chain system. We find that the chain swings regularly with a major oscillatory period, which increases with chain length and decreases with the increase of propelling force. We build a theory to describe the phenomenon and the predictions on the relationship between the period and amplitude for various chain lengths, and propelling forces agree very well with simulation data.

  20. A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers

    NASA Astrophysics Data System (ADS)

    Yang, Peiling; Ma, Jianxin; Zhang, Junyi

    2018-06-01

    In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.

  1. Beating the Odds (BTO) Program: A Comprehensive Support System for Teachers and Families of At-Risk Students.

    ERIC Educational Resources Information Center

    Opuni, Kwame A.; And Others

    This paper evaluates the effectiveness of the Beating the Odds (BTO) program of the Houston (Texas) schools in the 1990-91 school year, the third and final year of Phase I of the program. The BTO program provided training workshops for teachers of at-risk students and direct counseling and social service support for at-risk students in a selected…

  2. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test

    PubMed Central

    Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio

    2013-01-01

    In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102

  3. Individualization of music-based rhythmic auditory cueing in Parkinson's disease.

    PubMed

    Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen

    2018-06-04

    Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.

  4. Observation of matter wave beat phenomena in the macrodomain for electrons moving along a magnetic field

    NASA Astrophysics Data System (ADS)

    Varma, Ram K.; Punithavelu, A. M.; Banerjee, S. B.

    2002-02-01

    We report here the observations that exhibit the existence of matter wave phenomena with wavelength in the macrodomain of a few centimeters, for electrons moving along a magnetic field from an electron gun to a collector plate situated behind a grounded grid. These are in accordance with the predictions of a quantumlike theory for charged particles in the classical macrodomain, given by one of the authors [R. K. Varma, Phys. Rev. A 31, 3951 (1985)] with a recent generalization [R. K. Varma, Phys. Rev. E 64, 036608 (2001)]. The beats correspond to two closely spaced ``frequencies'' in the system, with the beat frequency given, in accordance with the characteristics of a wave phenomena, by the difference between the two frequencies. The beats ride as a modulation over a discrete energy band structure obtained with only one frequency present. The frequency here corresponds to the distance between the electron gun and the detector plate as it characterizes the variation in the energy band structure as the electron energy is swept. The second ``frequency'' corresponds to the gun-grid distance. These observations of the beats of matter waves in this experiment, with characteristics in accordance with the wave algorithm, then establish unambiguously the existence of macroscopic matter waves for electrons propagating along a magnetic field.

  5. Stimulated Parametric Decay of Large Amplitude Alfv'en waves in the Large Plasma Device (LaPD)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.

    2012-10-01

    Alfv'en waves, the fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied, non-linear effects are important in many real systems. In particular, a parametric decay process in which a large amplitude Alfv'en wave decays into an ion acoustic wave and backward propagating Alfv'en wave may be key to the spectrum of solar wind turbulence. The present laboratory experiments aim to stimulate this process by launching counter-propagating Alfv'en waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has many properties consistent with an ion acoustic wave including: 1) The beat amplitude peaks when the frequency difference between the two Alfv'en waves is near the value predicted by Alfv'en-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfv'en waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfv'en wave. Strong damping observed after the pump Alfv'en waves are turned off is under investigation.

  6. The Impact of Monaural Beat Stimulation on Anxiety and Cognition.

    PubMed

    Chaieb, Leila; Wilpert, Elke C; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen

    2017-01-01

    Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation.

  7. The Impact of Monaural Beat Stimulation on Anxiety and Cognition

    PubMed Central

    Chaieb, Leila; Wilpert, Elke C.; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen

    2017-01-01

    Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation. PMID:28555100

  8. The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation.

    PubMed

    Fujii, Shinya; Schlaug, Gottfried

    2013-01-01

    Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session.

  9. The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation

    PubMed Central

    Fujii, Shinya; Schlaug, Gottfried

    2013-01-01

    Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session. PMID:24324421

  10. Synchronization in human musical rhythms and mutually interacting complex systems

    PubMed Central

    Hennig, Holger

    2014-01-01

    Though the music produced by an ensemble is influenced by multiple factors, including musical genre, musician skill, and individual interpretation, rhythmic synchronization is at the foundation of musical interaction. Here, we study the statistical nature of the mutual interaction between two humans synchronizing rhythms. We find that the interbeat intervals of both laypeople and professional musicians exhibit scale-free (power law) cross-correlations. Surprisingly, the next beat to be played by one person is dependent on the entire history of the other person’s interbeat intervals on timescales up to several minutes. To understand this finding, we propose a general stochastic model for mutually interacting complex systems, which suggests a physiologically motivated explanation for the occurrence of scale-free cross-correlations. We show that the observed long-term memory phenomenon in rhythmic synchronization can be imitated by fractal coupling of separately recorded or synthesized audio tracks and thus applied in electronic music. Though this study provides an understanding of fundamental characteristics of timing and synchronization at the interbrain level, the mutually interacting complex systems model may also be applied to study the dynamics of other complex systems where scale-free cross-correlations have been observed, including econophysics, physiological time series, and collective behavior of animal flocks. PMID:25114228

  11. Disentangling beat perception from sequential learning and examining the influence of attention and musical abilities on ERP responses to rhythm.

    PubMed

    Bouwer, Fleur L; Werner, Carola M; Knetemann, Myrthe; Honing, Henkjan

    2016-05-01

    Beat perception is the ability to perceive temporal regularity in musical rhythm. When a beat is perceived, predictions about upcoming events can be generated. These predictions can influence processing of subsequent rhythmic events. However, statistical learning of the order of sounds in a sequence can also affect processing of rhythmic events and must be differentiated from beat perception. In the current study, using EEG, we examined the effects of attention and musical abilities on beat perception. To ensure we measured beat perception and not absolute perception of temporal intervals, we used alternating loud and soft tones to create a rhythm with two hierarchical metrical levels. To control for sequential learning of the order of the different sounds, we used temporally regular (isochronous) and jittered rhythmic sequences. The order of sounds was identical in both conditions, but only the regular condition allowed for the perception of a beat. Unexpected intensity decrements were introduced on the beat and offbeat. In the regular condition, both beat perception and sequential learning were expected to enhance detection of these deviants on the beat. In the jittered condition, only sequential learning was expected to affect processing of the deviants. ERP responses to deviants were larger on the beat than offbeat in both conditions. Importantly, this difference was larger in the regular condition than in the jittered condition, suggesting that beat perception influenced responses to rhythmic events in addition to sequential learning. The influence of beat perception was present both with and without attention directed at the rhythm. Moreover, beat perception as measured with ERPs correlated with musical abilities, but only when attention was directed at the stimuli. Our study shows that beat perception is possible when attention is not directed at a rhythm. In addition, our results suggest that attention may mediate the influence of musical abilities on beat perception. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Hypoxia, Monitoring, and Mitigation System

    DTIC Science & Technology

    2014-05-01

    indicators based on measured and predicted data. Given the beat-to-beat method in which oxygen saturation is measured via a pulse oximeter , a certain...saturation sample values are far below what would be trusted on a pulse oximeter . No indication was given after oxygen mask placement on subjective...determined using a pulse oximeter for continuous monitoring of arterial oxygen saturation (SaO2) in 95 ASA class I or II adult patients breathing room

  13. Tagging the neuronal entrainment to beat and meter.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Missal, Marcus; Mouraux, André

    2011-07-13

    Feeling the beat and meter is fundamental to the experience of music. However, how these periodicities are represented in the brain remains largely unknown. Here, we test whether this function emerges from the entrainment of neurons resonating to the beat and meter. We recorded the electroencephalogram while participants listened to a musical beat and imagined a binary or a ternary meter on this beat (i.e., a march or a waltz). We found that the beat elicits a sustained periodic EEG response tuned to the beat frequency. Most importantly, we found that meter imagery elicits an additional frequency tuned to the corresponding metric interpretation of this beat. These results provide compelling evidence that neural entrainment to beat and meter can be captured directly in the electroencephalogram. More generally, our results suggest that music constitutes a unique context to explore entrainment phenomena in dynamic cognitive processing at the level of neural networks.

  14. Music mixing preferences of cochlear implant recipients: a pilot study.

    PubMed

    Buyens, Wim; van Dijk, Bas; Moonen, Marc; Wouters, Jan

    2014-05-01

    Music perception and appraisal are generally poor in cochlear implant recipients. Simple musical structures, lyrics that are easy to follow, and clear rhythm/beat have been reported among the top factors to enhance music enjoyment. The present study investigated the preference for modified relative instrument levels in music with normal-hearing and cochlear implant subjects. In experiment 1, test subjects were given a mixing console and multi-track recordings to determine their most enjoyable audio mix. In experiment 2, a preference rating experiment based on the preferred relative level settings in experiment 1 was performed. Experiment 1 was performed with four postlingually deafened cochlear implant subjects, experiment 2 with ten normal-hearing and ten cochlear implant subjects. A significant difference in preference rating was found between normal-hearing and cochlear implant subjects. The latter preferred an audio mix with larger vocals-to-instruments ratio. In addition, given an audio mix with clear vocals and attenuated instruments, cochlear implant subjects preferred the bass/drum track to be louder than the other instrument tracks. The original audio mix in real-world music might not be suitable for cochlear implant recipients. Modifying the relative instrument level settings potentially improves music enjoyment.

  15. Atrial fibrillation detection by heart rate variability in Poincare plot.

    PubMed

    Park, Jinho; Lee, Sangwook; Jeon, Moongu

    2009-12-11

    Atrial fibrillation (AFib) is one of the prominent causes of stroke, and its risk increases with age. We need to detect AFib correctly as early as possible to avoid medical disaster because it is likely to proceed into a more serious form in short time. If we can make a portable AFib monitoring system, it will be helpful to many old people because we cannot predict when a patient will have a spasm of AFib. We analyzed heart beat variability from inter-beat intervals obtained by a wavelet-based detector. We made a Poincare plot using the inter-beat intervals. By analyzing the plot, we extracted three feature measures characterizing AFib and non-AFib: the number of clusters, mean stepping increment of inter-beat intervals, and dispersion of the points around a diagonal line in the plot. We divided distribution of the number of clusters into two and calculated mean value of the lower part by k-means clustering method. We classified data whose number of clusters is more than one and less than this mean value as non-AFib data. In the other case, we tried to discriminate AFib from non-AFib using support vector machine with the other feature measures: the mean stepping increment and dispersion of the points in the Poincare plot. We found that Poincare plot from non-AFib data showed some pattern, while the plot from AFib data showed irregularly irregular shape. In case of non-AFib data, the definite pattern in the plot manifested itself with some limited number of clusters or closely packed one cluster. In case of AFib data, the number of clusters in the plot was one or too many. We evaluated the accuracy using leave-one-out cross-validation. Mean sensitivity and mean specificity were 91.4% and 92.9% respectively. Because pulse beats of ventricles are less likely to be influenced by baseline wandering and noise, we used the inter-beat intervals to diagnose AFib. We visually displayed regularity of the inter-beat intervals by way of Poincare plot. We tried to design an automated algorithm which did not require any human intervention and any specific threshold, and could be installed in a portable AFib monitoring system.

  16. In vivo vascular flow profiling combined with optical tweezers based blood routing

    NASA Astrophysics Data System (ADS)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2017-07-01

    In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.

  17. Parturition in horses is dominated by parasympathetic activity of the autonomous nervous system.

    PubMed

    Nagel, Christina; Erber, Regina; Ille, Natascha; von Lewinski, Mareike; Aurich, Jörg; Möstl, Erich; Aurich, Christine

    2014-07-01

    External and internal stressors prolong parturition in different species. At parturition, sympathoadrenal activation should be avoided because an increased sympathetic tone may cause uterine atonia via β2-receptors. We hypothesized that at physiological parturition, horses are under parasympathetic dominance, and stress-response mechanisms are not activated during delivery of the foal. To evaluate stress responses, heart rate, heart rate variability, catecholamines, and cortisol were analyzed in mares (n = 17) throughout foaling. Heart rate decreased from 2 hours before (51 ± 1 beats/minute) to 2 hours after delivery (41 ± 2 beats/minute; P < 0.05). Heart rate variability variables, standard deviation of the beat-to-beat interval, and root mean square of successive beat-to-beat differences, changed over time (P < 0.05) with the highest values within 15 minutes after delivery. The number of mares with atrioventricular blocks and the number of atrioventricular blocks per mare increased over time (P < 0.01) and were significantly elevated from 15 minutes before to 45 minutes after birth of the foal. Salivary cortisol concentrations increased to a maximum at 30 minutes after delivery (25.0 ± 3.4 ng/mL; P < 0.01). Plasma epinephrine and norepinephrine concentrations showed significant fluctuations from rupture of the allantochorion to expulsion of the fetal membranes (P < 0.01) but were not markedly elevated at any time. In conclusion, mares give birth under high parasympathetic tone. Cortisol release during and after foaling is most likely part of the endocrine pathways regulating parturition and not a labor-associated stress response. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Enhancing Heart-Beat-Based Security for mHealth Applications.

    PubMed

    Seepers, Robert M; Strydis, Christos; Sourdis, Ioannis; De Zeeuw, Chris I

    2017-01-01

    In heart-beat-based security, a security key is derived from the time difference between consecutive heart beats (the inter-pulse interval, IPI), which may, subsequently, be used to enable secure communication. While heart-beat-based security holds promise in mobile health (mHealth) applications, there currently exists no work that provides a detailed characterization of the delivered security in a real system. In this paper, we evaluate the strength of IPI-based security keys in the context of entity authentication. We investigate several aspects that should be considered in practice, including subjects with reduced heart-rate variability (HRV), different sensor-sampling frequencies, intersensor variability (i.e., how accurate each entity may measure heart beats) as well as average and worst-case-authentication time. Contrary to the current state of the art, our evaluation demonstrates that authentication using multiple, less-entropic keys may actually increase the key strength by reducing the effects of intersensor variability. Moreover, we find that the maximal key strength of a 60-bit key varies between 29.2 bits and only 5.7 bits, depending on the subject's HRV. To improve security, we introduce the inter-multi-pulse interval (ImPI), a novel method of extracting entropy from the heart by considering the time difference between nonconsecutive heart beats. Given the same authentication time, using the ImPI for key generation increases key strength by up to 3.4 × (+19.2 bits) for subjects with limited HRV, at the cost of an extended key-generation time of 4.8 × (+45 s).

  19. Dictionary-based monitoring of premature ventricular contractions: An ultra-low-cost point-of-care service.

    PubMed

    Bollepalli, S Chandra; Challa, S Sastry; Anumandla, Laxminarayana; Jana, Soumya

    2018-04-25

    While cardiovascular diseases (CVDs) are prevalent across economic strata, the economically disadvantaged population is disproportionately affected due to the high cost of traditional CVD management, involving consultations, testing and monitoring at medical facilities. Accordingly, developing an ultra-low-cost alternative, affordable even to groups at the bottom of the economic pyramid, has emerged as a societal imperative. Against this backdrop, we propose an inexpensive yet accurate home-based electrocardiogram (ECG) monitoring service. Specifically, we seek to provide point-of-care monitoring of premature ventricular contractions (PVCs), high frequency of which could indicate the onset of potentially fatal arrhythmia. Note that the first-generation telecardiology system acquires the ECG, transmits it to a professional diagnostic center without processing, and nearly achieves the diagnostic accuracy of a bedside setup. In the process, such a system incurs high bandwidth cost and requires the physicians to process the entire record for diagnosis. To reduce cost, current telecardiology systems compress data before transmitting. However, the burden on physicians remains undiminished. In this context, we develop a dictionary-based algorithm that reduces not only the overall bandwidth requirement, but also the physicians workload by localizing anomalous beats. Specifically, we detect anomalous beats with high sensitivity and only those beats are then transmitted. In fact, we further compress those beats using class-specific dictionaries subject to suitable reconstruction/diagnostic fidelity. Finally, using Monte Carlo cross validation on MIT/BIH arrhythmia database, we evaluate the performance of the proposed system. In particular, with a sensitivity target of at most one undetected PVC in one hundred beats, and a percentage root mean squared difference less than 9% (a clinically acceptable level of fidelity), we achieved about 99.15% reduction in bandwidth cost, equivalent to 118-fold savings over first-generation telecardiology. In the process, the professional workload is reduced by at least 85.9% for noncritical cases. Our algorithm also outperforms known algorithms under certain measures in the telecardiological context. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Hearing, feeling or seeing a beat recruits a supramodal network in the auditory dorsal stream.

    PubMed

    Araneda, Rodrigo; Renier, Laurent; Ebner-Karestinos, Daniela; Dricot, Laurence; De Volder, Anne G

    2017-06-01

    Hearing a beat recruits a wide neural network that involves the auditory cortex and motor planning regions. Perceiving a beat can potentially be achieved via vision or even touch, but it is currently not clear whether a common neural network underlies beat processing. Here, we used functional magnetic resonance imaging (fMRI) to test to what extent the neural network involved in beat processing is supramodal, that is, is the same in the different sensory modalities. Brain activity changes in 27 healthy volunteers were monitored while they were attending to the same rhythmic sequences (with and without a beat) in audition, vision and the vibrotactile modality. We found a common neural network for beat detection in the three modalities that involved parts of the auditory dorsal pathway. Within this network, only the putamen and the supplementary motor area (SMA) showed specificity to the beat, while the brain activity in the putamen covariated with the beat detection speed. These results highlighted the implication of the auditory dorsal stream in beat detection, confirmed the important role played by the putamen in beat detection and indicated that the neural network for beat detection is mostly supramodal. This constitutes a new example of convergence of the same functional attributes into one centralized representation in the brain. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  2. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement.

    PubMed

    Kamoi, Shun; Pretty, Christopher; Balmer, Joel; Davidson, Shaun; Pironet, Antoine; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey

    2017-04-24

    Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For this reason, pressure contour methods must be improved to capture changes in vascular properties and thus provide accurate conversion from pressure to flow. This paper presents a novel pressure contour method utilizing pulse wave velocity (PWV) measurement to capture vascular properties. A three-element Windkessel model combined with the reservoir-wave concept are used to decompose the pressure contour into components related to storage and flow. The model parameters are identified beat-to-beat from the water-hammer equation using measured PWV, wave component of the pressure, and an estimate of subject-specific aortic dimension. SV is then calculated by converting pressure to flow using identified model parameters. The accuracy of this novel method is investigated using data from porcine experiments (N = 4 Pietrain pigs, 20-24.5 kg), where hemodynamic properties were significantly altered using dobutamine, fluid administration, and mechanical ventilation. In the experiment, left ventricular volume was measured using admittance catheter, and aortic pressure waveforms were measured at two locations, the aortic arch and abdominal aorta. Bland-Altman analysis comparing gold-standard SV measured by the admittance catheter and estimated SV from the novel method showed average limits of agreement of ±26% across significant hemodynamic alterations. This result shows the method is capable of estimating clinically acceptable absolute SV values according to Critchely and Critchely. The novel pressure contour method presented can accurately estimate and track SV even when hemodynamic properties are significantly altered. Integrating PWV measurements into pressure contour analysis improves identification of beat-to-beat changes in Windkessel model parameters, and thus, provides accurate estimate of blood flow from measured pressure contour. The method has great potential for overcoming weaknesses associated with current pressure contour methods for estimating SV.

  3. ciliaFA: a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software

    PubMed Central

    2012-01-01

    Background Analysis of ciliary function for assessment of patients suspected of primary ciliary dyskinesia (PCD) and for research studies of respiratory and ependymal cilia requires assessment of both ciliary beat pattern and beat frequency. While direct measurement of beat frequency from high-speed video recordings is the most accurate and reproducible technique it is extremely time consuming. The aim of this study was to develop a freely available automated method of ciliary beat frequency analysis from digital video (AVI) files that runs on open-source software (ImageJ) coupled to Microsoft Excel, and to validate this by comparison to the direct measuring high-speed video recordings of respiratory and ependymal cilia. These models allowed comparison to cilia beating between 3 and 52 Hz. Methods Digital video files of motile ciliated ependymal (frequency range 34 to 52 Hz) and respiratory epithelial cells (frequency 3 to 18 Hz) were captured using a high-speed digital video recorder. To cover the range above between 18 and 37 Hz the frequency of ependymal cilia were slowed by the addition of the pneumococcal toxin pneumolysin. Measurements made directly by timing a given number of individual ciliary beat cycles were compared with those obtained using the automated ciliaFA system. Results The overall mean difference (± SD) between the ciliaFA and direct measurement high-speed digital imaging methods was −0.05 ± 1.25 Hz, the correlation coefficient was shown to be 0.991 and the Bland-Altman limits of agreement were from −1.99 to 1.49 Hz for respiratory and from −2.55 to 3.25 Hz for ependymal cilia. Conclusions A plugin for ImageJ was developed that extracts pixel intensities and performs fast Fourier transformation (FFT) using Microsoft Excel. The ciliaFA software allowed automated, high throughput measurement of respiratory and ependymal ciliary beat frequency (range 3 to 52 Hz) and avoids operator error due to selection bias. We have included free access to the ciliaFA plugin and installation instructions in Additional file 1 accompanying this manuscript that other researchers may use. PMID:23351276

  4. Cortical evoked potentials to an auditory illusion: binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  5. Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats

    PubMed Central

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-01-01

    Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp. PMID:19616993

  6. EEG Correlates of Song Prosody: A New Look at the Relationship between Linguistic and Musical Rhythm

    PubMed Central

    Gordon, Reyna L.; Magne, Cyrille L.; Large, Edward W.

    2011-01-01

    Song composers incorporate linguistic prosody into their music when setting words to melody, a process called “textsetting.” Composers tend to align the expected stress of the lyrics with strong metrical positions in the music. The present study was designed to explore the idea that temporal alignment helps listeners to better understand song lyrics by directing listeners’ attention to instances where strong syllables occur on strong beats. Three types of textsettings were created by aligning metronome clicks with all, some or none of the strong syllables in sung sentences. Electroencephalographic recordings were taken while participants listened to the sung sentences (primes) and performed a lexical decision task on subsequent words and pseudowords (targets, presented visually). Comparison of misaligned and well-aligned sentences showed that temporal alignment between strong/weak syllables and strong/weak musical beats were associated with modulations of induced beta and evoked gamma power, which have been shown to fluctuate with rhythmic expectancies. Furthermore, targets that followed well-aligned primes elicited greater induced alpha and beta activity, and better lexical decision task performance, compared with targets that followed misaligned and varied sentences. Overall, these findings suggest that alignment of linguistic stress and musical meter in song enhances musical beat tracking and comprehension of lyrics by synchronizing neural activity with strong syllables. This approach may begin to explain the mechanisms underlying the relationship between linguistic and musical rhythm in songs, and how rhythmic attending facilitates learning and recall of song lyrics. Moreover, the observations reported here coincide with a growing number of studies reporting interactions between the linguistic and musical dimensions of song, which likely stem from shared neural resources for processing music and speech. PMID:22144972

  7. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.

    PubMed

    Feng, Jingjie; Huang, Zhongyi; Zhou, Congcong; Ye, Xuesong

    2018-06-01

    It is widely recognized that pulse transit time (PTT) can track blood pressure (BP) over short periods of time, and hemodynamic covariates such as heart rate, stiffness index may also contribute to BP monitoring. In this paper, we derived a proportional relationship between BP and PPT -2 and proposed an improved method adopting hemodynamic covariates in addition to PTT for continuous BP estimation. We divided 28 subjects from the Multi-parameter Intelligent Monitoring for Intensive Care database into two groups (with/without cardiovascular diseases) and utilized a machine learning strategy based on regularized linear regression (RLR) to construct BP models with different covariates for corresponding groups. RLR was performed for individuals as the initial calibration, while recursive least square algorithm was employed for the re-calibration. The results showed that errors of BP estimation by our method stayed within the Association of Advancement of Medical Instrumentation limits (- 0.98 ± 6.00 mmHg @ SBP, 0.02 ± 4.98 mmHg @ DBP) when the calibration interval extended to 1200-beat cardiac cycles. In comparison with other two representative studies, Chen's method kept accurate (0.32 ± 6.74 mmHg @ SBP, 0.94 ± 5.37 mmHg @ DBP) using a 400-beat calibration interval, while Poon's failed (- 1.97 ± 10.59 mmHg @ SBP, 0.70 ± 4.10 mmHg @ DBP) when using a 200-beat calibration interval. With additional hemodynamic covariates utilized, our method improved the accuracy of PTT-based BP estimation, decreased the calibration frequency and had the potential for better continuous BP estimation.

  8. Totally endoscopic sequential arterial coronary artery bypass grafting on the beating heart

    PubMed Central

    Ak, Koray; Wimmer-Greinecker, Gerhard; Dzemali, Omer; Moritz, Anton; Dogan, Selami

    2007-01-01

    A 50-year-old man was referred to the Department of Thoracic and Cardiovascular Surgery at the Johann Wolfgang-Goethe University (Frankfurt, Germany) with angina on exertion. An evaluation revealed critical stenosis involving the proximal portion of the left anterior descending artery and the first diagonal branch. The patient underwent successful sequential grafting of the left internal mammary artery to the left anterior descending artery and the diagonal branch using a totally endoscopic coronary artery bypass grafting technique on the beating heart with a new version of the da Vinci Surgical System (Intuitive Surgical, USA). To the authors’ knowledge, this is the first report in literature to describe sequential arterial off-pump grafting of two anterior wall target vessels using a totally endoscopic technique on the beating heart. PMID:17440646

  9. A Report on Security of Overseas Transport. Volume 1. Project Hartwell.

    DTIC Science & Technology

    1950-09-21

    range of the JT gear extends only E up to 20,000 yards under the beat conditions, but it is quite V flexible, and the added advantage of triangulational...success upon the extent of this phase or amplitude modula- tion, likewise the use of binaural listening in large split arrays. These various aspects...specialized techniques, and aimed at integrating the beat possible use of sonic Lnder- water signals into over-all anti-submarine weapons systems

  10. Preferred Tempo and Low-Audio-Frequency Bias Emerge From Simulated Sub-cortical Processing of Sounds With a Musical Beat

    PubMed Central

    Zuk, Nathaniel J.; Carney, Laurel H.; Lalor, Edmund C.

    2018-01-01

    Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification. PMID:29896080

  11. Prognostic Significance of Blood Pressure Variability on Beat-to-Beat Monitoring After Transient Ischemic Attack and Stroke.

    PubMed

    Webb, Alastair J S; Mazzucco, Sara; Li, Linxin; Rothwell, Peter M

    2018-01-01

    Visit-to-visit and day-to-day blood pressure (BP) variability (BPV) predict an increased risk of cardiovascular events but only reflect 1 form of BPV. Beat-to-beat BPV can be rapidly assessed and might also be predictive. In consecutive patients within 6 weeks of transient ischemic attack or nondisabling stroke (Oxford Vascular Study), BPV (coefficient of variation) was measured beat-to-beat for 5 minutes (Finometer), day-to-day for 1 week on home monitoring (3 readings, 3× daily), and on awake ambulatory BP monitoring. BPV after 1-month standard treatment was related (Cox proportional hazards) to recurrent stroke and cardiovascular events for 2 to 5 years, adjusted for mean systolic BP. Among 520 patients, 26 had inadequate beat-to-beat recordings, and 22 patients were in atrial fibrillation. Four hundred five patients had all forms of monitoring. Beat-to-beat BPV predicted recurrent stroke and cardiovascular events independently of mean systolic BP (hazard ratio per group SD, stroke: 1.47 [1.12-1.91]; P =0.005; cardiovascular events: 1.41 [1.08-1.83]; P =0.01), including after adjustment for age and sex (stroke: 1.47 [1.12-1.92]; P =0.005) and all risk factors (1.40 [1.00-1.94]; P =0.047). Day-to-day BPV was less strongly associated with stroke (adjusted hazard ratio, 1.29 [0.97-1.71]; P =0.08) but similarly with cardiovascular events (1.41 [1.09-1.83]; P =0.009). BPV on awake ambulatory BP monitoring was nonpredictive (stroke: 0.89 [0.59-1.35]; P =0.59; cardiovascular events: 1.08 [0.77-1.52]; P =0.65). Despite a weak correlation ( r =0.119; P =0.02), beat-to-beat BPV was associated with risk of recurrent stroke independently of day-to-day BPV (1.41 [1.05-1.90]; P =0.02). Beat-to-beat BPV predicted recurrent stroke and cardiovascular events, independently of mean systolic BP and risk factors but short-term BPV on ambulatory BP monitoring did not. Beat-to-beat BPV may be a useful additional marker of cardiovascular risk. © 2017 The Authors.

  12. Beliefs of Sri Lankan Medical Students about Wife Beating

    ERIC Educational Resources Information Center

    Haj-Yahia, Muhammad M.; de Zoysa, Piyanjali

    2007-01-01

    The article presents the results of a study on beliefs about wife beating conducted among 476 Sri Lankan medical students. Participants fill out a self-administered questionnaire, which examines six beliefs about wife beating. Most students tend to justify wife beating, to believe women benefit from wife beating, and to believe the wife bears more…

  13. Keeping the Beat: A Large Sample Study of Bouncing and Clapping to Music

    PubMed Central

    Tranchant, Pauline; Vuvan, Dominique T.; Peretz, Isabelle

    2016-01-01

    The vast majority of humans move in time with a musical beat. This behaviour has been mostly studied through finger-tapping synchronization. Here, we evaluate naturalistic synchronization responses to music–bouncing and clapping–in 100 university students. Their ability to match the period of their bounces and claps to those of a metronome and musical clips varying in beat saliency was assessed. In general, clapping was better synchronized with the beat than bouncing, suggesting that the choice of a specific movement type is an important factor to consider in the study of sensorimotor synchronization processes. Performance improved as a function of beat saliency, indicating that beat abstraction plays a significant role in synchronization. Fourteen percent of the population exhibited marked difficulties with matching the beat. Yet, at a group level, poor synchronizers showed similar sensitivity to movement type and beat saliency as normal synchronizers. These results suggest the presence of quantitative rather than qualitative variations when losing the beat. PMID:27471854

  14. Midbrain adaptation may set the stage for the perception of musical beat

    PubMed Central

    2017-01-01

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. PMID:29118141

  15. Midbrain adaptation may set the stage for the perception of musical beat.

    PubMed

    Rajendran, Vani G; Harper, Nicol S; Garcia-Lazaro, Jose A; Lesica, Nicholas A; Schnupp, Jan W H

    2017-11-15

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. © 2017 The Authors.

  16. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  17. Appropriate threshold levels of cardiac beat-to-beat variation in semi-automatic analysis of equine ECG recordings.

    PubMed

    Flethøj, Mette; Kanters, Jørgen K; Pedersen, Philip J; Haugaard, Maria M; Carstensen, Helena; Olsen, Lisbeth H; Buhl, Rikke

    2016-11-28

    Although premature beats are a matter of concern in horses, the interpretation of equine ECG recordings is complicated by a lack of standardized analysis criteria and a limited knowledge of the normal beat-to-beat variation of equine cardiac rhythm. The purpose of this study was to determine the appropriate threshold levels of maximum acceptable deviation of RR intervals in equine ECG analysis, and to evaluate a novel two-step timing algorithm by quantifying the frequency of arrhythmias in a cohort of healthy adult endurance horses. Beat-to-beat variation differed considerably with heart rate (HR), and an adaptable model consisting of three different HR ranges with separate threshold levels of maximum acceptable RR deviation was consequently defined. For resting HRs <60 beats/min (bpm) the threshold level of RR deviation was set at 20%, for HRs in the intermediate range between 60 and 100 bpm the threshold was 10%, and for exercising HRs >100 bpm, the threshold level was 4%. Supraventricular premature beats represented the most prevalent arrhythmia category with varying frequencies in seven horses at rest (median 7, range 2-86) and six horses during exercise (median 2, range 1-24). Beat-to-beat variation of equine cardiac rhythm varies according to HR, and threshold levels in equine ECG analysis should be adjusted accordingly. Standardization of the analysis criteria will enable comparisons of studies and follow-up examinations of patients. A small number of supraventricular premature beats appears to be a normal finding in endurance horses. Further studies are required to validate the findings and determine the clinical significance of premature beats in horses.

  18. An empirical investigation of attitudes towards wife-beating among men and women in seven sub-Saharan African countries.

    PubMed

    Rani, Manju; Bonu, Sekhar; Diop-Sidibe, Nafissatou

    2004-12-01

    This study used data from the demographic and health surveys (DHS) conducted between 1999 and 2001 in Benin, Ethiopia, Malawi, Mali, Rwanda, Uganda and Zimbabwe, to examine the magnitude and correlates of conditional acceptance of wife-beating among both men and women. Multivariate logistic regression models were fitted to investigate the independent association between different socio-demographic characteristics and acceptance of wife-beating. The acceptance of wife-beating for transgressing certain gender roles was widespread in all the countries. Men were consistently less likely to justify wife-beating than women. Household wealth and education emerged as strongest and most consistent negative predictors of acceptance of wife-beating among both men and women. Older men and women were less likely to justify wife-beating. Men and women in the polygamous union were more likely to accept wife-beating, though the association was not always significant. With the exception of Uganda, women working for pay were more likely to justify wife-beating than non-working women were. The results indicate that dominant social and cultural norms create images of "ideal" women among both men and women that include definition and widespread acceptance of gender roles as well as sanction use of force to enforce these gender roles. The State and its different institutions may fail to mitigate wife-beating, as sensitivity to objectively address wife-beating may be tellingly lacking. Though education, economic growth, etc, can reduce acceptance of wife-beating, the process may be too slow and too late to make a substantial difference in the near future. Proactive measures may be required to change attitudes towards wife-beating among both men and women.

  19. Molecular perturbations restrict potential for liver repopulation of hepatocytes isolated from non-heart-beating donor rats.

    PubMed

    Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev

    2012-04-01

    Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in hepatocytes from non-heart-beating donors offer opportunities for improving donor cell viability, which will advance the utility of non-heart-beating donor organs for cell therapy or other applications. Copyright © 2012 American Association for the Study of Liver Diseases.

  20. Examination of a Novel Method for Non-Contact, Low-Cost, and Automated Heart-Rate Detection in Ambient Light Using Photoplethysmographic Imaging

    DTIC Science & Technology

    2014-10-01

    a period of time by electrodes attached to the surface of the skin, are used in almost every clinical environment. Pulse oximeters , which measure the...medical devices, for example, pulse oximeters , vascular diagnostics, and digital beat-to-beat blood pressure measurement systems (Allen 2007). PPG is...principle is pulse oximetry. 1.2 Pulse Oximetry A pulse oximeter monitors the blood-oxygen saturation level and pulse rate in the human blood by using

  1. Auditory Information Systems in Military Aircraft: Current Configurations Versus the State of the Art.

    DTIC Science & Technology

    1984-06-01

    types of conditions, discriminable differences in intensity, pitch, or use of beats or harmonics shall be provided. If absolute discrimination is...shall be directed to the operator’s headset as well as to the work area. Binaural headsets should not be used in any operational environment below 85...signals are to be used to alert an operator to different types of conditions, discriminable difference in Intensity, pitch, or use of beats and harmonics

  2. Interservice/Industry Training Systems Conference (13th) Held in Orlando, Florida on 2-5 December 1991

    DTIC Science & Technology

    1991-12-01

    within the be able to design and implement tactile feedback, cube. These simulations range from pc-oased binaural hearing, and autosterioscopic...of the 6-per-revolution beat simulate local wind velocities near the hub. experienced by the tandem 3-blade rotor hubs of the CH46, thus minimizing the...totally -- taking inventory and main- ignored- in another. For example, the taining the security of the videotape entitled " Beating the Odds -- of the

  3. Application of non-linear dynamics to the characterization of cardiac electrical instability

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Cohen, R. J.

    1987-01-01

    Beat-to-beat alternation in the morphology of the ECG has been previously observed in hearts susceptible to fibrillation. In addition, fibrillation has been characterized by some as a chaotic state. Period doubling phenomena, such as alternation, and the onset of chaos have been connected by non-linear dynamical systems theory. In this paper, we describe the use of a technique from nonlinear dynamics theory, the construction of a first return nap, to assess the susceptibility to fibrillation threshhold in canine experiments.

  4. PWM Switching Frequency Effects on Eddy Current Sensors for Magnetically Suspended Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Lebron, Ramon; Dever, Timothy P.; Birchenough, Arthur G.

    2003-01-01

    A flywheel magnetic bearing (MB) pulse width modulated power amplifier (PWM) configuration is selected to minimize noise generated by the PWMs in the flywheel position sensor system. Two types of noise are addressed: beat frequency noise caused by variations in PWM switching frequencies, and demodulation noise caused by demodulation of high order harmonics of the switching voltage into the MB control band. Beat frequency noise is eliminated by synchronizing the PWM switch frequencies, and demodulation noise is minimized by selection of a switching frequency which does not have harmonics at the carrier frequency of the sensor. The recommended MB PWM system has five synchronized PWMs switching at a non-integer harmonic of the sensor carrier.

  5. Increased beat-to-beat T-wave variability in myocardial infarction patients.

    PubMed

    Hasan, Muhammad A; Abbott, Derek; Baumert, Mathias; Krishnan, Sridhar

    2018-03-28

    The purpose of this study was to investigate the beat-to-beat variability of T-waves (TWV) and to assess the diagnostic capabilities of T-wave-based features for myocardial infarction (MI). A total of 148 recordings of standard 12-lead electrocardiograms (ECGs) from 79 MI patients (22 females, mean age 63±12 years; 57 males, mean age 57±10 years) and 69 recordings from healthy subjects (HS) (17 females, 42±18 years; 52 males, 40±13 years) were studied. For the quantification of beat-to-beat QT intervals in ECG signal, a template-matching algorithm was applied. To study the T-waves beat-to-beat, we measured the angle between T-wave max and T-wave end with respect to Q-wave (∠α) and T-wave amplitudes. We computed the standard deviation (SD) of beat-to-beat T-wave features and QT intervals as markers of variability in T-waves and QT intervals, respectively, for both patients and HS. Moreover, we investigated the differences in the studied features based on gender and age for both groups. Significantly increased TWV and QT interval variability (QTV) were found in MI patients compared to HS (p<0.05). No significant differences were observed based on gender or age. TWV may have some diagnostic attributes that may facilitate identifying patients with MI. In addition, the proposed beat-to-beat angle variability was found to be independent of heart rate variations. Moreover, the proposed feature seems to have higher sensitivity than previously reported feature (QT interval and T-wave amplitude) variability for identifying patients with MI.

  6. Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats.

    PubMed

    Howarth, F C; Jacobson, M; Shafiullah, M; Adeghate, E

    2005-11-01

    In vivo biotelemetry studies have demonstrated that short-term streptozotocin (STZ)-induced diabetes is associated with a reduction in heart rate (HR) and heart rate variability (HRV) and prolongation of QT and QRS intervals. This study investigates the long-term effects of STZ-induced diabetes on the electrocardiogram (ECG), physical activity and body temperature. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar lead II configuration. ECG, physical activity and body temperature data were continuously recorded with a telemetry system before and following the administration of STZ (60 mg kg(-1)) for a period of 22 weeks. HR, physical activity and body temperature declined rapidly 3-5 days after the administration of STZ. The effects became conspicuous with time reaching a new steady state approximately 1-2 weeks after STZ treatment. HR at 4 weeks was 268 +/- 5 beats min(-1) in diabetic rats compared to 347 +/- 12 beats min(-1) in age-matched controls. HRV at 4 weeks was also significantly reduced after STZ treatment (18 +/- 3 beats min(-1)) compared to controls (33 +/- 3 beats min(-1)). HR and HRV were not additionally altered in either diabetic rats (266 +/- 5 and 20 +/- 4 beats min(-1)) or age-matched controls (316 +/- 6 and 25 +/- 4 beats min(-1)) at 22 weeks. Reduced physical activity and/or body temperature may partly underlie the reductions in HR and HRV. In addition, the increased power spectral low frequency/high frequency ratio from 4 weeks after STZ treatment may indicate an accompanying disturbance in sympathovagal balance.

  7. Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, III, Robert A. (Inventor)

    1996-01-01

    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.

  8. Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, Robert A., III (Inventor)

    1994-01-01

    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate is presented. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.

  9. Cooperation of sperm in two dimensions: synchronization, attraction, and aggregation through hydrodynamic interactions.

    PubMed

    Yang, Yingzi; Elgeti, Jens; Gompper, Gerhard

    2008-12-01

    Sperm swimming at low Reynolds number have strong hydrodynamic interactions when their concentration is high in vivo or near substrates in vitro. The beating tails not only propel the sperm through a fluid, but also create flow fields through which sperm interact with each other. We study the hydrodynamic interaction and cooperation of sperm embedded in a two-dimensional fluid by using a particle-based mesoscopic simulation method, multiparticle collision dynamics. We analyze the sperm behavior by investigating the relationship between the beating-phase difference and the relative sperm position, as well as the energy consumption. Two effects of hydrodynamic interaction are found, synchronization and attraction. With these hydrodynamic effects, a multisperm system shows swarm behavior with a power-law dependence of the average cluster size on the width of the distribution of beating frequencies.

  10. Hypoactivation of reward motivational system in patients with newly diagnosed hypertension grade I-II.

    PubMed

    Aftanas, L I; Brak, I V; Gilinskaya, O M; Korenek, V V; Pavlov, S V; Reva, N V

    2014-08-01

    In patients with newly diagnosed untreated grade I-II hypertension, EEG oscillations were recorded under conditions activation of the two basic motivational systems, defensive motivational system and positive reinforcement system, evoked by recall of personally meaningful emotional events. The 64-channel EEG and cardiovascular reactivity (beat-by-beat technology) were simultaneously recorded. At rest, hypertensive patients had significantly reduced platelet serotonin concentrations in comparison with healthy individuals. The patients experiencing emotional activation were characterized by significantly lower intensity of positive emotions associated with more pronounced suppression of EEG activity in the delta (2-4 Hz) and theta (ranges of frequency 4-6 and 6-8 Hz) oscillators in the parieto-occipital cortex (zones P and PO) in both hemispheres of the brain. The findings attest to insufficient function of the brain serotonin system and hypoactivation of the reward/reinforcement system in patients with primary hypertension.

  11. Healthcare performance and the effects of the binaural beats on human blood pressure and heart rate.

    PubMed

    Carter, Calvin

    2008-01-01

    Binaural beats are the differences in two different frequencies (in the range of 30-1000 Hz). Binaural beats are played through headphones and are perceived by the superior olivary nucleus of each hemisphere of the brain. The brain perceives the binaural beat and resonates to its frequency (frequency following response). Once the brain is in tune with the binaural beat it produces brainwaves of that frequency altering the listener's state of mind. In this experiment, the effects of the beta and theta binaural beat on human blood pressure and pulse were studied. Using headphones, three sounds were played for 7 minutes each to 12 participants: the control,- the sound of a babbling brook (the background sound to the two binaural beats), the beta binaural beat (20 Hz), and the theta binaural beat (7 Hz). Blood pressure and pulse were recorded before and after each sound was played. Each participant was given 2 minutes in-between each sound. The results showed that the control and the two binaural beats did not affect the 12 participant's blood pressure or pulse (p > 0.05). One reason for this may be that the sounds were not played long enough for the brain to either perceive and/or resonate to the frequency. Another reason why the sounds did not affect blood pressure and pulse may be due to the participant's age since older brains may not perceive the binaural beats as well as younger brains.

  12. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-10-25

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions [Formula: see text] with [Formula: see text]. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  13. High beat-to-beat blood pressure variability in atrial fibrillation compared to sinus rhythm.

    PubMed

    Olbers, Joakim; Gille, Adam; Ljungman, Petter; Rosenqvist, Mårten; Östergren, Jan; Witt, Nils

    2018-02-07

    Atrial fibrillation (AF) is associated with an increased risk for cardiovascular morbidity and mortality, not entirely explained by thromboembolism. The underlying mechanisms for this association are largely unknown. Similarly, high blood pressure (BP) increases the risk for cardiovascular events. Despite this the interplay between AF and BP is insufficiently studied. The purpose of this study was to examine and quantify the beat-to-beat blood pressure variability in patients with AF in comparison to a control group of patients with sinus rhythm. We studied 33 patients - 21 in atrial fibrillation and 12 in sinus rhythm - undergoing routine coronary angiography. Invasive blood pressure was recorded at three locations: radial artery, brachial artery and ascending aorta. Blood pressure variability, defined as average beat-to-beat blood pressure difference, was calculated for systolic and diastolic blood pressure at each site. We observed a significant difference (p < .001) in systolic and diastolic blood pressure variability between the atrial fibrillation and sinus rhythm groups at all locations. Systolic blood pressure variability roughly doubled in the atrial fibrillation group compared to the sinus rhythm group (4.9 and 2.4 mmHg respectively). Diastolic beat-to-beat blood pressure variability was approximately 6 times as high in the atrial fibrillation group compared to the sinus rhythm group (7.5 and 1.2 mmHg respectively). No significant difference in blood pressure variability was seen between measurement locations. Beat-to-beat blood pressure variability in patients with atrial fibrillation was substantially higher than in patients with sinus rhythm. Hemodynamic effects of this beat-to-beat variation in blood pressure may negatively affect vascular structure and function, which may contribute to the increased cardiovascular morbidity and mortality seen in patients with atrial fibrillation.

  14. Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation.

    PubMed

    Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen

    2015-01-01

    Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Individual Differences in Beat Perception Affect Gait Responses to Low- and High-Groove Music

    PubMed Central

    Leow, Li-Ann; Parrott, Taylor; Grahn, Jessica A.

    2014-01-01

    Slowed gait in patients with Parkinson’s disease (PD) can be improved when patients synchronize footsteps to isochronous metronome cues, but limited retention of such improvements suggest that permanent cueing regimes are needed for long-term improvements. If so, music might make permanent cueing regimes more pleasant, improving adherence; however, music cueing requires patients to synchronize movements to the “beat,” which might be difficult for patients with PD who tend to show weak beat perception. One solution may be to use high-groove music, which has high beat salience that may facilitate synchronization, and affective properties, which may improve motivation to move. As a first step to understanding how beat perception affects gait in complex neurological disorders, we examined how beat perception ability affected gait in neurotypical adults. Synchronization performance and gait parameters were assessed as healthy young adults with strong or weak beat perception synchronized to low-groove music, high-groove music, and metronome cues. High-groove music was predicted to elicit better synchronization than low-groove music, due to its higher beat salience. Two musical tempi, or rates, were used: (1) preferred tempo: beat rate matched to preferred step rate and (2) faster tempo: beat rate adjusted to 22.5% faster than preferred step rate. For both strong and weak beat-perceivers, synchronization performance was best with metronome cues, followed by high-groove music, and worst with low-groove music. In addition, high-groove music elicited longer and faster steps than low-groove music, both at preferred tempo and at faster tempo. Low-groove music was particularly detrimental to gait in weak beat-perceivers, who showed slower and shorter steps compared to uncued walking. The findings show that individual differences in beat perception affect gait when synchronizing footsteps to music, and have implications for using music in gait rehabilitation. PMID:25374521

  16. Detrended fluctuation analysis of non-stationary cardiac beat-to-beat interval of sick infants

    NASA Astrophysics Data System (ADS)

    Govindan, Rathinaswamy B.; Massaro, An N.; Al-Shargabi, Tareq; Niforatos Andescavage, Nickie; Chang, Taeun; Glass, Penny; du Plessis, Adre J.

    2014-11-01

    We performed detrended fluctuation analysis (DFA) of cardiac beat-to-beat intervals (RRis) collected from sick newborn infants over 1-4 day periods. We calculated four different metrics from the DFA fluctuation function: the DFA exponents αL (>40 beats up to one-fourth of the record length), αs (15-30 beats), root-mean-square (RMS) fluctuation on a short-time scale (20-50 beats), and RMS fluctuation on a long-time scale (110-150 beats). Except αL , all metrics clearly distinguished two groups of newborn infants (favourable vs. adverse) with well-characterized outcomes. However, the RMS fluctuations distinguished the two groups more consistently over time compared to αS . Furthermore, RMS distinguished the RRi of the two groups earlier compared to the DFA exponent. In all the three measures, the favourable outcome group displayed higher values, indicating a higher magnitude of (auto-)correlation and variability, thus normal physiology, compared to the adverse outcome group.

  17. Ectopic beats in approximate entropy and sample entropy-based HRV assessment

    NASA Astrophysics Data System (ADS)

    Singh, Butta; Singh, Dilbag; Jaryal, A. K.; Deepak, K. K.

    2012-05-01

    Approximate entropy (ApEn) and sample entropy (SampEn) are the promising techniques for extracting complex characteristics of cardiovascular variability. Ectopic beats, originating from other than the normal site, are the artefacts contributing a serious limitation to heart rate variability (HRV) analysis. The approaches like deletion and interpolation are currently in use to eliminate the bias produced by ectopic beats. In this study, normal R-R interval time series of 10 healthy and 10 acute myocardial infarction (AMI) patients were analysed by inserting artificial ectopic beats. Then the effects of ectopic beats editing by deletion, degree-zero and degree-one interpolation on ApEn and SampEn have been assessed. Ectopic beats addition (even 2%) led to reduced complexity, resulting in decreased ApEn and SampEn of both healthy and AMI patient data. This reduction has been found to be dependent on level of ectopic beats. Editing of ectopic beats by interpolation degree-one method is found to be superior to other methods.

  18. The effect of beat frequency on eye movements during free viewing.

    PubMed

    Maróti, Emese; Knakker, Balázs; Vidnyánszky, Zoltán; Weiss, Béla

    2017-02-01

    External periodic stimuli entrain brain oscillations and affect perception and attention. It has been shown that background music can change oculomotor behavior and facilitate detection of visual objects occurring on the musical beat. However, whether musical beats in different tempi modulate information sampling differently during natural viewing remains to be explored. Here we addressed this question by investigating how listening to naturalistic drum grooves in two different tempi affects eye movements of participants viewing natural scenes on a computer screen. We found that the beat frequency of the drum grooves modulated the rate of eye movements: fixation durations were increased at the lower beat frequency (1.7Hz) as compared to the higher beat frequency (2.4Hz) and no music conditions. Correspondingly, estimated visual sampling frequency decreased as fixation durations increased with lower beat frequency. These results imply that slow musical beats can retard sampling of visual information during natural viewing by increasing fixation durations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Imaging the 3D flow around swimming Chlamydomonas reinhardtii using digital inline holographic microscopy

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Kumar, Santosh; Hong, Jiarong; Cheng, Xiang

    2017-11-01

    Understanding the 3D flow induced by microswimmers is paramount to revealing how they interact with each other and their environment. While many studies have measured 2D projections of flow fields around single microorganisms, reliable 3D measurement remains elusive due to the difficulty in imaging fast 3D fluid flows at submicron spatial and millisecond temporal scales. Here, we present a precision measurement of the 3D flow field induced by motile planktonic algae cells, Chlamydomonas reinhardtii. We manually capture and hold stationary a single alga using a micropipette, while still allowing it to beat its flagella in the breastroke pattern characteristic to C. reinhardtii. The 3D flow field around the alga is then tracked by employing fast holographic imaging on 1 um tracer particles, which leads to a spatial resolution of 100 nm along the optical axis and 40 nm in the imaging plane normal to the optical axis. We image the flow around a single alga continuously through thousands of flagellar beat cycles and aggregate that data into a complete 3D flow field. Our study demonstrates the power of holography in imaging fast complex microscopic flow structures and provides crucial information for understanding the detailed locomotion of swimming microorganisms.

  20. Analysis of EEG activity in response to binaural beats with different frequencies.

    PubMed

    Gao, Xiang; Cao, Hongbao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Wang, Xiaolu; Chen, Runge; Zhou, Peng

    2014-12-01

    When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been reached yet. In this work, we employed Relative Power (RP), Phase Locking Value (PLV) and Cross-Mutual Information (CMI) to track EEG changes during BB stimulations. EEG signals were acquired from 13 healthy subjects. Five-minute BBs with four different frequencies were tested: delta band (1 Hz), theta band (5 Hz), alpha band (10 Hz) and beta band (20 Hz). We observed RP increase in theta and alpha bands and decrease in beta band during delta and alpha BB stimulations. RP decreased in beta band during theta BB, while RP decreased in theta band during beta BB. However, no clear brainwave entrainment effect was identified. Connectivity changes were detected following the variation of RP during BB stimulations. Our observation supports the hypothesis that BBs could affect functional brain connectivity, suggesting that the mechanism of BB-brain interaction is worth further study. Copyright © 2014. Published by Elsevier B.V.

  1. Effect of music-movement synchrony on exercise oxygen consumption.

    PubMed

    Bacon, C J; Myers, T R; Karageorghis, C I

    2012-08-01

    Past research indicates that endurance is improved when exercise movements are synchronised with a musical beat, however it is unclear whether such benefits are associated with reduced metabolic cost. We compared oxygen consumption (.VO2) and related physiological effects of exercise conducted synchronously and asynchronously with music. Three music tracks, each recorded at three different tempi (123, 130, and 137 beats.min-1), accompanied cycle ergometry at 65 pedal revolutions.min-1. Thus three randomly-assigned experimental conditions were administered: slow tempo asynchronous, synchronous, and fast tempo asynchronous. Exercise response of .VO2, HR, and ratings of perceived exertion (RPE), to each condition was monitored in 10 untrained male participants aged 21.7±0.8 years (mean±SD) who cycled for 12 min at 70% maximal heart rate (HR). Mean .VO2 differed among conditions (P=0.008), being lower in the synchronous (1.80±0.22 L.min-1) compared to the slow tempo asynchronous condition (1.94±0.21 L.min-1; P<0.05). There was no difference in HR or RPE among conditions, although HR showed a similar trend to .VO2. The present results indicate that exercise is more efficient when performed synchronously with music than when musical tempo is slightly slower than the rate of cyclical movement.

  2. An Automated Flying-Insect-Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2005-01-01

    An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.

  3. Determination of power system component parameters using nonlinear dead beat estimation method

    NASA Astrophysics Data System (ADS)

    Kolluru, Lakshmi

    Power systems are considered the most complex man-made wonders in existence today. In order to effectively supply the ever increasing demands of the consumers, power systems are required to remain stable at all times. Stability and monitoring of these complex systems are achieved by strategically placed computerized control centers. State and parameter estimation is an integral part of these facilities, as they deal with identifying the unknown states and/or parameters of the systems. Advancements in measurement technologies and the introduction of phasor measurement units (PMU) provide detailed and dynamic information of all measurements. Accurate availability of dynamic measurements provides engineers the opportunity to expand and explore various possibilities in power system dynamic analysis/control. This thesis discusses the development of a parameter determination algorithm for nonlinear power systems, using dynamic data obtained from local measurements. The proposed algorithm was developed by observing the dead beat estimator used in state space estimation of linear systems. The dead beat estimator is considered to be very effective as it is capable of obtaining the required results in a fixed number of steps. The number of steps required is related to the order of the system and the number of parameters to be estimated. The proposed algorithm uses the idea of dead beat estimator and nonlinear finite difference methods to create an algorithm which is user friendly and can determine the parameters fairly accurately and effectively. The proposed algorithm is based on a deterministic approach, which uses dynamic data and mathematical models of power system components to determine the unknown parameters. The effectiveness of the algorithm is tested by implementing it to identify the unknown parameters of a synchronous machine. MATLAB environment is used to create three test cases for dynamic analysis of the system with assumed known parameters. Faults are introduced in the virtual test systems and the dynamic data obtained in each case is analyzed and recorded. Ideally, actual measurements are to be provided to the algorithm. As the measurements are not readily available the data obtained from simulations is fed into the determination algorithm as inputs. The obtained results are then compared to the original (or assumed) values of the parameters. The results obtained suggest that the algorithm is able to determine the parameters of a synchronous machine when crisp data is available.

  4. Nonlinear mixing of electromagnetic waves in plasmas.

    PubMed

    Stefan, V; Cohen, B I; Joshi, C

    1989-01-27

    Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.

  5. Annotated Bibliography of USAARL Technical and Letter Reports. Volume 1. June 1963 - September 1987

    DTIC Science & Technology

    1991-05-01

    continuous information concerning the duration, ampli- tude and slow-phase velocity of each nystagmic beat during experiments involving the vestibular...one lead of EKG for a full work day. Mean heart rates were tabulated from the record during: Administrative work (87.2 beats per minute), automobile...driving (85.5 beats per minute), eating (90.1 beats per minute), and flying (92.0 beats per minute). Using Tukey’s multiple comparison of means

  6. Real time heart rate variability assessment from Android smartphone camera photoplethysmography: Postural and device influences.

    PubMed

    Guede-Fernandez, F; Ferrer-Mileo, V; Ramos-Castro, J; Fernandez-Chimeno, M; Garcia-Gonzalez, M A

    2015-01-01

    The aim of this paper is to present a smartphone based system for real-time pulse-to-pulse (PP) interval time series acquisition by frame-to-frame camera image processing. The developed smartphone application acquires image frames from built-in rear-camera at the maximum available rate (30 Hz) and the smartphone GPU has been used by Renderscript API for high performance frame-by-frame image acquisition and computing in order to obtain PPG signal and PP interval time series. The relative error of mean heart rate is negligible. In addition, measurement posture and the employed smartphone model influences on the beat-to-beat error measurement of heart rate and HRV indices have been analyzed. Then, the standard deviation of the beat-to-beat error (SDE) was 7.81 ± 3.81 ms in the worst case. Furthermore, in supine measurement posture, significant device influence on the SDE has been found and the SDE is lower with Samsung S5 than Motorola X. This study can be applied to analyze the reliability of different smartphone models for HRV assessment from real-time Android camera frames processing.

  7. Associations between wife-beating and fetal and infant death: impressions from a survey in rural India.

    PubMed

    Jejeebhoy, S J

    1998-09-01

    This report examines the linkages between wife-beating and one health-related consequence for women, their experience of fetal and infant mortality. Community-based data are used drawn from women surveyed in two culturally distinct sites of rural India: Uttar Pradesh in the north, in which gender relations are highly stratified, and Tamil Nadu in the south, in which they are more egalitarian. Results suggest that wife-beating is deeply entrenched, that attitudes uniformly justify wife-beating, and that few women can escape an abusive marriage. They also suggest that the health consequences of domestic violence--in terms of pregnancy loss and infant mortality--are considerable and that Indian women's experience of infant and fetal mortality is powerfully conditioned by the strength of the patriarchal social system. Results are tentative because of data limitations, but they are consistent and strong enough to warrant concern. They argue for the integration of services to identify, refer, and prevent domestic violence in the primary or reproductive health programs of the country and for the safe motherhood programs to be particularly vigilant, sensitive, and responsive to the conditions of battered women during pregnancy and the postpartum period.

  8. Scaling dependence and synchronization of forced mercury beating heart systems

    NASA Astrophysics Data System (ADS)

    Biswas, Animesh; Das, Dibyendu; Parmananda, P.

    2017-04-01

    We perform experiments on a nonautonomous Mercury beating heart system, which is forced to pulsate using an external square wave potential. At suitable frequencies and volumes, the drop exhibits pulsation with polygonal shapes having n corners. We find the scaling dependence of the forcing frequency νn on the volume V of the drop and establish the relationship νn∝n/√{V } . It is shown that the geometrical shape of substrate is important for obtaining closer match to these scaling relationships. Furthermore, we study synchronization of two nonidentical drops driven by the same frequency and establish that synchrony happens when the relationship n2/n1=√{V2/V1 } is satisfied.

  9. The histomorphological findings of kidneys after application of high dose and high-energy shock wave lithotripsy.

    PubMed

    Demir, Aslan; Türker, Polat; Bozkurt, Suheyla Uyar; İlker, Yalcin Nazmi

    2015-01-01

    In this animal study, we reviewed the histomorphological findings in rabbit kidneys after a high number of high-energy shock wave applications and observed if there were any cumulative effects after repeated sessions. We formed 2 groups, each consisting of 8 rabbits. Group 1 received 1 session and group 2 received 3 sessions of ESWL with a 7 day interval between sessions, consisting of 3500 beats to the left kidney and 5500 beats to the right kidney per session. The specimens of kidneys were examined histomorphologically after bilateral nephrectomy was performed. For statistical analysis, 4 groups of specimens were formed. The first and second groups received 1 session, 3500 and 5500 beats, respectively. The third and fourth groups received 3 sessions, at 3500 and 5500 beats per each session, respectively. The sections were evaluated under a light microscope to determine subcapsular thickening; subcapsular, intratubular and parenchymal hemorrhage; subcapsular, intersitital, perivascular and proximal ureteral fibrosis; paranchymal necrosis; tubular epithelial vacuolization; tubular atrophy; glomerular destruction and calcification. In histopathological examinations capsular thickening, subcapsular hematoma, tubuloepithelial vacuolisation, glomerular destruction, parenchymal hemorrhage, interstitial fibrosis, and perivascular fibrosis were observed in all groups. In statistical analysis, on the basis of perivascular fibrosis and tubular atrophy, there was a beats per session dependent increase of both. The detrimental effects from ESWL are dose dependent but not cumulative for up to 3 sessions. Histopathological experimental animal studies will aid in understanding local and maybe, by means of these local effects, systemic effects.

  10. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link.

    PubMed

    Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-08-08

    A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.

  11. The recursive combination filter approach of pre-processing for the estimation of standard deviation of RR series.

    PubMed

    Mishra, Alok; Swati, D

    2015-09-01

    Variation in the interval between the R-R peaks of the electrocardiogram represents the modulation of the cardiac oscillations by the autonomic nervous system. This variation is contaminated by anomalous signals called ectopic beats, artefacts or noise which mask the true behaviour of heart rate variability. In this paper, we have proposed a combination filter of recursive impulse rejection filter and recursive 20% filter, with recursive application and preference of replacement over removal of abnormal beats to improve the pre-processing of the inter-beat intervals. We have tested this novel recursive combinational method with median method replacement to estimate the standard deviation of normal to normal (SDNN) beat intervals of congestive heart failure (CHF) and normal sinus rhythm subjects. This work discusses the improvement in pre-processing over single use of impulse rejection filter and removal of abnormal beats for heart rate variability for the estimation of SDNN and Poncaré plot descriptors (SD1, SD2, and SD1/SD2) in detail. We have found the 22 ms value of SDNN and 36 ms value of SD2 descriptor of Poincaré plot as clinical indicators in discriminating the normal cases from CHF cases. The pre-processing is also useful in calculation of Lyapunov exponent which is a nonlinear index as Lyapunov exponents calculated after proposed pre-processing modified in a way that it start following the notion of less complex behaviour of diseased states.

  12. Beat Gestures Modulate Auditory Integration in Speech Perception

    ERIC Educational Resources Information Center

    Biau, Emmanuel; Soto-Faraco, Salvador

    2013-01-01

    Spontaneous beat gestures are an integral part of the paralinguistic context during face-to-face conversations. Here we investigated the time course of beat-speech integration in speech perception by measuring ERPs evoked by words pronounced with or without an accompanying beat gesture, while participants watched a spoken discourse. Words…

  13. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts.

    PubMed

    Ye, Yalan; He, Wenwen; Cheng, Yunfei; Huang, Wenxia; Zhang, Zhilin

    2017-02-16

    The estimation of heart rate (HR) based on wearable devices is of interest in fitness. Photoplethysmography (PPG) is a promising approach to estimate HR due to low cost; however, it is easily corrupted by motion artifacts (MA). In this work, a robust approach based on random forest is proposed for accurately estimating HR from the photoplethysmography signal contaminated by intense motion artifacts, consisting of two stages. Stage 1 proposes a hybrid method to effectively remove MA with a low computation complexity, where two MA removal algorithms are combined by an accurate binary decision algorithm whose aim is to decide whether or not to adopt the second MA removal algorithm. Stage 2 proposes a random forest-based spectral peak-tracking algorithm, whose aim is to locate the spectral peak corresponding to HR, formulating the problem of spectral peak tracking into a pattern classification problem. Experiments on the PPG datasets including 22 subjects used in the 2015 IEEE Signal Processing Cup showed that the proposed approach achieved the average absolute error of 1.65 beats per minute (BPM) on the 22 PPG datasets. Compared to state-of-the-art approaches, the proposed approach has better accuracy and robustness to intense motion artifacts, indicating its potential use in wearable sensors for health monitoring and fitness tracking.

  14. Accuracy enhanced distance measurement system using double-sideband modulated frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Xilun; Wang, Xiangchuan; Pan, Shilong

    2017-03-01

    An implementation of a distance measurement system using double-sideband with suppressed carrier modulation (DSB-SC) frequency scanning interferometry is proposed to reduce the variations in the optical path and improve the measurement accuracy. In this proposed system, the electro-optic DSB-SC is used to create dual-swept signals with opposite scanning directions. For each swept signal, the relative distance between the reference arm and the measuring arm is determined by the beat frequency of signals from two arms. By multiplying both beat signals, measurement errors caused by variations in the optical path can be greatly reduced. As an experimental demonstration, a vibration was introduced in the optical path length. The experimental results show that the variations can be suppressed for over 19.9 dB.

  15. Quantification of fetal heart rate regularity using symbolic dynamics

    NASA Astrophysics Data System (ADS)

    van Leeuwen, P.; Cysarz, D.; Lange, S.; Geue, D.; Groenemeyer, D.

    2007-03-01

    Fetal heart rate complexity was examined on the basis of RR interval time series obtained in the second and third trimester of pregnancy. In each fetal RR interval time series, short term beat-to-beat heart rate changes were coded in 8bit binary sequences. Redundancies of the 28 different binary patterns were reduced by two different procedures. The complexity of these sequences was quantified using the approximate entropy (ApEn), resulting in discrete ApEn values which were used for classifying the sequences into 17 pattern sets. Also, the sequences were grouped into 20 pattern classes with respect to identity after rotation or inversion of the binary value. There was a specific, nonuniform distribution of the sequences in the pattern sets and this differed from the distribution found in surrogate data. In the course of gestation, the number of sequences increased in seven pattern sets, decreased in four and remained unchanged in six. Sequences that occurred less often over time, both regular and irregular, were characterized by patterns reflecting frequent beat-to-beat reversals in heart rate. They were also predominant in the surrogate data, suggesting that these patterns are associated with stochastic heart beat trains. Sequences that occurred more frequently over time were relatively rare in the surrogate data. Some of these sequences had a high degree of regularity and corresponded to prolonged heart rate accelerations or decelerations which may be associated with directed fetal activity or movement or baroreflex activity. Application of the pattern classes revealed that those sequences with a high degree of irregularity correspond to heart rate patterns resulting from complex physiological activity such as fetal breathing movements. The results suggest that the development of the autonomic nervous system and the emergence of fetal behavioral states lead to increases in not only irregular but also regular heart rate patterns. Using symbolic dynamics to examine the cardiovascular system may thus lead to new insight with respect to fetal development.

  16. Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.

    1996-01-01

    OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular rather than dual-chamber pacing may be due in part to increased sympathetic nervous outflow.

  17. Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres.

    PubMed

    Apai, D; Karalidi, T; Marley, M S; Yang, H; Flateau, D; Metchev, S; Cowan, N B; Buenzli, E; Burgasser, A J; Radigan, J; Artigau, E; Lowrance, P

    2017-08-18

    Brown dwarfs are massive analogs of extrasolar giant planets and may host types of atmospheric circulation not seen in the solar system. We analyzed a long-term Spitzer Space Telescope infrared monitoring campaign of brown dwarfs to constrain cloud cover variations over a total of 192 rotations. The infrared brightness evolution is dominated by beat patterns caused by planetary-scale wave pairs and by a small number of bright spots. The beating waves have similar amplitudes but slightly different apparent periods because of differing velocities or directions. The power spectrum of intermediate-temperature brown dwarfs resembles that of Neptune, indicating the presence of zonal temperature and wind speed variations. Our findings explain three previously puzzling behaviors seen in brown dwarf brightness variations. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Influence of the optical fiber type on the performances of fiber-optics current sensor dedicated to plasma current measurement in ITER.

    PubMed

    Aerssens, Matthieu; Descamps, Frédéric; Gusarov, Andrei; Mégret, Patrice; Moreau, Philippe; Wuilpart, Marc

    2015-07-01

    In this paper, we compare, by means of simulations using the Jones formalism, the performances of several optical fiber types (low birefringence and spun fibers) for the measurement of plasma current in international thermonuclear experimental reactor (ITER). The main results presented in this paper concern the minimum value of the ratio between the beat length and the spun period, which allows meeting the ITER current measurement specifications. Assuming a high-birefringence spun fiber with a beat length of 3 mm, we demonstrate that the minimum ratio between the beat length and the spun period is 4.4 when considering a 28 m long sensing fiber surrounding the vacuum vessel. This minimum ratio rises to 10.14 when a 100 m long lead fiber connecting the interrogating system to the sensing fiber is taken into account.

  19. Control, synchronization, and enhanced reliability of aperiodic oscillations in the Mercury Beating Heart system

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    Experiments involving the Mercury Beating Heart (MBH) oscillator, exhibiting irregular (aperiodic) dynamics, are performed. In the first set of experiments, control over irregular dynamics of the MBH oscillator was obtained via a superimposed periodic voltage signal. These irregular (aperiodic) dynamics were recovered once the control was switched off. Subsequently, two MBH oscillators were coupled to attain synchronization of their aperiodic oscillations. Finally, two uncoupled MBH oscillators were subjected, repeatedly, to a common stochastic forcing, resulting in an enhancement of their mutual phase correlation.

  20. Motion correction for improved estimation of heart rate using a visual spectrum camera

    NASA Astrophysics Data System (ADS)

    Tarbox, Elizabeth A.; Rios, Christian; Kaur, Balvinder; Meyer, Shaun; Hirt, Lauren; Tran, Vy; Scott, Kaitlyn; Ikonomidou, Vasiliki

    2017-05-01

    Heart rate measurement using a visual spectrum recording of the face has drawn interest over the last few years as a technology that can have various health and security applications. In our previous work, we have shown that it is possible to estimate the heart beat timing accurately enough to perform heart rate variability analysis for contactless stress detection. However, a major confounding factor in this approach is the presence of movement, which can interfere with the measurements. To mitigate the effects of movement, in this work we propose the use of face detection and tracking based on the Karhunen-Loewe algorithm in order to counteract measurement errors introduced by normal subject motion, as expected during a common seated conversation setting. We analyze the requirements on image acquisition for the algorithm to work, and its performance under different ranges of motion, changes of distance to the camera, as well and the effect of illumination changes due to different positioning with respect to light sources on the acquired signal. Our results suggest that the effect of face tracking on visual-spectrum based cardiac signal estimation depends on the amplitude of the motion. While for larger-scale conversation-induced motion it can significantly improve estimation accuracy, with smaller-scale movements, such as the ones caused by breathing or talking without major movement errors in facial tracking may interfere with signal estimation. Overall, employing facial tracking is a crucial step in adapting this technology to real-life situations with satisfactory results.

  1. Binaural beat salience

    PubMed Central

    Grose, John H.; Buss, Emily; Hall, Joseph W.

    2012-01-01

    Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz – all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. PMID:22326292

  2. Binaural beat salience.

    PubMed

    Grose, John H; Buss, Emily; Hall, Joseph W

    2012-03-01

    Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz - all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat.

    PubMed

    Nozaradan, Sylvie; Zerouali, Younes; Peretz, Isabelle; Mouraux, André

    2015-03-01

    Synchronizing movements with rhythmic inputs requires tight coupling of sensory and motor neural processes. Here, using a novel approach based on the recording of steady-state-evoked potentials (SS-EPs), we examine how distant brain areas supporting these processes coordinate their dynamics. The electroencephalogram was recorded while subjects listened to a 2.4-Hz auditory beat and tapped their hand on every second beat. When subjects tapped to the beat, the EEG was characterized by a 2.4-Hz SS-EP compatible with beat-related entrainment and a 1.2-Hz SS-EP compatible with movement-related entrainment, based on the results of source analysis. Most importantly, when compared with passive listening of the beat, we found evidence suggesting an interaction between sensory- and motor-related activities when subjects tapped to the beat, in the form of (1) additional SS-EP appearing at 3.6 Hz, compatible with a nonlinear product of sensorimotor integration; (2) phase coupling of beat- and movement-related activities; and (3) selective enhancement of beat-related activities over the hemisphere contralateral to the tapping, suggesting a top-down effect of movement-related activities on auditory beat processing. Taken together, our results are compatible with the view that rhythmic sensorimotor synchronization is supported by a dynamic coupling of sensory and motor related activities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Beat-to-beat agreement of noninvasive tonometric and intra-radial arterial blood pressure during microgravity and hypergravity generated by parabolic flights.

    PubMed

    Normand, Hervé; Lemarchand, Erick; Arbeille, Philippe; Quarck, Gaëlle; Vaïda, Pierre; Duretete, Arnaud; Denise, Pierre

    2007-12-01

    Accurate measurement of beat-to-beat arterial blood pressure is essential for understanding the cardiovascular adaptation to weightlessness; however, the intra-arterial standard of beat-to-beat blood pressure measurement has never been used during space flight because of its invasive nature. The aim of the present study was to compare noninvasive radial artery tonometry blood pressure measurement with intra-radial pressure measurement during microgravity and hypergravity generated by parabolic flights. Two study participants, equipped with an intra-radial pressure line on the left arm and a Colin CBM-7000 (Colin Corp., Komaki City, Japan) beat-to-beat pressure measurement apparatus on the right arm, were studied in a supine position, during parabolic flights on board of the Airbus A300 OG of the Centre National d'Etudes Spatiales. The mean and standard deviations of the beat-to-beat difference between tonometric and intra-radial blood pressure were calculated for systolic and diastolic arterial pressure in the three gravity conditions (1g, 0 g and 1.8 g) experienced during parabolic flight. The Colin CBM-7000 met the specifications required by the Association for the Advancement of Medical Instrumentation in the 0 g environment. Gravity, however, significantly affected the difference between tonometric and intra-arterial blood pressure, possibly owing to the effect of gravity on the apparent weight of the device and the corresponding calibration factor. We conclude that the Colin CBM-7000 can be used with confidence during space flight.

  5. Binaural auditory beats affect vigilance performance and mood.

    PubMed

    Lane, J D; Kasian, S J; Owens, J E; Marsh, G R

    1998-01-01

    When two tones of slightly different frequency are presented separately to the left and right ears the listener perceives a single tone that varies in amplitude at a frequency equal to the frequency difference between the two tones, a perceptual phenomenon known as the binaural auditory beat. Anecdotal reports suggest that binaural auditory beats within the electroencephalograph frequency range can entrain EEG activity and may affect states of consciousness, although few scientific studies have been published. This study compared the effects of binaural auditory beats in the EEG beta and EEG theta/delta frequency ranges on mood and on performance of a vigilance task to investigate their effects on subjective and objective measures of arousal. Participants (n = 29) performed a 30-min visual vigilance task on three different days while listening to pink noise containing simple tones or binaural beats either in the beta range (16 and 24 Hz) or the theta/delta range (1.5 and 4 Hz). However, participants were kept blind to the presence of binaural beats to control expectation effects. Presentation of beta-frequency binaural beats yielded more correct target detections and fewer false alarms than presentation of theta/delta frequency binaural beats. In addition, the beta-frequency beats were associated with less negative mood. Results suggest that the presentation of binaural auditory beats can affect psychomotor performance and mood. This technology may have applications for the control of attention and arousal and the enhancement of human performance.

  6. Enhanced timing abilities in percussionists generalize to rhythms without a musical beat.

    PubMed

    Cameron, Daniel J; Grahn, Jessica A

    2014-01-01

    The ability to entrain movements to music is arguably universal, but it is unclear how specialized training may influence this. Previous research suggests that percussionists have superior temporal precision in perception and production tasks. Such superiority may be limited to temporal sequences that resemble real music or, alternatively, may generalize to musically implausible sequences. To test this, percussionists and nonpercussionists completed two tasks that used rhythmic sequences varying in musical plausibility. In the beat tapping task, participants tapped with the beat of a rhythmic sequence over 3 stages: finding the beat (as an initial sequence played), continuation of the beat (as a second sequence was introduced and played simultaneously), and switching to a second beat (the initial sequence finished, leaving only the second). The meters of the two sequences were either congruent or incongruent, as were their tempi (minimum inter-onset intervals). In the rhythm reproduction task, participants reproduced rhythms of four types, ranging from high to low musical plausibility: Metric simple rhythms induced a strong sense of the beat, metric complex rhythms induced a weaker sense of the beat, nonmetric rhythms had no beat, and jittered nonmetric rhythms also had no beat as well as low temporal predictability. For both tasks, percussionists performed more accurately than nonpercussionists. In addition, both groups were better with musically plausible than implausible conditions. Overall, the percussionists' superior abilities to entrain to, and reproduce, rhythms generalized to musically implausible sequences.

  7. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes. Photoplethysmography, which measures changes in arterial blood volume, is commonly used to obtain heart rate and blood oxygen saturation. The digitized PPG signals are used as inputs into the beat-to-beat blood pressure measurement algorithm.

  8. Differential Autonomic Nervous System Reactivity in Depression and Anxiety During Stress Depending on Type of Stressor.

    PubMed

    Hu, Mandy X; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    2016-06-01

    It remains unclear whether depressive and anxiety disorders are associated with hyporeactivity or hyperreactivity of the autonomic nervous system (ANS) and whether deviant reactivity occurs in all types of stressors. This study compared ANS reactivity in people with current or remitted depression/anxiety with reactivity in healthy controls during two stress conditions. From the Netherlands Study of Depression and Anxiety, data of 804 individuals with current depression/anxiety, 913 individuals with remitted depression/anxiety, and 466 healthy controls (mean age = 44.1 years; 66.4% female) were available. Two conditions were used to evoke stress: a) an n-back task, a cognitively challenging stressor, and 2) a psychiatric interview, evoking personal-emotional stress related to the occurrence of symptoms of depression/anxiety. Indicators of ANS activity were heart rate (HR), root mean square of differences between successive interbeat intervals (RMSSD), respiratory sinus arrhythmia (RSA), and preejection period. As compared with controls, participants with psychopathology had significant hyporeactivity of HR (controls = 4.1 ± 4.2 beats/min; remitted = 3.5 ± 3.5 beats/min; current psychopathology = 3.1 ± 3.4 beats/min), RMSSD (controls = -6.2 ± 14.5 milliseconds; remitted = -5.4 ± 17.8 milliseconds; current psychopathology = -3.5 ± 15.4 milliseconds), and RSA (controls = -9.3 ± 17.0 milliseconds; remitted = -7.4 ± 16.5 milliseconds; current psychopathology = -6.9 ± 15.0 milliseconds) during the n-back task. In contrast, during the psychiatric interview, they showed significant hyperreactivity of HR (controls = 2.7 ± 3.4 beats/min; remitted = 3.5 ± 3.4 beats/min; current psychopathology = 4.0 ± 3.3 beats/min), RMSSD (controls = -3.4 ± 12.2 milliseconds; remitted = -4.1 ± 12.1 milliseconds; current psychopathology = -5.6 ± 11.8 milliseconds), and RSA (controls = -3.8 ± 8.1 milliseconds; remitted = -4.3 ± 7.9 milliseconds; current psychopathology = -5.0 ± 7.9 milliseconds). The lack of group differences in preejection period reactivity suggests that the found effects were driven by altered cardiac vagal reactivity in depression/anxiety. The direction of altered ANS reactivity in depressed/anxious patients is dependent on the type of stressor, and only the more ecologically valid stressors may evoke hyperreactivity in these patients.

  9. Speech Research: A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications.

    DTIC Science & Technology

    1981-03-01

    adjusting the metronome beats to coincide with the stressed syllables. The sentences were constructed to have a regular rhythm. They were: "I think’ that it...rate was 92 beats per minute, the conversational rate was 120 beats per minute, and the fast rate was 160 beats per minute. Both sentences were recorded...shown in Figure 6 also suggests amplitude modulation (von Holst’s superimposition effect). Thus on some coinciding cycles a " beat " phenomenon can be

  10. Model for the heart beat-to-beat time series during meditation

    NASA Astrophysics Data System (ADS)

    Capurro, A.; Diambra, L.; Malta, C. P.

    2003-09-01

    We present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a pacemaker, that simulates the membrane potential of the sinoatrial node, modulated by a periodic input signal plus correlated noise that simulates the respiratory input. The model was used to assess the waveshape of the respiratory signals needed to reproduce in the phase space the trajectory of experimental heart beat-to-beat interval data. The data sets were recorded during meditation practices of the Chi and Kundalini Yoga techniques. Our study indicates that in the first case the respiratory signal has the shape of a smoothed square wave, and in the second case it has the shape of a smoothed triangular wave.

  11. Broadband Laser Ranging for Position Measurements in Shock Physics Experiments

    NASA Astrophysics Data System (ADS)

    Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie

    2017-06-01

    Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.

  12. A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for Improved AM Reception

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, Anthony

    2009-01-01

    This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to {approx}1 part in 10{sup 9} or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) andmore » often cause listeners to ldquotune outrdquo due to the low reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long- term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific carrier frequency desired. The stability of the disciplining source, typically {approx}1 part in 10{sup 9} to 10{sup 11}, is thus transferred to the final AM transmitter carrier output frequency.« less

  13. The independent and combined effects of respiratory events and cortical arousals on the autonomic nervous system across sleep stages.

    PubMed

    Liang, Jiuxing; Zhang, Xiangmin; He, Xiaomin; Ling, Li; Zeng, Chunyao; Luo, Yuxi

    2018-05-10

    During sleep, respiratory events readily modulate the autonomic nervous system (ANS). Whether such modulation is caused by the respiratory event itself or the cortical arousal that follows and whether these influences differ across sleep stages are not clear. Thus, we aimed to study the independent and combined effects of respiratory events and cortical arousals on the ANS across sleep stages. We recruited 22 male patients with sleep apnea-hypopnea syndrome (SAHS) and analyzed the differences in the indices of heart rate variability among normal respiration (NR), pathological respiratory events without cortical arousals (PR), cortical arousals without respiratory events (CA), and the coexistence of PR and CA (PR&CA), by sleep stage. Compared with NR, four indices of variation of the beat-to-beat interval demonstrated consistent results in all sleep stages generally: PR&CA showed the biggest difference, followed by PR and followed by CA, which exhibited the least difference. Thus, the respiratory event itself affects ANS modulation, but the cortical arousal that follows generally enhances this effect. For low-frequency power and low-frequency/high-frequency power ratio (LF/HF), PR&CA had the greatest impact. For mean beat-to-beat interval and high-frequency power (HFP), the influence of PR, CA, and PR&CA depended on sleep depth. However, PR&CA had a different influence on HFP in N2 stage vs. REM stage. Sleep stage also has an effect on this neuromodulatory mechanism. These findings may help clarify the relationship between SAHS and cardiovascular disease.

  14. Communication for coordination: gesture kinematics and conventionality affect synchronization success in piano duos.

    PubMed

    Bishop, Laura; Goebl, Werner

    2017-07-21

    Ensemble musicians often exchange visual cues in the form of body gestures (e.g., rhythmic head nods) to help coordinate piece entrances. These cues must communicate beats clearly, especially if the piece requires interperformer synchronization of the first chord. This study aimed to (1) replicate prior findings suggesting that points of peak acceleration in head gestures communicate beat position and (2) identify the kinematic features of head gestures that encourage successful synchronization. It was expected that increased precision of the alignment between leaders' head gestures and first note onsets, increased gesture smoothness, magnitude, and prototypicality, and increased leader ensemble/conducting experience would improve gesture synchronizability. Audio/MIDI and motion capture recordings were made of piano duos performing short musical passages under assigned leader/follower conditions. The leader of each trial listened to a particular tempo over headphones, then cued their partner in at the given tempo, without speaking. A subset of motion capture recordings were then presented as point-light videos with corresponding audio to a sample of musicians who tapped in synchrony with the beat. Musicians were found to align their first taps with the period of deceleration following acceleration peaks in leaders' head gestures, suggesting that acceleration patterns communicate beat position. Musicians' synchronization with leaders' first onsets improved as cueing gesture smoothness and magnitude increased and prototypicality decreased. Synchronization was also more successful with more experienced leaders' gestures. These results might be applied to interactive systems using gesture recognition or reproduction for music-making tasks (e.g., intelligent accompaniment systems).

  15. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Mouraux, André

    2012-12-05

    Fundamental to the experience of music, beat and meter perception refers to the perception of periodicities while listening to music occurring within the frequency range of musical tempo. Here, we explored the spontaneous building of beat and meter hypothesized to emerge from the selective entrainment of neuronal populations at beat and meter frequencies. The electroencephalogram (EEG) was recorded while human participants listened to rhythms consisting of short sounds alternating with silences to induce a spontaneous perception of beat and meter. We found that the rhythmic stimuli elicited multiple steady state-evoked potentials (SS-EPs) observed in the EEG spectrum at frequencies corresponding to the rhythmic pattern envelope. Most importantly, the amplitude of the SS-EPs obtained at beat and meter frequencies were selectively enhanced even though the acoustic energy was not necessarily predominant at these frequencies. Furthermore, accelerating the tempo of the rhythmic stimuli so as to move away from the range of frequencies at which beats are usually perceived impaired the selective enhancement of SS-EPs at these frequencies. The observation that beat- and meter-related SS-EPs are selectively enhanced at frequencies compatible with beat and meter perception indicates that these responses do not merely reflect the physical structure of the sound envelope but, instead, reflect the spontaneous emergence of an internal representation of beat, possibly through a mechanism of selective neuronal entrainment within a resonance frequency range. Taken together, these results suggest that musical rhythms constitute a unique context to gain insight on general mechanisms of entrainment, from the neuronal level to individual level.

  16. Evaluation of Flow Biosensor Technology in a Chronically-Instrumented Non-Human Primate Model

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Reister, C.; Schaub, J.; Muniz, G.; Ferguson, T.; Fanton, J. W.

    1995-01-01

    The Physiology Research Branch of Brooks AFB conducts both human and non-human primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to indentify the particular mechanisms that invoke these responses. Primary investigative research efforts in a non-human primate model require the calculation of total peripheral resistance (TPR), systemic arterial compliance (SAC), and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. We have evaluated commercially available electromagnetic (EMF) and transit-time flow measurement techniques. In vivo and in vitro experiments demonstrated that the average error of these techniques is less than 25 percent for EMF and less than 10 percent for transit-time.

  17. Development of a wing-beat-modulation scanning lidar system for insect studies

    NASA Astrophysics Data System (ADS)

    Tauc, Martin Jan; Fristrup, Kurt M.; Shaw, Joseph A.

    2017-08-01

    The spatial distributions of flying insects are not well understood since most sampling methods - Malaise traps, sticky traps, vacuum traps, light traps - are not suited to documenting movements or changing distributions of various insects on short time scales. These methods also capture and kill the insects. To noninvasively monitor the spatial distributions of flying insects, we developed and implemented a scanning lidar system that measured wing-beat-modulated scattered laser light. The oscillating signal from wing-beat returns allowed for reliable separation of lidar returns for insects and stationary objects. Transmitting and receiving optics were mounted to a telescope that was attached to a scanning mount. As it scanned, the lidar collected and analyzed the light scattered from insect wings of various species. Mount position and pulse time-of-flight determined spatial location and spectral analysis of the backscattered light provided clues to insect identity. During one day of a four-day field campaign at Grand Teton National Park in June of 2016, 76 very likely insects and 662 somewhat likely insects were detected, with a maximum range to the insect of 87.6 m for very likely insects

  18. Directed Fluid Transport with Biomimetic ``Silia'' Arrays

    NASA Astrophysics Data System (ADS)

    Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.

    2008-10-01

    We present results on the long-range, directed fluid transport produced by the collective beating of arrays of biomimetic ``silia.'' Silia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material. With external permanent magnets we actuate our silia such that their motion mimics the beating of biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia and seek to answer open questions about the nature of particle advection in such a system. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the tips of the silia, while between the silia tips and floor particle motion is complicated and suggestive of chaotic advection.

  19. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-09-01

    We investigate effect of <i>k</i>-cubic spin-orbit interaction on electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ = (2n+1)π/3 with n=1,2,3. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of <i>k</i>-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant. © 2017 IOP Publishing Ltd.

  20. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Mawrie, Alestin; Verma, Sonu; Kanti Ghosh, Tarun

    2017-11-01

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ^\\prime = (2n+1)π/3 with n=1, 2, 3 . We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  1. Study on the Relationship among Parents' Cognition on China Anti-Domestic Violence, Attitude of Beating Children and Frequency of Beating Children

    ERIC Educational Resources Information Center

    Song, Shi

    2018-01-01

    This research aims at analyzing the correlation between parents' awareness of anti-domestic violence in China, attitude and frequency of beating children. According to the literature analysis, this paper sets children's parents' anti-domestic violence cognition and attitude of beating children as independent variable, and the frequency of beating…

  2. Effects of single cycle binaural beat duration on auditory evoked potentials.

    PubMed

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  3. The role of beat gesture and pitch accent in semantic processing: an ERP study.

    PubMed

    Wang, Lin; Chu, Mingyuan

    2013-11-01

    The present study investigated whether and how beat gesture (small baton-like hand movements used to emphasize information in speech) influences semantic processing as well as its interaction with pitch accent during speech comprehension. Event-related potentials were recorded as participants watched videos of a person gesturing and speaking simultaneously. The critical words in the spoken sentences were accompanied by a beat gesture, a control hand movement, or no hand movement, and were expressed either with or without pitch accent. We found that both beat gesture and control hand movement induced smaller negativities in the N400 time window than when no hand movement was presented. The reduced N400s indicate that both beat gesture and control movement facilitated the semantic integration of the critical word into the sentence context. In addition, the words accompanied by beat gesture elicited smaller negativities in the N400 time window than those accompanied by control hand movement over right posterior electrodes, suggesting that beat gesture has a unique role for enhancing semantic processing during speech comprehension. Finally, no interaction was observed between beat gesture and pitch accent, indicating that they affect semantic processing independently. © 2013 Elsevier Ltd. All rights reserved.

  4. Cynodon dactylon and Sida acuta extracts impact on the function of the cardiovascular system in zebrafish embryos.

    PubMed

    Kannan, Rajaretinam Rajesh; Vincent, Samuel Gnana Prakash

    2012-03-01

    The aim of the present study was to screen cardioactive herbs from Western Ghats of India. The heart beat rate (HBR) and blood flow during systole and diastole were tested in zebrafish embryos. We found that Cynodon dactylon (C. dactylon) induced increases in the HBR in zebrafish embryos with a HBR of (3.968±0.344) beats/s, which was significantly higher than that caused by betamethosone [(3.770±0.344) beats/s]. The EC50 value of C. dactylon was 3.738 µg/mL. The methanolic extract of Sida acuta (S. acuta) led to decreases in the HBR in zebrafish embryos [(1.877±0.079) beats/s], which was greater than that caused by nebivolol (positive control). The EC50 value of Sida acuta was 1.195 µg/mL. The untreated embryos had a HBR of (2.685±0.160) beats/s at 3 d post fertilization (dpf). The velocities of blood flow during the cardiac cycle were (2,291.667±72.169) µm/s for the control, (4,250±125.000) µm/s for C. dactylon and (1,083.333±72.169) µm/s for S. acuta. The LC50 values were 32.6 µg/mL for C. dactylon and 20.9 µg/mL for S. acuta. In addition, the extracts exhibited no chemical genetic effects in the drug dosage range tested. In conclusion, we developed an assay that can measure changes in cardiac function in response to herbal small molecules and determine the cardiogenic effects by microvideography.

  5. Evaluation of a wearable physiological status monitor during simulated fire fighting activities.

    PubMed

    Smith, Denise L; Haller, Jeannie M; Dolezal, Brett A; Cooper, Christopher B; Fehling, Patricia C

    2014-01-01

    A physiological status monitor (PSM) has been embedded in a fire-resistant shirt. The purpose of this research study was to examine the ability of the PSM-shirt to accurately detect heart rate (HR) and respiratory rate (RR) when worn under structural fire fighting personal protective equipment (PPE) during the performance of various activities relevant to fire fighting. Eleven healthy, college-aged men completed three activities (walking, searching/crawling, and ascending/descending stairs) that are routinely performed during fire fighting operations while wearing the PSM-shirt under structural fire fighting PPE. Heart rate and RR recorded by the PSM-shirt were compared to criterion values measured concurrently with an ECG and portable metabolic measurement system, respectively. For all activities combined (overall) and for each activity, small differences were found between the PSM-shirt and ECG (mean difference [95% CI]: overall: -0.4 beats/min [-0.8, -0.1]; treadmill: -0.4 beats/min [-0.7, -0.1]; search: -1.7 beats/min [-3.1, -.04]; stairs: 0.4 beats/min [0.04, 0.7]). Standard error of the estimate was 3.5 beats/min for all tasks combined and 1.9, 5.9, and 1.9 beats/min for the treadmill walk, search, and stair ascent/descent, respectively. Correlations between the PSM-shirt and criterion heart rates were high (r = 0.95 to r = 0.99). The mean difference between RR recorded by the PSM-shirt and criterion overall was 1.1 breaths/min (95% CI: -1.9 to -0.4). The standard error of the estimate for RR ranged from 4.2 breaths/min (treadmill) to 8.2 breaths/min (search), with an overall value of 6.2 breaths/min. These findings suggest that the PSM-shirt provides valid measures of HR and useful approximations of RR when worn during fire fighting duties.

  6. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals.

    PubMed

    Elhaj, Fatin A; Salim, Naomie; Harris, Arief R; Swee, Tan Tian; Ahmed, Taqwa

    2016-04-01

    Arrhythmia is a cardiac condition caused by abnormal electrical activity of the heart, and an electrocardiogram (ECG) is the non-invasive method used to detect arrhythmias or heart abnormalities. Due to the presence of noise, the non-stationary nature of the ECG signal (i.e. the changing morphology of the ECG signal with respect to time) and the irregularity of the heartbeat, physicians face difficulties in the diagnosis of arrhythmias. The computer-aided analysis of ECG results assists physicians to detect cardiovascular diseases. The development of many existing arrhythmia systems has depended on the findings from linear experiments on ECG data which achieve high performance on noise-free data. However, nonlinear experiments characterize the ECG signal more effectively sense, extract hidden information in the ECG signal, and achieve good performance under noisy conditions. This paper investigates the representation ability of linear and nonlinear features and proposes a combination of such features in order to improve the classification of ECG data. In this study, five types of beat classes of arrhythmia as recommended by the Association for Advancement of Medical Instrumentation are analyzed: non-ectopic beats (N), supra-ventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F) and unclassifiable and paced beats (U). The characterization ability of nonlinear features such as high order statistics and cumulants and nonlinear feature reduction methods such as independent component analysis are combined with linear features, namely, the principal component analysis of discrete wavelet transform coefficients. The features are tested for their ability to differentiate different classes of data using different classifiers, namely, the support vector machine and neural network methods with tenfold cross-validation. Our proposed method is able to classify the N, S, V, F and U arrhythmia classes with high accuracy (98.91%) using a combined support vector machine and radial basis function method. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Digital processing of RF signals from optical frequency combs

    NASA Astrophysics Data System (ADS)

    Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej

    2013-01-01

    The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.

  8. Digital processing of signals from femtosecond combs

    NASA Astrophysics Data System (ADS)

    Čížek, Martin; Šmíd, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Číp, Ondrej

    2012-01-01

    The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique and with fully digital servo-loop stabilization of the fs comb. Secondly, we are using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset and repetition frequencies of the fs comb.

  9. Feasibility of using a reliable automated Doppler flow velocity measurements for research and clinical practices

    NASA Astrophysics Data System (ADS)

    Zolgharni, Massoud; Dhutia, Niti M.; Cole, Graham D.; Willson, Keith; Francis, Darrel P.

    2014-03-01

    Echocardiographers are often unkeen to make the considerable time investment to make additional multiple measurements of Doppler velocity. Main hurdle to obtaining multiple measurements is the time required to manually trace a series of Doppler traces. To make it easier to analyse more beats, we present an automated system for Doppler envelope quantification. It analyses long Doppler strips, spanning many heartbeats, and does not require the electrocardiogram to isolate individual beats. We tested its measurement of velocity-time-integral and peak-velocity against the reference standard defined as the average of three experts who each made three separate measurements. The automated measurements of velocity-time-integral showed strong correspondence (R2 = 0.94) and good Bland-Altman agreement (SD = 6.92%) with the reference consensus expert values, and indeed performed as well as the individual experts (R2 = 0.90 to 0.96, SD = 5.66% to 7.64%). The same performance was observed for peak-velocities; (R2 = 0.98, SD = 2.95%) and (R2 = 0.93 to 0.98, SD = 2.94% to 5.12%). This automated technology allows <10 times as many beats to be acquired and analysed compared to the conventional manual approach, with each beat maintaining its accuracy.

  10. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  11. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase.

    PubMed

    Yin, T C; Kuwada, S

    1983-10-01

    We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity of the cells. The effects of both forms of intensity variation are continuously distributed. The binaural beat offers a number of advantages for studying the interaural phase sensitivity of binaural cells. The dynamic characteristics of the interaural phase can be varied so that the speed and direction of phase change are under direct control. The data can be obtained in a much more efficient manner, as the binaural beat is about 10 times faster in terms of data collection than the interaural delay.

  12. Planetary period oscillations in Saturn's magnetosphere: New results from the F-ring and proximal orbits

    NASA Astrophysics Data System (ADS)

    Provan, G.; Cowley, S. W. H.; Bunce, E. J.; Hunt, G. J.; Dougherty, M. K.

    2017-12-01

    We investigate planetary period oscillations (PPOs) in Saturn's magnetosphere using Cassini magnetic field data during the high cadence ( 7 days) F-ring and proximal orbits. Previous results have shown that there are two PPO systems, one in each hemisphere. Both PPO periods show seasonal dependence, and since mid-2014 the Northern PPO period has been 10.8 h and the Southern PPO period 10.7 h. The beat period of the two oscillations is 45 days. Previous results demonstrated that in the Northern (Southern) polar region only pure Northern (Southern) oscillations can be observed, whilst in the equatorial region both oscillations are present and constructively and destructively interfere over the beat-cycle of the two oscillations. The PPOs are believed to be driven by twin-cell convection patterns in the polar ionosphere/thermosphere regions, with two systems of field-aligned currents transmitting the PPO flows to the magnetospheric plasma.The F-ring and proximal orbits uniquely observe the PPOs over 6 orbits during each PPO beat cycle. This high-cadence data demonstrates that over a beat cycle both the periods and amplitudes of the PPO observed within the each polar region are modulated by the PPO system from the opposite hemisphere. When the two oscillations are in phase (anti-phase) the `drag' of one system on the other acts to decrease (increase) the amplitude of the oscillations and the two PPO periods diverge (converge). We present a theoretical model showing that this coupling is due to the PPO flows from one hemisphere not just being communicated to the magnetosphere as previously assumed, but also to the opposite hemisphere. The result is inter-hemispheric coupling of the PPO flow systems within the ionosphere/thermosphere system, so that the northern PPO system drives a northern twin-cell convection pattern in the southern hemisphere, and vice versa, thus leading to the observed polar modulations of the PPOs.We will also present PPO phase models determined throughout the entire Cassini mission. These models define the orientations of the two PPO current/field systems with respect to the Sun at any instant of time, thus allowing any Saturnian observations to be organized by PPO phase. The models are freely available to the community.

  13. Beta-Band Oscillations Represent Auditory Beat and Its Metrical Hierarchy in Perception and Imagery.

    PubMed

    Fujioka, Takako; Ross, Bernhard; Trainor, Laurel J

    2015-11-11

    Dancing to music involves synchronized movements, which can be at the basic beat level or higher hierarchical metrical levels, as in a march (groups of two basic beats, one-two-one-two …) or waltz (groups of three basic beats, one-two-three-one-two-three …). Our previous human magnetoencephalography studies revealed that the subjective sense of meter influences auditory evoked responses phase locked to the stimulus. Moreover, the timing of metronome clicks was represented in periodic modulation of induced (non-phase locked) β-band (13-30 Hz) oscillation in bilateral auditory and sensorimotor cortices. Here, we further examine whether acoustically accented and subjectively imagined metric processing in march and waltz contexts during listening to isochronous beats were reflected in neuromagnetic β-band activity recorded from young adult musicians. First, we replicated previous findings of beat-related β-power decrease at 200 ms after the beat followed by a predictive increase toward the onset of the next beat. Second, we showed that the β decrease was significantly influenced by the metrical structure, as reflected by differences across beat type for both perception and imagery conditions. Specifically, the β-power decrease associated with imagined downbeats (the count "one") was larger than that for both the upbeat (preceding the count "one") in the march, and for the middle beat in the waltz. Moreover, beamformer source analysis for the whole brain volume revealed that the metric contrasts involved auditory and sensorimotor cortices; frontal, parietal, and inferior temporal lobes; and cerebellum. We suggest that the observed β-band activities reflect a translation of timing information to auditory-motor coordination. With magnetoencephalography, we examined β-band oscillatory activities around 20 Hz while participants listened to metronome beats and imagined musical meters such as a march and waltz. We demonstrated that β-band event-related desynchronization in the auditory cortex differentiates between beat positions, specifically between downbeats and the following beat. This is the first demonstration of β-band oscillations related to hierarchical and internalized timing information. Moreover, the meter representation in the β oscillations was widespread across the brain, including sensorimotor and premotor cortices, parietal lobe, and cerebellum. The results extend current understanding of the role of β oscillations in neural processing of predictive timing. Copyright © 2015 the authors 0270-6474/15/3515187-12$15.00/0.

  14. Binaural beat technology in humans: a pilot study to assess neuropsychologic, physiologic, and electroencephalographic effects.

    PubMed

    Wahbeh, Helané; Calabrese, Carlo; Zwickey, Heather; Zajdel, Dan

    2007-03-01

    When two auditory stimuli of different frequency are presented to each ear, binaural beats are perceived by the listener. The binaural beat frequency is equal to the difference between the frequencies applied to each ear. Our primary objective was to assess whether steady-state entrainment of electroencephalographic activity to the binaural beat occurs when exposed to a specific binaural beat frequency as has been hypothesized. Our secondary objective was to gather preliminary data on neuropsychologic and physiologic effects of binaural beat technology. A randomized, blinded, placebo-controlled crossover experiment in 4 healthy adult subjects. Subjects were randomized to experimental auditory stimulus of 30 minutes of binaural beat at 7 Hz (carrier frequencies: 133 Hz L; 140 Hz R) with an overlay of pink noise resembling the sound of rain on one session and control stimuli of the same overlay without the binaural beat carrier frequencies on the other session. Data were collected during two separate sessions 1 week apart. Neuropsychologic and blood pressure data were collected before and after the intervention; electroencephalographic data were collected before, during, and after listening to either binaural beats or control. Neuropsychologic measures included State Trait Anxiety Inventory, Profile of Mood States, Rey Auditory Verbal List Test, Stroop Test, and Controlled Oral Word Association Test. Spectral and coherence analysis was performed on the electroencephalogram (EEG), and all measures were analyzed for changes between sessions with and without binaural beat stimuli. There were no significant differences between the experimental and control conditions in any of the EEG measures. There was an increase of the Profile of Mood States depression subscale in the experimental condition relative to the control condition (p = 0.02). There was also a significant decrease in immediate verbal memory recall (p = 0.03) in the experimental condition compared to control condition. We did not find support for steady-state entrainment of the scalp-recorded EEG while listening to 7-Hz binaural beats. Although our data indicated increased depression and poorer immediate recall after listening to binaural beats, larger studies are needed to confirm these findings.

  15. What can we learn about beat perception by comparing brain signals and stimulus envelopes?

    PubMed

    Henry, Molly J; Herrmann, Björn; Grahn, Jessica A

    2017-01-01

    Entrainment of neural oscillations on multiple time scales is important for the perception of speech. Musical rhythms, and in particular the perception of a regular beat in musical rhythms, is also likely to rely on entrainment of neural oscillations. One recently proposed approach to studying beat perception in the context of neural entrainment and resonance (the "frequency-tagging" approach) has received an enthusiastic response from the scientific community. A specific version of the approach involves comparing frequency-domain representations of acoustic rhythm stimuli to the frequency-domain representations of neural responses to those rhythms (measured by electroencephalography, EEG). The relative amplitudes at specific EEG frequencies are compared to the relative amplitudes at the same stimulus frequencies, and enhancements at beat-related frequencies in the EEG signal are interpreted as reflecting an internal representation of the beat. Here, we show that frequency-domain representations of rhythms are sensitive to the acoustic features of the tones making up the rhythms (tone duration, onset/offset ramp duration); in fact, relative amplitudes at beat-related frequencies can be completely reversed by manipulating tone acoustics. Crucially, we show that changes to these acoustic tone features, and in turn changes to the frequency-domain representations of rhythms, do not affect beat perception. Instead, beat perception depends on the pattern of onsets (i.e., whether a rhythm has a simple or complex metrical structure). Moreover, we show that beat perception can differ for rhythms that have numerically identical frequency-domain representations. Thus, frequency-domain representations of rhythms are dissociable from beat perception. For this reason, we suggest caution in interpreting direct comparisons of rhythms and brain signals in the frequency domain. Instead, we suggest that combining EEG measurements of neural signals with creative behavioral paradigms is of more benefit to our understanding of beat perception.

  16. A pilot study exploring the impact of cardiac medications on ciliary beat frequency: possible implications for clinical management.

    PubMed

    Loomba, Rohit S; Bhushan, Abhinav; Afolayan, Adeleye J

    2018-05-03

    Cilia are involved in several physiologic processes, and at least a single primary cilium can be found on nearly every cell in the human body. Various factors, such as pH, temperature, exposure to medications and toxins can impact ciliary function as is manifested by changes in the ciliary beat frequency. Those with ciliary dyskinesia may also have congenital cardiac malformations and may require care in a cardiac intensive care unit. This study investigates the effect on the ciliary beat frequency of medications frequently used in a cardiac intensive care unit. The ciliated epithelial cells were obtained via nasal swab from a relatively healthy individual. These cells were cultured for 24 h. Video microscopy was then employed to determine the ciliary beat frequency at baseline and then at 15, 30, 60 and 90 min after exposure to either normal saline (control) or one of several medications. The ciliary beat frequency at each time point was then compared to the ciliary beat frequency at the same time point in the control sample as well as the baseline value for that particular sample. Epinephrine increased the ciliary beat frequency compared to the baseline and the controls up to 30 min and then subsequently led to a significant decrease in ciliary beat frequency at 90 min. On the one hand, norepinephrine, dexmedetomidine, procainamide, propranolol and enalapril all decreased ciliary beat frequency significantly throughout the 90-min observation period. On the other hand, Milrinone significantly increased the ciliary beat frequency throughout the observation period, while heparin had no impact on ciliary beat frequency. The medications frequently used in cardiac intensive care unit impact ciliary function, with most being ciliodepressant. Further investigation is needed to determine the clinical impacts and whether these effects are exaggerated in those with ciliary dyskinesia.

  17. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    PubMed

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  18. Psychoacoustic Factors in Musical Intonation: Beats, Interval Tuning, and Inharmonicity.

    NASA Astrophysics Data System (ADS)

    Keislar, Douglas Fleming

    Three psychoacoustic experiments were conducted using musically experienced subjects. In the first two experiments, the interval tested was the perfect fifth F4-C5; in the final one it was the major third F4-A4. The beat rate was controlled by two different methods: (1) simply retuning the interval, and (2) frequency-shifting one partial of each pair of beating partials without changing the overall interval tuning. The second method introduces inharmonicity. In addition, two levels of beat amplitude were introduced by using either a complete spectrum of 16 equal-amplitude partials per note, or by deleting one partial from each pair of beating partials. The results of all three experiments indicate that, for these stimuli, beating does not contribute significantly to the percept of "out-of-tuneness," because it made no difference statistically whether the beat amplitude was maximal or minimal. By contrast, mistuning the interval was highly significant. For the fifths, frequency-shifting the appropriate partials had about as much effect on the perceived intonation as mistuning the interval. For thirds, this effect was weaker, presumably since there were fewer inharmonic partials and they were higher in the harmonic series. Subjects were less consistent in their judgments of thirds than of fifths, perhaps because the equal-tempered and just thirds differ noticeably, unlike fifths. Since it is unlikely that beats would be more audible in real musical situations than under these laboratory conditions, these results suggest that the perception of intonation in music is dependent on the actual interval tuning rather than the concomitant beat rate. If beating partials are unimportant vis-a-vis interval tuning, this strengthens the argument for a cultural basis for musical intonation and scales, as opposed to the acoustical basis set forth by Helmholtz and others.

  19. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes.

  20. Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects.

    PubMed

    Kempeneers, Celine; Seaton, Claire; Chilvers, Mark A

    2017-05-01

    Digital high-speed video microscopy (DHSV) allows analysis of ciliary beat frequency (CBF) and ciliary beat pattern (CBP) of respiratory cilia in three planes. Normal reference data use a sideways edge to evaluate ciliary dyskinesia and calculate CBF using the time needed for a cilium to complete 10 beat cycles. Variability in CBF within the respiratory epithelium has been described, but data concerning variation of CBP is limited in healthy epithelium. This study aimed to document variability of CBP in normal samples, to compare ciliary function in three profiles, and to compare CBF calculated over five or 10 beat cycles. Nasal brushing samples from 13 healthy subjects were recorded using DHSV in three profiles. CBP and CBF over a 10-beat cycle were evaluated in all profiles, and CBF was reevaluated over five-beat cycles in the sideways edges. A uniform CBP was seen in 82.1% of edges. In the sideways profile, uniformity within the edge was lower (uniform normal CBP, 69.1% [sideways profile]; 97.1% [toward the observer], 92.0% [from above]), and dyskinesia was higher. Interobserver agreement for dyskinesia was poor. CBF was not different between profiles (P = .8097) or between 10 and five beat cycles (P = .1126). Our study demonstrates a lack of uniformity and consistency in manual CBP analysis of samples from healthy subjects, emphasizing the risk of automated CBP analysis in limited regions of interest and of single and limited manual CBP analysis. The toward the observer and from above profiles may be used to calculate CBF but may be less sensitive for evaluation of ciliary dyskinesia and CBP. CBF can be measured reliably by evaluation of only five-beat cycles. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  1. Estimating 'lost heart beats' rather than reductions in heart rate during the intubation of critically-ill children.

    PubMed

    Jones, Peter; Ovenden, Nick; Dauger, Stéphane; Peters, Mark J

    2014-01-01

    Reductions in heart rate occur frequently in children during critical care intubation and are currently considered the gold standard for haemodynamic instability. Our objective was to estimate loss of heart beats during intubation and compare this to reduction in heart rate alone whilst testing the impact of atropine pre-medication. Data were extracted from a prospective 2-year cohort study of intubation ECGs from critically ill children in PICU/Paediatric Transport. A three step algorithm was established to exclude variation in pre-intubation heart rate (using a 95%CI limit derived from pre-intubation heart rate variation of the children included), measure the heart rate over time and finally the estimate the numbers of lost beats. 333 intubations in children were eligible for inclusion of which 245 were available for analysis (74%). Intubations where the fall in heart rate was less than 50 bpm were accompanied almost exclusively by less than 25 lost beats (n = 175, median 0 [0-1]). When there was a reduction of >50 bpm there was a poor correlation with numbers of lost beats (n = 70, median 42 [15-83]). During intubation the median number of lost beats was 8 [1]-[32] when atropine was not used compared to 0 [0-0] when atropine was used (p<0.001). A reduction in heart rate during intubation of <50 bpm reliably predicted a minimal loss of beats. When the reduction in heart rate was >50 bpm the heart rate was poorly predictive of lost beats. A study looking at the relationship between lost beats and cardiac output needs to be performed. Atropine reduces both fall in heart rate and loss of beats. Similar area-under-the-curve methodology may be useful for estimating risk when biological parameters deviate outside normal range.

  2. Detection and evaluation of ventricular repolarization alternans: an approach to combined ECG, thoracic impedance, and beat-to-beat heart rate variability analysis.

    PubMed

    Kriščiukaitis, Algimantas; Šimoliūnienė, Renata; Macas, Andrius; Petrolis, Robertas; Drėgūnas, Kęstutis; Bakšytė, Giedrė; Pieteris, Linas; Bertašienė, Zita; Žaliūnas, Remigijus

    2014-01-01

    Beat-to-beat alteration in ventricles repolarization reflected by alternans of amplitude and/or shape of ECG S-T,T segment (TWA) is known as phenomena related with risk of severe arrhythmias leading to sudden cardiac death. Technical difficulties have caused limited its usage in clinical diagnostics. Possibilities to register and analyze multimodal signals reflecting heart activity inspired search for new technical solutions. First objective of this study was to test whether thoracic impedance signal and beat-to-beat heart rate reflect repolarization alternans detected as TWA. The second objective was revelation of multimodal signal features more comprehensively representing the phenomena and increasing its prognostic usefulness. ECG, and thoracic impedance signal recordings made during 24h follow-up of the patients hospitalized in acute phase of myocardial infarction were used for investigation. Signal morphology variations reflecting estimates were obtained by the principal component analysis-based method. Clinical outcomes of patients (survival and/or rehospitalization in 6 and 12 months) were compared to repolarization alternans and heart rate variability estimates. Repolarization alternans detected as TWA was also reflected in estimates of thoracic impedance signal shape and variation in beat-to-beat heart rate. All these parameters showed correlation with clinical outcomes of patients. The strongest significant correlation showed magnitude of alternans in estimates of thoracic impedance signal shape. The features of ECG, thoracic impedance signal and beat-to-beat variability of heart rate, give comprehensive estimates of repolarization alternans, which correlate, with clinical outcomes of the patients and we recommend using them to improve diagnostic reliability. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Estimation of heart rate and heart rate variability from pulse oximeter recordings using localized model fitting.

    PubMed

    Wadehn, Federico; Carnal, David; Loeliger, Hans-Andrea

    2015-08-01

    Heart rate variability is one of the key parameters for assessing the health status of a subject's cardiovascular system. This paper presents a local model fitting algorithm used for finding single heart beats in photoplethysmogram recordings. The local fit of exponentially decaying cosines of frequencies within the physiological range is used to detect the presence of a heart beat. Using 42 subjects from the CapnoBase database, the average heart rate error was 0.16 BPM and the standard deviation of the absolute estimation error was 0.24 BPM.

  4. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOEpatents

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  5. Preservation of Gaussian state entanglement in a quantum beat laser by reservoir engineering

    NASA Astrophysics Data System (ADS)

    Qurban, Misbah; Islam, Rameez ul; Ge, Guo-Qin; Ikram, Manzoor

    2018-04-01

    Quantum beat lasers have been considered as sources of entangled radiation in continuous variables such as Gaussian states. In order to preserve entanglement and to minimize entanglement degradation due to the system’s interaction with the surrounding environment, we propose to engineer environment modes through insertion of another system in between the laser resonator and the environment. This makes the environment surrounding the two-mode laser a structured reservoir. It not only enhances the entanglement among two modes of the laser but also preserves the entanglement for sufficiently longer times, a stringent requirement for quantum information processing tasks.

  6. Dance and Music in “Gangnam Style”: How Dance Observation Affects Meter Perception

    PubMed Central

    Lee, Kyung Myun; Barrett, Karen Chan; Kim, Yeonhwa; Lim, Yeoeun; Lee, Kyogu

    2015-01-01

    Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT’s at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy’s “Gangnam Style” in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied familiarity with dance choreography may facilitate meter awareness. Results shed light on the processing of multimedia environments. PMID:26308092

  7. Strain, strain rate, and the force frequency relationship in patients with and without heart failure.

    PubMed

    Mak, Susanna; Van Spall, Harriette G C; Wainstein, Rodrigo V; Sasson, Zion

    2012-03-01

    The aim of this study was to examine the effect of heart rate (HR) on indices of deformation in adults with and without heart failure (HF) who underwent simultaneous high-fidelity catheterization of the left ventricle to describe the force-frequency relationship. Right atrial pacing to control HR and high-fidelity recordings of left ventricular (LV) pressure were used to inscribe the force-frequency relationship. Simultaneous two-dimensional echocardiographic imaging was acquired for speckle-tracking analysis. Thirteen patients with normal LV function and 12 with systolic HF (LV ejection fraction, 31 ± 13%) were studied. Patients with HF had depressed isovolumic contractility and impaired longitudinal strain and strain rate. HR-dependent increases in LV+dP/dt(max), the force-frequency relationship, was demonstrated in both groups (normal LV function, baseline to 100 beats/min: 1,335 ± 296 to 1,564 ± 320 mm Hg/sec, P < .0001; HF, baseline to 100 beats/min: 970 ± 207 to 1,083 ± 233 mm Hg/sec, P < .01). Longitudinal strain decreased significantly (normal LV function, baseline to 100 beats/min: 18.0 ± 3.5% to 10.8 ± 6.0%, P < .001; HF: 9.4 ± 4.1% to 7.5 ± 3.4%, P < .01). The decrease in longitudinal strain was related to a decrease in LV end-diastolic dimensions. Strain rate did not change with right atrial pacing. Despite the inotropic effect of increasing HR, longitudinal strain decreases in parallel with stroke volume as load-dependent indices of ejection. Strain rate did not reflect the modest HR-related changes in contractility; on the other hand, the use of strain rate for quantitative stress imaging is also less likely to be confounded by chronotropic responses. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  8. Attitudes toward wife beating: a cross-country study in Asia.

    PubMed

    Rani, Manju; Bonu, Sekhar

    2009-08-01

    Using demographic and health surveys conducted between 1998 and 2001 from seven countries (Armenia, Bangladesh, Cambodia, India, Kazakhstan, Nepal, and Turkey), the study found that acceptance of wife beating ranged from 29% in Nepal, to 57% in India (women only), and from 26% in Kazakhstan, to 56% in Turkey (men only). Increasing wealth predicted less acceptance of wife beating, except in Cambodia and Nepal. Higher education level was negatively associated with acceptance in Turkey and Bangladesh. Younger respondents justified wife beating more often, with some exceptions, showing persistent intergenerational transmission of gender norms. Working women were equally or more likely to justify wife beating compared to nonworking women. Men were significantly more likely to justify wife beating in Armenia, Nepal, and Turkey. Targeted proactive efforts are needed to change these norms, such as improving female literacy rates and other enabling factors.

  9. Auditory beat stimulation and its effects on cognition and mood States.

    PubMed

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P; Fell, Juergen

    2015-01-01

    Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood states. Here, we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation (ABS). We have summarized relevant studies investigating the neurophysiological changes related to ABS and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS.

  10. More attentional focusing through binaural beats: evidence from the global-local task.

    PubMed

    Colzato, Lorenza S; Barone, Hayley; Sellaro, Roberta; Hommel, Bernhard

    2017-01-01

    A recent study showed that binaural beats have an impact on the efficiency of allocating attention over time. We were interested to see whether this impact affects attentional focusing or, even further, the top-down control over irrelevant information. Healthy adults listened to gamma-frequency (40 Hz) binaural beats, which are assumed to increase attentional concentration, or a constant tone of 340 Hz (control condition) for 3 min before and during a global-local task. While the size of the congruency effect (indicating the failure to suppress task-irrelevant information) was unaffected by the binaural beats, the global-precedence effect (reflecting attentional focusing) was considerably smaller after gamma-frequency binaural beats than after the control condition. Our findings suggest that high-frequency binaural beats bias the individual attentional processing style towards a reduced spotlight of attention.

  11. Beat gestures help preschoolers recall and comprehend discourse information.

    PubMed

    Llanes-Coromina, Judith; Vilà-Giménez, Ingrid; Kushch, Olga; Borràs-Comes, Joan; Prieto, Pilar

    2018-08-01

    Although the positive effects of iconic gestures on word recall and comprehension by children have been clearly established, less is known about the benefits of beat gestures (rhythmic hand/arm movements produced together with prominent prosody). This study investigated (a) whether beat gestures combined with prosodic information help children recall contrastively focused words as well as information related to those words in a child-directed discourse (Experiment 1) and (b) whether the presence of beat gestures helps children comprehend a narrative discourse (Experiment 2). In Experiment 1, 51 4-year-olds were exposed to a total of three short stories with contrastive words presented in three conditions, namely with prominence in both speech and gesture, prominence in speech only, and nonprominent speech. Results of a recall task showed that (a) children remembered more words when exposed to prominence in both speech and gesture than in either of the other two conditions and that (b) children were more likely to remember information related to those words when the words were associated with beat gestures. In Experiment 2, 55 5- and 6-year-olds were presented with six narratives with target items either produced with prosodic prominence but no beat gestures or produced with both prosodic prominence and beat gestures. Results of a comprehension task demonstrated that stories told with beat gestures were comprehended better by children. Together, these results constitute evidence that beat gestures help preschoolers not only to recall discourse information but also to comprehend it. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Wearable seismocardiography: towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects.

    PubMed

    Di Rienzo, M; Vaini, E; Castiglioni, P; Merati, G; Meriggi, P; Parati, G; Faini, A; Rizzo, F

    2013-11-01

    Seismocardiogram (SCG) is the measure of the micro-vibrations produced by the heart contraction and blood ejection into the vascular tree. Over time, a large body of evidence has been collected on the ability of SCG to reflect cardiac mechanical events such as opening and closure of mitral and aortic valves, atrial filling and point of maximal aortic blood ejection. We recently developed a smart garment, named MagIC-SCG, that allows the monitoring of SCG, electrocardiogram (ECG) and respiration out of the laboratory setting in ambulant subjects. The present pilot study illustrates the results of two different experiments performed to obtain a first evaluation on whether a dynamical assessment of indexes of cardiac mechanics can be obtained from SCG recordings obtained by MagIC-SCG. In the first experiment, we evaluated the consistency of the estimates of two indexes of cardiac contractility, the pre-ejection period, PEP, and the left ventricular ejection time, LVET. This was done in the lab, by reproducing an experimental protocol well known in literature, so that our measures derived from SCG could have been compared with PEP and LVET reference values obtained by traditional techniques. Six healthy subjects worn MagIC-SCG while assuming two different postures (supine and standing); PEP was estimated as the time interval between the Q wave in ECG and the SCG wave corresponding to the opening of aortic valve; LVET was the time interval between the SCG waves corresponding to the opening and closure of the aortic valve. The shift from supine to standing posture produced a significant increase in PEP and PEP/LVET ratio, a reduction in LVET and a concomitant rise in the LF/HF ratio in the RR interval (RRI) power spectrum. These results are in line with data available in literature thus providing a first support to the validity of our estimates. In the second experiment, we evaluated in one subject the feasibility of the beat-by-beat assessment of LVET during spontaneous behavior. The subject was continuously monitored by the smart garment from 8 am to 8 pm during a workday. From the whole recording, three data segments were selected: while the subject was traveling to work (M1), during work in the office (O) and while traveling back home (M2). LVET was estimated on a beat-by-beat basis from SCG and the RRI influence was removed by regression analysis. The LVET series displayed marked beat-by-beat fluctuations at the respiratory frequency. The amplitude of these fluctuations changed in the three periods and was lower when the LF/HF RRI power ratio was higher, at O, thus suggesting a possible influence of the autonomic nervous system on LVET short-term variability. To the best of our knowledge this case report provides for the first time a representation of the beat-by-beat dynamics of a systolic time interval during daily activity. The statistical characterization of these findings remains to be explored on a larger population. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Analyzing the acoustic beat with mobile devices

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-04-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency Δf. The resulting auditory sensation is a tone with a volume that varies periodically. Acoustic beats can be perceived repeatedly in day-to-day life and have some interesting applications. For example, string instruments are still tuned with the help of an acoustic beat, even with modern technology. If a reference tone (e.g., 440 Hz) and, for example, a slightly out-of-tune violin string produce a tone simultaneously, a beat can be perceived. The more similar the frequencies, the longer the duration of the beat. In the extreme case, when the frequencies are identical, a beat no longer arises. The string is therefore correctly tuned. Using the Oscilloscope app,4 it is possible to capture and save acoustic signals of this kind and determine the beat frequency fS of the signal, which represents the difference in frequency Δf of the two overlapping tones (for Android smartphones, the app OsciPrime Oscilloscope can be used).

  14. An algorithm for the beat-to-beat assessment of cardiac mechanics during sleep on Earth and in microgravity from the seismocardiogram.

    PubMed

    Di Rienzo, Marco; Vaini, Emanuele; Lombardi, Prospero

    2017-11-15

    Seismocardiogram, SCG, is the measure of precordial vibrations produced by the beating heart, from which cardiac mechanics may be explored on a beat-to-beat basis. We recently collected a large amount of SCG data (>69 recording hours) from an astronaut to investigate cardiac mechanics during sleep aboard the International Space Station and on Earth. SCG sleep recordings are characterized by a prolonged duration and wide heart rate swings, thus a specific algorithm was developed for their analysis. In this article we describe the new algorithm and its performance. The algorithm is composed of three parts: 1) artifacts removal, 2) identification in each SCG waveform of four fiducial points associated with the opening and closure of the aortic and mitral valves, 3) beat-to-beat computation of indexes of cardiac mechanics from the SCG fiducial points. The algorithm was tested on two sleep recordings and yielded the identification of the fiducial points in more than 36,000 beats with a precision, quantified by the Positive Predictive Value, ≥99.2%. These positive findings provide the first evidence that cardiac mechanics may be explored by the automatic analysis of SCG long-lasting recordings, taken out of the laboratory setting, and in presence of significant heart rate modulations.

  15. Efficient heart beat detection using embedded system electronics

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.

    2014-04-01

    The present day bio-technical field concentrates on developing various types of innovative ambulatory and wearable devices to monitor several bio-physical, physio-pathological, bio-electrical and bio-potential factors to assess a human body's health condition without intruding quotidian activities. One of the most important aspects of this evolving technology is monitoring heart beat rate and electrocardiogram (ECG) from which many other subsidiary results can be derived. Conventionally, the devices and systems consumes a lot of power since the acquired signals are always processed on the receiver end. Because of this back end processing, the unprocessed raw data is transmitted resulting in usage of more power, memory and processing time. This paper proposes an innovative technique where the acquired signals are processed by a microcontroller in the front end of the module and just the processed signal is then transmitted wirelessly to the display unit. Therefore, power consumption is considerably reduced and clearer data analysis is performed within the module. This also avoids the need for the user to be educated about usage of the device and signal/system analysis, since only the number of heart beats will displayed at the user end. Additionally, the proposed concept also eradicates the other disadvantages like obtrusiveness, high power consumption and size. To demonstrate the above said factors, a commercial controller board was used to extend the monitoring method by using the saved ECG data from a computer.

  16. Spatiotemporal control to eliminate cardiac alternans using isostable reduction

    NASA Astrophysics Data System (ADS)

    Wilson, Dan; Moehlis, Jeff

    2017-03-01

    Cardiac alternans, an arrhythmia characterized by a beat-to-beat alternation of cardiac action potential durations, is widely believed to facilitate the transition from normal cardiac function to ventricular fibrillation and sudden cardiac death. Alternans arises due to an instability of a healthy period-1 rhythm, and most dynamical control strategies either require extensive knowledge of the cardiac system, making experimental validation difficult, or are model independent and sacrifice important information about the specific system under study. Isostable reduction provides an alternative approach, in which the response of a system to external perturbations can be used to reduce the complexity of a cardiac system, making it easier to work with from an analytical perspective while retaining many of its important features. Here, we use isostable reduction strategies to reduce the complexity of partial differential equation models of cardiac systems in order to develop energy optimal strategies for the elimination of alternans. Resulting control strategies require significantly less energy to terminate alternans than comparable strategies and do not require continuous state feedback.

  17. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception

    PubMed Central

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance. PMID:27313900

  18. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception.

    PubMed

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance.

  19. Natural bodybuilding competition preparation and recovery: a 12-month case study.

    PubMed

    Rossow, Lindy M; Fukuda, David H; Fahs, Christopher A; Loenneke, Jeremy P; Stout, Jeffrey R

    2013-09-01

    Bodybuilding is a sport in which competitors are judged on muscular appearance. This case study tracked a drug-free male bodybuilder (age 26-27 y) for the 6 mo before and after a competition. The aim of this study was to provide the most comprehensive physiological profile of bodybuilding competition preparation and recovery ever compiled. Cardiovascular parameters, body composition, strength, aerobic capacity, critical power, mood state, resting energy expenditure, and hormonal and other blood parameters were evaluated. Heart rate decreased from 53 to 27 beats/min during preparation and increased to 46 beats/min within 1 mo after competition. Brachial blood pressure dropped from 132/69 to 104/56 mmHg during preparation and returned to 116/64 mmHg at 6 mo after competition. Percent body fat declined from 14.8% to 4.5% during preparation and returned to 14.6% during recovery. Strength decreased during preparation and did not fully recover during 6 months of recovery. Testosterone declined from 9.22 to 2.27 ng/mL during preparation and returned back to the baseline level, 9.91 ng/mL, after competition. Total mood disturbance increased from 6 to 43 units during preparation and recovered to 4 units 6 mo after competition. This case study provides a thorough documentation of the physiological changes that occurred during natural bodybuilding competition and recovery.

  20. High resolution interrogation system for fiber Bragg grating (FBG) sensor application using radio frequency spectrum analyser

    NASA Astrophysics Data System (ADS)

    Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.

    2013-05-01

    In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).

  1. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo

    NASA Astrophysics Data System (ADS)

    Kirkup, Benjamin C.; Riley, Margaret A.

    2004-03-01

    Colicins are narrow-spectrum antibiotics produced by and active against Escherichia coli and its close relatives. Colicin-producing strains cannot coexist with sensitive or resistant strains in a well-mixed culture, yet all three phenotypes are recovered in natural populations. Recent in vitro results conclude that strain diversity can be promoted by colicin production in a spatially structured, non-transitive interaction, as in the classic non-transitive model rock-paper-scissors (RPS). In the colicin version of the RPS model, strains that produce colicins (C) kill sensitive (S) strains, which outcompete resistant (R) strains, which outcompete C strains. Pairwise in vitro competitions between these three strains are resolved in a predictable order (C beats S, S beats R, and R beats C), but the complete system of three strains presents the opportunity for dynamic equilibrium. Here we provide conclusive evidence of an in vivo antagonistic role for colicins and show that colicins (and potentially other bacteriocins) may promote, rather than eliminate, microbial diversity in the environment.

  2. Survey of Methods to Assess Workload

    DTIC Science & Technology

    1979-08-01

    thesis study which had to do with the effect of binaural beats upon performan:.e (2) found out there was a subjectively experienced quality of beats ...were forced to conclude that the neuralmechanism by which binaural beats influenced performance is not open to correct subjective evaluation. In terms of...methods for developing indicies of pilot workload, FAA Report (FAA-AN-77- 15), July 1977. 2. ,’ R. E. The effect of binaural beats on performance, J

  3. Dynamic heart phantom with functional mitral and aortic valves

    NASA Astrophysics Data System (ADS)

    Vannelli, Claire; Moore, John; McLeod, Jonathan; Ceh, Dennis; Peters, Terry

    2015-03-01

    Cardiac valvular stenosis, prolapse and regurgitation are increasingly common conditions, particularly in an elderly population with limited potential for on-pump cardiac surgery. NeoChord©, MitraClipand numerous stent-based transcatheter aortic valve implantation (TAVI) devices provide an alternative to intrusive cardiac operations; performed while the heart is beating, these procedures require surgeons and cardiologists to learn new image-guidance based techniques. Developing these visual aids and protocols is a challenging task that benefits from sophisticated simulators. Existing models lack features needed to simulate off-pump valvular procedures: functional, dynamic valves, apical and vascular access, and user flexibility for different activation patterns such as variable heart rates and rapid pacing. We present a left ventricle phantom with these characteristics. The phantom can be used to simulate valvular repair and replacement procedures with magnetic tracking, augmented reality, fluoroscopy and ultrasound guidance. This tool serves as a platform to develop image-guidance and image processing techniques required for a range of minimally invasive cardiac interventions. The phantom mimics in vivo mitral and aortic valve motion, permitting realistic ultrasound images of these components to be acquired. It also has a physiological realistic left ventricular ejection fraction of 50%. Given its realistic imaging properties and non-biodegradable composition—silicone for tissue, water for blood—the system promises to reduce the number of animal trials required to develop image guidance applications for valvular repair and replacement. The phantom has been used in validation studies for both TAVI image-guidance techniques1, and image-based mitral valve tracking algorithms2.

  4. Beat Perception and Sociability: Evidence from Williams Syndrome

    PubMed Central

    Lense, Miriam D.; Dykens, Elisabeth M.

    2016-01-01

    Beat perception in music has been proposed to be a human universal that may have its origins in adaptive processes involving temporal entrainment such as social communication and interaction. We examined beat perception skills in individuals with Williams syndrome (WS), a genetic, neurodevelopmental disorder. Musical interest and hypersociability are two prominent aspects of the WS phenotype although actual musical and social skills are variable. On a group level, beat and meter perception skills were poorer in WS than in age-matched peers though there was significant individual variability. Cognitive ability, sound processing style, and musical training predicted beat and meter perception performance in WS. Moreover, we found significant relationships between beat and meter perception and adaptive communication and socialization skills in WS. Results have implications for understanding the role of predictive timing in both music and social interactions in the general population, and suggest music as a promising avenue for addressing social communication difficulties in WS. PMID:27378982

  5. Auditory Beat Stimulation and its Effects on Cognition and Mood States

    PubMed Central

    Chaieb, Leila; Wilpert, Elke Caroline; Reber, Thomas P.; Fell, Juergen

    2015-01-01

    Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood states. Here, we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation (ABS). We have summarized relevant studies investigating the neurophysiological changes related to ABS and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural-beat stimulation, we then discuss the role of monaural- and binaural-beat frequencies in cognition and mood states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of ABS. PMID:26029120

  6. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.

    PubMed

    Afra, Elyas; Yousefi, Hossein; Hadilam, Mohamad Mahdi; Nishino, Takashi

    2013-09-12

    Cellulose fibers were fibrillated using mechanical beating (shearing refiner) and ultra-fine friction grinder, respectively. The fibrillated fibers were then used to make paper. Mechanical beating process created a partial skin fibrillation, while grinding turned fiber from micro to nanoscale through nanofibrillation mechanism. The partially fibrillated and nano fibrillated fibers had significant effects on paper density, tear strength, tensile strength and water drainage time. The effect of nanofibrillation on paper properties was quantitatively higher than that of mechanical beating. Paper sheets from nanofibrillated cellulose have a higher density, higher tensile strength and lower tear strength compared to those subjected to mechanical beating. Mechanical beating and nanofibrillation were both found to be promising fiber structural modifications. Long water drainage time was an important drawback of both fibrillation methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Influences of rolling method on deformation force in cold roll-beating forming process

    NASA Astrophysics Data System (ADS)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  8. System identification of dynamic closed-loop control of total peripheral resistance by arterial and cardiopulmonary baroreceptors

    NASA Astrophysics Data System (ADS)

    Nikolai Aljuri, A.; Bursac, Nenad; Marini, Robert; Cohen, Richard J.

    2001-08-01

    Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals.

  9. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.

    PubMed

    Nabeel, P M; Jayaraj, J; Mohanasankar, S

    2017-11-30

    A novel photoplethysmograph probe employing dual photodiodes excited using a single infrared light source was developed for local pulse wave velocity (PWV) measurement. The potential use of the proposed system in cuffless blood pressure (BP) techniques was demonstrated. Initial validation measurements were performed on a phantom using a reference method. Further, an in vivo study was carried out in 35 volunteers (age  =  28  ±  4.5 years). The carotid local PWV, carotid to finger pulse transit time (PTT R ) and pulse arrival time at the carotid artery (PAT C ) were simultaneously measured. Beat-by-beat variation of the local PWV due to BP changes was studied during post-exercise relaxation. The cuffless BP estimation accuracy of local PWV, PAT C , and PTT R was investigated based on inter- and intra-subject models with best-case calibration. The accuracy of the proposed system, hardware inter-channel delay (<0.1 ms), repeatability (beat-to-beat variation  =  4.15%-11.38%) and reproducibility of measurement (r  =  0.96) were examined. For the phantom experiment, the measured PWV values did not differ by more than 0.74 m s -1 compared to the reference PWV. Better correlation was observed between brachial BP parameters versus local PWV (r  =  0.74-0.78) compared to PTT R (|r|  =  0.62-0.67) and PAT C (|r|  =  0.52-0.68). Cuffless BP estimation using local PWV was better than PTT R and PAT C with population-specific models. More accurate estimates of arterial BP levels were achieved using local PWV via subject-specific models (root-mean-square error  ⩽2.61 mmHg). A reliable system for cuffless BP measurement and local estimation of arterial wall properties.

  10. Theoretical studies on a new pattern of laser-driven systems: towards elucidation of direct photo-injection in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mishima, Kenji; Yamashita, Koichi

    2011-03-01

    We theoretically and numerically investigated a new type of analytically solvable laser-driven systems inspired by electron-injection dynamics in dye-sensitized solar cells. The simple analytical expressions were found to be useful for understanding the difference between dye excitation and direct photo-injection occurring between dye molecule and semiconductor nanoparticles. More importantly, we propose a method for discriminating experimentally dye excitation and direct photo-injection by using time-dependent fluorescence. We found that dye excitation shows no significant quantum beat whereas the direct photo-injection shows a significant quantum beat. This work was supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) ``Development of Organic Photovoltaics toward a Low-Carbon Society,'' Cabinet Office, Japan.

  11. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus suggest that the glutamatergic NMDA system is a phylogenetically old behaviour-controlling mechanism.

  12. Computer algorithms for automated detection and analysis of local Ca2+ releases in spontaneously beating cardiac pacemaker cells

    PubMed Central

    Kim, Mary S.; Tsutsui, Kenta; Stern, Michael D.; Lakatta, Edward G.; Maltsev, Victor A.

    2017-01-01

    Local Ca2+ Releases (LCRs) are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA) node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame) sensitivity algorithm applied to each pixel (cell location). An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves), sparks and embers in muscle cells and Ca2+ puffs and syntillas in neurons. PMID:28683095

  13. Esmolol is noninferior to metoprolol in achieving a target heart rate of 65 beats/min in patients referred to coronary CT angiography: a randomized controlled clinical trial.

    PubMed

    Maurovich-Horvat, Pál; Károlyi, Mihály; Horváth, Tamás; Szilveszter, Bálint; Bartykowszki, Andrea; Jermendy, Ádám L; Panajotu, Alexisz; Celeng, Csilla; Suhai, Ferenc I; Major, Gyöngyi P; Csobay-Novák, Csaba; Hüttl, Kálmán; Merkely, Béla

    2015-01-01

    Coronary CT angiography (CTA) is an established tool to rule out coronary artery disease. Performance of coronary CTA is highly dependent on patients' heart rates (HRs). Despite widespread use of β-blockers for coronary CTA, few studies have compared various agents used to achieve adequate HR control. We sought to assess if the ultrashort-acting β-blocker intravenous esmolol is at least as efficacious as the standard of care intravenous metoprolol for HR control during coronary CTA. Patients referred to coronary CTA with a HR >65 beats/min despite oral metoprolol premedication were enrolled in the study. We studied 412 patients (211 male; mean age, 57 ± 12 years). Two hundred four patients received intravenous esmolol, and 208 received intravenous metoprolol with a stepwise bolus administration protocol. HR and blood pressure were recorded at arrival, before, during, immediately after, and 30 minutes after the coronary CTA scan. Mean HRs of the esmolol and metoprolol groups were similar at arrival (78 ± 13 beats/min vs 77 ± 12 beats/min; P = .65) and before scan (68 ± 7 beats/min vs 69 ± 7 beats/min; P = .60). However, HR during scan was lower in the esmolol group vs the metoprolol group (58 ± 6 beats/min vs 61 ± 7 beats/min; P < .0001), whereas HRs immediately and 30 minutes after the scan were higher in the esmolol group vs the metoprolol group (68 ± 7 beats/min vs 66 ± 7 beats/min; P = .01 and 65 ± 8 beats/min vs 63 ± 8 beats/min; P < .0001; respectively). HR ≤ 65 beats/min was reached in 182 of 204 patients (89%) who received intravenous esmolol vs 162 of 208 of the patients (78%) who received intravenous metoprolol (P < .05). Of note, hypotension (systolic BP <100 mm Hg) was observed right after the scan in 19 patients (9.3%) in the esmolol group and in 8 patients (3.8%) in the metoprolol group (P < .05), whereas only 5 patients (2.5%) had hypotension 30 minutes after the scan in the esmolol group compared to 8 patients (3.8%) in the metoprolol group (P = .418). Intravenous esmolol with a stepwise bolus administration protocol is at least as efficacious as the standard of care intravenous metoprolol for HR control in patients who undergo coronary CTA. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Evidence and Perspectives on the 24-hour Management of Hypertension: Hemodynamic Biomarker-Initiated 'Anticipation Medicine' for Zero Cardiovascular Event.

    PubMed

    Kario, Kazuomi

    There are notable differences between Asians and Westerners regarding hypertension (HTN) and the relationship between HTN and cardiovascular disease (CVD). Asians show greater morning surges in blood pressure (BP) and a steeper slope illustrating the link between higher BP and the risk of CVD events. It is thus particularly important for Asian hypertensives to achieve 24-h BP control, including morning and night-time control. There are three components of 'perfect 24-h BP control:' the 24-h BP level, nocturnal BP dipping, and BP variability (BPV), such as the morning BP surge that can be assessed by ambulatory BP monitoring. The morning BP-guided approach using home BP monitoring (HBPM) is the first step toward perfect 24-h BP control, followed by the control of nocturnal HTN. We have been developing new HBPM devices that can measure nocturnal BP. BPV includes different time-phase variability from the shortest beat-by-beat, positional, diurnal, day-by-day, visit-to-visit, seasonal, and yearly changes. The synergistic resonance of each type of BPV would produce a great dynamic BP surge (resonance hypothesis), which triggers a CVD event, especially in the high-risk patients with systemic hemodynamic atherothrombotic syndrome (SHATS). In the future, the innovative management of HTN based on the simultaneous assessment of the resonance of all of the BPV phenotypes using a beat by beat wearable 'surge' BP monitoring device (WSP) and an information and communication technology (ICT)-based data analysis system will produce a paradigm shift from 'dots' BP management to 'seamless' ultimate individualized 'anticipation medication' for reaching a zero CVD event rate. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells.

    PubMed

    Palmberger, Thomas F; Augustijns, Patrick; Vetter, Anja; Bernkop-Schnürch, Andreas

    2011-12-01

    The aim of this study was to investigate the nasal safety of gel formulations of thiolated polymers (thiomers) by assessing their effect on ciliary beat frequency (CBF) in human nasal epithelial cells. Poly(acrylic acid) 450 kDa-cysteine (PAA-cys) and alginate-cysteine (alg-cys) were synthesized by covalent attachment of L-cysteine to the polymeric backbone. The cationic polymer chitosan-thiobutylamidine (chito-TBA) was synthesized by attaching iminothiolane to chitosan. CBF using was measured by a photometric system. CBF was measured before incubating the cells with test gels, during incubation and after washing out the polymeric test gels to evaluate reversibility of cilio-inhibition. The influence of viscosity on CBF was determined by using hydroxyethylcellulose (HEC)-gels of various concentrations. Ciliary beating was observed to be affected by viscosity, but cilia were still beating in the presence of a HEC-gel displaying an apparent viscosity of 25 Pa.s. In case of thiolated polymers and their unmodified control, a concentration-dependent decrease in CBF could be observed. PAA-cys, alg-cys, chito-TBA and their corresponding unmodified controls exhibited a moderate cilio-inhibitory effect, followed by a partial recovery of CBF when used at a concentration of 1%. Alg-cys 2% and chito-TBA 2% (m/v) gels exhibited severe cilio-inhibition, which was partially reversible. L-cysteine and reduced glutathione led to mild cilio-inhibition at concentrations of 3% (m/v). Taking into account that dilution after application and cilio-modifying effects is usually more pronounced under in vitro conditions, thiomers can be considered as suitable excipients for nasal drug delivery systems.

  16. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    PubMed

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Single-mode fiber, velocity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.

    2011-04-15

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, wemore » demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.« less

  18. Single-mode fiber, velocity interferometry.

    PubMed

    Krauter, K G; Jacobson, G F; Patterson, J R; Nguyen, J H; Ambrose, W P

    2011-04-01

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats-this interference occurs between the "recently" shifted and "formerly unshifted" paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber. © 2011 American Institute of Physics

  19. Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation.

    PubMed

    Roerdink, Melvyn; Bank, Paulina J M; Peper, C Lieke E; Beek, Peter J

    2011-04-01

    Acoustic rhythms are frequently used in gait rehabilitation, with positive instantaneous and prolonged transfer effects on various gait characteristics. The gait modifying ability of acoustic rhythms depends on how well gait is tied to the beat, which can be assessed with measures of relative timing of auditory-motor coordination. We examined auditory-motor coordination in 20 healthy elderly individuals walking to metronome beats with pacing frequencies slower than, equal to, and faster than their preferred cadence. We found that more steps were required to adjust gait to the beat, the more the metronome rate deviated from the preferred cadence. Furthermore, participants anticipated the beat with their footfalls to various degrees, depending on the metronome rate; the faster the tempo, the smaller the phase advance or phase lead. Finally, the variability in the relative timing between footfalls and the beat was smaller for metronome rates closer to the preferred cadence, reflecting superior auditory-motor coordination. These observations have three practical implications. First, instantaneous effects of acoustic stimuli on gait characteristics may typically be underestimated given the considerable number of steps required to attune gait to the beat in combination with the usual short walkways. Second, a systematic phase lead of footfalls to the beat does not necessarily reflect a reduced ability to couple gait to the metronome. Third, the efficacy of acoustic rhythms to modify gait depends on metronome rate. Gait is coupled best to the beat for metronome rates near the preferred cadence. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Human auditory steady state responses to binaural and monaural beats.

    PubMed

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  1. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  2. Rehabilitation R&D Progress Reports 1996, Volume 34, May 1997

    DTIC Science & Technology

    1997-05-01

    Arlington, VA 22230 PURPOSE!—Atrioventricular (AV) nodal alternans is a pathological cardiac condition characterized by a beat - to- beat alternation...regime where the AV nodal conduc- tion time alternated on a beat -to- beat basis. After using additive white noise to learn the dynamics of the underly... binaurally accord- ing to the NAL-R prescriptive formula. These groups will be followed over a period of 6 months and tested at monthly intervals. At each

  3. Differences in time-domain and spectral indexes of skin-surface laser-Doppler signals between controls and breast-cancer subjects.

    PubMed

    Hsiu, Hsin; Chen, Chao-Tsung; Hung, Shuo-Hui; Chen, Guan-Zhang; Huang, Yu-Ling

    2018-04-13

    There is an urgent need to improve the early diagnosis of breast cancer. The present study applied spectral and beat-to-beat analyses to laser-Doppler (LDF) data sequences measured on the skin surface on the back of the right hands, with the aim of comparing the different peripheral microcirculatory-blood-flow (MBF) perfusion condition between breast-cancer and control subjects. ECG and LDF signals were obtained simultaneously and noninvasively from 23 breast-cancer patients and 23 age-matched control subjects. Time-domain beat-to-beat indexes and their variability parameters were calculated. Spectral indexes were calculated using the Morlet wavelet transform. The beat-to-beat LDF pulse width and its variability were significantly smaller in cancer patients than in the controls. The energy contributions of endothelial-, neural-, and myogenic-related frequency bands were also significantly smaller in cancer patients. The present study has revealed significant differences in the beat-to-beat and spectral indexes of skin-surface-acquired LDF signals between control subjects and breast-cancer patients. This illustrates that LDF indexes may be useful for monitoring the changes in the MBF perfusion condition induced by breast cancer. Since the breast-cancer patients were at TNM stages 0- 2, the present findings may aid the development of indexes for detecting breast cancer.

  4. Wife beating refusal among women of reproductive age in urban and rural Ethiopia.

    PubMed

    Gurmu, Eshetu; Endale, Senait

    2017-03-16

    Wife beating is the most common and widespread form of intimate partner violence in Ethiopia. It results in countless severe health, socio-economic and psychological problems and has contributed to the violation of human rights including the liberty of women to enjoy conjugal life. The main purpose of this study is to assess the levels and patterns of wife beating refusal and its associated socio-cultural and demographic factors in rural and urban Ethiopia. The 2011 Ethiopian Demographic and Health Survey (EDHS) data based on 11,097 and 5287 women in the reproductive age group (i.e. 15-49 years) living in rural and urban areas, respectively,were used in this study. Cronbach's alpha was used to assess the internal consistency of the measure of women's attitudes towards wife beating. The Statistical Package for Social Sciences was applied to analyze the data. A binary logistic regression model was fitted to identify variables that significantly predict respondents' refusal of wife beating. Separate analysis by a place of residence was undertaken as attitude towards wife beating vary between rural and urban areas. The likelihood of refusing wife beating in Ethiopia was significantly higher among urban women (54.2%) than rural women (24.5%). Although there was a significant variations in attitude towards refusing wife beating among different regions in Ethiopia, increasing educational level, high access to media, age of respondents were associated with high level of refusal of wife beating. In contrast, rural residence, being in marital union, high number of living children, being followers of some religions (Muslim followers in urban and Protestants in rural) were associated with low level of refusal of wife beating. The findings of this study reveal that wife beating in Ethiopia is a function of demographic and socio-cultural factors among which age and educational attainment of respondents, number of living children, religious affiliation, marital commitment and region of residence play significant roles. As factors governing perceptions and behaviours of individuals and institutional settings appear to shape knowledge and attitude towards gender equity and equality, awareness creation and behavioural change initiatives should be considered to abolish violence against women.

  5. Optical remote sensing for monitoring flying mosquitoes, gender identification and discussion on species identification

    NASA Astrophysics Data System (ADS)

    Genoud, Adrien P.; Basistyy, Roman; Williams, Gregory M.; Thomas, Benjamin P.

    2018-03-01

    Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year and result in over 1 million deaths. Reliable information on the evolution of population and spatial distribution of key insects species is of major importance in the development of eco-epidemiologic models. This paper reports on the remote characterization of flying mosquitoes using a continuous-wave infrared optical remote sensing system. The system is setup in a controlled environment to mimic long-range lidars, mosquitoes are free flying at a distance of 4 m from the collecting optics. The wing beat frequency is retrieved from the backscattered light from mosquitoes transiting through the laser beam. A total of 427 transit signals have been recorded from three mosquito species, males and females. Since the mosquito species and gender are known a priori, we investigate the use of wing beat frequency as the sole predictor variable for two Bayesian classifications: gender alone (two classes) and species/gender (six classes). The gender of each mosquito is retrieved with a 96.5% accuracy while the species/gender of mosquitoes is retrieved with a 62.3% accuracy. Known to be an efficient mean to identify insect family, we discuss the limitations of using wing beat frequency alone to identify insect species.

  6. Respiratory sinus arrhythmia: time domain characterization using autoregressive moving average analysis

    NASA Technical Reports Server (NTRS)

    Triedman, J. K.; Perrott, M. H.; Cohen, R. J.; Saul, J. P.

    1995-01-01

    Fourier-based techniques are mathematically noncausal and are therefore limited in their application to feedback-containing systems, such as the cardiovascular system. In this study, a mathematically causal time domain technique, autoregressive moving average (ARMA) analysis, was used to parameterize the relations of respiration and arterial blood pressure to heart rate in eight humans before and during total cardiac autonomic blockade. Impulse-response curves thus generated showed the relation of respiration to heart rate to be characterized by an immediate increase in heart rate of 9.1 +/- 1.8 beats.min-1.l-1, followed by a transient mild decrease in heart rate to -1.2 +/- 0.5 beats.min-1.l-1 below baseline. The relation of blood pressure to heart rate was characterized by a slower decrease in heart rate of -0.5 +/- 0.1 beats.min-1.mmHg-1, followed by a gradual return to baseline. Both of these relations nearly disappeared after autonomic blockade, indicating autonomic mediation. Maximum values obtained from the respiration to heart rate impulse responses were also well correlated with frequency domain measures of high-frequency "vagal" heart rate control (r = 0.88). ARMA analysis may be useful as a time domain representation of autonomic heart rate control for cardiovascular modeling.

  7. Three-Dimensional Echocardiographic Assessment of Left Heart Chamber Size and Function with Fully Automated Quantification Software in Patients with Atrial Fibrillation.

    PubMed

    Otani, Kyoko; Nakazono, Akemi; Salgo, Ivan S; Lang, Roberto M; Takeuchi, Masaaki

    2016-10-01

    Echocardiographic determination of left heart chamber volumetric parameters by using manual tracings during multiple beats is tedious in atrial fibrillation (AF). The aim of this study was to determine the usefulness of fully automated left chamber quantification software with single-beat three-dimensional transthoracic echocardiographic data sets in patients with AF. Single-beat full-volume three-dimensional transthoracic echocardiographic data sets were prospectively acquired during consecutive multiple cardiac beats (≥10 beats) in 88 patients with AF. In protocol 1, left ventricular volumes, left ventricular ejection fraction, and maximal left atrial volume were validated using automated quantification against the manual tracing method in identical beats in 10 patients. In protocol 2, automated quantification-derived averaged values from multiple beats were compared with the corresponding values obtained from the indexed beat in all patients. Excellent correlations of left chamber parameters between automated quantification and the manual method were observed (r = 0.88-0.98) in protocol 1. The time required for the analysis with the automated quantification method (5 min) was significantly less compared with the manual method (27 min) (P < .0001). In protocol 2, there were excellent linear correlations between the averaged left chamber parameters and the corresponding values obtained from the indexed beat (r = 0.94-0.99), and test-retest variability of left chamber parameters was low (3.5%-4.8%). Three-dimensional transthoracic echocardiography with fully automated quantification software is a rapid and reliable way to measure averaged values of left heart chamber parameters during multiple consecutive beats. Thus, it is a potential new approach for left chamber quantification in patients with AF in daily routine practice. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  8. Beat gestures improve word recall in 3- to 5-year-old children.

    PubMed

    Igualada, Alfonso; Esteve-Gibert, Núria; Prieto, Pilar

    2017-04-01

    Although research has shown that adults can benefit from the presence of beat gestures in word recall tasks, studies have failed to conclusively generalize these findings to preschool children. This study investigated whether the presence of beat gestures helps children to recall information when these gestures have the function of singling out a linguistic element in its discourse context. A total of 106 3- to 5-year-old children were asked to recall a list of words within a pragmatically child-relevant context (i.e., a storytelling activity) in which the target word was or was not accompanied by a beat gesture. Results showed that children recalled the target word significantly better when it was accompanied by a beat gesture than when it was not, indicating a local recall effect. Moreover, the recall of adjacent non-target words did not differ depending on the condition, revealing that beat gestures seem to have a strictly local highlighting function (i.e., no global recall effect). These results demonstrate that preschoolers benefit from the pragmatic contribution offered by beat gestures when they function as multimodal markers of prominence. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  10. Deep learning based beat event detection in action movie franchises

    NASA Astrophysics Data System (ADS)

    Ejaz, N.; Khan, U. A.; Martínez-del-Amor, M. A.; Sparenberg, H.

    2018-04-01

    Automatic understanding and interpretation of movies can be used in a variety of ways to semantically manage the massive volumes of movies data. "Action Movie Franchises" dataset is a collection of twenty Hollywood action movies from five famous franchises with ground truth annotations at shot and beat level of each movie. In this dataset, the annotations are provided for eleven semantic beat categories. In this work, we propose a deep learning based method to classify shots and beat-events on this dataset. The training dataset for each of the eleven beat categories is developed and then a Convolution Neural Network is trained. After finding the shot boundaries, key frames are extracted for each shot and then three classification labels are assigned to each key frame. The classification labels for each of the key frames in a particular shot are then used to assign a unique label to each shot. A simple sliding window based method is then used to group adjacent shots having the same label in order to find a particular beat event. The results of beat event classification are presented based on criteria of precision, recall, and F-measure. The results are compared with the existing technique and significant improvements are recorded.

  11. A High-Density EEG Investigation into Steady State Binaural Beat Stimulation

    PubMed Central

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others. PMID:22496862

  12. A high-density EEG investigation into steady state binaural beat stimulation.

    PubMed

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carey, Anne-Marie; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others.

  13. Determinants of incubation period: do reptilian embryos hatch after a fixed total number of heart beats?

    PubMed

    Du, Wei-Guo; Radder, Rajkumar S; Sun, Bo; Shine, Richard

    2009-05-01

    The eggs of birds typically hatch after a fixed (but lineage-specific) cumulative number of heart beats since the initiation of incubation. Is the same true for non-avian reptiles, despite wide intraspecific variation in incubation period generated by variable nest temperatures? Non-invasive monitoring of embryo heart beat rates in one turtle species (Pelodiscus sinensis) and two lizards (Bassiana duperreyi and Takydromus septentrionalis) show that the total number of heart beats during embryogenesis is relatively constant over a wide range of warm incubation conditions. However, incubation at low temperatures increases the total number of heart beats required to complete embryogenesis, because the embryo spends much of its time at temperatures that require maintenance functions but that do not allow embryonic growth or differentiation. Thus, cool-incubated embryos allocate additional metabolic effort to maintenance costs. Under warm conditions, total number of heart beats thus predicts incubation period in non-avian reptiles as well as in birds (the total number of heart beats are also similar); however, under the colder nest conditions often experienced by non-avian reptiles, maintenance costs add significantly to total embryonic metabolic expenditure.

  14. The polarization anisotropy of vibrational quantum beats in resonant pump-probe experiments: Diagrammatic calculations for square symmetric molecules.

    PubMed

    Farrow, Darcie A; Smith, Eric R; Qian, Wei; Jonas, David M

    2008-11-07

    By analogy to the Raman depolarization ratio, vibrational quantum beats in pump-probe experiments depend on the relative pump and probe laser beam polarizations in a way that reflects vibrational symmetry. The polarization signatures differ from those in spontaneous Raman scattering because the order of field-matter interactions is different. Since pump-probe experiments are sensitive to vibrations on excited electronic states, the polarization anisotropy of vibrational quantum beats can also reflect electronic relaxation processes. Diagrammatic treatments, which expand use of the symmetry of the two-photon tensor to treat signal pathways with vibrational and vibronic coherences, are applied to find the polarization anisotropy of vibrational and vibronic quantum beats in pump-probe experiments for different stages of electronic relaxation in square symmetric molecules. Asymmetric vibrational quantum beats can be distinguished from asymmetric vibronic quantum beats by a pi phase jump near the center of the electronic spectrum and their disappearance in the impulsive limit. Beyond identification of vibrational symmetry, the vibrational quantum beat anisotropy can be used to determine if components of a doubly degenerate electronic state are unrelaxed, dephased, population exchanged, or completely equilibrated.

  15. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.

    PubMed

    Jeyhani, Vala; Mahdiani, Shadi; Peltokangas, Mikko; Vehkaoja, Antti

    2015-01-01

    Heart rate variability (HRV) has become a useful tool in analysis of cardiovascular system in both research and clinical fields. HRV has been also used in other applications such as stress level estimation in wearable devices. HRV is normally obtained from ECG as the time interval of two successive R waves. Recently PPG has been proposed as an alternative for ECG in HRV analysis to overcome some difficulties in measurement of ECG. In addition, PPG-HRV is also used in some commercial devices such as modern optical wrist-worn heart rate monitors. However, some researches have shown that PPG is not a surrogate for heart rate variability analysis. In this work, HRV analysis was applied on beat-to-beat intervals obtained from ECG and PPG in 19 healthy male subjects. Some important HRV parameters were calculated from PPG-HRV and ECG-HRV. Maximum of PPG and its second derivative were considered as two methods for obtaining the beat-to-beat signals from PPG and the results were compared with those achieved from ECG-HRV. Our results show that the smallest error happens in SDNN and SD2 with relative error of 2.46% and 2%, respectively. The most affected parameter is pNN50 with relative error of 29.89%. In addition, in our trial, using the maximum of PPG gave better results than its second derivative.

  16. High-Time-Resolution Photometry of the White Dwarf Pulsar AR Scorpii

    NASA Astrophysics Data System (ADS)

    Stiller, Robert A.; Littlefield, Colin; Garnavich, Peter

    2018-01-01

    The cataclysmic variable AR Sco was recently discovered to be the first-ever white dwarf pulsar by Marsh et al. (2016) and Buckley et al. (2017). AR Sco has a 3.56-hour orbital period, a beat period of 1.97 minutes, and a spin period of 1.95 minutes. The flux varies by up to a factor of four during the beat period. It is believed that there is little to no accretion because of the weak X-ray emissions from the system. The white dwarf pulsar is believed to be spin-powered and is in an ejector state (Beskrovnaya et. al 2017) which is further evidence of little to no accretion. 24 hours of high-time-resolution photometry was taken using the 0.8 meter Sarah L. Krizmanich Telescope at the University of Notre Dame. We used our own observations and previous observations to calculate a new spin down timescale. In our data, AR Sco is brightest at an orbital phase of approximately 0.4 which suggests that if the orbital modulation is a reflection effect, the inner hemisphere in not uniformly irradiated. We establish that the amplitude and waveform of the beat pulse changes as function of orbital phase and that this can be attributed to the beat and spin pulses constructively and destructively interfering with one another.

  17. A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors.

    PubMed

    Pflugradt, Maik; Geissdoerfer, Kai; Goernig, Matthias; Orglmeister, Reinhold

    2017-01-14

    Automatic detection of ectopic beats has become a thoroughly researched topic, with literature providing manifold proposals typically incorporating morphological analysis of the electrocardiogram (ECG). Although being well understood, its utilization is often neglected, especially in practical monitoring situations like online evaluation of signals acquired in wearable sensors. Continuous blood pressure estimation based on pulse wave velocity considerations is a prominent example, which depends on careful fiducial point extraction and is therefore seriously affected during periods of increased occurring extrasystoles. In the scope of this work, a novel ectopic beat discriminator with low computational complexity has been developed, which takes advantage of multimodal features derived from ECG and pulse wave relating measurements, thereby providing additional information on the underlying cardiac activity. Moreover, the blood pressure estimations' vulnerability towards ectopic beats is closely examined on records drawn from the Physionet database as well as signals recorded in a small field study conducted in a geriatric facility for the elderly. It turns out that a reliable extrasystole identification is essential to unsupervised blood pressure estimation, having a significant impact on the overall accuracy. The proposed method further convinces by its applicability to battery driven hardware systems with limited processing power and is a favorable choice when access to multimodal signal features is given anyway.

  18. Manipulation-free cultures of human iPSC-derived cardiomyocytes offer a novel screening method for cardiotoxicity.

    PubMed

    Rajasingh, Sheeja; Isai, Dona Greta; Samanta, Saheli; Zhou, Zhi-Gang; Dawn, Buddhadeb; Kinsey, William H; Czirok, Andras; Rajasingh, Johnson

    2018-04-05

    Induced pluripotent stem cell (iPSC)-based cardiac regenerative medicine requires the efficient generation, structural soundness and proper functioning of mature cardiomyocytes, derived from the patient's somatic cells. The most important functional property of cardiomyocytes is the ability to contract. Currently available methods routinely used to test and quantify cardiomyocyte function involve techniques that are labor-intensive, invasive, require sophisticated instruments or can adversely affect cell vitality. We recently developed optical flow imaging method analyses and quantified cardiomyocyte contractile kinetics from video microscopic recordings without compromising cell quality. Specifically, our automated particle image velocimetry (PIV) analysis of phase-contrast video images captured at a high frame rate yields statistical measures characterizing the beating frequency, amplitude, average waveform and beat-to-beat variations. Thus, it can be a powerful assessment tool to monitor cardiomyocyte quality and maturity. Here we demonstrate the ability of our analysis to characterize the chronotropic responses of human iPSC-derived cardiomyocytes to a panel of ion channel modulators and also to doxorubicin, a chemotherapy agent with known cardiotoxic side effects. We conclude that the PIV-derived beat patterns can identify the elongation or shortening of specific phases in the contractility cycle, and the obtained chronotropic responses are in accord with known clinical outcomes. Hence, this system can serve as a powerful tool to screen the new and currently available pharmacological compounds for cardiotoxic effects.

  19. Two-modality γ detection of blood volume by camera imaging and nonimaging stethoscope for kinetic studies of cardiovascular control in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Eclancher, Bernard; Chambron, Jacques; Dumitresco, Barbu; Karman, Miklos; Pszota, Agnes; Simon, Atilla; Didon-Poncelet, Anna; Demangeat, Jean

    2002-04-01

    The quantification of rapid hemodynamic reactions to wide and slow breathing movements has been performed, by two modalities (gamma) -left ventriculography of 99mTc-labeled blood volume, in anterior oblique incidence on standing and even exercising healthy volunteers and cardiac patients. A highly sensitive stethoscope delivered whole (gamma) -counts acquired at 30 msec intervals in a square field of view including the left ventricle, in a one dimensional low resolution imaging mode for beat to beat analysis. A planar 2D (gamma) -camera imaging of the same cardiac area was then performed without cardiac gating for alternate acquisitions during deep inspiration and deep expiration, completed by a 3D MRI assessment of the stethoscope detection field. Young healthy volunteers displayed wide variations of diastolic times and stroke volumes, as a result of enhanced baroreflex control, together with +/- 16% variations of the stethoscope's background blood volume counts. Any of the components of these responses were shifted, abolished or even inverted as a result of either obesity, hypertension, aging or cardiac pathologies. The assessment of breathing control of the cardiovascular system by the beat to beat (gamma) -ventriculography combined with nuclear 2D and 3D MRI imaging is a kinetic method allowing the detection of functional anomalies in still ambulatory patients.

  20. Real-Time 12-Lead High-Frequency QRS Electrocardiography for Enhanced Detection of Myocardial Ischemia and Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Kulecz, Walter B.; DePalma, Jude L.; Feiveson, Alan H.; Wilson, John S.; Rahman, M. Atiar; Bungo, Michael W.

    2004-01-01

    Several studies have shown that diminution of the high-frequency (HF; 150-250 Hz) components present within the central portion of the QRS complex of an electrocardiogram (ECG) is a more sensitive indicator for the presence of myocardial ischemia than are changes in the ST segments of the conventional low-frequency ECG. However, until now, no device has been capable of displaying, in real time on a beat-to-beat basis, changes in these HF QRS ECG components in a continuously monitored patient. Although several software programs have been designed to acquire the HF components over the entire QRS interval, such programs have involved laborious off-line calculations and postprocessing, limiting their clinical utility. We describe a personal computer-based ECG software program developed recently at the National Aeronautics and Space Administration (NASA) that acquires, analyzes, and displays HF QRS components in each of the 12 conventional ECG leads in real time. The system also updates these signals and their related derived parameters in real time on a beat-to-beat basis for any chosen monitoring period and simultaneously displays the diagnostic information from the conventional (low-frequency) 12-lead ECG. The real-time NASA HF QRS ECG software is being evaluated currently in multiple clinical settings in North America. We describe its potential usefulness in the diagnosis of myocardial ischemia and coronary artery disease.

  1. Electrocardiogram: his bundle potentials can be recorded noninvasively beat by beat on surface electrocardiogram.

    PubMed

    Wang, Gaopin; Liu, Renguang; Chang, Qinghua; Xu, Zhaolong; Zhang, Yingjie; Pan, Dianzhu

    2017-03-15

    The micro waveform of His bundle potential can't be recorded beat-to-beat on surface electrocardiogram yet. We have found that the micro-wavelets before QRS complex may be related to atrioventricular conduction system potentials. This study is to explore the possibility of His bundle potential can be noninvasively recorded on surface electrocardiogram. We randomized 65 patients undergoing radiofrequency catheter ablation of paroxysmal superventricular tachycardia (exclude overt Wolff-Parkinson-White syndrome) to receive "conventional electrocardiogram" and "new electrocardiogram" before the procedure. His bundle electrogram was collected during the procedure. Comparative analysis of PA s (PA interval recorded on surface electrocardiogram), AH s (AH interval recorded on surface electrocardiogram) and HV s (HV interval recorded on surface electrocardiogram) interval recorded on surface "new electrocardiogram" and PA, AH, HV interval recorded on His bundle electrogram was investigated. There was no difference (P > 0.05) between groups in HV s interval (49.63 ± 6.19 ms) and HV interval (49.35 ± 6.49 ms). Results of correlational analysis found that HV S interval was significantly positively associated with HV interval (r = 0.929; P < 0.01). His bundle potentials can be noninvasively recorded on surface electrocardiogram. Noninvasive His bundle potential tracing might represent a new method for locating the site of atrioventricular block and identifying the origin of a wide QRS complex.

  2. Response of cat inferior colliculus neurons to binaural beat stimuli: possible mechanisms for sound localization.

    PubMed

    Kuwada, S; Yin, T C; Wickesberg, R E

    1979-11-02

    The interaural phase sensitivity of neurons was studied through the use of binaural beat stimuli. The response of most cells was phase-locked to the beat frequency, which provides a possible neural correlate to the human sensation of binaural beats. In addition, this stimulus allowed the direction and rate of interaural phase change to be varied. Some neurons in our sample responded selectively to manipulations of these two variables, which suggests a sensitivity to direction or speed of movement.

  3. T-wave alternans and beat-to-beat variability of repolarization: pathophysiological backgrounds and clinical relevance.

    PubMed

    Floré, Vincent; Willems, Rik

    2012-12-01

    In this review, we focus on temporal variability of cardiac repolarization. This phenomenon has been related to a higher risk for ventricular arrhythmia and is therefore interesting as a marker of sudden cardiac death risk. We review two non-invasive clinical techniques quantifying repolarization variability: T-wave alternans (TWA) and beat-to-beat variability of repolarization (BVR). We discuss their pathophysiological link with ventricular arrhythmia and the current clinical relevance of these techniques.

  4. Ciliary locomotion in presence of boundaries

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2010-11-01

    Micro-organisms in nature navigate through a variety of fluidic geometries and chemical conditions. We investigate the effect of confined spaces in nature by introducing Paramecium Multimicronucleatum in two different configurations: a capillary tube & a wavy PDMS channel. Paramecium swims by creating the metachronal waves due to ciliary beating. The influence of the walls on Paramecia is characterized by measuring the velocity and observing the ciliary beating pattern. Theoretically, we also model the system by solving the stream-function with a pressure gradient. The theoretical and experimental observations are compared and conclusions are drawn about the change in the swimming characteristics as compared to free swimming without the boundaries.

  5. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    PubMed

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  6. Finding the beat: a neural perspective across humans and non-human primates.

    PubMed

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W Tecumseh

    2015-03-19

    Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Finding the beat: a neural perspective across humans and non-human primates

    PubMed Central

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W. Tecumseh

    2015-01-01

    Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516

  8. A quantitative electroencephalographic study of meditation and binaural beat entrainment.

    PubMed

    Lavallee, Christina F; Koren, Stanley A; Persinger, Michael A

    2011-04-01

    The study objective was to determine the quantitative electroencephalographic correlates of meditation, as well as the effects of hindering (15 Hz) and facilitative (7 Hz) binaural beats on the meditative process. The study was a mixed design, with experience of the subject as the primary between-subject measure and power of the six classic frequency bands (δ, θ, low α, high α, β, γ), neocortical lobe (frontal, temporal, parietal, occipital), hemisphere (left, right), and condition (meditation only, meditation with 7-Hz beats, meditation with 15-Hz beats) as the within-subject measures. The study was conducted at Laurentian University in Sudbury, Ontario, Canada. The subjects comprised novice (mean of 8 months experience) and experienced (mean of 18 years experience) meditators recruited from local meditation groups. Experimental manipulation included application of hindering and facilitative binaural beats to the meditative process. Experienced meditators displayed increased left temporal lobe δ power when the facilitative binaural beats were applied, whereas the effect was not observed for the novice subjects in this condition. When the hindering binaural beats were introduced, the novice subjects consistently displayed more γ power than the experienced subjects over the course of their meditation, relative to baseline. Based on the results of this study, novice meditators were not able to maintain certain levels of θ power in the occipital regions when hindering binaural beats were presented, whereas when the facilitative binaural beats were presented, the experienced meditators displayed increased θ power in the left temporal lobe. These results suggest that the experienced meditators have developed techniques over the course of their meditation practice to counter hindering environmental stimuli, whereas the novice meditators have not yet developed those techniques.

  9. A Precision, Low-Cost GPS-Based Synchronization Scheme for Improved AM Reception.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, Anthony

    2009-01-01

    This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to ~1 part in 109 or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station s carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station s audio at the receiver and concurrent distortion of the audio modulation from the distant station(s)more » and often cause listeners to tune out due to the poor reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; HD will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1-2K), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long-term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific (AM broadcast) transmitter carrier frequency desired. The stability of the disciplining source, typically ~ 1 part in 109 to 1011, is thus transferred to the final AM transmitter carrier output frequency. Generally, an AM radio listener during the evening and nighttime hours, and to a lesser extent in the early morning, receives undesired skywave signals from several distant stations as well as the desired local (groundwave) signal. If all of these signals are within about 0.01-0.001 Hz of each other, any resulting carrier beats will be of such long periods that the beats will be effectively suppressed by the action of the receiver s AGC circuitry and thus be unnoticeable to the listener. Many modern, synthesizer-based transmitters can directly lock to the precision disciplined 10-MHz source, while older units usually require references at either1 e, 2 e, or 4 e the final frequency. In these latter cases, the existing transmitter crystal can usually be satisfactorily pulled via injection locking. The effectiveness of the synchronization concept to reduce interference effects was demonstrated in a laboratory test setup. Many hours of careful subjective listening were conducted, with the two interfering units both precisely on-frequency with the main unit (synchronous operation) and with the two interferers at various frequency offsets, from below 1 Hz to above 10 Hz.« less

  10. Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence.

    PubMed

    Sung, C L; Cheng, H P; Lee, C Y; Cho, C Y; Liang, H C; Chen, Y F

    2016-04-15

    The simultaneous self-mode-locking of two orthogonally polarized states in a Nd:YAG laser is demonstrated by using a short linear cavity. A total output power of 3.8 W can be obtained at an incident pump power of 8.2 W. The beat frequency Δfc between two orthogonally polarized mode-locked components is observed and measured precisely. It is found that the beat frequency increases linearly with an increase in the absorbed pump power. The origin of the beat frequency can be utterly manifested by considering the thermally induced birefringence in the Nd:YAG crystal. The present result offers a promising approach to generate orthogonally polarized mode-locked lasers with tunable beat frequency.

  11. Childhood exposure to domestic violence and attitude towards wife beating in adult life: a study of men in India.

    PubMed

    Zhu, Ying; Dalal, Koustuv

    2010-03-01

    This study examined men's justification of wife beating in relation to their perceived rights and autonomy using a nationally representative sample of 18,047 men in India with childhood exposure to parental violence. Five reasons for wife beating justification, four items of men's perceived rights, and five items of household autonomy were analysed using chi2 test and logistic regression. Among 18,047 participants, 67% justified wife beating. Low education, economic stress and being unmarried were generally more associated with justifying wife beating for all five reasons. Wife's refusal of sex and husband's final say on household autonomy are risk factors. Joint autonomy on household decision making and wife's autonomy on managing her own earnings are protective factors. Perceived relationship rights and autonomy are highly predictive of wife-beating justification for the men who have been exposed to parental violence during childhood. The study has significant implications for public health planners and education strategies.

  12. Fluctuations of hi-hat timing and dynamics in a virtuoso drum track of a popular music recording.

    PubMed

    Räsänen, Esa; Pulkkinen, Otto; Virtanen, Tuomas; Zollner, Manfred; Hennig, Holger

    2015-01-01

    Long-range correlated temporal fluctuations in the beats of musical rhythms are an inevitable consequence of human action. According to recent studies, such fluctuations also lead to a favored listening experience. The scaling laws of amplitude variations in rhythms, however, are widely unknown. Here we use highly sensitive onset detection and time series analysis to study the amplitude and temporal fluctuations of Jeff Porcaro's one-handed hi-hat pattern in "I Keep Forgettin'"-one of the most renowned 16th note patterns in modern drumming. We show that fluctuations of hi-hat amplitudes and interbeat intervals (times between hits) have clear long-range correlations and short-range anticorrelations separated by a characteristic time scale. In addition, we detect subtle features in Porcaro's drumming such as small drifts in the 16th note pulse and non-trivial periodic two-bar patterns in both hi-hat amplitudes and intervals. Through this investigation we introduce a step towards statistical studies of the 20th and 21st century music recordings in the framework of complex systems. Our analysis has direct applications to the development of drum machines and to drumming pedagogy.

  13. Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.

    PubMed

    Szpala, Stanislaw; Wierzbicki, Marcin; Guiraudon, Gerard; Peters, Terry M

    2005-09-01

    Minimally invasive robotically assisted cardiac surgical systems currently do not routinely employ 3-D image guidance. However, preoperative magnetic resonance and computed tomography (CT) images have the potential to be used in this role, if appropriately registered with the patient anatomy and animated synchronously with the motion of the actual heart. This paper discusses the fusion of optical images of a beating heart phantom obtained from an optically tracked endoscope, with volumetric images of the phantom created from a dynamic CT dataset. High quality preoperative dynamic CT images are created by first extracting the motion parameters of the heart from the series of temporal frames, and then applying this information to animate a high-quality heart image acquired at end systole. Temporal synchronization of the endoscopic and CT model is achieved by selecting the appropriate CT image from the dynamic set, based on an electrocardiographic trigger signal. The spatial error between the optical and virtual images is 1.4 +/- 1.1 mm, while the time discrepancy is typically 50-100 ms. Index Terms-Image guidance, image warping, minimally invasive cardiac surgery, virtual endoscopy, virtual reality.

  14. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography and auto-contouring algorithm for quantification of left ventricular volume: validation with cardiac magnetic resonance imaging.

    PubMed

    Chang, Sung-A; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Jang, Shin Yi; Park, Sung-Ji; Choi, Jin-Oh; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K

    2011-08-01

    With recent developments in echocardiographic technology, a new system using real-time three-dimensional echocardiography (RT3DE) that allows single-beat acquisition of the entire volume of the left ventricle and incorporates algorithms for automated border detection has been introduced. Provided that these techniques are acceptably reliable, three-dimensional echocardiography may be much more useful for clinical practice. The aim of this study was to evaluate the feasibility and accuracy of left ventricular (LV) volume measurements by RT3DE using the single-beat full-volume capture technique. One hundred nine consecutive patients scheduled for cardiac magnetic resonance imaging and RT3DE using the single-beat full-volume capture technique on the same day were recruited. LV end-systolic volume, end-diastolic volume, and ejection fraction were measured using an auto-contouring algorithm from data acquired on RT3DE. The data were compared with the same measurements obtained using cardiac magnetic resonance imaging. Volume measurements on RT3DE with single-beat full-volume capture were feasible in 84% of patients. Both interobserver and intraobserver variability of three-dimensional measurements of end-systolic and end-diastolic volumes showed excellent agreement. Pearson's correlation analysis showed a close correlation of end-systolic and end-diastolic volumes between RT3DE and cardiac magnetic resonance imaging (r = 0.94 and r = 0.91, respectively, P < .0001 for both). Bland-Altman analysis showed reasonable limits of agreement. After application of the auto-contouring algorithm, the rate of successful auto-contouring (cases requiring minimal manual corrections) was <50%. RT3DE using single-beat full-volume capture is an easy and reliable technique to assess LV volume and systolic function in clinical practice. However, the image quality and low frame rate still limit its application for dilated left ventricles, and the automated volume analysis program needs more development to make it clinically efficacious. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  15. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity

    PubMed Central

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state. PMID:28701912

  16. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  17. Understanding women's attitudes towards wife beating in Zimbabwe.

    PubMed Central

    Hindin, Michelle J.

    2003-01-01

    OBJECTIVE: To investigate the factors associated with attitudes towards wife beating among women in partnerships in Zimbabwe in order to assist public health practitioners in preventing intimate partner violence (IPV). METHODS: A nationally representative survey of 5907 women of reproductive age (15-49 years) was conducted in Zimbabwe. Women were asked about their attitudes towards wife beating in five situations. The survey included sociodemographic characteristics, partnership characteristics, and household decision-making. FINDINGS: Over half of all women in Zimbabwe (53%) believed that wife beating was justified in at least one of the five situations. Respondents were most likely to find wife beating justified if a wife argued with her spouse (36%), neglected her children (33%), or went out without telling her spouse (30%). Among women in partnerships (n=3077), younger age, living in rural areas, lower household wealth, schooling at a lower level than secondary, and lower occupational status were associated with women reporting that wife beating is justified. Women who reported that they make household decisions jointly with their partners were less likely to say that wife beating is justified. CONCLUSIONS: Zimbabwe has a long way to go in preventing IPV, particularly because the younger generation of women is significantly more likely to believe that wife beating is justified compared with older women. Given the current social and political climate in Zimbabwe, finding means to negotiate rather than settle conflict through violence is essential from the household level to the national level. PMID:12973642

  18. Beat-by-beat analysis of cardiac output and blood pressure responses to short-term barostimulation in different body positions

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Wulf; Schütze, Harald; Stegemann, J.

    Rapid quantification of the human baro-reflex control of heart rate has been achieved on a beat-by-beat basis using a neck-chamber with quick ECG-triggered pressure changes. Referring to recent findings on heart rate and stroke volume, the present study uses this technique to compare cardiac output as well as blood pressure changes in supine and upright position to investigate feedback effects and to confirm postural reflex modifications not revealed by RR-interval changes. A suction profile starting at +40 mmHg and running 7 steps of pressure decrease down to -65 mmHg was examined in 0° and 90° tilting position while beat-by-beat recordings were done of heart rate, stroke volume (impedance-cardiography) and blood pressure (Finapres tm) (n=16). The percentual heart rate decrease failed to be significantly different between positions. A suction-induced stroke volume increase led to a cardiac output almost maintained when supine and significantly increased when upright. A decrease in all blood pressure values was found during suction, except for systolic values in upright position which increased. Conclusively, (a) it is confirmed that different inotropy accounts for the seen gravitational effect on the cardiac output not represented by heart rate; (b) identical suction levels in different positions lead to different stimuli at the carotid receptor. This interference has to be considered in microgravity studies by beat-by-beat measurement of cardiac output and blood pressure.

  19. Micro pumping with cardiomyocyte-polymer hybrid.

    PubMed

    Park, Jungyul; Kim, Il Chaek; Baek, Jeongeun; Cha, Misun; Kim, Jinseok; Park, Sukho; Lee, Junghoon; Kim, Byungkyu

    2007-10-01

    This paper presents a hybrid micropump actuated by the up-down motion of a dome shaped cell-polymer membrane composite. The contractile force induced from self-beating cardiomyocytes cultured on the membrane causes shrinkage and relaxation of a microchamber, leading to a flow in a microchannel. Flow direction is controlled by the geometry of diffuser/nozzle in the microchannel. The fabrication process is noninvasive to cells, thus, cardiomyocytes can robustly maintain their activity for a long time. The fluid motion in the microchannel was monitored by tracking 2 microm polystyrene beads. A net flow rate of 0.226 nl min(-1) was obtained in our microscale device. Our device demonstrates a unique performance of a cell-microdevice hybrid lab-on-a-chip that does not require any external power source, preventing electrical or heat shock to analytes.

  20. Electronic circuit detects left ventricular ejection events in cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.

  1. Improved wavelength coded optical time domain reflectometry based on the optical switch.

    PubMed

    Zhu, Ninghua; Tong, Youwan; Chen, Wei; Wang, Sunlong; Sun, Wenhui; Liu, Jianguo

    2014-06-16

    This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15 MHz within a range of 50 km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.

  2. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    NASA Astrophysics Data System (ADS)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  3. The Simplest Demonstration on Acoustic Beats

    ERIC Educational Resources Information Center

    Ganci, Alessio; Ganci, Salvatore

    2015-01-01

    The classical demonstration experiment on acoustic beats using two signal generators and a dual trace oscilloscope is an important ingredient in teaching the subject. This short laboratory note aims to point out what may be the simplest demonstrative experiment on acoustic beats to carry out in a classroom without employing any lab apparatus.

  4. Effects of intra-aortic counterpulsation on aortic wall energetics and damping: in vivo experiments.

    PubMed

    Fischer, Edmundo I Cabrera; Bia, Daniel; Camus, Juan M; Zócalo, Yanina; de Forteza, Eduardo; Armentano, Ricardo L

    2008-01-01

    Intra-aortic balloon pumping (IABP) could modify the arterial biomechanics; however, its effects on arterial wall properties have not been fully explored. This dynamical study was designed to characterize the pressure-dependent and smooth muscle-dependent effects of IABP on aortic wall energetics in an in vivo animal model. Intra-aortic balloon pumping (1:2) was performed in six anesthetized sheep in which aortic pressure and diameter signals were measured in basal, augmented (during balloon inflation), and assisted (postaugmented) beats. Energy dissipation values in augmented and assisted beats were significantly higher than those observed in basal state (p < 0.05). Assisted beats showed a significant increase of wall damping with respect to basal and augmented beats (p < 0.05). Intra-aortic balloon pumping resulted in a significant increase of pulse wave velocity (p < 0.05) in augmented beats with respect to basal state (6.3 +/- 0.8 vs. 5.2 +/- 0.5 m x s(-1)); whereas values observed in assisted beats were significantly (p < 0.05) lower than those observed in augmented beats (4.9 +/- 0.5 vs. 6.3 +/- 0.8 m x s(-1)). Our findings show that IABP determined the pressure and smooth muscle-dependent changes in arterial wall energetics and damping properties in this animal model.

  5. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi).

    PubMed

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2007-06-01

    Koi carps frequently swim in burst-and-coast style, which consists of a burst phase and a coast phase. We quantify the swimming kinematics and the flow patterns generated by the carps in burst-and-coast swimming. In the burst phase, the carps burst in two modes: in the first, the tail beats for at least one cycle (multiple tail-beat mode); in the second, the tail beats for only a half-cycle (half tail-beat mode). The carp generates a vortex ring in each half-cycle beat. The vortex rings generated during bursting in multiple tail-beat mode form a linked chain, but only one vortex ring is generated in half tail-beat mode. The wake morphologies, such as momentum angle and jet angle, also show much difference between the two modes. In the burst phase, the kinematic data and the impulse obtained from the wake are linked to obtain the drag coefficient (C(d,burst) approximately 0.242). In the coast phase, drag coefficient (C(d,coast) approximately 0.060) is estimated from swimming speed deceleration. Our estimation suggests that nearly 45% of energy is saved when burst-and-coast swimming is used by the koi carps compared with steady swimming at the same mean speed.

  6. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.

    PubMed

    Wang, Hesheng; Zhang, Runxi; Chen, Weidong; Wang, Xiaozhou; Pfeifer, Rolf

    2017-08-01

    Minimally invasive surgery attracts more and more attention because of the advantages of minimal trauma, less bleeding and pain and low complication rate. However, minimally invasive surgery for beating hearts is still a challenge. Our goal is to develop a soft robot surgical system for single-port minimally invasive surgery on a beating heart. The soft robot described in this paper is inspired by the octopus arm. Although the octopus arm is soft and has more degrees of freedom (DOFs), it can be controlled flexibly. The soft robot is driven by cables that are embedded into the soft robot manipulator and can control the direction of the end and middle of the soft robot manipulator. The forward, backward and rotation movement of the soft robot is driven by a propulsion plant. The soft robot can move freely by properly controlling the cables and the propulsion plant. The soft surgical robot system can perform different thoracic operations by changing surgical instruments. To evaluate the flexibility, controllability and reachability of the designed soft robot surgical system, some testing experiments have been conducted in vivo on a swine. Through the subxiphoid, the soft robot manipulator could enter into the thoracic cavity and pericardial cavity smoothly and perform some operations such as biopsy, ligation and ablation. The operations were performed successfully and did not cause any damage to the surrounding soft tissues. From the experiments, the flexibility, controllability and reachability of the soft robot surgical system have been verified. Also, it has been shown that this system can be used in the thoracic and pericardial cavity for different operations. Compared with other endoscopy robots, the soft robot surgical system is safer, has more DOFs and is more flexible for control. When performing operations in a beating heart, this system maybe more suitable than traditional endoscopy robots.

  7. Nonlinear effects of respiration on the crosstalk between cardiovascular and cerebrovascular control systems

    NASA Astrophysics Data System (ADS)

    Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Rossato, Gianluca; Nollo, Giandomenico; Faes, Luca; Porta, Alberto

    2016-05-01

    Cardiovascular and cerebrovascular regulatory systems are vital control mechanisms responsible for guaranteeing homeostasis and are affected by respiration. This work proposes the investigation of cardiovascular and cerebrovascular control systems and the nonlinear influences of respiration on both regulations through joint symbolic analysis (JSA), conditioned or unconditioned on respiration. Interactions between cardiovascular and cerebrovascular regulatory systems were evaluated as well by performing correlation analysis between JSA indexes describing the two control systems. Heart period, systolic and mean arterial pressure, mean cerebral blood flow velocity and respiration were acquired on a beat-to-beat basis in 13 subjects experiencing recurrent syncope episodes (SYNC) and 13 healthy individuals (non-SYNC) in supine resting condition and during head-up tilt test at 60° (TILT). Results showed that JSA distinguished conditions and groups, whereas time domain parameters detected only the effect of TILT. Respiration affected cardiovascular and cerebrovascular regulatory systems in a nonlinear way and was able to modulate the interactions between the two control systems with different outcome in non-SYNC and SYNC groups, thus suggesting that the analysis of the impact of respiration on cardiovascular and cerebrovascular regulatory systems might improve our understanding of the mechanisms underpinning the development of postural-related syncope.

  8. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2012-01-01

    Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias.

  9. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart

    PubMed Central

    Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.

    2012-01-01

    Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias. PMID:21984548

  10. Pacemakers and Implantable Defibrillators: MedlinePlus Health Topic

    MedlinePlus

    ... pattern. Most arrhythmias result from problems in the electrical system of the heart. If your arrhythmia is ... pacemaker helps control abnormal heart rhythms. It uses electrical pulses to prompt the heart to beat at ...

  11. Multiheterodyne spectroscopy using interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Sterczewski, Lukasz A.; Westberg, Jonas; Patrick, Charles Link; Kim, Chul Soo; Kim, Mijin; Canedy, Chadwick L.; Bewley, William W.; Merritt, Charles D.; Vurgaftman, Igor; Meyer, Jerry R.; Wysocki, Gerard

    2018-01-01

    While midinfrared radiation can be used to identify and quantify numerous chemical species, contemporary broadband midinfrared spectroscopic systems are often hindered by large footprints, moving parts, and high power consumption. In this work, we demonstrate multiheterodyne spectroscopy (MHS) using interband cascade lasers, which combines broadband spectral coverage with high spectral resolution and energy-efficient operation. The lasers generate up to 30 mW of continuous-wave optical power while consuming <0.5 W of electrical power. A computational phase and timing correction algorithm is used to obtain kHz linewidths of the multiheterodyne beat notes and up to 30 dB improvement in signal-to-noise ratio. The versatility of the multiheterodyne technique is demonstrated by performing both rapidly swept absorption and dispersion spectroscopic assessments of low-pressure ethylene (C2H4) acquired by extracting a single beat note from the multiheterodyne signal, as well as broadband MHS of methane (CH4) acquired with all available beat notes with microsecond temporal resolution and an instantaneous optical bandwidth of ˜240 GHz. The technology shows excellent potential for portable and high-resolution solid-state spectroscopic chemical sensors operating in the midinfrared.

  12. Digital approach to stabilizing optical frequency combs and beat notes of CW lasers

    NASA Astrophysics Data System (ADS)

    Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef

    2013-10-01

    In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.

  13. Optical beat interference noise reduction in OFDMA optical access link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook

    2013-12-01

    A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.

  14. Effect of shilajit on the heart of Daphnia: A preliminary study.

    PubMed

    Gaikwad, N S; Panat, A V; Deshpande, M S; Ramya, K; Khalid, P U; Augustine, P

    2012-01-01

    Shilajit is a mineral-rich complex organic compound used in the traditional system of Ayurvedic medicine for treating hypertension and improving the cardiac function with many herbomineral preparations. However, very little experimental evidence is available about its effect on the cardiac function. We used Daphnia as a model organism for observing the effect of shilajit on its heart due to its myogenic properties and its response to number of cardioactive drugs that are known to affect human heart function. Genome of Daphnia shows the strongest homology with the human genome. These characteristics of Daphnia make it an ideal organism for biomedical research. Our results suggest that this complex organic compound lowers the heart beats as its concentration increases from 1.0 to 100 ppm. The beats come to near normal condition at 1000 ppm. Above 1000 ppm, the beats are very fast and impossible to count. These results indicate a negative chronotropic effect on the Daphnia heart at low concentrations and a positive chronotropic effect to arrhythmia and finally failure at increasing higher concentrations of shilajit.

  15. Effect of shilajit on the heart of Daphnia: A preliminary study

    PubMed Central

    Gaikwad, N. S.; Panat, A. V.; Deshpande, M. S.; Ramya, K.; Khalid, P. U.; Augustine, P.

    2012-01-01

    Shilajit is a mineral-rich complex organic compound used in the traditional system of Ayurvedic medicine for treating hypertension and improving the cardiac function with many herbomineral preparations. However, very little experimental evidence is available about its effect on the cardiac function. We used Daphnia as a model organism for observing the effect of shilajit on its heart due to its myogenic properties and its response to number of cardioactive drugs that are known to affect human heart function. Genome of Daphnia shows the strongest homology with the human genome. These characteristics of Daphnia make it an ideal organism for biomedical research. Our results suggest that this complex organic compound lowers the heart beats as its concentration increases from 1.0 to 100 ppm. The beats come to near normal condition at 1000 ppm. Above 1000 ppm, the beats are very fast and impossible to count. These results indicate a negative chronotropic effect on the Daphnia heart at low concentrations and a positive chronotropic effect to arrhythmia and finally failure at increasing higher concentrations of shilajit. PMID:22529672

  16. Influence of mode-beating pulse on laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Nishihara, M.; Freund, J. B.; Glumac, N. G.; Elliott, G. S.

    2018-04-01

    This paper addresses the influence of mode-beating pulse on laser-induced plasma. The second harmonic of a Nd:YAG laser, operated either with the single mode or multimode, was used for non-resonant optical breakdown, and subsequent plasma development was visualized using a streak imaging system. The single mode lasing leads to a stable breakdown location and smooth envelopment of the plasma boundary, while the multimode lasing, with the dominant mode-beating frequency of 500-800 MHz, leads to fluctuations in the breakdown location, a globally modulated plasma surface, and growth of local microstructures at the plasma boundary. The distribution of the local inhomogeneity was measured from the elastic scattering signals on the streak image. The distance between the local structures agreed with the expected wavelength of hydrodynamic instability development due to the interference between the surface excited wave and transmitted wave. A numerical simulation, however, indicates that the local microstructure could also be directly generated at the peaks of the higher harmonic components if the multimode pulse contains up to the eighth harmonic of the fundamental cavity mode.

  17. The effect of gamma-enhancing binaural beats on the control of feature bindings.

    PubMed

    Colzato, Lorenza S; Steenbergen, Laura; Sellaro, Roberta

    2017-07-01

    Binaural beats represent the auditory experience of an oscillating sound that occurs when two sounds with neighboring frequencies are presented to one's left and right ear separately. Binaural beats have been shown to impact information processing via their putative role in increasing neural synchronization. Recent studies of feature-repetition effects demonstrated interactions between perceptual features and action-related features: repeating only some, but not all features of a perception-action episode hinders performance. These partial-repetition (or binding) costs point to the existence of temporary episodic bindings (event files) that are automatically retrieved by repeating at least one of their features. Given that neural synchronization in the gamma band has been associated with visual feature bindings, we investigated whether the impact of binaural beats extends to the top-down control of feature bindings. Healthy adults listened to gamma-frequency (40 Hz) binaural beats or to a constant tone of 340 Hz (control condition) for ten minutes before and during a feature-repetition task. While the size of visuomotor binding costs (indicating the binding of visual and action features) was unaffected by the binaural beats, the size of visual feature binding costs (which refer to the binding between the two visual features) was considerably smaller during gamma-frequency binaural beats exposure than during the control condition. Our results suggest that binaural beats enhance selectivity in updating episodic memory traces and further strengthen the hypothesis that neural activity in the gamma band is critically associated with the control of feature binding.

  18. External Counterpulsation Increases Beat-to-Beat Heart Rate Variability in Patients with Ischemic Stroke.

    PubMed

    Xiong, Li; Tian, Ge; Wang, Li; Lin, Wenhua; Chen, Xiangyan; Leung, Thomas Wai Hong; Soo, Yannie Oi Yan; Wong, Lawrence Ka Sing

    2017-07-01

    External counterpulsation (ECP) is a noninvasive method used to augment cerebral perfusion in ischemic stroke. However, the response of beat-to-beat heart rate variability (HRV) in patients with ischemic stroke during ECP remains unknown. Forty-eight patients with unilateral ischemic stroke at the subacute stage and 14 healthy controls were recruited. Beat-to-beat heart rate before, during, and after ECP was monitored. The frequency components of HRV were calculated using power spectral analysis. Very low frequency (VLF; <.04 Hz), low frequency (LF; .04-.15 Hz), high frequency (HF; .15-.40 Hz), total power spectral density (TP; <.40 Hz), and LF/HF ratio were calculated. In stroke patients, although there were no statistical differences in all of the HRV components, the HRV at VLF showed a trend of increase during ECP compared with baseline in the left-sided stroke patients (P = .083). After ECP, the HRV at LF and TP remained higher than baseline in the right-sided stroke patients (LF, 209.4 versus 117.9, P = .050; TP, 1275.6 versus 390.2, P = .017, respectively). Besides, the HRV at TP also increased after ECP compared with baseline in the left-sided stroke patients (563.0 versus 298.3, P = .029). Irrespective of the side of the ischemia, patients showed an increased beat-to-beat HRV after ECP. Additionally, sympathetic and parasympathetic cardiac modulations were increased after ECP in patients after right-sided subacute stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Systematic off-pump coronary artery revascularization in multivessel disease: experience of three hundred cases.

    PubMed

    Cartier, R; Brann, S; Dagenais, F; Martineau, R; Couturier, A

    2000-02-01

    We sought to report our recent experience with off-pump coronary artery revascularization in multivessel disease. Between October 1996 and December 1998, 300 off-pump beating heart operations were performed at the Montreal Heart Institute by a single surgeon, representing 94% of all procedures undertaken during this same time frame (97% for 1998). This cohort of patients was compared with 1870 patients operated on with cardiopulmonary bypass from 1995 to 1996. Mean age, sex distribution, and preoperative risk factors were comparable for the two groups. On average, 2.92 +/- 0.8 and 2.84 +/- 0.6 grafts per patient were completed in the beating heart and cardiopulmonary bypass groups, respectively. A majority of patients (70%) had either a triple or quadruple bypass. Coronary anastomoses were achieved with myocardial mechanical stabilization and heart "verticalization." Ischemic time was shorter in the beating heart group (29.8 +/- 0.9 vs 45 +/- 0.4 minutes, P <.05). Similarly, the need for transfusion was significantly less in the beating heart group (beating heart operations, 34%; cardiopulmonary bypass, 66%; P <.005). Reduced use of postoperative intra-aortic counterpulsation, as well as a lower rise in creatine kinase MB isoenzyme, was observed in the beating heart group. Operative mortality rates (beating heart operations, 1. 3%; cardiopulmonary bypass, 2%) and perioperative myocardial infarction (beating heart operations, 3.6%; cardiopulmonary bypass, 4.2%) were comparable for the two groups. In a majority of patients, off-pump complete coronary artery revascularization is an acceptable alternative to conventional operations, yielding good results given progressive experience, rigorous technique, and adequate coronary artery stabilization.

  20. Giving speech a hand: gesture modulates activity in auditory cortex during speech perception.

    PubMed

    Hubbard, Amy L; Wilson, Stephen M; Callan, Daniel E; Dapretto, Mirella

    2009-03-01

    Viewing hand gestures during face-to-face communication affects speech perception and comprehension. Despite the visible role played by gesture in social interactions, relatively little is known about how the brain integrates hand gestures with co-occurring speech. Here we used functional magnetic resonance imaging (fMRI) and an ecologically valid paradigm to investigate how beat gesture-a fundamental type of hand gesture that marks speech prosody-might impact speech perception at the neural level. Subjects underwent fMRI while listening to spontaneously-produced speech accompanied by beat gesture, nonsense hand movement, or a still body; as additional control conditions, subjects also viewed beat gesture, nonsense hand movement, or a still body all presented without speech. Validating behavioral evidence that gesture affects speech perception, bilateral nonprimary auditory cortex showed greater activity when speech was accompanied by beat gesture than when speech was presented alone. Further, the left superior temporal gyrus/sulcus showed stronger activity when speech was accompanied by beat gesture than when speech was accompanied by nonsense hand movement. Finally, the right planum temporale was identified as a putative multisensory integration site for beat gesture and speech (i.e., here activity in response to speech accompanied by beat gesture was greater than the summed responses to speech alone and beat gesture alone), indicating that this area may be pivotally involved in synthesizing the rhythmic aspects of both speech and gesture. Taken together, these findings suggest a common neural substrate for processing speech and gesture, likely reflecting their joint communicative role in social interactions.

  1. Giving Speech a Hand: Gesture Modulates Activity in Auditory Cortex During Speech Perception

    PubMed Central

    Hubbard, Amy L.; Wilson, Stephen M.; Callan, Daniel E.; Dapretto, Mirella

    2008-01-01

    Viewing hand gestures during face-to-face communication affects speech perception and comprehension. Despite the visible role played by gesture in social interactions, relatively little is known about how the brain integrates hand gestures with co-occurring speech. Here we used functional magnetic resonance imaging (fMRI) and an ecologically valid paradigm to investigate how beat gesture – a fundamental type of hand gesture that marks speech prosody – might impact speech perception at the neural level. Subjects underwent fMRI while listening to spontaneously-produced speech accompanied by beat gesture, nonsense hand movement, or a still body; as additional control conditions, subjects also viewed beat gesture, nonsense hand movement, or a still body all presented without speech. Validating behavioral evidence that gesture affects speech perception, bilateral nonprimary auditory cortex showed greater activity when speech was accompanied by beat gesture than when speech was presented alone. Further, the left superior temporal gyrus/sulcus showed stronger activity when speech was accompanied by beat gesture than when speech was accompanied by nonsense hand movement. Finally, the right planum temporale was identified as a putative multisensory integration site for beat gesture and speech (i.e., here activity in response to speech accompanied by beat gesture was greater than the summed responses to speech alone and beat gesture alone), indicating that this area may be pivotally involved in synthesizing the rhythmic aspects of both speech and gesture. Taken together, these findings suggest a common neural substrate for processing speech and gesture, likely reflecting their joint communicative role in social interactions. PMID:18412134

  2. An Evaluation of Selected Communications Assemblies and Hearing Protection Systems: A Field Study Conducted for the Future Force Warrior Integrated Headgear Integrated Process Team

    DTIC Science & Technology

    2005-04-01

    Hearing restoration was provided via binaural hear-through microphones on the 1Communications & Ear...second question asked was “which of the systems provided the best speech intelligibility?” The BC system beat the TAC by half a vote (because one

  3. Environmental Coupling Modulates the Attractors of Rhythmic Coordination

    ERIC Educational Resources Information Center

    Kudo, Kazutoshi; Park, Hyeonsaeng; Kay, Bruce A.; Turvey, M. T.

    2006-01-01

    A simple instance of coupling behavior to the environment is oscillating the hands in pace with metronome beats. This environmental coupling can be weaker (1 beat per cycle) or stronger (2 beats per cycle). The authors examined whether strength of environmental coupling enhanced the stability of in-phase bimanual coordination. Detuning by…

  4. Training with Rhythmic Beat Gestures Benefits L2 Pronunciation in Discourse-Demanding Situations

    ERIC Educational Resources Information Center

    Gluhareva, Daria; Prieto, Pilar

    2017-01-01

    Recent research has shown that beat gestures (hand gestures that co-occur with speech in spontaneous discourse) are temporally integrated with prosodic prominence and that they help word memorization and discourse comprehension. However, little is known about the potential beneficial effects of beat gestures in second language (L2) pronunciation…

  5. Musical rhythm and reading development: does beat processing matter?

    PubMed

    Ozernov-Palchik, Ola; Patel, Aniruddh D

    2018-05-20

    There is mounting evidence for links between musical rhythm processing and reading-related cognitive skills, such as phonological awareness. This may be because music and speech are rhythmic: both involve processing complex sound sequences with systematic patterns of timing, accent, and grouping. Yet, there is a salient difference between musical and speech rhythm: musical rhythm is often beat-based (based on an underlying grid of equal time intervals), while speech rhythm is not. Thus, the role of beat-based processing in the reading-rhythm relationship is not clear. Is there is a distinct relation between beat-based processing mechanisms and reading-related language skills, or is the rhythm-reading link entirely due to shared mechanisms for processing nonbeat-based aspects of temporal structure? We discuss recent evidence for a distinct link between beat-based processing and early reading abilities in young children, and suggest experimental designs that would allow one to further methodically investigate this relationship. We propose that beat-based processing taps into a listener's ability to use rich contextual regularities to form predictions, a skill important for reading development. © 2018 New York Academy of Sciences.

  6. Crystal orientation induced spin Rabi beat oscillations of point defects at the c-Si(111)/ SiO 2 interface

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung; Lee, Sang-Yun; Boehme, Christoph

    2011-03-01

    Spin-dependent electronic transitions such as certain charge carrier recombination and transport processes in semiconductors are usually governed by the Pauli blockade within pairs of two paramagnetic centers. One implication of this is that the manipulation of spin states, e.g. by magnetic resonant excitation, can produce changes to electric currents of the given semiconductor material. If both spins are changed at the same time, quantum beat effects such as beat oscillation between resonantly induced spin Rabi nutation becomes detectable through current measurements. Here, we report on electrically detected spin Rabi beat oscillation caused by pairs of 31 P donor states and Pb interface defects at the phosphorous doped Si(111)/ Si O2 interface. Due to the g-factor anisotropy of the Pb center we can tune the intra pair Larmor frequency difference (so called Larmor separation) through orientation of the sample with regard to the external magnetic field. As the Larmor separation governs the spin Rabi beat oscillation, we show experimentally how the crystal orientation can influence the beat effect.

  7. Noninvasive beat-by-beat registration of ventricular late potentials using high resolution electrocardiography.

    PubMed

    Hombach, V; Kebbel, U; Höpp, H W; Winter, U; Hirche, H

    1984-08-01

    We have developed a new high resolution ECG equipment for recording cardiac microvolt potentials from the body surface. Noise reduction has been achieved by specially designed suction electrodes, by spatial averaging of the electrocardiograms from four electrode pairs, using extremely low noise amplifiers, by performing registrations within a Faraday cage, and by teaching the patient to relax during end expiratory breath holding. Fourteen young males (controls) and 30 patients with various cardiac diseases (27 with CHD) were studied. In normals ventricular late potentials were not seen, but in 12/30 patients clearcut diastolic potentials were found. In 7/12 patients with positive findings, late potentials appeared beat-by-beat, in 5/12 patients those signals occurred intermittently, in 11/30 patients questionably, and in the remaining 5/30 patients no late potentials were recorded. One patient with the Romano-Ward syndrome revealed phases with stable beat-by-beat and intermittently occurring ventricular late potentials. These results demonstrate the feasibility of continuous non-invasive recording of ventricular late potentials, whose clinical and prognostic significance remains to be established.

  8. BeatBox-HPC simulation environment for biophysically and anatomically realistic cardiac electrophysiology.

    PubMed

    Antonioletti, Mario; Biktashev, Vadim N; Jackson, Adrian; Kharche, Sanjay R; Stary, Tomas; Biktasheva, Irina V

    2017-01-01

    The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.

  9. Ciliary behavior of a negatively phototactic Chlamydomonas reinhardtii.

    PubMed

    Josef, Keith; Saranak, Jureepan; Foster, Kenneth W

    2005-06-01

    With an instrument that can record the motion of both cilia of the unicellular alga Chlamydomonas reinhardtii for many hours, the behavioral differences of its two cilia have been studied to determine their specific role in phototaxis. The organism was held on a fixed micropipette with the plane of ciliary beating rotated into the imaging plane of a quadrant photodetector. The responses to square-wave light patterns of a wide range of temporal frequencies were used to characterize the responses of each cilium. Eighty-one cells were examined showing an unexpectedly diverse range of responses. Plausible common signals for the linear and nonlinear signals from the cell body are suggested. Three independent ciliary measures--the beat frequency, stroke velocity, and phasing of the two cilia--have been identified. The cell body communicates to the cilia the direction of phototaxis the cell desires to go, the absolute light intensity, and the appropriate graded transient response for tracking the light source. The complexity revealed by each measure of the ciliary response indicates many independent variables are involved in the net phototactic response. In spite of their morphological similarity, the two cilia of Chlamydomonas respond uniquely. Probably the signals from the cell body fan out to independent pathways in the cilia. Each cilium modifies the input in its own way. The change in the pattern of the effective and recovery strokes of each cilium associated with negative phototaxis has been demonstrated and its involvement in phototactic turning is described. Copyright (c) 2005 Wiley-Liss, Inc.

  10. High Oxygen Partial Pressure Decreases Anemia-Induced Heart Rate Increase Equivalent to Transfusion

    PubMed Central

    Feiner, John R.; Finlay-Morreale, Heather E.; Toy, Pearl; Lieberman, Jeremy A.; Viele, Maurene K.; Hopf, Harriet W.; Weiskopf, Richard B.

    2011-01-01

    Background Anemia is associated with morbidity and mortality and frequently leads to transfusion of erythrocytes. We sought to compare directly the effect of high inspired oxygen fraction vs. transfusion of erythrocytes on the anemia-induced increased heart rate (HR) in humans undergoing experimental acute isovolemic anemia. Methods We combined HR data from healthy subjects undergoing experimental isovolemic anemia in seven studies performed by our group. We examined HR changes associated with breathing 100% oxygen by non-rebreathing face mask vs. transfusion of erythrocytes at their nadir hemoglobin (Hb) concentration of 5 g/dL. Data were analyzed using a mixed-effects model. Results HR had an inverse linear relationship to hemoglobin concentration with a mean increase of 3.9 beats per minute per gram of Hb (beats/min/g Hb) decrease (95% confidence interval [CI], 3.7 – 4.1 beats/min/g Hb), P < 0.0001. Return of autologous erythrocytes significantly decreased HR by 5.3 beats/min/g Hb (95% CI, 3.8 – 6.8 beats/min/g Hb) increase, P < 0.0001. HR at nadir Hb of 5.6 g/dL (95% CI, 5.5 – 5.7 g/dL) when breathing air (91.4 beats/min; 95% CI, 87.6 – 95.2 beats/min) was reduced by breathing 100% oxygen (83.0 beats/min; 95% CI, 79.0 -87.0 beats/min), P < 0.0001. The HR at hemoglobin 5.6 g/dL when breathing oxygen was equivalent to the HR at Hb 8.9 g/dL when breathing air. Conclusions High arterial oxygen partial pressure reverses the heart rate response to anemia, probably owing to its usability, rather than its effect on total oxygen content. The benefit of high arterial oxygen partial pressure has significant potential clinical implications for the acute treatment of anemia and results of transfusion trials. PMID:21768873

  11. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    PubMed

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  12. Persistent Fluctuations in Stride Intervals under Fractal Auditory Stimulation

    PubMed Central

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J.; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals. PMID:24651455

  13. ``Smart'' baroreception along the aortic arch, with reference to essential hypertension

    NASA Astrophysics Data System (ADS)

    Kember, G. C.; Zamir, M.; Armour, J. A.

    2004-11-01

    Beat-to-beat regulation of heart rate is dependent upon sensing of local stretching or local “disortion” by aortic baroreceptors. Distortions of the aortic wall are due mainly to left ventricular output and to reflected waves arising from the arterial tree. Distortions are generally believed to be useful in cardiac control since stretch receptors or aortic baroreceptors embedded in the adventitia of the aortic wall, transduce the distortions to cardiovascular neural reflex pathways responsible for beat-to-beat regulation of heart rate. Aortic neuroanatomy studies have also found a continuous strip of mechanosensory neurites spread along the aortic inner arch. Although their purpose is now unknown, such a combined sensing capacity would allow measurement of the space and time dependence of inner arch wall distortions due, among other things, to traveling waves associated with pulsatile flow in an elastic tube. We call this sensing capability-“smart baroreception.” In this paper we use an arterial tree model to show that the cumulative effects of wave reflections, from many sites far downstream, have a surprisingly pronounced effect on the pressure distribution in the root segment of the tree. By this mechanism global hemodynamics can be focused by wave reflections back to the aortic arch, where they can rapidly impact cardiac control via smart baroreception. Such sensing is likely important to maintain efficient heart function. However, alterations in the arterial tree due to aging and other natural processes can lead in such a system to altered cardiac control and essential hypertension.

  14. Mechanism of reentry induction by a 9-V battery in rabbit ventricles

    PubMed Central

    Burton, Rebecca A. B.; Kalla, Manish; Nanthakumar, Kumaraswamy; Plank, Gernot; Bub, Gil; Vigmond, Edward J.

    2014-01-01

    Although the application of a 9-V battery to the epicardial surface is a simple method of ventricular fibrillation induction, the fundamental mechanisms underlying this process remain unstudied. We used a combined experimental and modelling approach to understand how the interaction of direct current (DC) from a battery may induce reentrant activity within rabbit ventricles and its dependence on battery application timing and duration. A rabbit ventricular computational model was used to simulate 9-V battery stimulation for different durations at varying onset times during sinus rhythm. Corresponding high-resolution optical mapping measurements were conducted on rabbit hearts with DC stimuli applied via a relay system. DC application to diastolic tissue induced anodal and cathodal make excitations in both simulations and experiments. Subsequently, similar static epicardial virtual electrode patterns were formed that interacted with sinus beats but did not induce reentry. Upon battery release during diastole, break excitations caused single ectopics, similar to application, before sinus rhythm resumed. Reentry induction was possible for short battery applications when break excitations were slowed and forced to take convoluted pathways upon interaction with refractory tissue from prior make excitations or sinus beats. Short-lived reentrant activity could be induced for battery release shortly after a sinus beat for longer battery applications. In conclusion, the application of a 9-V battery to the epicardial surface induces reentry through a complex interaction of break excitations after battery release with prior induced make excitations or sinus beats. PMID:24464758

  15. Mechanism of reentry induction by a 9-V battery in rabbit ventricles.

    PubMed

    Bishop, Martin J; Burton, Rebecca A B; Kalla, Manish; Nanthakumar, Kumaraswamy; Plank, Gernot; Bub, Gil; Vigmond, Edward J

    2014-04-01

    Although the application of a 9-V battery to the epicardial surface is a simple method of ventricular fibrillation induction, the fundamental mechanisms underlying this process remain unstudied. We used a combined experimental and modelling approach to understand how the interaction of direct current (DC) from a battery may induce reentrant activity within rabbit ventricles and its dependence on battery application timing and duration. A rabbit ventricular computational model was used to simulate 9-V battery stimulation for different durations at varying onset times during sinus rhythm. Corresponding high-resolution optical mapping measurements were conducted on rabbit hearts with DC stimuli applied via a relay system. DC application to diastolic tissue induced anodal and cathodal make excitations in both simulations and experiments. Subsequently, similar static epicardial virtual electrode patterns were formed that interacted with sinus beats but did not induce reentry. Upon battery release during diastole, break excitations caused single ectopics, similar to application, before sinus rhythm resumed. Reentry induction was possible for short battery applications when break excitations were slowed and forced to take convoluted pathways upon interaction with refractory tissue from prior make excitations or sinus beats. Short-lived reentrant activity could be induced for battery release shortly after a sinus beat for longer battery applications. In conclusion, the application of a 9-V battery to the epicardial surface induces reentry through a complex interaction of break excitations after battery release with prior induced make excitations or sinus beats.

  16. Diminution of Heart Rate Variability in Bipolar Depression

    PubMed Central

    Hage, Brandon; Britton, Briana; Daniels, David; Heilman, Keri; Porges, Stephen W.; Halaris, Angelos

    2017-01-01

    Autonomic nervous system (ANS) dysregulation in depression is associated with symptoms associated with the ANS. The beat-to-beat pattern of heart rate defined as heart rate variability (HRV) provides a noninvasive portal to ANS function and has been proposed to represent a means of quantifying resting vagal tone. We quantified HRV in bipolar depressed (BDD) patients as a measure of ANS dysregulation seeking to establish HRV as a potential diagnostic and prognostic biomarker for treatment outcome. Forty-seven BDD patients were enrolled. They were randomized to receive either escitalopram–celecoxib or escitalopram-placebo over 8 weeks in a double-blind study design. Thirty-five patients completed the HRV studies. Thirty-six healthy subjects served as controls. HRV was assessed at pretreatment and end of study and compared with that of controls. HRV was quantified and corrected for artifacts using an algorithm that incorporates time and frequency domains to address non-stationarity of the beat-to-beat heart rate pattern. Baseline high frequency-HRV (i.e., respiratory sinus arrhythmia) was lower in BDD patients than controls, although the difference did not reach significance. Baseline low-frequency HRV was significantly lower in BDD patients (ln4.20) than controls (ln = 5.50) (p < 0.01). Baseline heart period was significantly shorter (i.e., faster heart rate) in BDD patients than controls. No significant change in HRV parameters were detected over the course of the study with either treatment. These findings suggest that components of HRV may be diminished in BDD patients. PMID:29270399

  17. Generation Mechanism of Alternans in Luo-Rudy Model

    NASA Astrophysics Data System (ADS)

    Kitajima, Hiroyuki; Ioka, Eri; Yazawa, Toru

    Electrical alternans is the alternating amplitude from beat to beat in the action potential of the cardiac cell. It has been associated with ventricular arrhythmias in many clinical studies; however, its dynamical mechanisms remain unknown. The reason is that we do not have realistic network models of the heart system. Recently, Yazawa clarified the network structure of the heart and the central nerve system in the crustacean heart. In this study, we construct a simple model of the heart system based on Yazawa’s experimental data. Using this model, we clarify that two parameters (the conductance of sodium ions and free concentration of potassium ions in the extracellular compartment) play the key roles of generating alternans. In particular, we clarify that the inactivation gate of the time-independent potassium channel is the most important parameter. Moreover, interaction between the membrane potential and potassium ionic currents is significant for generating alternate rhythms. This result indicates that if the muscle cell has problems such as channelopathies, there is great risk of generating alternans.

  18. Characterization of electrical noise limits in ultra-stable laser systems.

    PubMed

    Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H

    2016-12-01

    We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.

  19. System identification of dynamic closed-loop control of total peripheral resistance by arterial and cardiopulmonary baroreceptors

    NASA Technical Reports Server (NTRS)

    Aljuri, A. N.; Bursac, N.; Marini, R.; Cohen, R. J.

    2001-01-01

    Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals. Grant numbers: NAG5-4989. c 2001. Elsevier Science Ltd. All rights reserved.

  20. Beat-to-beat heart rate estimation fusing multimodal video and sensor data

    PubMed Central

    Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen

    2015-01-01

    Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference. PMID:26309754

  1. Beat-to-beat heart rate estimation fusing multimodal video and sensor data.

    PubMed

    Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen

    2015-08-01

    Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference.

  2. Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the Binaural Interaction Component (BIC).

    PubMed

    Ozdamar, Ozcan; Bohorquez, Jorge; Mihajloski, Todor; Yavuz, Erdem; Lachowska, Magdalena

    2011-01-01

    Electrophysiological indices of auditory binaural beats illusions are studied using late latency evoked responses. Binaural beats are generated by continuous monaural FM tones with slightly different ascending and descending frequencies lasting about 25 ms presented at 1 sec intervals. Frequency changes are carefully adjusted to avoid any creation of abrupt waveform changes. Binaural Interaction Component (BIC) analysis is used to separate the neural responses due to binaural involvement. The results show that the transient auditory evoked responses can be obtained from the auditory illusion of binaural beats.

  3. Evaluation of heart rhythm variability and arrhythmia in children with systemic and localized scleroderma.

    PubMed

    Wozniak, Jacek; Dabrowski, Rafal; Luczak, Dariusz; Kwiatkowska, Malgorzata; Musiej-Nowakowska, Elzbieta; Kowalik, Ilona; Szwed, Hanna

    2009-01-01

    To evaluate possible disturbances in autonomic regulation and cardiac arrhythmias in children with localized and systemic scleroderma. There were 40 children included in the study: 20 with systemic and 20 with localized scleroderma. The control group comprised 20 healthy children. In 24-hour Holter recording, the average rate of sinus rhythm was significantly higher in the groups with systemic and localized scleroderma than in the control group, but there was no significant difference between them. The variability of heart rhythm in both groups was significantly decreased. In the group with systemic scleroderma, single supraventricular ectopic beats were observed in 20% and runs were seen in 40% of patients. In the group with localized scleroderma, supraventricular single ectopic beats occurred in 35% of patients and runs in 45% of those studied. Ventricular arrhythmia occurred in 2 children with systemic scleroderma, but in 1 child, it was complex. The most frequent cardiac arrhythmias in both types of scleroderma in children were of supraventricular origin, whereas ventricular arrhythmias did not occur very often. There were no significant differences in autonomic disturbances manifesting as a higher heart rate and decreased heart rate variability between localized and systemic scleroderma.

  4. Development of multifunctional optical coherence tomography and application to mouse myocardial infarction model in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jang, Sun-Joo; Park, Taejin; Shin, Inho; Park, Hyun Sang; Shin, Paul; Oh, Wang-Yuhl

    2016-02-01

    Optical coherence tomography (OCT) is a useful imaging method for in vivo tissue imaging with deep penetration and high spatial resolution. However, imaging of the beating mouse heart is still challenging due to limited temporal resolution or penetration depth. Here, we demonstrate a multifunctional OCT system for a beating mouse heart, providing various types of visual information about heart pathophysiology with high spatiotemporal resolution and deep tissue imaging. Angiographic imaging and polarization-sensitive (PS) imaging were implemented with the electrocardiogram (ECG)-triggered beam scanning scheme on the high-speed OCT platform (A-line rate: 240 kHz). Depth-resolved local birefringence and the local orientation of the mouse myocardial fiber were visualized from the PS-OCT. ECG-triggered angiographic OCT (AOCT) with the custom-built motion stabilization imaging window provided myocardial vasculature of a beating mouse heart. Mice underwent coronary artery ligation to derive myocardial infarction (MI) and were imaged with the multifunctional OCT system at multiple time points. AOCT and PS-OCT visualize change of functionality of coronary vessels and myocardium respectively at different phases (acute and chronic) of MI in an ischemic mouse heart. Taken together, the integrated imaging of PS-OCT and AOCT would play an important role in study of MI providing multi-dimensional information of the ischemic mouse heart in vivo.

  5. Binaural auditory beats affect long-term memory.

    PubMed

    Garcia-Argibay, Miguel; Santed, Miguel A; Reales, José M

    2017-12-08

    The presentation of two pure tones to each ear separately with a slight difference in their frequency results in the perception of a single tone that fluctuates in amplitude at a frequency that equals the difference of interaural frequencies. This perceptual phenomenon is known as binaural auditory beats, and it is thought to entrain electrocortical activity and enhance cognition functions such as attention and memory. The aim of this study was to determine the effect of binaural auditory beats on long-term memory. Participants (n = 32) were kept blind to the goal of the study and performed both the free recall and recognition tasks after being exposed to binaural auditory beats, either in the beta (20 Hz) or theta (5 Hz) frequency bands and white noise as a control condition. Exposure to beta-frequency binaural beats yielded a greater proportion of correctly recalled words and a higher sensitivity index d' in recognition tasks, while theta-frequency binaural-beat presentation lessened the number of correctly remembered words and the sensitivity index. On the other hand, we could not find differences in the conditional probability for recall given recognition between beta and theta frequencies and white noise, suggesting that the observed changes in recognition were due to the recollection component. These findings indicate that the presentation of binaural auditory beats can affect long-term memory both positively and negatively, depending on the frequency used.

  6. Men's violence against women in rural Bangladesh: undermined or exacerbated by microcredit programmes?

    PubMed

    Schuler, S R; Hashemi, S M; Badal, S H

    1998-05-01

    This ethnographic study examined the sociocultural context of domestic violence in 6 rural villages in Bangladesh, and the prevalence of wife-beating and its association with women's empowerment in income generation programs (IGPs). Data were obtained from interviews conducted during 1990-96. Four villages had IGPs, and 2 villages did not have credit programs. Over 66% of women reported having been beaten at one time or another. In one village 87% reported beatings. 38% reported beatings in the preceding year (a range of 14-60%). Men beat their wives over trivial matters or frustrations over problems for which wives were not responsible. Beatings were attributed to mens' desire to control behavior and reassert their authority when challenged or to exploit their wives for financial gain. Some of the most severe beatings were linked with dowry. Both husbands and wives considered the beatings legitimate. The highest level of violence was in villages that were experiencing the most changes in gender roles and that had the most women contributing to family support. The lowest levels of violence were in villages with the fewest contributing to family support. Interviews, case studies, and observations yielded ambivalent evidence about the influence of credit programs on domestic violence. Credit programs have the potential to increase women's status and to disseminate anti-violence messages among both men and women.

  7. Evaluation of Left Ventricular Diastolic Dysfunction with Early Systolic Dysfunction Using Two-Dimensional Speckle Tracking Echocardiography in Canine Heart Failure Model.

    PubMed

    Wu, Wei-Chun; Ma, Hong; Xie, Rong-Ai; Gao, Li-Jian; Tang, Yue; Wang, Hao

    2016-04-01

    This study evaluated the role of two-dimensional speckle tracking echocardiography (2DSTE) for predicting left ventricular (LV) diastolic dysfunction in pacing-induced canine heart failure. Pacing systems were implanted in 8 adult mongrel dogs, and continuous rapid right ventricular pacing (RVP, 240 beats/min) was maintained for 2 weeks. The obtained measurements from 2DSTE included global strain rate during early diastole (SRe) and during late diastole (SRa) in the longitudinal (L-SRe, L-SRa), circumferential (C-SRe, C-SRa), and radial directions (R-SRe, R-SRa). Changes in heart morphology were observed by light microscopy and transmission electron microscopy at 2 weeks. The onset of LV diastolic dysfunction with early systolic dysfunction occurred 3 days after RVP initiation. Most of the strain rate imaging indices were altered at 1 or 3 days after RVP onset and continued to worsen until heart failure developed. Light and transmission electron microscopy showed myocardial vacuolar degeneration and mitochondrial swelling in the left ventricular at 2 weeks after RVP onset. Pearson's correlation analysis revealed that parameters of conventional echocardiography and 2DSTE showed moderate correlation with LV pressure parameters, including E/Esep' (r = 0.58, P < 0.01), L-SRe (r = -0.58, P < 0.01), E/L-SRe (r = 0.65, P < 0.01), and R-SRe (r = 0.53, P < 0.01). ROC curves analysis showed that these indices of conventional echocardiography and strain rate imaging could effectively predict LV diastolic dysfunction (area under the curve: E/Esep' 0.78; L-SRe 0.84; E/L-SRe 0.80; R-SRe 0.80). 2DSTE was a sensitive and accurate technique that could be used for predicting LV diastolic dysfunction in canine heart failure model. © 2015, Wiley Periodicals, Inc.

  8. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom

    2017-04-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.

  9. Dynamic characteristics of heart rate control by the autonomic nervous system in rats.

    PubMed

    Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru

    2010-09-01

    We estimated the transfer function of autonomic heart rate (HR) control by using random binary sympathetic or vagal nerve stimulation in anaesthetized rats. The transfer function from sympathetic stimulation to HR response approximated a second-order, low-pass filter with a lag time (gain, 4.29 +/- 1.55 beats min(1) Hz(1); natural frequency, 0.07 +/- 0.03 Hz; damping coefficient, 1.96 +/- 0.64; and lag time, 0.73 +/- 0.12 s). The transfer function from vagal stimulation to HR response approximated a first-order, low-pass filter with a lag time (gain, 8.84 +/- 4.51 beats min(1) Hz(1); corner frequency, 0.12 +/- 0.06 Hz; and lag time, 0.12 +/- 0.08 s). These results suggest that the dynamic characteristics of HR control by the autonomic nervous system in rats are similar to those of larger mammals.

  10. Focusing on the Basics in Beat-the-Odds Schools. Policy Brief

    ERIC Educational Resources Information Center

    Lefkowits, Laura; Woempner, Carolyn

    2006-01-01

    Researchers at Mid-Continent Research for Education and Learning (McREL) recently completed a study of "beat-the-odds" schools--high-needs schools that demonstrated atypically high student achievement. This policy brief draws from the report of the study's findings, "High-Needs Schools--What Does It Take to Beat the Odds?"…

  11. Sponsoring True Feeling: Literacy, "Parrhêsia," and Civic "Mythos" in the Writings of Detained Youth

    ERIC Educational Resources Information Center

    Catchings, Libby

    2016-01-01

    This qualitative study traces different articulations of the public, emotional honesty, and economic advantage in the literacy sponsorship of detained writer Lil' Purp by "The Beat Within," a publication for incarcerated youth and adults. Findings are compared to "The Beat"'s own account of Purp's progress, revealing a set of…

  12. The Short Supply of Saints: Limits on Replication of Models that "Beat the Odds"

    ERIC Educational Resources Information Center

    Wilder, Tamara; Jacobsen, Rebecca

    2010-01-01

    Researchers have identified effective practices that allow schools to "beat the odds" and close the reading achievement gap. Although identifying these practices is important, researchers have paid little attention to the work it takes to implement them. Through interviews with teachers who work at schools identified as beating the odds, this…

  13. Observation of ground-state quantum beats in atomic spontaneous emission.

    PubMed

    Norris, D G; Orozco, L A; Barberis-Blostein, P; Carmichael, H J

    2010-09-17

    We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which path" information in the intermediate state.

  14. Water dynamics in small reverse micelles in two solvents: two-dimensional infrared vibrational echoes with two-dimensional background subtraction.

    PubMed

    Fenn, Emily E; Wong, Daryl B; Fayer, M D

    2011-02-07

    Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w(0), but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl(4) system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.

  15. Water dynamics in small reverse micelles in two solvents: Two-dimensional infrared vibrational echoes with two-dimensional background subtraction

    NASA Astrophysics Data System (ADS)

    Fenn, Emily E.; Wong, Daryl B.; Fayer, M. D.

    2011-02-01

    Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w0 = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w0 = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w0, but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl4 system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.

  16. Dependency of Calcium Alternans on Ryanodine Receptor Refractoriness

    PubMed Central

    Alvarez-Lacalle, Enric; Cantalapiedra, Inma R.; Peñaranda, Angelina; Cinca, Juan; Hove-Madsen, Leif; Echebarria, Blas

    2013-01-01

    Background Rapid pacing rates induce alternations in the cytosolic calcium concentration caused by fluctuations in calcium released from the sarcoplasmic reticulum (SR). However, the relationship between calcium alternans and refractoriness of the SR calcium release channel (RyR2) remains elusive. Methodology/Principal Findings To investigate how ryanodine receptor (RyR2) refractoriness modulates calcium handling on a beat-to-beat basis using a numerical rabbit cardiomyocyte model. We used a mathematical rabbit cardiomyocyte model to study the beat-to-beat calcium response as a function of RyR2 activation and inactivation. Bi-dimensional maps were constructed depicting the beat-to-beat response. When alternans was observed, a novel numerical clamping protocol was used to determine whether alternans was caused by oscillations in SR calcium loading or by RyR2 refractoriness. Using this protocol, we identified regions of RyR2 gating parameters where SR calcium loading or RyR2 refractoriness underlie the induction of calcium alternans, and we found that at the onset of alternans both mechanisms contribute. At low inactivation rates of the RyR2, calcium alternans was caused by alternation in SR calcium loading, while at low activation rates it was caused by alternation in the level of available RyR2s. Conclusions/Significance We have mapped cardiomyocyte beat-to-beat responses as a function of RyR2 activation and inactivation, identifying domains where SR calcium load or RyR2 refractoriness underlie the induction of calcium alternans. A corollary of this work is that RyR2 refractoriness due to slow recovery from inactivation can be the cause of calcium alternans even when alternation in SR calcium load is present. PMID:23390511

  17. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping

    PubMed Central

    Cameron, Daniel J.; Bentley, Jocelyn; Grahn, Jessica A.

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant’s ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion. PMID:26029122

  18. The Impact of Averaging Window Length on the “Desaturation” Indexes Obtained Via Overnight Pulse Oximetry at High Altitude

    PubMed Central

    Cross, Troy J.; Keller-Ross, Manda; Issa, Amine; Wentz, Robert; Taylor, Bryan; Johnson, Bruce

    2015-01-01

    Study Objectives: To determine the impact of averaging window-length on the “desaturation” indexes (DIs) obtained via overnight pulse oximetry (SpO2) at high altitude. Design: Overnight SpO2 data were collected during a 10-day sojourn at high altitude. SpO2 was obtained using a commercial wrist-worn finger oximeter whose firmware was modified to store unaveraged beat-to-beat data. Simple moving averages of window lengths spanning 2 to 20 cardiac beats were retrospectively applied to beat-to-beat SpO2 datasets. After SpO2 artifacts were removed, the following DIs were then calculated for each of the averaged datasets: oxygen desaturation index (ODI); total sleep time with SpO2 < 80% (TST < 80), and the lowest SpO2 observed during sleep (SpO2 low). Setting: South Base Camp, Mt. Everest (5,364 m elevation). Participants: Five healthy, adult males (35 ± 5 y; 180 ± 1 cm; 85 ± 4 kg). Interventions: N/A. Measurements and Results: 49 datasets were obtained from the 5 participants, totalling 239 hours of data. For all window lengths ≥ 2 beats, ODI and TST < 80 were lower, and SpO2 low was higher than those values obtained from the beat-to-beat SpO2 time series data (P < 0.05). Conclusions: Our findings indicate that increasing oximeter averaging window length progressively underestimates the frequency and magnitude of sleep disordered breathing events at high altitude, as indirectly assessed via the desaturation indexes. Citation: Cross TJ, Keller-Ross M, Issa A, Wentz R, Taylor B, Johnson B. The impact of averaging window length on the “desaturation” indexes obtained via overnight pulse oximetry at high altitude. SLEEP 2015;38(8):1331–1334. PMID:25581919

  19. Binaural beat technology in humans: a pilot study to assess psychologic and physiologic effects.

    PubMed

    Wahbeh, Helané; Calabrese, Carlo; Zwickey, Heather

    2007-01-01

    Binaural beat technology (BBT) products are sold internationally as personal development and health improvement tools. Producers suggest benefit from regular listening to binaural beats including reduced stress and anxiety, and increased focus, concentration, motivation, confidence, and depth in meditation. Binaural beats are auditory brainstem responses that originate in the superior olivary nucleus as a result of different frequency auditory stimuli provided to each ear. Listeners to binaural beat "hear" a beat at a frequency equal to the difference between the frequencies of the applied tones. The objectives of this pilot study were to gather preliminary data on psychologic and physiologic effects of 60 days daily use of BBT for hypothesis generation and to assess compliance, feasibility, and safety for future studies. Uncontrolled pilot study. Eight healthy adults participated in the study. Participants listened to a CD with delta (0-4 Hz) binaural beat frequencies daily for 60 days. Psychologic and physiological data were collected before and after a 60-day intervention. PSYCHOLOGIC: Depression (Beck Depression Inventory-2), anxiety (State-Trait Anxiety Inventory), mood (Profile of Mood States), absorption (Tellegen Absorption Scale) and quality of Life (World Health Organization-Quality of Life Inventory). PHYSIOLOGICAL: Cortisol, dehydroepiandrosterone, melatonin, insulin-like growth factor-1, serotonin, dopamine, epinephrine, norepinephrine, weight, blood pressure, high sensitivity C-reactive protein. There was a decrease in trait anxiety (p = 0.004), an increase in quality of life (p = 0.03), and a decrease in insulin-like growth factor-1 (p = 0.01) and dopamine (p = 0.02) observed between pre- and postintervention measurements. Binaural beat technology may exhibit positive effect on self-reported psychologic measures, especially anxiety. Further research is warranted to explore the effects on anxiety using a larger, randomized and controlled trial.

  20. Sympathoadrenal balance and physiological stress response in cattle at spontaneous and PGF2α-induced calving.

    PubMed

    Nagel, Christina; Trenk, Lisa; Aurich, Christine; Ille, Natascha; Pichler, Martina; Drillich, Marc; Pohl, Werner; Aurich, Jörg

    2016-03-15

    Increased cortisol release in parturient cows may either represent a stress response or is part of the endocrine changes that initiate calving. Acute stress elicits an increase in heart rate and decrease in heart rate variability (HRV). Therefore, we analyzed cortisol concentration, heart rate and HRV variables standard deviation of beat-to-beat interval (SDRR) and root mean square of successive beat-to-beat intervals (RMSSD) in dairy cows allowed to calve spontaneously (SPON, n = 6) or with PGF2α-induced preterm parturition (PG, n = 6). We hypothesized that calving is a stressor, but induced parturition is less stressful than term calving. Saliva collection for cortisol analysis and electrocardiogram recordings for heart rate and HRV analysis were performed from 32 hours before to 18.3 ± 0.7 hours after delivery. Cortisol concentration increased in SPON and PG cows, peaked 15 minutes after delivery (P < 0.001) but was higher in SPON versus PG cows (P < 0.001) during and within 2 hours after calving. Heart rate peaked during the expulsive phase of labor and was higher in SPON than in PG cows (time × group P < 0.01). The standard deviation of beat-to-beat interval and RMSSD peaked at the end of the expulsive phase of labor (P < 0.001), indicating high vagal activity. Standard deviation of beat-to-beat interval (P < 0.01) and RMSSD (P < 0.05) were higher in SPON versus PG cows. Based on physiological stress parameters, calving is perceived as stressful but expulsion of the calf is associated with a transiently increased vagal tone which may enhance uterine contractility. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping.

    PubMed

    Cameron, Daniel J; Bentley, Jocelyn; Grahn, Jessica A

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant's ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  2. Perception of patterns of musical beat distribution in phonological developmental dyslexia: significant longitudinal relations with word reading and reading comprehension.

    PubMed

    Goswami, Usha; Huss, Martina; Mead, Natasha; Fosker, Tim; Verney, John P

    2013-05-01

    In a recent study, we reported that the accurate perception of beat structure in music ('perception of musical meter') accounted for over 40% of the variance in single word reading in children with and without dyslexia (Huss et al., 2011). Performance in the musical task was most strongly associated with the auditory processing of rise time, even though beat structure was varied by manipulating the duration of the musical notes. Here we administered the same musical task a year later to 88 children with and without dyslexia, and used new auditory processing measures to provide a more comprehensive picture of the auditory correlates of the beat structure task. We also measured reading comprehension and nonword reading in addition to single word reading. One year later, the children with dyslexia performed more poorly in the musical task than younger children reading at the same level, indicating a severe perceptual deficit for musical beat patterns. They now also had significantly poorer perception of sound rise time than younger children. Longitudinal analyses showed that the musical beat structure task was a significant longitudinal predictor of development in reading, accounting for over half of the variance in reading comprehension along with a linguistic measure of phonological awareness. The non-linguistic musical beat structure task is an important independent longitudinal and concurrent predictor of variance in reading attainment by children. The different longitudinal versus concurrent associations between musical beat perception and auditory processing suggest that individual differences in the perception of rhythmic timing are an important shared neural basis for individual differences in children in linguistic and musical processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Chaudhari, Umesh; Nemade, Harshal; Sureshkumar, Poornima; Vinken, Mathieu; Ates, Gamze; Rogiers, Vera; Hescheler, Jürgen; Hengstler, Jan Georg; Sachinidis, Agapios

    2018-01-01

    There is a large demand of a human relevant in vitro test system suitable for assessing the cardiotoxic potential of cosmetic ingredients and other chemicals. Using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we have already established an in vitro cardiotoxicity assay and identified genomic biomarkers of anthracycline-induced cardiotoxicity in our previous work. Here, five cosmetic ingredients were studied by the new hiPSC-CMs test; kojic acid (KJA), triclosan (TS), triclocarban (TCC), 2,7-naphthalenediol (NPT), and basic red 51 (BR51) based on cytotoxicity as well as ATP assays, beating rate, and genomic biomarkers to determine the lowest observed effect concentration (LOEC) and no observed effect concentration (NOEC). The LOEC for beating rate were 400, 10, 3, >400, and 3 µM for KJA, TS, TCC, NPT, and BR51, respectively. The corresponding concentrations for cytotoxicity or ATP depletion were similar, with the exception of TS and TCC, where the cardiomyocyte-beating assay showed positive results at non-cytotoxic concentrations. Functional analysis also showed that the individual compounds caused different effects on hiPSC-CMs. While exposure to KJA, TS, TCC, and BR51 induced significant arrhythmic beating, NPT slightly decreased cell viability, but did not influence beating. Gene expression studies showed that TS and NPT caused down-regulation of cytoskeletal and cardiac ion homeostasis genes. Moreover, TS and NPT deregulated genomic biomarkers known to be affected also by anthracyclines. The present study demonstrates that hiPSC-CMs can be used to determine LOECs and NOECs in vitro, which can be compared to human blood concentrations to determine margins of exposure. Our in vitro assay, which so far has been tested with several anthracyclines and cosmetics, still requires validation by larger numbers of positive and negative controls, before it can be recommended for routine analysis.

  4. [Regeneration of the ciliary beat of human ciliated cells].

    PubMed

    Wolf, G; Koidl, B; Pelzmann, B

    1991-10-01

    The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.

  5. Metronome rate and walking foot contact time in young adults.

    PubMed

    Dickstein, Ruth; Plax, Michael

    2012-02-01

    It is assumed that when people walk guided by an audible constant rate, they match foot contact to the external pace. The purpose of this preliminary study was to test that assumption by examining the temporal relationship between audible signals generated by a metronome and foot contact time during gait. Ten healthy young women were tested in walking repetitions guided by metronome rates of 60, 110, and 150 beats/min. Metronome beats and foot contact times were collected in real time. The findings indicated that foot contact was not fully synchronized with the auditory signals; the shortest time interval between the metronome beat and foot contact time was at the prescribed rate of 60 beats/min., while the longest interval was at the rate of 150 beats/min. The correlation between left and right foot contact times was highest with the slowest rate and lowest with the fastest rate.

  6. Free-electron laser from wave-mechanical beats of 2 electron beams

    NASA Technical Reports Server (NTRS)

    Lichtenstein, R. M.

    1982-01-01

    It is possible, though technically difficult, to produce beams of free electrons that exhibit beats of a quantum mechanical nature. (1) the generation of electromagnetic radiation, e.g., light, based on the fact that the beats give rise to alternating charge and current densities; and a frequency shifter, based on the fact that a beam with beats constitutes a moving grating. When such a grating is exposed to external radiation of suitable frequency and direction, the reflected rediation will be shifted in frequency, since the grating is moving. A twofold increase of the frequency is readily attainable. It is shown that it is impossible to generate radiation, because the alternating electromagnetic fields that accompany the beats cannot reform themselves into freely propagating waves. The frequency shifter is useless as a practical device, because its reflectance is extremely low for realizable beams.

  7. Structural changes evaluation with Raman spectroscopy in meat batters prepared by different processes.

    PubMed

    Kang, Zhuang-Li; Li, Xiang; He, Hong-Ju; Ma, Han-Jun; Song, Zhao-Jun

    2017-08-01

    A comprehensive study was conducted to evaluate the structural changes of meat and protein of pork batters produced by chopping or beating process through the phase-contrast micrograph, laser light scattering analyzer, scanning electronic microscopy and Raman spectrometer. The results showed that the shattered myofibrilla fragments were shorter and particle-sizes were smaller in the raw batter produced by beating process than those in the chopping process. Compared with the raw and cooked batters produced by chopping process, modifications in amide I and amide III bands revealed a significant decrease of α -helix content and an increase of β -sheet, β -turn and random coils content in the beating process. The changes in secondary structure of protein in the batter produced by beating process was thermally stable. Moreover, more tyrosine residues were buried, and more gauche-gauche-trans disulfide bonds conformations and hydrophobic interactions were formed in the batter produced by beating process.

  8. Photon time-interval statistics applied to the analysis of laser heterodyne signal with photon counter

    NASA Astrophysics Data System (ADS)

    Liu, Lisheng; Zhang, Heyong; Guo, Jin; Zhao, Shuai; Wang, Tingfeng

    2012-08-01

    In this paper, we report a mathematical derivation of probability density function (PDF) of time-interval between two successive photoelectrons of the laser heterodyne signal, and give a confirmation of the theoretical result by both numerical simulation and an experiment. The PDF curve of the beat signal displays a series of fluctuations, the period and amplitude of which are respectively determined by the beat frequency and the mixing efficiency. The beat frequency is derived from the frequency of fluctuations accordingly when the PDF curve is measured. This frequency measurement method still works while the traditional Fast Fourier Transform (FFT) algorithm hardly derives the correct peak value of the beat frequency in the condition that we detect 80 MHz beat signal with 8 Mcps (counts per-second) photons count rate, and this indicates an advantage of the PDF method.

  9. [Effect of Panax ginseng components on the differentiation of mouse embryonic stem cells into cardiac-like cells].

    PubMed

    Sasaki, Toshiya; Oh, Ki-Bong; Matsuoka, Hideaki; Saito, Mikako

    2008-03-01

    Bioactive compounds that may control the specific differentiation from mouse embryonic stem (ES) cells into cardiac-like cells have been screened from herbal medicines. Among seven preparations, Panax ginseng was found to promote the differentiation into beating cells and to sustain their beating for longer than the control. Active compounds were found in its water-soluble fraction. Although they were not isolated, their candidates were surveyed in 42 compounds selected from the database of P. ginseng. Finally we found that vitamin B12 (VB12) and methionine were active. VB12 accelerated the differentiation into beating cells and made the beating rate constantly 100%. Moreover, VB12 was effective in the recovery of beating that was inhibited by spermine action. The mechanism of action of VB12 is discussed in termo of the relevance of intercellular electrical signal transduction.

  10. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lei; Department of Medical Physics, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017; Li, Yu-Xian

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structuresmore » as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.« less

  11. Method and Apparatus of Multiplexing and Acquiring Data from Multiple Optical Fibers Using a Single Data Channel of an Optical Frequency-Domain Reflectometry (OFDR) System

    NASA Technical Reports Server (NTRS)

    Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)

    2014-01-01

    A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.

  12. An ultra low energy biomedical signal processing system operating at near-threshold.

    PubMed

    Hulzink, J; Konijnenburg, M; Ashouei, M; Breeschoten, A; Berset, T; Huisken, J; Stuyt, J; de Groot, H; Barat, F; David, J; Van Ginderdeuren, J

    2011-12-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime and size, must be kept as low as possible. The proposed processing platform is an event-driven system with resources to run applications with different degrees of complexity in an energy-aware way. The architecture uses effective system partitioning to enable duty cycling, single instruction multiple data (SIMD) instructions, power gating, voltage scaling, multiple clock domains, multiple voltage domains, and extensive clock gating. It provides an alternative processing platform where the power and performance can be scaled to adapt to the application need. A case study on a continuous wavelet transform (CWT)-based heart-beat detection shows that the platform not only preserves the sensitivity and positive predictivity of the algorithm but also achieves the lowest energy/sample for ElectroCardioGram (ECG) heart-beat detection publicly reported today.

  13. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.

  14. Microprocessor Based Real-Time Monitoring of Multiple ECG Signals

    PubMed Central

    Nasipuri, M.; Basu, D.K.; Dattagupta, R.; Kundu, M.; Banerjee, S.

    1987-01-01

    A microprocessor based system capable of realtime monitoring of multiple ECG signals has been described. The system consists of a number of microprocessors connected in a hierarchical fashion and capable of working concurrently on ECG data collected from different channels. The system can monitor different arrhythmic abnormalities for at least 36 patients even for a heart rate of 500 beats/min.

  15. Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV.

    PubMed

    Ranpuria, Reena; Hall, Martica; Chan, Chris T; Unruh, Mark

    2008-02-01

    A common cause of death in end-stage renal disease (ESRD) patients on dialysis is sudden cardiac death (SCD). Compared to the general population, the percentage of cardiovascular deaths that are attributed to SCD is higher in patients treated by dialysis. While coronary artery disease (CAD) is the predominant cause of SCD in dialysis patients, reduced heart rate variability (HRV) may play a role in the higher risk of SCD among other risk factors. HRV refers to beat-to-beat alterations in heart rate as measured by periodic variation in the R-R interval. HRV provides a non-invasive method for investigating autonomic input into the heart. It quantifies the amount by which the R-R interval or heart rate changes from one cardiac cycle to the next. The autonomic nervous system transmits impulses from the central nervous system to peripheral organs and is responsible for controlling the heart rate, blood pressure and respiratory activity. In normal individuals, without cardiac disease, the heart rate has a high degree of beat-to-beat variability. HRV fluctuates with respiration: it increases with inspiration and decreases with expiration and is primarily mediated by parasympathetic activity. HRV has been used to evaluate and quantify the cardiac risk associated with a variety of conditions including cardiac disorders, stroke, multiple sclerosis and diabetes. In this narrative review, we will examine the association between HRV and SCD. This report explains the measurement of HRV and the consequences of reduced HRV in the general population and dialysis patients. Lastly, this review will outline the possible use of HRV as a clinical predictor for SCD in the dialysis population. The current understanding of SCD based on HRV findings among the ESRD population support the use of more aggressive treatment of CAD; greater use of angiotensin converting enzyme inhibitor (ACE-i)/angiotensin receptor blockers (ARBs) and beta-blockers and more frequent and/or nocturnal haemodialysis to improve the survival of a patient with kidney failure.

  16. Influences of lifestyle factors on cardiac autonomic nervous system activity over time.

    PubMed

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    2017-01-01

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in lifestyle factors relate to 2-year changes in cardiac activity. Baseline (n=2618) and 2-year follow-up (n=2010) data of the Netherlands Study of Depression and Anxiety was combined. Baseline data was collected in the Netherlands from 2004-2007. Lifestyle factors were habitual physical activity, frequency of sport activities, alcohol use, and smoking. Indicators of cardiac activity were heart rate (HR), respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP) (100min of registration). The results showed that high physical activity (-1.8beats/min compared to low activity), high frequency of sport activities ('couple of times/week': -2.5beats/min compared to 'almost never') and mild/moderate alcohol use (-1.2beats/min compared to non-drinking) were related to low HR. Heavy smoking was related to high HR (>30cigarettes/day: +5.1beats/min compared to non-smoking). High frequency of sport activities was associated with high RSA ('couple of times/week':+1.7ms compared to 'almost never') and moderate smoking with longer PEP (11-20cigarettes/day: +2.8ms compared to non-smoking). Associations were consistent across waves. Furthermore, 2-year change in frequency of sport activities and number of smoked cigarettes/day was accompanied by 2-year change in HR (β=-0.076 and β=0.101, respectively) and RSA (β=0.046 and β=-0.040, respectively). Our findings support consistent effects of lifestyle on HR and parasympathetic activity in the expected direction. Cardiac autonomic dysregulation may be partly mediating the relationship between lifestyle and subsequent cardiovascular health. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mnemonic Effect of Iconic Gesture and Beat Gesture in Adults and Children: Is Meaning in Gesture Important for Memory Recall?

    ERIC Educational Resources Information Center

    So, Wing Chee; Chen-Hui, Colin Sim; Wei-Shan, Julie Low

    2012-01-01

    Abundant research has shown that encoding meaningful gesture, such as an iconic gesture, enhances memory. This paper asked whether gesture needs to carry meaning to improve memory recall by comparing the mnemonic effect of meaningful (i.e., iconic gestures) and nonmeaningful gestures (i.e., beat gestures). Beat gestures involve simple motoric…

  18. Counting Melodies: Recursion through Music for a Liberal Arts Audience

    ERIC Educational Resources Information Center

    Ludwick, Kurt

    2016-01-01

    In the study of music from a mathematical perspective, several types of counting problems naturally arise. For example, how many different rhythms of a specified length (in beats) can be written if we restrict ourselves to only quarter notes (one beat) and half notes (two beats)? What if we allow whole notes, dotted half notes, etc.? Or, what if…

  19. Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb

    2017-12-01

    We report on heralded-single-photon superradiant beating in the spontaneous four-wave mixing process of Doppler-broadened ladder-type 87Rb atoms. When Doppler-broadened atoms contribute to two-photon coherence, the detection probability amplitudes of the heralded single photons are coherently superposed despite inhomogeneous broadened atomic media. Single-photon superradiant beating is observed, which constitutes evidence for the coherent superposition of two-photon amplitudes from different velocity classes in the Doppler-broadened atomic ensemble. We present a theoretical model in which the single-photon superradiant beating originates from the interference between wavelength-separated two-photon amplitudes via the reabsorption filtering effect.

  20. Beliefs about wife beating: an exploratory study with Lebanese students.

    PubMed

    Obeid, Nadine; Chang, Doris F; Ginges, Jeremy

    2010-06-01

    In recent years, there has been a growing interest in understanding the sociocultural contexts and risk factors for domestic violence in the Arab world. This study provides an analysis of the religious, legal, and familial contexts of domestic violence in Lebanon and assesses contemporary attitudes toward women and wife beating in a sample of 206 Lebanese university students. Gender, patriarchal attitudes, religion, childhood experiences with family violence, and mother's employment status were investigated as predictors of attitudes toward wife beating. Consistent with feminist theories of wife abuse, gender and attitudes toward women's roles emerged as the strongest predictors of beliefs about wife beating.

  1. Measuring and characterizing beat phenomena with a smartphone

    NASA Astrophysics Data System (ADS)

    Osorio, M.; Pereyra, C. J.; Gau, D. L.; Laguarda, A.

    2018-03-01

    Nowadays, smartphones are in everyone’s life. Apart from being excellent tools for work and communication, they can also be used to perform several measurements of simple physical magnitudes, serving as a mobile and inexpensive laboratory, ideal for use physics lectures in high schools or universities. In this article, we use a smartphone to analyse the acoustic beat phenomena by using a simple experimental setup, which can complement lessons in the classroom. The beats were created by the superposition of the waves generated by two tuning forks, with their natural frequencies previously characterized using different applications. After the characterization, we recorded the beats and analysed the oscillations in time and frequency.

  2. Visual suppression of the vestibulo-ocular reflex during space flight

    NASA Technical Reports Server (NTRS)

    Uri, John J.; Thornton, William E.; Moore, Thomas P.; Pool, Sam L.

    1989-01-01

    Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight.

  3. Study on mechanism of amplitude fluctuation of dual-frequency beat in microchip Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Tan, Yidong; Zhang, Shulian; Sun, Liqun

    2017-01-01

    In the laser heterodyne interferometry based on the microchip Nd:YAG dual-frequency laser, the amplitude of the beat note periodically fluctuates in time domain, which leads to the instability of the measurement. On the frequency spectrums of the two mono-frequency components of the laser and their beat note, several weak sideband signals are observed on both sides of the beat note. It is proved that the sideband frequencies are associated with the relaxation oscillation frequencies of the laser. The mechanism for the relaxation oscillations inducing the occurrence of the sideband signals is theoretically analyzed, and the quantitative relationship between the intensity ratio of the beat note to the sideband signal and the level of the amplitude fluctuation is simulated with the derived mathematical model. The results demonstrate that the periodical amplitude fluctuation of the beat note is actually induced by the relaxation oscillation. And the level of the amplitude fluctuation is lower than 10% when the intensity ratio is greater than 32 dB. These conclusions are beneficial to reduce the amplitude fluctuation of the microchip Nd:YAG dual-frequency laser and improve the stability of the heterodyne interferometry.

  4. Biotechnology Process Engineering Center at MIT Home

    Science.gov Websites

    , 2003 BPEC Director Doug Lauffenburger in C&EN's coverstory on Systems Biology C&EN May 19th March 2003 Tissue engineering: The beat goes on Nature Februray 27th 2003 Molecular biology: A fix for

  5. Neural Entrainment to the Beat: The "Missing-Pulse" Phenomenon.

    PubMed

    Tal, Idan; Large, Edward W; Rabinovitch, Eshed; Wei, Yi; Schroeder, Charles E; Poeppel, David; Zion Golumbic, Elana

    2017-06-28

    Most humans have a near-automatic inclination to tap, clap, or move to the beat of music. The capacity to extract a periodic beat from a complex musical segment is remarkable, as it requires abstraction from the temporal structure of the stimulus. It has been suggested that nonlinear interactions in neural networks result in cortical oscillations at the beat frequency, and that such entrained oscillations give rise to the percept of a beat or a pulse. Here we tested this neural resonance theory using MEG recordings as female and male individuals listened to 30 s sequences of complex syncopated drumbeats designed so that they contain no net energy at the pulse frequency when measured using linear analysis. We analyzed the spectrum of the neural activity while listening and compared it to the modulation spectrum of the stimuli. We found enhanced neural response in the auditory cortex at the pulse frequency. We also showed phase locking at the times of the missing pulse, even though the pulse was absent from the stimulus itself. Moreover, the strength of this pulse response correlated with individuals' speed in finding the pulse of these stimuli, as tested in a follow-up session. These findings demonstrate that neural activity at the pulse frequency in the auditory cortex is internally generated rather than stimulus-driven. The current results are both consistent with neural resonance theory and with models based on nonlinear response of the brain to rhythmic stimuli. The results thus help narrow the search for valid models of beat perception. SIGNIFICANCE STATEMENT Humans perceive music as having a regular pulse marking equally spaced points in time, within which musical notes are temporally organized. Neural resonance theory (NRT) provides a theoretical model explaining how an internal periodic representation of a pulse may emerge through nonlinear coupling between oscillating neural systems. After testing key falsifiable predictions of NRT using MEG recordings, we demonstrate the emergence of neural oscillations at the pulse frequency, which can be related to pulse perception. These findings rule out alternative explanations for neural entrainment and provide evidence linking neural synchronization to the perception of pulse, a widely debated topic in recent years. Copyright © 2017 the authors 0270-6474/17/376331-11$15.00/0.

  6. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins

    NASA Astrophysics Data System (ADS)

    Namdeo, S.; Onck, P. R.

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  7. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins.

    PubMed

    Namdeo, S; Onck, P R

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  8. Attitudes toward Wife Beating among Palestinian Women of Reproductive Age from Three Cities in West Bank

    ERIC Educational Resources Information Center

    Dhaher, Enas A.; Mikolajczyk, Rafael T.; Maxwell, Annette E.; Kramer, Alexander

    2010-01-01

    A total of 450 women were interviewed in Mother and Child Health Care Centers in three cities in West Bank, Palestine, to assess attitudes toward wife beating. Overall, women perceived wife beating to be justified if a wife insults her husband (59%), if she disobeys her husband (49%), if she neglects her children (37%), if she goes out without…

  9. Multifractality in Cardiac Dynamics

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Rosenblum, Misha; Stanley, H. Eugene; Havlin, Shlomo; Goldberger, Ary

    1997-03-01

    Wavelet decomposition is used to analyze the fractal scaling properties of heart beat time series. The singularity spectrum D(h) of the variations in the beat-to-beat intervals is obtained from the wavelet transform modulus maxima which contain information on the hierarchical distribution of the singularities in the signal. Multifractal behavior is observed for healthy cardiac dynamics while pathologies are associated with loss of support in the singularity spectrum.

  10. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun

    2011-08-01

    We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.

  11. Synchronization patterns in cerebral blood flow and peripheral blood pressure under minor stroke

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ivanov, Plamen C.; Hu, Kun; Stanley, H. Eugene; Novak, Vera

    2003-05-01

    Stroke is a leading cause of death and disability in the United States. The autoregulation of cerebral blood flow that adapts to changes in systemic blood pressure is impaired after stroke. We investigate blood flow velocities (BFV) from right and left middle cerebral arteries (MCA) and beat-to-beat blood pressure (BP) simultaneously measured from the finger, in 13 stroke and 11 healthy subjects using the mean value statistics and phase synchronization method. We find an increase in the vascular resistance and a much stronger cross-correlation with a time lag up to 20 seconds with the instantaneous phase increment of the BFV and BP signals for the subjects with stroke compared to healthy subjects.

  12. Complexity of the heart rhythm after heart transplantation by entropy of transition network for RR-increments of RR time intervals between heartbeats.

    PubMed

    Makowiec, Danuta; Struzik, Zbigniew; Graff, Beata; Wdowczyk-Szulc, Joanna; Zarczynska-Buchnowiecka, Marta; Gruchala, Marcin; Rynkiewicz, Andrzej

    2013-01-01

    Network models have been used to capture, represent and analyse characteristics of living organisms and general properties of complex systems. The use of network representations in the characterization of time series complexity is a relatively new but quickly developing branch of time series analysis. In particular, beat-to-beat heart rate variability can be mapped out in a network of RR-increments, which is a directed and weighted graph with vertices representing RR-increments and the edges of which correspond to subsequent increments. We evaluate entropy measures selected from these network representations in records of healthy subjects and heart transplant patients, and provide an interpretation of the results.

  13. Coronary–Coronary Bypass

    PubMed Central

    Erdil, Nevzat; Ates, Sanser; Demirkilic, Ufuk; Tatar, Harun; Sag, Cemal

    2002-01-01

    There is increased risk of systemic embolism during cardiopulmonary bypass in patients with a severely atherosclerotic ascending aorta. We report a coronary–coronary bypass in a 74-year-old man with a porcelain aorta. He underwent a proximal right coronary–distal right coronary artery bypass with a saphenous vein graft, combined with a pedicled arterial graft (left internal mammary artery) to the left anterior descending artery, in the presence of a beating heart without cardiopulmonary bypass. The patient survived without evidence of perioperative myocardial infarction or cerebrovascular accident. One year later, follow-up angiography showed graft patency with good distal runoff. Coronary–coronary bypass on a beating heart without cardiopulmonary bypass can be performed safely in a patient with porcelain aorta. (Tex Heart Inst J 2002;29:54–5) PMID:11995853

  14. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049; Gan Chenli

    2006-05-15

    We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-photon nondegenerate four-wave mixing (NDFWM) due to atomic coherence in a multilevel system. The reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear response can be controlled and modified through the color-locked correlation of twin noisy fields.

  15. Beating the downturn

    NASA Astrophysics Data System (ADS)

    2009-05-01

    Laser systems manufacturer Trumpf believes it can survive in the current economic climate with its strategy of diversification in both the laser technologies it is able to offer clients and the wide range of end-user applications that it serves. Nadya Anscombe finds out more.

  16. Plant terpenoids: acute toxicities and effects on flight motor activity and wing beat frequency in the blow fly Phaenicia sericata.

    PubMed

    Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A

    2012-02-01

    We evaluated the acute toxicities and the physiological effects of plant monoterpenoids (eugenol, pulegone, citronellal and alpha-terpineol) and neuroactive insecticides (malathion, dieldrin and RH3421) on flight muscle impulses (FMI) and wing beat signals (WBS) of the blow fly (Phaenicia sericata). Topically-applied eugenol, pulegone, citronellal, and alpha-terpineol produced neurotoxic symptoms, but were less toxic than malathion, dieldrin, or RH3421. Topical application of eugenol, pulegone, and citronellal reduced spike amplitude in one of the two banks of blow fly dorsolongitudinal flight muscles within 6-8 min, but with citronellal, the amplitude of FMIs reverted to a normal pattern within 1 hr. In contrast to pulegone and citronellal, where impulse frequency remained relatively constant, eugenol caused a gradual increase, then a decline in the frequency of spikes in each muscle bank. Wing beating was blocked permanently within 6-7 min of administering pulegone or citronellal and within 16 mins with eugenol. alpha-Terpineol-treated blow flies could not beat their wings despite normal FMI patterns. The actions of these monoterpenoids on blow fly flight motor patterns are discussed and compared with those of dieldrin, malathion, RH3421, and a variety of other neuroactive substances we have previously investigated in this system. Eugenol, pulegone and citronellal readily penetrate blow fly cuticle and interfere with flight muscle and/or central nervous function. Although there were differences in the effects of these compounds, they mainly depressed flight-associated responses, and acted similarly to compounds that block sodium channels and facilitate GABA action.

  17. Kinetics of cycle length dependence of ventricular repolarization: effect of autonomic blockade

    NASA Technical Reports Server (NTRS)

    Raeder, E. A.; Albrecht, P.; Perrott, M.; Cohen, R. J.

    1995-01-01

    INTRODUCTION: Beat-to-beat adaptation of ventricular repolarization duration to cardiac cycle length and autonomic activity has not been previously characterized in the spontaneously beating human heart. METHODS AND RESULTS: The ECG of 14 healthy subjects was recorded from the supine and upright positions. Autonomic blockade was accomplished by atropine and propranolol. RR and RT intervals were measured by a computer algorithm, and the impulse response (h) from RR to RT computed. In the supine position the maximal adjustment of the RT interval occurred in the first beat following a change in cycle length (hpeak = 17.8 +/- 1.6 msec/sec), but continued to be detectable for 3.8 seconds (2.9-4.7 sec). Propranolol attenuated the peak impulse response to 15.8 +/- 4.0 msec/sec (P = NS). In the standing position the peak impulse response was increased to 25.2 +/- 5.0 msec/sec (P = 0.004 vs supine), and the impulse response duration (hdur) shortened to 1.4 seconds (1.3-1.6). This was reversed by beta blockade (hpeak = 10.7 +/- 3.6 [P = 0.005 vs standing]; hdur = 5.5 sec [4.8-6.1]). Parasympathetic and combined autonomic blockade resulted in too little residual heart rate variability to estimate the impulse response accurately. The slope of the regression of delta RT and delta RR in the supine position was 0.0177 +/- 0.0016, which was closely correlated with the peak impulse response (r = 0.91). CONCLUSIONS: System identification techniques can assist in characterizing the cycle dependence of ventricular repolarization and may provide new insights into conditions associated with abnormal repolarization.

  18. Variation of the Korotkoff Stethoscope Sounds During Blood Pressure Measurement: Analysis Using a Convolutional Neural Network.

    PubMed

    Pan, Fan; He, Peiyu; Liu, Chengyu; Li, Taiyong; Murray, Alan; Zheng, Dingchang

    2017-11-01

    Korotkoff sounds are known to change their characteristics during blood pressure (BP) measurement, resulting in some uncertainties for systolic and diastolic pressure (SBP and DBP) determinations. The aim of this study was to assess the variation of Korotkoff sounds during BP measurement by examining all stethoscope sounds associated with each heartbeat from above systole to below diastole during linear cuff deflation. Three repeat BP measurements were taken from 140 healthy subjects (age 21 to 73 years; 62 female and 78 male) by a trained observer, giving 420 measurements. During the BP measurements, the cuff pressure and stethoscope signals were simultaneously recorded digitally to a computer for subsequent analysis. Heartbeats were identified from the oscillometric cuff pressure pulses. The presence of each beat was used to create a time window (1 s, 2000 samples) centered on the oscillometric pulse peak for extracting beat-by-beat stethoscope sounds. A time-frequency two-dimensional matrix was obtained for the stethoscope sounds associated with each beat, and all beats between the manually determined SBPs and DBPs were labeled as "Korotkoff." A convolutional neural network was then used to analyze consistency in sound patterns that were associated with Korotkoff sounds. A 10-fold cross-validation strategy was applied to the stethoscope sounds from all 140 subjects, with the data from ten groups of 14 subjects being analyzed separately, allowing consistency to be evaluated between groups. Next, within-subject variation of the Korotkoff sounds analyzed from the three repeats was quantified, separately for each stethoscope sound beat. There was consistency between folds with no significant differences between groups of 14 subjects (P = 0.09 to P = 0.62). Our results showed that 80.7% beats at SBP and 69.5% at DBP were analyzed as Korotkoff sounds, with significant differences between adjacent beats at systole (13.1%, P = 0.001) and diastole (17.4%, P < 0.001). Results reached stability for SBP (97.8%, at sixth beat below SBP) and DBP (98.1%, at sixth beat above DBP) with no significant differences between adjacent beats (SBP P = 0.74; DBP P = 0.88). There were no significant differences at high-cuff pressures, but at low pressures close to diastole there was a small difference (3.3%, P = 0.02). In addition, greater within subject variability was observed at SBP (21.4%) and DBP (28.9%), with a significant difference between both (P < 0.02). In conclusion, this study has demonstrated that Korotkoff sounds can be consistently identified during the period below SBP and above DBP, but that at systole and diastole there can be substantial variations that are associated with high variation in the three repeat measurements in each subject.

  19. Fractal landscapes in biological systems: long-range correlations in DNA and interbeat heart intervals

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Hausdorff, J. M.; Havlin, S.; Mietus, J.; Sciortino, F.; Simons, M.

    1992-01-01

    Here we discuss recent advances in applying ideas of fractals and disordered systems to two topics of biological interest, both topics having common the appearance of scale-free phenomena, i.e., correlations that have no characteristic length scale, typically exhibited by physical systems near a critical point and dynamical systems far from equilibrium. (i) DNA nucleotide sequences have traditionally been analyzed using models which incorporate the possibility of short-range nucleotide correlations. We found, instead, a remarkably long-range power law correlation. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences as well as intragenomic DNA, but not in cDNA sequences or intron-less genes. We also found that the myosin heavy chain family gene evolution increases the fractal complexity of the DNA landscapes, consistent with the intron-late hypothesis of gene evolution. (ii) The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis, whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state. We found, however, that under normal conditions, beat-to-beat fluctuations in heart rate display long-range power law correlations.

  20. Eliminating the Attentional Blink through Binaural Beats: A Case for Tailored Cognitive Enhancement.

    PubMed

    Reedijk, Susan A; Bolders, Anne; Colzato, Lorenza S; Hommel, Bernhard

    2015-01-01

    Enhancing human cognitive performance is a topic that continues to spark scientific interest. Studies into cognitive-enhancement techniques often fail to take inter-individual differences into account, however, which leads to underestimation of the effectiveness of these techniques. The current study investigated the effect of binaural beats, a cognitive-enhancement technique, on attentional control in an attentional blink (AB) task. As predicted from a neurocognitive approach to cognitive control, high-frequency binaural beats eliminated the AB, but only in individuals with low spontaneous eye-blink rates (indicating low striatal dopamine levels). This suggests that the way in which cognitive-enhancement techniques, such as binaural beats, affect cognitive performance depends on inter-individual differences.

  1. Central Methysergide Prevents Renal Sympathoinhibition and Bradycardia during Hypotensive Hemorrhage

    NASA Technical Reports Server (NTRS)

    Veelken, Roland; Johnson, Kim; Scrogin, Karie E.

    1998-01-01

    Central methysergide prevents renal sympathoinhibition and bradycardia during hypotensive hemorrhage. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were measured in conscious rats during either hemorrhage or cardiopulmonary receptor stimulation with phenylbiguanide (PBG) after intracerebroventricular injection of the 5-HT1/5-HT2-receptor antagonist, methysergide (40 microg). Progressive hemorrhage caused an initial rise (109 +/- 33%) followed by a fall in RSNA (-60 +/- 7%) and a fall in HR (-126 +/- 7 beats/min). Methysergide delayed the hypotension and prevented both the sympathoinhibitory and bradycardic responses to hemorrhage. Systemic 5-HT3-receptor blockade did not influence responses to hemorrhage. The PBG infusion caused transient depressor(-25 +/- 6 mmHg), bradycardic (-176 +/- 40 beats/min), and renal sympathostimulatory (182 +/-47% baseline) responses that were not affected by central methysergide (-20 +/- 6 mmHg, -162 +/- 18 beats/min, 227 +/- 46% baseline). These data indicate that a central serotonergic receptor-mediated component contributes to the sympathoinhibitory and bradycardic responses to hypotensive hemorrhage in conscious rats. Furthermore, the same central 5-HT-receptor populations involved in reflex responses to hypotensive hemorrhage probably do not mediate the sympathoinhibitory response to cardiopulmonary chemosensitive 5-HT3 receptors.

  2. Physiological responses to fire fighting activities.

    PubMed

    Romet, T T; Frim, J

    1987-01-01

    Eight professional fire fighters participated in six fire fighting scenarios at a training facility. Data on heart rate (HR), rectal temperature (Tre), and skin temperatures at the chest and thigh were collected using a portable data acquisition system. Average HR ranged from 122 to 151 beats.min-1 during the six scenarios. Detailed analyses indicated that HR and Tre increases are related to both the physical and environmental stresses of the various activities carried out. The most demanding activity, that of building search and victim rescue, resulted in an average HR of 153 beats.min-1 and Tre rise of 1.3 degree C, while the least demanding activity, that of the crew captain who directs the fire fighting, resulted in an average HR of only 122 beats.min-1 and a Tre rise of only 0.3 degree C. This study shows that fire fighting is strenuous work for those directly entering a building and performing related duties, but that the physical demands of other activities are considerably less. The results further suggest that heat strain injuries in fire fighters could perhaps be reduced by rotating duties frequently with other crew members performing less stressful work.

  3. Urbanization as a Context for a System of Functional News Beats.

    ERIC Educational Resources Information Center

    Burd, Gene

    Noting that urbanization is a useful context in which to study the communications system, this paper offers suggestions for newspapers to help them adapt the realities of the urban community in order to redefine news gathering procedures and reorganize newsrooms around the process of urbanization. The paper proposes six areas for both the study…

  4. HEART: an automated beat-to-beat cardiovascular analysis package using Matlab.

    PubMed

    Schroeder, M J Mark J; Perreault, Bill; Ewert, D L Daniel L; Koenig, S C Steven C

    2004-07-01

    A computer program is described for beat-to-beat analysis of cardiovascular parameters from high-fidelity pressure and flow waveforms. The Hemodynamic Estimation and Analysis Research Tool (HEART) is a post-processing analysis software package developed in Matlab that enables scientists and clinicians to document, load, view, calibrate, and analyze experimental data that have been digitally saved in ascii or binary format. Analysis routines include traditional hemodynamic parameter estimates as well as more sophisticated analyses such as lumped arterial model parameter estimation and vascular impedance frequency spectra. Cardiovascular parameter values of all analyzed beats can be viewed and statistically analyzed. An attractive feature of the HEART program is the ability to analyze data with visual quality assurance throughout the process, thus establishing a framework toward which Good Laboratory Practice (GLP) compliance can be obtained. Additionally, the development of HEART on the Matlab platform provides users with the flexibility to adapt or create study specific analysis files according to their specific needs. Copyright 2003 Elsevier Ltd.

  5. Asymmetrically localized proteins stabilize basal bodies against ciliary beating forces

    PubMed Central

    Galati, Domenico F.

    2016-01-01

    Basal bodies are radially symmetric, microtubule-rich structures that nucleate and anchor motile cilia. Ciliary beating produces asymmetric mechanical forces that are resisted by basal bodies. To resist these forces, distinct regions within the basal body ultrastructure and the microtubules themselves must be stable. However, the molecular components that stabilize basal bodies remain poorly defined. Here, we determine that Fop1 functionally interacts with the established basal body stability components Bld10 and Poc1. We find that Fop1 and microtubule glutamylation incorporate into basal bodies at distinct stages of assembly, culminating in their asymmetric enrichment at specific triplet microtubule regions that are predicted to experience the greatest mechanical force from ciliary beating. Both Fop1 and microtubule glutamylation are required to stabilize basal bodies against ciliary beating forces. Our studies reveal that microtubule glutamylation and Bld10, Poc1, and Fop1 stabilize basal bodies against the forces produced by ciliary beating via distinct yet interdependent mechanisms. PMID:27807131

  6. Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration.

    PubMed

    Kistamás, Kornél; Hegyi, Bence; Váczi, Krisztina; Horváth, Balázs; Bányász, Tamás; Magyar, János; Szentandrássy, Norbert; Nánási, Péter P

    2015-07-01

    Profound changes in tissue redox potential occur in the heart under conditions of oxidative stress frequently associated with cardiac arrhythmias. Since beat-to-beat variability (short term variability, SV) of action potential duration (APD) is a good indicator of arrhythmia incidence, the aim of this work was to study the influence of redox changes on SV in isolated canine ventricular cardiomyocytes using a conventional microelectrode technique. The redox potential was shifted toward a reduced state using a reductive cocktail (containing dithiothreitol, glutathione, and ascorbic acid) while oxidative changes were initiated by superfusion with H2O2. Redox effects were evaluated as changes in "relative SV" determined by comparing SV changes with the concomitant APD changes. Exposure of myocytes to the reductive cocktail decreased SV significantly without any detectable effect on APD. Application of H2O2 increased both SV and APD, but the enhancement of SV was the greater, so relative SV increased. Longer exposure to H2O2 resulted in the development of early afterdepolarizations accompanied by tremendously increased SV. Pretreatment with the reductive cocktail prevented both elevation in relative SV and the development of afterdepolarizations. The results suggest that the increased beat-to-beat variability during an oxidative stress contributes to the generation of cardiac arrhythmias.

  7. [The characteristics of RR-Lorenz plot in persistent atrial fibrillation patients complicating with escape beats and rhythm].

    PubMed

    Pan, Yunping; Zhang, Fangfang; Liu, Ru; Jing, Yan; Shen, Jihong; Li, Zhongjian; Zhu, Huaijie

    2014-06-01

    To explore the characteristics of RR-Lorenz plot in persistent atrial fibrillation (AF) patients complicating with escape beats and rhythm though ambulatory electrocardiogram. The 24-hour ambulatory electrocardiogram of 291 persistent AF patients in second affiliated hospital of Zhengzhou university from July 2005 to April 2013 were retrospectively analyzed and the RR interval and the QRS wave were measured. Patients were divided into two groups according to the distribution of the RR-Lorenz point [AF without escape beats and rhythm group (Group A, n = 259) and AF with escape beats and rhythm group (Group B, n = 32)]. The characteristics of RR-Lorenz plot between the two groups were compared. (1) Fan-shaped RR-Lorenz plots were evidenced in Group A. (2)In Group B, 30 cases showed fan-shaped with L-shaped and a short dense rods along 45° line. The proportion of escape beats and rhythm was 0.28% (275/98 369) -14.06% (11 263/80 112) . The other 2 cases in group B showed no typical RR-Lorenz plots features. RR-Lorenz plot could help to quickly diagnose persistent AF complicating with escape beats and rhythm according to the typical RR-Lorenz plot characteristics in 24-hour ambulatory electrocardiogram.

  8. Observation of Quantum Beating in rb at 2.1 THz and 18.2 THz: Long-Range Rb^{*}-Rb Interactions.

    NASA Astrophysics Data System (ADS)

    Goldshlag, William; Ricconi, Brian J.; Eden, J. Gary

    2017-06-01

    The interaction of Rb 7s ^{2}S_{1/2}, 5d ^{2}D_{3/2,5/2} and 5p ^{2}P_{3/2} atoms with the background species at long range (100-1000Å) has been observed by pump-probe ultrafast laser spectroscopy. Parametric four-wave mixing in Rb vapor with pairs of 50-70 fs pulses produces coherent Rb 6P-5S emission at 420 nm that is modulated by Rb quantum beating. The two dominant beating frequencies are 18.2 THz and 2.07 THz, corresponding to quantum beating between 7S and 5D states and to the (5D-5P_{3/2})-(5P_{3/2}-5S) defect, respectively. Analysis of Rabi oscillations in these pump-probe experiments allows for the mean interaction energy at long range to be determined. The figure shows Fourier transform spectra of representative Rabi oscillation waveforms. The waveform and spectrum at left illustrate quantum beating in Rb at 2.1 THz. The spectrum at right is dominated by the 18.2 THz frequency component generated by 7S-5D beating in Rb. Insets show respective temporal behaviors of the 6P-5S line near the coherent transient (zero interpulse delay).

  9. Characteristics in the beat-to-beat laser-Doppler waveform indices in subjects with diabetes.

    PubMed

    Hsiu, Hsin; Hu, Hsiao-Feng; Wu, Guan-Shian; Hsiao, Fone-Ching

    2014-01-01

    The present study performed laser-Doppler flowmetry (LDF) measurements on the skin surface around the ankle with the aim of verifying if beat-to-beat analysis of the LDF waveform can help to discriminate the microcirculatory-blood-flow (MBF) characteristics between diabetic, prediabetic, and healthy subjects. 84 subjects were assigned to three groups (diabetic, prediabetic, and normal) according to the results of oral glucose tolerance tests. Beat-to-beat analysis was performed on the pulsatile LDF waveform to obtain foot delay time (FDT), flow rise time (FRT), and the corresponding MBF-variability parameters (FDTCV and FRTCV). Relative to the control group, FDT and FRT were significantly shorter in prediabetic subjects, FDT was significantly shorter in diabetic subjects, and FRTCV and FDTCV were significantly larger in prediabetic and diabetic subjects. There were no significant associations for FRT after adjustment for age and gender. The present results indicate that FRT may help to discriminate differences in the elastic properties of local vascular beds during diabetes or even during prediabetic stages. The proposed blood-filling-volume model can help to explain the underlying mechanism. The present findings may aid the noninvasive early detection of diabetes-associated vascular damage, and could be used in the development of home-care and telemedicine applications.

  10. Variability in surface ECG morphology: signal or noise?

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    Using data collected from canine models of acute myocardial ischemia, we investigated two issues of major relevance to electrocardiographic signal averaging: ECG epoch alignment, and the spectral characteristics of the beat-to-beat variability in ECG morphology. With initial digitization rates of 1 kHz, an iterative a posteriori matched filtering alignment scheme, and linear interpolation, we demonstrated that there is sufficient information in the body surface ECG to merit alignment to a precision of 0.1 msecs. Applying this technique to align QRS complexes and atrial pacing artifacts independently, we demonstrated that the conduction delay from atrial stimulus to ventricular activation may be so variable as to preclude using atrial pacing as an alignment mechanism, and that this variability in conduction time be modulated at the frequency of respiration and at a much lower frequency (0.02-0.03Hz). Using a multidimensional spectral technique, we investigated the beat-to-beat variability in ECG morphology, demonstrating that the frequency spectrum of ECG morphological variation reveals a readily discernable modulation at the frequency of respiration. In addition, this technique detects a subtle beat-to-beat alternation in surface ECG morphology which accompanies transient coronary artery occlusion. We conclude that physiologically important information may be stored in the variability in the surface electrocardiogram, and that this information is lost by conventional averaging techniques.

  11. A low-cost simulation platform for flapping wing MAVs

    NASA Astrophysics Data System (ADS)

    Kok, J. M.; Chahl, J. S.

    2015-03-01

    This paper describes the design of a flight simulator for analysing the systems level performance of a Dragonfly-Inspired Micro Air Vehicle (DIMAV). A quasi-steady blade element model is used to analyse the aerodynamic forces. Aerodynamic and environmental forces are then incorporated into a real world flight dynamics model to determine the dynamics of the DIMAV system. The paper also discusses the implementation of the flight simulator for analysing the manoeuvrability of a DIMAV, specifically several modes of flight commonly found in dragonflies. This includes take-off, roll turns and yaw turns. Our findings with the simulator are consistent with results from wind tunnel studies and slow motion cinematography of dragonflies. In the take-off mode of flight, we see a strong dependence of take-off accelerations with flapping frequency. An increase in wing-beat frequency of 10% causes the maximum vertical acceleration to increase by 2g which is similar to that of dragonflies in nature. For the roll and yaw modes of manoeuvring, asymmetrical inputs are applied between the left and right set of wings. The flapping amplitude is increased on the left pair of wings which causes a time averaged roll rate to the right of 1.76rad/s within two wing beats. In the yaw mode, the stroke plane angle is reduced in the left pair of wings to initiate the yaw manoeuvre. In two wing beats, the time averaged yaw rate is 2.54rad/s.

  12. Intercepting beats in predesignated target zones.

    PubMed

    Craig, Cathy; Pepping, Gert-Jan; Grealy, Madeleine

    2005-09-01

    Moving to a rhythm necessitates precise timing between the movement of the chosen limb and the timing imposed by the beats. However, the temporal information specifying the moment when a beat will sound (the moment onto which one must synchronise one's movement) is not continuously provided by the acoustic array. Because of this informational void, the actors need some form of prospective information that will allow them to act sufficiently ahead of time in order to get their hand in the right place at the right time. In this acoustic interception study, where participants were asked to move between two targets in such a way that they arrived and stopped in the target zone at the same time as a beat sounded, we tested a model derived from tau-coupling theory (Lee DN (1998) Ecol Psychol 10:221-250). This model attempts to explain the form of a potential timing guide that specifies the duration of the inter-beat intervals and also describes how this informational guide can be used in the timing and guidance of movements. The results of our first experiment show that, for inter-beat intervals of less than 3 s, a large proportion of the movement (over 70%) can be explained by the proposed model. However, a second experiment, which augments the time between beats so that it surpasses 3 s, shows a marked decline in the percentage of information/movement coupling. A close analysis of the movement kinematics indicates a lack of control and anticipation in the participants' movements. The implications of these findings, in light of other research studies, are discussed.

  13. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise

    PubMed Central

    Ioannou, Christos I.; Pereda, Ernesto; Lindsen, Job P.; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies. PMID:26065708

  14. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    PubMed

    Ioannou, Christos I; Pereda, Ernesto; Lindsen, Job P; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  15. Beating and insulting children as a risk for adult cancer, cardiac disease and asthma.

    PubMed

    Hyland, Michael E; Alkhalaf, Ahmed M; Whalley, Ben

    2013-12-01

    The use of physical punishment for children is associated with poor psychological and behavioral outcomes, but the causal pathway is controversial, and the effects on later physical health unknown. We conducted a cross-sectional survey of asthma, cancer, and cardiac patients (150 in each category, 75 male) recruited from outpatient clinics and 250 healthy controls (125 male). All participants were 40-60 years old and citizens of Saudi Arabia, where the use of beating and insults is an acceptable parenting style. Demographic data and recalled frequency of beatings and insults as a child were assessed on an 8-point scale. Beating and insults were highly correlated (ρ = 0.846). Propensity score matching was used to control for demographic differences between the disease and healthy groups. After controlling for differences, more frequent beating (once or more per month) and insults were associated with a significantly increased risk for cancer (RR = 1.7), cardiac disease (RR = 1.3) and asthma (RR = 1.6), with evidence of increased risk for cancer and asthma with beating frequency of once every 6 months or more. Our results show that a threatening parenting style of beating and insults is associated with increased risk for somatic disease, possibly because this form of parenting induces stress. Our findings are consistent with previous research showing that child abuse and other early life stressors adversely affect adult somatic health, but provide evidence that the pathogenic effects occur also with chronic minor stress. A stress-inducing parenting style, even when normative, has long term adverse health consequences.

  16. Induced Pluripotent Stem Cell–Derived Cardiomyocytes Provide In Vivo Biological Pacemaker Function

    PubMed Central

    Chauveau, Samuel; Anyukhovsky, Evgeny P.; Ben-Ari, Meital; Naor, Shulamit; Jiang, Ya-Ping; Danilo, Peter; Rahim, Tania; Burke, Stephanie; Qiu, Xiaoliang; Potapova, Irina A.; Doronin, Sergey V.; Brink, Peter R.; Binah, Ofer

    2017-01-01

    Background— Although multiple approaches have been used to create biological pacemakers in animal models, induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) have not been investigated for this purpose. We now report pacemaker function of iPSC-CMs in a canine model. Methods and Results— Embryoid bodies were derived from human keratinocytes, their action potential characteristics determined, and their gene expression profiles and markers of differentiation identified. Atrioventricular blocked dogs were immunosuppressed, instrumented with VVI pacemakers, and injected subepicardially into the anterobasal left ventricle with 40 to 75 rhythmically contracting embryoid bodies (totaling 1.3–2×106 cells). ECG and 24-hour Holter monitoring were performed biweekly. After 4 to 13 weeks, epinephrine (1 μg kg−1 min−1) was infused, and the heart removed for histological or electrophysiological study. iPSC-CMs largely lost the markers of pluripotency, became positive for cardiac-specific markers. and manifested If-dependent automaticity. Epicardial pacing of the injection site identified matching beats arising from that site by week 1 after implantation. By week 4, 20% of beats were electronically paced, 60% to 80% of beats were matching, and mean and maximal biological pacemaker rates were 45 and 75 beats per minute. Maximum night and day rates of matching beats were 53±6.9 and 69±10.4 beats per minute, respectively, at 4 weeks. Epinephrine increased rate of matching beats from 35±4.3 to 65±4.0 beats per minute. Incubation of embryoid bodies with the vital dye, Dil, revealed the persistence of injected cells at the site of administration. Conclusions— iPSC-CMs can integrate into host myocardium and create a biological pacemaker. Although this is a promising development, rate and rhythm of the iPSC-CMs pacemakers remain to be optimized. PMID:28500172

  17. Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy.

    PubMed

    Pillekamp, Frank; Haustein, Moritz; Khalil, Markus; Emmelheinz, Markus; Nazzal, Rewa; Adelmann, Roland; Nguemo, Filomain; Rubenchyk, Olga; Pfannkuche, Kurt; Matzkies, Matthias; Reppel, Michael; Bloch, Wilhelm; Brockmeier, Konrad; Hescheler, Juergen

    2012-08-10

    Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.

  18. Differential baroreflex control of heart rate in sedentary and aerobically fit individuals

    NASA Technical Reports Server (NTRS)

    Smith, S. A.; Querry, R. G.; Fadel, P. J.; Welch-O'Connor, R. M.; Olivencia-Yurvati, A.; Shi, X.; Raven, P. B.

    2000-01-01

    PURPOSE: We compared arterial, aortic, and carotid-cardiac baroreflex sensitivity in eight average fit (maximal oxygen uptake, VO2max = 42.2+/-1.9 mL x kg(-1) x min(-1)) and eight high fit (VO2max = 61.9+/-2.2 mL x kg(-1) x min(-1)) healthy young adults. METHODS: Arterial and aortic (ABR) baroreflex functions were assessed utilizing hypo- and hyper-tensive challenges induced by graded bolus injections of sodium nitroprusside (SN) and phenylephrine (PE), respectively. Carotid baroreflex (CBR) sensitivity was determined using ramped 5-s pulses of both pressure and suction delivered to the carotid sinus via a neck chamber collar, independent of drug administration. RESULTS: During vasoactive drug injection, mean arterial pressure (MAP) was similarly altered in average fit (AF) and high fit (HF) groups. However, the heart rate (HR) response range of the arterial baroreflex was significantly attenuated (P < 0.05) in HF (31+/-4 beats x min(-1)) compared with AF individuals (46+/-4 beats x min(-1)). When sustained neck suction and pressure were applied to counteract altered carotid sinus pressure during SN and PE administration, isolating the ABR response, the response range remained diminished (P < 0.05) in the HF population (24+/-3 beats x min(-1)) compared with the AF group (41+/-4 beats x min(-1)). During CBR perturbation, the HF (14+/-1 beats-min(-1)) and AF (16+/-1 beats-min(-1)) response ranges were similar. The arterial baroreflex response range was significantly less than the simple sum of the CBR and ABR (HF, 38+/-3 beats x min(-1) and AF, 57+/-4 beats x min(-1)) in both fitness groups. CONCLUSIONS: These data confirm that reductions in arterial-cardiac reflex sensitivity are mediated by diminished ABR function. More importantly, these data suggest that the integrative relationship between the ABR and CBR contributing to arterial baroreflex control of HR is inhibitory in nature and not altered by exercise training.

  19. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese.

    PubMed

    Wei, Fang-Fei; Li, Yan; Zhang, Lu; Xu, Ting-Yan; Ding, Feng-Hua; Wang, Ji-Guang; Staessen, Jan A

    2014-04-01

    Whether target organ damage is associated with blood pressure (BP) variability independent of level remains debated. We assessed these associations from 10-minute beat-to-beat, 24-hour ambulatory, and 7-day home BP recordings in 256 untreated subjects referred to a hypertension clinic. BP variability indices were variability independent of the mean, maximum-minimum difference, and average real variability. Effect sizes (standardized β) were computed using multivariable regression models. In beat-to-beat recordings, left ventricular mass index (n=128) was not (P≥0.18) associated with systolic BP but increased with all 3 systolic variability indices (+2.97-3.53 g/m(2); P<0.04); the urinary albumin-to-creatinine ratio increased (P≤0.03) with systolic BP (+1.14-1.17 mg/mmol) and maximum-minimum difference (+1.18 mg/mmol); and pulse wave velocity increased with systolic BP (+0.69 m/s; P<0.001). In 24-hour recordings, all 3 indices of organ damage increased (P<0.03) with systolic BP, whereas the associations with BP variability were nonsignificant (P≥0.15) except for increases in pulse wave velocity (P<0.05) with variability independent of the mean (+0.16 m/s) and maximum-minimum difference (+0.17 m/s). In home recordings, the urinary albumin-to-creatinine ratio (+1.27-1.30 mg/mmol) and pulse wave velocity (+0.36-0.40 m/s) increased (P<0.05) with systolic BP, whereas all associations of target organ damage with the variability indices were nonsignificant (P≥0.07). In conclusion, while accounting for BP level, associations of target organ damage with BP variability were readily detectable in beat-to-beat recordings, least noticeable in home recordings, with 24-hour ambulatory monitoring being informative only for pulse wave velocity.

  20. Standing beat-to-beat blood pressure variability is reduced among fallers in the Malaysian Elders Longitudinal Study.

    PubMed

    Goh, Choon-Hian; Ng, Siew-Cheok; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Tan, Maw Pin

    2017-10-01

    The aim of this study was to determine the relationship between falls and beat-to-beat blood pressure (BP) variability.Continuous noninvasive BP measurement is as accurate as invasive techniques. We evaluated beat-to-beat supine and standing BP variability (BPV) using time and frequency domain analysis from noninvasive continuous BP recordings.A total of 1218 older adults were selected. Continuous BP recordings obtained were analyzed to determine standard deviation (SD) and root mean square of real variability (RMSRV) for time domain BPV and fast-Fourier transform low frequency (LF), high frequency (HF), total power spectral density (PSD), and LF:HF ratio for frequency domain BPV.Comparisons were performed between 256 (21%) individuals with at least 1 fall in the past 12 months and nonfallers. Fallers were significantly older (P = .007), more likely to be female (P = .006), and required a longer time to complete the Timed-Up and Go test (TUG) and frailty walk test (P ≤ .001). Standing systolic BPV (SBPV) was significantly lower in fallers compared to nonfallers (SBPV-SD, P = .016; SBPV-RMSRV, P = .033; SBPV-LF, P = .003; SBPV-total PSD, P = .012). Nonfallers had significantly higher supine to standing ratio (SSR) for SBPV-SD, SBPV-RMSRV, and SBPV-total PSD (P = .017, P = .013, and P = .009). In multivariate analyses, standing BPV remained significantly lower in fallers compared to nonfallers after adjustment for age, sex, diabetes, frailty walk, and supine systolic BP. The reduction in frequency-domain SSR among fallers was attenuated by supine systolic BP, TUG, and frailty walk.In conclusion, reduced beat-to-beat BPV while standing is independently associated with increased risk of falls. Changes between supine and standing BPV are confounded by supine BP and walking speed.

Top