Sample records for bed biofilter effect

  1. H2S removal and bacterial structure along a full-scale biofilter bed packed with polyurethane foam in a landfill site.

    PubMed

    Li, Lin; Han, Yunping; Yan, Xu; Liu, Junxin

    2013-11-01

    Hydrogen sulfide accumulated under a cover film in a landfill site was treated for 7 months by a full-scale biofilter packed with polyurethane foam cubes. Sampling ports were set along the biofilter bed to investigate H2S removal and microbial characteristics in the biofilter. The H2S was removed effectively by the biofilter, and over 90% removal efficiency was achieved in steady state. Average elimination capacity of H2S was 2.21 g m(-3) h(-1) in lower part (LPB) and 0.41 g m(-3) h(-1) in upper part (UPB) of the biofilter. Most H2S was eliminated in LPB. H2S concentration varied along the polyurethane foam packed bed, the structure of the bacterial communities showed spatial variation in the biofilter, and H2S removal as well as products distribution changed accordingly. The introduction of odorants into the biofilter shifted the distribution of the existing microbial populations toward a specific culture that could metabolize the target odors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Development and performance of an alternative biofilter system.

    PubMed

    Lee, D H; Lau, A K; Pinder, K L

    2001-01-01

    Step tracer tests were carried out on lab-scale biofilters to determine the residence time distributions (RTDs) of gases passing through two types of biofilters: a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow. Results were used to define the flow patterns in the reactors. "Non-ideal flow" indicates that the flow reactors did not behave like either type of ideal reactor: the perfectly stirred reactor [often called a "continuously stirred tank reactor" (CSTR)] or the plug-flow reactor. The horizontal biofilter with back-mixing was able to accommodate a shorter residence time without the usual requirement of greater biofilter surface area for increased biofiltration efficiency. Experimental results indicated that the first bed of the modified biofilter behaved like two CSTRs in series, while the second bed may be represented by two or three CSTRs in series. Because of the flow baffles used in the horizontal biofilter system, its performance was more similar to completely mixed systems, and hence, it could not be modeled as a plug-flow reactor. For the standard biofilter, the number of CSTRs was found to be between 2 and 9 depending on the airflow rate. In terms of NH3 removal efficiency and elimination capacity, the standard biofilter was not as good as the modified system; moreover, the second bed of the modified biofilter exhibited greater removal efficiency than the first bed. The elimination rate increased as biofilter load increased. An opposite trend was exhibited with respect to removal efficiency.

  3. Gas treatment in trickle-bed biofilters: biomass, how much is enough?

    PubMed

    Alonso, C; Suidan, M T; Sorial, G A; Smith, F L; Biswas, P; Smith, P J; Brenner, R C

    1997-06-20

    The objective of this article is to define and validate a mathematical model that desribes the physical and biological processes occurring in a trickle-bed air biofilter for waste gas treatment. This model considers a two-phase system, quasi-steady-state processes, uniform bacterial population, and one limiting substrate. The variation of the specific surface area with bacterial growth is included in the model, and its effect on the biofilter performance is analyzed. This analysis leads to the conclusion that excessive accumulation of biomass in the reactor has a negative effect on contaminant removal efficiency. To solve this problem, excess biomass is removed via full media fluidization and backwashing of the biofilter. The backwashing technique is also incorporated in the model as a process variable. Experimental data from the biodegradation of toluene in a pilot system with four packed-bed reactors are used to validate the model. Once the model is calibrated with the estimation of the unknown parameters of the system, it is used to simulate the biofilter performance for different operating conditions. Model predictions are found to be in agreement with experimental data. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 583-594, 1997.

  4. Biofiltration of asphalt emissions: Full-scale operation treating off-gases from polymer-modified asphalt production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, L.L.; Gostomski, P.A.; Apel, W.A.

    1999-09-30

    In response to complaints from nearby residents, a biofilter was designed, installed, and tested for treating odors in one of three odorous emission streams from an asphalt plant producing polymer-modified asphalt. Hydrogen sulfide (H{sub 2}S) was determined to be the most prevalent gaseous reduced sulfur compound and was detected in the emission stream only when polymer material was being added to raw asphalt. Emission stream H{sub 2}S concentrations were quite variable, ranging from 16 to approximately 30,000 ppm (v/v) and considered the likely compound contributing most to the plant's odor complaints. The biofilter was effective in controlling odor from themore » production process and removed an overall average of 65% of the H{sub 2}S during polymer addition, and for H{sub 2}S concentrations less than 400 ppmv, removal averaged 98%. These removal efficiencies reflect data from the biofilter operating at 2.5-minute empty bed residence time in 1996 and a 6.1-minute empty bed residence time in 1997. The biofilter's bed became increasingly acidified during the plant's 1997 operating season producing a pH gradient through the bed ranging from a high of 6.6 to a low of 3.1. The bed medium moisture content remained constant at about 60% (wet weight basis), but changes were observed in the water potential: no correlation to performance was determined. Changes in the microbial community reflected the bed acidification trend, with acidophiles becoming generally more numerous in the bed's deeper portions and in the mid to late season when the bed was most acidified. Bed acidification did not impact the biofilter's H{sub 2}S removal efficiency.« less

  5. Biofiltration of Asphalt Emissions: Full-scale Operation Treating Off-gases from Polymer-modified Asphalt Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Lawrence Leslie; Apel, William Arnold; Gostomski, P. A.

    2004-04-01

    In response to complaints from nearby residents, a biofilter was designed, installed, and tested for treating odors in one of three odorous emission streams from an asphalt plant producing polymer-modified asphalt. Hydrogen sulfide (H2S) was determined to be the most prevalent gaseous reduced sulfur compound and was detected in the emission stream only when polymer material was being added to raw asphalt. Emission stream H2S concentrations we requite variable, ranging from 16 to approximately 30,000 ppm (v/v) and considered the likely compound contributing most to the plant's odor complaints. The biofilter was effective in controlling odor from the production processmore » and removed an overall average of 65% of the H2S during polymer addition, and for H2S concentrations less than 400 ppmv, re m oval averaged 98%. These removal efficiencies reflect data from the biofilter operating at 2.5-minute empty bed residence time in 1996 and a 6.1-minute empty bed residence time in 1997. The biofilter's bed became increasingly acidified during the plant's 1997 operating season producing a pH gradient through the bed ranging from a high of 6.6 to a low of 3.1. The bed medium moisture content remained constant at about 60% (wet weight basis), but changes were observed in the water potential: no correlation to performance was determined. Changes in the microbial community reflected the bed acidification trend, with acidophiles becoming gene rally more numerous in the bed's deeper portions and in the mid to late season when the bed was most acidified. Bed acidification did not impact the biofilter's H2S removal efficiency. Nearby residents we resurveyed and roughly half of the respondents indicated that the odor conditions had improved, one-third felt odor conditions were unchanged and the remaining 15% felt odor conditions were worse despite the fact that only one of three of the plant's odorous emission streams were treated by the biofilter. Plans are to implement biofiltration for odor control at all of the facility's emission points.« less

  6. Biofiltration of isopentane in peat and compost packed beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.; Govind, R.

    1997-05-01

    Commercially available biofiltration systems have used natural bioactive materials in packed beds due to low media cost and easy availability. Detailed understanding and modeling of biofiltration systems are lacking in existing literature. Experimental studies on the isopentane treatment in air using peat- and compost-packed beds were conducted with inlet isopentane concentrations of 360 to 960 ppmv, and empty-bed gas-phase residence times of 2 to 10 min. High removal efficiencies (>90%) were achieved at low contaminant concentrations (<500 ppmv) and large empty-bed gas-phase residence times (>8 min). For both peat and compost biofilters, there was an optimal water content that gavemore » the highest removal efficiency. For higher water content, mass transfer of isopentane through the liquid phase controlled the biofiltration removal efficiency. At low water content, irreversible changes in the bioactivity of peat and compost occurred, resulting in an irrecoverable loss of removal efficiency. Increases in biofilter bed temperature from 25 to 40 C improved the removal efficiency. A mathematical model incorporating the effect of water content and temperature was developed to describe the packed-bed biofilter performance. Model predictions agreed closely with experimental data.« less

  7. Methane biofiltration in the presence of ethanol vapor under steady and transient state conditions: an experimental study.

    PubMed

    Ferdowsi, Milad; Ramirez, Antonio Avalos; Jones, Joseph Peter; Heitz, Michèle

    2017-09-01

    Methane (CH 4 ) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH 4 inlet load (IL) of 13 ± 0.5 g CH4  m -3  h -1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH 4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 g ethanol  m -3  h -1 . Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO 2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO 2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 g ethanol  m -3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH 2 O m -1 ) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH 2 O m -1 .

  8. Biofiltration of air polluted with methane at concentration levels similar to swine slurry emissions: influence of ammonium concentration.

    PubMed

    Veillette, Marc; Avalos Ramirez, Antonio; Heitz, Michèle

    2012-01-01

    An evaluation of the effect of ammonium on the performance of two up-flow inorganic packed bed biofilters treating methane was conducted. The air flow rate was set to 3.0 L min(-1) for an empty bed residence time of 6.0 min. The biofilter was fed with a methane concentration of 0.30% (v/v). The ammonium concentration in the nutrient solution was increased by small increments (from 0.01 to 0.025 gN-NH(4) (+) L(-1)) for one biofilter and by large increments of 0.05 gN-NH(4) (+) L(-1) in the other biofilter. The total concentration of nitrogen was kept constant at 0.5 gN-NH(4) (+) L(-1) throughout the experiment by balancing ammonium with nitrate. For both biofilters, the methane elimination capacity, carbon dioxide production, nitrogen bed retention and biomass content decreased with the ammonium concentration in the nutrient solution. The biofilter with smaller ammonium increments featured a higher elimination capacity and carbon dioxide production rate, which varied from 4.9 to 14.3 g m(-3) h(-1) and from 11.5 to 30 g m(-3) h(-1), respectively. Denitrification was observed as some values of the nitrate production rate were negative for ammonium concentrations below 0.2 gN-NH(4) (+) L(-1). A Michalelis-Menten-type model fitted the ammonium elimination rate and the nitrate production rate.

  9. Removal of alpha-pinene from gases using biofilters containing fungi

    NASA Astrophysics Data System (ADS)

    van Groenestijn, J. W.; Liu, J. X.

    Biofiltration is cost-effective for the treatment of gases containing low concentrations of volatile organic compounds (<3 g m -3) . However, conventional biofilters, based on compost and bacterial activity, face problems with the elimination of hydrophobic compounds. Besides that, biofilter operational stability is often hampered by acidification and drying out of the filter bed. To overcome these problems, biofilters with fungi on inert packing material have been developed. Fungi are more resistant to acid and dry conditions than bacteria, and it is hypothesised that the aerial mycelia of fungi, which are in direct contact with the gas, can take up hydrophobic compounds faster than flat aqueous bacterial biofilm surfaces. Alpha-pinene was chosen as a model compound. It is an odorous compound emitted by the wood processing industry. In 2 l biofilter columns four different packing materials were tested: perlite, expanded clay granules, polyurethane foam cubes and compost. The filters were inoculated with forest soil and ventilated with gas containing alpha-pinene. Start up took 1-2 months and removal efficiencies of more than 90% were observed, but mostly ranged from 50% to 90% due to overloading. In the filters containing perlite, clay, polyurethane and compost volumetric removal capacities of, respectively, 24, 33, 38 and 24 g alpha- pinene m -3 filter bed h -1 were attained and the gas pressure drops in the 60 cm high filter beds measured at a superficial gas velocity of 35 m h -1 were 70, 550, 180 and 250 Pa. The results indicate that it is possible to develop biofilters based on the action of fungi with higher elimination capacities for alpha-pinene as reported in literature for bacterial biofilters. The use of polyurethane foam cubes is preferred because of the low gas pressure drop in combination with a high volumetric elimination capacity.

  10. DEVELOPMENT OF AEROBIC BIOFILTER DESIGN CRITERIA FOR TREATING VOCS

    EPA Science Inventory

    This paper reports preliminary results on the use of trickle bed biofilters with monolithic ceramic channelized microbial support structures for the treatment of VOCs typical of landfill leachate stripping. Toluene was used for the purpose of characterizing the trickle bed biofi...

  11. Technological and life cycle assessment of organics processing odour control technologies.

    PubMed

    Bindra, Navin; Dubey, Brajesh; Dutta, Animesh

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions

    EPA Science Inventory

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and etha...

  13. EVALUATION OF TRICKLE-BED AIR BIOFILTER PERFORMANCE FOR STYRENE REMOVAL

    EPA Science Inventory

    A pilot-scale trickle-bed air biofilter (TBAB) was evaluated for the removal of styrene from a waste gas stream. Six-millimeter (6 mm) Celite pellets (R-635) were used as the biological attachment medium. The operating parameters considered in the study included the styrene vol...

  14. FURTHER EVALUATION OF TRICKLE BED BIOFILTER PERFORMANCE AS A FUNCTION OF LADING, RESIDENCE TIME, AND BIOMASS CONTROL

    EPA Science Inventory

    The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical engineered control of VOCs in effluent air streams. rickle bed air biofilters (TBABS) are especially applicable for treating VOCs at high loadings. or long term...

  15. The effect of nitrate on ethylene biofiltration.

    PubMed

    Lee, Sang-Hun; Li, Congna; Heber, Albert J

    2012-11-30

    This study investigated the effects of filter media types and nitrate (NO(3)(-)) concentrations in nutrient solutions on C(2)H(4) biofiltration. A new nutrient solution with zero NO(3)(-) concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L(-1) of NO(3)(-) was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min(-1), and inlet C(2)H(4) concentrations of 20-30 mg m(-3). NO(3)(-) concentration and media type significantly affected the C(2)H(4) removal efficiencies in all types of biofiltration. The perlite media with no NO(3)(-) achieved C(2)H(4) removal efficiencies 10-50% higher than the others. A NO(3)(-) concentration as high as 2 g L(-1) in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C(2)H(4) degraders. In addition, the perlite media resulted in higher C(2)H(4) removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions.

    PubMed

    Farrokhzadeh, Hasti; Hettiaratchi, J Patrick A; Jayasinghe, Poornima; Kumar, Sunil

    2017-09-01

    Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, V max , K m , and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. NH₃ biofiltration of piggery air.

    PubMed

    Dumont, E; Hamon, L; Lagadec, S; Landrain, P; Landrain, B; Andrès, Y

    2014-07-01

    An aboveground pilot-scale biofilter filled with wood chips was tested to treat ammonia emissions from a piggery located in Brittany (France). Two long-term tests ("summer" and "autumn" experiments) were carried out to improve biofilter applications for agriculture. The influence of climatic conditions on biofilter performance was taken into account. During summer 2012, the biofilter was operated for 74 days at different empty bed residence times (EBRTs) from 6 to 15 s. Inlet NH3 concentrations were relatively constant (around 15 mg m(-3)). Significant NH3 reductions were achieved at EBRT = 12 s (removal efficiencies, RE, ranged between 90 and 100% for loading rates, LR, of around 4 g m(-3) h(-1)). At a lower EBRT (6 s), RE dropped to roughly 30-50%. This was due to the dramatic increase in the loading rate (LR up to 12 g m(-3) h(-1)) but the results showed that the change in atmospheric conditions (temperature and relative humidity) also had a significant influence on biofilter performance. It was evidenced that the use of a humidifier upstream of the biofilter must be taken into account for large-scale biofilter design, but only for specific conditions (the spraying of the biofilter having to be carried out exceptionally). During autumn 2012, the biofilter was operated for 116 days at EBRT = 12 s. RE were around 80% for LR of around 3 g m(-3) h(-1). In such autumnal atmospheric conditions, a demister system should be installed upstream of the biofilter in order to avoid water accumulation in the bed material. Although biofiltration was suitable for NH3 treatment of piggery air, the need to control accurately the medium moisture content implies that biofilters would not be easily managed by a pig farmer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, William A.

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  19. Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters

    NASA Astrophysics Data System (ADS)

    Parker, E.; Rippy, M.; Mehring, A.; Winfrey, B.; Ambrose, R. F.; Levin, L. A.; Grant, S. B.

    2017-12-01

    Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. Here we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.

  20. Overview of air biofiltration - basic technology, economics and integration with other control technologies for effective treatment of air toxics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govind, R.; Bishop, D.F.

    1996-12-31

    This paper provides an overview of air biofiltration with experimental data on the performance of peat/compost, pelletized packed bed and structured media biofilters. It is shown that use of high surface area per unit volume structured media results in higher contaminant treatment rates per unit biofilter volume. Peat/compost biofilters exhibit lower removal efficiencies at high (> 100 ppmv) inlet contaminant concentrations and require control of media moisture content. Increase of temperature results in increasing biodegradation rates. It is shown that use of structured ceramic media allows effective control of biomass buildup by continuous removal of biomass from the biofilter mediamore » and that the biomass removal rate depends on nutrient flowrate. An experimental system is presented which enables biofilm kinetics to be determined and a simple biofilter model is developed in this paper. A group contribution approach has been developed to estimate biokinetic parameter which allows biofiltration effectiveness to be determined for a variety of volatile organic compounds (VOCs). Finally, a procedure is presented, illustrated by an example, which is used to develop an integrated process for effective treatment of air contaminants. 22 refs., 12 figs., 4 tabs.« less

  1. Step-feed biofiltration: a low cost alternative configuration for off-gas treatment.

    PubMed

    Estrada, José M; Quijano, Guillermo; Lebrero, Raquel; Muñoz, Raúl

    2013-09-01

    Clogging due to biomass accumulation and the loss of structural stability of the packing media are common operational drawbacks of standard gas biofiltration inherent to the traditional biofilter design, which result in prohibitive pressure drop buildups and media channeling. In this work, an innovative step-feed biofilter configuration, with the air emission supplied in either two or three locations along the biofilter height, was tested and compared with a standard biofilter using toluene as a model pollutant and two packing materials: compost and perlite. When using compost, the step-feed biofilter supported similar elimination capacities (EC ≈ 80 g m(-3) h(-1)) and CO2 production rates (200 g m(-3) h(-1)) to those achieved in the standard biofilter. However, while the pressure drop in the step-feed system remained below 300 Pa m bed(-1) for 61 days, the standard biofilter reached this value in only 14 days and 4000 Pa m bed(-1) by day 30, consuming 75% more compression energy throughout the entire operational period. Operation with perlite supported lower ECs compared to compost in both the step-feed and standard biofilters (≈ 30 g m(-3) h(-1)), probably due to the high indigenous microbial diversity present in this organic packing material. The step-feed biofilter exhibited 65% lower compression energy requirements than the standard biofilter during operation with perlite, while supporting similar ECs. In brief, step-feed biofiltration constitutes a promising operational strategy capable of drastically reducing the operating costs of biofiltration due to a reduced energy consumption and an increased packing material lifespan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Mass transfer dynamics of ammonia in high rate biomethanation of poultry litter leachate.

    PubMed

    Gangagni Rao, A; Gandu, Bharath; Swamy, Y V

    2012-04-01

    In the present study possibility of coupling biofilter to arrest ammonia (NH(3)) emission to the atmosphere from the integrated UASB and stripper (UASB+ST) system treating poultry litter leachate was studied. UASB+ST with biofilter (UASB+ST+BF) exhibited removal efficiency (RE) of NH(3) in the range of 98-99% (below 28 ppmV (parts per million by volume)) with low cost agricultural residue as a bedding material. Mass transfer dynamics of TAN in the system revealed that TAN loss to atmosphere was below 1% in UASB+ST+BF where as it was in the range of 70-90% in UASB+ST. Cost estimates revealed that financial implications due to the addition of biofilter were below 10% of total capital cost. TAN retained in the bedding material of biofilter could also be utilized as soil conditioner upon saturation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  4. Rapid Response Concentration-Controlled Desorption of Activated Carbon to Dampen Concentration Fluctuations

    DTIC Science & Technology

    2007-01-01

    Behavior of trickle - bed air biofilter for toluene removal: Effect of non-use periods. Environ. Prog. 2005, 24, 155-161. (3) Martin, F. J.; Loehr, R. C...dampen the fluctuation in acetone concentration at high concentrations. The effect of inlet concentration and empty bed contact time (EBCT) on dampening...oxidizer. The MSA-SST system is a fixed- bed system that rapidly controls the power that heats the adsorbent/adsorbate, resulting in controlled

  5. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems.

    PubMed

    Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang

    2013-09-01

    Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial organisms from attached growth systems for effluent quality improvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. EVALUATION OF BIOAEROSOL EXPOSURES DURING CONDITIONING OF BIOFILTER ORGANIC MEDIA BEDS

    EPA Science Inventory

    Biological media air filters (biofilters) are currently being used for the treatment of inorganic and organic gasses from sewage treatment plants, industrial processes, and remediation systems. The media may be organic material such as comost, wood chips, or synthetic plastic med...

  7. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    PubMed

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  8. Evaluation of porous ceramic as microbial carrier of biofilter to remove toluene vapor.

    PubMed

    Lim, J S; Park, S J; Koo, J K; Park, H

    2001-01-01

    Three kinds of porous ceramic microbe media are fabricated from fly ash, diatomite and a mixture of fly ash and diatomite powders. Water holding capacity, density, porosity, pore size and distribution, compressive strength and micro-structure of each of the fabricated media are measured and compared. The fly ash and diatomite mixture ceramic is evaluated as the best biofilter medium among the three media because of its high compressive strength. It is selected as an experimental biofilter medium inoculated with thickened activated sludge. The laboratory scale biofilter was operated for 42 days under various experimental conditions varying in inlet toluene concentration and flow rate of contaminated air stream. The experimental result shows that the removal efficiency reaches up to 96.6% after 4 days from the start-up. Nutrient limitation is considered as a major factor limiting biofilter efficiency. Biofilter efficiency decreases substantially at the build-up of backpressure, which is largely due to the accumulation of excess VSS within the media. Periodic backwashing of the biofilter is necessary to remove excess biomass and attain stable long-term high removal efficiency. The bed needs to be backwashed when the overall pressure drop becomes greater than 460.6 Pa at space velocity of 100 h-1. A maximum flow rate of 444.85 g m-3hr-1 of toluene elimination by the mixture ceramic biofilter, which is higher than the previously reported values. This indicates that the fly ash and diatomite mixture ceramic biofilter can be effectively applied for removing toluene vapor.

  9. Reduction of ammonia and volatile organic compounds from food waste-composting facilities using a novel anti-clogging biofilter system.

    PubMed

    Ryu, Hee Wook; Cho, Kyung-Suk; Lee, Tae-Ho

    2011-04-01

    The performance of a pilot-scale anti-clogging biofilter system (ABS) was evaluated over a period of 125days for treating ammonia and volatile organic compounds emitted from a full-scale food waste-composting facility. The pilot-scale ABS was designed to intermittently and automatically remove excess biomass using an agitator. When the pressure drop in the polyurethane filter bed was increased to a set point (50 mm H(2)O m(-1)), due to excess biomass acclimation, the agitator automatically worked by the differential pressure switch, without biofilter shutdown. A high removal efficiency (97-99%) was stably maintained for the 125 days after an acclimation period of 1 week, even thought the inlet gas concentrations fluctuated from 0.16 to 0.55 g m(-3). Due the intermittent automatic agitation of the filter bed, the biomass concentration and pressure drop in the biofilter were maintained within the ranges of 1.1-2.0 g-DCW g PU(-1) and below 50 mm H(2)O m(-1), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Biofiltration of gasoline and ethanol-amended gasoline vapors.

    PubMed

    Soares, Marlene; Woiciechowski, Adenise L; Kozliak, Evguenii I; Paca, Jan; Soccol, Carlos R

    2012-01-01

    Assuming the projected increase in use of ethanol as a biofuel, the current study was conducted to compare the biofiltration efficiencies for plain and 25% ethanol-containing gasoline. Two biofilters were operated in a downflow mode for 7 months, one of them being compost-based whereas the other using a synthetic packing material, granulated tire rubber, inoculated with gasoline-degrading microorganisms. Inlet concentrations measured as total hydrocarbon (TH) ranged from 1.9 to 5.8 g m(-3) at a constant empty bed retention time of 6.84 min. Contrary to the expectations based on microbiological considerations, ethanol-amended gasoline was more readily biodegraded than plain hydrocarbons, with the respective steady state elimination capacities of 26-43 and 14-18 gTH m(-3) h(-1) for the compost biofilter. The efficiency of both biofilters significantly declined upon the application of higher loads of plain gasoline, yet immediately recovering when switched back to ethanol-blended gasoline. The unexpected effect of ethanol in promoting gasoline biodegradation was explained by increasing hydrocarbon partitioning into the aqueous phase, with mass transfer being rate limiting for the bulk of components. The tire rubber biofilter, after a long acclimation, surpassed the compost biofilter in performance, presumably due to the 'buffering' effect of this packing material increasing the accessibility of gasoline hydrocarbons to the biofilm. With improved substrate mass transfer, biodegradable hydrocarbons were removed in the tire rubber biofilter's first reactor stage, with most of the remaining poorly degradable smaller-size hydrocarbons being degraded in the second stage.

  11. Biofiltration of methanol in an organic biofilter using peanut shells as medium.

    PubMed

    Ramirez-Lopez, E M; Corona-Hernandez, J; Avelar-Gonzalez, F J; Omil, F; Thalasso, F

    2010-01-01

    Biofiltration consists of a filter-bed of organic matter serving both as carrier for the active biomass and as nutrient supply, through which the polluted gas passes. The selection of a suitable medium material is of major importance to ensure optimum biofilter efficiency. Peanut shells are an agricultural byproduct locally available in large quantities at a low price in most tropical and sub-tropical countries. A previous study showed that peanut shells are physically and chemically suitable for biofiltration. This paper presents the results obtained during a six month biofiltration experiment using peanut shells as medium and methanol as air pollutant. It is shown that peanut shells are potentially suitable as biofiltration medium, since degradation rates of up to 30 kg MeOH/m(3)d with an empty bed residence time of 19s was obtained. The biofilter showed a good resistance to shock load and no operational problems were observed.

  12. Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas

    PubMed Central

    Zhai, Jian; Wang, Zhu; Shi, Peng; Long, Chao

    2017-01-01

    To improve biofilter performance, the microbial community of a biofilter must be clearly defined. In this study, the performance of a lab-scale polyurethane biofilter for treating waste gas with low loads of nitrobenzene (NB) (< 20 g m-3 h-1) was investigated when using different empty bed residence times (EBRT) (64, 55.4 and 34 s, respectively). In addition, the variations of the bacterial community in the biofilm on the longitudinal distribution of the biofilters were analysed by using Illumina MiSeq high-throughput sequencing. The results showed that NB waste gas was successfully degraded in the biofilter. High-throughput sequencing data suggested that the phylum Actinobacteria and genus Rhodococcus played important roles in the degradation of NB. The variations of the microbial community were attributed to the different intermediate degradation products of NB in each layer. The strains identified in this study were potential candidates for purifying waste gas effluents containing NB. PMID:28114416

  13. Influence of mixing on the removal rate of toluene vapors by biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, M.; Acuna, M.E.; Perez, F.

    1997-12-31

    Biofilter performance can be influenced by different factors. Among these, packing material heterogeneity generated during the biofiltration process has an important effect both micro and macro scale. In this paper, the influence of the packing material mixing on the performance of a biofilter adapted for toluene removal will be presented. The biofilter was packed with peat previously sterilized by g irradiation and inoculated with a specific microbial consortium. After three months of biofilter operation a steady state elimination capacity (EC) of 18 g/m{sup 3}/h was attained with observable heterogeneity. At this point, the packing material was thoroughly mixed. A newmore » start up was observed with a maximum EC of 127 g/m{sup 3}/h, outlet CO{sub 2} concentration of 4.0 g/m{sup 3} and a temperature difference between the inlet and the packed bed of {minus}5.5 C were measured showing that an increased metabolic activity was triggered by mixing. This operation was repeated on a period of four months and a similar behavior was observed but with decreased intensities. These global measurements were correlated with simultaneous microcosm experiments performed with biofilter samples. Successive mixing yielded average global EC above 50 g/m{sup 3}/h during the experiment, which is higher than the values normally obtained with biofilters. This paper discusses possible causes for this response and perspectives.« less

  14. Fungal biocatalysts in the biofiltration of VOC-polluted air.

    PubMed

    Kennes, Christian; Veiga, María C

    2004-09-30

    Gas-phase biofilters used for the treatment of waste gases were originally packed with compost or other natural filter beds containing indigenous microorganisms. Over the past decade much effort has been made to develop new carrier materials, more performant biocatalysts and new types of bioreactors. Elimination capacities reached nowadays are 5 to 10 times higher than those originally reported with conventional compost biofilters. With the recently developed inert filter beds, inoculation is a prerequisite for successful start-up and operation. Either non-defined mixed cultures or pure bacterial cultures have originally been used. The search for efficient fungal biocatalysts started only a few years ago, mainly for the biofiltration of waste gases containing hydrophobic compounds, such as styrene, alpha-pinene, benzene, or alkylbenzenes. In this review, recently isolated new fungal strains able to degrade alkylbenzenes and other related volatile organic pollutants are described, as well as their major characteristics and their use as biocatalysts in gas-phase biofilters for air pollution control. In biofiltration, the most extensively studied organism belongs to the genus Exophiala, although strains of Scedosporium, Paecilomyces, Cladosporium, Cladophialophora, and white-rot fungi are all potential candidates for use in biofilters. Encouraging results were obtained in most of the cases in which some of those organisms were present in gas-phase biofilters. They allow reaching high elimination capacities and are resistant to low pH values and to reduce moisture content.

  15. Influence of ground tire rubber on the transient loading response of a peat biofilter.

    PubMed

    Alvarez-Hornos, F J; Izquierdo, M; Martínez-Soria, V; Penya-Roja, J M; Sempere, F; Gabaldón, C

    2011-08-01

    The effect of using ground tire rubber (GTR) as an adsorptive material in the removal of a 2:1:1 weight mixture of n-butyl acetate, toluene and m-xylene by using a peat biofilter under different intermittent conditions was investigated. The performance of two identical size biofilters, one packed with fibrous peat alone and the other with a 3:1 (vol) fibrous peat and GTR mixture, was examined for a period of four months. Partition coefficients of both materials were measured. Values of 53, 118 and 402 L kg(-1) were determined for n-butyl acetate, toluene and m-xylene in peat, respectively; and values of 40, 609 and 3035 L kg(-1) were measured for the same compounds in GTR. Intermittent load feeding of 16 h per day, 5 days per week working at an EBRT of 60 s and an inlet VOC concentration of 0.3 g C m(-1), resulted in removal efficiencies higher than 90% for both biofilters, indicating that the addition of GTR did not adversely affect the behavior of the bioreactor. Full removal of n-butyl acetate was obtained for both biofilters. GTR improved the removal of the aromatics in the first part of the biofilter, facilitating lower penetration of the toluene and m-xylene into the bed. A 31-day starvation period was applied and intermittent operation subsequently restarted. In both biofilters, high removal efficiencies after a re-acclimation period of two days were achieved. A shock loading test related to 1-h peaks of three- and four-fold increases in its baseline concentration (0.30 g C m(-3)) was applied in both biofilters. For the biofilter packed with the peat and GTR mixture, attenuation greater than 60% was observed in the maximum outlet concentration when compared to the biofilter packed with peat alone. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Removal of p-xylene from an air stream in a hybrid biofilter.

    PubMed

    Wu, Dan; Quan, Xie; Zhao, Yazhi; Chen, Shuo

    2006-08-21

    Biofiltration of an air stream containing p-xylene has been studied in a laboratory hybrid biofilter packed with a mixture of mature pig compost, forest soil and the packing material which was made of polyethylene (PE) and used in the moving bed biological reactor (MBBR) in wastewater treatment. Three flow rates, 9.17, 19.87 and 40.66 m(3)m(-2)h(-1), were investigated for p-xylene inlet concentration ranging from 0.1 to 3.3 g m(-3). A high elimination capacity of 80 g m(-3)h(-1) corresponding to removal efficiency of 96% was obtained at a flow rate of 9.17 m(3)m(-2)h(-1) (empty bed residence time of 132 s). At a flow rate of 40.66 m(3)m(-2)h(-1) (empty bed residence time of 30s), the maximum elimination capacity for p-xylene was 40 g m(-3)h(-1) and removal efficiencies were in the range of 47-100%. The production of carbon dioxide (P(CO(2))) is proportional to elimination capacity (EC) and the linear relation was formulated as P(CO(2))=1.65EC+15.58. Stable pH values ranging from 6.3 to 7.6 and low pressure drop values less than 0.2 cm H(2)O (19.6 Pa) of packing media in compost-based biofilter of hybrid biofilter were observed, which avoided acidification and compaction of packing media and sustained the activity of microorganism populations.

  17. Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorio, H.; Bibeau, L.; Heitz, M.

    2000-05-01

    The biofiltration process is a promising technology for the treatment of dilute styrene emissions in air. The efficiency of this process is however strongly dependent upon various operational parameters such as the filter bed characteristics, nutrient supplies, input contaminant concentrations, and gas flow rates. The biofiltration of air containing styrene vapors was therefore investigated, employing a novel biomass filter material, in two identical but separate laboratory scale biofiltration units (units 1 and 2), both biofilters being initially inoculated with a microbial consortium. Each biofilter was irrigated with a nutrient solution supplying nitrogen in one of two forms; i.e., mainly asmore » ammonia for unit 1 and exclusively as nitrate for unit 2. The experimental results have revealed that greater styrene elimination rates are achieved in the biofilter supplied with ammonia as the major nitrogen source in comparison to the lesser elimination performance obtained with the nitrate provided biofilter. However, in achieving the high styrene removal rates in the ammonia supplied biofilter, the excess of biomass accumulates on the filtering pellets and causes progressive clogging of the filter media. Furthermore, the effectiveness of nitrate supply as the sole nitrogen nutrient form, on reducing or controlling the biomass accumulation in the filter media in comparison to ammonia, could not be satisfactorily demonstrated because the two biofilters operated with very different styrene elimination capacities. The monitoring of the carbon dioxide concentration profile through both biofilters revealed that the ratio of carbon dioxide produced to the styrene removed was approximately 3/1, which confirms the complete biodegradation of removed styrene, given that some of the organic carbon consumed is also used for the microbial growth. The effects of the most important design parameters, namely styrene input concentrations and gas flow rates, were investigated for each nutrient solution.« less

  18. Evaluating the impact of water supply strategies on p-xylene biodegradation performance in an organic media-based biofilter.

    PubMed

    Gallastegui, G; Muñoz, R; Barona, A; Ibarra-Berastegi, G; Rojo, N; Elías, A

    2011-01-30

    The influence of water irrigation on both the long-term and short-term performance of p-xylene biodegradation under several organic loading scenarios was investigated using an organic packing material composed of pelletised sawdust and pig manure. Process operation in a modular biofilter, using no external water supply other than the moisture from the saturated inlet air stream, showed poor p-xylene abatement efficiencies (≈33 ± 7%), while sustained irrigation every 25 days rendered a high removal efficiency (RE) for a critical loading rate of 120 g m(-3)h(-1). Periodic profiles of removal efficiency, temperature and moisture content were recorded throughout the biofilter column subsequent to each biofilter irrigation. Hence, higher p-xylene biodegradation rates were always initially recorded in the upper module, which resulted in a subsequent increase in temperature and a decrease in moisture content. This decrease in the moisture content in the upper module resulted in a higher removal rate in the middle module, while the moisture level in the lower module steadily increased as a result of water condensation. Based on these results, mass balance calculations performed using measured bed temperatures and relatively humidity values were successfully used to account for water balances in the biofilter over time. Finally, the absence of bed compaction after 550 days of continuous operation confirmed the suitability of this organic material for biofiltration processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor

    PubMed Central

    2014-01-01

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34–359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner. PMID:24406056

  20. Hydrodynamic behaviour and comparison of technologies for the removal of excess biomass in gas-phase biofilters.

    PubMed

    Mendoza, J A; Prado, O J; Veiga, M C; Kennes, C

    2004-01-01

    The hydrodynamic behaviour of a biofilter fed toluene and packed with an inert carrier was evaluated on start-up and after long-term operation, using both methane and styrene as tracers in Residence Time Distribution experiments. Results indicated some deviation from ideal plug flow behaviour after 2-year operation. It was also observed that the retention time of VOCs gradually increased with time and was significantly longer than the average residence time of the bulk gas phase. Non-ideal hydrodynamic behaviour in packed beds may be due to excess biomass accumulation and affects both reactor modeling and performance. Therefore, several methods were studied for the removal of biomass after long-term biofilter operation: filling with water and draining, backwashing, and air sparging. Several flow rates and temperatures (20-60 degrees C) were applied using either water or different chemicals (NaOH, NaOCl, HTAB) in aqueous solution. Usually, higher flow rates and higher temperatures allowed the removal of more biomass, but the efficiency of biomass removal was highly dependent on the pressure drop reached before the treatment. The filling/draining method was the least efficient for biomass removal, although the treatment did basically not generate any biological inhibition. The efficiency of backwashing and air sparging was relatively similar and was more effective when adding chemicals. However, treatments with chemicals resulted in a significant decrease of the biofilter's performance immediately after applying the treatment, needing periods of several days to recover the original performance. The effect of manually mixing the packing material was also evaluated in duplicate experiments. Quite large amounts of biomass were removed but disruption of the filter bed was observed. Batch assays were performed simultaneously in order to support and quantify the observed inhibitory effects of the different chemicals and temperatures used during the treatments.

  1. Potential application of an Aspergillus strain in a pilot biofilter for benzene biodegradation

    PubMed Central

    Sun, Da; Zhang, Kun; Duan, Chuanren; Wu, Wei; Deng, Daiyong; Yu, Donghong; Shahzad, M. Babar; Xu, Dake; Tang, Ju; Luo, Li; Chen, Jia; Wang, Jinxuan; Chen, Yidan; Xie, Xiang; Wang, Guixue

    2017-01-01

    A biofilter with fungus was developed for efficient degradation of benzene, which can overcome the potential risk of leakage commonly found in such services. Results indicated that the optimum parameter values were temperature 40 °C, pH 6, and 500 mg L−1 of the initial benzene concentration. Besides, the empty bed residence time and inlet load range of biofilter were set to 20 s and 21.23–169.84 g m−3 h−1 respectively. Under these conditions, this biofilter can obtain the maximum removal efficiency of more than 90%, the eliminating capacity could be up to 151.67 g m−3 h−1. Furthermore, scanning electron microscopy was used to investigate three filler materials for packing fungus biofilm. This is the first study introducing an Aspergillus strain for benzene removal and these results highlight that the development of this biofilter has the potential scaling-up application as gas-processing of industrial wastes. PMID:28383064

  2. Potential application of an Aspergillus strain in a pilot biofilter for benzene biodegradation

    NASA Astrophysics Data System (ADS)

    Sun, Da; Zhang, Kun; Duan, Chuanren; Wu, Wei; Deng, Daiyong; Yu, Donghong; Shahzad, M. Babar; Xu, Dake; Tang, Ju; Luo, Li; Chen, Jia; Wang, Jinxuan; Chen, Yidan; Xie, Xiang; Wang, Guixue

    2017-04-01

    A biofilter with fungus was developed for efficient degradation of benzene, which can overcome the potential risk of leakage commonly found in such services. Results indicated that the optimum parameter values were temperature 40 °C, pH 6, and 500 mg L-1 of the initial benzene concentration. Besides, the empty bed residence time and inlet load range of biofilter were set to 20 s and 21.23-169.84 g m-3 h-1 respectively. Under these conditions, this biofilter can obtain the maximum removal efficiency of more than 90%, the eliminating capacity could be up to 151.67 g m-3 h-1. Furthermore, scanning electron microscopy was used to investigate three filler materials for packing fungus biofilm. This is the first study introducing an Aspergillus strain for benzene removal and these results highlight that the development of this biofilter has the potential scaling-up application as gas-processing of industrial wastes.

  3. Removal of odor emitted from composting facilities using a porous ceramic biofilter.

    PubMed

    Park, S J; Nam, S L; Choi, E S

    2001-01-01

    A field experiment was conducted using a full-scale ceramic biofilter (approximately 150 m3/min) in order to determine the potential for biofiltration to remove malodorous gases from composting facilities. The main compounds found in malodorous gases were NH3 and H2S. These compounds were analyzed by a UV-spectrophotometer and gas chromatograph. The microbial carrier was a porous ceramic consisting of diatomite and fly ash. About 12 m3 of ceramic media inoculated with waste activated sludge were filled in the biofilter. The experimental conditions were space velocity of 500 hr(-1), empty bed residence time of 7.2 s, and linear velocity of 0.2 m/s. About 90 L/d of water were sprayed for the operation. The NH3 concentration in inlet gases ranged from 8 to 90 ppmv. The concentration of H2S ranged from 3.2-5.5 ppmv. The acclimation of the biofilter was slow, but more than 95% of removal efficiency was achieved after one month of operation. No nutrients were supplied to the biofilter. The pressure drop in the biofilter varied from 20-40 mmAq during the operation. The energy consumption of this biofilter was about 200 kW/d. It was estimated that the deodorization using this ceramic biofilter was successfully carried out to remove the odor emitted from composting facilities.

  4. Removal of odor using biofilter from duck confinement buildings.

    PubMed

    Lau, Anthony; Cheng, Kimberly

    2007-06-01

    The poultry and waterfowl industry in the Fraser Valley of British Columbia needs to deal with odor emission problems. The objective of this study is to evaluate the performance of a pilot-scale biofiltration system for treating odors from the exhaust air streams of a commercial duck farm building before their release to the atmosphere. A pilot-scale biofiltration system with semi-enclosed wooden structure was designed, constructed and installed to treat the exhaust air from one of the 12 operating ventilation exhaust fans, having a ventilation rate of 2.36 m3/s. The empty bed residence time of the biofilter was 5-10 seconds at the design flow rate. The biofilter media comprised of 2 parts softwood chips and barks to 1 part finished compost. Fabric filters were used for pre-treatment to protect the biofilter from clogging by dust particles and feathers. Odor reduction was determined by measuring the concentration of the air entering and leaving the biofilter via olfactometry analysis. The odor concentration of untreated barn air was found to vary from 8553+/-1006 to 12171+/-1575 OU/m3; however, the odor concentration was substantially reduced to 420+/-195 OU/m(3) after the manure storage was cleaned out at the end of summer. The odor removal efficiency of the biofilter system averaged 95+/-3%. The high frequency of cleaning and replacement required of the fabric filters would considerably increase the operating cost. Alternative methods of dust and odor removal that are more cost-effective will need to be investigated in the future.

  5. Effect of loading types on performance characteristics of a trickle-bed bioreactor and biofilter during styrene/acetone vapor biofiltration.

    PubMed

    Halecky, Martin; Paca, Jan; Kozliak, Evguenii; Jones, Kim

    2016-07-02

    A 2:1 (w/w) mixture of styrene (STY) and acetone (AC) was subjected to lab-scale biofiltration under varied loading in both a trickle bed reactor (TBR) and biofilter (BF) to investigate substrate interactions and determine the limits of biofiltration efficiency of typical binary air pollutant mixtures containing both hydrophobic and polar components. A comparison of the STY/AC mixture degradation in the TBR and BF revealed higher pollutant removal efficiencies and degradation rates in the TBR, with the pollutant concentrations increasing up to the overloading limit. The maximum styrene degradation rates were 12 and 8 gc m(-3) h(-1) for the TBR and BF, respectively. However, the order of performance switched in favor of the BF when the loading was conducted by increasing air flow rate while keeping the inlet styrene concentration (Cin) constant in contrast to loading by increasing Cin. This switch may be due to a drastic difference in the effective surface area between these two reactors, so the biofilter becomes the reactor of choice when the rate-limiting step switches from biochemical processes to mass transfer by changing the loading mode. The presence of acetone in the mixture decreased the efficiency of styrene degradation and its degradation rate at high loadings. When the overloading was lifted by lowering the pollutant inlet concentrations, short-term back-stripping of both substrates in both reactors into the outlet air was observed, with a subsequent gradual recovery taking several hours and days in the BF and TBR, respectively. Removal of excess biomass from the TBR significantly improved the reactor performance. Identification of the cultivable strains, which was performed on Day 763 of continuous operation, showed the presence of 7 G(-) bacteria, 2 G(+) bacteria and 4 fungi. Flies and larvae of Lycoriella nigripes survived half a year of the biofilter operation by feeding on the biofilm resulting in the maintenance of a nearly constant pressure drop.

  6. Biofiltration using peat and a nutritional synthetic packing material: influence of the packing configuration on H2S removal.

    PubMed

    Dumont, Eric; Cabral, Flavia Da Silva; Le Cloirec, Pierre; Andrès, Yves

    2013-01-01

    This study aims to evaluate the feasibility of using a nutritional synthetic material (UP20) combined with fibrous peat as a packing material in treating H2S (up to 280 ppmv). Three identical laboratory-scale biofilters with different packing material configurations (peat only; peat + UP20 in a mixture; peat + UP20 in two layers) were used to determine the biofilter performances. The superficial velocity of the polluted gas on each biofilter was 65 m/h (gas flow rate 0.5 Nm3 /h) corresponding to an empty bed residence time = 57 s. Variations in elimination capacity, removal efficiency, temperature and pH were tracked during 111 d. A removal efficiency of 100% was obtained for loading rates up to 6 g/m3/h for the biofilter filled with 100% peat, and up to 10 g/m3/h for both biofilters using peat complemented with UP20. For higher loading rates (up to 25.5 g/m3/h), the configuration ofpeat-UP20 in a mixture provided the best removal efficiencies (around 80% compared to 65% for the configuration of peat-UP20 in two layers and 60% for peat only). Microbial characterization highlighted that peat is able to provide sulfide-oxidizing bacteria. Through kinetic analysis (Ottengrafand Michaelis-Menten models were applied), it appeared that the configuration peat-UP20 in two layers (80/20 v/v) did not show significant improvement compared with peat alone. Although the configuration of peat-UP20 in a mixture (80/20 v/v) offered a real advantage in improving H2S treatment, it was shown that this benefit was related to the bed configuration rather than the nutritional properties of UP20.

  7. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    PubMed

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Simulation of Biomass Accumulation Pattern in Vapor-Phase Biofilters

    PubMed Central

    Xi, Jin-Ying; Hu, Hong-Ying; Zhang, Xian

    2012-01-01

    Abstract Existence of inert biomass and its impact on biomass accumulation patterns and biofilter performance were investigated. Four biofilters were set up in parallel to treat gaseous toluene. Each biofilter operated under different inlet toluene loadings for 100 days. Two microbial growth models, one with an inert biomass assumption and the other without, were established and compared. Results from the model with the inert biomass assumption showed better agreement with the experimental data than those based on the model without the inert biomass assumption thus verifying that inert biomass accumulation cannot be ignored in the long-term operation of biofilters. According to the model with an inert biomass assumption, the ratio of active biomass to total biomass will decrease and the inert biomass will become dominant in total biomass after a period of time. Filter bed structure simulation results showed that the void fraction is more sensitive to biomass accumulation than the specific surface area. The final void fraction of the biofilters with the highest inlet toluene loading is only 67% of its initial level while the final specific surface area is 82%. Identification and quantification of inert biomass will give a better understanding of biomass accumulation in biofilters and will result in a more exact simulation of biomass change during long-term operations. Results also indicate that an ideal biomass control technique should be able to remove most inert biomass while simultaneously preserving as much active biomass as possible. PMID:22693411

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, M.; Revah, S.; Auria, R.

    Biotechnological techniques, including biofilters and biotrickling filters are increasingly used to treat air polluted with VOCs (Volatile Organic Compounds). In this work, the start-up, the effect of the gaseous ammonia addition on the toluene removal rate, and the problems of the heat accumulation on the performance of a laboratory scale biofilter were studied. The packing material was sterilized peat enriched with a mineral medium and inoculated with an adapted consortium (two yeast and five bacteria). Start-up showed a short adaptation period and an increased toluene elimination capacity (EC) up to a maximum of 190 g/m{sup 3}/h. This was related tomore » increased CO{sub 2} outlet concentration and temperature gradients between the packed bed and the inlet (Tm-Tin). These events were associated with the growth of the microbial population. The biofilter EC decreased thereafter, to attain a steady state of 8 g/m{sup 3}/h. At this point, gaseous ammonia was added. EC increased up to 80 g/m{sup 3}/h, with simultaneous increases on the CO{sub 2} concentration and (Tm-Tin).« less

  10. Biofouling reduction in recirculating cooling systems through biofiltration of process water.

    PubMed

    Meesters, K P H; Van Groenestijn, J W; Gerritse, J

    2003-02-01

    Biofouling is a serious problem in industrial recirculating cooling systems. It damages equipment, through biocorrosion, and causes clogging and increased energy consumption, through decreased heat transfer. In this research a fixed-bed biofilter was developed which removed assimilable organic carbon (AOC) from process water, thus limiting the major substrate for the growth of biofouling. The biofilter was tested in a laboratory model recirculating cooling water system, including a heat exchanger and a cooling tower. A second identical model system without a biofilter served as a reference. Both installations were challenged with organic carbon (sucrose and yeast extract) to provoke biofouling. The biofilter improved the quality of the recirculating cooling water by reducing the AOC content, the ATP concentration, bacterial numbers (30-40 fold) and the turbidity (OD660). The process of biofouling in the heat exchangers, the process water pipelines and the cooling towers, was monitored by protein increase, heat transfer resistance, and chlorine demanded for maintenance. This revealed that biofouling was lower in the system with the biofilter compared to the reference installation. It was concluded that AOC removal through biofiltration provides an attractive, environmental-friendly means to reduce biofouling in industrial cooling systems.

  11. Factors affecting the process performance of biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopchynski, D.M.; Farmer, R.W.; Maier, W.J.

    1996-11-01

    Biofiltration is an emerging biological treatment technology for the removal of airborne VOCs from industrial process waste streams. Removal of air-phase VOCs by biofiltration is accomplished by contacting a process airstream with an active microbial biofilm attached to a solid phase packing. VOCs that partition into the biofilm are aerobically oxidized to the endproducts of water, carbon dioxide and salts. A multiple reactor biofiltration pilot plant test program has been in progress at the University of Minnesota Environmental Engineering Laboratories since 1992. The primary goal of the program is to study factors that affect biofiltration process performance. Initial results ofmore » this test program were reported in a previous conference paper and master`s thesis. This paper presents the results of more recent studies that focus on the effects of: (1) biofilm accumulation (which in turn causes a decrease in biofilter bed porosity and packing bed surface area), (2) rates of nutrient addition, and (3) chemical properties of the target contaminant, on biofiltration removal performance. Removal performance was evaluated by determining biofilter removal capacities and efficiencies for various substrate feeds. The performance parameters were measured under constant contaminant inlet concentrations and under constant temperature. Three VOCs were selected for study and they are: MEK, (methyl ethyl ketone), xylene, and hexane. MEK, xylene, and hexane were chosen because they are representative of widely used industrial solvents and they have significantly different Henry`s law constants relative to each other (the MEK value < Xylene value < Hexane value). Henry`s law constants quantify the partitioning of a chemical between the air and water-biofilm phase and therefore can be used to correlate the effect of chemical properties on biofilter removal capacities. This paper also introduces a new model for the biofiltration process.« less

  12. Evaluation of three types of structured floating plastic media in moving bed biofilters for total ammonia nitrogen removal in a low salinity hatchery recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    Three different commercially available structural plastic media were evaluated in triplicate in moving bed toriod filters under low salinity (11-12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double dra...

  13. A biofilter for treating toluene vapors: performance evaluation and microbial counts behavior

    PubMed Central

    Zhu, Yazhong; Luo, Yimeng; Ma, Hongye; Wang, Yan

    2016-01-01

    A lab-scale biofilter packed with mixed packing materials was used for degradation of toluene. Different empty bed residence times, 148.3, 74.2 and 49.4 s, were tested for inlet concentration ranging from 0.2 to 1.2 g/m3. The maximum elimination capacity of 36.0 g/(m3 h) occurred at an inlet loading rate of 45.9 g/(m3 h). The contribution of the lower layer was higher than other layers and always had the highest elimination capacity. The carbon dioxide production rate and distribution of micro-organisms followed toluene elimination capacities. The results of this study indicated that mixed packing materials could be considered as a potential biofilter carrier, with low pressure drop (less than 84.9 Pa/m), for treating air streams containing VOCs. PMID:27231662

  14. A comparative study of fungal and bacterial biofiltration treating a VOC mixture.

    PubMed

    Estrada, José M; Hernández, Sergio; Muñoz, Raúl; Revah, Sergio

    2013-04-15

    Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 gCm(-3) reactor h(-1)), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈ 63% vs ≈ 43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal>hexanol>MIBK>toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Biodegradation of BTEX in a fungal biofilter: influence of operational parameters, effect of shock-loads and substrate stratification.

    PubMed

    Rene, Eldon R; Mohammad, Balsam T; Veiga, María C; Kennes, Christian

    2012-07-01

    The effect of relative humidity (RH: 30% to >95%) of a gas-phase mixture composed of benzene, toluene, ethylbenzene and para-, meta- and ortho-xylenes (BTEX), inlet concentrations (0.2-12.6 g m(-3)), and empty bed residence times (EBRTs) (48-144 s) was tested in a fungi-dominant biofilter. A maximum elimination capacity (EC(max)) of 244.2 gBTEX m(-3) h(-1) was achieved at a total inlet loading rate (ILR(T)) of 371.2 gBTEXm(-3) h(-1) (RH: 65%). The transient-state response was tested by increasing the ILR(T), in two steps, from ~50 to 850 gm(-3) h(-1) and from ~50 to 320 g m(-3) h(-1), at a constant EBRT of 41.7s. Increasing the ILR(T) reduced the total BTEX removal efficiency (RE(T)) from >97% to 35%, and from >90% to 60% during medium and high shock-load, respectively. When subjected to short (4d) and long-term (7d) shut-down periods, the biofilter was able to recover high EC(max) of, respectively, 200 and 72 gBTEX m(-)3 h(-1) after resuming operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The Application Of Biofilter System For Reduction Of Methane Emissions From Modern Sanitary Landfills

    NASA Astrophysics Data System (ADS)

    Sung, K.; Park, S.

    2007-12-01

    Increased atmospheric concentrations of greenhouse gases (GHG) caused by anthropogenic activities has been related to global climate change. Methane, the second most important GHG after CO2, is 21 times more effective at trapping heat than CO2. Therefore, methane emission control is of utmost importance for global warming reduction. To minimize leachate production and protect groundwater resources, modern sanitary landfills are equipped with composite covers and gas collection systems. Methane from modern sanitary landfills is vented directly to the atmosphere, except for some of the largest landfills where it is recovered as energy and burned at the site. However, the efficiency of energy recovery systems in larger landfills is reduced as the amount of CH4 generated from landfill begins to decrease. In this study, the performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills by conducting batch and column experiments using landfill cover soil amended with earthworm cast as the filter bed medium. From the batch experiments to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10-15% by weight and 25-35°C, respectively. The column experiment was conducted to measure the influence of inlet CH4 concentration and CH4 loading rate on CH4 removal capacity of a biofilter system. As the inlet CH4 concentration decreased, the percentage of CH4 oxidized increased. Up to a CH4 loading rate of 2785 g CH4 m3 h- 1 (EBRT = 7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Based on the results of the study, the installation of a properly managed biofilter system should be capable of achieving a reduction in atmospheric CH4 emissions from modern sanitary landfills at low CH4 generation stage.

  17. Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter.

    PubMed

    Lebrero, Raquel; López, Juan Carlos; Lehtinen, Iiro; Pérez, Rebeca; Quijano, Guillermo; Muñoz, Raúl

    2016-02-01

    Despite several fungal strains have been retrieved from methane-containing environments, the actual capacity and role of fungi on methane abatement is still unclear. The batch biodegradation tests here performed demonstrated the capacity of Graphium sp. to co-metabolically biodegrade methane and methanol. Moreover, the performance and microbiology of a fungal-bacterial compost biofilter treating methane at concentrations of ∼2% was evaluated at empty bed residence times of 40 and 20 min under different irrigation rates. The daily addition of 200 mL of mineral medium resulted in elimination capacities of 36.6 ± 0.7 g m(-3) h(-1) and removal efficiencies of ≈90% at the lowest residence time. The indigenous fungal community of the compost was predominant in the final microbial population and outcompeted the inoculated Graphium sp. during biofilter operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Confirmation of monod model for biofiltration of styrene vapors from waste flue gas.

    PubMed

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; Aslhashemi, Ahmad

    2012-01-01

    The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution.

  19. Simultaneous biofiltration of BTEX and Hg° from a petrochemical waste stream.

    PubMed

    Leili, Mostafa; Farjadfard, Sima; Sorial, George A; Ramavandi, Bahman

    2017-12-15

    A biofiltration system was developed to treat benzene, toluene, ethylbenzene, and xylene (BTEX) and Hg° vapour from a petrochemical waste stream during overhaul maintenance. The biofilter compost bed was inoculated with a microbial consortium provided by a petrochemical wastewater treatment plant. The effect of the a BTEX concentration (192.6-973.8 g/m 3 h) and empty bed residence time (EBRT) of 20-100 s were studied under the conditions of steady state, transient, shock BTEX-loading, and off-restart. The findings revealed that during a biofilter start-up, an increase in the influent BTEX concentration to around 334.3 g/m 3 h did not notably affect the biofiltration function at an EBRT of 100 s, and the removal efficiency was higher than 98%. Further, the low EBRT of 60 s did not have adverse effects on the BTEX and Hg° biofiltration (the removal efficiency in both was >93%). For the biofiltration system, the BTEX and Hg° critical attenuation capacity were obtained as 663 g BTEX /m 3 h and 12.6 g Hg° /m 3 h respectively. A maximum attenuation capacity of 774.5 g BTEX /m 3 h was achieved in the biofilter when the BTEX loading rate was 973.8 g BTEX /m 3 h. The parameters of k m and r max of the Michaelis-Menten kinetic model were obtained as 0.099 g/m 3 and 0.578 g/m 3 min respectively. Both BTEX and mercury vapours were completely mass balanced during a continuous biofiltration test. In general, the developed treatment system exhibited a good performance in the treatment of the BTEX stream containing Hg° vapour in the off-gas of a petrochemical company. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An improved biofilter to control the dissolved organic nitrogen concentration during drinking water treatment.

    PubMed

    Zhang, Huining; Gu, Li; Liu, Bing; Gan, Huihui; Zhang, Kefeng; Jin, Huixia; Yu, Xin

    2016-09-01

    Dissolved organic nitrogen (DON) is a key precursor of numerous disinfection by-products (DBPs), especially nitrogenous DBPs (N-DBPs) formed during disinfection in drinking water treatment. To effectively control DBPs, reduction of the DON concentration before the disinfection process is critical. Traditional biofilters can increase the DON concentration in the effluent, so an improved biofilter is needed. In this study, an improved biofilter was set up with two-layer columns using activated carbon and quartz sand under different influent patterns. Compared with the single-layer filter, the two-layer biofilter controlled the DON concentration more efficiently. The two-point influent biofilter controlled the DON concentration more effectively than the single-point influent biofilter. The improved biofilter resulted in an environment (including matrix, DO, and pH) suitable for microbial growth. Along the depth of the biofilter column, the environment affected the microbial biomass and microbial activity and thus affected the DON concentration.

  1. Odour removal with a trickling filter at a small WWTP strongly influenced by the tourism season.

    PubMed

    Patria, L; Cathelain, M; Laurens, P; Barbere, J P

    2001-01-01

    Etaples-Le Touquet's wastewater treatment plant (WWTP) is based on a coastal area of the Artois-Picardie region. The pollution load can vary from 20,000 p.e. to 60,000 p.e. over a weekend or in summer. The Collectivity and the Water Agency decided to cover and ventilate the main odour source points of the plant. The foul air was directed to a 2,500 m3/h inorganic bed biofilter (Alizair) for odour control. An odour monitoring took place during the first year of operation taking into account cold and warm seasons, high and low tourism seasons. The Alizair biofilter appeared an appropriate odour control process for small sized wastewater treatment plants, easy to operate and efficient even in areas where tourism seasons have a great impact on the pollution load arriving at the plant. The neighbourhood did not complain about odours any more and the operator was very confident with such a simple and effective system. The local Authorities and the Water Agency agreed to recommend Alizair biofilters with an autotrophic biomass adapted in the case of an old WWTP that cannot be up graded any more or for large pumping stations and wastewater storage prior treatment.

  2. A High Performance Biofilter for VOC Emission Control.

    PubMed

    Wu, G; Conti, B; Leroux, A; Brzezinski, R; Viel, G; Heitz, M

    1999-02-01

    Biofiltration is a cleaning technique for waste air contaminated with some organic compounds. The advantages of the conventional biofilter over other biological systems are a high-superficial area best suited for the treatment of some compounds with poor water solubility, ease of operation, and low operating costs. It has crucial disadvantages, however; for example, it is not suitable to treat waste gases with high VOC concentrations and it has poor control of reaction conditions. To improve on these problems and to build a high-performance biofilter, three structured peat media and two trickling systems have been introduced in this study. The influences of media size and composition have been investigated experimentally. Peat bead blended with 30% (w/w) certain mineral material with a good binding capacity has advantages over other packing materials, for example, suitable size to prevent blockage due to microbial growth, strong buffering capacity to neutralize acidic substances in the system, and a pH range of 7.0-7.2 suitable for the growth of bacteria. Dropwise trickling system offers an effective measure to easily control the moisture content of the bed and the reaction conditions (pH, nutrient) and to partially remove excess biomass produced during the metabolic processes of microorganisms. The influence of nutrient supplementation has also been investigated in this study, which has revealed that the biological system was in a condition of nutrient limitation instead of carbon limitation. The biofilters built in our laboratory were used to treat waste gas contaminated with toluene in a concentration range of 1 to 3.2 g/m 3 and at the specific gas flow rate of 24 to120 m 3 /m 2 .hr. Under the conditions employed, a high elimination capacity (135 g/m 3 .hr) was obtained in the biofilter packed with peat beads (blended with 30% of the mineral material), and no blockage problem was observed in an experimental period of 2-3 months.

  3. Effects of periods of nonuse and fluctuating ammonia concentration on biofilter performance.

    PubMed

    Chen, Ying-Xu; Yin, Jun; Wang, Kai-Xiong; Fang, Shi

    2004-01-01

    A systematic study on the transient behavior of odor treatment using biofilters is described. The biofilters were exposed to variations in contaminant loading and periods of nonuse. Two bench-scale biofilters with different filter media were used. Mixtures of compost/perlite (5:1) and dry sludge/granular active carbon (5:1) were used as filter media. Ammonia (NH3), one of the main malodorous gases, was used as the target compound. The response of each biofilter to variations in contaminant mass loading, periodic nonuse, water content, and inlet concentration pulse was studied. The nonuse period comprised of two stages: the "idle phase" when no air was passing through the biofilters, and the "no-contaminant-loading phase" when only humidified air was passing through the biofilters. Concentration spike was applied to study the effects of shock loading on the biofilter performance. Biofilters responded effectively to NH3 concentration variations and shock loading by rapidly recovering to the original removal rates within 6-12h. The results indicated re-acclimation times ranged from several hours to longer than a day. Longer idle phase produced longer re-acclimation periods than periods of no contaminant loading. When the media was dried during the biofiltration process, elimination capacity dropped accordingly for both biofilters. After 24 h of drying, the biofilter experiment could be restarted and run for a few days for recovering.

  4. Performance study of biofilter developed to treat H2S from wastewater odour

    PubMed Central

    Omri, Ilhem; Aouidi, Fethia; Bouallagui, Hassib; Godon, Jean-Jacques; Hamdi, Moktar

    2013-01-01

    Biofiltration is an efficient biotechnological process used for waste gas abatement in various industrial processes. It offers low operating and capital costs and produces minimal secondary waste streams. The objective of this study was to evaluate the performance of a pilot scale biofilter in terms of pollutants’ removal efficiencies and the bacterial dynamics under different inlet concentrations of H2S. The treatment of odourous pollutants by biofiltration was investigated at a municipal wastewater treatment plant (WWTP) (Charguia, Tunis, Tunisia). Sampling and analyses were conducted for 150 days. Inlet H2S concentration recorded was between 200 and 1300 mg H2S.m−3. Removal efficiencies reached 99% for the majority of the running time at an empty bed retention time (EBRT) of 60 s. Heterotrophic bacteria were found to be the dominant microorganisms in the biofilter. The bacteria were identified as the members of the genus Bacillus, Pseudomonas and xanthomonadacea bacterium. The polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) method showed that bacterial community profiles changed with the H2S inlet concentration. Our results indicated that the biofilter system, containing peat as the packing material, was proved able to remove H2S from the WWTP odourous pollutants. PMID:23961233

  5. Confirmation of Monod Model for Biofiltration of Styrene Vapors from Waste Flue Gas

    PubMed Central

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; AslHashemi, Ahmad

    2012-01-01

    Background: The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. Methods: A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. Results: The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. Conclusion: In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution. PMID:24688940

  6. Biodegradation of toluene by a lab-scale biofilter inoculated with Pseudomonas putida DK-1.

    PubMed

    Park, D W; Kim, S S; Haam, S; Ahn, I S; Kim, E B; Kim, W S

    2002-03-01

    The biodegradation of toluene by biofiltration inoculated with Pseudomonas putida DK-1 was investigated with variation of the several environmental parameters, such as temperature, bed length, gas flow rate and optimal humidity zone. The optimal temperature range to treat toluene gas was found to be 32-35 degrees C. Increasing the gas flow rate showed an inverse effect on the elimination capacity and the removal efficiency. The optimal gas flow rate was obtained at 65 ml min(-1) from the relation between the removal efficiency and the elimination capacity. The biodegradation rate of the toluene with respect to the bed lengths (3, 6, 9, 12 and 15 cm) increased up to 80 h but was then independent of the bed lengths after 80 h except for the 3 cm bed length. The elimination capacity was improved by about 70% compared with that reported in other literature and was also in agreement with theoretical models.

  7. Effect of methanol on the biofiltration of n-hexane.

    PubMed

    Zehraoui, Abderrahman; Hassan, Ashraf Aly; Sorial, George A

    2012-06-15

    This study investigated the removal of recalcitrant compounds in the presence of a hydrophilic compound. n-Hexane is used as a model compound to represent hydrophobic compounds. Methanol has been introduced in mixture with n-hexane in order to increase the bioavailability of n-hexane in trickle-bed-air-biofilters (TBABs). The mixing ratios investigated were: 70% methanol:30% n-hexane, and 80% methanol:20% n-hexane by volume. n-Hexane loading rates (LRs) ranged from 0.9 to 13.2 g m(-3) h(-1). Methanol LRs varied from 4.6 to 64.5 g m(-3) h(-1) and from 2.3 to 45.2 g m(-3) h(-1) depending upon the mixing ratio used. Biofilter performance, effect of mixing ratios of methanol to n-hexane, removal profile along biofilter depth, COD/nitrogen consumption and CO(2) production were studied under continuous loading operation conditions. Results have shown that the degradation of n-hexane is significantly enhanced by the presence of methanol for n-hexane LRs less than 13.2 g m(-3) h(-1). For n-hexane LR greater than 13.2 g m(-3) h(-1), even though methanol had impacted n-hexane biodegradation, its removal efficiency was higher than our previous study for biodegradation of n-hexane alone, in presence of surfactant, or in presence of benzene. On the other hand, the degradation of methanol was not impacted by the presence of n-hexane. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Researchers evaluate low-energy recirculating system for inland production of marine finfish juveniles

    USDA-ARS?s Scientific Manuscript database

    The low-energy recirculating aquaculture system consists of nine separate modules which utilize the double drain fish culture tank paired to a moving bed biofilter. The nine fiberglass tanks are five feet in diameter and normal water depth is about three feet for a total tank volume of approximately...

  9. A biochar-based medium in the biofiltration system: Removal efficiency, microorganism propagation, and the medium penetration modeling.

    PubMed

    Baltrėnas, Pranas; Baltrėnaitė, Edita; Kleiza, Jonas; Švedienė, Jurgita

    2016-07-01

    Biofiltration is a method of biological treatment belonging to cleaner technologies because it does not produce secondary air pollutants, but helps to integrate natural processes in microorganisms for decomposing volatile air pollutants and solving odor problems. The birch wood biochar has been chosen as a principal material for biofilter bed medium. The experiments were conducted at the temperatures of 24, 28, and 32 °C, while the concentration of acetone, xylene, and ammonium reached 300 mg/m(3) and the flow rate was 100 m(3)/hr. Before passing through the stage of the experimental research into the packing material inside biofilters, microorganisms were introduced. Four strains of microorganisms (including micromycetes Aspergillus versicolor BF-4 and Cladosporium herbarum 7KA, as well as yeast Exophiala sp. BF1 and bacterium Bacillus subtilis B20) were selected. At the inlet loading rate of 120 g/m(3)/hr, the highest elimination capacity of xylene in the biochar-based biofilter with the inoculated medium was 103 g/m(3)/hr, whereas that of ammonia was 102 g/m(3)/hr and that of acetone was 97 g/m(3)/hr, respectively. The maximum removal efficiency reached 86%, 85%, and 81%, respectively. The temperature condition (though characterized by some rapid changes) can hardly have a considerable influence on the biological effect (i.e., microbiological activity) of biofiltration; however, it can cause the changes in physical properties (e.g., solubility) of the investigated compounds. The birch biochar can be successfully used in the biofiltration system for propagation of inoculated microorganisms, biodegrading acetone, xylene, and ammonia. At the inlet loading rate of 120 g/m(3)/hr, the highest elimination capacity of xylene was 103 g/m(3)/hr, that of ammonia was 102 g/m(3)/hr, and that of acetone was 97 g/m(3)/hr, respectively. The morphological structure of biochar can be affected by the aggressive air contaminants, causing the change in the medium specific surface area, which is one of the factors controlling the biofilter performance. Although biological effects in biofiltration are typically considered to be more important than physical effects, the former may be more important for compounds with high Henry's Law coefficient values, and the biofilter design should thus provide conditions for better compound absorption.

  10. Biofiltration of volatile pollutants: Engineering mechanisms for improved design, long-term operation, prediction, and implementation. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, B.H.; Klasson, K.T.; Barton, J.W.

    1997-09-01

    'Biofiltration systems can be used to treat volatile organic compounds (VOCs); however, the systems are poorly understood and are currently operated as black boxes. Common operational problems associated with biofilters include fouling, deactivation, and overgrowth, all of which make biofilters ineffective for continuous, long-term use. The objective of this investigation is to develop generic methods for long-term stable operation, in particular by using selective limitation of supplemental nutrients while maintaining high activity and the ability to regenerate biofilter activity. As part of this effort, the authors will provide a deeper fundamental understanding of the important biological and transport mechanisms inmore » biodestruction of sparingly soluble VOCs and will extend this engineering approach and developed mathematical models to two additional systems of high-priority environmental management (EM) relevance-direct degradation and cometabolic degradation of priority pollutants such as BTEX (benzene, toluene, ethylbenzene, and xylene) and TCE (trichioroethylene), respectively. Preliminary results indicate that the author can control overgrowth of the biofilm while sustaining high degradation rates and develop basic predictive models that elucidate mass transfer and kinetic limitations in this system for alkanes. The alkanes are degraded into CO, and waterwith minimal biomass (due to the methodology proposed). This system will be used to test and model additional supplemental nutrient feeding strategies as well as methods to increase the fundamental driving forces by modification of the system. Models will be extended to non-steady-state, long-term operation. The author will examine the nature of the mixed microbial community in the VOC-degrading biofilm and test for new degradative activities. He will use cosolvents with surfactant properties to enhance hydrocarbon solubility in the biofilm and evaluate their impact on mass transfer and reaction rate in an operating biofilter. These results will point to further potential improvements in systems of EM priority. Constructed and acclimated three trickling-bed biofilters. Measured kinetic activity and mass transfer in biofilters under study. Demonstrated extended activity of biofilters in absence of supplemental nutrient. Quantified filter regeneration after prolonged starvation. Demonstrated competence of microbial consortium for degrading a variety of C, to C, alkanes as sole carbon and energy sources. Demonstrated competence of microbial consortium for degrading chlorinated alkane as sole carbon and energy sources. Examined solubility enhancement agents. Completed mathematical modeling of biofilm diffusion, reaction, and mass transfer effects for simple cases.'« less

  11. Evaluation of a cost effective technique for treating aquaculture water discharge using Lolium perenne Lam as a biofilter.

    PubMed

    Nduwimana, André; Yang, Xiang-Long; Wang, Li-Ren

    2007-01-01

    Wastewater stabilization ponds generate low cost by-products that are useful for agriculture. The utilization of these by-products for soil amendment and as a source of nutrients for plants requires a high level of sanitation and stabilization of the organic matter, to maintain acceptable levels of soil, water and air quality. In this study, two aquaculture wastewater treatment systems; recirculating system and a floating plant bed system were designed to improve the quality of irrigation water in local communities with low income. In both systems the grass species Lolium perenne Lam was used as a plant biofilter while vegetable specie Amaranthus viridis was used to evaluate the performance of the system and the suitability of the phyto-treated water for irrigation. It was found that the harmful material removal rate for recirculating system was 88.9% for TAN (total ammonia nitrogen), 90% for NO2(-)-N, 64.8% for NO3(-)-N while for floating plant bed system 82.7% for TAN, 82% for NO2(-)-N and 60.5% for NO3(-)-N. Comparative analysis of the efficiency of waste element removal between the two systems revealed that both systems performed well, however, plant growth was not robust for floating plant bed system while recirculating system is energy consuming. Although both systems did not attain sufficient levels of TN (total nitrogen) and TP (total phosphorus) load reduction, the treatment with L. perenne remarkably improved the irrigation water quality. A. viridis plants irrigated with the phyto-treated discharge water had lesser concentrations of heavy metals in their tissues compared to those irrigated with untreated discharge. The control plants irrigated with untreated discharge were also found to be highly lignified with few stems and small leaves.

  12. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    PubMed

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of adsorptive properties of biofilter packing materials on toluene removal.

    PubMed

    Oh, Dong Ik; Song, Jihyeon; Hwang, Sun Jin; Kim, Jae Young

    2009-10-15

    Various adsorptive materials, including granular activated carbon (GAC) and ground tire rubber (GTR), were mixed with compost in biofilters used for treating gaseous toluene, and the effects of the mixtures on the stability of biofilter performance were investigated. A transient loading test demonstrated that a sudden increase in inlet toluene loading was effectively attenuated in the compost/GAC biofilter, which was the most significant advantage of adding adsorptive materials to the biofilter packing media. Under steady conditions with inlet toluene loading rates of 18.8 and 37.5 g/m(3)/h, both the compost and the compost/GAC biofilters achieved overall toluene removal efficiencies greater than 99%. In the compost/GAC mixture, however, biodegradation activity declined as the GAC mass fraction increased. Because of the low water-holding capacity of GTR, the compost/ground tire mixture did not show a significant improvement in toluene removal efficiency throughout the entire operational period. Furthermore, nitrogen limitations affected system performance in all the biofilters, but an external nitrogen supply resulted in the recovery of the toluene removal efficiency only in the compost biofilter during the test periods. Consequently, the introduction of excessive adsorptive materials was unfavorable for long-term performance, suggesting that the mass ratio of the adsorptive materials in such mixtures should be carefully selected to achieve high and steady biofilter performance.

  14. Treatment of munitions manufacturing airborne VOC`s by biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severin, B.F.; Neilson, L.M.; Kim, B.J.

    1997-12-31

    The US Army Construction Engineering Research Laboratory contracted MBI International to perform a biofiltration study of industrial waste gas streams. Phase I of the study was a laboratory investigation of the treatability of a specific gas stream. The laboratory study was concluded in September, 1995. Phase II was the design, placement and operation of a full-scale biofilter. The project was completed in August, 1996. The specific gas stream originates from a munitions drying operation at the Olin Chemical Company, Lake City, AAP, Independence, MO. The production line is a blank bullet coating operation in the production line, slats of blankmore » ammunition are inverted and dipped into a coating material to seal the shell tips. The slats are then righted and moved into a drying box. The major solvent in the coating is ethyl acetate (70%) with about 30% of other solvent, such as, xylene and low molecular weight alcohols. The coating is thinned 50% with ethyl acetate, such that ethyl acetate represents more than 90% of the VOC load. The concentration of VOC`s is 400 ug/L at an air flow rate of 1000 ft{sup 3}/min. Laboratory results were collected on six test biofilter columns (15L). Steady state operations over a wide range of VOC loads were studied. The biofilters consistently destroyed 90-95% of the VOC`s. Square-wave dynamic loading cycles were studied to represent shift changes at the production facility. At high loadings, the biofilter performed well. At low organic loadings at applications of 5 hr/day of the gas stream, the filters required a small supplement of glucose to maintain column efficacy. A 1000 cubic foot bed volume, engineered media, biofilter was installed at Lake City AAP in January, 1996. The unit consists of a skid-mounted, class-1 division-1 explosion proof design including the blower package, biofilter media, nutrient addition, and automated VOC monitoring with PID. The unit was monitored for six months.« less

  15. Relevance and Diversity of Nitrospira Populations in Biofilters of Brackish RAS

    PubMed Central

    Kruse, Myriam; Keuter, Sabine; Bakker, Evert; Spieck, Eva; Eggers, Till; Lipski, André

    2013-01-01

    Lithoautotrophic nitrite-oxidizing bacterial populations from moving-bed biofilters of brackish recirculation aquaculture systems (RAS; shrimp and barramundi) were tested for their metabolic activity and phylogenetic diversity. Samples from the biofilters were labeled with 13C-bicarbonate and supplemented with nitrite at concentrations of 0.3, 3 and 10 mM, and incubated at 17 and 28°C, respectively. The biofilm material was analyzed by fatty acid methyl ester - stable isotope probing (FAME-SIP). High portions of up to 45% of Nitrospira-related labeled lipid markers were found confirming that Nitrospira is the major autotrophic nitrite oxidizer in these brackish systems with high nitrogen loads. Other nitrite-oxidizing bacteria such as Nitrobacter or Nitrotoga were functionally not relevant in the investigated biofilters. Nitrospira-related 16S rRNA gene sequences were obtained from the samples with 10 mM nitrite and analyzed by a cloning approach. Sequence studies revealed four different phylogenetic clusters within the marine sublineage IV of Nitrospira, though most sequences clustered with the type strain of Nitrospira marina and with a strain isolated from a marine RAS. Three lipids dominated the whole fatty acid profiles of nitrite-oxidizing marine and brackish enrichments of Nitrospira sublineage IV organisms. The membranes included two marker lipids (16∶1 cis7 and 16∶1 cis11) combined with the non-specific acid 16∶0 as major compounds and confirmed these marker lipids as characteristic for sublineage IV species. The predominant labeling of these characteristic fatty acids and the phylogenetic sequence analyses of the marine Nitrospira sublineage IV identified organisms of this sublineage as main autotrophic nitrite-oxidizers in the investigated brackish biofilter systems. PMID:23705006

  16. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture.

    PubMed

    Malhautier, Luc; Gracian, Catherine; Roux, Jean-Claude; Fanlo, Jean-Louis; Le Cloirec, Pierre

    2003-01-01

    The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.

  17. Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter.

    PubMed

    Güneş, Y

    2013-01-01

    The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios.

  18. Degradation of recalcitrant naphthenic acids from raw and ozonated oil sands process-affected waters by a semi-passive biofiltration process.

    PubMed

    Zhang, Lei; Zhang, Yanyan; Gamal El-Din, Mohamed

    2018-04-15

    In this study, a fixed-bed biofiltration system (biofilter) that utilized indigenous microorganisms was developed for the reclamation of oil sands process-affected water (OSPW). With the assistance of quantitative polymerase chain reaction (qPCR) and confocal laser scanning microscopy (CLSM), indigenous microorganisms from OSPW were able to attach to the surface of sand media and form biofilms. The number of total bacteria on the biofilter media reached a steady state (10 9 /g) after 23 days of operation. Ultra Performance Liquid Chromatography/High Resolution Mass Spectrometry (UPLC/HRMS) analysis showed that 21.8% of the classical naphthenic acids (NAs) removal was achieved through the circulation of raw OSPW on the biofilter for 8 times (equivalent to a hydraulic retention time of 16 h). When ozonation with utilized ozone dose of 30 mg/L was applied as pretreatment, the classical NAs in the ozonated OSPW were removed by 89.3% with an accelerated biodegradation rate of 0.5 mg/L/h. Compared with other biofilm reactors such as moving bed biofilm reactor (MBBR), ozonation pretreatment could benefit the biodegradation of NAs in the biofilter more (classical NA removal: 89.3% vs. 34.4%), especially for those with high carbon number and cyclicity. The combined ozonation-biofiltration process could remove 92.7% of classical NAs from raw OSPW in 16 h. Although both ozonation and biofiltration alone did not show degradation of oxidized NAs from raw OSPW, the combined process led to a 52.9% and 42.6% removal for O 3 -NAs and O 4 -NAs, respectively, which were the dominant oxidized NA species in OSPW. Metagenomic sequencing analysis showed that Rhodococcus was the dominant bacterial genus on the sand media, which may play a crucial role during the NA biodegradation. With the advantage of high NA removal efficiency, the combined ozonation-biofiltration process is a promising approach for NA degradation and shows high potential to be scaled up for in-situ OSPW treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Thermophilic biofiltration of benzene and toluene.

    PubMed

    Cho, Kyung-Suk; Yoo, Sun-Kyung; Ryu, Hee Wook

    2007-12-01

    In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.

  20. Biofiltration of methane using hybrid mixtures of biochar, lava rock and compost.

    PubMed

    La, Helen; Hettiaratchi, J Patrick A; Achari, Gopal; Verbeke, Tobin J; Dunfield, Peter F

    2018-05-21

    Using hybrid packing materials in biofiltration systems takes advantage of both the inorganic and organic properties offered by the medium including structural stability and a source of available nutrients, respectively. In this study, hybrid mixtures of compost with either lava rock or biochar in four different mixture ratios were compared against 100% compost in a methane biofilter with active aeration at two ports along the height of the biofilter. Biochar outperformed lava rock as a packing material by providing the added benefit of participating in sorption reactions with CH 4 . This study provides evidence that a 7:1 volumetric mixture of biochar and compost can successfully remove up to 877 g CH 4 /m 3 ·d with empty-bed residence times of 82.8 min. Low-affinity methanotrophs were responsible for the CH 4 removal in these systems (K M(app) ranging from 5.7 to 42.7 µM CH 4 ). Sequencing of 16S rRNA gene amplicons indicated that Gammaproteobacteria methanotrophs, especially members of the genus Methylobacter, were responsible for most of the CH 4 removal. However, as the compost medium was replaced with more inert medium, there was a decline in CH 4 removal efficiency coinciding with an increased dominance of Alphaproteobacteria methanotrophs like Methylocystis and Methylocella. As a biologically-active material, compost served as the sole source of nutrients and inoculum for the biofilters which greatly simplified the operation of the system. Higher elimination capacities may be possible with higher compost content such as a 1:1 ratio of either biochar or lava rock, while maintaining the empty-bed residence time at 82.8 min. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Odour in composting processes at pilot scale: monitoring and biofiltration.

    PubMed

    Gutiérrez, M C; Serrano, A; Martín, M A; Chica, A F

    2014-08-01

    Although odour emissions associated with the composting process, especially during the hydrolytic stage, are widely known, their impact on surrounding areas is not easily quantifiable, For this reason, odour emissions during the first stage ofcomposting were evaluated by dynamic olfactometry at pilot scale in order to obtain results which can be extrapolated to industrial facilities. The composting was carried out in a commercial dynamic respirometer equipped with two biofilters at pilot scale filled with prunings (Populus) and mature compost obtained from the organic fraction of municipal solid waste. Given that the highest odour emissions occur in the first stage of the composting process, this stage was carried out in a closed system to better control the odour emissions, whose maximum value was estimated to be 2.78 ouF S-1 during the experiments. Odour concentration, the dynamic respiration index and temperature showed the same evolution during composting, thus indicating that odour could be a key variable in the monitoring process. Other variables such as total organic carbon (CTOC) and pH were also found to be significant in this study due to their influence over odour emissions. The efficiency of the biofilters (empty bed residence time of 86 s) was determined by quantifying the odour emissions at the inlet and outlet of both biofilters. The moisture content in the biofilters was found to be an important variable for improving odour removal efficiency, while the minimum moisture percentage to obtain successful results was found to be 55% (odour removal efficiency of 95%).

  2. [Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].

    PubMed

    Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O

    2012-01-01

    The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.

  3. Removal of traces of toluene and p-xylene in indoor air using biofiltration and a hybrid system (biofiltration + adsorption).

    PubMed

    Luengas, Angela Tatiana; Hort, Cécile; Platel, Vincent; Elias, Ana; Barona, Astrid; Moynault, Laurent

    2017-04-01

    Biofiltration technology and the hybrid system combining biofiltration and adsorption (onto activated carbon) were compared as possible methods to toluene and p-xylene at parts per million concentration levels (2-45 and 1-33 ppb, respectively). An organic material was used as packing material for the biofiltration process. Even at low empty bed residence times (EBRTs) and concentrations, toluene removal efficiency reached 100% and p-xylene showed an increasing trend on their removal efficiency over the time using biofiltration. The assessment of by-products and particle generation by the biofilter and the hybrid system were taken into account. Acetone and acetic acid were identified as by-products of the biofilter. Particle emissions in the range of 0.03 to 10 μm were recorded for both systems.

  4. Effects of addition of straw, chitin and manure to new or recycled biofilters on their pesticides retention and degradation properties.

    PubMed

    Genot, P; Van Huynh, N; Debongnie, Ph; Pussemier, L

    2002-01-01

    Pollution of surface and groundwater by pesticides is an increasing problem that needs to be addressed by the authorities as well as by the farmers themselves. Nowadays, some researchers are considering the numerous small spillages at the farm sites as a relevant entry route to be taken into account for predicting surface and groundwater pollution. In order to tackle this problem, several solutions exist for limiting the disposal of pesticide wastes into the environment. One such system is biopurification of farm wastes by biobed, biofilter or phytobac. In this study, the results of pesticides retention by biofilters under outdoor conditions are presented. The biofilters were filled with a mixture of a soil + peat constituent (25% by volume for each of them) and the rest (50%) with straw or with composted manure ot with chitin (in this later case at the rate of 5 g chitin per liter of substrate). The soil + peat constituent was made either of a material already challenged by pesticides (= recycled biofilters) or of untreated material (new biofilters). Selected pesticides (atrazine, carbofuran, chloridazon, chlortoluron, cyanazine, isoproturon and lenacil) were applied onto biofilters and the eluates were collected and analyzed. Two successive injections of pesticides into the biofilters were conducted. After the first pesticides application, the recycled biofilters made of soil + peat previously treated with pesticides had better retention and degradation rates than the new biofilters. Adding manure also improved these properties of biofilters. Columns made of unchallenged soil + peat and straw (new biofilters) were the least satisfactory: up to 25% of carbofuran were lost. Biofilters made of unchallenged soil + peat and chitin retained the least lenacil. Atrazine was the most retained by biofilters (either new or recycled) with added chitin. Cyanazine was almost absent in the percolates of all biofilters. After the second application of carbofuran and isoproturon, all biofilters improved to the point where (with the exception the new biofilters made of chitin) they retained the totality of the pesticides.

  5. Assessment of Pollutant Removal Efficiency and Drainage Capacity in Stormwater Biofilters

    NASA Astrophysics Data System (ADS)

    Carroll, S. J.; Mills, H.; Reagan, A.; Triassi, M.; Bauer, S.; Matiasek, S. J.; Libby, R.; Meddings, C.

    2016-12-01

    Urban stormwater runoff contributes to flooding and impacts water quality with increased sediment and pollutant loads. Biofilters are vegetated filtration systems designed to mitigate stormwater by enhancing infiltration, sedimentation, contaminant sorption and uptake. Despite the rapid implementation of biofilters as stormwater management solutions, their performance is mainly evaluated in terms of flood reduction while their pollutant removal efficiency is rarely assessed. We investigated the effect of biofilter composition on drainage capacity and individual pollutant removal in test columns. Triplicate columns consisted of layers of pebbles, fine sand, filtration mix (test variable), mulch, lava rock and Santa Barbara sedges. The filtration mix was one of five combinations of coarse sand and local loam soil ranging from 100% sand to 100% soil. Consistent with differences in pore size distribution, hydraulic conductivity values were lowest in 100% soil biofilters (3.0 ± 0.6 mm/h) and highest in the 100% sand biofilters (22.7 ± 4.2 mm/h). A synthetic mixture of nutrients, metals, and salts in proportions representative of stormwater composition was applied to the test columns. Biofilters removed over 98% of dissolved copper, nickel, and zinc, and at least 67% of dissolved lead, even when applying synthetic runoff with metal concentrations three orders of magnitude larger than in actual stormwater. In addition, biofilters oxygenated, neutralized, and decreased the turbidity of stormwater. Ammonium was quantitatively removed from synthetic runoff (97-100%), while nitrate and phosphate were poorly retained (48-64%) or even leached from sand biofilters. This study demonstrated that, while decreasing drainage capacity, adding even a small proportion of native soil to the filtration media significantly increases pollutant removal of biofilters. With proper consideration of the filtration mixture, biofiltration systems can effectively remediate urban stormwater.

  6. Effect of gas velocity and influent concentration on biofiltration of gasoline off-gas from soil vapor extraction.

    PubMed

    Namkoong, Wan; Park, Joon-Seok; VanderGheynst, Jean S

    2004-11-01

    This study was conducted to evaluate the effects of gas inlet concentration and velocity on the biofiltration of gasoline vapor. Gasoline vapor was treated using a compost biofilter operated in an upflow mode for about 3 months. The inlet concentration of gasoline total petroleum hydrocarbon (TPH) ranged from about 300 to 7000 mgm(-3) and gas was injected at velocities of 6 and 15 mh(-1) (empty bed residence time (EBRT)=10 and 4 min, respectively). The maximum elimination capacities of TPH at 6 and 15 mh(-1) found in this research were over 24 and 19 gm(-3) of filling material h(-1), respectively. TPH removal data was fit using a first-order kinetic relationship. In the low concentration range of 300-3000 mg m(-3), the first-order kinetic constants varied between about 0.10 and 0.29 min(-1) regardless of gas velocities. At TPH concentrations greater than 3000 mgm(-3), the first-order kinetic constants were about 0.09 and 0.07 min(-1) at gas velocities of 6 mh(-1) and 15 mh(-1), respectively. To evaluate microbial dynamics, dehydrogenase activity, CO2 generation and microbial species diversity were analyzed. Dehydrogenase activity could be used as an indicator of microbial activity. TPH removal corresponded well with CO2 evolution. The average CO2 recovery efficiency for the entire biofilter ranged between 60% and 70%. When the gas velocity was 6 mh(-1), most of the microbial activity and TPH removal occurred in the first quarter of the biofilter. However, when the gas velocity was 15 mh(-1), the entire column contributed to removal. Spatial and temporal variations in the biofilter microbial population were also observed. Nearly 60% of the colonies isolated from the compost media prior to biofiltration were Bacillus. After 90 days of biofiltration, the predominant species in the lower portion (0-50 cm) of the filter were Rhodococcus, while Pseudomonas and Acinetobacter dominated the upper portion (75-100 cm). copyright 2004 Elsevier Ltd.

  7. Coal-Packed Methane Biofilter for Mitigation of Green House Gas Emissions from Coal Mine Ventilation Air

    PubMed Central

    Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina

    2014-01-01

    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min−1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m−3 empty bed h−1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min−1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane. PMID:24743729

  8. Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna

    2018-02-01

    The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.

  9. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media.

    PubMed

    Mathur, Anil K; Majumder, C B; Chatterjee, Shamba

    2007-09-05

    Biofiltration of air stream containing mixture of benzene, toluene, ethyl benzene and o-xylene (BTEX) has been studied in a lab-scale biofilter packed with a mixture of compost, sugar cane bagasse and granulated activated carbon (GAC) in the ratio 55:30:15 by weight. Microbial acclimation was achieved in 30 days by exposing the system to average BTEX inlet concentration of 0.4194 gm(-3) at an empty bed residence time (EBRT) of 2.3 min. Biofilter achieved maximum removal efficiency more than 99% of all four compounds for throughout its operation at an EBRT of 2.3 min for an inlet concentration of 0.681 gm(-3), which is quite significance than the values reported in the literature. The results indicate that when the influent BTEX loadings were less than 68 gm(-3)h(-1) in the biofilter, nearly 100% removal could be achieved. A maximum elimination capacity (EC) of 83.65 gm(-3)h(-1) of the biofilter was obtained at inlet BTEX load of 126.5 gm(-3)h(-1) in phase IV. Elimination capacities of BTEX increased with the increase in influent VOC loading, but an opposite trend was observed for the removal efficiency. The production of CO(2) in each phase (gm(-3)h(-1)) was also observed at steady state (i.e. at maximum removal efficiency). Moreover, the high concentrations of nitrogen in the nutrient solution may adversely affect the microbial activity possibly due to the presence of high salt concentrations. Furthermore, an attempt was also made to isolate the most profusely grown BTEX-degrading strain. A Gram-positive strain had a high BTEX-degrading activity and was identified as Bacillus sphaericus by taxonomical analysis, biochemical tests and 16S rDNA gene analysis methods.

  10. Biodegradation of gas-phase styrene using the fungus Sporothrix variecibatus: impact of pollutant load and transient operation.

    PubMed

    Rene, Eldon R; Veiga, María C; Kennes, Christian

    2010-03-01

    Biofiltration of gas-phase styrene was studied using a newly isolated fungus Sporothrix variecibatus, in a perlite biofilter, at inlet concentrations and gas-flow rates ranging from 0.13 to 14 g m(-3) and 0.075 to 0.34 m(3) h(-1), respectively, corresponding to empty bed residence times (EBRT) ranging between 91 and 20s. Styrene loading rates were varied between 50 and 845 g m(-3) h(-1)and a maximum elimination capacity of 336 g m(-3) h(-1) was attained with nearly 65% styrene removal. On the other hand, the critical inlet loads to achieve more than 90% removal were 301, 240 and 92 g m(-3) h(-1) for EBRT of 91, 40, and 20s, respectively. In order to test the stability and shock bearing capacity of the fungal biofilter, short-term tests were conducted by suddenly increasing the gas-phase styrene concentration, while maintaining the gas-flow rate constant. The response, a restoration in the removal performance to previous high values, after subjecting the biofilter to shock loads proves the resilient nature of the attached Sporothrix sp. and its suitability for biofiltration under non-steady state conditions. 2010 Elsevier Ltd. All rights reserved.

  11. Nitrogen Transformation and Microbial Spatial Distribution in Drinking Water Biofilter

    NASA Astrophysics Data System (ADS)

    Qian, Yongxing; Zhang, Huining; Jin, Huizheng; Wu, Chengxia

    2018-02-01

    Well understanding the rule of nitrogen mutual transformation in biofilters is important for controlling the DBPs formation in the subsequent disinfection process. Ammonia nitrogen removal effect and nitrogen transformation approach in biofilter of drinking water was researched in the study. The biofilter removed ammonia of 48.5% and total phosphorus of 72.3%. And the removal rate of TN, NO3 --N, DON were 37.1%, 33.1%, 46.9%, respectively. Biomass and bioactivity of different depth of the biofilter were determined, too. The overall distribution of biomass showed a decreasing trend from top to bottom. The bioactivity in lower layer gradually increased. Especially the bioactivity of heterotrophic microorganisms showed a gradual increase trend. The amount of the nitrogen loss was 3.06mg/L. Non-nitrification pathway of “nitrogen loss” phenomenon in biofilter might exist assimilation, nitrification and denitrification in autotrophic.

  12. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    PubMed

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.

  13. Thermophilic biofilter for SO2 removal: performance and microbial characteristics.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2015-03-01

    A bench-scale thermophilic biofilter was applied to remove SO2 at 60°C in the present study. The SO2 concentration in the inlet stream ranged from 100mg/m(3) to 200mg/m(3). An average SO2 removal efficiency of 93.10% was achieved after developing acclimated organisms that can degrade SO2. The thermophilic biofilter effectively reduced SO2, with a maximum elimination capacity of 50.67g/m(3)/h at a loading rate of 51.44g/m(3)/h. Removal efficiency of the thermophilic biofilter was largely influenced by the water containing rate of the packing materials. The SO2 transfer in the biofilter included adsorption by the packing materials, dissolution in liquid, and microbial degradation. The main product of SO2 degradation was SO4(2-). The temporal shifts in the bacterial community that formed in the biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequence analysis. These shifts revealed a correlation between biofilter performance and bacterial community structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ammonia-nitrogen and Phosphate Reduction by Bio-Filter using Factorial Design

    NASA Astrophysics Data System (ADS)

    Kasmuri, Norhafezah; Ashikin Mat Damin, Nur; Omar, Megawati

    2018-02-01

    Untreated landfill leachate is known to have endangered the environment. As such new treatment must be sought to ensure its cost-effective and sustainable treatment. Thus this paper reports the effectiveness of bio-filter to remove pollutants. In this research, the reduction of nutrients concentration was evaluated in two conditions: using bio-filter and without bio-filter. Synthetic wastewater was used in the batch culture. It was conducted within 21 days in the initial mediums of 100 mg/L ammonia-nitrogen. The nitrification medium consisted of 100 mg/L of ammonia-nitrogen while the nitrite assay had none. The petri dish experiment was also conducted to observe the existence of any colony. The results showed 22% of ammonia- nitrogen reduction and 33% phosphate in the nitrification medium with the bio-filter. The outcome showed that the bio-filter was capable to reduce the concentration of pollutants by retaining the slow growing bacteria (AOB and NOB) on the plastic carrier surface. The factorial design was applied to study the effect of the initial ammonia-nitrogen concentration and duration on nitrite-nitrogen removal. Finally, a regression equation was produced to predict the rate of nitrite-nitrogen removal without conducting extended experiments and to reduce the number of trials experiment.

  15. Escherichia coli removal in biochar-augmented biofilter: effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost.

    PubMed

    Mohanty, Sanjay K; Boehm, Alexandria B

    2014-10-07

    Bioretention systems and biofilters are used in low impact development to passively treat urban stormwater. However, these engineered natural systems are not efficient at removing fecal indicator bacteria, the contaminants responsible for a majority of surface water impairments. The present study investigates the efficacy of biochar-augmented model sand biofilters for Escherichia coli removal under a variety of stormwater bacterial concentrations and infiltration rates. Additionally, we test the role of biochar particle size and "presence of compost on model" biofilter performance. Our results show that E. coli removal in a biochar-augmented sand biofilter is ∼ 96% and is not greatly affected by increases in stormwater infiltration rates and influent bacterial concentrations, particularly within the ranges expected in field. Removal of fine (<125 μm) biochar particles from the biochar-sand biofilter decreased the removal capacity from 95% to 62%, indicating biochar size is important. Addition of compost to biochar-sand biofilters not only lowered E. coli removal capacity but also increased the mobilization of deposited bacteria during intermittent infiltration. This result is attributed to exhaustion of attachment sites on biochar by the dissolved organic carbon leached from compost. Overall, our study indicates that biochar has potential to remove bacteria from stormwater under a wide range of field conditions, but for biochar to be effective, the size should be small and biochar should be applied without compost. Although the results aid in the optimization of biofilter design, further studies are needed to examine biochar potential in the field over an entire rainy season.

  16. Evaluation of dispersion methods for enumeration of microorganisms from peat and activated carbon biofilters treating volatile organic compounds.

    PubMed

    Khammar, Nadia; Malhautier, Luc; Degrange, Valérie; Lensi, Robert; Fanlo, Jean-Louis

    2004-01-01

    To enumerate microorganisms having colonized biofilters treating volatile organic compounds, it is necessary firstly to evaluate dispersion methods. Crushing, shaking and sonication were then tested for the removal of microflora from biofilters packing materials (peat and activated carbon). Continuous or discontinuous procedures, and addition of glass beads had no effect on the number of microorganisms removed from peat particles. The duration of treatment also had no effect for shaking and crushing, but the number of microorganisms after 60 min of treatment with ultrasound was significantly higher than that obtained after 0.5 min. The comparison between these methods showed that crushing was the most efficient for the removal of microorganisms from both peat and activated carbon. The comparison between three chemical dispersion agents showed that 1% Na-pyrophosphate was less efficient, compared with 200 mM phosphate buffer or 1% Na-hexametaphosphate. To optimize the cultivation of microorganisms, three different agar media were compared. Tryptic soy agar tenfold diluted (TSA 1/10) was the most suitable medium for the culture of microflora from a peat biofilter. For the activated carbon biofilter, there was no significant difference between Luria Bertoni, TSA 1/10, and plate count agar. The optimized extraction and enumeration protocols were used to perform a quantitative characterization of microbial populations in an operating laboratory activated carbon biofilter and in two parallel peat biofilters.

  17. Long-term ammonia removal in a coconut fiber-packed biofilter: analysis of N fractionation and reactor performance under steady-state and transient conditions.

    PubMed

    Baquerizo, Guillermo; Maestre, Juan P; Machado, Vinicius C; Gamisans, Xavier; Gabriel, David

    2009-05-01

    A comprehensive study of long-term ammonia removal in a biofilter packed with coconut fiber is presented under both steady-state and transient conditions. Low and high ammonia loads were applied to the reactor by varying the inlet ammonia concentration from 90 to 260 ppm(v) and gas contact times ranging from 20 to 36 s. Gas samples and leachate measurements were periodically analyzed and used for characterizing biofilter performance in terms of removal efficiency (RE) and elimination capacity (EC). Also, N fractions in the leachate were quantified to both identify the experimental rates of nitritation and nitratation and to determine the N leachate distribution. Results showed stratification in the biofilter activity and, thus, most of the NH(3) removal was performed in the lower part of the reactor. An average EC of 0.5 kg N-NH(3)m(-3)d(-1) was obtained for the whole reactor with a maximum local average EC of 1.7 kg N-NH(3)m(-3)d(-1). Leachate analyses showed that a ratio of 1:1 of ammonium and nitrate ions in the leachate was obtained throughout steady-state operation at low ammonia loads with similar values for nitritation and nitratation rates. Low nitratation rates during high ammonia load periods occurred because large amounts of ammonium and nitrite accumulated in the packed bed, thus causing inhibition episodes on nitrite-oxidizing bacteria due to free ammonia accumulation. Mass balances showed that 50% of the ammonia fed to the reactor was oxidized to either nitrite or nitrate and the rest was recovered as ammonium indicating that sorption processes play a fundamental role in the treatment of ammonia by biofiltration.

  18. Control of dissolved CH4 in a municipal UASB reactor effluent by means of a desorption - Biofiltration arrangement.

    PubMed

    Huete, A; de Los Cobos-Vasconcelos, D; Gómez-Borraz, T; Morgan-Sagastume, J M; Noyola, A

    2018-06-15

    The direct anaerobic treatment of municipal wastewater represents an adapted technology to the conditions of developing countries. In order to get an increased acceptance of this technology, a proper control of dissolved methane in the anaerobic effluents should be considered, as methane is a potent greenhouse gas. In this study, a pilot-scale system was operated for 168 days to recover dissolved methane from an effluent of an upflow anaerobic sludge blanket reactor and then oxidize it in a compost biofilter. The system operated at a constant air (0.9 m 3 /h ±0.09) and two air-to anaerobic effluent ratio (1:1 and 1:2). In both conditions (CH 4 concentration of 2.7 ± 0.87 and 4.3% ± 1.14, respectively) the desorption column recovered 99% of the dissolved CH 4 and approximately 30% ± 8.5 of H 2 S, whose desorption was limited due to the high pH (>8) of the effluent. The biofilter removed 70% ± 8 of the average CH 4 load (60 gCH 4 /m 3 h ± 13) and 100% of the H 2 S load at an empty bed retention time of 23 min. The average temperature inside the biofilter was 42 ± 9 °C due to the CH 4 oxidation reaction, indicating that temperature and moisture control is particularly important for CH 4 removal in compost biofilters. The system may achieve a 54% reduction of greenhouse gas emissions from dissolved CH 4 in this particular case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under ...

    EPA Pesticide Factsheets

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppmv of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppmv) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s−1. The highest ratio of chemical oxygen demand (COD)removal/nitrogenutilization was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB. Chloroform is volatile hazardous chemical emitted from publicly owned treatment

  20. Modeling biofiltration of VOC mixtures under steady-state conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzis, B.C.; Wojdyla, S.M.; Zarook, S.M.

    1997-06-01

    Treatment of air streams contaminated with binary volatile organic compound (VOC) mixtures in classical biofilters under steady-state conditions of operation was described with a general mathematical model. The model accounts for potential kinetic interactions among the pollutants, effects of oxygen availability on biodegradation, and biomass diversification in the filter bed. While the effects of oxygen were always taken into account, two distinct cases were considered for the experimental model validation. The first involves kinetic interactions, but no biomass differentiation, used for describing data from biofiltration of benzene/toluene mixtures. The second case assumes that each pollutant is treated by a differentmore » type of biomass. Each biomass type is assumed to form separate patches of biofilm on the solid packing material, thus kinetic interference does not occur. This model was used for describing biofiltration of ethanol/butanol mixtures. Experiments were performed with classical biofilters packed with mixtures of peat moss and perlite (2:3, volume:volume). The model equations were solved through the use of computer codes based on the fourth-order Runge-Kutta technique for the gas-phase mass balances and the method of orthogonal collocation for the concentration profiles in the biofilms. Good agreement between model predictions and experimental data was found in almost all cases. Oxygen was found to be extremely important in the case of polar VOCs (ethanol/butanol).« less

  1. Biofilter application for control of BTEX compounds from glycol dehydrator condenser vent gases at oil and natural gas producing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, W.C.; Kamarthi, R.S.

    1997-12-31

    Compliance with 1990 Clean Air Act Amendments will require cost-effective control technologies to reduce air emissions for petroleum industries. EPA has also proposed a new MACT Rule for Oil and Natural Gas Producing Facilities which will require control of emissions from glycol dehydrator vents. Control of volatile organic compound (VOC) emissions such as benzene, toluene, ethylbenzene, and xylene (BTEX) is one of the major concerns for the petroleum industries. Traditional VOC control methods may not be economically feasible to meet the requirements of these regulations. Recent studies have shown that biofilters can cost-effectively remove BTEX compounds with greater than 95%more » efficiency. This paper describes results from field testing a biofilter at an Oil and Natural Gas Producing facility. The biofilter treats a low flow gas stream containing high concentrations of VOCs and carbon dioxide from a glycol dehydrator condenser vent. A modular high-rate vapor phase biofilter developed by BioiReaction Industries was used to investigate the feasibility of this low-cost technology. Due to the high VOC loading (BTEX compounds up to 18,000 ppm; total VOCs 50,000 to 90,000 ppm), three modular biofilters were installed in series.« less

  2. Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma asperellum isolate.

    PubMed

    Gopinath, M; Mohanapriya, C; Sivakumar, K; Baskar, G; Muthukumaran, C; Dhanasekar, R

    2016-03-01

    In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m(-3) h(-1)) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model.

  3. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    PubMed

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  4. Mesquite wood chips (Prosopis) as filter media in a biofilter system for municipal wastewater treatment.

    PubMed

    Sosa-Hernández, D B; Vigueras-Cortés, J M; Garzón-Zúñiga, M A

    2016-01-01

    The biofiltration system over organic bed (BFOB) uses organic filter material (OFM) to treat municipal wastewater (MWW). This study evaluated the performance of a BFOB system employing mesquite wood chips (Prosopis) as OFM. It also evaluated the effect of hydraulic loading rates (HLRs) in order to achieve the operational parameters required to remove organic matter, suspended material, and pathogens, thus meeting Mexican and US regulations for reuse in irrigation. Two biofilters (BFs) connected in series were installed; the first one aerated (0.62 m(3)air m(-2)h(-1)) and the second one unaerated. The source of MWW was a treatment plant located in Durango, Mexico. For 200 days, three HLRs (0.54, 1.07, and 1.34 m(3)m(-2)d(-1)) were tested. The maximum HLR at which the system showed a high removal efficiency of pollutants and met regulatory standards for reuse in irrigation was 1.07 m(3)m(-2)d(-1), achieving removal efficiencies of biochemical oxygen demand (BOD5) 92%, chemical oxygen demand (COD) 78%, total suspended solids (TSS) 95%, and four log units of fecal coliforms. Electrical conductivity in the effluent ensures that it would not cause soil salinity. Therefore, mesquite wood chips can be considered an innovative material suitable as OFM for BFs treating wastewaters.

  5. Microbiological and kinetic aspects of a biofilter for the removal of toluene from waste gases

    PubMed

    Acuna; Perez; Auria; Revah

    1999-04-20

    Microbiological and kinetic aspects of a biofilter inoculated with a consortium of five bacteria and two yeast adapted to remove toluene vapors were investigated. Initially the toluene sorption isotherm on peat and the effect of different environmental conditions on the toluene consumption rates of this consortium were measured. The fast start-up of the biofilter and the decay in the elimination capacity (EC) were reproduced using microcosm assays with toluene successive additions. Nutrient limitation and a large degree of heterogeneity were also detected. EC values, extrapolated from microcosms, were higher than biofilter EC when it was operating close to 100% efficiency but tended to relate better as the biofilter EC diminished. In studies on the microbial evolution in the biofilter, an increase in the cell count and variation in the ecology of the consortium were noted. Bacterial counts up to 10 x 10(11) cfu/gdry peat were found in 88 days, which corresponds to about a 10(4) increase from inoculum. Observations with SEM showed a nonuniform biofilm development on the support and the presence of an extracellular material. The results obtained in this work demonstrated that activity measurement in microcosms concomitant to the biofilter operation could be an important tool for understanding, predicting and improving the biofiltration performance. Copyright 1999 John Wiley & Sons, Inc.

  6. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David W. Mazyck; Angela Lindner; CY Wu, Rick Sheahan, Ashok Jain

    2007-06-30

    Forest products provide essential resources for human civilization, including energy and materials. In processing forest products, however, unwanted byproducts, such as volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) are generated. The goal of this study was to develop a cost effective and reliable air pollution control system to reduce VOC and HAP emissions from pulp, paper and paperboard mills and solid wood product facilities. Specifically, this work focused on the removal of VOCs and HAPs from high volume low concentration (HVLC) gases, particularly methanol since it is the largest HAP constituent in these gases. Three technologies were developedmore » and tested at the bench-scale: (1) A novel composite material of activated carbon coated with a photocatalyst titanium dioxide (TiO{sub 2}) (referred to as TiO{sub 2}-coated activated carbon or TiO{sub 2}/AC), (2) a novel silica gel impregnated with nanosized TiO{sub 2} (referred to as silica-titania composites or STC), and (3) biofiltration. A pilot-scale reactor was also fabricated and tested for methanol removal using the TiO{sub 2}/AC and STC. The technical feasibility of removing methanol with TiO{sub 2}/AC was studied using a composite synthesized via a spay desiccation method. The removal of methanol consists of two consecutive operation steps: removal of methanol using fixed-bed activated carbon adsorption and regeneration of spent activated carbon using in-situ photocatalytic oxidation. Regeneration using photocatalytic oxidation employed irradiation of the TiO{sub 2} catalyst with low-energy ultraviolet (UV) light. Results of this technical feasibility study showed that photocatalytic oxidation can be used to regenerate a spent TiO{sub 2}/AC adsorbent. A TiO{sub 2}/AC adsorbent was then developed using a dry impregnation method, which performed better than the TiO{sub 2}/AC synthesized using the spray desiccation method. The enhanced performance was likely a result of the better distribution of TiO2 particles on the activated carbon surface. A method for pore volume impregnation using microwave irradiation was also developed. A commercial microwave oven (800 W) was used as the microwave source. Under 2450 MHz microwave irradiation, TTIP was quickly hydrolyzed and anatase TiO2 was formed in a short time (< 20 minutes). Due to the volumetric heating and selective heating of microwave, the solvent and by-products were quickly removed which reduced energy consumption and processing time. Activated carbon and TiO{sub 2}/AC were also tested for the removal of hydrogen sulfide, which was chosen as the representative total reduced sulfur (TRS) species. The BioNuchar AC support itself was a good H{sub 2}S remover. After coating TiO{sub 2} by dry impregnation, H{sub 2}S removal efficiency of TiO{sub 2}/AC decreased compared with the virgin AC due to the change of surface pH. Under UV light irradiation, H{sub 2}S removal efficiency of TiO{sub 2}/AC composite doubled, and its sulfate conversion efficiency was higher than that of AC. The formation of sulfate is preferred since the sulfate can be removed from the composite by rising with water. A pilot-scale fluidized bed reactor was designed to test the efficiency of methanol oxidation with TiO{sub 2}/AC in the presence of UV light. TiO{sub 2}/AC was prepared using the spray desiccation method. The TiO{sub 2}/AC was pre-loaded with (1) methanol (equivalent to about 2%wt) and (2) methanol and water. When the TiO{sub 2}/AC loaded with methanol only was exposed to UV light for one hour in the reactor, most of the methanol remained in the carbon pores and, thus, was not oxidized. The TiO{sub 2}/AC loaded with methanol and water desorbed about 2/3 of the methanol from its pores during fluidization, however, only a small portion of this desorbed methanol was oxidized. A biofilter system employing biological activated carbon was developed for methanol removal. The biofilter contained a mixed packing with Westvaco BioNuchar granular activated carbon, perlite, Osmocote slow release ammonium nitrate pellets, and Agrasoke water crystals in a 4:2:1:1 ratio by volume. The biofilter was inoculated with a bacterial culture collected from a Florida pulp and paperboard plant. A non-inoculated biofilter column was also tested. Use of a biological inoculum enriched from biofilm in the pulp and paper process has the potential to enhance the performance of a GAC biofilter. During testing, packing material was removed from the inlet and oulet of the biofilters and analyzed for genetic diversity using molecular techniques. The biofilter inoculated with specifically-enhanced inoculum showed higher bacterial diversity for methylotrophs and all bacteria, as compared to a non-inoculated biofilter. Mixed methylotrophic cultures, selected as potential biofilter inocula, showed increased methanol removal with highest concentrations of nitrogen provided as nitrate.« less

  7. Testing a biofilter cover design to mitigate dairy effluent pond methane emissions.

    PubMed

    Pratt, Chris; Deslippe, Julie; Tate, Kevin R

    2013-01-02

    Biofiltration, whereby CH(4) is oxidized by methanotrophic bacteria, is a potentially effective strategy for mitigating CH(4) emissions from anaerobic dairy effluent lagoons/ponds, which typically produce insufficient biogas for energy recovery. This study reports on the effectiveness of a biofilter cover design at oxidizing CH(4) produced by dairy effluent ponds. Three substrates, a volcanic pumice soil, a garden-waste compost, and a mixture of the two, were tested as media for the biofilters. All substrates were suspended as 5 cm covers overlying simulated dairy effluent ponds. Methane fluxes supplied to the filters were commensurate with emission rates from typical dairy effluent ponds. All substrates oxidized more than 95% of the CH(4) influx (13.9 g CH(4) m(-3) h(-1)) after two months and continued to display high oxidation rates for the remaining one month of the trial. The volcanic soil biofilters exhibited the highest oxidation rates (99% removal). When the influx CH(4) dose was doubled for a month, CH(4) removal rates remained >90% for all substrates (maximum = 98%, for the volcanic soil), suggesting that biofilters have a high capacity to respond to increases in CH(4) loads. Nitrous oxide emissions from the biofilters were negligible (maximum = 19.9 mg N(2)O m(-3) h(-1)) compared with CH(4) oxidation rates, particularly from the volcanic soil that had a much lower microbial-N (75 mg kg(-1)) content than the compost-based filters (>240 mg kg(-1)). The high and sustained CH(4) oxidation rates observed in this laboratory study indicate that a biofilter cover design is a potentially efficient method to mitigate CH(4) emissions from dairy effluent ponds. The design should now be tested under field conditions.

  8. Escherichia coli Removal in Biochar-Modified Biofilters: Effects of Biofilm

    PubMed Central

    Afrooz, A. R. M. Nabiul; Boehm, Alexandria B.

    2016-01-01

    The presence of microbial contaminants in urban stormwater is a significant concern for public health; however, their removal by traditional stormwater biofilters has been reported as inconsistent and inadequate. Recent work has explored the use of biochar to improve performance of stormwater biofilters under simplified conditions that do not consider potential effects of biofilm development on filter media. The present study investigates the role of biofilm on microbial contaminant removal performance of stormwater biofilters. Pseudomonas aeruginosa biofilms were formed in laboratory-scale sand and biochar-modified sand packed columns, which were then challenged with Escherichia coli laden synthetic stormwater containing natural organic matter. Results suggests that the presence of biofilm influences the removal of E. coli. However, the nature of the influence depends on the specific surface area and the relative hydrophobicity of filter media. The distribution of attached bacteria within the columns indicates that removal by filter media varies along the length of the column: the inlet was the primary removal zone regardless of experimental conditions. Findings from this research inform the design of field-scale biofilters for better and consistent performance in removing microbial contaminants from urban stormwater. PMID:27907127

  9. Biofiltration for control of volatile organic compounds (VOCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, D.F.; Govind, R.

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size andmore » geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.« less

  10. Non-steady state simulation of BOM removal in drinking water biofilters: model development.

    PubMed

    Hozalski, R M; Bouwer, E J

    2001-01-01

    A numerical model was developed to simulate the non-steady-state behavior of biologically-active filters used for drinking water treatment. The biofilter simulation model called "BIOFILT" simulates the substrate (biodegradable organic matter or BOM) and biomass (both attached and suspended) profiles in a biofilter as a function of time. One of the innovative features of BIOFILT compared to previous biofilm models is the ability to simulate the effects of a sudden loss in attached biomass or biofilm due to filter backwash on substrate removal performance. A sensitivity analysis of the model input parameters indicated that the model simulations were most sensitive to the values of parameters that controlled substrate degradation and biofilm growth and accumulation including the substrate diffusion coefficient, the maximum rate of substrate degradation, the microbial yield coefficient, and a dimensionless shear loss coefficient. Variation of the hydraulic loading rate or other parameters that controlled the deposition of biomass via filtration did not significantly impact the simulation results.

  11. ASSESSMENT OF BIOFILTER MEDIA PARTICLE SIZES FOR REMOVING AMMONIA

    USDA-ARS?s Scientific Manuscript database

    With increased concerns over odor and gas emissions from livestock production facilities more efficient technologies of air pollution control are needed to mitigate the deleterious effects of air contaminants. Gas-phase biofilters for treating contaminant gases from poultry and livestock operations ...

  12. Assessment of Biofilter Media Particle Sizes for Removing Ammonia

    USDA-ARS?s Scientific Manuscript database

    With increased concerns over odor and gas emissions from livestock production facilities more efficient technologies of air pollution control are needed to mitigate the deleterious effects of air contaminants. Gas-phase biofilters for treating contaminant gases from poultry and livestock operations ...

  13. [Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter].

    PubMed

    Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Ding, Wen-iie; Li, Lin; Lin, Jian; Liu, Jun-xin

    2016-01-15

    A thermophilic biofilter was employed to treat the flue gas generated from sludge drying process, and the performance in both the start period and the stationary phase was studied under the gas flow rate of 2 700-3 100 m3 x h(-1) and retention time of 21.88-25.10 s. The results showed that the thermophilic biofilter could effectively treat gases containing sulfur dioxide, ammonia and volatile organic compounds (VOC). The removal efficiencies could reach 100%, 93.61% and 87.01%, respectively. Microbial analysis indicated that most of the population belonged to thermophilic bacteria. Paenibacillus sp., Chelatococcus sp., Bacillus sp., Clostridium thermosuccinogenes, Pseudoxanthomonas sp. and Geobacillus debilis which were abundant in the thermophilic biofilter, had the abilities of denitrification, desulfurization and degradation of volatile organic compounds.

  14. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.

    PubMed

    Rattanapan, Cheerawit; Boonsawang, Piyarat; Kantachote, Duangporn

    2009-01-01

    A biofiltration system with sulfur oxidizing bacteria immobilized on granular activated carbon (GAC) as packing materials had a good potential when used to eliminate H(2)S. The sulfur oxidizing bacteria were stimulated from concentrated latex wastewater with sulfur supplement under aerobic condition. Afterward, it was immobilized on GAC to test the performance of cell-immobilized GAC biofilter. In this study, the effect of inlet H(2)S concentration, H(2)S gas flow rate, air gas flow rate and long-term operation on the H(2)S removal efficiency was investigated. In addition, the comparative performance of sulfide oxidizing bacterium immobilized on GAC (biofilter A) and GAC without cell immobilization (biofilter B) systems was studied. It was found that the efficiency of the H(2)S removal was more than 98% even at high concentrations (200-4000 ppm) and the maximum elimination capacity was about 125 g H(2)S/m(3)of GAC/h in the biofilter A. However, the H(2)S flow rate of 15-35 l/h into both biofilters had little influence on the efficiency of H(2)S removal. Moreover, an air flow rate of 5.86 l/h gave complete removal of H(2)S (100%) in biofilter A. During the long-term operation, the complete H(2)S removal was achieved after 3-days operation in biofilter A and remained stable up to 60-days.

  15. Steady- and transient-state H2S biofiltration using expanded schist as packing material.

    PubMed

    Romero Hernandez, A C; Rodríguez Susa, M S; Andrès, Y; Dumont, E

    2013-01-25

    The performances of three laboratory-scale biofilters (BF1, BF2, BF3) packed with expanded schist for H(2)S removal were studied at different empty bed residence times (EBRT=35, 24 and 16s) in terms of elimination capacity (EC) and removal efficiency (RE). BF1 and BF2 were filled with expanded schist while BF3 was filled with both expanded schist and a nutritional material (UP20; 12% vol). BF1 and BF3 were inoculated with activated sludge, whereas BF2 was not inoculated. A maximum EC of 42 g m(-3) h(-1) was recorded for BF3 at EBRT=35 s demonstrating the ability of schist to treat high H(2)S loading rates, and the ability of UP20 to improve H(2)S removal. Michaelis-Menten and Haldane models were fitted to the experimental elimination capacities while biofilter responses to transient-state conditions in terms of removal efficiency during shock load events were also evaluated for BF1 and BF3. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Gas phase bio-filter for the removal of triethylamine (TEA) from air: microbial diversity analysis with reference to design parameters.

    PubMed

    Gandu, Bharath; Sandhya, K; Gangagni Rao, A; Swamy, Y V

    2013-07-01

    Biotic (packed bio-filter; PBF) and abiotic (packed filter; PF) studies were carried out on two similar 2L gas phase filters for the removal of triethylamine (TEA) at inlet concentration in the range of 250-280 ppmV. Removal efficiency (RE) of PBF remained in the range of 90-99% during the stable period of operation (170 days) whereas RE of PF dropped gradually to 10% in a span of 90 days. Five different bacterial species viz; Aeromonas sp., Alcaligenes sp., Arthrobacter sp., Klebsiella sp., and Pseudomonas sp., were identified in PBF. It was observed that diethyl amine, ethylamine and nitrate were formed as metabolites during the degradation pathway. Empty bed residence time of 20s, mass loading rate of 202.26 g/m(3)/h, space velocity of 178.82 m(3)/m(3)/h and elimination capacity of 201.52 g/m(3)/h were found to be optimum design parameters for PBF to get RE in the range of 90-99%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.

    PubMed

    Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann

    2016-01-01

    A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acuna, M.E.; Perez, F.; Revah, S.

    Microbiological and kinetic aspects of a biofilter inoculated with a consortium of five bacteria and two yeast adapted to remove toluene vapors were investigated. Initially the toluene sorption isotherm on peat and the effect of different environmental conditions on the toluene consumption rates of this consortium were measured. The fast start-up of the biofilter and the decay in the elimination capacity (EC) were reproduced using microcosm assays with toluene successive additions. Nutrient limitation and a large degree of heterogeneity were also detected. EC values, extrapolated from microcosms, were higher than biofilter EC when it was operating close to 100% efficiencymore » but tended to relate better as the biofilter EC diminished. In studies on the microbial evolution in the biofilter, an increase in the cell count and variation in the ecology of the consortium were noted. Bacterial counts up to 10 {times} 10{sup 11} cfu/g{sub dry peat} were found in 88 days, which corresponds to about a 10{sup 4} increase from inoculum. Observations with SEM showed a nonuniform biofilm development on the support and the presence of an extracellular material. The results obtained in this work demonstrated that activity measurement in microcosms concomitant to the biofilter operation could be an important tool for understanding, predicting and improving the biofiltration performance.« less

  19. Emission control system for nitrogen oxides using enhanced oxidation, scrubbing, and biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; Cabezas, J.

    2009-05-15

    Nitric oxide (NO) constitutes about 90% of the nitrogen oxide (NOx) species in the flue gases emitted from combustion processes, but NO is difficult to remove in existing scrubbers due to its low solubility. NO may be oxidized with hydrogen peroxide (H{sub 2}O{sub 2}) into soluble species that can be partially removed in wet scrubbers simultaneously with sulfur dioxide (SO{sub 2}) and biofilters located downstream of the scrubber can increase the removal efficiency. This article presents the results of a bench-scale evaluation of such an integrated system combining enhanced oxidation, scrubbing, and biofiltration. Main components of the bench-scale system consistedmore » of a quartz tube in a furnace to simulate the NO oxidation stage and two vertical packed bed cylinders constituting the scrubber and the biofilter. Inlet synthetic gas had a concentration of 50 mu L/L of NO. Overall removal efficiency by the integrated system was in the range of 53% to 93% with an average of 79%, absorption accounted for 43% and biofiltration for 36% of the total removal. Key parameters in the operation of the system are the H{sub 2}O{sub 2}:NO mole ratio, the reaction temperature, the liquid to gas flow ratio, and the biofilter residence time. Experimental results suggest a path for optimization of the technology focusing simultaneously in minimizing H{sub 2}O{sub 2} use in the enhanced oxidation stage, reducing water consumption in the scrubber stage and balancing the residence times in the three stages of the integrated system.« less

  20. Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.

    PubMed

    Mohammad, Balsam T; Veiga, María C; Kennes, Christian

    2007-08-15

    This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. (c) 2007 Wiley Periodicals, Inc.

  1. Trimethylamine (TMA) biofiltration and transformation in biofilters.

    PubMed

    Ding, Ying; Shi, Ji-Yan; Wu, Wei-Xiang; Yin, Jun; Chen, Ying-Xu

    2007-05-08

    Bioremoval of trimethylamine (TMA) in two three-stage biofilters packed with compost (A) and sludge (B), respectively, was investigated. Both biofilters were operated with an influent TMA concentration of 19.2-57.2mgm(-3) for 67 days. Results showed that all of the inlet TMA could be removed by both biofilters. However, removal efficiency and transformation of TMA in each section of both biofilters was different. In the Introduction section, TMA removal efficiency and maximum elimination capacity of the compost medium were greater than those of sludge medium under higher inlet TMA concentration. In comparison with biofilter A, considerably higher NH(3) concentrations in effluent of all three sections in biofilter B were observed after day 19. Although, NO(2)(-)-N concentration in each section of biofilter A was relatively lower, NO(3)(-)-N content in each section of biofilter A increased after day 26, especially in the Materials and method section which increased remarkably due to a lesser amount of TMA and higher ammonia oxidation and nitrification in compost medium. In contrast, neither NO(2)(-)-N nor NO(3)(-)-N were detected in either section of biofilter B at any time throughout the course of the experiment. The cumulative results indicated that compost is more favorable for the growth of TMA-degrading and nitrifying bacteria as compared to the sludge and could be a highly suitable packing material for biodegradation and transformation of TMA.

  2. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment.

    PubMed

    Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Autotrophic nitrogen removal process in a potable water treatment biofilter that simultaneously removes Mn and NH4(+)-N.

    PubMed

    Cai, Yan'an; Li, Dong; Liang, Yuhai; Zeng, Huiping; Zhang, Jie

    2014-11-01

    Ammonia (NH4(+)-N) removal pathways were investigated in a potable water treatment biofilter that simultaneously removes manganese (Mn) and NH4(+)-N. The results indicated a significant loss of nitrogen in the biofilter. Both the completely autotrophic nitrogen removal over nitrite (CANON) process and nitrification were more likely to contribute to NH4(+)-N removal. Moreover, the model calculation results demonstrated that the CANON process contributed significantly to the removal of NH4(+)-N. For influent NH4(+)-N levels of 1.030 and 1.749mg/L, the CANON process contribution was about 48.5% and 46.6%, respectively. The most important finding was that anaerobic ammonia oxidation (ANAMMOX) bacteria were detectable in the biofilter. It is interesting that the CANON process was effective even for such low NH4(+)-N concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comparison of NOx Removal Efficiencies in Compost Based Biofilters Using Four Different Compost Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey Alan; Lee, Brady Douglas; Apel, William Arnold

    2001-06-01

    In 1998, 3.6 trillion kilowatt-hours of electricity were generated in the United States. Over half of this was from coal-fired power plants, resulting in more than 8.3 million tons of nitrogen oxide (NOx) compounds being released into the environment. Over 95% of the NOx compounds produced during coal combustion are in the form of nitric oxide (NO). NOx emission regulations are becoming increasingly stringent, leading to the need for new, cost effective NOx treatment technologies. Biofiltration is such a technology. NO removal efficiencies were compared in compost based biofilters using four different composts. In previous experiments, removal efficiencies were typicallymore » highest at the beginning of the experiment, and decreased as the experiments proceeded. This work tested different types of compost in an effort to find a compost that could maintain NO removal efficiencies comparable to those seen early in the previous experiments. One of the composts was wood based with manure, two were wood based with high nitrogen content sludge, and one was dairy compost. The wood based with manure and one of the wood based with sludge composts were taken directly from an active compost pile while the other two composts were received in retail packaging which had been out of active piles for an indeterminate amount of time. A high temperature (55-60°C) off-gas stream was treated in biofilters operated under denitrifying conditions. Biofilters were operated at an empty bed residence time of 13 seconds with target inlet NO concentrations of 500 ppmv. Lactate was the carbon and energy source. Compost was sampled at 10-day intervals to determine aerobic and anaerobic microbial densities. Compost was mixed at a 1:1 ratio with lava rock and calcite was added at 100g/kg of compost. In each compost tested, the highest removal efficiencies occurred within the first 10 days of the experiment. The wood based with manure peaked at day 3 (77.14%), the dairy compost at day 1 (80.74%), the active wood based with sludge at day 5 (68.15%) and the inactive wood based with sludge at day 9 (63.64%, this compost was frozen when received). These levels gradually decreased throughout the remainder of the experiment until they fell between 40% and 60%. Decreasing removal efficiency was characteristic of all the composts tested, regardless of their makeup or activity state prior to testing. Although microbial densities and composition between composts may have differed, there was little change in densities within each experiment.« less

  5. Biofiltration of waste gases containing a mixture of formaldehyde and methanol.

    PubMed

    Prado, Oscar J; Veiga, María C; Kennes, Christian

    2004-08-01

    Several biofilters and biotrickling filters were used for the treatment of a mixture of formaldehyde and methanol; and their efficiencies were compared. Results obtained with three different inert filter bed materials (lava rock, perlite, activated carbon) suggested that the packing material had only little influence on the performance. The best results were obtained in a biotrickling filter packed with lava rock and fed a nutrient solution that was renewed weekly. A maximum formaldehyde elimination capacity of 180 g m(-3) h(-1) was reached, while the methanol elimination capacity rose occasionally to more than 600 g m(-3) h(-1). Formaldehyde degradation was affected by the inlet methanol concentration. Several combinations of load vs empty bed residence time (EBRTs of 71.9, 46.5, 30.0, 20.7 s) were studied, reaching a formaldehyde elimination capacity of 112 g m(-3) h(-1) with about 80% removal efficiency at the lowest EBRT (20.7 s).

  6. Biofilter design for effective nitrogen removal from stormwater - influence of plant species, inflow hydrology and use of a saturated zone.

    PubMed

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Fletcher, Tim D; Hatt, Belinda E; Deletic, Ana

    2014-01-01

    The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.

  7. Role of Thiobacillus thioparus in the biodegradation of carbon disulfide in a biofilter packed with a recycled organic pelletized material.

    PubMed

    Prenafeta-Boldú, Francesc X; Rojo, Naiara; Gallastegui, Gorka; Guivernau, Miriam; Viñas, Marc; Elías, Ana

    2014-07-01

    This study reports the biodegradation of carbon disulfide (CS2) in air biofilters packed with a pelletized mixture of composted manure and sawdust. Experiments were carried out in two lab-scale (1.2 L) biofiltration units. Biofilter B was seeded with activated sludge enriched previously on CS2-degrading biomass under batch conditions, while biofilter A was left as a negative inoculation control. This inoculum was characterized by an acidic pH and sulfate accumulation, and contained Achromobacter xylosoxidans as the main putative CS2 biodegrading bacterium. Biofilter operation start-up was unsuccessfully attempted under xerophilic conditions and significant CS2 elimination was only achieved in biofilter A upon the implementation of an intermittent irrigation regime. Sustained removal efficiencies of 90-100 % at an inlet load of up to 12 g CS2 m(-3) h(-1) were reached. The CS2 removal in this biofilter was linked to the presence of the chemolithoautotrophic bacterium Thiobacillus thioparus, known among the relatively small number of species with a reported capacity of growing on CS2 as the sole energy source. DGGE molecular profiles confirmed that this microbe had become dominant in biofilter A while it was not detected in samples from biofilter B. Conventional biofilters packed with inexpensive organic materials are suited for the treatment of low-strength CS2 polluted gases (IL <12 g CS2 m(-3) h(-1)), provided that the development of the adequate microorganisms is favored, either upon enrichment or by inoculation. The importance of applying culture-independent techniques for microbial community analysis as a diagnostic tool in the biofiltration of recalcitrant compounds has been highlighted.

  8. Biofiltration of air polluted with toluene under steady-state conditions: Experimental observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiared, K.; Fundenberger, B.; Brzezinski, R.

    1997-11-01

    In this study, the authors describe the removal of toluene vapors in a pilot scale biofilter. Biofiltration tests have been performed in a column fed upward with contaminated air at ambient conditions. The column was packed with a mixture of conditioned biomass and structuring agent on which a mixed microbial population of four selected strains was immobilized and then formed a biolayer. The biofilter was operated under various inlet-airstream toluene concentrations and flow rates of the contaminated airstream. Based on the present measurements, the biofilter proved effective in removing toluene at rates up to 165 g/h {center_dot} m{sup 3} ofmore » packing. The effect of some design and operation parameters (concentration of nutrients solution, presence of xylene, gas flow rate, pressure drop, temperature, etc.) are reported.« less

  9. Carbonyl sulfide removal with compost and wood chip biofilters, and in the presence of hydrogen sulfide.

    PubMed

    Sattler, Melanie L; Garrepalli, Divya R; Nawal, Chandraprakash S

    2009-12-01

    Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chloride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10-9.0 g/m3 hr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3 hr for COS with compost media.

  10. Microbial degradation of livestock-generated ammonia using biofilters at typical ambient temperatures.

    PubMed

    Kalingan, A E; Liao, Chung-Min; Chen, Jein-Wen; Chen, Szu-Chieh

    2004-01-01

    The purpose of this research was to neutralize livestock-generated ammonia by using biofilters packed with inexpensive inorganic and organic packing material combined with multicultural microbial load at typical ambient temperatures. Peat and inorganic supporting materials were used as biofiltration matrix packed in a perfusion column through which gas was transfused. Results show the ammonia removal significantly fell in between 99 and 100% when ammonia concentration of 200 ppmv was used at different gas flow rates ranged from 0.030 to 0.060 m3 h(-1) at a fluctuating room temperature of 27.5 +/- 4.5 C (Mean +/- SD). Under these conditions, the emission concentration of ammonia that is liberated after biofiltration is less than 1 ppmv (0.707 mg m(-3)) over the period of our study, suggesting the usage of low-cost biofiltration systems for long-term function is effective at wider ranges of temperature fluctuations. The maximum (100%) ammonia removal efficiency was obtained in this biofilter was having an elimination capacity of 2.217 g m(-3) h(-1). This biofilter had high nitrification efficiencies and hence controlled ammonia levels with the reduced backpressure. The response of this biofilter to shut down and start up operation showed that the biofilm has a superior stability.

  11. Dracaena marginata biofilter: design of growth substrate and treatment of stormwater runoff.

    PubMed

    Vijayaraghavan, K; Praveen, R S

    2016-01-01

    The purpose of this research was to investigate the efficiency of Dracaena marginata planted biofilters to decontaminate urban runoff. A new biofilter growth substrate was prepared using low-cost and locally available materials such as red soil, fine sand, perlite, vermiculite, coco-peat and Sargassum biomass. The performance of biofilter substrate was compared with local garden soil based on physical and water quality parameters. Preliminary analyses indicated that biofilter substrate exhibited desirable characteristics such as low bulk density (1140 kg/m(3)), high water holding capacity (59.6%), air-filled porosity (7.82%) and hydraulic conductivity (965 mm/h). Four different biofilter assemblies, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). Results from un-spiked artificial rain events suggested that concentrations of most of the chemical components in effluent were highest at the beginning of rain events and thereafter subsided during the subsequent rain events. Biofilter growth substrate showed superior potential over garden soil to retain metal ions such as Al, Fe, Cu, Cr, Ni, Zn, Cd and Pb during metal-spiked rain events. Significant differences were also observed between non-vegetated and vegetated biofilter assemblies in runoff quality, with the latter producing better results.

  12. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.

    PubMed

    Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen

    2015-01-01

    Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.

  13. Ammonia-Oxidizing Bacteria in Biofilters Removing Trihalomethanes Are Related to Nitrosomonas oligotropha

    EPA Science Inventory

    Nitrifying biofilters degrading the four regulated trihalomethanes (THMs) trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) -were analyzed for the presence and activity of ammonia-oxidizing bacteria (AOB). Biofilter perfor...

  14. Design and performance characterization strategy using modeling for biofiltration control of odorous hydrogen sulfide.

    PubMed

    Martin, Ronald W; Mihelcic, James R; Crittenden, John C

    2004-07-01

    Biofilter, dynamic modeling software characterizing contaminant removal via biofiltration, was used in the preliminary design of a biofilter to treat odorous hydrogen sulfide (H2S). Steady-state model simulations were run to generate performance plots for various influent concentrations, loadings, residence times, media sizes, and temperatures. Although elimination capacity and removal efficiency frequently are used to characterize biofilter performance, effluent concentration can be used to characterize performance when treating to a target effluent concentration. Model simulations illustrate that, at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter or how long the residence time. However, a higher biofilter temperature results in lower effluent H2S concentrations. Because dynamic model simulations show that shock loading can significantly increase the effluent concentration above values predicted by the steady-state model simulations, it is recommended that, to consistently meet treatment objectives, dynamic feed conditions should be considered. This study illustrates that modeling can serve as a valuable tool in the design and performance optimization of biofilters.

  15. Restaurant emissions removal by a biofilter with immobilized bacteria*

    PubMed Central

    Miao, Jian-yu; Zheng, Lian-ying; Guo, Xiao-fen

    2005-01-01

    Pseudomonas sp. ZD8 isolated from contaminated soil was immobilized with platane wood chips to produce packing materials for a novel biofilter system utilized to control restaurant emissions. The effects of operational parameters including retention time, temperature, and inlet gas concentration on the removal efficiency and elimination capacity were evaluated. Criteria necessary for a scale-up design of the biofilter was established. High and satisfactory level of rapeseed oil smoke removal efficiency was maintained during operation and the optimal retention time was found to be 18 s corresponding to smoke removal efficiency greater than 97%. The optimal inlet rapeseed oil smoke loading was 120 mg/(m3·h) at the upper end of the linear correlation between inlet loading and elimination capacity. PMID:15822160

  16. Restaurant emissions removal by a biofilter with immobilized bacteria.

    PubMed

    Miao, Jian-Yu; Zheng, Lian-Ying; Guo, Xiao-Fen

    2005-05-01

    Pseudomonas sp. ZD8 isolated from contaminated soil was immobilized with platane wood chips to produce packing materials for a novel biofilter system utilized to control restaurant emissions. The effects of operational parameters including retention time, temperature, and inlet gas concentration on the removal efficiency and elimination capacity were evaluated. Criteria necessary for a scale-up design of the biofilter was established. High and satisfactory level of rapeseed oil smoke removal efficiency was maintained during operation and the optimal retention time was found to be 18 s corresponding to smoke removal efficiency greater than 97%. The optimal inlet rapeseed oil smoke loading was 120 mg/(m(3) x h) at the upper end of the linear correlation between inlet loading and elimination capacity.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.D.; Apel, W.A.; Walton, M.R.

    Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolicmore » process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.« less

  18. Evaluation of co-metabolic removal of trichloroethylene in a biotrickling filter under acidic conditions.

    PubMed

    Chheda, Dhawal; Sorial, George A

    2017-07-01

    This study investigated the removal of hydrophobic trichloroethylene (TCE) in the presence of methanol (co-metabolite) in a biotrickling filter, which was seeded with fungi at pH4. Starvation was chosen as the biomass control strategy. Two systems, Biofilter I (methanol:TCE 70:30) and Biofilter II (methanol:TCE 80:20) were run in parallel, each with varying composition ratios. The TCE loading rates for both biofilters ranged from 3.22 to 12.88g/m 3 /hr. Depending on the ratio, methanol concentrations varied from 4.08 to 27.95g/m 3 /hr. The performance of the systems was evaluated and compared by calculating removal kinetics, carbon mass balance, efficiencies and elimination capacities. Methanol was observed to enhance TCE removal during the initial loading rate. However, methanol later inhibited TCE degradation above 6.44g TCE/m 3 /hr (Biofilter I) and 3.22g TCE/m 3 /hr (Biofilter II). Conversely, TCE did not impede methanol removal because over 95% methanol elimination was consistently achieved. Overall, Biofilter I was able to outperform Biofilter II due to its greater resistance towards methanol competition. Copyright © 2016. Published by Elsevier B.V.

  19. VOC and air toxics control using biofiltration: 2 full-scale system case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fucich, W.J.; Togna, A.P.; Loudon, R.E.

    1997-12-31

    Industry continuous to search for innovative air treatment technologies to cost effectively meet the stringent requirements of the CAAA. High volume process exhaust streams contaminated with dilute concentrations of VOCs and HAPs are an especially challenging problem. Biological treatment is an option that must be evaluated with the traditional control technologies (chemical scrubbing, condensation, adsorption, thermal oxidation, etc.) because of the low operating costs and the system is environmentally friendly. In the United States, biofiltration is considered an emerging technology, however, full-scale biofiltration systems are now successfully operating in two rigorous services. At Nylonge Corporation, a biofilter is safely andmore » efficiently degrading CS{sub 2} and H{sub 2}S vapor emissions. The ABTco system is successfully treating the target compounds, methanol and formaldehyde, in a press exhaust containing inert particulate and semi-volatiles. These systems are both based on a unique, patented modular design. The modular concept allows the system to be easily installed resulting in construction cost minimization and maintaining critical project schedules. The modular system offers flexibility because the biofilter is easily expanded to accommodate future plant growth. The modular design benefits the end user because individual modules or biofilter sections can be isolated for service and inspection while the biofilter system stays on-line. An up-flow configuration and the patented irrigation system allow biofilters to be used on the most difficult services. In the case of Nylonge, the biofilter is handling the sulfuric acid generated during the degradation of CS{sub 2} and H{sub 2}S vapors. At ABTco, stable operation is achieved in a stream containing particulates and semi-volatiles.« less

  20. Inhibitory effects of acidic pH and confounding effects of moisture content on methane biofiltration.

    PubMed

    Barzgar, Sonya; Hettiaratchi, Joseph Patrick; Pearse, Lauretta; Kumar, Sunil

    2017-12-01

    This study focussed on evaluating the effect of hydrogen sulfide (H 2 S) on biological oxidation of waste methane (CH 4 ) gas in compost biofilters, Batch experiments were conducted to determine the dependency of maximum methane oxidation rate (V max ) on two main factors; pH and moisture content, as well as their interaction effects. The maximum V max was observed at a pH of 7.2 with decreasing V max values observed with decreasing pH, irrespective of moisture content. Flow-through columns operated at a pH of 4.5 oxidized CH 4 at a flux rate of 53g/m 2 /d compared to 146g/m 2 /d in columns operated at neutral pH. No oxidation activity was observed for columns operated at pH 2.5, and DNA sequencing analysis of samples led to the conclusion that highly acidic conditions were responsible for inhibiting the ability of methanotrophs to oxidize CH 4 . Biofilter columns operated at pH 2.5 contained only 2% methanotrophs (type I) out of the total microbial population, compared to 55% in columns operated at pH 7.5. Overall, changes in the population of methanotrophs with acidification within the biofilters compromised its capacity to oxidize CH 4 which demonstrated that a compost biofilter could not operate efficiently in the presence of high levels of H 2 S. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Microbial Biotreatment of Actual Textile Wastewater in a Continuous Sequential Rice Husk Biofilter and the Microbial Community Involved

    PubMed Central

    Lindh, Markus V.; Pinhassi, Jarone; Welander, Ulrika

    2017-01-01

    Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% decolorization at a hydraulic retention time of 67 h. Analysis of microbial community composition of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) gene fragments in the biofilters revealed a bacterial consortium known to carry azoreductase genes, such as Dysgonomonas, and Pseudomonas and the presence of fungal phylotypes such as Gibberella and Fusarium. Our findings emphasize that rice husk biofilters support a microbial community of both bacteria and fungi with key features for biodegradation of actual textile wastewater. These results suggest that microbial processes can substantially contribute to efficient and reliable degradation of actual textile wastewater. Thus, development of biodegradation systems holds promise for application of affordable wastewater treatment in polluted environments. PMID:28114377

  2. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.

    PubMed

    Li, Chunyan; Wang, Shuting; Du, Xiaopeng; Cheng, Xiaosong; Fu, Meng; Hou, Ning; Li, Dapeng

    2016-11-01

    In this study, three bacteria with high Fe- and Mn-oxidizing capabilities were isolated from groundwater well sludge and identified as Acinetobacter sp., Bacillus megaterium and Sphingobacterium sp. The maximum removal ratios of Fe and Mn (99.75% and 96.69%) were obtained by an optimal combination of the bacteria at a temperature of 20.15°C, pH 7.09 and an inoculum size of 2.08%. Four lab-scale biofilters were tested in parallel for the removal of iron and manganese ions from groundwater. The results indicated that the Fe/Mn removal ratios of biofilter R4, which was inoculated with iron- and manganese-oxidizing bacteria and a biofilm-forming bacterium, were approximately 95% for each metal during continuous operation and were better than the other biofilters. This study demonstrated that the biofilm-forming bacterium could promote the immobilization of the iron- and manganese-oxidizing bacteria on the biofilters and enhance the removal efficiency of iron and manganese ions from groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Antibody engineering--a valuable asset in preventing closed environment epidemics.

    PubMed

    Fjallman, Ted; Hall, J Christopher

    2005-01-01

    Investigations of Mir, Space Shuttle, Skylab and Apollo missions report extensive colonisation of the spacecraft by bacteria and fungi, which can lead to degradative effects on spacecraft equipment and devastating effects on space-grown crops. More than 80% of terrestrial greenhouse epidemics are due to the fungal genera Phytophthora, Pythium and Fusarium, which have been found in life support system test-beds. The advent of recombinant antibody technologies, including ribosome display and phage display, has made it possible to develop antibodies against virtually any toxin or organism and allows for maturation of antibodies by in vitro molecular evolution. These antibodies may play an important role in an integrated pest management regime for life support systems. Efficacy of existing fungal countermeasures could be increased by chemical linkage to antibodies, which target the site of action of the biocide or trap the pathogen in a biofilter. Novel recombinant antibody-biocide fusions can be expressed in situ by plants or symbiotic microbes to create direct disease resistance. c2005 Elsevier Ltd. All rights reserved.

  4. Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry.

    PubMed

    Veillette, Marc; Girard, Matthieu; Viens, Pascal; Brzezinski, Ryszard; Heitz, Michèle

    2012-05-01

    The agricultural sector is responsible for an important part of Canadian greenhouse gas (GHG) emissions, 8 % of the 747 Mt eq. CO(2) emitted each year. The pork industry, a key sector of the agrifood industry, has had a rapid growth in Canada since the middle 1980s. For this industry, slurry storage accounts for the major part of methane (CH(4)) emissions, a GHG 25 times higher than carbon dioxide (CO(2)) on a 100-year time horizon. Intending to reduce these emissions, biofiltration, a process effective to treat CH(4) from landfills and coal mines, could be effective to treat CH(4) from the pig industry. Biofiltration is a complex process that requires the understanding of the biological process of CH(4) oxidation and a control of the engineering parameters (filter bed, temperature, etc.). Some biofiltration studies show that this technology could be used to treat CH(4) at a relatively low cost and with a relatively high purification performance.

  5. Biofiltration of paint solvent mixtures in two reactor types: overloading by hydrophobic components.

    PubMed

    Paca, Jan; Halecky, Martin; Misiaczek, Ondrej; Jones, Kim; Kozliak, Evguenii; Sobotka, Miroslav

    2010-12-01

    Steady-state performance characteristics of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing toluene/xylenes inlet concentrations while maintaining a constant loading rate of hydrophilic components (methyl ethyl and methyl isobutyl ketones, acetone, and n-butyl acetate) of 4 g m⁻³ h⁻¹ were evaluated and compared, along with the systems' dynamic responses. At the same combined substrate loading of 55 g m⁻³ h⁻¹ for both reactors, the TBR achieved more than 1.5 times higher overall removal efficiency (RE(W)) than the BF. Increasing the loading rate of aromatics resulted in a gradual decrease of their REs. The degradation rates of acetone and n-butyl acetate were also inhibited at higher loads of aromatics, thus revealing a competition in cell catabolism. A step-drop in loading of aromatics resulted in an immediate increase of RE(W) with variations in the TBR, while the new steady-state value in the BF took 6-7 h to achieve. The TBR consistently showed a greater performance than BF in removing toluene and xylenes. Increasing the loading rate of aromatics resulted in a gradual decrease of their REs. The degradation rates of acetone and n-butyl acetate were also lower at higher OL(AROM), revealing a competition in the cell catabolism. The results obtained are consistent with the proposed hypothesis of greater toxic effects under low water content, i.e., in the biofilter, caused by aromatic hydrocarbons in the presence of polar ketones and esters, which may improve the hydrocarbon partitioning into the aqueous phase.

  6. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system.

    PubMed

    Prehn, Jonas; Waul, Christopher K; Pedersen, Lars-Flemming; Arvin, Erik

    2012-07-01

    Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS's. The aim of this study was to determine the impact of hydraulic film diffusion on the nitrification rate in a submerged biofilter. Using an experimental batch reactor setup with recirculation, active nitrifying biofilter units from a RAS were exposed to a range of hydraulic flow velocities. Corresponding nitrification rates were measured following ammonium chloride, NH₄Cl, spikes and the impact of hydraulic film diffusion was quantified. The nitrification performance of the tested biofilter could be significantly increased by increasing the hydraulic flow velocity in the filter. Area based first order nitrification rate constants ranged from 0.065 m d⁻¹ to 0.192 m d⁻¹ for flow velocities between 2.5 m h⁻¹ and 40 m h⁻¹ (18 °C). This study documents that hydraulic film diffusion may have a significant impact on the nitrification rate in fixed film biofilters with geometry and hydraulic flows corresponding to our experimental RAS biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Bacterial dynamics in steady-state biofilters: beyond functional stability.

    PubMed

    Cabrol, Léa; Malhautier, Luc; Poly, Franck; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis

    2012-01-01

    The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process.

  8. Livestock air treatment using PVA-coated powdered activated carbon biofilter

    USDA-ARS?s Scientific Manuscript database

    The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...

  9. Biological removal of gaseous ammonia in biofilters: space travel and earth-based applications

    NASA Technical Reports Server (NTRS)

    Joshi, J. A.; Hogan, J. A.; Cowan, R. M.; Strom, P. F.; Finstein, M. S.; Janes, H. W. (Principal Investigator)

    2000-01-01

    Gaseous NH3 removal was studied in laboratory-scale biofilters (14-L reactor volume) containing perlite inoculated with a nitrifying enrichment culture. These biofilters received 6 L/min of airflow with inlet NH3 concentrations of 20 or 50 ppm, and removed more than 99.99% of the NH3 for the period of operation (101, 102 days). Comparison between an active reactor and an autoclaved control indicated that NH3 removal resulted from nitrification directly, as well as from enhanced absorption resulting from acidity produced by nitrification. Spatial distribution studies (20 ppm only) after 8 days of operation showed that nearly 95% of the NH3 could be accounted for in the lower 25% of the biofilter matrix, proximate to the port of entry. Periodic analysis of the biofilter material (20 and 50 ppm) showed accumulation of the nitrification product NO3- early in the operation, but later both NO2- and NO3- accumulated. Additionally, the N-mass balance accountability dropped from near 100% early in the experiments to approximately 95 and 75% for the 20- and 50-ppm biofilters, respectively. A partial contributing factor to this drop in mass balance accountability was the production of NO and N2O, which were detected in the biofilter exhaust.

  10. Biological removal of gaseous ammonia in biofilters: space travel and earth-based applications.

    PubMed

    Joshi, J A; Hogan, J A; Cowan, R M; Strom, P F; Finstein, M S

    2000-09-01

    Gaseous NH3 removal was studied in laboratory-scale biofilters (14-L reactor volume) containing perlite inoculated with a nitrifying enrichment culture. These biofilters received 6 L/min of airflow with inlet NH3 concentrations of 20 or 50 ppm, and removed more than 99.99% of the NH3 for the period of operation (101, 102 days). Comparison between an active reactor and an autoclaved control indicated that NH3 removal resulted from nitrification directly, as well as from enhanced absorption resulting from acidity produced by nitrification. Spatial distribution studies (20 ppm only) after 8 days of operation showed that nearly 95% of the NH3 could be accounted for in the lower 25% of the biofilter matrix, proximate to the port of entry. Periodic analysis of the biofilter material (20 and 50 ppm) showed accumulation of the nitrification product NO3- early in the operation, but later both NO2- and NO3- accumulated. Additionally, the N-mass balance accountability dropped from near 100% early in the experiments to approximately 95 and 75% for the 20- and 50-ppm biofilters, respectively. A partial contributing factor to this drop in mass balance accountability was the production of NO and N2O, which were detected in the biofilter exhaust.

  11. A hybridized membrane-botanical biofilter for improving air quality in occupied spaces

    NASA Astrophysics Data System (ADS)

    Llewellyn, David; Darlington, Alan; van Ras, Niels; Kraakman, Bart; Dixon, Mike

    Botanical biofilters have been shown to be effective in improving indoor air quality through the removal of complex mixtures of gaseous contaminants typically found in human-occupied environments. Traditional, botanical biofilters have been comprised of plants rooted into a thin and highly porous synthetic medium that is hung on vertical surfaces. Water flows from the top of the biofilter and air is drawn horizontally through the rooting medium. These botanical biofilters have been successfully marketed in office and institutional settings. They operate efficiently, with adequate contaminant removal and little maintenance for many years. Depending on climate and outdoor air quality, botanical biofiltration can substantially reduce costs associated with ventilation of stale indoor air. However, there are several limitations that continue to inhibit widespread acceptance: 1. Current designs are architecturally limiting and inefficient at capturing ambient light 2. These biofilters can add significant amounts of humidity to an indoor space. This water loss also leads to a rapid accumulation of dissolved salts; reducing biofilter health and performance 3. There is the perception of potentially actively introducing harmful bioaerosols into the air stream 4. Design and practical limitations inhibit the entrance of this technology into the lucrative residential marketplace This paper describes the hybridization of membrane and botanical biofiltration technologies by incorporating a membrane array into the rootzone of a conventional interior planting. This technology has the potential for addressing all of the above limitations, expanding the range of indoor settings where botanical biofiltration can be applied. This technology was developed as the CSA-funded Canadian component an ESA-MAP project entitled: "Biological airfilter for air quality control of life support systems in manned space craft and other closed environments", A0-99-LSS-019. While the project addressed a number of space-specific applications such as odors arising from aspects of the MELiSSA system and spacequalified small animal cages, our focus was on indoor air quality as the terrestrial application of this technology. This paper describes aspects of the development of this technology from conceptualization through laboratory trials to the design, construction and field trials of pre-market prototypes.

  12. Start-up, performance and optimization of a compost biofilter treating gas-phase mixture of benzene and toluene.

    PubMed

    Rene, Eldon R; Kar, Saurajyoti; Krishnan, Jagannathan; Pakshirajan, K; López, M Estefanía; Murthy, D V S; Swaminathan, T

    2015-08-01

    The performance of a compost biofilter inoculated with mixed microbial consortium was optimized for treating a gas-phase mixture of benzene and toluene. The biofilter was acclimated to these VOCs for a period of ∼18d. The effects of concentration and flow rate on the removal efficiency (RE) and elimination capacity (EC) were investigated by varying the inlet concentration of benzene (0.12-0.95g/m(3)), toluene (0.14-1.48g/m(3)) and gas-flow rate (0.024-0.072m(3)/h). At comparable loading rates, benzene removal in the mixture was reduced in the range of 6.6-41% in comparison with the individual benzene degradation. Toluene removal in mixture was even more affected as observed from the reductions in REs, ranging from 18.4% to 76%. The results were statistically interpreted by performing an analysis of variance (ANOVA) to elucidate the main and interaction effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations.

    PubMed

    García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco

    2018-02-01

    Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of ozone on biopolymers in biofiltration and ultrafiltration processes.

    PubMed

    Siembida-Lösch, Barbara; Anderson, William B; Wang, Yulang Michael; Bonsteel, Jane; Huck, Peter M

    2015-03-01

    The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Decreasing of BOD Concentration on Artificial Domestic Wastewater Using Anaerob Biofilter Reactor Technology

    NASA Astrophysics Data System (ADS)

    Sumiyati, Sri; Purwanto; Sudarno

    2018-02-01

    Pollution of domestic wastewater becomes an urban problem. Domestic wastewater contains a variety of pollutants. One of the pollutant parameters in domestic wastewater is BOD. Domestic wastewater which BOD concentrations exceeding the quality standard will be harmful to the environment, particularly the receiving water body. Therefore, before being discharged into the environment, domestic wastewater needs to be processed first. One of the processing that has high efficiency, low cost and easy operation is biofilter technology. The purpose of this research was to analyze the efficiency of BOD concentration reduction in domestic wastewater with anaerobic reactor biofilter using volcanic gravel media. The type of reactor used is an anaerobic biofilter made of glass which volume of 30 liters while the biofilter media is volcanic gravel. In this research the established HRT were 24, 12, 6 and 3 hours. The results showed that the efficiency of BOD concentration reduction in artificial domestic wastewater reached 80%.

  16. Design and analysis of a pilot scale biofiltration system for odorous air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, J.J.; Young, J.S.; Bottcher, R.W.

    2000-02-01

    Three pilot-scale biofilters and necessary peripheral equipment were built to clean odorous air from the pit of a swine gestation building at North Carolina State University. A computer measured temperatures, flow rates, and pressure drops. It also controlled and measured the moisture content of a biofilter medium comprised of a 3:1 mixture of yard waste compost to wood chips mixture (by volume). The system was evaluated to ensure that the biofilters would be useful for performing scientific experiments concerning the reduction of swine odor on future research projects. The capability of the biofilters to remove odor was measured using amore » cotton swatch absorption method and an odor panel. The average odor reductions measured by odor intensity, irritation intensity, and unpleasantness for five tests were 61%, 58%, and 84%, respectively. No significant differences in odor reduction performance were found between the biofilters.« less

  17. Macro-kinetic investigation on phenol uptake from air by biofiltration: Influence of superficial gas flow rate and inlet pollutant concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zilli, M.; Fabiano, B.; Ferraiolo, A.

    1996-02-20

    The macro-kinetic behavior of phenol removal from a synthetic exhaust gas was investigated theoretically as well as experimentally by means of two identical continuously operating laboratory-scale biological filter bed columns. A mixture of peat and glass beads was used as filter material. After sterilization it was inoculated with a pure strain of Pseudomonas putida, as employed in previous experimental studies. To determine the influence of the superficial gas flow rate on biofilter performance and to evaluate the phenol concentration profiles along the column, two series of continuous tests were carried out varying either the inlet phenol concentration, up to 1,650more » mg {center_dot} m{sup {minus}3}, or the superficial gas flow rate, from 30 to 460 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}. The elimination capacity of the biofilter is proved by a maximum volumetric phenol removal rate of 0.73 kg {center_dot} m{sup {minus}3} {center_dot} h{sup {minus}1}. The experimental results are consistent with a biofilm model incorporating first-order substrate elimination kinetics. The model may be considered a useful tool in scaling-up a biofiltration system. Furthermore, the deodorization capacity of the biofilter was investigated, at inlet phenol concentrations up to 280 mg {center_dot} m{sup {minus}3} and superficial gas flow rates ranging from 30 to 92 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}. The deodorization of the gas was achieved at a maximum inlet phenol concentration of about 255 mg {center_dot} m{sup {minus}3}, operating at a superficial gas flow rate of 30 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}.« less

  18. Assessment of farm soil, biochar, compost and weathered pine mulch to mitigate methane emissions.

    PubMed

    Syed, Rashad; Saggar, Surinder; Tate, Kevin; Rehm, Bernd H A

    2016-11-01

    Previous studies have demonstrated the effective utility of volcanic pumice soil to mitigate both high and low levels of methane (CH 4 ) emissions through the activity of both γ-proteobacterial (type I) and α-proteobacterial (type II) aerobic methanotrophs. However, the limited availability of volcanic pumice soil necessitates the assessment of other farm soils and potentially suitable, economical and widely available biofilter materials. The potential biofilter materials, viz. farm soil (isolated from a dairy farm effluent pond bank area), pine biochar, garden waste compost and weathered pine bark mulch, were inoculated with a small amount of volcanic pumice soil. Simultaneously, a similar set-up of potential biofilter materials without inoculum was studied to understand the effect of the inoculum on the ability of these materials to oxidise CH 4 and their effect on methanotroph growth and activity. These materials were incubated at 25 °C with periodic feeding of CH 4 , and flasks were aerated with air (O 2 ) to support methanotroph growth and activity by maintaining aerobic conditions. The efficiency of CH 4 removal was monitored over 6 months. All materials supported the growth and activity of methanotrophs. However, the efficiency of CH 4 removal by all the materials tested fluctuated between no or low removal (0-40 %) and high removal phases (>90 %), indicating biological disturbances rather than physico-chemical changes. Among all the treatments, CH 4 removal was consistently high (>80 %) in the inoculated farm soil and inoculated biochar, and these were more resilient to changes in the methanotroph community. The CH 4 removal from inoculated farm soil and inoculated biochar was further enhanced (up to 99 %) by the addition of a nutrient solution. Our results showed that (i) farm soil and biochar can be used as a biofilter material by inoculating with an active methanotroph community, (ii) an abundant population of α-proteobacterial methanotrophs is essential for effective and stable CH 4 removal and (iii) addition of nutrients enhances the growth and activity of methanotrophs in the biofilter materials. Further studies are underway to assess the feasibility of these materials at small plot and field scales.

  19. The use of oak chips and coconut fiber as biofilter media to remove vocs in rendering process.

    PubMed

    Tymczyna, Leszek; Chmielowiec-Korzeniowska, Anna; Paluszak, Zbigniew; Dobrowolska, Magadalena; Banach, Marcin; Pulit, Jolanta

    2013-01-01

    The study evaluated the effectiveness of air biofiltration in rendering plants. The biofilter material comprised compost soil (40%) and peat (40%) mixed up with coconut fiber (medium A) and oak bark (medium B). During biofiltration average VOCs reduction reached 88.4% for medium A and 89.7% for medium B. A positive relationship of aldehyde reduction from material humidity (r = 0.502; α<0.05) was also noted. Other biomaterial parameters did not affect the treatment efficiency.

  20. Septic wastewater treatment using recycled rubber particles as biofiltration media.

    PubMed

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G

    2014-01-01

    Performance of the laboratory-scale recycled rubber particles (RRP) biofilter was compared to a conventional gravel system and a peat biofilter for treatment of septic tank effluent. During the study, the RRP biofilter provided similar or better performance than other systems in terms of organic removal and hydraulic capacity. After the start-up period, RRP biofilter achieved removal efficiencies for BOD5, total suspended solids (TSS), ammonia nitrogen of 96%, 93%, and 90%, respectively, over the range of hydraulic loading rates of 57-204 L/m2/d. On the other hand, the peat biofilter failed hydraulically and the gravel system showed high TSS concentrations in the effluent. RRP provided high surface area and sufficient time for biological treatment. In addition, RRP was observed to provide ammonia adsorption capacity. The results showed that RRP has the potential to be used as substitutes for natural aggregate such as gravel in septic system drainfields. The RRP biofilter can be used as alternative septic systems for the sites where an existing septic system has failed or site conditions, such as high groundwater table or small lot size, are not suitable for the installation of conventional septic systems.

  1. Fungal biofilters for toluene biofiltration: evaluation of the performance with four packing materials under different operating conditions.

    PubMed

    Maestre, Juan P; Gamisans, Xavier; Gabriel, David; Lafuente, Javier

    2007-03-01

    Packing materials play a key role in the performance of bioreactors for waste gas treatment and particularly in biofilter applications. In this work, the performance of four differently packed biofilters operated in parallel for the treatment of relatively high inlet concentration of toluene was studied. The reactors were compared for determining the suitability of coconut fiber, digested sludge compost from a waste water treatment plant, peat and pine leaves as packing materials for biofiltration of toluene. A deep characterisation of materials was carried out. Biological activity and packing capabilities related to toluene removal were determined throughout 240 days of operation under different conditions of nutrients addition and watering regime. Also, biofilters recovering after a short shutdown was investigated. Nutrient addition resulted in improved removal efficiencies (RE) and elimination capacities (EC) of biofilters reaching maximum ECs between 75 and 95 g m(-3)h(-1) of toluene. In the first 80 days, the pH decreased progressively within the reactors, causing a population change from bacteria to fungi, which were the predominant decontaminant microorganisms thereafter. All reactors were found to recover the RE rapidly after a 5 days shutdown and, in a maximum of 7 days, all reactors had been completely recuperated. These results point out that fungal biofilters are a suitable choice to treat high loads of toluene. In general, coconut fiber and compost biofilters exhibited a better performance in terms of elimination capacity and long-term stability.

  2. Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms

    NASA Astrophysics Data System (ADS)

    Zhu, Rencheng; Li, Shunyi; Bao, Xiaofeng; Dumont, Éric

    2017-02-01

    The performances of two identical biofilters, filled with a new composite packing material (named CM-5) embedded with functional microorganisms or sterilized CM-5 without microorganisms, were investigated for H2S treatment. Running parameters in terms of microbial counts, pressure drops, and inlet and outlet H2S concentrations were measured. The results show that the microbial count of the CM-5 was approximately ×105 CFU/g before being filled into the biofilter, while that of the sterilized CM-5 was negligible. The functional microorganisms embedded in CM-5 adapted to the environment containing H2S quickly. In most cases, pressure drops of the CM-5 biofilter were slightly higher than those of the sterilized CM-5 biofilter when the gas flow rate was 0.6-2.5 m3/h. The maximum elimination capacity (EC) of the CM-5 biofilter in treating H2S could reach up to 65 g/(m3·h) when the loading rate (LR) was approximately 80 g/(m3·h). If the LR was much higher, the measured EC showed a slight downward trend. The experimental ECs of biofilters were fitted by two typical dynamic models: the Michaelis-Menten model and the Haldane model. Compared with the Michaelis-Menten model, the Haldane model fit the experimental ECs better for the two biofilters because of the presence of the substrate inhibition behaviour.

  3. Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms

    PubMed Central

    Zhu, Rencheng; Li, Shunyi; Bao, Xiaofeng; Dumont, Éric

    2017-01-01

    The performances of two identical biofilters, filled with a new composite packing material (named CM-5) embedded with functional microorganisms or sterilized CM-5 without microorganisms, were investigated for H2S treatment. Running parameters in terms of microbial counts, pressure drops, and inlet and outlet H2S concentrations were measured. The results show that the microbial count of the CM-5 was approximately ×105 CFU/g before being filled into the biofilter, while that of the sterilized CM-5 was negligible. The functional microorganisms embedded in CM-5 adapted to the environment containing H2S quickly. In most cases, pressure drops of the CM-5 biofilter were slightly higher than those of the sterilized CM-5 biofilter when the gas flow rate was 0.6–2.5 m3/h. The maximum elimination capacity (EC) of the CM-5 biofilter in treating H2S could reach up to 65 g/(m3·h) when the loading rate (LR) was approximately 80 g/(m3·h). If the LR was much higher, the measured EC showed a slight downward trend. The experimental ECs of biofilters were fitted by two typical dynamic models: the Michaelis-Menten model and the Haldane model. Compared with the Michaelis-Menten model, the Haldane model fit the experimental ECs better for the two biofilters because of the presence of the substrate inhibition behaviour. PMID:28198800

  4. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane.

    PubMed

    Gebert, J; Gröngröft, A

    2006-01-01

    An upflow biofilter system was operated on a passively vented landfill for the treatment of residual landfill methane. Biofilter methane emissions as a basis for determining methane removal rates were assessed by manual and automated chamber measurements, by measuring methane concentrations in the top layer gaseous phase in combination with gas flow rates, and by evaluating the methane load in the reverse gas flow following the change of landfill gas flux direction as governed by the course of barometric pressure. Methane removal rates were very high with maximum values of 80 g h(-1) m(-3). For the observed cases, the limit of biofilter methane oxidation capacity was not reached and absolute removal rates were thus linearly correlated to the amount of methane entering the filter. The analysis of methane loads flowing back from the biofilter following phases of longer, continuous and non-oscillating landfill gas emission, however, revealed that in these situations biofilter performance is restricted by deficient oxygen supply. At the oxygen-restricted capacity limit, removal rates are influenced by temperature (positively), methane influx (negatively) and flow rate (negatively) as a measure for the displacement of oxygen. These situations, however, account for only 12% of all emission phases. The investigated biofilter capacity, as derived from laboratory analyses of methanotrophic activities, is sufficient to oxidise 62% of the methane load emitted annually. Field and laboratory data provide a stable basis for the dimensioning of filters in future applications.

  5. Biofiltration for control of carbon disulfide and hydrogen sulfide vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fucich, W.J.; Yang, Y.; Togna, A.P.

    1997-12-31

    A full-scale biofiltration system has been installed to control carbon disulfide (CS{sub 2}) and hydrogen sulfide (H{sub 2}S) vapor emissions at Nylonge Corporation (Nylonge), a cellulose sponge manufacturing facility in Elyria, Ohio. Both CS{sub 2} and H{sub 2}S are toxic and odorous. In addition, the US Environmental Protection Agency (EPA) has classified CS{sub 2} as one of the 189 hazardous air pollutants listed under Title 3 of the 1990 Clean Air Act Amendments. Nylonge evaluated several technologies to control CS{sub 2} and H{sub 2}S vapor emissions. After careful consideration of both removal efficiency requirements and cost, Nylonge selected biological treatmentmore » as the best overall technology for their application. A biological based technology has been developed to effectively degrade CS{sub 2} and H{sub 2}S vapors. Biofiltration is a process that aerobically converts particular vapor phase compounds into CO{sub 2}, biomass, and water vapor. In this process, microorganisms, in the form of a moistened biofilm layer, immobilized on an organic packing material, such as compost, peat, wood chips, etc., are used to catalyze beneficial chemical reactions. As a contaminated vapor stream passes through the biofilter bed, the contaminants are transferred to the biofilm and are degraded by the microorganisms. This paper describes the CS{sub 2} and H{sub 2}S biofiltration process and the full-scale biofilter system installed at Nylonge`s facility. The system was started in October of 1995, and is designed to treat a 30,000 CFM exhaust stream contaminated with CS{sub 2} and H{sub 2}S vapors.« less

  6. Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling.

    PubMed

    Vergara-Fernández, Alberto; Revah, Sergio; Moreno-Casas, Patricio; Scott, Felipe

    Volatile organic compounds (VOCs) are ubiquitous contaminants that can be found both in outdoor and indoor air, posing risks to human health and the ecosystems. The treatment of air contaminated with VOCs in low concentrations can be effectively performed using biofiltration, especially when VOCs are hydrophilic. However, the performance of biofilters inoculated with bacteria has been found to be low with sparsely water soluble molecules when compared to biofilters where fungi develop. Using conceptual and mathematical models, this review presents an overview of the physical, chemical and biological mechanisms that explain the differences in the performance of fungal and bacterial biofilters. Moreover, future research needs are proposed, with an emphasis on integrated models describing the biological and chemical reactions with the mass transfer using high-resolution descriptions of the packing material. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Passive landfill gas emission - Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters.

    PubMed

    Gebert, Julia; Groengroeft, Alexander

    2006-01-01

    A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h(-1)m(-3) filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.

  8. Comparison between conventional biofilters and biotrickling filters applied to waste bio-drying in terms of atmospheric dispersion and air quality.

    PubMed

    Schiavon, Marco; Ragazzi, Marco; Torretta, Vincenzo; Rada, Elena Cristina

    2016-01-01

    Biofiltration has been widely applied to remove odours and volatile organic compounds (VOCs) from industrial off-gas and mechanical-biological waste treatments. However, conventional open biofilters cannot guarantee an efficient dispersion of air pollutants emitted into the atmosphere. The aim of this paper is to compare conventional open biofilters with biotrickling filters (BTFs) in terms of VOC dispersion in the atmosphere and air quality in the vicinity of a hypothetical municipal solid waste bio-drying plant. Simulations of dispersion were carried out regarding two VOCs of interest due to their impact in terms of odours and cancer risk: dimethyl disulphide and benzene, respectively. The use of BTFs, instead of conventional biofilters, led to significant improvements in the odour impact and the cancer risk: when adopting BTFs instead of an open biofilter, the area with an odour concentration > 1 OU m(-3) and a cancer risk > 10(-6) was reduced by 91.6% and 95.2%, respectively. When replacing the biofilter with BTFs, the annual mean concentrations of odorants and benzene decreased by more than 90% in the vicinity of the plant. These improvements are achieved above all because of the higher release height of BTFs and the higher velocity of the outgoing air flow.

  9. Biofiltration of air contaminated by styrene vapors on inorganic filtering media: an experimental study.

    PubMed

    St-Pierre, Marie-Claude Dion; Avalos Ramirez, Antonio; Heitz, Michèle

    2009-05-01

    This paper presents a study on the biofiltration of styrene by using two inorganic filtering materials. The effects of styrene inlet load and nitrogen concentration present in the nutrient solution on biofilter performance were studied. The styrene inlet concentration was varied from 65 to 1115 parts per million by volume (ppmv), whereas the contaminated airflow rate was fixed at 1 m3/hr. The nitrogen concentration in nutrient solution was varied from 1 to 4 gN/L. The maximum elimination capacity obtained was 105 g/m3-hr, which corresponded to a removal efficiency of 80% for a styrene inlet load of 130 g/m3-hr. This study shows that the nitrogen content in the nutrient solution affects the removal rate of styrene, with an optimal nitrogen concentration of 3 gN/L. The performance comparison between two different inorganic bed types was undertaken and a comparative study on biofiltration of two aromatic compounds, styrene and toluene, is also presented.

  10. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    PubMed

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters

    PubMed Central

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources. PMID:27148185

  12. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters.

    PubMed

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources.

  13. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira

    PubMed Central

    Bartelme, Ryan P.; McLellan, Sandra L.; Newton, Ryan J.

    2017-01-01

    Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while supporting multiple ammonia oxidation lifestyles within the nitrifying consortium. PMID:28194147

  14. Biofiltration of high loads of ethyl acetate in the presence of toluene.

    PubMed

    Deshusses, M; Johnson, C T; Leson, G

    1999-08-01

    To date, biofilters have been used primarily to control dilute, usually odorous, off-gases with relatively low volatile organic compound (VOC) concentrations (< 1 g m-3) and VOC loads (< 50 g m-3 hr-1). Recently, however, U.S. industry has shown an interest in applying biofilters to higher concentrations of VOCs and hazardous air pollutants (HAPs). In this study, the behavior of biofilters under high loads of binary VOC mixtures was studied. Two bench-scale biofilters were operated using a commercially available medium and a mixture of wood chips and compost. Both were exposed to varying mixtures of ethyl acetate and toluene. Concentration profiles and the corresponding removal efficiencies as a function of VOC loading were determined through frequent grab-sampling and GC analysis. Biofilter response to two frequently encountered operating problems--media dry-out and operating temperatures exceeding 40 degrees C--was also evaluated under controlled conditions. Microbial populations were also monitored to confirm the presence of organisms capable of degrading both major off-gas constituents. The results demonstrated several characteristics of biofilters operating under high VOC load conditions. Maximum elimination capacities for ethyl acetate were typically in the range of 200 g m-3 hr-1. Despite the presence of toluene degraders, the removal of toluene was inhibited by high loads of ethyl acetate. Several byproducts, particularly ethanol, were formed. Short-term dry-out and temperature excursions resulted in reduced performance.

  15. Investigation of Removal Capacities of Biofilters for Airborne Viable Micro-Organisms

    PubMed Central

    Soret, Rémi; Fanlo, Jean-Louis; Malhautier, Luc; Geiger, Philippe; Bayle, Sandrine

    2018-01-01

    New emerging issues appears regarding the possible aerosolization of micro-organisms from biofilters to the ambient air. Traditional bioaerosol sampling and cultural methods used in literature offer relative efficiencies. In this study, a new method revolving around a particle counter capable of detecting total and viable particles in real time was used. This counter (BioTrak 9510-BD) uses laser-induced fluorescence (LIF) technology to determine the biological nature of the particle. The concentration of viable particles was measured on two semi-industrial pilot scale biofilters in order to estimate the Removal Efficiency in viable particles (REvp) in stable conditions and to examine the influence of pollutant feeding and relative humidification of the gaseous effluent on the REvp. The REvp of biofilters reached near 80% and highlighted both the stability of that removal and the statistical equivalence between two identical biofilters. Pollutant deprivation periods of 12 h, 48 h and 30 days were shown to have no influence on the biofilters’ removal capacity, demonstrating the robustness and adaptation capacities of the flora. In contrast, a 90-day famine period turned the biofilters into emitters of viable particles. Finally, the humidification of the effluent was shown to negatively influence the removal capacity for viable particles, as drying off the air was shown to increase the REvp from 60 to 85%. PMID:29562709

  16. Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors.

    PubMed Central

    Oh, Y S; Bartha, R

    1994-01-01

    From contaminated industrial sludge, two stable multistrain microbial enrichments (consortia) that were capable of rapidly utilizing chlorobenzene and o-dichlorobenzene, respectively, were obtained. These consortia were characterized as to their species composition, tolerance range, and activity maxima in order to establish and maintain the required operational parameters during their use in biofilters for the removal of chlorobenzene contaminants from air. The consortia were immobilized on a porous perlite support packed into filter columns. Metered airstreams containing the contaminant vapors were partially humidified and passed through these columns. The vapor concentrations prior to and after biofiltration were measured by gas chromatography. Liquid was circulated concurrently with the air, and the device was operated in the trickling air biofilter mode. The experimental arrangement allowed the independent variation of liquid flow, airflow, and solvent vapor concentrations. Bench-scale trickling air biofilters removed monochlorobenzene, o-dichlorobenzene, and their mixtures at rates of up to 300 g of solvent vapor h(-1) m(-3) filter volume. High liquid recirculation rates and automated pH control were critical for stable filtration performance. When the accumulating NaCl was periodically diluted, the trickling air biofilters continued to remove chlorobenzenes for several months with no loss of activity. The demonstrated high performance and stability of the described trickling air biofilters favor their use in industrial-scale air pollution control. PMID:8085815

  17. Performance evaluation and model analysis of BTEX contaminated air in corn-cob biofilter system.

    PubMed

    Rahul; Mathur, Anil Kumar; Balomajumder, Chandrajit

    2013-04-01

    Biofiltration of BTEX with corn-cob packing material have been performed for a period of 68 days in five distinct phases. The overall performance of a biofilter has been evaluated in terms of its elimination capacity by using 3-D mesh techniques. Maximum removal efficiency was found more than 99.85% of all four compounds at an EBRT of 3.06 min in phase I for an inlet BTEX concentration of 0.0970, 0.0978, 0.0971 and 0.0968 g m(-3), respectively. Nearly 100% removal achieved at average BTEX loadings of 20.257 g m(-3) h(-1) to biofilter. A maximum elimination capacity (EC) of 20.239 g m(-3) h(-1) of the biofilter was obtained at inlet BTEX load of 20.391 g m(-3) h(-1). Moreover, using convection-diffusion reaction (CDR) model for biofilter depth shows good agreement with the experimental values for benzene, toluene and ethyl benzene, but for o-xylene the model results deviated from the experimental. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater.

    PubMed

    Yang, Liu; Li, Xiangkun; Chu, Zhaorui; Ren, Yuhui; Zhang, Jie

    2014-03-01

    A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter.

    PubMed

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A biofilter integrated with gas membrane separation unit for the treatment of fluctuating styrene loads.

    PubMed

    Li, Lin; Lian, Jing; Han, Yunping; Liu, Junxin

    2012-05-01

    Biofiltration for volatile organic compound control in waste gas streams is best operated at steady contaminant loadings. To provide long-term stable operation of a biofilter under adverse contaminant feeding conditions, an integrated bioreactor system with a gas separation membrane module installed after a biofilter was proposed for styrene treatment. Styrene was treated effectively, with average styrene effluent concentrations maintained at less than 50 mg m(-3) and a total removal efficiency of over 96% achieved when the biofiltration column faced fluctuating loads. The maximum elimination capacity of the integrated bioreactor system was 93.8 g m(-3)h(-1), which was higher than that obtained with the biofiltration column alone. The combination of these two processes (microbial and chemical) led to more efficient elimination of styrene and buffering of the fluctuating loads. The factors on gas membrane separation, microbial characteristics in the integrated bioreactor and membrane fouling were also investigated in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters.

    PubMed

    Zhou, Zijun; Xu, Peng; Cao, Xiuyun; Zhou, Yiyong; Song, Chunlei

    2016-10-01

    Stromwater biofilter technology was greatly improved through adding iron-rich soil, plant detritus and eutrophic lake sediment. Significant ammonium and phosphate removal efficiencies (over 95%) in treatments with iron-rich soil were attributed to strong adsorption capability resulting in high available phosphorus (P) in media, supporting the abundance and activity of nitrifiers and denitrifiers as well as shaping compositions, which facilitated nitrogen (N) removal. Aquatic and terrestrial plant detritus was more beneficial to nitrification and denitrification by stimulating the abundance and activity of nitrifiers and denitrifiers respectively, which increased total nitrogen (TN) removal efficiencies by 17.6% and 22.5%. In addition, bioaugmentation of nitrifiers and denitrifiers from eutrophic sediment was helpful to nutrient removal. Above all, combined application of these materials could reach simultaneously maximum effects (removal efficiencies of P, ammonium and TN were 97-99%, 95-97% and 60-63% respectively), suggesting reasonable selection of materials has important contribution and application prospect in stormwater biofilters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Operational performance, biomass and microbial community structure: impacts of backwashing on drinking water biofilter.

    PubMed

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Biofiltration has been widely used to reduce organic matter and control the formation of disinfection by-products in drinking water. Backwashing might affect the biofilters' performance and the attached microbiota on filter medium. In this study, the impacts of backwashing on the removal of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and N-nitrosamine precursors by a pilot-scale biological activated carbon (BAC) filtration system were investigated. The impacts of backwashing on biomass and microbial community structure of BAC biofilm were also investigated. Phospholipid fatty acid (PLFA) analysis showed that backwashing reduced nearly half of the attached biomass on granular activated carbon (GAC) particles, followed by a recovery to the pre-backwashing biomass concentration in 2 days after backwashing. Backwashing was found to transitionally improve the removal of DOC, DON and N-nitrosamine precursors. MiSeq sequencing analysis revealed that backwashing had a strong impact on the bacterial diversity and community structure of BAC biofilm, but they could gradually recover with the operating time after backwashing. Phylum Proteobacteria was the largest bacterial group in BAC biofilm. Microorganisms from genera Bradyrhizobium, Hyphomicrobium, Microcystis and Sphingobium might contribute to the effective removal of nitrogenous organic compounds by drinking water biofilter. This work could add some new insights towards the operation of drinking water biofilters and the biological removal of organic matter.

  4. A novel technique of semi-aerobic aged refuse biofilter for leachate treatment.

    PubMed

    Han, Zhi-Yong; Liu, Dan; Li, Qi-Bin; Li, Gui-Zhi; Yin, Zhao-Yang; Chen, Xin; Chen, Jian-Nan

    2011-08-01

    We developed a semi-aerobic aged refuse biofilter (SAARB) for leachate treatment and examined its advantages and disadvantages compared to previous aged refuse biofilters (ARBs). To assess its treatment capability, decontamination mechanisms and optimal performance parameters, a single-period experiment and L(9)(3(4)) orthogonal array design experiments were conducted on artificial leachate. The SAARB markedly enhanced the treatment capability and removal efficiency of organic matter and nitrogen pollutants due to the alternating aerobic-anoxic-anaerobic zones in situ. The reduction in chemical oxygen demand (COD), ammonia nitrogen (NH(4)(+)-N) and total nitrogen (TN) exceeded 98%, 94%, and 80%, respectively. After the leachate was distributed onto the SAARB surface, the effluent velocity decreased as a logarithmic function, and there was a concomitant reduction in leachate effluent volume. Based on the capacity for removal of COD, NH(4)(+)-N, and TN, the effective height of aged refuse in a SAARB was enough to be 900mm. An excellent treatment efficiency could be achieved at 20-35°C, with a leachate distribution time of 1h once every period of 2-3 days, hydraulic loading of 11-30L/(m(3)day), and COD loading of 550-1200g/(m(3)day). This new SAARB system demonstrates superior efficacy for biofilter compared to other ARB systems, especially for nitrogen removal from leachate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Ethylene Removal by a Biofilter with Immobilized Bacteria

    PubMed Central

    Elsgaard, Lars

    1998-01-01

    A biofilter which eliminated ethylene (C2H4) from the high parts-per-million range to levels near the limit for plant hormonal activity (0.01 to 0.1 ppm) was developed. Isolated ethylene-oxidizing bacteria were immobilized on peat-soil in a biofilter (687 cm3) and subjected to an atmospheric gas flow (73.3 ml min−1) with 2 or 117 ppm of C2H4. Ethylene was eliminated to a minimum level of 0.017 ppm after operation with 2.05 ppm of C2H4 for 16 days. Also, the inlet C2H4 concentration of 117 ppm was reduced to <0.04 ppm. During operation with 2 and 117 ppm of C2H4, an increase in the C2H4 removal rate was observed, which was attributed to proliferation of the immobilized bacteria, notably in the first 0- to 5-cm segment of the biofilter. The maximal C2H4 elimination capacity of the biofilter was 21 g of C2H4 m−3 day−1 during operation with 117 ppm of C2H4 in the inlet gas. However, for the first 0- to 5-cm segment of the biofilter, an elimination capacity of 146 g of C2H4 m−3 day−1 was calculated. Transition of the biofilter temperature from 21 to 10°C caused a 1.6-fold reduction in the C2H4 removal rate, which was reversed during operation for 18 days. Batch experiments with inoculated peat-soil demonstrated that C2H4 removal still occurred after storage at 2, 8, and 20°C for 2, 3, and 4 weeks. However, the C2H4 removal rate decreased with increasing storage time and was reduced by ca. 50% after storage for 2 weeks at all three temperatures. The biofilter could be a suitable tool for C2H4 removal in, e.g., horticultural storage facilities, since it (i) removed C2H4 to 0.017 ppm, (ii) had a good operational stability, and (iii) operated efficiently at 10°C. PMID:9797261

  6. Performance and Biofilm Activity of Nitrifying Biofilters Removing Trihalomethanes

    EPA Science Inventory

    Nitrifying biofilters seeded with three different mixed-culture sources degraded trichloromethane (TCM) and dibromochloromethane (DBCM). In addition, resuspended biofilm degraded TCM, bromododichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests,...

  7. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    PubMed

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.

  8. Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage.

    PubMed

    Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L

    2014-02-01

    Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.

  9. Development of biofilters to treat the pesticides wastes from spraying applications.

    PubMed

    Pigeon, O; de Vleeschouwer, C; Cors, F; Weickmans, B; de Ryckel, B; Pussemier, L; Debongnie, Ph; Culot, M

    2005-01-01

    Several studies carried out in Europe showed the importance of direct losses to the contamination of surface water by pesticides. These pesticides losses can occur at the farm site when the sprayer equipment is filled with the pesticide formulation (spills, overflowing, leaking) and during the clean-up (rinsing) of the sprayer after the treatment. In Belgium studies are carried out on biofilters to treat in an efficient way effluents containing pesticides. The biofilter substrate is elaborated from a homogenised mixture of local soil, chopped straw and peat or composted material, able to absorb or degrade the active substances. Biofilters consist in systems of 2 or 3 units depending on the spray equipment of the farmer and on the configuration of the farmyard. Each unit is made from a 1 m3 plastic container and the different units are stacked in a vertical pile and connected between them using plastic valves and pipes. Eight pilot systems were installed in March 2002 in seven farms and in one agricultural school, all selected in the loamy region of Belgium specialised in arable crops such as cereals, sugar beets and vegetables. The efficacy (yield) of the systems was determined by measuring the balance of the inputs and outputs of the pesticides. Results were expressed in percent of pesticide retained on the biofilters. The results obtained after two years with 5 tracer pesticides (atrazine, carbofuran, diuron, lenacil and simazine) brought on the biofilter installations are very satisfactory since the percentage of retention is generally higher than 95% of the amount applied. In the beginning of 2004, ten new pilot biofilters were installed in several farms or agricultural technical centres (producing cereals, sugar beets, potatoes, vegetables, fruits or ornamental plants), and in a municipal maintenance service. Some biofilters were installed in duplicate in order to compare the efficacy of different substrates. The efficacy of the biofilters was studied for the 5 classical tracer pesticides but also for other chemical classes of herbicides (sulfonylurea, aryloxyalcanoic acids, chloroacetanilides), insecticides (pyrethroids, carbamates) and fungicides (dicarboximides, phenylamides, triazoles and strobilurines). To monitor these pesticides in elutes and substrates, two analytical methods were developed, optimised and validated : the first one by Gas Chromatography with Mass Spectrometry Detection (GC-MS), and the second one by High Performance Liquid Chromatography with UV Diode Array Detection (HPLC-DAD). The micro-organisms activity in the substrate was also measured in some situations.

  10. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    PubMed

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.

  11. Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes

    EPA Science Inventory

    The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...

  12. Effects of hydraulic retention time and [Formula: see text] ratio on thiosulfate-driven autotrophic denitrification for nitrate removal from micro-polluted surface water.

    PubMed

    Wang, Zheng; Fei, Xiang; He, Sheng-Bing; Huang, Jung-Chen; Zhou, Wei-Li

    2017-11-01

    This study was carried out to investigate the possibility of a thiosulfate-driven autotrophic denitrification for nitrate-N removal from micro-polluted surface water. The aim was to study the effects of [Formula: see text] ratio (S/N molar ratio) and hydraulic retention time (HRT) on the autotrophic denitrification performance. Besides, utilization efficiencies of [Formula: see text] along the biofilter and the restart-up of the bioreactor were also investigated. Autotrophic denitrification using thiosulfate as an electron donor for treating micro-polluted surface water without the addition of external alkalinity proved to be feasible and the biofilter could be readied in two weeks. Average nitrate-N removal efficiencies at HRTs of 0.5, 1 and 2 h were 78.7%, 87.8% and 97.4%, respectively, and corresponding removal rates were 186.24, 103.92 and 58.56 g [Formula: see text], respectively. When water temperature was in the range of 8-12°C and HRT was 1 h, average nitrate-N removal efficiencies of 41.9%, 97.1% and 97.0%, nitrite accumulation concentrations of 1.45, 0.46 and 0.22 mg/L and thiosulfate utilization efficiencies of 100%, 98.8% and 92.1% were obtained at S/N ratios of 1.0, 1.2 and 1.5, respectively. Besides, the autotrophic denitrification rate in the filtration media layer was the highest along the biofilter at an S/N ratio of 1.5. Finally, after a one-month period of starvation, the biofilter could be restarted successfully in three weeks without inoculation of seed sludge.

  13. Biofiltration for stormwater harvesting: Comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions

    NASA Astrophysics Data System (ADS)

    Chandrasena, G. I.; Deletic, A.; McCarthy, D. T.

    2016-06-01

    Knowledge of pathogen removal in stormwater biofilters (also known as stormwater bioretention systems or rain gardens) has predominately been determined using bacterial indicators, and the removal of reference pathogens in these systems has rarely been investigated. Furthermore, current understanding of indicator bacteria removal in these systems is largely built upon laboratory-scale work. This paper examines whether indicator organism removal from urban stormwater using biofilters in laboratory settings are representative of the removal of pathogens in field conditions, by studying the removal of Escherichia coli (a typical indicator microorganism) and Campylobacter spp. (a typical reference pathogen) from urban stormwater by two established field-scale biofilters. It was found that E. coli log reduction was higher than that of Campylobacter spp. in both biofilters, and that there was no correlation between E. coli and Campylobacter spp. log removal performance. This confirms that E. coli behaves significantly differently to this reference pathogen, reinforcing that single organisms should not be employed to understand faecal microorganism removal in urban stormwater treatment systems. The average reduction in E. coli from only one of the tested biofilters was able to meet the log reduction targets suggested in the current Australian stormwater harvesting guidelines for irrigating sports fields and golf courses. The difference in the performance of the two biofilters is likely a result of a number of design and operational factors; the most important being that the biofilter that did not meet the guidelines was tested using extremely high influent volumes and microbial concentrations, and long antecedent dry weather periods. As such, the E. coli removal performances identified in this study confirmed laboratory findings that inflow concentration and antecedent dry period impact overall microbial removal. In general, this paper emphasizes the need for the validation of stormwater harvesting systems, namely, the testing of treatment systems under challenging operational conditions using multiple indicators and reference pathogens.

  14. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    PubMed

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  15. Bioremediation of trace organic compounds found in precious metals refineries' wastewaters: a review of potential options.

    PubMed

    Barbosa, V L; Tandlich, R; Burgess, J E

    2007-07-01

    Platinum group metal (PGM) refining processes produce large quantities of wastewater, which is contaminated with the compounds that make up the solvents/extractants mixtures used in the process. These compounds often include solvesso, beta-hydroxyxime, amines, amides and methyl isobutyl ketone. A process to clean up PGM refinery wastewaters so that they could be re-used in the refining process would greatly contribute to continual water storage problems and to cost reduction for the industry. Based on the concept that organic compounds that are produced biologically can be destroyed biologically, the use of biological processes for the treatment of organic compounds in other types of waste stream has been favoured in recent years, owing to their low cost and environmental acceptability. This review examines the available biotechnologies and their effectiveness for treating compounds likely to be contained in precious metal extraction process wastewaters. The processes examined include: biofilters, fluidized bed reactors, trickle-bed bioreactors, bioscrubbers, two-phase partitioning bioreactors, membrane bioreactors and activated sludge. Although all processes examined showed adequate to excellent removal of organic compounds from various gaseous and fewer liquid waste streams, there was a variation in their effectiveness. Variations in performance of laboratory-scale biological processes are probably due to the inherent change in the microbial population composition due to selection pressure, environmental conditions and the time allowed for adaptation to the organic compounds. However, if these factors are disregarded, it can be established that activated sludge and membrane bioreactors are the most promising processes for use in the treatment of PGM refinery wastewaters.

  16. Effect of extended and daily short-term starvation/shut-down events on the performance of a biofilter treating toluene vapors.

    PubMed

    Jiménez, Lucero; Arriaga, Sonia; Muñoz, Raúl; Aizpuru, Aitor

    2017-12-01

    Industrial emissions of Volatile Organic Compounds are usually discontinuous. To assess the impact of interruptions in pollutant supply on the performance of biological treatment systems, two identical biofilters previously operated under continuous toluene loadings were subjected for 110 days to extended (12, 24, 36, 48, 60, 72, 84 and 96 h) and for a week to daily (8 h on, 16 h off) toluene starvation/shutdown events. One biofilter was operated under complete shutdowns (both air and toluene supply were interrupted), while the other maintained the air supply under toluene starvation. The biofilter operated under complete shutdowns was able to withstand both the extended and daily pollutant interruptions, while starvation periods >24 h severely impacted the performance of the other biofilter, with a removal efficiency decrease from 97.7 ± 0.1% to 45.4 ± 6.7% at the end of the extended starvation periods. This deterioration was likely due to a reduction in liquid lixiviation (from a total volume of 2380 mL to 1800 mL) mediated by the countercurrent airflow during the starvation periods. The presence of air under toluene starvation also favored the accumulation of inactive biomass, thus increasing the pressure drop from 337 to 700 mm H 2 O.m -1 , while decreasing the wash out of acidic by-products with a significantly higher pH of leachates (Student paired t-test <0.05). This study confirmed the need to prevent the accumulation of inhibitory compounds produced during process perturbation in order to increase biofiltration robustness. Process operation with sufficient drainage in the packing material and the absence of countercurrent airflow are highly recommended during toluene deprivation periods. Copyright © 2017. Published by Elsevier Ltd.

  17. COMETABOLISM OF TRIHALOMETHANES BY NITRIFYING BIOFILTERS UNDER DRINKING WATER TREATMENT PLANT CONDITIONS

    EPA Science Inventory

    EPA Identifier: FP916412
    Title: Cometabolism of Trihalomethanes by Nitrifying Biofilters Under Drinking Water Treatment Plant Conditions
    Fellow (Principal Investigator): David G. Wahman
    Institution: University of Texas at Austin
    EPA ...

  18. Efficacy of a novel biofilter in hatchery sanitation: II. Removal of odorogenous pollutants.

    PubMed

    Tymczyna, Leszek; Chmielowiec-Korzeniowska, Anna; Drabik, Agata; Skórska, Czesława; Sitkowska, Jolanta; Cholewa, Grazyna; Dutkiewicz, Jacek

    2007-01-01

    The present research assessed the treatment efficiency of odorogenous pollutants in air from a hatchery hall vented on organic and organic-mineral beds of an enclosed-container biofilter. In this study, the following media were used: organic medium containing compost and peat (OM); organic-mineral medium containing bentonite, compost and peat (BM); organic-mineral medium containing halloysite, compost and peat (HM). The concentration of odorogenous gaseous pollutants (sulfur compounds and amines) in the hatching room air and in the air after biotreatment were determined by gas chromatography. In the hatchery hall among the typical odorogenous pollutants, there were determined 2 amines: 2-butanamine and 2-pentanamine, hydrogen sulfide, sulfur dioxide, carbon disulfide, sulfides and mercaptans. Ethyl mercaptan showed the highest levels as its mean concentration in the hatchery hall air exceeded 60 microg/m3 and in single samples even 800 microg/m3. A mean concentration of 2-butanamine and sulfur dioxide in the examined air also appeared to be relatively high--21.405 microg/m3 and 15.279 microg/m3, respectively. In each filter material, the air treatment process ran in a different mode. As the comparison reveals, the mean reduction of odorogenous contaminants recorded in the hall and subjected to biotreatment was satisfying as it surpassed 60% for most established pollutants. These high removal values were confirmed statistically only for single compounds. However, a low removal level was reported for hydrogen sulfide and sulfur dioxide. No reduction was recorded in the bentonite supplemented medium (BM) for sulfur dioxide and methyl mercaptan. In the organic medium (OM) no concentration fall was noted for dipropyl sulfide either. In all the media investigated, the highest removal rate (100%), not confirmed statistically, was observed for carbon disulfide. Very good results were obtained in the medium with a bentonite additive (BM) for both identified amines, whose mean elimination rate exceeded 60% (p

  19. Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media.

    PubMed

    Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf

    2016-02-01

    A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Performance of innovative PU-foam and natural fiber-based composites for the biofiltration of a mixture of volatile organic compounds by a fungal biofilm.

    PubMed

    Gutiérrez-Acosta, O B; Arriaga, S; Escobar-Barrios, V A; Casas-Flores, S; Almendarez-Camarillo, A

    2012-01-30

    The performance of perlite and two innovative carriers that consist of polyurethane (PU) chemically modified with starch; and polypropylene reinforced with agave fibers was evaluated in the biofiltration of a mixture of VOCs composed of hexane, toluene and methyl-ethyl-ketone. At a total organic loading rate of 145 gCm(-3)h(-1) the elimination capacities (ECs) obtained were 145, 24 and 96 gCm(-3)h(-1) for the biofilters packed with the PU, the reinforced polypropylene, and perlite, respectively. Specific maximum biodegradation rates of the mixture, in the biofilters, were 416 mgCg(protein)(-1)  h(-1) for the PU and 63 mgCg(protein)(-1) h(-1) for perlite, which confirms the highest performance of the PU-composite. 18S rDNA analysis from the PU-biofilter revealed the presence of Fusarium solani in its sexual and asexual states, respectively. The modified PU carrier significantly reduced the start-up period of the biofilter and enhanced the EC of the VOCs. Thus, this study gives new alternatives in the field of packing materials synthesis, promoting the addition of easily biodegradable sources to enhance the performance of biofilters. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effects of anionic surfactant on n-hexane removal in biofilters.

    PubMed

    Cheng, Yan; He, Huijun; Yang, Chunping; Yan, Zhou; Zeng, Guangming; Qian, Hui

    2016-05-01

    The biodegradability of three anion surfactants by biofilm microorganisms and the toxicity of the most readily biodegradable surfactant to biofilm microorganisms were examined using batch experiments, and the optimal concentration of SDS for enhanced removal of hexane was investigated using two biotrickling filters (BTFs) for comparison. Results showed that SDS could be biodegraded by microorganisms, and its toxicity to microorganisms within the experimental range was negligible. The best concentration of SDS in biofiltration of n-hexane was 0.1 CMC and the elimination capacity (EC) of 50.4 g m(-3) h(-1) was achieved at a fixed loading rate (LR) of 72 g m(-3) h(-1). When an inlet concentration of n-hexane increased from 600 to 850 mg m(-3), the removal efficiency (RE) decreased from 67% to 41% by BTF2 (with SDS) and from 52% to 42% by BTF1 (without SDS). SDS could enhance hexane removal from 43% (BTF1) to 60% (BTF2) at gas empty-bed residence time (EBRT) of 7.5 s and an inlet concentration of 200 mg m(-3). Copyright © 2016. Published by Elsevier Ltd.

  2. Mapping seagrass beds and coral reefs in the coastal region of Vietnam using VNREDSAT-1 data

    NASA Astrophysics Data System (ADS)

    Lau, K. V.; Chen, C. F.; Nguyen, S. T.; Chen, C. R.; Tong Phuoc, H. S.; Nguyen, H. H.

    2015-12-01

    Seagrass beds and coral reefs are two important ecosystems in the coastal zone. They play an important role to protect and shelter various marine organisms. Both seagrass beds and coral reefs could prevent the coastline from erosion. While seagrass stabilizes sediments and acts as a biofilter, coral reefs can control carbon dioxide in the ocean water. Besides, seagrass also provides direct food for many fish and marine animals. Therefore, mapping seagrass beds and coral reefs is very important for coastal management and conservation. In May 2013, Vietnam launched the first satellite for earth observations, called Vietnam Natural Resources, Environment and Disaster Monitoring Satellite (VNREDSAT-1). It is a great opportunity for environmental monitoring in the country using the data from this satellite. The objective of this study is to use the VNREDSAT-1 data to map seagrass beds and coral reefs in the coastal region of Ninh Hai district, Ninh Thuan province, Vietnam, where the seagrass still remains in good a condition. We processed the VNREDSAT-1 image through four steps: (1) Atmospheric correction using Second Simulation of the Satellite Signal in the Solar Spectrum radiative transfer model (6S), (2) Sun glint removal by using Hedley method, (3) Water column correction using the depth-variant index (DII) proposed by Lyzenga, and (4) Image classification using the maximum likelihood algorithm. The mapping results verified with the ground reference data showed a good overall accuracy of 75% and Kappa coefficient of 0.7. The total area of seagrass beds was approximately 323.09 ha, which mainly distributed in My Hoa and Thai An villages. The total area of coral reefs was approximately 564.42 ha, located along the coast and on outer area to seagrass and shoreline reefs. This study demonstrates the applicability of VNREDSAT-1 for underwater habitat monitoring. The results could be useful for natural resources managers to devise strategies for management and conservation of underwater ecosystems in Vietnam.

  3. Biofiltration of odors, toxics and volatile organic compounds from publicly owned treatment works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, T.S.; Devinny, J.S.; Torres, E.M.

    1996-12-31

    Increasing federal and state regulation has made it necessary to apply air pollution control measures at publicly owned treatment works (POTWs). Traditional control technologies may not be suitable for treating the low and variable contaminant concentrations often found in POTW off-gases. An alternative control technology, biofiltration, was studied. An experiment using bench- and pilot-scale reactors established optimal operating conditions for a full-scale conceptual design. The waste airstream contained ppmv levels of hydrogen sulfide and ppbv levels of specific volatile organic compounds (VOCs). Granular activated carbon (GAC) and yard waste compost (YWG) were tested as possible biofilter media with and withoutmore » pH control. The 16-month field study bench reactors achieved 99% removal of hydrogen sulfide, 53 to 98% removal of aromatic hydrocarbons, 37 to 95% removal of aldehydes and ketones, and 0 to 85% removal of chlorinated compounds. The GAC and YWC pilot reactors removed more than 80% and 65% of the total VOCs at 17 second and 70 second empty bed retention times, respectively. The YWC reactors performed poorly at empty bed retention times of 30 and 45 seconds, removing less than 40% of total VOCs. Declining pH had little negative effect on contaminant removal, suggesting costly control measures may not be necessary. Biofiltration appears to be a feasible alternative to traditional control technologies in treating off-gases from POTWs. 13 refs., 3 figs., 4 tabs.« less

  4. Characterization of tobermolite as a bed material for selective growth of methanotrophs in biofiltration.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-03-10

    Tobermolite was characterized as a bed material for methanotrophic biofiltration. A lab-scale biofilter packed with tobermolite was operated for different operation times under identical conditions. The three different runs showed similar acclimation patterns of methane oxidation, with methane removal efficiency increasing rapidly for the first few days and peaking within three weeks, after which the efficiency remained stable. The mean methane removal capacities ranged from 766gm(-3)d(-1) to 974gm(-3)d(-1) after acclimation. Pyrosequencing indicated that the methanotrophic proportion (methanotroph/bacteria) increased to 71-94% within three weeks. Type I methanotrophs Methylocaldum and Methylosarcina were dominant during the initial growth period, then Methylocaldum alone dominated the methanotrophic community. A community comparison showed that total bacterial and methanotrophic communities were temporally stable after the initial growth period. Quantitative PCR showed that methanotrophic density increased during the first 3-4 weeks, then remained stable over 120 days. Tobermolite can provide a special habitat for the selective growth of methanotrophs, resulting in rapid acclimation. Tobermolite also allows the microbial community and methanotrophic density to remain stable, resulting in stable methane biofiltration. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.

    PubMed

    Alexandrino, M; Knief, C; Lipski, A

    2001-10-01

    Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.

  6. Comparison of the biological NH3 removal characteristics among four inorganic packing materials.

    PubMed

    Hirai, M; Kamamoto, M; Yani, M; Shoda, M

    2001-01-01

    Four inorganic packing materials were evaluated in terms of their availability as a packing material of a packed tower deodorization apparatus (biofilter) from the viewpoints of biological NH3 removal characteristics and some physical properties. Porous ceramics (A), calcinated cristobalite (B), calcinated and formed obsidian (C), granulated and calculated soil (D) were used. The superiority of these packing materials determined based on the values of non-biological removal per unit weight or unit volume of packing material, complete removal capacity of NH3 per unit weight of packing material per day or unit volume of packing material per day and pressure drop of the packed bed was in the order of A approximately = C > B > or = D. Packing materials A and C with high porosity, maximum water content, and suitable mean pore diameter showed excellent removal capacity.

  7. Comparison of the biological H2S removal characteristics among four inorganic packing materials.

    PubMed

    Hirai, M; Kamamoto, M; Yani, M; Shoda, M

    2001-01-01

    Four inorganic packing materials were evaluated in terms of their availability as packing materials of a packed tower deodorization apparatus (biofilter) from the viewpoints of biological H2S removal characteristics and some physical properties. Among porous ceramics (A), calcinated cristobalite (B), calcinated and formed obsidian (C), granulated and calcinated soil (D), the superiority of these packing materials determined based on the values of non-biological removal per unit weight or unit volume of packing material, complete removal capacity of H2S per unit weight of packing material per day or unit volume of packing material per day and pressure drop of the packed bed was in the order of A approximately equal to C > D approximately equal to B, which is correlated with the maximum water content, porosity, and mean pore diameter.

  8. Analysis and comparison of biotreatment of air polluted with ethanol using biofiltration and biotrickling filtration.

    PubMed

    Morotti, Karine; Ramirez, Antonio Avalos; Jones, J Peter; Heitz, Michèle

    2011-12-01

    This study analyses the performance of ethanol biofiltration with percolation (biotrickling filtration, BTF) comparing to a conventional biofilter (biofiltration, BF). Two biofilters packed with clay balls were operated in a range of inlet concentrations of ethanol in the air varying from 0.47 to 2.36 g m(-3). For both the BF and BTF, the specific growth rate (mu) and the elimination capacity (EC) decreased with the ethanol inlet concentration, presenting a kinetic of substrate inhibition. A Haldane-type model was adjusted for both biofilters in order to model both EC and mu as a function of the ethanol inlet concentration in the gas. The maximum EC was similar for both biofilters, at around 46 g m(-3) h(-1), whereas the maximum mu was 0.0057 h(-1) for the BF and 0.0103 h(-1) for the BTF. The maximum of ethanol removed, occurred at the lowest inlet concentration of (0.47 gm(-3)), and reached 86% for the BF and 74% for the BTF.

  9. Formaldehyde removal from air by a biodegradation system.

    PubMed

    Xu, Zhongjun; Hou, Haiping

    2010-07-01

    A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.

  10. Biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisotti, D.A.

    1995-12-31

    In Europe, biofiltration has been a widely used air pollution control technology for over 25 years with much success. Within the last 5 years, biofiltration has taken on the US air pollution control market with the same success. This talk will discuss biofiltrations applications and the various types of biofilter systems currently being used. As with any technology, there are advantages and disadvantages associated with each type of system. Because it is a relatively new technology in the US, there are many different types of systems currently being offered. This talk will cover the different types of system approaches, theirmore » advantages, disadvantages, and their associated costs. It will also illustrate a biofilters effectiveness using a case study and its results.« less

  11. Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters

    USDA-ARS?s Scientific Manuscript database

    There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...

  12. EVALUATION OF ACTIVATED BIOFILTRATION AND ACTIVATED BIOFILTRATION/ACTIVATED SLUDGE TECHNOLOGIES

    EPA Science Inventory

    The paper presents the results of a review and investigation of the activated biofilter (ABF) and activated biofilter/activated sludge (ABF/AS) technologies and a review of operating records of several municipal plants in the U.S. using these technologies. The overall objective o...

  13. Development of a second generation biofiltration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinheinz, G.T.; McGinnis, G.D.; Niemi, B.A.

    1999-07-01

    Biofiltration utilizes microbial processes which are immobilized on a solid support to biodegrade contaminants in air. Biofilters traditionally have been utilized in applications where there is a high volume of air containing low levels of compounds. There are several operational problems biofilters are currently encountering. Some of these problems include systems which are very large, microbial breakdown of the solid support, cycling of compounds onto the biofilters (uneven amounts of compounds in the air), and very short residence times in the biofiltration units. This project was undertaken to determine the feasibility of using physical/chemical methods to adsorb and then desorbmore » analytes to convert a dilute, high volume air stream to a more concentrated low volume air stream. The chemical/physical (adsorption/desorption) system will also serve to provide a relatively consistent air stream to the biofiltration units in order to alleviate the perturbations to the system as a result of uneven analyte concentrations. The ability to concentrate a dilute air stream and provide a constant stream of VOCs to the biofiltration unit will allow for smaller, more efficient, and more economical biofilters. Two years of laboratory studies and initial pilot-scale trials on these coupled systems have shown that they are indeed able to efficiently concentrate dilute streams, and the coupled biofilters are able to remove 90+% of the VOCs from the adsorption/desorption unit.« less

  14. Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors.

    PubMed

    Arriaga, Sonia; Muñoz, Raúl; Hernández, Sergio; Guieysse, Benoit; Revah, Sergio

    2006-04-01

    Biofiltration of hydrophobic volatile pollutants is intrinsically limited by poor transfer of the pollutants from the gaseous to the liquid biotic phase, where biodegradation occurs. This study was conducted to evaluate the potential of silicone oil for enhancing the transport and subsequent biodegradation of hexane by the fungus Fusarium solani in various bioreactor configurations. Silicone oil was first selected among various solvents for its biocompatibility, nonbiodegradability, and good partitioning properties toward hexane. In batch tests, the use of silicone oil improved hexane specific biodegradation by approximately 60%. Subsequent biodegradation experiments were conducted in stirred-tank (1.5 L) and packed-bed (2.5 L) bioreactors fed with a constant gaseous hexane load of 180 g x m(-3)(reactor) x h(-1) and operated for 12 and 40 days, respectively. In the stirred reactors, the maximum hexane elimination capacity (EC) increased from 50 g x m(-3)(reactor) x h(-1) (removal efficiency, RE of 28%) in the control not supplied with silicone oil to 120 g x m(-3)(reactor) x h(-1) in the biphasic system (67% RE). In the packed-bed bioreactors, the maximum EC ranged from 110 (50% RE) to 180 g x m(-3)(reactor) x h(-1) (> 90% RE) in the control and two-liquid-phase systems, respectively. These results represent, to the best of our knowledge, the first reported case of fungi use in a two-liquid-phase bioreactor and the highest hexane removal capacities so far reported in biofilters.

  15. Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow.

    PubMed

    Mohanty, Sanjay K; Cantrell, Keri B; Nelson, Kara L; Boehm, Alexandria B

    2014-09-15

    Biofilters, designed to facilitate the infiltration of stormwater into soil, are generally ineffective in removing bacteria from stormwater, thereby causing pollution of groundwater and receiving surface waters. The bacterial removal capacity of biofilters has been shown to be lower in the presence of natural organic matter (NOM) and during intermittent infiltration of stormwater. To improve the removal of fecal indicator bacteria (Escherichia coli) under these conditions, we amended sand with 5% (by weight) biochar, a carbonaceous geomedia produced by pyrolysis of biomass, and investigated the removal and remobilization of E. coli. Three types of biochar were used to evaluate the role of biochar properties on the removal. Compared to sand, biochar not only retained up to 3 orders of magnitude more E. coli, but also prevented their mobilization during successive intermittent flows. In the presence of NOM, the removal capacity of biochar was lower, but remained higher than sand alone. The improved retention with the biochar amendment is attributed to an increase in the attachment of E. coli at the primary minimum and to an increase in the water-holding capacity of biochar-amended sand, which renders driving forces such as moving air-water interfaces less effective in detaching bacteria from grain surfaces. Biochars with lower volatile matter and polarity appear to be more effective in removing bacteria from stormwater. Overall, our results suggest that a biochar amendment to biofilter media has the potential to effectively remove bacteria from stormwater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization of gaseous odorous emissions from a rendering plant by GC/MS and treatment by biofiltration.

    PubMed

    Anet, Benoît; Lemasle, Marguerite; Couriol, Catherine; Lendormi, Thomas; Amrane, Abdeltif; Le Cloirec, Pierre; Cogny, Gilles; Fillières, Romain

    2013-10-15

    This research focuses on the identification and quantification of odorous components in rendering plant emissions by GC/MS and other analytical methods, as well as the description of phenomena occurring in biofilter in order to improve the removal efficiency of industrial biofilters. Among the 36 compounds quantified in the process air stream, methanethiol, isopentanal and hydrogen sulfide, presented the major odorous contributions according to their high concentrations, generally higher than 10 mg m(-3), and their low odorous detection thresholds. The elimination of such component mixtures by biofiltration (Peat packing material, EBRT: 113 s) was investigated and revealed that more than 83% of hydrogen sulfide and isopentanal were removed by biofilter. Nevertheless, the incomplete degradation of such easily degradable pollutants suggested inappropriate conditions as lack of nutrients and acidic pH. These inadequate conditions could explain the lack of performance, especially observed on methanethiol (53% of RE) and the production of oxygenated and sulfur by-products by the biofilter itself. Copyright © 2013. Published by Elsevier Ltd.

  17. Ammonia-oxidizing bacteria and archaea within biofilters of a commercial recirculating marine aquaculture system.

    PubMed

    Huang, Zhitao; Jiang, Yuli; Song, Xiefa; Hallerman, Eric; Peng, Lei; Dong, Dengpan; Ma, Teng; Zhai, Jieming; Li, Wensheng

    2018-02-10

    While biofilters are widely used to metabolize ammonia and other wastes in marine recirculating aquaculture systems, the ammonia-oxidizing bacterial and archaeal communities have not been characterized across a diversity of production systems. Using a metagenomics approach, we characterized the ammonia-oxidizing microbiological community of biofilters in a commercial recirculating marine aquaculture system producing hybrid grouper (Epinephelus lanceolatus × E. fuscoguttatus). Cloning and sequencing of the amoA gene showed that nitrifying bacteria included Nitrosomonas europea, N. stercoris, N. cryotolerans, N. eutropha, N. estuarii, eight strains of N. marina, and 15 strains not associated with described species. Nitrifying archaea included eight strains of Nitrosopumilus maritimus, N. koreensis, N. piranensis, N. adriaticus, undescribed congeners, and other undescribed archaea. The species composition of the bacterial and especially the archaeal communities was beyond that yet reported for aquaculture biofilters. While ammonia flux through the respective communities has yet to be estimated, the diverse environmental adaptations of the bacterial and archaeal communities suggest resilience of function under a range of environmental conditions.

  18. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water.

    PubMed

    Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu

    2012-09-01

    To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Design and Feasibility Analysis of a Self-Sustaining Biofiltration System for Removal of Low Concentration N2O Emitted from Wastewater Treatment Plants.

    PubMed

    Yoon, Hyun; Song, Min Joon; Yoon, Sukhwan

    2017-09-19

    N 2 O is a potent greenhouse gas and ozone-depletion agent. In this study, a biofiltration system was designed for removal of N 2 O emitted at low concentrations (<200 ppmv) from wastewater treatment plants. The proposed biofiltration system utilizes untreated wastewater from the primary sedimentation basin as the source of electron donor and nutrients and energy requirement is minimized by utilizing gravitational force and pressure differential to direct liquid medium and gas through the biofilter. The experiments performed with laboratory-scale biofilter in two different configurations confirmed the feasibility of the biofiltration system. The biofilter operated with cycling of raw wastewater exhibited up to 94% and 53% removal efficiency with 100 ppmv N 2 O in N 2 and air, respectively, as the feed gas, corroborating that untreated wastewater can serve as a robust source of electron donor and nutrients. The laboratory-scale biofilter operated with a continuous flow-through of synthetic wastewater attained >99.9% removal of N 2 O from N 2 background at the gas flow rate up to 2,000 mL·min -1 and >50% N 2 O removal from air background at the gas flow rate of 200 mL·min -1 . nosZ-containing bacterial genera including Flavobacterium (5.92%), Pseudomonas (4.26%) and Bosea (2.39%) were identified in the biofilm samples collected from the oxic biofilter, indicating these organisms were responsible for N 2 O removal.

  20. Ammonia biofiltration and nitrous oxide generation during the start-up of gas-phase compost biofilters

    NASA Astrophysics Data System (ADS)

    Maia, Guilherme D. N.; Day V, George B.; Gates, Richard S.; Taraba, Joseph L.

    2012-01-01

    Gas-Phase Biofiltration technology is widely utilized for treating ammonia gas (NH 3) with one of its potential detrimental by-products being nitrous oxide (N 2O), a potent greenhouse gas (100-y radiative forcing 298 times greater than carbon dioxide). The present work was conducted to investigate the relation between NH 3 removal during biofiltration and N 2O generation as a product of incomplete denitrification during the start-up of gas-phase compost biofilters. Four laboratory scale tubular biofilters in up flow mode (20 s residence-time) were studied for 21 days: 3 replicates were subjected to 16 ppm v (0.78 g m -2 h -1) of NH 3 and a statistical control not subjected to NH 3. Ammonia concentration differences between biofilter inlet (Bottom = 16 ppm v) and outlet (Top) and N 2O concentration differences between biofilter outlet (Top) and biofilter inlet (background concentrations at the bottom) were used to determine the extent of the correlation between NH 3 removal and N 2O generation. Correlations with CH 4 and CO 2 were also reported. The high Spearman correlation coefficients for the three replicates ( ρ = -0.845, -0.820, and -0.841, with P ≤ 0.0001 for replications A, B and C, respectively) suggested that availability of nitrate/nitrite owing to NH 3 nitrification favored conditions for N 2O generation as a sub-product of denitrification. The statistical control received no NH 3 inputs and did not generate N 2O. Therefore, the results indicated that the process of NH 3 removal was a trigger for N 2O production. Carbon dioxide and N 2O were moderately correlated. Methane and N 2O were weakly correlated and only for replicate C. No significant correlation was found for the Statistical Control between N 2O and CH 4.

  1. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation.

    PubMed

    Schieder, D; Quicker, P; Schneider, R; Winter, H; Prechtl, S; Faulstich, M

    2003-01-01

    The "BIO-Sulfex" biofilter of ATZ-EVUS removes hydrogen sulfide from biogas in a biological way. Hydrogen sulfide causes massive problems during power generation from biogas in a power plant, e.g. corrosion of engines and heat exchangers, and thus causes frequent and therefore expensive engine oil changes. The BIO-Sulfex module is placed between the digester and the power-plant and warrants a cost-effective, reliable and fully biological desulfurization. In the cleaned gas concentrations of less than 100 ppm can be achieved. Power-plant manufacturers usually demand less than 500 or less than 200 ppm. At present, several plants with biogas flow rates between 20 and 350 m3/h are in operation.

  2. Periodic processes in vapor phase biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, W.M.; Irvine, R.L.

    1998-07-01

    Most industrial processes and environmental remediation activities generate large volumes of air contaminated with low concentrations of volatile organic compounds. Carbon adsorption is the most widely used conventional treatment technology, but it has many drawbacks including secondary waste streams and excessive regeneration costs. Biofiltration, a microbial-based treatment technology, removes and biodegrades contaminants from a wide variety of waste streams without the disadvantages of carbon adsorption. In biofiltration, contaminated air flows through a packed bed containing microorganisms which convert contaminants primarily into carbon dioxide, water, and biomass. This paper describes how periodically operated, controlled unsteady state conditions were imposed on biofiltersmore » which used a new polyurethane foam medium that couples high porosity, suitable pore size, and low density with an ability to sorb water. The potential benefits associated with the controlled, unsteady-state operation of biofilters containing this new polyurethane foam medium are described herein. An example system treating a toluene contaminated waste gas is presented.« less

  3. Study on anaerobic treatment of wastewater containing hexavalent chromium.

    PubMed

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-06-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  4. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    PubMed Central

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  5. Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment.

    PubMed

    Fu, Jie; Lee, Wan-Ning; Coleman, Clark; Nowack, Kirk; Carter, Jason; Huang, Ching-Hua

    2017-10-15

    The removal of precursors of 36 disinfection byproducts (DBPs) in effluents from flocculation/sedimentation process was evaluated across a pilot-scale two-stage biofiltration process, i.e., a sand/anthracite (SA) biofilter (empty bed contact time (EBCT) of 7.5 min) coupled with a biologically-active granular activated carbon (GAC) contactor (EBCT of 15 min). The biofiltration process exhibited a good capacity for removal of the total DBP formation potential (DBPFP) (by 25.90 ± 2.63%), and GAC contactors contributed most to the DBPFP removal (accounting for 60.63 ± 16.64% of the total removal). The removal percentage of DBPFPs of different structure types was in the following order: halonitroalkanes (58.50%) > haloaldehydes (33.62%) > haloacetic acids (HAAs, 28.13%) > haloalkanes (20.46%) > haloketones (13.46%) > nitrosamines (10.23%) > halonitriles (-8.82%) > haloalkenes (-9.84%). The precursors of bromo-DBPs (containing only bromine atoms) and maximal halogenated DBPs (containing 3 & 4 halo atoms) were removed largely compared to other DBPs. Among the total DBPFP, trihalomethanes (THMs), HAAs, and chloral hydrate were the dominant DBPs, and they accounted for >92% of the total targeted DBPs by weight. Pearson correlation analysis (CA) and principal components analysis (PCA) indicated a significant association among these dominant DBPs. Canonical correspondence analysis (CCA) revealed specific ultraviolet absorbance (SUVA 254 ) could serve as a good surrogate parameter for DBPFP. Pre-chlorination upstream of the biofilters may not greatly impact the overall removal of DBPFP by SA/GAC biofiltration. In addition, results showed that SA/GAC biofiltration was a useful procedure to remove the inorganic DBP chlorite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identifying the limitations of conventional biofiltration of diffuse methane emissions at long-term operation.

    PubMed

    Gómez-Cuervo, S; Hernández, J; Omil, F

    2016-08-01

    There is growing international concern about the increasing levels of greenhouse gases in the atmosphere, particularly CO2 and methane. The emissions of methane derived from human activities are associated with large flows and very low concentrations, such as those emitted from landfills and wastewater treatment plants, among others. The present work was focused on the biological methane degradation at diffuse concentrations (0.2% vv(-1)) in a conventional biofilter using a mixture of compost, perlite and bark chips as carrier. An extensive characterization of the process was carried out at long-term operation (250 days) in a fully monitored pilot plant, achieving stable conditions during the entire period. Operational parameters such as waterings, nitrogen addition and inlet loads and contact time influences were evaluated. Obtained results indicate that empty bed residence times within 4-8 min are crucial to maximize elimination rates. Waterings and the type of nitrogen supplied in the nutrient solution (ammonia or nitrate) have a strong impact on the biofilter performance. The better results compatible with a stable operation were achieved using nitrate, with elimination capacities up to 7.6 ± 1.1 g CH4 m(-3 )h(-1). The operation at low inlet concentrations (IC) implied that removal rates obtained were quite limited (ranging 3-8 g CH4 m(-3 )h(-1)); however, these results could be significantly increased (up to 20.6 g CH4 m(-3) h(-1)) at higher IC, which indicates that the mass transfer from the gas to the liquid layer surrounding the biofilm is a key limitation of the process.

  7. Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures.

    PubMed

    Pérez, M C; Álvarez-Hornos, F J; Portune, K; Gabaldón, C

    2015-01-01

    The removal of styrene was studied using two biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and one biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for BFs and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m(-3) h(-1) and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm(-3), removal efficiencies between 70 % and 95 % were obtained in the three bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m(-3) h(-1) were obtained for the BF1-P and BF2-C, respectively (IL of 173 g m(-3) h(-1) and EBRT of 60 s in BF1-P; IL of 89 g m(-3) h(-1) and EBRT of 90 s in BF2-C). A maximum EC of 52 g m(-3) h(-1) was obtained for the BTF (IL of 116 g m(-3) h(-1), EBRT of 45 s). Problems regarding high pressure drop appeared in the peat BF, whereas drying episodes occurred in the coconut fibre BF. DGGE revealed that the pure culture used for BF inoculation was not detected by day 105. Although two different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option.

  8. Comparison of different packing materials for the biofiltration of air toxics.

    PubMed

    Sakuma, Takeyuki; Hattori, Toshihiro; Deshusses, Marc A

    2006-11-01

    Four different biofilter packing materials (two porous ceramics, perlite, and open pore polyurethane foam) were compared for the removal of toluene vapors. The focus was on evaluating performance at relatively short gas retention time (13.5 and 27 sec). The reactors were initially operated as biotrickling filters with continuous feeding and trickling of a nutrient solution. After significant plugging of the biotrickling filter beds with biomass was observed, the operation mode was switched to biofiltration with only periodic supply of mineral nutrients. This resulted in stable conditions, which allowed detailed investigations over > 6 months. The reactor packed with cattle bone Porcelite (CBP), a ceramic material containing some macronutrients and micronutrients, exhibited the highest performance. The critical load (i.e., load at which 95% removal occurred) was 29 g m(-3) hr(-1) at a gas retention time of 13.5 sec and 66 g m(-3) hr(-1) at a gas retention time of 27 sec. After the long-term experiment, the packing materials were taken from the reactors and examined. The reactors were divided into three sections, top, middle, and bottom, to determine whether spatial differentiation of biomass occurred. The assays included a double-staining technique to count total and live microorganisms and determination of moisture, protein, and dry weight contents. Microbial community analysis was also conducted by denaturing gradient gel electrophoresis. The results showed that most reactors had a significant fraction of inactive biomass. Comparatively, the CBP biofilter held significantly higher densities of active biomass, which may be the reason for the higher toluene removal performance. The analyses suggest that favorable material properties and the nutrients slowly released by the CBP provided better environmental conditions for the process culture.

  9. Oxidation of hydrogen sulfide in biogas using dissolved oxygen in the extreme acidic biofiltration operation.

    PubMed

    Charnnok, Boonya; Suksaroj, Thunwadee; Boonswang, Piyarat; Chaiprapat, Sumate

    2013-03-01

    This work aimed to investigate the interactive effects of empty bed retention time (EBRT), specific hydraulic loading rate (q) and initial pH (pHi) of the aerated recirculating liquid to remove H2S in extreme acidic biofiltration. Biogas containing H2S 6395±2309ppm and CH4 79.8±2.5% was fed to the biofilter as pH of the high dissolved oxygen recirculating liquid swung between pHi to 0.5. Response surface methodology was employed that gave the H2S removal relationship model with R(2) 0.882. The predicted highest H2S removal within the studied parameter ranges was 94.7% at EBRT 180.0s, q 4.0m(3)/m(2)/h and pHi 3.99. Results from separate runs at a random condition were not statistically different from the model prediction, signifying a validity of the model. Additionally, CH4 content in the exit biogas increased by 4.7±0.4%. Acidithiobacullus sp. predominance in the consortia of this extreme acidic condition was confirmed by DGGE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Removal of trace organic micropollutants by drinking water biological filters.

    PubMed

    Zearley, Thomas L; Summers, R Scott

    2012-09-04

    The long-term removal of 34 trace organic micropollutants (<1 μg L(-1)) was evaluated and modeled in drinking water biological filters with sand media from a full-scale plant. The micropollutants included pesticides, pharmaceuticals, and personal care products, some of which are endocrine disrupting chemicals, and represent a wide range of uses, chemical structures, adsorbabilities, and biodegradabilities. Micropollutant removal ranged from no measurable removal (<15%) for 13 compounds to removal below the detection limit and followed one of four trends over the one year study period: steady state removal throughout, increasing removal to steady state (acclimation), decreasing removal, or no removal (recalcitrant). Removals for all 19 nonrecalcitrant compounds followed first-order kinetics when at steady state with increased removal at longer empty bed contact times (EBCT). Rate constants were calculated, 0.02-0.37 min(-1), and used in a pseudo-first-order rate model with the EBCT to predict removals in laboratory biofilters at a different EBCT and influent conditions. Drinking water biofiltration has the potential to be an effective process for the control of many trace organic contaminants and a pseudo-first-order model can serve as an appropriate method for approximating performance.

  11. Biological removal of air loaded with a hydrogen sulfide and ammonia mixture.

    PubMed

    Chen, Ying-xu; Yin, Jun; Fang, Shi

    2004-01-01

    The nuisance impact of air pollutant emissions from wastewater pumping stations is a major issue of concern to China. Hydrogen sulfide and ammonia are commonly the primary odor and are important targets for removal. An alternative control technology, biofiltration, was studied. The aim of this study is to investigate the potential of unit systems packed with compost in terms of ammonia and hydrogen sulfide emissions treatment, and to establish optimal operating conditions for a full-scale conceptual design. The laboratory scale biofilter packed with compost was continuously supplied with hydrogen sulfide and ammonia gas mixtures. A volumetric load of less than 150 gH2S/(m3 x d) and 230 gNH3/(m3 x d) was applied for about fifteen weeks. Hydrogen sulfide and ammonia elimination occurred in the biofilter simultaneously. The removal efficiency, removal capacity and removal kinetics in the biofilter were studied. The hydrogen sulfide removal efficiency reached was very high above 99%, and ammonia removal efficiency was about 80%. Hydrogen sulfide was oxidized into sulphate. The ammonia oxidation products were nitrite and nitrate. Ammonia in the biofilter was mainly removed by adsorption onto the carrier material and by absorption into the water fraction of the carrier material. High percentages of hydrogen sulfide or ammonia were oxidized in the first section of the column. Through kinetics analysis, the presence of ammonia did not hinder the hydrogen sulfide removal. According to the relationship between pressure drop and gas velocity for the biofilter and Reynolds number, non-Darcy flow can be assumed to represent the flow in the medium.

  12. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems.

    PubMed

    Grover, Samantha P P; Cohan, Amanda; Chan, Hon Sen; Livesley, Stephen J; Beringer, Jason; Daly, Edoardo

    2013-11-01

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N2O, CH4, and CO2 were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N2O source and a sink for CH4 for most measurement events, with occasional large emissions of both N2O and CH4 under very wet conditions. Average N2O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 μg N2O-N m(-2) h(-1)) than from the other cell (13.7 μg N2O-N m(-2) h(-1)), with peaks up to 1100 μg N2O-N m(-2) h(-1). These N2O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH4 sink strength of the cell with the saturated zone (-3.8 μg CH4-C m(-2) h(-1)) was lower than the other cell (-18.3 μg CH4-C m(-2) h(-1)). Both cells of the biofilter appeared to take up CH4 at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH4 emissions following inflow events, which were not seen in other urban systems. CO2 fluxes increased with soil temperature in both cells, and in the cell without the saturated zone CO2 fluxes decreased as soil moisture increased. Other studies of CO2 fluxes from urban soils have found both similar and larger CO2 emissions than those measured in the biofilter. The results of this study suggest that the greenhouse gas footprint of stormwater treatment warrant consideration in the planning and implementation of engineered green infrastructures. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    USDA-ARS?s Scientific Manuscript database

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  14. Comparative analysis of nitrifying bacteria in full-scale oxidation ditch and aerated nitrification biofilter by using fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE).

    PubMed

    Mertoglu, Bulent; Calli, Baris; Girgin, Emine; Inanc, Bulent; Ozturk, Izzet

    2005-01-01

    In this study, nitrification performances and composition of nitrifying populations in a full-scale oxidation ditch and a high-rate submerged media nitrification biofilter were comparatively analyzed. In addition to different reactor configurations, effects of differing operational conditions on the nitrification efficiency and bacterial diversity were also explored and evaluated thoroughly. In microbial analysis of sludge samples fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques were used complementary to each other. The extended aeration oxidation ditch subjected to the study is operated as a nitrogen and phosphorus removal system consisting of anaerobic, anoxic, and aerobic zones. The high-rate submerged media aerated filter is operated as nitrification step following the conventional activated sludge unit and the nitrified wastewater is discharged to the sea without complete nitrogen removal. In situ hybridization results have indicated that Nitrosomonas-like ammonia oxidizing and Nitrospira-related nitrite oxidizing bacteria were intensively present in vigorous flocs in nitrification biofilter while carbonaceous bacteria belong to beta subclass of Proteobacteria were considerably dominant in oxidation ditch. Low quantities of nitrifiers in oxidation ditch were also confirmed by the dissimilarity in intensive bands between two systems obtained with DGGE analysis.

  15. Culture scale-up and immobilisation of a mixed methanotrophic consortium for methane remediation in pilot-scale bio-filters.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Saravanan, Nadarajan; Cirés, Samuel; Alvarez-Roa, Carlos; Razaghi, Ali; Chidambarampadmavathy, Karthigeyan; Velu, Chinnathambi; Subashchandrabose, Gobalakrishnan; Heimann, Kirsten

    2017-02-01

    Robust methanotrophic consortia for methane (CH 4 ) remediation and by-product development are presently not readily available for industrial use. In this study, a mixed methanotrophic consortium (MMC), sequentially enriched from a marine sediment, was assessed for CH 4 removal efficiency and potential biomass-generated by-product development. Suitable packing material for bio-filters to support MMC biofilm establishment and growth was also evaluated. The enriched MMC removed ∼7-13% CH 4 under a very high gas flow rate (2.5 L min -1 ; 20-25% CH 4 ) in continuous-stirred tank reactors (∼10 L working volume) and the biomass contained long-chain fatty acids (i.e. C 16 and C 18 ). Cultivation of the MMC on plastic bio-balls abated ∼95-97% CH 4 in pilot-scale non-sterile outdoor-operated bio-filters (0.1 L min -1 ; 1% CH 4 ). Contamination by cyanobacteria had beneficial effects on treating low-level CH 4 , by providing additional oxygen for methane oxidation by MMC, suggesting that the co-cultivation of MMC with cyanobacterial mats does not interfere with and may actually be beneficial for remediation of CH 4 and CO 2 at industrial scale.

  16. A novel anoxic-aerobic biofilter process using new composite packing material for the treatment of rural domestic wastewater.

    PubMed

    Pan, L T; Han, Y

    2016-01-01

    A pilot scale experiment was conducted to evaluate the characteristics of contaminants removal in a continuously two-stage biological process composed of an anoxic biofilter (AF) and an biological aerated filter (BAF). This novel process was developed by introducing new composite packing material (MZF) into bioreactors to treat rural domestic wastewater. A comparative study conducted by the same process with ceramsite as packing material under the same conditions showed that a MZF system with a Fe proportion in the packing material performed better in chemical oxygen demand (COD) removal (average 91.5%), ammonia (NH4(+)-N) removal (average 98.3%), total nitrogen (TN) removal (average 64.8%) and total phosphorus (TP) removal (average 90%). After treatment of the MZF system, the concentrations of COD, NH4(+)-N, TN and TP in effluent were 20.3 mg/L, 0.5 mg/L, 11.5 mg/L and 0.3 mg/L, respectively. The simultaneously high efficiencies of nitrification, denitrification and phosphorus removal were achieved by the coupling effects of biological and chemical processes in the MZF system. The results of this study showed that the application of MZF might be a favorable choice as packing material in biofilters for treatment of rural domestic wastewater.

  17. Application of two-stage biofilter system for the removal of odorous compounds.

    PubMed

    Jeong, Gwi-Taek; Park, Don-Hee; Lee, Gwang-Yeon; Cha, Jin-Myeong

    2006-01-01

    Biofiltration is a biological process which is considered to be one of the more successful examples of biotechnological applications to environmental engineering, and is most commonly used in the removal of odoriferous compounds. In this study, we have attempted to assess the efficiency with which both single and complex odoriferous compounds could be removed, using one- or two-stage biofiltration systems. The tested single odor gases, limonene, alpha-pinene, and iso-butyl alcohol, were separately evaluated in the biofilters. Both limonene and alpha-pinene were removed by 90% or more EC (elimination capacity), 364 g/m3/h and 321 g/m3/h, respectively, at an input concentration of 50 ppm and a retention time of 30 s. The iso-butyl alcohol was maintained with an effective removal yield of more than 90% (EC 375 g/m3/h) at an input concentration of 100 ppm. The complex gas removal scheme was applied with a 200 ppm inlet concentration of ethanol, 70 ppm of acetaldehyde, and 70 ppm of toluene with residence time of 45 s in a one- or two-stage biofiltration system. The removal yield of toluene was determined to be lower than that of the other gases in the one-stage biofilter. Otherwise, the complex gases were sufficiently eliminated by the two-stage biofiltration system.

  18. Which species? A decision-support tool to guide plant selection in stormwater biofilters

    NASA Astrophysics Data System (ADS)

    Payne, Emily G. I.; Pham, Tracey; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.; Fletcher, Tim D.

    2018-03-01

    Plant species are diverse in form, function and environmental response. This provides enormous potential for designing nature-based stormwater treatment technologies, such as biofiltration systems. However, species can vary dramatically in their pollutant-removal performance, particularly for nitrogen removal. Currently, there is a lack of information on how to efficiently select from the vast palette of species. This study aimed to identify plant traits beneficial to performance and create a decision-support tool to screen species for further testing. A laboratory experiment using 220 biofilter columns paired plant morphological characteristics with nitrogen removal and water loss for 20 Australian native species and two lawn grasses. Testing was undertaken during wet and dry conditions, for two biofilter designs (saturated zone and free-draining). An extensive root system and high total biomass were critical to the effective removal of total nitrogen (TN) and nitrate (NO3-), driven by high nitrogen assimilation. The same characteristics were key to performance under dry conditions, and were associated with high water use for Australian native plants; linking assimilation and transpiration. The decision-support tool uses these scientific relationships and readily-available information to identify the morphology, natural distribution and stress tolerances likely to be good predictors of plant nitrogen and water uptake.

  19. Effects of oxygen and water content on microbial distribution in the polyurethane foam cubes of a biofilter for SO2 removal.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin; Wang, Yanjie

    2018-01-01

    The performance of a biofilter for off-gas treatment relies on the activity of microorganisms and adequate O 2 and H 2 O. In present study, a microelectrode was applied to analyze O 2 in polyurethane foam cubes (PUFCs) packed in a biofilter for SO 2 removal. The O 2 distribution varied with the density and water-containing rate (WCR) of PUFCs. The O 2 concentration dropped sharply from 10.2 to 0.8mg/L from the surface to the center of a PUFC with 97.20% of WCR. The PUFCs with high WCR presented aerobic-anoxic-aerobic areas. Three-dimensional simulated images demonstrated that the structure of PUFCs with high WCR consisted of an aerobic "shell" and an anoxic "core", with high-density PUFCs featuring a larger anoxic area than low-density PUFCs. Moreover, the H 2 O distribution in the PUFC was uneven and affected the O 2 concentration. Whereas aerobic bacteria were observed in the PUFC surface, facultative anaerobic microorganisms were found at the PUFC core, where the O 2 concentration was relatively low. O 2 and H 2 O distributions differed in the PUFCs, and the distribution of microorganisms varied accordingly. Copyright © 2017. Published by Elsevier B.V.

  20. Back Propagation Neural Network Model for Predicting the Performance of Immobilized Cell Biofilters Handling Gas-Phase Hydrogen Sulphide and Ammonia

    PubMed Central

    Rene, Eldon R.; López, M. Estefanía; Kim, Jung Hoon; Park, Hung Suck

    2013-01-01

    Lab scale studies were conducted to evaluate the performance of two simultaneously operated immobilized cell biofilters (ICBs) for removing hydrogen sulphide (H2S) and ammonia (NH3) from gas phase. The removal efficiencies (REs) of the biofilter treating H2S varied from 50 to 100% at inlet loading rates (ILRs) varying up to 13 g H2S/m3 ·h, while the NH3 biofilter showed REs ranging from 60 to 100% at ILRs varying between 0.5 and 5.5 g NH3/m3 ·h. An application of the back propagation neural network (BPNN) to predict the performance parameter, namely, RE (%) using this experimental data is presented in this paper. The input parameters to the network were unit flow (per min) and inlet concentrations (ppmv), respectively. The accuracy of BPNN-based model predictions were evaluated by providing the trained network topology with a test dataset and also by calculating the regression coefficient (R 2) values. The results from this predictive modeling work showed that BPNNs were able to predict the RE of both the ICBs efficiently. PMID:24307999

  1. Biofilters for stormwater harvesting: understanding the treatment performance of key metals that pose a risk for water use.

    PubMed

    Feng, Wenjun; Hatt, Belinda E; McCarthy, David T; Fletcher, Tim D; Deletic, Ana

    2012-05-01

    A large-scale stormwater biofilter column study was conducted to evaluate the impact of design configurations and operating conditions on metal removal for stormwater harvesting and protection of aquatic ecosystems. The following factors were tested over 8 months of operation: vegetation selection (plant species), filter media type, filter media depth, inflow volume (loading rate), and inflow pollutant concentrations. Operational time was also integrated to evaluate treatment performance over time. Vegetation and filter type were found to be significant factors for treatment of metals. A larger filter media depth resulted in increased outflow concentrations of iron, aluminum, chromium, zinc, and lead, likely due to leaching and mobilization of metals within the media. Treatment of all metals except aluminum and iron was generally satisfactory with respect to drinking water quality standards, while all metals met standards for irrigation. However, it was shown that biofilters could be optimized for removal of iron to meet the required drinking water standards. Biofilters were generally shown to be resilient to variations in operating conditions and demonstrated satisfactory removal of metals for stormwater-harvesting purposes. © 2012 American Chemical Society

  2. Temperature and moisture effect on spore emission in the fungal biofiltration of hydrophobic VOCs.

    PubMed

    Vergara-Fernández, Alberto; Salgado-Ísmodes, Vanida; Pino, Miguel; Hernández, Sergio; Revah, Sergio

    2012-01-01

    The effect of temperature and moisture on the elimination capacity (EC), CO(2) production and spore emission by Fusarium solani was studied in biofilters packed with vermiculite and fed with n- pentane. Three temperatures (15, 25 and 35°C) were tested and the highest average EC (64 g m(-3) h(-1)) and lower emission of spores (2.0 × 10(3) CFU m(-3) air) were obtained at 25°C. The effect of moisture content of the packing material indicates that the highest EC (65 g m(-3) h(-1)) was obtained at 50 % moisture. However, lowest emission (1.3 × 10(3) CFU m(-3) air) was obtained at 80 % moisture. Furthermore, the results show that a slight decrease in spore emission was found with increasing moisture content. In all cases, the depletion of the nitrogen source in the biofilter induced the sporulation, a decay of the EC and increased spore emission.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT FOR THE REDUCTION OF NITROGEN IN DOMESTIC WASTEWATER FROM INDIVIDUAL RESIDENTIAL HOMES, WATERLOO BIOFILTER® MODEL 4-BEDROOM (NSF 02/03/WQPC-SWP)

    EPA Science Inventory

    Verification testing of the Waterloo Biofilter Systems (WBS), Inc. Waterloo Biofilter® Model 4-Bedroom system was conducted over a thirteen month period at the Massachusetts Alternative Septic System Test Center (MASSTC) located at Otis Air National Guard Base in Bourne, Mas...

  4. Biological treatment of H(2)S using pellet activated carbon as a carrier of microorganisms in a biofilter.

    PubMed

    Duan, Huiqi; Koe, Lawrence C C; Yan, Rong; Chen, Xiaoge

    2006-08-01

    Biological treatment is an emerging technology for treating off-gases from wastewater treatment plants. The most commonly reported odourous compound in off-gases is hydrogen sulfide (H(2)S), which has a very low odor threshold. This study aims to evaluate the feasibility of using a biological activated carbon as a novel packing material, to achieve a performance-enhanced biofiltration processes in treating H(2)S through an optimum balance and combination of the adsorption capacity with the biodegradation of H(2)S by the bacteria immobilized on the material. The biofilm was mostly developed through culturing the bacteria in the presence of carbon pellets in mineral media. Scanning electron microscopy (SEM) was used to identify the biofilm development on carbon surface. Two identical laboratory scale biofilters, one was operated with biological activated carbon (BAC) and another with virgin carbon without bacteria immobilization. Various concentrations of H(2)S (up to 125 ppmv) were used to determine the optimum column performance. A rapid startup (a few days) was observed for H(2)S removal in the biofilter. At a volumetric loading of 1600 m(3)m(-3)h(-1) (at 87 ppmv H(2)S inlet concentration), elimination capacity of the BAC (181 gH(2)Sm(-3)h(-1)) at removal efficiency (RE) of 94% was achieved. If the inlet concentration was kept at below 30 ppmv, high H(2)S removal (over 99%) was achieved at a gas retention time (GRT) as low as 2s, a value, which is shorter than most previously reported for biofilter operations. The bacteria population in the acidic biofilter demonstrated capacity for removal of H(2)S in a broad pH range (pH 1-7). There are experimental evidences showing that the spent BAC could be re-used as packing material in a biofilter based on BAC. Overall, the results indicated that an unprecedented performance could be achieved by using BAC as the supporting media for H(2)S biofiltration.

  5. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    PubMed

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4) generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Correlation of Biological Activity and Reactor Performance in Biofiltration of Toluene with the Fungus Paecilomyces variotii CBS115145

    PubMed Central

    García-Peña, Inés; Hernández, Sergio; Auria, Richard; Revah, Sergio

    2005-01-01

    A biofiltration system inoculated with the mold Paecilomyces variotii CBS115145 showed a toluene elimination capacity (EC) of around 250 g/m3 of biofilter/h, which was higher than the values usually reported for bacteria. P. variotii assimilated m- and p-cresols but not the o isomer. Initial toluene hydroxylation occurred both on the methyl group and through the p-cresol pathway. These results were corroborated by detecting benzyl alcohol, benzaldehyde, and p-cresol as volatile intermediates. In liquid cultures with toluene as a substrate, the activity of toluene oxygenase (TO) was 5.6 nmol of O2/min/mg of biomass, and that of benzyl alcohol dehydrogenase was 16.2 nmol of NADH/min/mg of protein. Toluene biodegradation determined from the TO activity in the biofilter depended on the biomass distribution and the substrate concentration. The specific enzymatic activity decreased from 6.3 to 1.9 nmol of O2/min/mg of biomass along the reactor. Good agreement was found between the EC calculated from the TO activity and the EC measured on the biofilter. The results were confirmed by short-time biofiltration experiments. Average EC measured in different biofiltration experiments and EC calculated from the TO activity showed a linear relation, suggesting that in the biofilters, EC was limited by biological reaction. As the enzymatic activities of P. variotii were similar to those reported for bacteria, the high performance of the fungal biofilters can possibly be explained by the increased transfer of the hydrophobic compounds, including oxygen, from the gas phase to the mycelia, overcoming the transfer problems associated with the flat bacterial biofilms. PMID:16085815

  7. Correlation of biological activity and reactor performance in biofiltration of toluene with the fungus Paecilomyces variotii CBS115145.

    PubMed

    García-Peña, Inés; Hernández, Sergio; Auria, Richard; Revah, Sergio

    2005-08-01

    A biofiltration system inoculated with the mold Paecilomyces variotii CBS115145 showed a toluene elimination capacity (EC) of around 250 g/m3 of biofilter/h, which was higher than the values usually reported for bacteria. P. variotii assimilated m- and p-cresols but not the o isomer. Initial toluene hydroxylation occurred both on the methyl group and through the p-cresol pathway. These results were corroborated by detecting benzyl alcohol, benzaldehyde, and p-cresol as volatile intermediates. In liquid cultures with toluene as a substrate, the activity of toluene oxygenase (TO) was 5.6 nmol of O2/min/mg of biomass, and that of benzyl alcohol dehydrogenase was 16.2 nmol of NADH/min/mg of protein. Toluene biodegradation determined from the TO activity in the biofilter depended on the biomass distribution and the substrate concentration. The specific enzymatic activity decreased from 6.3 to 1.9 nmol of O2/min/mg of biomass along the reactor. Good agreement was found between the EC calculated from the TO activity and the EC measured on the biofilter. The results were confirmed by short-time biofiltration experiments. Average EC measured in different biofiltration experiments and EC calculated from the TO activity showed a linear relation, suggesting that in the biofilters, EC was limited by biological reaction. As the enzymatic activities of P. variotii were similar to those reported for bacteria, the high performance of the fungal biofilters can possibly be explained by the increased transfer of the hydrophobic compounds, including oxygen, from the gas phase to the mycelia, overcoming the transfer problems associated with the flat bacterial biofilms.

  8. Active green wall plant health tolerance to diesel smoke exposure.

    PubMed

    Paull, Naomi J; Irga, Peter J; Torpy, Fraser R

    2018-05-10

    Poor air quality is an emerging world-wide problem, with most urban air pollutants arising from vehicular emissions. As such, localized high pollution environments, such as traffic tunnels pose a significant health risk. Phytoremediation, including the use of active (ventilated) green walls or botanical biofilters, is gaining recognition as a potentially effective method for air pollution control. Research to date has tested the capacity of these systems to remove low levels of pollutants from indoor environments. If botanical biofilters are to be used in highly polluted environments, the plants used in these systems must be resilient, however, this idea has received minimal research. Thus, testing was conducted to assess the hardiness of the vegetated component of a botanical biofilter to simulated street level air pollutant exposure. A range of morphological, physiological, and biochemical tests were conducted on 8 common green wall plant species prior to and post 5-week exposure to highly concentrated diesel fuel combustion effluent; as a pilot study to investigate viability in in situ conditions. The results indicated that species within the fig family were the most tolerant species of those assessed. It is likely that species within the fig family can withstand enhanced air pollutant conditions, potentially a result of its leaf morphology and physiology. Other species tested were all moderately tolerant to the pollution treatment. We conclude that most common green wall plant species have the capacity to withstand high pollutant environments, however, extended experimentation is needed to rule out potential long term effects along with potential decreases in filter efficiency from accumulative effects on the substrate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  10. Characterization of the microbial community structure and nitrosamine-reducing isolates in drinking water biofilters.

    PubMed

    Wang, Wanfeng; Guo, Yanling; Yang, Qingxiang; Huang, Yao; Zhu, Chunyou; Fan, Jing; Pan, Feng

    2015-07-15

    Two biofilters were constructed using biological activated carbon (BAC) and nitrosamine-containing water from two drinking water treatment plants. The microbiome of each biofilter was characterized by 454 high-throughput pyrosequencing, and one nitrosamine-reducing bacterium was isolated. The results showed that nitrosamines changed the relative abundance at both the phylum and class levels, and the new genera were observed in the microbial communities of the two BAC filters after cultivation. As such, the genus Rhodococcus, which includes many nitrosamine-reducing strains reported in previous studies, was only detected in the BAC2 filter after cultivation. These findings indicate that nitrosamines can significantly affect the genus level in the microbial communities. Furthermore, the isolated bacterial culture Rhodococcus cercidiphylli A41 AS-1 exhibited the ability to reduce five nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodi-n-propylamine, N-nitrosopyrrolidine, and N-nitrosodi-n-butylamine) with removal ratios that ranged from 38.1% to 85.4%. The isolate exhibited a better biodegradation ability with nitrosamine as the carbon source when compared with nitrosamine as the nitrogen source. This study increases our understanding of the microbial community in drinking water biofilters with trace quantities of nitrosamines, and provides information on the metabolism of nitrosamine-reducing bacteria. Copyright © 2015. Published by Elsevier B.V.

  11. Onsite wastewater nitrogen reduction with expanded media and elemental sulfur biofiltration.

    PubMed

    Smith, D P

    2012-01-01

    A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.

  12. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates.

    PubMed

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-03-04

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s -1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus ( B. cereus , B. subtilis ), Pseudomonas ( P. aeruginosa , P. putida ), Stapylococcus ( S. aureus ) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 10 7 to 3.7 × 10 11 CFU g -1 .

  13. Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water.

    PubMed

    Persson, Frank; Långmark, Jonas; Heinicke, Gerald; Hedberg, Torsten; Tobiason, John; Stenström, Thor-Axel; Hermansson, Malte

    2005-10-01

    Biofiltration of surface water was examined using granular activated carbon (GAC) and expanded clay (EC). Particle removal was 60-90%, measured by flow cytometry, which enabled discrimination between total- and autofluorescent particles (microalgae) in size ranges of 0.4-1 and 1-15 microm, and measured by on-line particle counting. Total particles were removed at a higher degree than autofluorescent particles. The biofilters were also challenged with 1 microm fluorescent microspheres with hydrophobic and hydrophilic surface characteristics and bacteriophages (Salmonella typhimurium 28B). Added microspheres were removed at 97-99% (hydrophobic) and 85-89% (hydrophilic) after 5 hydraulic residence times (HRT) and microspheres retained in the biofilter media were slowly detaching into the filtrate for a long time after the addition. Removal of bacteriophages (5 HRT) was considerably lower at 40-59%, and no long-lasting detachment was observed. A comparison of experimental data with theoretical predictions for removal of particles in clean granular media filters revealed a similar or higher removal of particles around 1 microm in size than predicted, while bacteriophages were removed at a similar or lesser extent than predicted. The results highlight the selectivity and dynamic behaviour of the particle removal processes and have implications for operation and microbial risk assessment of a treatment train with biofilters as pre-treatment.

  14. Biological exhaust air treatment systems as a potential microbial risk for farm animals assessed with a computer simulation.

    PubMed

    Seedorf, Jens

    2013-09-01

    Livestock operations are under increasing pressure to fulfil minimum environmental requirements and avoid polluting the atmosphere. In regions with high farm animal densities, new farm buildings receive building permission only when biological exhaust air treatment systems (BEATS) are in place, such as biofilters. However, it is currently unknown whether BEATS can harbour pathogens such as zoonotic agents, which are potentially emitted via the purified gas. Because BEATS are located very close to the livestock building, it is assumed that BEATS-related microorganisms are aerially transported to farm animals via the inlet system of the ventilation system. To support this hypothesis, a computer simulation was applied to calculate the wind field around a facility consisting of a virtual livestock house and an adjacent biofilter. Under the chosen wind conditions (speed and direction), it can be shown that turbulences and eddies may occur in the near surrounding of a livestock building with an adjacent biofilter. Consequently, this might cause the entry of the released biofilter's purified gas into the barn, including possible microorganisms within this purified gas. If field investigations verify the results of the simulations, counter-measures must be taken to ensure biosecurity on farms with BEATS. © 2013 Society of Chemical Industry.

  15. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters.

    PubMed

    Yoon, Sukhwan; Carey, Jeffrey N; Semrau, Jeremy D

    2009-07-01

    Methane is a potent greenhouse gas with a global warming potential ~23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500-6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98-35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO(2) removal using these systems is $90-$910 ($2,070-$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO(2) credits is increased, can also be economically attractive.

  16. Biofiltration of solvent vapors from air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Young-sook.

    1993-01-01

    For various industrial solvent vapors, biofiltration promises to offer a cost-effective emission control technology. Exploiting the full potential of this technology will help attain the goals of the Clean Air Act Amendments of 1990. Concentrating on large volumes of volatile industrial solvents, stable multicomponent microbial enrichments capable of growing a mineral medium with solvent vapors as their only source of carbon and energy were obtained from soil and sewage sludge. These consortia were immobilized on an optimized porous solid support (ground peat moss and perlite). The biofilter material was packed in glass columns connected to an array of pumps andmore » flow meters that allowed the independent variation of superficial velocity and solvent vapor concentrations. In various experiments, single solvents, such as methanol, butanol, acetonitrile, hexane and nitrobenzene, and solvent mixtures, such as benzene-toluene-xylene (BTX) and chlorobenzene-o-dichlorobenzene (CB/DCB) were biofiltered with rates ranging from 15 to334 g solvent removed per m[sup 3] filter volume /h. Pressure drops were low to moderate (0-10 mmHg/m) and with periodic replacement of moisture, the biofiltration activity could be maintained for a period of several months. The experimental data on methanol biofiltration were subjected to mathematical analysis and modeling by the group of Dr. Baltzis at NJIT for a better understanding and a possible scale up of solvent vapor biofilters. In the case of chlorobenzenes and nitrobenzene, the biofilter columns had to be operated with water recirculation in a trickling filter mode. To prevent inactivation of the trickling filter by acidity during CB/DCB removal, pH control was necessary, and the removal rate of CB/DCB was strongly influenced by the flow rate of the recyling water. Nitrobenzene removal in a trickling filter did not require pH control, since the nitro group was reduced and volatilized as ammonia.« less

  17. US researchers study effectiveness of Fluidized Sand Biofilters

    USDA-ARS?s Scientific Manuscript database

    Intensive aquaculture facilities generally produce two separate waste flows: 1) a high volume dilute discharge from culture tanks or pump sumps, and 2) a moderately small and solids-concentrated discharge typically backwashed from mechanical filtration units. The high volume dilute flow can appear p...

  18. Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology.

    PubMed

    Leles, Daniela M A; Lemos, Diego A; Filho, Ubirajara C; Romanielo, Lucienne L; de Resende, Miriam M; Cardoso, Vicelma L

    2012-06-01

    In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l(-1), and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l(-1) of sodium acetate, >0.8 g l(-1) of ammonium chloride and 60 to 100 mg l(-1) of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l(-1) of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.

  19. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although themore » contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.« less

  20. Performance and bacterial population composition of an n-hexane degrading biofilter working under fluctuating conditions.

    PubMed

    Valenzuela-Reyes, Edgardo; Casas-Flores, Sergio; Isordia-Jasso, Isabel; Arriaga, Sonia

    2014-09-01

    In this work, several conditions of pH and inlet load (IL) were applied to a scale laboratory biofilter treating n-hexane vapors during 143 days. During the first 79 days of operation (period 1, P1), the system was fed with neutral pH mineral medium (MM) and the IL was progressively decreased from 177 to 16 g m(-3) h(-1). A maximum elimination capacity (EC) of 30 g m(-3) h(-1) was obtained at an IL of 176.9 ± 9.8 g m(-3) h(-1). During the following 64 days (period 2, P2), acidic conditions were induced by feeding the biofilter with acidic buffer solution and pH 4 MM in order to evaluate the effect of bacterial community changes on EC. Within the acidic period, a maximum EC of 54 g m(-3) h(-1) (IL 132.3 ± 13 g m(-3) h(-1)) was achieved. Sequence analysis of 16S rDNA genes amplified from the consortium revealed the presence of Sphingobacteria, Actinobacteria, and α-, β- and γ-Proteobacteria. An Actinobacteria of the Mycobacterium genus had presence throughout the whole experiment of biofiltration showing resistance to fluctuating pH and IL conditions. Batch tests confirm the bacterial predominance and a negligible contribution of fungi in the degradation of n-hexane.

  1. Environmental factors influencing landfill gas biofiltration: Lab scale study on methanotrophic bacteria growth.

    PubMed

    Amodeo, Corrado; Sofo, Adriano; Tito, Maria Teresa; Scopa, Antonio; Masi, Salvatore; Pascale, Raffaella; Mancini, Ignazio M; Caniani, Donatella

    2018-03-29

    The post-management of landfills represents an important challenge for landfill gas treatment. Traditional systems (energy recovery, flares, etc.) present technical problems in treating flow with low methane (CH 4 ) concentrations. The objective of this study was to isolate methanotrophic bacteria from a field-scale biofilter in order to study the bacteria in laboratories and evaluate the environmental factors that mostly influence Microbial Aerobic Methane Oxidation (MAMO). The soil considered was sampled from the biofilter located in the landfill of Venosa (Basilicata Region, Italy) and it was mainly composed of wood chips and compost. The results showed that methanotrophic microorganisms are mainly characterized by a slow growth and a significant sensitivity to CH 4 levels. Temperature and nitrogen (N) also have a very important role on their development. On the basis of the results, biofilters for biological CH 4 oxidation can be considered a viable alternative to mitigate CH 4 emissions from landfills.

  2. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    PubMed

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Periodic bacterial control with peracetic acid in a recirculating aquaculture system and its long-term beneficial effect on fish health

    USDA-ARS?s Scientific Manuscript database

    Peracetic acid (PAA) is being introduced to aquaculture as a sustainable disinfectant. It is suitable for recirculating aquaculture systems (RAS) because of the low effective concentrations and its minimal impact on biofilter function. The application of PAA in a RAS has a combined impact on fish an...

  4. Removal of chemical oxygen demand, nitrogen, and heavy metals using a sequenced anaerobic-aerobic treatment of landfill leachates at 10-30 degrees C.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu

    2003-01-01

    As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  5. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    There is a need to develop practical methods to reduce nitrate -nitrogen loads from recirculating aqua-culture systems to facilitate increased food protein production simultaneously with attainment of water quality goals. The most common wastewater denitrification treatment systems utilize methanol-...

  6. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    PubMed

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  7. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    PubMed Central

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347

  8. Performance of a biofilter system with agave fiber filter media for municipal wastewater treatment.

    PubMed

    Vigueras-Cortés, Juan Manuel; Villanueva-Fierro, Ignacio; Garzón-Zúñiga, Marco Antonio; de Jesús Návar-Cháidez, José; Chaires-Hernández, Isaías; Hernández-Rodríguez, César

    2013-01-01

    Agave plants grow in semi-arid regions and are used for mescal production. However, agave fiber by-products are considered waste materials. Thus, we tested agave fiber as a filter media and biofilm material carrier for removing pollutants from municipal wastewater. Three laboratory-scale biofiltration reactors were used in two trials with five hydraulic loading rates (HLRs = 0.27, 0.54, 0.80, 1.07 and 1.34 m(3) m(-2) d(-1)). One series was conducted using mechanical aeration (0.62 m(3) m(-2) h(-1)). To prevent compaction, decreasing pressure and clogging of the filter media, 4, 8 and 12 internal divisions were evaluated in the biofilter column. After 17 months of continuous operation at an HLR of 0.80 m(3) m(-2) d(-1), the removal efficiencies of the aerated biofilters were 92.0% biochemical oxygen demand, 79.7% chemical oxygen demand, 98.0% helminth eggs, 99.9% fecal coliforms and 91.9% total suspended solids. Statistical analysis showed that the chosen operational parameters significantly influenced the removal efficiencies of the biofilters. The effluent quality obtained under these conditions complied with the Mexican and US EPA standards for agricultural irrigation and green spaces, except for coliforms, which is why the effluents must be disinfected. Thus, agave fiber is a favorable choice for use as a packing material in biofiltration processes.

  9. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fluorescence spectroscopy for monitoring reduction of natural organic matter and halogenated furanone precursors by biofiltration.

    PubMed

    Peleato, Nicolás M; McKie, Michael; Taylor-Edmonds, Lizbeth; Andrews, Susan A; Legge, Raymond L; Andrews, Robert C

    2016-06-01

    The application of fluorescence spectroscopy to monitor natural organic matter (NOM) reduction as a function of biofiltration performance was investigated. This study was conducted at pilot-scale where a conventional media filter was compared to six biofilters employing varying enhancement strategies. Overall reductions of NOM were identified by measuring dissolved organic carbon (DOC), and UV absorbance at 254 nm, as well as characterization of organic sub-fractions by liquid chromatography-organic carbon detection (LC-OCD) and parallel factors analysis (PARAFAC) of fluorescence excitation-emission matrices (FEEM). The biofilter using granular activated carbon media, with exhausted absorptive capacity, was found to provide the highest removal of all identified PARAFAC components. A microbial or processed humic-like component was found to be most amenable to biodegradation by biofilters and removal by conventional treatment. One refractory humic-like component, detectable only by FEEM-PARAFAC, was not well removed by biofiltration or conventional treatment. All biofilters removed protein-like material to a high degree relative to conventional treatment. The formation potential of two halogenated furanones, 3-chloro-4(dichloromethyl)-2(5H)-furanone (MX) and mucochloric acid (MCA), as well as overall treated water genotoxicity are also reported. Using the organic characterization results possible halogenated furanone and genotoxicity precursors are identified. Comparison of FEEM-PARAFAC and LC-OCD results revealed polysaccharides as potential MX/MCA precursors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Assessment of Changes in Microbial Community Structure during Operation of an Ammonia Biofilter with Molecular Tools

    PubMed Central

    Sakano, Y.; Kerkhof, L.

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria. PMID:9835577

  12. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools

    NASA Technical Reports Server (NTRS)

    Sakano, Y.; Kerkhof, L.; Janes, H. W. (Principal Investigator)

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria.

  13. Effects of gas flow rate, inlet concentration and temperature on the biofiltration of toluene vapors.

    PubMed

    Vergara-Fernández, Alberto; Lara Molina, Lucia; Pulido, Nelson Alarcón; Aroca, Germán

    2007-07-01

    In this work the variation in the elimination capacity of a biofilter as a function of the gas flow and toluene concentration was studied. A bioreactor 0.75 m high x 14.5 cm diameter was used, divided into three equal stages, using compost to support the microorganisms, and sea shells to control the pH. The biofiltration of toluene was evaluated for flows between 0.12 and 0.73 m(3)h(-1) in a concentration range of 1-3.2 gm(-3). It was observed that on increasing the toluene inlet load by 90% (from 37 to 70 gm(3)h(-1)), the conversion by the biofilter varied by only 5% (from 98% to 93%). The biofiltration system used achieved elimination capacities of up to 82 gm(-3)h(-1) for a toluene load of 100 gm(-3)h(-1).

  14. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    PubMed

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biological Cr(VI) removal using bio-filters and constructed wetlands.

    PubMed

    Michailides, Michail K; Sultana, Mar-Yam; Tekerlekopoulou, Athanasia G; Akratos, Christos S; Vayenas, Dimitrios V

    2013-01-01

    The bioreduction of hexavalent chromium from aqueous solution was carried out using suspended growth and packed-bed reactors under a draw-fill operating mode, and horizontal subsurface constructed wetlands. Reactors were inoculated with industrial sludge from the Hellenic Aerospace Industry using sugar as substrate. In the suspended growth reactors, the maximum Cr(VI) reduction rate (about 2 mg/L h) was achieved for an initial concentration of 12.85 mg/L, while in the attached growth reactors, a similar reduction rate was achieved even with high initial concentrations (109 mg/L), thus confirming the advantage of these systems. Two horizontal subsurface constructed wetlands (CWs) pilot-scale units were also built and operated. The units contained fine gravel. One unit was planted with common reeds and one was kept unplanted. The mean influent concentrations of Cr(VI) were 5.61 and 5.47 mg/L for the planted and unplanted units, respectively. The performance of the planted CW units was very effective as mean Cr(VI) removal efficiency was 85% and efficiency maximum reached 100%. On the contrary, the unplanted CW achieved very low Cr(VI) removal with a mean value of 26%. Both attached growth reactors and CWs proved efficient and viable means for Cr(VI) reduction.

  16. Methane oxidation and formation of EPS in compost: effect of oxygen concentration.

    PubMed

    Wilshusen, J H; Hettiaratchi, J P A; De Visscher, A; Saint-Fort, R

    2004-05-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters.

  17. The Potential Role of Urban Forests in Removing Nutrients from Stormwater.

    PubMed

    Denman, E C; May, P B; Moore, G M

    2016-01-01

    Biofiltration systems can be used to improve the quality of stormwater by treating runoff using plants grown in a moderately permeable soil. Most biofilters use herbaceous species, but in highly urbanized locations, such as streets, trees may be a more suitable vegetation. Biofilters that use urban woody vegetation are less studied. This experiment investigated the use of four street tree species [ Schauer, (R. Br.) Peter G. Wilson & J.T. Waterh., (Sm.) Colvill ex Sweet, and L.] and an unplanted control in model biofilters. All four tree species are used in urban landscapes in southern Australia and were chosen to investigate potential species differences in biofiltration systems. The trees were grown in mesocosms as a randomized block factorial design in soils with three saturated hydraulic conductivity rates (4, 95, and 170 mm h). The trees were regularly flooded with mains water (tap water) or artificial stormwater. Tree growth and nutrient removal performance of the systems were investigated over 13 mo. All four species grew well in all three soils, including one chosen for its low, and potentially growth-limiting, drainage rate. Tree growth increased significantly, except for , when flooded with stormwater. Unplanted controls were a source of nutrients; however, the presence of trees reduced oxidized nitrogen and filterable reactive phosphorus concentrations in leachate. There was little effect of species on the removal of nutrients from stormwater. Trees have the potential to be effective elements in urban biofiltration systems, but further field-level evaluation of these systems is required to fully assess this potential. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Temporal and longitudinal biofilm matrix analysis of a biofilter treating ethyl acetate during ozonation.

    PubMed

    Covarrubias-García, Itzel; Aizpuru, Aitor; Arriaga, Sonia

    2018-05-04

    The present paper focuses on the biofilm composition and pattern of biomass in gas biofiltration of ethyl acetate working under continuous addition of ozone (O 3 ). Two biofilters were operated for 230 days, one under continuous addition of O 3 (90 ppb v ) and another one without. Throughout the operation time, the extracellular polymeric substances (EPS), the main components in the extracellular matrix (ECM), were extracted from the biofilm and characterized qualitatively using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and quantitatively by analyzing its main constituents: carbohydrates, proteins, and glucuronic acid. To date, EPS characterization has been attempted mainly with biofilm aggregates related to water treatment, not air biofiltration. The results of this study may be helpful and provide more information about EPS structure when O 3 was added. O 3 addition only affected the amount of EPS and not its composition. The greater effect was observed on carbohydrate content since it is the main component in EPS. The EPS/biomass ratio measured was twice lower with O 3 addition. Higher removal efficiency (RE) and mineralization rates were obtained with the biofilter subjected to O 3 addition, and a smaller volume of a reactor would be necessary to treat all contaminant under this condition. EPS content is only quantitatively reduced by O 3 addition, and at the low O 3 concentration applied , no structural alteration is noted regarding the composition of the EPS.

  19. Enhanced nitrogen removal in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant.

    PubMed

    Jobbágy, A; Tardy, G M; Literáthy, B

    2004-01-01

    In 1999 the existing activated sludge unit of the Southpest Wastewater Treatment Plant was supplemented by a two-stage biofilter system aiming for nitrification and post-denitrification. In this arrangement excess biomass of the filters is wasted through the activated sludge unit, facilitating backseeding, and recirculation of the nitrate-rich effluent of the N-filter serves for decreasing the methanol demand of the DN-filter and for saving aeration energy at the same time. The paper reports on the development of an ASM1-based mathematical model that proved to be adequate for describing the interactions in the combined system and was used to compare the efficiency of different treatment options. Full-scale results verified that backseeding may considerably improve performance. However, nitrification ability of the activated sludge unit depends on the treatment temperature and, if unexpected, can be limited by insufficient oxygen supply. The upgrading possibilities outlined may serve as a new perspective for implementation of combined activated sludge-biofilter systems.

  20. Characterization of bacterial isolates from rubber dump site and their use in biodegradation of isoprene in batch and continuous bioreactors.

    PubMed

    Srivastva, Navnita; Shukla, Awadhesh Kumar; Singh, Ram Sharan; Upadhyay, Siddh Nath; Dubey, Suresh Kumar

    2015-01-01

    Bacterial isolates from contaminated soil of a waste rubber dumping site were isolated and characterized using biochemical and molecular approaches. Isoprene degradation kinetics in batch mode (isoprene concentration: 100-1000 ppm) revealed the degradation efficiency of isolates as: Pseudomonas sp. (83%)>Alcaligenes sp. (70%)>Klebsiella sp. (68.5%). The most efficient isolate Pseudomonas sp. was finally inoculated in a specifically designed bioreactor system comprising a bioscrubber and a biofilter packed with polyurethane foam connected in series. The bioscrubber and biofilter units when operated in a series showed more than 90% removal efficiency up to the inlet loading rate (IL) of 371.1g/m(3)/h. Maximum elimination capacity (EC) of biofilter was found to be an order of magnitude greater than that for bioscrubber. Oxidative cleavage of the double bond of isoprene has been revealed through IR spectra of the leachate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    PubMed

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Degradation kinetics and metabolites in continuous biodegradation of isoprene.

    PubMed

    Srivastva, Navnita; Singh, Ram S; Upadhyay, Siddh N; Dubey, Suresh K

    2016-04-01

    The kinetic parameters of isoprene biodegradation were studied in a bioreactor, comprising of bioscrubber and polyurethane foam packed biofilter in series and inoculated with Pseudomonas sp., using a Michaelis-Menten type model. The maximum elimination capacity, ECmax; substrate constant, Ks and ECmax/Ks values for bioscrubber were found to be 666.7 g m(-3) h(-1), 9.86 g m(-3) and 67.56 h(-1), respectively while those for biofilter were 3333 g m(-3) h(-1), 13.96 g m(-3) and 238.7 h(-1), respectively. The biofilter section exhibited better degradation efficiency compared to the bioscrubber unit. Around 62-75% of the feed isoprene got converted to carbon dioxide, indicating the efficient capability of bacteria to mineralize isoprene. The FTIR and GC-MS analyses of degradation products indicated oxidative cleavage of unsaturated bond of isoprene. These results were used for proposing a plausible degradation pathway for isoprene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Continuous removal of ore floatation reagents by an anaerobic-aerobic biological filter.

    PubMed

    Cheng, Huang; Lin, Hai; Huo, Hanxin; Dong, Yingbo; Xue, Qiuyu; Cao, Lixia

    2012-06-01

    A laboratory scale up-flow anaerobic-aerobic biological filter was constructed to treat synthetic ore floatation wastewater. Volcanic stone was applied as packing media for aerobic section. Biodegradation of some common ore floatation reagents as potassium ethyl xanthate dithiophosphate and turpentine were evaluated. An average COD reduction rate of 88.7% for potassium ethyl xanthate by the biofilter was obtained at HRT of 6h, air water flow ratio of 10:1 and pH of 7. Its effluent COD concentration varied between 17 and 43 mg/L. Xanthates and dithiophosphate were found to be easily biodegradable, whereas turpentine was not favorable for microorganism to digest. The performance of the reactor fluctuated slightly within the temperature range of 10-35 °C. Operation of the biofilter was sensitive to influent pH values. A neutral to weak basic influent was preferred for biofilter to maintain an efficient operation. Anaerobic treatment was able to enhance the biodegradability of influents significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The engineered biofiltration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisotti, D.A.

    1997-12-31

    For years, biofiltration has meant compost, peat, bark, leave mulch, or any combination of these as the substrate to house microorganisms. This has lead to a number of operational and maintenance problems, including: compaction, channeling, anaerobic zones, dry spots, pressure drop, and media degradation. All of these cause reduced efficiency and increased maintenance and increased operational costs. For these reasons inert media, including plastic beads and low grade carbons have been added to the media for buffering capacity, resists compaction, channeling and to increase efficiency. This has led to search for a more reliable and sturdy media. The media themore » authors chose was activated carbon. Pelletized activated carbon was the ideal candidate due to its uniform size and shape, its inherent hardness, adsorptive capacity, and its ability to withstand microbial degradation. The pressure drop of the system will remain constant after microbial growth occurs, due to the ability to wash the media bed. Carbon allows for the removal of excess biomass which can not be performed on organic media, this is one of the problems leading to media degradation, too many microbes and not enough food (i.e. VOCs). Carbon also allows for spike or increased loads to be treated without performance suffering. Carbon also has tremendous surface area, which allows more microorganisms to be present in a smaller volume, therefore reducing the overall size of the biofilter vessel. This paper will discuss further the findings of a pilot test that was performed using activated carbon as the media for microbial growth. This paper will show the performance of the carbon based biofilter system with respect to pressure drop, residence time, removal efficiency, microbial populations, temperature, moisture, and water requirements. The pilot unit is 350 acfm and operated for 4 months on an air stream in which the contaminant concentrations varied greatly every few minutes.« less

  5. Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether.

    PubMed

    Shim, Eun-Hwa; Kim, Jaisoo; Cho, Kyung-Suk; Ryu, Hee Wook

    2006-05-01

    This study evaluated the individual and combined removal capacities of benzene, toluene, and xylene (B, T, and X) in the presence and absence of methyl tert-butyl ether (MTBE) in a polyurethane biofilter inoculated with a BTX-degrading microbial consortium, and further examined their interactive effects in various mixtures. In addition, Polymerase chain reaction-denaturing gradient gel electrophoresis and phylogenetic analysis of 16S rRNA gene sequences were used to compare the microbial community structures found in biofilters exposed to the various gases and gas mixtures. The maximum individual elimination capacities (MECs) of B, T, and X were 200, 238, and 400 g m(-3) h(-1), respectively. There was no significant elimination of MTBE alone. Addition of MTBE decreased the MECs of B,T, and X to 75, 100, and 300 g m(-3) h(-1), respectively, indicating that benzene was most strongly inhibited by MTBE. When the three gases were mixed (B + T + X), the removal capacities of individual B, T, and X were 50, 90, and 200 g m(-3) h(-1), respectively. These capacities decreased to 40, 50, and 100 g m(-3) h(-1) when MTBE was added to the mix. The MEC of the three-gas mixture (B + T + X) was 340 g m(-3) h(-1), and that of the four-gas mixture was 200 g m(-3) h(-1). Although MTBE alone was not degraded by the biofilter, it could be co-metabolically degraded in the presence of toluene, benzene, or xylene with the MECs of 34, 23, and 14 g m(-3) h(-1), respectively. The microbial community structure analysis revealed that two large groups could be distinguished based on the presence or absence of MTBE, and many of the dominant bacteria in the consortia were closely related to bacteria isolated from aromatic hydrocarbon-contaminated sites and/ or oil wastewaters. These findings provide important new insights into biofiltration and may be used to improve the rational design of biofilters for remediation of petroleum gas-contaminated airstreams according to composition types of mixed gases.

  6. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.

    PubMed

    Payne, Emily G I; Fletcher, Tim D; Russell, Douglas G; Grace, Michael R; Cavagnaro, Timothy R; Evrard, Victor; Deletic, Ana; Hatt, Belinda E; Cook, Perran L M

    2014-01-01

    The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(-) (nitrate) over the course of one inflow event. The immediate partitioning of 15NO3(-) between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(-) under typical stormwater concentrations (∼1-2 mg N/L), contributing an average 89-99% of 15NO3(-) processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-), and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater biofilters. The findings raise important questions about nitrogen release upon plant senescence, seasonally and in the long term, which have implications on the management and design of biofiltration systems.

  7. Investigation of ozone and peroxone impacts on natural organic matter character and biofiltration performance using fluorescence spectroscopy.

    PubMed

    Peleato, Nicolás M; Sidhu, Balsher Singh; Legge, Raymond L; Andrews, Robert C

    2017-04-01

    Impacts of ozonation alone as well as an advanced oxidation process of ozone plus hydrogen peroxide (H 2 O 2  + O 3 ) on organic matter prior to and following biofiltration were studied at pilot-scale. Three biofilters were operated in parallel to assess the effects of varying pre-treatment types and dosages. Conventionally treated water (coagulation/flocculation/sedimentation) was fed to one control biofilter, while the remaining two received water with varying applied doses of O 3 or H 2 O 2  + O 3 . Changes in organic matter were characterized using parallel factors analysis (PARAFAC) and fluorescence peak shifts. Intensities of all PARAFAC components were reduced by pre-oxidation, however, individual humic-like components were observed to be impacted to varying degrees upon exposure to O 3 or H 2 O 2  + O 3 . While the control biofilter uniformly reduced fluorescence of all PARAFAC components, three of the humic-like components were produced by biofiltration only when pre-oxidation was applied. A fluorescence red shift, which occurred with the application of O 3 or H 2 O 2  + O 3 , was attributed to a relative increase in carbonyl-containing components based on previously reported results. A subsequent blue shift in fluorescence caused by biofiltration which received pre-oxidized water indicated that biological treatment readily utilized organics produced by pre-oxidation. The results provide an understanding as to the impacts of organic matter character and pre-oxidation on biofiltration efficiency for organic matter removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water.

    PubMed

    Pramanik, Biplob Kumar; Kajol, Annaduzzaman; Suja, Fatihah; Md Zain, Shahrom

    2017-03-01

    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.

  9. Microbial succession in a compost-packed biofilter treating benzene-contaminated air.

    PubMed

    Borin, Sara; Marzorati, Massimo; Brusetti, Lorenzo; Zilli, Mario; Cherif, Hanene; Hassen, Abdennaceur; Converti, Attilio; Sorlini, Claudia; Daffonchio, Daniele

    2006-03-01

    Air artificially contaminated with increasing concentrations of benzene was treated in a laboratory scale compost-packed biofilter for 240 days with a removal efficiency of 81-100%. The bacterial community in the packing material (PM) at different heights of the biofilter was analysed every 60 days. Bacterial plate counts and ribosomal intergenic spacer analysis (RISA) of the isolated strains showed that the number of cultivable aerobic heterotrophic bacteria and the species diversity increased with benzene availability. Identification of the isolated species and the main bands in denaturing gradient gel electrophoresis (DGGE) profiles from total compost DNA during the treatment revealed that, at a relatively low volumetric benzene load (1.2< or =VBL< or =6.4 g m(-3) (PM) h(-1)), besides low G+C Gram positive bacteria, originally present in the packing compost, bacteroidetes and beta- and gamma-proteobacteria became detectable in the colonising population. At the VBL value (24.8 g m(-3) (PM) h(-1)) ensuring the maximum elimination capacity of the biofilter (20.1 g m(-3) (PM) h(-1)), strains affiliated to the genus Rhodococcus dominated the microflora, followed by beta-proteobacteria comprising the genera Bordetella and Neisseria. Under these conditions, more than 35% of the isolated strains were able to grow on benzene as the sole carbon source. Comparison of DGGE and automated RISA profiles of the total community and isolated strains showed that a complex bacterial succession occurred in the reactor in response to the increasing concentrations of the pollutant and that cultivable bacteria played a major role in benzene degradation under the adopted conditions.

  10. Assessing biofiltration repeatability: statistical comparison of two identical toluene removal systems.

    PubMed

    Jiménez, Lucero; Arriaga, Sonia; Aizpuru, Aitor

    2016-01-01

    Biofiltration of volatile organic compounds is still considered an emerging technology. Its reliability remains questionable as no data is available regarding process intrinsic repeatability. Herein, two identically operated toluene biofiltration systems are comprehensively compared, during long-term operation (129 days). Globally, reactors responded very similarly, even during transient conditions, with, for example, strong biological activities from the first days of operation, and comparable periods of lower removal efficiency (81.2%) after exposure to high inlet loads (140 g m(-3) h(-1)). Regarding steady states, very similar maximum elimination capacities up to 99 g m(-3) h(-1) were attained. Estimation of the process repeatability, with the paired samples Student's t-test, indicated no statistically significant difference between elimination capacities. Repeatability was also established for several descriptors of the process such as the carbon dioxide and biomass production, the pH and organic content of the leachates, and the moisture content of the packing material. While some parameters, such as the pH, presented a remarkably low divergence between biofilters (coefficient of variability of 1.4%), others, such as the organic content of the leachates, presented higher variability (30.6%) due to an uneven biomass lixiviation associated with stochastic hydrodynamics and biomass repartitions. Regarding process efficiency, it was established that less than 10% of fluctuation is to be expected between the elimination capacities of identical biofilter set-ups. A further statistical comparison between the first halves of the biofilter columns indicated very similar coefficients of variability, confirming the repeatability of the process, for different biofilter lengths.

  11. Community Analysis of Biofilters Using Fluorescence In Situ Hybridization Including a New Probe for the Xanthomonas Branch of the Class Proteobacteria

    PubMed Central

    Friedrich, Udo; Naismith, Michèle M.; Altendorf, Karlheinz; Lipski, André

    1999-01-01

    Domain-, class-, and subclass-specific rRNA-targeted probes were applied to investigate the microbial communities of three industrial and three laboratory-scale biofilters. The set of probes also included a new probe (named XAN818) specific for the Xanthomonas branch of the class Proteobacteria; this probe is described in this study. The members of the Xanthomonas branch do not hybridize with previously developed rRNA-targeted oligonucleotide probes for the α-, β-, and γ-Proteobacteria. Bacteria of the Xanthomonas branch accounted for up to 4.5% of total direct counts obtained with 4′,6-diamidino-2-phenylindole. In biofilter samples, the relative abundance of these bacteria was similar to that of the γ-Proteobacteria. Actinobacteria (gram-positive bacteria with a high G+C DNA content) and α-Proteobacteria were the most dominant groups. Detection rates obtained with probe EUB338 varied between about 40 and 70%. For samples with high contents of gram-positive bacteria, these percentages were substantially improved when the calculations were corrected for the reduced permeability of gram-positive bacteria when formaldehyde was used as a fixative. The set of applied bacterial class- and subclass-specific probes yielded, on average, 58.5% (± a standard deviation of 23.0%) of the corrected eubacterial detection rates, thus indicating the necessity of additional probes for studies of biofilter communities. The Xanthomonas-specific probe presented here may serve as an efficient tool for identifying potential phytopathogens. In situ hybridization proved to be a practical tool for microbiological studies of biofiltration systems. PMID:10427047

  12. Efficacy of wood charcoal and its modified form as packing media for biofiltration of isoprene.

    PubMed

    Srivastva, Navnita; Singh, Ram S; Dubey, Suresh K

    2017-07-01

    The efficacy of wood charcoal (WC) and nutrient-enriched wood charcoal (NWC) as biofilter packing media were assessed for isoprene biodegradation in a bioreactor comprising bioscrubber and a biofilter connected in series and inoculated with Pseudomonas sp. The bioreactors using WC and NWC exhibited >90% removal efficiency and around 369 g m -3  h -1 elimination capacity at around 404 g m -3  h -1 inlet loading rate. In both the bioreactors, the biofilter component showed better degradation capacity compared to the bioscrubber unit. The kinetic parameters, maximum elimination capacity, EC max ; substrate constant, K s and EC max /K s for Michaelis-Menten model were evaluated. The lower K s for the WC packed bioreactor indicated that EC max achieved, was faster compared to others, while higher EC max and EC max /K s for the NWC packed bioreactor suggests its superiority in isoprene abatement in the continuous mode. A comparison of the available published information on biofiltration of isoprene reflected polyurethane foam as the superior packing media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and the main absorption bands and scattering bands were located and their association with composition and structure were analyzed and discussed. SEM micrographs will be collected and the composition and structure derived from the SEM micrographs will be discussed and compared with those derived from the Raman spectra and hyperspectral spectra.

  14. Removal characteristics and kinetic analysis of an aerobic vapor-phase bioreactor for hydrophobic alpha-pinene.

    PubMed

    Jiang, Yifeng; Li, Shanshan; Cheng, Zhuowei; Zhu, Runye; Chen, Jianmeng

    2012-01-01

    Biofiltration is considered an effective method to control volatile organic compounds (VOCs) pollution. This study was conducted to evaluate the potential use of a bacterial biofilter packed with wood chips and peat for the removal of hydrophobic alpha-pinene. When inoculated with two pure degraders and adapted activated sludge, a removal efficiency (RE) of more than 95% was achieved after a startup period of 11 days. The maximum elimination capacity (EC) of 50 g/(m3 x hr) with RE of 94% was obtained at empty bed retention time (EBRT) of 102 sec. When higher alpha-pinene concentrations and shorter EBRTs were applied, the REs and ECs decreased significantly due to mass-transfer and biological reaction limitations. As deduced from the experimental results, approximately 74% of alpha-pinene were completely mineralized by the consortiums and the biomass yield was 0.60 g biomass/g alpha-pinene. Sequence analysis of the selected bands excised from denaturing gradient gel electrophoresis revealed that the inoculated pure cultures could be present during the whole operation, and others were closely related to bacteria being able to degrade hydrocarbons. The kinetic results demonstrated that the whole biofiltration for alpha-pinene was diffusion-limit controlled owing to its hydrophobic characteristics. These findings indicated that this bacterial biofiltration is a promising technology for the remediation of hydrophobic industrial waste gases containing alpha-pinene.

  15. Environmental assessment of different biofilters for the treatment of gaseous streams.

    PubMed

    Alfonsín, Carolina; Hernández, Jerónimo; Omil, Francisco; Prado, Óscar J; Gabriel, David; Feijoo, Gumersindo; Moreira, Ma Teresa

    2013-11-15

    Biological techniques have been considered as an interesting alternative to treat gaseous streams from industrial processes. In this work, the performance of biofilters was evaluated from an environmental point of view by using Life Cycle Assessment methodology. More specifically, the potential impacts of four biofilters packed with different organic materials: spherical clay pellets covered with compost, a mixture of coconut fibre and sludge based carbon, peat and heather and pine bark have been quantified. The impact categories considered in this work were: eutrophication, acidification, global warming, photochemical oxidation, malodorous air, human toxicity and marine, terrestrial and freshwater ecotoxicity. From an environmental point of view, the reactor packed with coconut fibre and sludge based carbon appears to be the most suitable alternative since it presented the lowest values in almost all the impact categories assessed. On the other hand, the biofilter packed with clay pellets covered with compost seems to be the most penalized bioreactor providing the highest impacts for six of the nine impact categories evaluated, mainly due to the significant pressure drop achieved in the reactor which led to a considerable increase of energy demand. The reactor packed with coconut fibre and sludge based carbon is also the most beneficial alternative after performing the normalization step. In this case, the alternatives of peat and heather and pine bark are the less favourable ones in terms of photochemical oxidation, which was attributed to the lowest efficiency of methyl isobutyl ketone removal efficiency observed in both configurations. On the other hand, the option of treating off-gases is, in general, more positive and advisable than the direct discharge to the atmosphere. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Thermal design and turbidity sensor for autonomous bacterial growth measurements in spaceflight.

    PubMed

    van Benthem, Roel; Krooneman, Janneke; de Grave, Wubbo; Hammenga-Dorenbos, Hilma

    2009-04-01

    For application of biological air filters in manned spacecraft, research on bacterial growth is carried out under microgravity conditions. For the BIOFILTER experiment, flown in 2005 on FOTON M2, eight turbidity sensors to measure the growth rate of the bacterium Xanthobacter autotrophicus GJ10 were used. Also thermal management provisions were implemented to control the internal temperature. The design and performance of the BIOFILTER equipment as well as results of the biological ground reference experiments performed in 2006 are discussed. High-performance thermal (vacuum) insulation (lambda= 0.7 mW/mK) and phase change material were implemented, keeping the BIOFILTER internal temperature below 16 degrees C during the 4-day integration period between transport and launch. After launch, in microgravity, the growth of X. autotrophicus GJ10 was successfully triggered by a temperature increase by using an internal heater to 26 degrees C. Although the operation of the sensor electronics was not fully satisfying, the bacterial growth was measured with the sensors, revealing growth rates between 0.046 and 0.077 h(-1) in microgravity, that is, approximately 1.5-2.5 times slower than routinely measured on Earth under optimal laboratory conditions. For the ground-reference experiments the equipment box, containing the eight sensors, was placed on a random positioning machine performing random rotations at 0.5 degrees /min (settling compensation) and 90 degrees /min (microgravity simulation) while the environment was controlled, accurately repeating the BIOFILTER internal temperature profile. Despite the rotation speed differences, growth rates of 0.115 h(-1) were confirmed by both the ground reference experiments. Biological interpretation of the measurements is, however, compromised owing to poor mixing and other unknown physical and biological phenomena that need to be addressed for further space experiments using these kinds of systems.

  17. Indoor-biofilter growth and exposure to airborne chemicals drive similar changes in plant root bacterial communities.

    PubMed

    Russell, Jacob A; Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S

    2014-08-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Indoor-Biofilter Growth and Exposure to Airborne Chemicals Drive Similar Changes in Plant Root Bacterial Communities

    PubMed Central

    Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S.

    2014-01-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters. PMID:24878602

  19. Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment.

    PubMed

    Peldszus, Sigrid; Hallé, Cynthia; Peiris, Ramila H; Hamouda, Mohamed; Jin, Xiaohui; Legge, Raymond L; Budman, Hector; Moresoli, Christine; Huck, Peter M

    2011-10-15

    With the increased use of membranes in drinking water treatment, fouling--particularly the hydraulically irreversible type--remains the main operating issue that hinders performance and increases operational costs. The main challenge in assessing fouling potential of feed water is to accurately detect and quantify feed water constituents responsible for membrane fouling. Utilizing fluorescence excitation-emission matrices (EEM), protein-like substances, humic and fulvic acids, and particulate/colloidal matter can be detected with high sensitivity in surface waters. The application of principal component analysis to fluorescence EEMs allowed estimation of the impact of surface water constituents on reversible and irreversible membrane fouling. This technique was applied to experimental data from a two year bench-scale study that included thirteen experiments investigating the fouling potential of Grand River water (Ontario, Canada) and the effect of biofiltration pre-treatment on the level of foulants during ultrafiltration (UF). Results showed that, although the content of protein-like substances in this membrane feed water (=biofiltered natural water) was much lower than commonly found in wastewater applications, the content of protein-like substances was still highly correlated with irreversible fouling of the UF membrane. In addition, there is evidence that protein-like substances and particulate/colloidal matter formed a combined fouling layer, which contributed to both reversible and irreversible fouling. It is suggested that fouling transitions from a reversible to an irreversible regime depending on feed composition and operating time. Direct biofiltration without prior coagulant addition reduced the protein-like content of the membrane feed water which in turn reduced the irreversible fouling potential for UF membranes. Biofilters also decreased reversible fouling, and for both types of fouling higher biofilter contact times were beneficial. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  1. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    PubMed

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  2. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (Lemna minor L.) in recirculating aquaculture systems.

    PubMed

    Ardiansyah, A; Fotedar, R

    2016-07-01

    Duckweed (Lemna minor L.) is a potential biofilter for nutrient removal and acts as a substrate for heterotrophic bacteria in recirculating aquaculture systems (RAS). Here, we determined the effects of harvesting frequency of duckweed on heterotrophic bacteria in RAS. Twelve independent RAS consisting of fish-rearing tank, biofilter tank and waste-collection tank were used to study the interactions between duckweed harvest frequencies up to 6 days and the composition, abundance and diversity of heterotrophic bacteria. After 36 days, heterotrophic bacteria in the biofilter tank were primarily Gram-negative cocci or ovoid, coccobacilli, Gram-negative bacilli and Gram-positive bacilli. Most bacterial genera were Bacillus and Pseudomonas while the least common was Acinetobacter. Duckweed harvested after every 2 days produced the highest specific growth rates (SGR) and total harvested biomass of duckweed, but harboured less abundant bacteria, whereas 6-day harvests had a higher growth index (GI) of duckweed than 2-day harvests, but caused a poor relationship between SGR and biomass harvest with the abundance and diversity of heterotrophic bacteria. Stronger correlations (R(2)  > 0·65) between duckweed SGR and biomass harvest with the heterotrophic bacteria diversity were observed at 4-day harvest frequency and the control. This study provides significant information on the interaction between the harvest frequency of duckweed and the composition, abundance and diversity of heterotrophic bacteria in recirculating aquaculture systems (RAS). Different harvest frequencies significantly influence the abundance and diversity of heterotrophic bacteria, which in turn may influence the nitrogen uptake efficiency of the system. The research is useful in improving the efficiency of removing nitrogenous metabolites in RAS directly by the duckweed and associated heterotrophic bacteria. © 2016 The Society for Applied Microbiology.

  3. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems

    PubMed Central

    Schmidt, Victor; Davidson, John; Summerfelt, Steven

    2016-01-01

    ABSTRACT Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e.g., Nitrospira) may further alleviate concerns regarding the use of alternative feeds in RAS operations. IMPORTANCE The growth of the aquaculture industry has outpaced terrestrial livestock production and wild-capture fisheries for over 2 decades, currently producing nearly 50% of all seafood consumed globally. As wild-capture fisheries continue to decline, aquaculture's role in food production will grow, and it will produce an estimated 62% of all seafood consumed in 2020. A significant environmental concern of the industry is the reliance on fishmeal as a primary feed ingredient, as its production still requires harvest from wild fisheries. Our study adds to the growing body of literature on the feasibility of alternative, fishmeal-free diets. Specifically, we asked how fishmeal-free diets influence microbial communities in recirculating salmon farms. Unlike previous studies, we extended our investigation beyond the microbiome of the fish itself and asked how alterative diets influence microbial communities in water and critical biofilter habitats. We found no evidence for adverse effects of alternative diets on any microbial habitat within the farm. PMID:27129964

  4. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems.

    PubMed

    Schmidt, Victor; Amaral-Zettler, Linda; Davidson, John; Summerfelt, Steven; Good, Christopher

    2016-08-01

    Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e.g., Nitrospira) may further alleviate concerns regarding the use of alternative feeds in RAS operations. The growth of the aquaculture industry has outpaced terrestrial livestock production and wild-capture fisheries for over 2 decades, currently producing nearly 50% of all seafood consumed globally. As wild-capture fisheries continue to decline, aquaculture's role in food production will grow, and it will produce an estimated 62% of all seafood consumed in 2020. A significant environmental concern of the industry is the reliance on fishmeal as a primary feed ingredient, as its production still requires harvest from wild fisheries. Our study adds to the growing body of literature on the feasibility of alternative, fishmeal-free diets. Specifically, we asked how fishmeal-free diets influence microbial communities in recirculating salmon farms. Unlike previous studies, we extended our investigation beyond the microbiome of the fish itself and asked how alterative diets influence microbial communities in water and critical biofilter habitats. We found no evidence for adverse effects of alternative diets on any microbial habitat within the farm. Copyright © 2016 Schmidt et al.

  5. Design of combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using Vetiveria zizanioides (akar wangi)

    NASA Astrophysics Data System (ADS)

    Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.

    2018-01-01

    As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.

  6. Microbial community response reveals underlying mechanism of industrial-scale manganese sand biofilters used for the simultaneous removal of iron, manganese and ammonia from groundwater.

    PubMed

    Zhang, Yu; Sun, Rui; Zhou, Aijuan; Zhang, Jiaguang; Luan, Yunbo; Jia, Jianna; Yue, Xiuping; Zhang, Jie

    2018-01-08

    Most studies have employed aeration-biofiltration process for the simultaneous removal of iron, manganese and ammonia in groundwater. However, what's inside the "black box", i.e., the potential contribution of functional microorganisms behavior and interactions have seldom been investigated. Moreover, little attention has been paid to the correlations between environmental variables and functional microorganisms. In this study, the performance of industrial-scale biofilters for the contaminated groundwater treatment was studied. The effluent were all far below the permitted concentration level in the current drinking water standard. Pyrosequencing illustrated that shifts in microbial community structure were observed in the microbial samples from different depths of filter. Microbial networks showed that the microbial community structure in the middle- and deep-layer samples was similar, in which a wide range of manganese-oxidizing bacteria was identified. By contrast, canonical correlation analysis showed that the bacteria capable of ammonia-oxidizing and nitrification was enriched in the upper-layer, i.e., Propionibacterium, Nitrosomonas, Nitrosomonas and Candidatus Nitrotoga. The stable biofilm on the biofilter media, created by certain microorganisms from the groundwater microflora, played a crucial role in the simultaneous removal of the three pollutants.

  7. Analysis of Metabolites and Carbon Balance in the Biofilteration of Cumene Using Loofa Sponge as Biofilter Media.

    PubMed

    Shahi, Amrita; Rai, B N; Singh, R S

    2016-09-01

    A laboratory-scale biofilter study was performed to treat cumene-inoculated mixed culture of bacterial community and loofa sponge (Luffa cylindrica) as support media for a period of 120 days in five distinct phases. The removal efficiency was obtained in the range of 40-85 % with maximum elimination capacity of 700 g m(-3) h(-1) at the inlet load of 1167 g m(-3) h(-1). The result demonstrated that loofa sponge is good support media for the removal of cumene at higher loading rates. Loofa sponge was characterized via chemical analysis and analytical techniques such as XRD; FTIR; XPS; and CHN, and the result obtained confirms its suitability as biofilter media. The SEM results of loofa with inoculum shows the formation of a biofilm layer on the surface of loofa. The GC-MS analysis of leachate confirms the presence of different organic compounds such as acetaldehyde and 4-hydroxy-2-oxopentanoic acids which are stable metabolites during cumene biodegradation. About 12.69 % of carbon present in inlet cumene was converted to biomass.

  8. Temporary Storage or Permanent Removal? The Division of Nitrogen between Biotic Assimilation and Denitrification in Stormwater Biofiltration Systems

    PubMed Central

    Payne, Emily G. I.; Fletcher, Tim D.; Russell, Douglas G.; Grace, Michael R.; Cavagnaro, Timothy R.; Evrard, Victor; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.

    2014-01-01

    The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a ‘black-box’ approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3 − (nitrate) over the course of one inflow event. The immediate partitioning of 15NO3 − between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3 − under typical stormwater concentrations (∼1–2 mg N/L), contributing an average 89–99% of 15NO3 − processing in biofilter columns containing the most effective plant species, while only 0–3% was denitrified and 0–8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3 −, and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater biofilters. The findings raise important questions about nitrogen release upon plant senescence, seasonally and in the long term, which have implications on the management and design of biofiltration systems. PMID:24670377

  9. Removal of volatile organic compounds at extreme shock-loading using a scaled-up pilot rotating drum biofilter.

    PubMed

    Sawvel, Russell A; Kim, Byung; Alvarez, Pedro J J

    2008-11-01

    A pilot-scale rotating drum biofilter (RDB), which is a novel biofilter design that offers flexible flow-through configurations, was used to treat complex and variable volatile organic compound (VOC) emissions, including shock loadings, emanating from paint drying operations at an Army ammunition plant. The RDB was seeded with municipal wastewater activated sludge. Removal efficiencies up to 86% and an elimination capacity of 5.3 g chemical oxygen demand (COD) m(-3) hr(-1) were achieved at a filter-medium contact time of 60 sec. Efficiency increased at higher temperatures that promote higher biological activity, and decreased at lower pH, which dropped down to pH 5.5 possibly as a result of carbon dioxide and volatile fatty acid production and ammonia consumption during VOC degradation. In comparison, other studies have shown that a bench-scale RDB could achieve a removal efficiency of 95% and elimination capacity of 331 g COD m(-3) hr(-1). Sustainable performance of the pilot-scale RDB was challenged by the intermittent nature of painting operations, which typically resulted in 3-day long shutdown periods when bacteria were not fed. This challenge was overcome by adding sucrose (2 g/L weekly) as an auxiliary substrate to sustain metabolic activity during shutdown periods.

  10. Preservation of natural aquatic ecosystems by application of bottom coal ash based bioreactor for in situ treatment of anthropogenic effluents

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Nisnevitch, M.; Tal, M.; Cahan, R.; Michael, E.

    2012-12-01

    One consequence of global climate change is recharge decrease at sub tropical and Mediterranean regions to both the surface and the ground fresh water resources. As a general rule, when water source quantity is reduced, the level of salination, as well as chemical and biological pollutants, tends to increase. The situation is more severe whenever the drainage basin is (a) heavily populated from urban, industrial and agricultural areas, (b) has wide areas of thin or non soil cover and (c) has a karstic structure and morphology. These latter conditions are typical to many regions around the Middle East; whereas pollution hazard to Mid Eastern streams is greater than to those in more humid regions owing to their relative small size and poor dilution capacity. The consequence of this ongoing and increasing anthropogenic pollution is endangerment of natural aquatic habitats and due to decrease in fresh water supply availability also to human sustainability. The ecological impact may involve transition of ephemeral (Wadi) streams into intermittent ones with the accompanied biodiversity change or extinction once the pollution is extreme. The impact on indigenous human communities might be as severe owing to drinking water quality decrease and the consequent decrease id quantity as well as damage to dryland farming. In setting of operations applied to the Yarkon Taninim watershed (central Israel) management, a pilot biofilter facility for sustainable preservation and rehabilitation of natural fluvial ecosystems was tested. This biofilter is planned to operate through low impact concept assimilating natural treatment processes occurring during runoff recharge through a porous flow media. The facility is constructed out of several grain sizes of bottom coal ash aggregate, which was found to be a better microbial mats growing stratum, compared to common natural aggregates such as tuff and lime pebbles (and also has an EPA directive for wastewater treatment). The biofilter is operating with initial horizontal flow and continuous vertical circulation through aeration apparatus. Along the flow path several different bio-modules are applied, the sequence consists of aerobic and anaerobic stages, as well as biomass preservation section and fine grain filtration. The pilot biofilter facility was built during the summer of 2009; the influent consisted of domestic wastewater (of the adjacent Ariel University dormitories) and also synthetic aquatic solutions equivalent to urban, industrial, and roads runoff effluents. The biofilter operation evaluation demonstrated significant decrease in pollution loads, including organic, salts and pathogens. The facility's efficiency reached approximately 90% reduction or more, allowing the release of treated runoff without limitation to natural fluvial ecosystems (according to the required regulations). The present stage in the project is implementation of the method and process by application of a full scale pilot facility at a joint between an anthropogenic drainage network, consisting of urban, industrial and motorway runoff collection systems and a typical natural Samaritan fluvial ecosystem. The purpose of the system is to treat these anthropogenic effluents prior to their release into the stream and by that to prevent the negative environmental above mentioned effects.

  11. Removal of gasoline volatile organic compounds via air biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.S.; Saberiyan, A.G.; Esler, C.T.

    1995-12-31

    Volatile organic compounds (VOCs) generated by vapor extraction and air-stripping systems can be biologically treated in an air biofiltration unit. An air biofilter consists of one or more beds of packing material inoculated with heterotrophic microorganisms capable of degrading the organic contaminant of concern. Waste gases and oxygen are passed through the inoculated packing material, where the microorganisms will degrade the contaminant and release CO{sub 2} + H{sub 2}O. Based on data obtained from a treatability study, a full-scale unit was designed and constructed to be used for treating gasoline vapors generated by a vapor-extraction and groundwater-treatment system at amore » site in California. The unit is composed of two cylindrical reactors with a total packing volume of 3 m{sup 3}. Both reactors are packed with sphagnum moss and inoculated with hydrocarbon-degrading microorganisms of Pseudomonas and Arthrobacter spp. The two reactors are connected in series for air-flow passage. Parallel lines are used for injection of water, nutrients, and buffer to each reactor. Data collected during the startup program have demonstrated an air biofiltration unit with high organic-vapor-removal efficiency.« less

  12. Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii.

    PubMed

    Estévez, Elena; Veiga, María C; Kennes, Christian

    2005-06-01

    Two biofilters fed toluene-polluted air were inoculated with new fungal isolates of either Exophiala oligosperma or Paecilomyces variotii, while a third bioreactor was inoculated with a defined consortium composed of both fungi and a co-culture of a Pseudomonas strain and a Bacillus strain. Elimination capacities of 77 g m(-3) h(-1) and 55 g m(-3) h(-1) were reached in the fungal biofilters (with removal efficiencies exceeding 99%) in the case of, respectively, E. oligosperma and Paecilomyces variotii when feeding air with a relative humidity (RH) of 85%. The inoculated fungal strains remained the single dominant populations throughout the experiment. Conversely, in the biofilter inoculated with the bacterial-fungal consortium, the bacteria were gradually overgrown by the fungi, reaching a maximum elimination capacity around 77 g m(-3) h(-1). Determination of carbon dioxide concentrations both in batch assays and in biofiltration studies suggested the near complete mineralization of toluene. The non-linear toluene removal along the height of the biofilters resulted in local elimination capacities of up to 170 g m(-3) h(-1) and 94 g m(-3) h(-1) in the reactors inoculated, respectively, with E. oligosperma and P. variotii. Further studies with the most efficient strain, E. oligosperma, showed that the performance was highly dependent on the RH of the air and the pH of the nutrient solution. At a constant 85% RH, the maximum elimination capacity either dropped to 48.7 g m(-3) h(-1) or increased to 95.6 g m(-3) h(-1), respectively, when modifying the pH of the nutrient solution from 5.9 to either 4.5 or 7.5. The optimal conditions were 100% RH and pH 7.5, which allowed a maximum elimination capacity of 164.4 g m(-3) h(-1) under steady-state conditions, with near-complete toluene degradation.

  13. Biofiltration of high formaldehyde loads with ozone additions in long-term operation.

    PubMed

    Maldonado-Diaz, G; Arriaga, S

    2015-01-01

    Formaldehyde (FA) biofiltration was evaluated over 310 days with and without ozone addition. Without ozone, the biofilter was able to treat formaldehyde at inlet loads (ILs) lower than 40 g m(-3) h(-1), maintaining, under this condition, an average removal efficiency (RE) of 88 % for a few days before collapsing to zero. The continuous addition of ozone (90 ppbv) helped to recover the RE from zero to 98 ± 2 % and made it possible to operate at an IL of 40 g m(-3) h(-1) for long periods of operation (107 days). Furthermore, the ozone addition aided in operating the biofilter at a formaldehyde IL of up to 120 g m(-3) h(-1) values that have never before been reached. GC-mass spectrometry (MS) analysis showed that dimethoxymethane was the common compound in leachate during the performance decay. Also, the addition of ozone aided in maintaining an optimal pH in the biofilter with values between 7.5 and 8.2, due to the carbonate species formed during the ozone reactions with formaldehyde and its by-products. Thus, the pH control was confirmed and the alkalinity of the biofilter increased from 334.1 ± 100.3 to 1450 ± 127 mg CaCO3 L(-1) when ozone was added. Ozone addition diminished the exopolymeric substances (EPS) content of biofilm and biofilm thickness without affecting cell viability. Kinetic parameters suggested that the best conditions for carrying out FA biofiltration were reached under ozone addition. The addition of ozone during formaldehyde biofiltration could be a good strategy to maintain the pH and the steady state of the system under high ILs and for long periods of operation.

  14. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    PubMed Central

    Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio

    2006-01-01

    Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in the biofilter throughout the treatment. Conclusion The silica-bead packed bed biofilm reactor developed and characterized in this study was able to significantly decontaminate anaerobically digested OMWs. Therefore, the application of an integrated anaerobic-aerobic process resulted in an improved system for valorization and decontamination of OMWs. PMID:16595023

  15. Monitoring key organic indoor pollutants and their elimination in a biotrickling biofilter.

    PubMed

    Saucedo-Lucero, José Octavio; Revah, Sergio

    2018-04-01

    A biotrickling filter was evaluated to treat the air of the interior of a bioprocess research laboratory. Initially, various solid-phase microextraction (SPME) fibers were used to identify and quantify the volatile organic pollutants and hexane, methyl isobutyl ketone, benzene, toluene, and xylene were further selected as indicators due to their prevalence and relative abundance. The system treated organic loading rates between 0.16 mg carbon  m -3  h -1 and close to 30 mg carbon  m -3  h -1 achieving removal efficiencies (RE) over 85% during 136 operational days. Respirometry experiments demonstrated that moderate acidification (below 5.0), due to microbial activity, adversely affected biofilter performance and consequently pH control was necessary to maintain performance.

  16. By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses.

    PubMed

    García-Pérez, Teresa; Aizpuru, Aitor; Arriaga, Sonia

    2013-11-15

    A formaldehyde airstream was treated in a biofilter for an extended period of time. During the first 133 days, the reactor was operated without ozone, whereas over the following 82 days ozone was intermittently implemented. The maximum stable elimination capacity obtained without ozone was around 57 g m(-3) h(-1). A greater load could not be treated under these conditions, and no significant formaldehyde removal was maintained for inlet loads greater than 65 g m(-3) h(-1); the activity of microorganisms was then inhibited by the presence of acidic byproducts, and the media acidified (pH<4). The implementation of ozone pulses allowed a stable elimination capacity to be obtained, even at greater loads (74 g m(-3) h(-1)). The effect of ozone on the extra cellular polymeric substances detachment from the biofilm could not be confirmed due to the too low biofilter biomass content. Thus, the results suggest that ozone acted as an in situ pH regulator, preventing acidic byproducts accumulation, and allowing the treatment of high loads of formaldehyde. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Microbial Bioreactor Development in the ALS NSCORT

    NASA Astrophysics Data System (ADS)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    The NASA Specialized Center of Research and Training in Advanced Life Support (the ALS NSCORT), a partnership of Alabama A & M, Howard, and Purdue Universities, was established by NASA in 2002 to develop technologies that will reduce the Equivalent System Mass (ESM) of regenerative processes within future space life-support systems. A key focus area of NSCORT research has been the development of efficient microbial bioreactors for treatment of human, crop, and food-process wastes while enabling resource recovery. The approach emphasizes optimizing the energy-saving advantages of hydrolytic enzymes for biomass degradation, with focus on treatment of solid wastes including crop residue, paper, food, and human metabolic wastes, treatment of greywater, cabin air, off-gases from other treatment systems, and habitat condensate. This summary includes important findings from those projects, status of technology development, and recommendations for next steps. The Plant-based Anaerobic-Aerobic Bioreactor-Linked Operation (PAABLO) system was developed to reduce crop residue while generating energy and/or food. Plant residues initially were added directly to the bioreactor, and recalcitrant residue was used as a substrate for growing plants or mushrooms. Subsequently, crop residue was first pretreated with fungi to hydrolyze polymers recalcitrant to bacteria, and leachate from the fungal beds was directed to the anaerobic digester. Exoenzymes from the fungi pre-soften fibrous plant materials, improving recovery of materials that are more easily biodegraded to methane that can be used for energy reclamation. An Autothermal Thermophilic Aerobic Digestion (ATAD) system was developed for biodegradable solid wastes. Objectives were to increase water and nutrient recovery, reduce waste volume, and inactivate pathogens. Operational parameters of the reactor were optimized for degradation and resource recovery while minimizing system requirements and footprint. The start-up behavior and recycling of effluent supernatant were evaluated to maximize degradation and minimize water input. The off-gases proceeded to a bioregenerative air-treatment reactor, and the sludge effluent was investigated for multiple downstream uses including dewatering by reed beds, use as a nutrient supplement for fish or mushroom growth, and as a growth medium and nutrient source for various crops. The Bio-Regenerative Environmental Air Treatment for Health (BREATHe I) reactor treated greywater and off-gases from the thermophilic aerobic digestion reactor which contained elevated levels of ammonia (NH3 ) and hydrogen sulfide (H2 S). BREATHe I development focused initially on removing greywater contaminants with clean air supplied to a biotrickling filter. Limited removal of organic carbon (70%) led to studies indicating that biodegradation metabolites of the surfactant disodium cocoamphodiacetate are recalcitrant. Subsequent studies showed that NH3 loaded at 150 mg/min and H2 S at 0.83 mg/min were removed completely, while removal of carbonaceous compounds from greywater remained constant. A BREATHe II reactor emphasized biofilters and biotrickling filters for removal of ersatz multicomponent gaseous waste streams representative of habitat air and atmospheric condensate. The model waste stream contained a mixture of acetone, n-butanol, methane, ethylene, and ammonia. Both biofilters and biotrickling filters packed with different media were able to achieve complete removal of easily soluble compounds such as acetone, n-butanol, and ammonia within a short startup period, whereas methane was not removed because of its extreme aqueous insolubility. Different packing media and bioreactor configurations were subsequently assessed, as well as the effect of influent ammonia concentration. Research sponsored in part by NASA grant NAG5-12686.

  18. The biofilteration ability of oysters (Crassostrea gigas) to reduce Aeromonas salmonicida in salmon culture.

    PubMed

    Ma, Xiaona; Li, Xian; Sun, Guoxiang; Sharawy, Zaki Zaki; Qiu, Tianlong; Du, Yishuai; Liu, Ying

    2017-07-01

    Pathogen contamination in the environment is inevitable with the rapid development of intensive aquaculture. Therefore, alternative ecofriendly biological strategies to control pathogenic bacteria are required. However, our aim was to investigate the ability of oysters (Crassostrea gigas) to filter the important opportunistic pathogen, Aeromonas salmonicida (strain C4), using a green fluorescent protein tag (GFP) in the Atlantic salmon (Salmo salar) farming wastewater. Hence, A. salmonicida removal efficiency and ingestion rate were detected in two different oyster stages (larvae and adults). To evaluate the practical performance of oysters as A. salmonicida biofilter, adult oysters were applied to an integrated constructed wetlands system (ICWS) and their long-term C4-GFP removal efficiency was recorded for 60 days. Overall, our results clearly indicated that oysters had substantial A. salmonicida removal ability via their ingestion process when observed under a fluorescent microscope. Approximately 88-95% of C4-GFP was removed by oyster larvae at an ingestion rate of 6.4 × 10 3 -6.2 × 10 5  CFU/h·ind, while 79-92% of C4-GFP was removed by adult oysters at an ingestion rate of 2.1 × 10 4 -3.1 × 10 6  CFU/h·ind. Furthermore, 57.9 ± 17.2% of C4-GFP removal efficiency was achieved when oysters were applied to ICWS. We, therefore, concluded that using oysters as a biofilter represents an effective alternative for removing A. salmonicida from aquaculture wastewater. However, the fate of oysters after ingesting the pathogenic bacteria, acting as a potential reservoir or vector for pathogens, is still debatable. This research provides the basis for the application of oysters as a biofilter to remove pathogens from aquaculture wastewater in industrialized production.

  19. Effects of biofilter media depth and moisture content on removal of gases from a swine barn.

    PubMed

    Liu, Tongshuai; Dong, Hongmin; Zhu, Zhiping; Shang, Bin; Yin, Fubin; Zhang, Wanqin; Zhou, Tanlong

    2017-12-01

    Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH 3 ), hydrogen sulfide (H 2 S), and nitrous oxide (N 2 O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH 3 removal efficiency, but increase outlet N 2 O concentration. When MC was 67%, the average NH 3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H 2 S removal efficiency dropped from 68.1-90.0% (1-34 days of the test period) to 36.8-63.7% (35-58 days of the test period); and the average outlet N 2 O concentration increased by 25.5-60.1%. When MC was 55%, the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and -18.9 ± 8.1%, respectively; and the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and -24.5 ±12.1%, respectively. When MC was 45%, the highest average NH 3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N 2 O removal efficiency for three MDs ranged from -18.8% to -12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD (p < 0.05). To obtain high mitigation of NH 3 and H 2 S and avoid elevated emission of N 2 O and large pressure drop, 0.33 m MD at 55% MC is recommended. The performances of biofilters with three different media depths (0.17, 0.33, and 0.50 m) and three different media moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH 3 and H 2 S, and to simultaneously prevent elevated emission of N 2 O and large pressure drop across the media.

  20. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  1. Treating domestic effluent wastewater treatment by aerobic biofilter with bioballs medium

    NASA Astrophysics Data System (ADS)

    Permatasari, R.; Rinanti, A.; Ratnaningsih, R.

    2018-01-01

    This laboratory scale research aimed to treat wastewater effluent with advanced treatment utilizing aerobic biofilter with bio-balls medium to obtain effluent quality in accordance with DKI Jakarta Governor Regulation No. 122 of 2005. The seeding and acclimatization were conducted in 4 weeks. The effluent were accommodated in a 150 L water barrel supported by a submersible pump. The effluent were treated in two boxes shaped reactors made of glasses with 36 L of each capacity. These reactors were equipped with aquarium aerators, sampling tap is 10 cm from the base of reactors, and bio-balls with 3 cm diameter are made of PVC. Reactors operated continuously with variations of retention time of 4 hours, 8 hours, 12 hours, 18 hours, and 24 hours and also variations of Carbon: Nitrogen: Phosphor = C: N: P ratio were, 100:5:1, 100:8:1, 100:10:1, 100:12:1, 100:15:1. The results showed that the optimum variance of retention time was 24 hours and the ratio of C:N:P was 100:10:1 yielded the largest removal efficiency for 83,33% of COD, 87,33% of BOD, 82,5% of Ammonia, 79,1% of Nitrate, 92% of Nitrite, 84,82% of Oil and Grease. The concentration parameter resulted from outlet biofilter has met the domestic wastewater quality standard of DKI Jakarta.

  2. Development and application of a hybrid inert/organic packing material for the biofiltration of composting off-gases mimics.

    PubMed

    Hernández, Jerónimo; Prado, Oscar J; Almarcha, Manuel; Lafuente, Javier; Gabriel, David

    2010-06-15

    The performance of three biofilters (BF1-BF3) packed with a new hybrid (inert/organic) packing material that consists of spherical argyle pellets covered with compost was examined in different operational scenarios and compared with a biofilter packed with pine bark (BF4). BF1, BF2 and BF4 were inoculated with an enriched microbial population, while BF3 was inoculated with sludge from a wastewater treatment plant. A gas mixture containing ammonia and six VOCs was fed to the reactors with N-NH(3) loads ranging from 0 to 10 g N/m(3)h and a VOCs load of around 10 g C/m(3)h. A profound analysis of the fate of nitrogen was performed in all four reactors. Results show that the biofilters packed with the hybrid packing material and inoculated with the microbial pre-adapted population (BF1 and BF2) achieved the highest nitrification rates and VOCs removal efficiencies. In BF3, nitratation was inhibited during most of the study, while only slight evidence of nitrification could be observed in BF4. All four reactors were able to treat the VOCs mixture with efficiencies greater than 80% during the entire experimental period, regardless of the inlet ammonia load. Copyright 2010 Elsevier B.V. All rights reserved.

  3. PCDD/F enviromental impact from municipal solid waste bio-drying plant.

    PubMed

    Rada, E C; Ragazzi, M; Zardi, D; Laiti, L; Ferrari, A

    2011-06-01

    The present work indentifies some environmental and health impacts of a municipal solid waste bio-drying plant taking into account the PCDD/F release into the atmosphere, its concentration at ground level and its deposition. Four scenarios are presented for the process air treatment and management: biofilter or regenerative thermal oxidation treatment, at two different heights. A Gaussian dispersion model, AERMOD, was used in order to model the dispersion and deposition of the PCDD/F emissions into the atmosphere. Considerations on health risk, from different exposure pathways are presented using an original approach. The case of biofilter at ground level resulted the most critical, depending on the low dispersion of the pollutants. Suggestions on technical solutions for the optimization of the impact are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Biological filters and their use in potable water filtration systems in spaceflight conditions

    NASA Astrophysics Data System (ADS)

    Thornhill, Starla G.; Kumar, Manish

    2018-05-01

    Providing drinking water to space missions such as the International Space Station (ISS) is a costly requirement for human habitation. To limit the costs of water transport, wastewater is collected and purified using a variety of physical and chemical means. To date, sand-based biofilters have been designed to function against gravity, and biofilms have been shown to form in microgravity conditions. Development of a universal silver-recycling biological filter system that is able to function in both microgravity and full gravity conditions would reduce the costs incurred in removing organic contaminants from wastewater by limiting the energy and chemical inputs required. This paper aims to propose the use of a sand-substrate biofilter to replace chemical means of water purification on manned spaceflights.

  5. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus.

    PubMed

    Rene, Eldon R; Spačková, Radka; Veiga, María C; Kennes, Christian

    2010-12-15

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4m(3)h(-1)), leading to empty bed residence times as low as 17.1s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m(-3)) and acetone (0.01-8.9 g m(-3)). The total elimination capacities were as high as 360 g m(-3)h(-1), with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m(-3)h(-1), resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. BIOFILTRATION OF VOLATILE POLLUTANTS: Fundamental Mechanisms for Improved Design, Long-term Operation, Prediction, and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison,Brian H.

    2000-12-31

    Biofiltration systems can be used for treatment of volatile organic compounds (VOCs); however, the systems are poorly understood and are normally operated as ''black boxes''. Common operational problems associated with biofilters include fouling, deactivation, and overgrowth, all of which make them ineffective for continuous, long-term use. The objective of this investigation was to develop generic methods for long-term stable operation, in particular by using selective limitation of supplemental nutrients while maintaining high activity. As part of this effort, we have provided a deeper fundamental understanding of the important biological and transport mechanisms in biodestruction of sparingly soluble VOCs and havemore » extended this approach and mathematical models to additional systems of high priority EM relevance--direct degradation and cometabolic degradation of priority pollutants such as BTEX and chlorinated organics. Innovative aspects of this project included development of a user-friendly two-dimensional predictive model/program for MS Windows 95/98/2000 to elucidate mass transfer and kinetic limitations in these systems, isolation of a unique microorganism capable of using sparingly soluble organic and chloroorganic VOCs as its sole carbon and energy source, and making long-term growth possible by successfully decoupling growth and degradation metabolisms in operating trickle bed bioreactors.« less

  7. Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions.

    PubMed

    Kalyuzhnyi, S; Gladchenko, M; Epov, A

    2003-01-01

    As a first step of treatment of landfill leachates (total COD--1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30 degrees C), sub-mesophilic (20 degrees C) and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  8. Impact of water quality on the bacterial populations and off-flavours in recirculating aquaculture systems.

    PubMed

    Auffret, Marc; Yergeau, Étienne; Pilote, Alexandre; Proulx, Émilie; Proulx, Daniel; Greer, Charles W; Vandenberg, Grant; Villemur, Richard

    2013-05-01

    A variety of factors affecting water quality in recirculating aquaculture systems (RAS) are associated with the occurrence of off-flavours. In this study, we report the impact of water quality on the bacterial diversity and the occurrence of the geosmin-synthesis gene (geoA) in two RAS units operated for 252 days. Unit 2 displayed a higher level of turbidity and phosphate, which affected the fresh water quality compared with unit 1. In the biofilter, nitrification is one of the major processes by which high water quality is maintained. The bacterial population observed in the unit 1 biofilter was more stable throughout the experiment, with a higher level of nitrifying bacteria compared with the unit 2 biofilter. Geosmin appeared in fish flesh after 84 days in unit 2, whereas it appeared in unit 1 after 168 days, but at a much lower level. The geoA gene was detected in both units, 28 days prior to the detection of geosmin in fish flesh. In addition, we detected sequences associated with Sorangium and Nannocystis (Myxococcales): members of these genera are known to produce geosmin. These sequences were observed at an earlier time in unit 2 and at a higher level than in unit 1. This study confirms the advantages of new molecular methods to understand the occurrence of geosmin production in RAS. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Phosphorus Fate and Dynamics in Greywater Biofiltration Systems.

    PubMed

    Fowdar, Harsha S; Hatt, Belinda E; Cresswell, Tom; Harrison, Jennifer J; Cook, Perran L M; Deletic, Ana

    2017-02-21

    Phosphorus, a critical environmental pollutant, is effectively removed from stormwater by biofiltration systems, mainly via sedimentation and straining. However, the fate of dissolved inflow phosphorus concentrations in these systems is unknown. Given the growing interest in using biofiltration systems to treat other polluted waters, for example greywater, such an understanding is imperative to optimize designs for successful long-term performance. A mass balance method and a radiotracer, 32 P (as H 3 PO 4 ), were used to investigate the partitioning of phosphorus (concentrations of 2.5-3.5 mg/L, >80% was in dissolved inorganic form) between the various biofilter components at the laboratory scale. Planted columns maintained a phosphorus removal efficiency of >95% over the 15-week study period. Plant storage was found to be the dominant phosphorus sink (64% on average). Approximately 60% of the phosphorus retained in the filter media was recovered in the top 0-6 cm. The 32 P tracer results indicate that adsorption is the immediate primary fate of dissolved phosphorus in the system (up to 57% of input P). Plant assimilation occurs at other times, potentially liberating sorption sites for processing of subsequent incoming phosphorus. Plants with high nutrient uptake capacities and the ability to efficiently extract soil phosphorus, for example Carex appressa, are, thus, recommended for use in greywater biofilters.

  10. Purification of polluted water with spent mushroom (Agaricus bisporus) substrate: from agricultural waste to biosorbent of phenanthrene, Cd and Pb.

    PubMed

    García-Delgado, C; Alonso-Izquierdo, M; González-Izquierdo, M; Yunta, F; Eymar, E

    2017-07-01

    The present research was aimed to (i) report the recycling of spent A. bisporus substrate (SAS) to remove heavy metals (Cd and Pb) and phenanthrene (Phe) from polluted water and (ii) assess the possibility to use the treated water for irrigation. Batch experiments were carried out to assess, firstly, the effect of interaction time between pollutants with SAS and, secondly, the pH of the polluted water. Then a biofilter was designed by using pressurized glass columns. Chemical parameters such as pH, electrical conductivity and content of Pb, Cd, Phe, nutrients (NPK) and Cl - were determined. Equilibrium for contaminants was quickly reached (1-2 h). The pH of the polluted water was the key factor for pollutants' adsorption. The polluted water's pH was increased after biofilter interaction. Phe was not detected in any fraction. Pb and Cd sorption rates were higher than 99%. The pollutant concentrations were within the permitted range to be used for agriculture purposes. Purified water showed significant concentrations of NPK, indicating its potential use as fertilizer. The SAS shows potential to be used as Phe, Pb and Cd biosorbent and the resulting treated water can be used for irrigation according to pollutant contents and agronomical evaluation.

  11. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment.

    PubMed

    Fu, Jie; Lee, Wan-Ning; Coleman, Clark; Meyer, Melissa; Carter, Jason; Nowack, Kirk; Huang, Ching-Hua

    2017-01-01

    A pilot study employing two parallel trains of two-stage biofiltration, i.e., a sand/anthracite (SA) biofilter followed by a biologically-active granular activated carbon (GAC) contactor, was conducted to test the efficiency, feasibility and stability of biofiltration for removing natural organic matter (NOM) after coagulation in a drinking water treatment plant. Results showed the biofiltration process could effectively remove turbidity (<0.1 NTU in all effluents) and NOM (>24% of dissolved organic carbon (DOC), >57% of UV 254 , and >44% of SUVA 254 ), where the SA biofilters showed a strong capacity for turbidity removal, while the GAC contactors played the dominant role in NOM removal. The vertical profile of water quality in the GAC contactors indicated the middle-upper portion was the critical zone for the removal of NOM, where relatively higher adsorption and enhanced biological removal were afforded. Fluorescence excitation-emission matrix (EEM) analysis of NOM showed that the GAC contactors effectively decreased the content of humic-like component, while protein-like component was refractory for the biofiltration process. Nutrients (NH 4 -N and PO 4 -P) supplementation applied upstream of one of the two-stage biofiltration trains (called engineered biofiltration) stimulated the growth of microorganisms, and showed a modest effect on promoting the biological removal of small non-aromatic compositions in NOM. Redundancy analysis (RDA) indicated influent UV 254 was the most explanatory water quality parameter for GAC contactors' treatment performance, and a high load of UV 254 would result in significantly reduced removals of UV 254 and SUVA 254 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inhibitory effect of high phenol concentration in treating coal gasification wastewater in anaerobic biofilter.

    PubMed

    Li, Yajie; Tabassum, Salma; Chu, Chunfeng; Zhang, Zhenjia

    2018-02-01

    In this paper, the inhibition of methanogens by phenol in coal gasification wastewater (CGW) was investigated by both anaerobic toxicity tests and a lab-scale anaerobic biofilter reactor (AF). The anaerobic toxicity tests indicated that keeping the phenol concentration in the influent under 280mg/L could maintain the methanogenic activity. In the AF treating CGW, the result showed that adding glucose solution as co-substrate could be beneficial for the quick start-up of the reactor. The effluent chemical oxygen demand (COD) and total phenol reached 1200 and 100mg/L, respectively, and the methane production rate was 175mLCH 4 /gCOD/day. However, if the concentration of phenol was increased, the inhibition of anaerobic micro-organisms was irreversible. The threshold of total phenol for AF operation was 200-250mg/L. The extracellular polymeric substances (EPS) and particle size distribution of anaerobic granular sludge in the different stages were also examined, and the results indicated that the influence of toxicity in the system was more serious than its effect on flocculation of EPS. Moreover, the proportion of small size anaerobic granular sludge gradually increased from 10.2% to 34.6%. The results of high through-put sequencing indicated that the abundance of the Chloroflexi and Planctomycetes was inhibited by the toxicity of the CGW, and some shifts in the microbial community were observed at different stages. Copyright © 2017. Published by Elsevier B.V.

  13. Effect of drinking water treatment process parameters on biological removal of manganese from surface water.

    PubMed

    Hoyland, Victoria W; Knocke, William R; Falkinham, Joseph O; Pruden, Amy; Singh, Gargi

    2014-12-01

    Soluble manganese (Mn) presents a significant treatment challenge to many water utilities, causing aesthetic and operational concerns. While application of free chlorine to oxidize Mn prior to filtration can be effective, this is not feasible for surface water treatment plants using ozonation followed by biofiltration because it inhibits biological removal of organics. Manganese-oxidizing bacteria (MOB) readily oxidize Mn in groundwater treatment applications, which normally involve pH > 7.0. The purpose of this study was to evaluate the potential for biological Mn removal at the lower pH conditions (6.2-6.3) often employed in enhanced coagulation to optimize organics removal. Four laboratory-scale biofilters were operated over a pH range of 6.3-7.3. The biofilters were able to oxidize Mn at a pH as low as pH 6.3 with greater than 98% Mn removal. Removal of simulated organic ozonation by-products was also greater than 90% in all columns. Stress studies indicated that well-acclimated MOB can withstand variations in Mn concentration (e.g., 0.1-0.2 mg/L), hydraulic loading rate (e.g., 2-4 gpm/ft(2); 1.36 × 10(-3)-2.72 × 10(-3) m/s), and temperature (e.g., 7-22 °C) typically found at surface water treatment plants at least for relatively short (1-2 days) periods of time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. GENERAL DESIGN CONSIDERATIONS IN BMP DESIGN

    EPA Science Inventory

    Today, many municipalities are implementing best management practices (BMPs) for
    wet-weather flow. The most commonly used structural treatment BMPs that will be discussed in the presentation are ponds (detention/retention) and vegetated biofilters (swales and filter/buffer...

  15. GENERAL DESIGN CONSIDERATIONS IN BMP DESIGN

    EPA Science Inventory

    Today, many municipalities are implementing best management practices (BMPs). The most commonly used structural treatment BMPs that will be discussed in the presentation are ponds (detention/retention) and vegetated biofilters (swales and filter/buffer strips).

    Historical...

  16. Biofiltration of xylene using wood charcoal as the biofilter media under transient and high loading conditions.

    PubMed

    Singh, Kiran; Giri, B S; Sahi, Amrita; Geed, S R; Kureel, M K; Singh, Sanjay; Dubey, S K; Rai, B N; Kumar, Surendra; Upadhyay, S N; Singh, R S

    2017-10-01

    The main objective of this study was to evaluate the performance of wood charcoal as biofilter media under transient and high loading condition. Biofiltration of xylene was investigated for 150days in a laboratory scale unit packed with wood charcoal and inoculated with mixed microbial culture at the xylene loading rates ranged from 12 to 553gm -3 h -1 . The kinetic analysis of the xylene revealed absence of substrate inhibition and possibility of achieving higher elimination under optimum condition. The pH, temperature, pressure drop and CO 2 production rate were regularly monitored during the experiments. Throughout experimental period, the removal efficiency (RE) was found to be in the range of 65-98.7% and the maximum elimination capacity (EC) was 405.7gm -3 h -1 . Molecular characterization results show Bacillus sp. as dominating microbial group in the biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Preliminary acclimation strategies for successful startup in conventional biofilters.

    PubMed

    Elías, Ana; Barona, Astrid; Gallastegi, Gorka; Rojo, Naiara; Gurtubay, Luis; Ibarra-Berastegi, Gabriel

    2010-08-01

    The question of how to obtain the best inocula for conventional biofilters arises when an acclimation/adaptation procedure is to be applied. Bearing in mind that no standardized procedure for acclimating inocula exists, certain preliminary strategies for obtaining an active inoculum from wastewater treatment sludge are proposed in this work. Toluene was the contaminant to be degraded. Concerning the prior separation of sludge phases, no obvious advantage was found in separating the supernatant phase of the sludge before acclimation. As far as a continuous or discontinuous acclimation mode is concerned, the latter is recommended for rapidly obtaining acclimated sludge samples by operating the system for no longer than 1 month. The continuous mode rendered similar degradation rates, although it required longer operating time. Nevertheless, the great advantage of the continuous system lay in the absence of daily maintenance and the ready availability of the activated sample.

  18. Biological filters and their use in potable water filtration systems in spaceflight conditions.

    PubMed

    Thornhill, Starla G; Kumar, Manish

    2018-05-01

    Providing drinking water to space missions such as the International Space Station (ISS) is a costly requirement for human habitation. To limit the costs of water transport, wastewater is collected and purified using a variety of physical and chemical means. To date, sand-based biofilters have been designed to function against gravity, and biofilms have been shown to form in microgravity conditions. Development of a universal silver-recycling biological filter system that is able to function in both microgravity and full gravity conditions would reduce the costs incurred in removing organic contaminants from wastewater by limiting the energy and chemical inputs required. This paper aims to propose the use of a sand-substrate biofilter to replace chemical means of water purification on manned spaceflights. Copyright © 2018 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus.

    PubMed

    Mohamed, Elham F; Awad, Gamal; Andriantsiferana, Caroline; El-Diwany, Ahmed I

    2016-01-01

    Biofiltration technology has been recognized as a promising biotechnology for treating the volatile organic compounds (VOCs) present in polluted air. This study aims to investigate the performance of a biofiltration system of Streptomyces griseus sp. DSM-40759 immobilized on activated carbon (PICA S23) towards the adsorption and degradation of toluene vapour as well as to regenerate the activated carbon in situ. The batch studies were performed using nutrient agar medium and basal salt medium (BSM) for microbial growth. Initially the pre-cultures were incubated at a temperature of 28°C on a rotary shaker at 150 rpm. After two days, the strain S. griseus DSM-40759 was immobilized on a known weight of activated carbon (12 g). The results of biofilter performance showed three different stages with a quick adsorption phase with approximately 95% of toluene removal after 70 min, a slow biotransformation phase by immobilized cells. In the later, the removal efficiency decreased significantly with the extension of time and reached 60% during this stage. Moreover, a final quick removal phase by the immobilized cells had an average removal efficiency of toluene around 95% after 500 min. The toluene degradation was found to be more than 84% after the second cycle and the biofilter was still capable of removing additional toluene. Thus, the results demonstrated the feasibility and reusability of a new biofilter system for toluene removal as well as extending the activated carbon's capacity and this could be a potential solution to reuse the activated carbon in industrial application.

  20. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    NASA Astrophysics Data System (ADS)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  1. ECOMAT INC. BIOLOGICAL DENITRIFICATION PROCESS, ITER

    EPA Science Inventory

    EcoMat, Inc. of Hayward, California (EcoMat) has developed an ex situ anoxic biofilter biodenitrification (BDN) process. The process uses specific biocarriers and bacteria to treat nitrate-contaminated water and employs a patented reactor that retains biocarrier within the syste...

  2. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net; Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616; Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. Themore » system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.« less

  3. [Degradation of styrene by coupling ultraviolet and biofiltration].

    PubMed

    Sha, Hao-Lei; Yang, Guo-Jing; Xia, Jing-Fen

    2013-12-01

    Purification of styrene by ultraviolet (UV)-biofiltration was studied in this paper. The light source and the biofilm carrier were ozone producing lamp at 185 nm and the peat, palm fiber, porous acticarbon, respectively. Styrene inlet concentration was controlled between 320-583 mg x m(-3), and the removal efficiency remained above 95% after stabilization. The UV converted styrene into more soluble and biodegradable intermediates, such as alcohol, aldehyde and acid, thus the performance of biofilter can be improved. In the stable operation stage, the variation of inlet concentration did not affect the removal efficiency when the total residence time (TRT) was long, however, the inlet concentration obviously affected the removal efficiency when the TRT decreased. The removal load of coupling system increased linearly with increasing inlet load, and the removal efficiency was higher than 95% under a TRT of 102 s. When TRT was 68 s and the inlet load was low, the variation of removal load complied with the law described above, but it gradually deviated from the straight line and tended to stabilized at a certain value when the inlet load became higher than 30 g x (m3 x h)(-). If considering the fluctuation of styrene concentration only, the contribution rate of ultraviolet photolysis to styrene removal was greater than that of the biofilter, and the removal effect could be restored on the fourth day, after closing the system for ten days and restarting.

  4. A single-stage biological process for municipal sewage treatment in tourist areas.

    PubMed

    Di Iaconi, C; De Sanctis, M; Lopez, A

    2014-11-01

    This pilot scale study aims to test the effectiveness of an innovative compact biological system (SBBGR - Sequencing Batch Biofilter Granular Reactor) for treating municipal wastewater in tourist areas characterised by intense seasonal water demand and wastewater discharge. The results obtained after a long term operation of 463 days have shown that the proposed system is able to assure average removal efficiencies higher than 90% for COD (chemical oxygen demand), total suspended solids and TKN (total Kjeldahl nitrogen) independently of the influent concentration values and organic loading, which ranged from 0.2 to 5.1 kgCOD/m(3)biofilter.d Furthermore, the plant showed a high degree of operation flexibility and stability in response to the organic load variations occurring in tourist areas. In fact, no significant deterioration in the plant's effluent quality was observed even during a sudden several-fold increase in organic loading. High nitrogen removal efficiencies (80%, on average) were also achieved thanks to the establishment of simultaneous nitrification-denitrification process favoured by the plant's high biomass concentration and operating conditions. Finally, the system was characterized by an excess sludge production much lower (60-80% lower) than that of conventional biological systems operating without a primary clarifier. An acceptable level of stabilization of excess sludge was also obtained so that a further stabilization process was no longer required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. ECOMAT INC. BIOLOGICAL DENIFTRICATION PROCESS; SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    EcoMat, Inc. of Hayward, California (EcoMat) has developed an ex situ anoxic biofilter biodenitrification (BDN) process. The process uses specific biocarriers and bacteria to treat nitrate-contaminated water and employs a patented reactor that retains biocarrier within the syste...

  6. [Non-nitrification pathway for NH4+ -N removal in pilot-scale drinking water biological processes].

    PubMed

    Yu, Xin; Ye, Lin; Li, Xu-dong; Zhang, Xiao-jian; Shi, Xu; Liu, Bo; Li, Rui-hua

    2008-04-01

    The non-nitrification pathway for NH4+ -N removal in pilot-scale drinking water biological treatment processes and its possible mechanism were investigated through calculating N and DO stoichiometric balance. With more than 2 mg/L NH4+ -N in the influent, for the fluidized bed bioreactor (FBBR), the total of NH4+ -N, NO2(-) -N, NO3(-) -N in the influent was 0.91 mg/L higher than that in the effluent, and for the biofilter, its DO consumption was 2.90 mg/L less than the stoichiometric amount. The results suggested that nitrogen loss occurred in both reactors and a part of NH4+ -N was removed through non-nitrification pathway. Because the utilization of phosphorus and organic matters was independent of nitrogen loss, the assimilation and denitrification could be excluded from the possible mechanisms. Because the very low C/N in the influent and the accumulation of NO2(-) -N in the reactors were similar with the wastewater biological processes, the "autotrophic removal of nitrogen" was regarded as the most probable non-nitrification pathway. In this mechanism, the couple of short-cut nitrification and ANAMMOX (or OLAND) leading to the transformation of NH4+ -N and NO2(-) -N into gaseous N2 was responsible for the nitrogen loss in drinking water biological processes.

  7. H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use.

    PubMed

    Ramírez-Sáenz, D; Zarate-Segura, P B; Guerrero-Barajas, C; García-Peña, E I

    2009-04-30

    In the present work, the main objective was to evaluate a biofiltration system for removing hydrogen sulfide (H(2)S) and volatile fatty acids (VFAs) contained in a gaseous stream from an anaerobic digestor (AD). The elimination of these compounds allowed the potential use of biogas while maintaining the methane (CH(4)) content throughout the process. The biodegradation of H(2)S was determined in the lava rock biofilter under two different empty bed residence times (EBRT). Inlet loadings lower than 200 g/m(3)h at an EBRT of 81 s yielded a complete removal, attaining an elimination capacity (EC) of 142 g/m(3)h, whereas at an EBRT of 31 s, a critical EC of 200 g/m(3)h was reached and the EC obtained exhibited a maximum value of 232 g/m(3)h. For 1500 ppmv of H(2)S, 99% removal was maintained during 90 days and complete biodegradation of VFAs was observed. A recovery of 60% as sulfate was obtained due to the constant excess of O(2) concentration in the system. Acetic and propionic acids as a sole source of carbon were also evaluated in the bioreactor at different inlet loadings (0-120 g/m(3)h) obtaining a complete removal (99%) for both. Microcosms biodegradation experiments conducted with VFAs demonstrated that acetic acid provided the highest biodegradation rate.

  8. Methodologies for pre-validation of biofilters and wetlands for stormwater treatment.

    PubMed

    Zhang, Kefeng; Randelovic, Anja; Aguiar, Larissa M; Page, Declan; McCarthy, David T; Deletic, Ana

    2015-01-01

    Water Sensitive Urban Design (WSUD) systems are frequently used as part of a stormwater harvesting treatment trains (e.g. biofilters (bio-retentions and rain-gardens) and wetlands). However, validation frameworks for such systems do not exist, limiting their adoption for end-uses such as drinking water. The first stage in the validation framework is pre-validation, which prepares information for further validation monitoring. A pre-validation roadmap, consisting of five steps, is suggested in this paper. Detailed methods for investigating target micropollutants in stormwater, and determining challenge conditions for biofilters and wetlands, are provided. A literature review was undertaken to identify and quantify micropollutants in stormwater. MUSIC V5.1 was utilized to simulate the behaviour of the systems based on 30-year rainfall data in three distinct climate zones; outputs were evaluated to identify the threshold of operational variables, including length of dry periods (LDPs) and volume of water treated per event. The paper highlights that a number of micropollutants were found in stormwater at levels above various worldwide drinking water guidelines (eight pesticides, benzene, benzo(a)pyrene, pentachlorophenol, di-(2-ethylhexyl)-phthalate and a total of polychlorinated biphenyls). The 95th percentile LDPs was exponentially related to system design area while the 5th percentile length of dry periods remained within short durations (i.e. 2-8 hours). 95th percentile volume of water treated per event was exponentially related to system design area as a percentage of an impervious catchment area. The out-comings of this study show that pre-validation could be completed through a roadmap consisting of a series of steps; this will help in the validation of stormwater treatment systems.

  9. Butyric Acid- and Dimethyl Disulfide-Assimilating Microorganisms in a Biofilter Treating Air Emissions from a Livestock Facility▿

    PubMed Central

    Kristiansen, Anja; Lindholst, Sabine; Feilberg, Anders; Nielsen, Per H.; Neufeld, Josh D.; Nielsen, Jeppe L.

    2011-01-01

    Biofiltration has proven an efficient tool for the elimination of volatile organic compounds (VOCs) and ammonia from livestock facilities, thereby reducing nuisance odors and ammonia emissions to the local environment. The active microbial communities comprising these filter biofilms have not been well characterized. In this study, a trickle biofilter treating air from a pig facility was investigated and proved efficient in removing carboxylic acids (>70% reduction), mainly attributed to the primary filter section within which reduced organic sulfur compounds were also depleted (up to 50%). The secondary filter eliminated several aromatic compounds: phenol (81%), p-cresol (89%), 4-ethylphenol (68%), indole (48%), and skatole (69%). The active butyric acid degrading bacterial community of an air filter sample was identified by DNA stable-isotope probing (DNA-SIP) and microautoradiography, combined with fluorescence in situ hybridization (MAR-FISH). The predominant 16S rRNA gene sequences from a clone library derived from “heavy” DNA from [13C4]butyric acid incubations were Microbacterium, Gordonia, Dietzia, Rhodococcus, Propionibacterium, and Janibacter, all from the Actinobacteria. Actinobacteria were confirmed and quantified by MAR-FISH as being the major bacterial phylum assimilating butyric acid along with several Burkholderiales-related Betaproteobacteria. The active bacterial community assimilating dimethyl disulfide (DMDS) was characterized by DNA-SIP and MAR-FISH and found to be associated with the Actinobacteria, along with a few representatives of Flavobacteria and Sphingobacteria. Interestingly, ammonia-oxidizing Betaproteobacteria were also implicated in DMDS degradation, as were fungi. Thus, multiple isotope-based methods provided complementary data, enabling high-resolution identification and quantitative assessments of odor-eliminating Actinobacteria-dominated populations of these biofilter environments. PMID:22003018

  10. Identification of Bacteria Potentially Responsible for Oxic and Anoxic Sulfide Oxidation in Biofilters of a Recirculating Mariculture System

    PubMed Central

    Cytryn, Eddie; van Rijn, Jaap; Schramm, Andreas; Gieseke, Armin; de Beer, Dirk; Minz, Dror

    2005-01-01

    Bacteria presumably involved in oxygen- or nitrate-dependent sulfide oxidation in the biofilters of a recirculating marine aquaculture system were identified using a new application of reverse transcription-PCR denaturing gradient gel electrophoresis (DGGE) analysis termed differential-transcription (DT)-DGGE. Biofilter samples were incubated in various concentrations of sulfide or thiosulfate (0 to 5 mM) with either oxygen or nitrate as the sole electron acceptor. Before and after short-term incubations (10 to 20 h), total DNA and RNA were extracted, and a 550-bp fragment of the 16S rRNA genes was PCR amplified either directly or after reverse transcription. DGGE analysis of DNA showed no significant change of the original microbial consortia upon incubation. In contrast, DGGE of cDNA revealed several phylotypes whose relative band intensities markedly increased or decreased in response to certain incubation conditions, indicating enhanced or suppressed rRNA transcription and thus implying metabolic activity under these conditions. Specifically, species of the gammaproteobacterial genus Thiomicrospira and phylotypes related to symbiotic sulfide oxidizers could be linked to oxygen-dependent sulfide oxidation, while members of the Rhodobacteraceae (genera Roseobacter, Rhodobacter, and Rhodobium) were putatively active in anoxic, nitrate-dependent sulfide oxidation. For all these organisms, the physiology of their closest cultured relatives matches their DT-DGGE-inferred function. In addition, higher band intensities following exposure to 5 mM sulfide and nitrate were observed for Thauera-, Hydrogenophaga-, and Dethiosulfovibrio-like phylotypes. For these genera, nitrate-dependent sulfide oxidation has not been documented previously and therefore DT-DGGE might indicate a higher relative tolerance to high sulfide concentrations than that of other community members. We anticipate that DT-DGGE will be of general use in tracing functionally equivalent yet phylogenetically diverse microbial populations in nature. PMID:16204531

  11. Anammox-zeolite system acting as buffer to achieve stable effluent nitrogen values.

    PubMed

    Yapsakli, Kozet; Aktan, Cigdem Kalkan; Mertoglu, Bulent

    2017-02-01

    For a successful nitrogen removal, Anammox process needs to be established in line with a stable partial nitritation pretreatment unit since wastewater influent is mostly unsuitable for direct treatment by Anammox. Partial nitritation is, however, a critical bottleneck for the nitrogen removal since it is often difficult to maintain the right proportions of NO 2 -N and NH 4 -N during long periods of time for Anammox process. This study investigated the potential of Anammox-zeolite biofilter to buffer inequalities in nitrite and ammonium nitrogen in the influent feed. Anammox-zeolite biofilter combines the ion-exchange property of zeolite with the biological removal by Anammox process. Continuous-flow biofilter was operated for 570 days to test the response of Anammox-zeolite system for irregular ammonium and nitrite nitrogen entries. The reactor demonstrated stable and high nitrogen removal efficiencies (approximately 95 %) even when the influent NO 2 -N to NH 4 -N ratios were far from the stoichiometric ratio for Anammox reaction (i.e. NO 2 -N to NH 4 -N ranging from 0 to infinity). This is achieved by the sorption of surplus NH 4 -N by zeolite particles in case ammonium rich influent came in excess with respect to Anammox stoichiometry. Similarly, when ammonium-poor influent is fed to the reactor, ammonium desorption took place due to shifts in ion-exchange equilibrium and deficient amount were supplied by previously sorbed NH 4 -N. Here, zeolite acted as a preserving reservoir of ammonium where both sorption and desorption took place when needed and this caused the Anammox-zeolite system to act as a buffer system to generate a stable effluent.

  12. Methodologies for Pre-Validation of Biofilters and Wetlands for Stormwater Treatment

    PubMed Central

    Zhang, Kefeng; Randelovic, Anja; Aguiar, Larissa M.; Page, Declan; McCarthy, David T.; Deletic, Ana

    2015-01-01

    Background Water Sensitive Urban Design (WSUD) systems are frequently used as part of a stormwater harvesting treatment trains (e.g. biofilters (bio-retentions and rain-gardens) and wetlands). However, validation frameworks for such systems do not exist, limiting their adoption for end-uses such as drinking water. The first stage in the validation framework is pre-validation, which prepares information for further validation monitoring. Objectives A pre-validation roadmap, consisting of five steps, is suggested in this paper. Detailed methods for investigating target micropollutants in stormwater, and determining challenge conditions for biofilters and wetlands, are provided. Methods A literature review was undertaken to identify and quantify micropollutants in stormwater. MUSIC V5.1 was utilized to simulate the behaviour of the systems based on 30-year rainfall data in three distinct climate zones; outputs were evaluated to identify the threshold of operational variables, including length of dry periods (LDPs) and volume of water treated per event. Results The paper highlights that a number of micropollutants were found in stormwater at levels above various worldwide drinking water guidelines (eight pesticides, benzene, benzo(a)pyrene, pentachlorophenol, di-(2-ethylhexyl)-phthalate and a total of polychlorinated biphenyls). The 95th percentile LDPs was exponentially related to system design area while the 5th percentile length of dry periods remained within short durations (i.e. 2–8 hours). 95th percentile volume of water treated per event was exponentially related to system design area as a percentage of an impervious catchment area. Conclusions The out-comings of this study show that pre-validation could be completed through a roadmap consisting of a series of steps; this will help in the validation of stormwater treatment systems. PMID:25955688

  13. Development of biomass in a drinking water granular active carbon (GAC) filter.

    PubMed

    Velten, Silvana; Boller, Markus; Köster, Oliver; Helbing, Jakob; Weilenmann, Hans-Ulrich; Hammes, Frederik

    2011-12-01

    Indigenous bacteria are essential for the performance of drinking water biofilters, yet this biological component remains poorly characterized. In the present study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the first six months of operation. GAC particles were sampled from four different depths (10, 45, 80 and 115 cm) and attached biomass was measured with adenosine tri-phosphate (ATP) analysis. The attached biomass accumulated rapidly on the GAC particles throughout all levels in the filter during the first 90 days of operation and maintained a steady state afterward. Vertical gradients of biomass density and growth rates were observed during start-up and also in steady state. During steady state, biomass concentrations ranged between 0.8-1.83 x 10(-6) g ATP/g GAC in the filter, and 22% of the influent dissolved organic carbon (DOC) was removed. Concomitant biomass production was about 1.8 × 10(12) cells/m(2)h, which represents a yield of 1.26 × 10(6) cells/μg. The bacteria assimilated only about 3% of the removed carbon as biomass. At one point during the operational period, a natural 5-fold increase in the influent phytoplankton concentration occurred. As a result, influent assimilable organic carbon concentrations increased and suspended bacteria in the filter effluent increased 3-fold as the direct consequence of increased growth in the biofilter. This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Butyric acid- and dimethyl disulfide-assimilating microorganisms in a biofilter treating air emissions from a livestock facility.

    PubMed

    Kristiansen, Anja; Lindholst, Sabine; Feilberg, Anders; Nielsen, Per H; Neufeld, Josh D; Nielsen, Jeppe L

    2011-12-01

    Biofiltration has proven an efficient tool for the elimination of volatile organic compounds (VOCs) and ammonia from livestock facilities, thereby reducing nuisance odors and ammonia emissions to the local environment. The active microbial communities comprising these filter biofilms have not been well characterized. In this study, a trickle biofilter treating air from a pig facility was investigated and proved efficient in removing carboxylic acids (>70% reduction), mainly attributed to the primary filter section within which reduced organic sulfur compounds were also depleted (up to 50%). The secondary filter eliminated several aromatic compounds: phenol (81%), p-cresol (89%), 4-ethylphenol (68%), indole (48%), and skatole (69%). The active butyric acid degrading bacterial community of an air filter sample was identified by DNA stable-isotope probing (DNA-SIP) and microautoradiography, combined with fluorescence in situ hybridization (MAR-FISH). The predominant 16S rRNA gene sequences from a clone library derived from "heavy" DNA from [(13)C(4)]butyric acid incubations were Microbacterium, Gordonia, Dietzia, Rhodococcus, Propionibacterium, and Janibacter, all from the Actinobacteria. Actinobacteria were confirmed and quantified by MAR-FISH as being the major bacterial phylum assimilating butyric acid along with several Burkholderiales-related Betaproteobacteria. The active bacterial community assimilating dimethyl disulfide (DMDS) was characterized by DNA-SIP and MAR-FISH and found to be associated with the Actinobacteria, along with a few representatives of Flavobacteria and Sphingobacteria. Interestingly, ammonia-oxidizing Betaproteobacteria were also implicated in DMDS degradation, as were fungi. Thus, multiple isotope-based methods provided complementary data, enabling high-resolution identification and quantitative assessments of odor-eliminating Actinobacteria-dominated populations of these biofilter environments.

  15. David S. Ginley | NREL

    Science.gov Websites

    is on the development of new nanomaterials for organic electronics and as biofilters etc. Dr are applying what they learn to improved devices, i.e. batteries, frequency agile electronics Society (ECS) Institute of Electrical and Electronics Engineers (IEEE) American Association for the

  16. TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN WASTE GASES USING A TRICKLING BIOFILTER SYSTEM: A MODELING APPROACH

    EPA Science Inventory

    Biofiltration represents a novel strategy for controlling VOC emissions from a variety of industrial processes. As commercial applications of these systems increase, sophisticated theoretical models will be useful in establishing design criteria for providing insights into impor...

  17. Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.

    PubMed

    Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

    2013-04-01

    A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms.

  18. Biofiltration of ammonia gas with sponge cubes coated with mixtures of activated carbon and zeolite.

    PubMed

    Kim, H; Xi, Q; Kim, Y J; Chung, S

    2002-08-01

    Removal of ammonia gas was investigated using a biofilter system packed with small cubes of polyurethane sponge that were coated with a powder mixture of activated carbon and natural zeolite. Experimental tests and measurements include removal efficiency, pH, metabolic products of ammonia and kinetic analysis. A removal efficiency over 90% can be obtained with ammonia concentrations below 150 ppm and at contact times above 23 sec.The ammonia adsorbing power of the present biocarrier can protect the biofilter system from a high ammonia shock loading in the feed. The maximum removal rate, Vm, obtained from the kinetic analysis is 8.47 g N (kg carrier)(-1) day(-1) and the saturation constant Ks is 50.36 ppm. Nitrite is produced dominantly during the entire experiments. The cell number of nitrifying bacteria is 1.58 x 10( cell (g carrier)(-1). The present synthetic bio-carrier is considered to be one of the best among bio-carriers that have been used for the biofiltration of ammonia.

  19. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    PubMed

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The use of white-rot fungi as active biofilters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun-Luellemann, A.; Johannes, C.; Majcherczyk, A.

    1995-12-31

    White-rot fungi, growing on lignocellulosic substrates, have been successfully used as active organisms in biofilters. Filters using these fungi have a very high biological active surface area, allowing for high degrees of retention, a comparatively low pressure drop, and a high physical stability. The unspecific action of the extracellular enzymes of the white-rot fungi allows for the degradation of a wide variety of substances by the same organism. Degradation of several compounds in the gas phase by the white-rot fungi Trametes versicolor, Pleurotus ostreatus, Bjerkandera adusta, and Phanerochaete chrysosporium was tested. Among the aromatic solvents, styrene was the compound thatmore » was most readily degraded, followed by ethylbenzene, xylenes, and toluene. Tetrahydrofuran and dichloromethane were also degraded, whereas dioxane could not be attacked by fungi under the conditions used. Acrylonitrile and aniline were degraded very well, whereas pyridine was resistant to degradation. The process for removing styrene is now in the scaling-up stage.« less

  1. A NOVEL PROCESS FOR BIOLOGICAL NITROGEN REMOVAL FROM DAIRY WASTEWATER IN CONSTRUCTED WETLANDS

    EPA Science Inventory

    SUNY-ESF has a multidisciplinary P3 Team, although it is mainly composed of undergraduate students in forest engineering and graduate students in environmental and resources engineering. The Team has successfully enriched anammox bacteria in two vertical flow baffled biofilter...

  2. STORMWATER BEST MANAGEMENT PRACTICES DESIGN GUIDE VOLUME 2 - VEGETATIVE BIOFILTERS

    EPA Science Inventory

    This document is Volume 2 of a three volume document that provides guidance on the selection and design of stormwater management Best Management Practices (BMPs). This second volume provides specific design guidance for a group of onsite BMP control practices that are referred t...

  3. Depletion of florfenicol amine in tilapia (Oreochromis sp.) maintained in a recirculating aquaculture system following Aquaflor®-medicated feed therapy

    USGS Publications Warehouse

    Gaikowski, Mark P.; Whitsel, Melissa K.; Charles, Shawn; Schleis, Susan M.; Crouch, Louis S.; Endris, Richard G.

    2015-01-01

    Aquaflor® [50% w w−1 florfenicol (FFC)], is approved for use in freshwater-reared warmwater finfish which include tilapia Oreochromis spp. in the United States to control mortality from Streptococcus iniae. The depletion of florfenicol amine (FFA), the marker residue of FFC, was evaluated after feeding FFC-medicated feed to deliver a nominal 20 mg FFC kg−1 BW d−1 dose (1.33× the label use of 15 mg FFC kg−1 BW d−1) to Nile tilapia O. niloticus and hybrid tilapia O. niloticus × O. aureus held in a recirculating aquaculture system (RAS) at production-scale holding densities. Florfenicol amine concentrations were determined in fillets taken from 10 fish before dosing and from 20 fish at nine time points after dosing (from 1 to 240 h post-dosing). Water samples were assayed for FFC before, during and after the dosing period. Parameters monitored included daily feed consumption and biofilter function (levels of ammonia, nitrite and nitrate). Mean fillet FFA concentration decreased from 13.77 μg g−1 at 1-h post dosing to 0.39 μg g−1 at 240-h post dosing. Water FFC concentration decreased from a maximum of 1400 ng mL−1 at 1 day post-dosing to 847 ng mL−1 at 240 h post-dosing. There were no adverse effects noted on fish, feed consumption or biofilter function associated with FFC-medicated feed administration to tilapia.

  4. Characterization of a compost biofiltration system degrading dichloromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergas, S.J.; Kinney, K.; Fuller, M.E.

    1994-11-05

    The effects of acclimatization of microbial populations, compound concentration, and media pH on the biodegradation of low concentration dichloromethane emissions in biofiltration systems was evaluated. Greater than 98% removal efficiency was achieved for dichloromethane at superficial velocities from 1 to 15 m[sup 3]/m[sup 2][center dot]min and inlet concentrations of 3 and 50 ppm[sub v]. Although acclimatization of microbial populations to toluene occurred within 2 weeks of operation start-up, initial dichloromethane acclimatization took place over a period of 10 weeks. This period was shortened to 10 days when a laboratory grown consortium of dichloromethane degrading organisms, isolated from a previously acclimatizedmore » column, was introduced into fresh biofilter media. The mixed culture consisted of 12 members, which together were able to degrade dichloromethane at concentrations up to 500 mg/L. Only one member of the consortium was able to degrade dichloromethane in pure culture, and the presence of the other members did not affect the rate of biodegradation in solution culture. Although high removal efficiencies for dichloromethane were sustained for more than 4 months in a biofilter column receiving an inlet gas stream with 3 ppm[sub v] of dichloromethane, acidification of the column and resulting decline in performance occurred when a 50-ppm[sub v] inlet concentration was used. A biofilm model incorporating first order biodegradation kinetics provided a good fit to observed concentration profiles, and may prove to be a useful tool for designing biofiltration systems for low concentration VOC emissions.« less

  5. Degradation of isobutanal at high loading rates in a compost biofilter.

    PubMed

    Sercu, Bram; Demeestere, Kristof; Baillieul, Hans; Van Langenhove, Herman; Verstraete, Willy

    2005-08-01

    Biofiltration has been increasingly used for cleaning waste gases, mostly containing low concentrations of odorous compounds. To expand the application area of this technology, the biofiltration of higher pollutant loading rates has to be investigated. This article focuses on the biodegradation of isobutanal (IBAL) in a compost biofilter (BF) at mass loading rates between 211 and 4123 g/m3/day (30-590 ppm(v)). At mass loading rates up to 785 g/m3/day, near 100% removal efficiencies could be obtained. However, after increasing the loading rate to 1500-1900 g/m3/ day, the degradation efficiency decreased to 62-98%. In addition, a pH decrease and production of isobutanol (IBOL) and isobutyric acid (IBAC) were observed. This is the first report showing that an aldehyde can act as electron donor as well as acceptor in a BF. To study the effects of pH, compost moisture content, and electron acceptor availability on the biofiltration of IBAL, IBOL, and IBAC, additional batch and continuous experiments were performed. A pH of 5.2 reduced the IBAL degradation rate and inhibited the IBOL degradation, although adaptation of the microorganisms to low pH was observed in the BFs. IBAC was not degraded in the batch experiments. High moisture content (51%) initially had no effect on the IBOL production, although it negatively affected the IBAL elimination increasingly during a 21-day time-course experiment. In batch experiments, the reduction of IBAL to IBOL did not decrease when the amount of available electron acceptors (oxygen or nitrate) was increased. The IBAL removal efficiency at higher loading rates was limited by a combination of nutrient limitation, pH decrease, and dehydration, and the importance of each limiting factor depended on the influent concentration.

  6. Peracetic acid is an optimal disinfectant for fish-microalgae integrated multi-trophic aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Integrated multi-trophic aquaculture is a promising direction for the sustainable development of aquaculture. Instead of releasing nutrition-rich waste to the environment or decomposition of nutrients via the biofilter, the ‘waste’ from fish can be recycled to produce byproducts (e.g., algae, plants...

  7. 40 CFR 63.2292 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designed and maintained to capture all emissions for discharge through a control device. Work practice..., wheat straw, rice straw, and bagasse. Biofilter means an enclosed control system such as a tank or... collected by a capture device. Catalytic oxidizer means a control system that combusts or oxidizes, in the...

  8. Field Tests of “In-Situ” Remediation of Groundwater From Dissolved Mercury Utilizing Sulfate Reducing Bacteria

    EPA Science Inventory

    Field tests of biologically active filters have been conducted at groundwater mercury pollution site in Pavlodar, Kazakhstan. The biofilters represented cultures of sulfate-reducing bacteria (SRB) immobilized on claydite imbedded in wells drilled down to basalt clay layer (14-17 ...

  9. Biofiltration for air pollution control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devinny, J.; Deshusses, M.; Webster, T.

    1998-12-31

    The book details biofilter design and operation concepts used by engineers and others; conveys a basic understanding of how biofiltration works by means of contaminant adsorption and biodegradation; and includes otherwise hard-to-find information on the economics of choosing among various biofiltration systems, including details on important designs used in the field.

  10. 40 CFR 63.2292 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designed and maintained to capture all emissions for discharge through a control device. Work practice..., and bagasse. Biofilter means an enclosed control system such as a tank or series of tanks with a fixed.... Catalytic oxidizer means a control system that combusts or oxidizes, in the presence of a catalyst, exhaust...

  11. 40 CFR Table 2 to Subpart Dddd of... - Operating Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minimum temperature established during the performance test Maintain the 3-hour block average THC... representative sample of the catalyst at least every 12 months Maintain the 3-hour block average THC... established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a in the biofilter...

  12. 40 CFR Table 2 to Subpart Dddd of... - Operating Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... minimum temperature established during the performance test Maintain the 3-hour block average THC... representative sample of the catalyst at least every 12 months Maintain the 3-hour block average THC... established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a in the biofilter...

  13. Assessment of Different Biofilter Media Particle Sizes for Ammonia Removal Optimization

    USDA-ARS?s Scientific Manuscript database

    The main objective of this study is to determine a range of particle sizes that provides low resistance to the air flow but also sufficient surface area for microbial attachment, which is needed for higher biofiltration efficiency. This will be done by assessing ammonia removal and pressure drop in ...

  14. AMMONIA REMOVAL AND NITROUS OXIDE PRODUCTION IN GAS-PHASE COMPOST BIOFILTERS

    USDA-ARS?s Scientific Manuscript database

    Biofiltration technology is widely utilized for treating ammonia gas (NH3), with one of its potential detrimental by-products being nitrous oxide (N2O), a greenhouse gas approximately 300 times more reactive to infrared than CO2. The present work intends to provide the relation between NH3 removal d...

  15. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process

    PubMed Central

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930

  16. Upflow bio-filter circuit (UBFC): biocatalyst microbial fuel cell (MFC) configuration and application to biodiesel wastewater treatment.

    PubMed

    Sukkasem, Chontisa; Laehlah, Sunee; Hniman, Adilan; O'thong, Sompong; Boonsawang, Piyarat; Rarngnarong, Athirat; Nisoa, Mudtorlep; Kirdtongmee, Pansak

    2011-11-01

    A biodiesel wastewater treatment technology was investigated for neutral alkalinity and COD removal by microbial fuel cell. An upflow bio-filter circuit (UBFC), a kind of biocatalyst MFC was renovated and reinvented. The developed system was combined with a pre-fermented (PF) and an influent adjusted (IA) procedure. The optimal conditions were operated with an organic loading rate (OLR) of 30.0 g COD/L-day, hydraulic retention time (HRT) of 1.04 day, maintained at pH level 6.5-7.5 and aerated at 2.0 L/min. An external resistance of circuit was set at 10 kΩ. The purposed process could improve the quality of the raw wastewater and obtained high efficiency of COD removal of 15.0 g COD/L-day. Moreover, the cost of UBFC system was only US$1775.7/m3 and the total power consumption was 0.152 kW/kg treated COD. The overall advantages of this invention are suitable for biodiesel wastewater treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Influence of water content on degradation rates for ethanol in biofiltration.

    PubMed

    Auria, R; Aycaguer, A C; Devinny, J S

    1998-01-01

    Treatment of ethanol vapor in a peat biofilter with various initial water contents (70%, 59%, 49%, and 35%) was studied. For water contents ranging from 49% to 70%, elimination capacity was about 30 g/m3/h. For a water content of 35%, elimination capacity decreased to 4 g/m3/h. A low mean CO2 yield coefficient (0.35 g CO2 produced per g ethanol consumed) was found for all of the initial water contents. The value was only 20% of the yield coefficient (1.91 g/g) predicted by stoichiometry. When the packing material was dried from 70% to 59% water content during the biofiltration process, elimination capacity dropped from 27 g/m3/h to 4 g/m3/h. After 24 hours of drying, the biofiltration experiment was restarted and run for two more weeks. During this period, the biofilter did not recover. At 59% water content, the rate of water evaporation was estimated at 59.6 g/m3/h. A simplified mass balance permitted calculation of the biological water production rate, approximately 22.1 g/m3/h.

  18. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration.

    PubMed

    Liu, Bing; Gu, Li; Yu, Xin; Yu, Guozhong; Zhang, Huining; Xu, Jinli

    2012-01-01

    A comprehensive investigation was made in this study on the variation of dissolved organic nitrogen (DON) during a whole backwashing cycle of the biofiltration for drinking water treatment. In such a cycle, the normalized DON concentration (C(effluent)/C(influent)) was decreased from 0.98 to 0.90 in the first 1.5h, and then gradually increased to about 1.5 in the following 8h. Finally, it remained stable until the end of this 24-hour cycle. This clearly 3-stage profile of DON could be explained by three aspects as follows: (1) the impact of the backwashing on the biomass and the microbial activity; (2) the release of soluble microbial products (SMPs) during the biofiltration; (3) the competition between heterotrophic bacteria and nitrifying bacteria. All the facts supported that more DON was generated during later part of the backwashing cycle. The significance of the conclusion is that the shorter backwashing intervals between backwashing for the drinking water biofilter should further decrease the DON concentration in effluent of biofilter. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. Biofiltration kinetics for volatile organic compounds (VOCs) and development of a structure-biodegradability relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govind, R.; Wang, Z.; Bishop, D.F.

    1997-12-31

    In recent years, regulation of hazardous air pollutants under the Clean Air Act and its amendments, has emerged as a major environmental issue. Major sources of volatile organic compounds (VOCs) in air are chemical production plants, manufacturing sites using common solvents, combustion sources, and waste treatment operations, such as waste water treatment plants, vacuum extraction of contaminated soils, and ground water stripping operations. Biofiltration is an emerging technology for treatment of biodegradable volatile organic compounds (VOCs) present in air. In biofiltration, the contaminants are contacted with active microorganisms present either in naturally bioactive materials, such as soil, peat, compost, etc.,more » or immobilized on an inactive support media. Design of biofilters requires information on biodegradation kinetics which controls biofilter size. In this paper, an experimental microbiofilter system is presented which can be used to measure biofiltration kinetics for any volatile organic compound. A mathematical model is used to derive the Monod biokinetic parameters from the experimental data. Finally, a structure-bioactivity relationship is derived for estimating the biofiltration biokinetic parameters for a variety of VOCs.« less

  20. Initial and hourly headloss modelling on a tertiary nitrifying wastewater biofiltration plant.

    PubMed

    Bernier, Jean; Rocher, Vincent; Lessard, Paul

    2016-01-01

    The headloss prediction capability of a wastewater biofiltration model is evaluated on data from a full-scale tertiary nitrifying biofilter unit located in the Paris conurbation (Achères, France; 6,000,000 population equivalent). The model has been previously calibrated on nutrient conversion and TSS filtration observations. In this paper the mass of extracted biofilm during biofilter backwash and the headloss value at the start of an operation cycle are first calibrated on sludge production estimations and relative pressure measurements over the year 2009. The calibrated model is then used on two one-month periods in 2012 for which hourly headloss measurements were acquired. The observed trends are correctly predicted for 2009 but the model exhibits some heavy daily variation that is not found in measurements. Hourly predictions stay close to observations, although the model error rises slightly when the headloss does not vary much. The global model shows that both nutrient conversion and headloss build-up can be reasonably well predicted at the same time on a full-scale plant.

  1. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    PubMed

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Activated Biological Filters (ABF Towers). Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Wooley, John F.

    This instructor's manual contains materials needed to teach a two-lesson unit on activated bio-filters (ABF). These materials include: (1) an overview of the two lessons; (2) lesson plans; (3) lecture outlines (keyed to a set of slides designed for use with the lessons); (4) overhead transparency masters; (5) worksheets for each lesson (with…

  3. Activated Biological Filters (ABF Towers). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Wooley, John F.

    This student manual contains textual material for a two-lesson unit on activated bio-filters (ABF). The first lesson (the sewage treatment plant) examines those process units that are unique to the ABF system. The lesson includes a review of the structural components of the ABF system and their functions and a discussion of several operational…

  4. Loss reduction in a rainbow trout recirculating aquaculture systems (RAS) by periodical disinfection with peracetic acid (PAA)

    USDA-ARS?s Scientific Manuscript database

    In a research rainbow trout (Oncorhynchus mykiss) RAS, two different sized raceways were operated with one common biofilter unit. The larger raceway was stocked with food fish, while the smaller raceway was stocked with juvenile trout. After removal of the food fish, juveniles were moved into free s...

  5. Methods for microbial filtration of fluids

    DOEpatents

    Carman, Margaret L.; Jackson, Kenneth J.; Knapp, Richard B.; Knezovich, John P.; Shah, Nilesh N.; Taylor, Robert T.

    1996-01-01

    Novel methods for purifying contaminated subsurface groundwater are disclosed. The method is involves contacting the contaminated subsurface groundwater with methanotrophic or heterotrophic microorganisms which produce contaminant-degrading enzymes. The microorganisms are derived from surface cultures and are injected into the ground so as to act as a biofilter. The contaminants which may be treated include organic or metallic materials and radionuclides.

  6. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less

  7. Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor.

    PubMed

    Zhang, Pan; Duan, Ji H; Chen, Guang H; Wang, Wei W

    2015-03-06

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity.

  8. Effect of Bed Characters on the Direct Synthesis of Dimethyldichlorosilane in Fluidized Bed Reactor

    PubMed Central

    Zhang, Pan; Duan, Ji H.; Chen, Guang H.; Wang, Wei W.

    2015-01-01

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729

  9. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].

    PubMed

    Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li

    2012-01-01

    Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.

  10. Methods for microbial filtration of fluids

    DOEpatents

    Carman, M.L.; Jackson, K.J.; Knapp, R.B.; Knezovich, J.P.; Shah, N.N.; Taylor, R.T.

    1996-01-30

    Novel methods for purifying contaminated subsurface groundwater are disclosed. The method is involves contacting the contaminated subsurface groundwater with methanotrophic or heterotrophic microorganisms which produce contaminant-degrading enzymes. The microorganisms are derived from surface cultures and are injected into the ground so as to act as a biofilter. The contaminants which may be treated include organic or metallic materials and radionuclides. 8 figs.

  11. Long-term behavior of passively aerated compost methanotrophic biofilter columns.

    PubMed

    Wilshusen, J H; Hettiaratchi, J P A; Stein, V B

    2004-01-01

    The methane oxidation potential of several types of compost methanotrophic biofilter columns were compared in the laboratory over a period of 220 days. The results indicate an increase in methanotrophic activity over a period of about 100 days, up to a maximum of 400 g m(-2) day(-1), and a gradual decline to about 100 g m(-2) day(-1) within the next 120 days. High methane oxidation rates appear to be restricted to a small area of the column, 10-15 cm thick. Based on the laboratory investigations carried out to determine the cause for the decline in methane oxidation rate, it was concluded that the formation of exopolymeric substances (EPS), at the zones of maximum methane oxidation, was responsible for this decline. In monitoring methane oxidation in a column for up to 600 days, it was observed that mixing of the medium after formation of EPS enabled the column to temporarily recover high performance. The results suggest that stable, homogenous compost, with a low C/N and low ammonium content, mixed on a regular basis, could achieve and maintain high methane oxidation efficiencies. Copyright 2004 Elsevier Ltd.

  12. High performance constructed wetlands for cold climates.

    PubMed

    Jenssen, Petter D; Maehlum, Trend; Krogstad, Tore; Vråle, Lasse

    2005-01-01

    In 1991, the first subsurface flow constructed wetland for treatment of domestic wastewater was built in Norway. Today, this method is rapidly becoming a popular method for wastewater treatment in rural Norway. This is due to excellent performance even during winter and low maintenance. The systems can be constructed regardless of site conditions. The Norwegian concept for small constructed wetlands is based on the use of a septic tank followed by an aerobic vertical down-flow biofilter succeeded by a subsurface horizontal-flow constructed wetland. The aerobic biofilter, prior to the subsurface flow stage, is essential to remove BOD and achieve nitrification in a climate where the plants are dormant during the cold season. When designed according to present guidelines a consistent P-removal of > 90% can be expected for 15 years using natural iron or calcium rich sand or a new manufactured lightweight aggregate with P-sorption capacities, which exceeds most natural media. When the media is saturated with P it can be used as soil conditioner and P-fertilizer. Nitrogen removal in the range of 40-60% is achieved. Removal of indicator bacteria is high and < 1000 thermotolerant coliforms/100 ml is normally achieved.

  13. Removal of H{sub 2}S, methyl macapton dimethyl sulfide and dimethyl disulfide with biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, B.; Milligan, D.

    1996-12-31

    A pilot study describes the biofiltration process control that was necessary to remove H{sub 2}S, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide, when mixed in an airstream. A pilot test at a waste water treatment facility was operated over a six month period. During that time H{sub 2}S was removed with very high efficiency at concentrations that reached to 400 ppm{sub v}; H{sub 2}S loading reached as high as 20 gms/m{sup 3}/hr. Methyl mercaptan and the organic sulfides were not removed sufficiently to deodorize the air-stream until a second stage biofilter was added. An odor analysis indicated that the odormore » detection level was approximately 250,000 odor units at the inlet and 1100 odor units at the outlet. The sulfur distribution in the media indicated that elemental sulfur and sulfate is deposited as a byproduct of the H{sub 2}S oxidation. Data from a fall scale biofilter treating H{sub 2}S from a pumping station is also presented. This data shows very efficient removal of H{sub 2}S, no organic reduced sulfur compounds were found in this air-stream.« less

  14. Evaluation of Ficus benjamina wood chip-based fungal biofiltration for the treatment of Tequila vinasses.

    PubMed

    Marco Antonio, Garzón-Zúñiga; Angélica Julieta, Alvillo-Rivera; Esperanza, Ramírez Camperos; Gerardo, Buelna; Gerardo, Díaz-Godínez; Edson Baltazar, Estrada-Arriaga

    2018-03-01

    This study was focused on the application of an aerobic biofiltration (BF) with Ficus benjamina wood chips as support medium, inoculated with two basidiomycete fungi, Phanerochaete chrysosporium (BF 1) and Trametes versicolor (BF 2), to treat Tequila vinasses from a Tequila industry. The biofiltration system was compared with a biofilter system without basidiomycete fungi (BF W), in order to determine the influence of fungi on the treatment of vinasses. Three different vinasses/water ratios (30/70, 40/60, and 50/50) were evaluated. The maximum removals of chemical oxygen demand (COD) obtained during each operation step were 72% (BF 1), 72% (BF 2), and 8% (BF W) for 30 vinasses/70 water; 72% (BF 1), 73% (BF 2), and 66% (BF W) for 40 vinasses/60 water; and 22% (BF 1), 20% (BF 2), and 18% (BF W) for 50 vinasses/50 water. The total organic carbon (TOC) removal was significantly increased using a volumetric organic load of 5.5 kg COD m -3 d -1 . During the operation of the biofilters, the enzymatic activity of laccase was present, even at the step of highest concentration of vinasses.

  15. 454-Pyrosequencing analysis of highly adapted azo dye-degrading microbial communities in a two-stage anaerobic-aerobic bioreactor treating textile effluent.

    PubMed

    Köchling, Thorsten; Ferraz, Antônio Djalma Nunes; Florencio, Lourdinha; Kato, Mario Takayuki; Gavazza, Sávia

    2017-03-01

    Azo dyes, which are widely used in the textile industry, exhibit significant toxic characteristics for the environment and the human population. Sequential anaerobic-aerobic reactor systems are efficient for the degradation of dyes and the mineralization of intermediate compounds; however, little is known about the composition of the microbial communities responsible for dye degradation in these systems. 454-Pyrosequencing of the 16S rRNA gene was employed to assess the bacterial biodiversity and composition of a two-stage (anaerobic-aerobic) pilot-scale reactor that treats effluent from a denim factory. The anaerobic reactor was inoculated with anaerobic sludge from a domestic sewage treatment plant. Due to the selective composition of the textile wastewater, after 210 days of operation, the anaerobic reactor was dominated by the single genus Clostridium, affiliated with the Firmicutes phylum. The aerobic biofilter harbored a diverse bacterial community. The most abundant phylum in the aerobic biofilter was Proteobacteria, which was primarily represented by the Gamma, Delta and Epsilon classes followed by Firmicutes and other phyla. Several bacterial genera were identified that most likely played an essential role in azo dye degradation in the investigated system.

  16. Effects of 21 days of bed rest, with or without artificial gravity, on nutritional status of humans

    PubMed Central

    Zwart, S. R.; Crawford, G. E.; Gillman, P. L.; Kala, G.; Rodgers, A. S.; Rogers, A.; Inniss, A. M.; Rice, B. L.; Ericson, K.; Coburn, S.; Bourbeau, Y.; Hudson, E.; Mathew, G.; DeKerlegand, D. E.; Sams, C. F.; Heer, M. A.; Paloski, W. H.; Smith, S. M.

    2009-01-01

    Spaceflight and bed rest models of microgravity have profound effects on physiological systems, including the cardiovascular, musculoskeletal, and immune systems. These effects can be exacerbated by suboptimal nutrient status, and therefore it is critical to monitor nutritional status when evaluating countermeasures to mitigate negative effects of spaceflight. As part of a larger study to investigate the usefulness of artificial gravity as a countermeasure for musculoskeletal and cardiovascular deficits during bed rest, we tested the hypothesis that artificial gravity would have an effect on some aspects of nutritional status. Dietary intake was recorded daily before, during, and after 21 days of bed rest with artificial gravity (n = 8) or bed rest alone (n = 7). We examined body composition, hematology, general blood chemistry, markers of oxidative damage, and blood levels of selected vitamins and minerals before, during, and after the bed rest period. Several indicators of vitamin status changed in response to diet changes: serum α- and γ-tocopherol and urinary 4-pyridoxic acid decreased (P < 0.001) and plasma β-carotene increased (P < 0.001) in both groups during bed rest compared with before bed rest. A decrease in hematocrit (P < 0.001) after bed rest was accompanied by a decrease in transferrin (P < 0.001), but transferrin receptors were not changed. These data provide evidence that artificial gravity itself does not negatively affect nutritional status during bed rest. Likewise, artificial gravity has no protective effect on nutritional status during bed rest. PMID:19074571

  17. The effect of bedding system selected by manual muscle testing on sleep-related cardiovascular functions.

    PubMed

    Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H

    2013-01-01

    Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.

  18. The Effect of Bedding System Selected by Manual Muscle Testing on Sleep-Related Cardiovascular Functions

    PubMed Central

    Kuo, Terry B. J.; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C. H.

    2013-01-01

    Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT. PMID:24371836

  19. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. Wemore » set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date, with five more circulating in draft form, and several others planned.« less

  20. Neural network models for biological waste-gas treatment systems.

    PubMed

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression coefficient values (R(2)) for the test data set. The results obtained from this modelling work can be useful for obtaining important relationships between different bioreactor parameters and for estimating their safe operating regimes. Copyright © 2011. Published by Elsevier B.V.

  1. Depletion of florfenicol amine in tilapia (Oreochromis sp.) maintained in a recirculating aquaculture system following Aquaflor(R)-medicated feed therapy (20 mg/kg BW/d for 10 days)

    USGS Publications Warehouse

    Gaikowski, Mark P.; Whitsel, Melissa K.; Charles, Shawn; Schleis, Susan M.; Crouch, Louis S.; Endris, Richard G.

    2013-01-01

    Aquaflor® [50% w w−1 florfenicol (FFC)], is approved for use in freshwater-reared warmwater finfish which include tilapia Oreochromis spp. in the United States to control mortality from Streptococcus iniae. The depletion of florfenicol amine (FFA), the marker residue of FFC, was evaluated after feeding FFC-medicated feed to deliver a nominal 20 mg FFC kg−1 BW d−1 dose (1.33× the label use of 15 mg FFC kg−1 BW d−1) to Nile tilapia O. niloticus and hybrid tilapia O. niloticus × O. aureus held in a recirculating aquaculture system (RAS) at production-scale holding densities. Florfenicol amine concentrations were determined in fillets taken from 10 fish before dosing and from 20 fish at nine time points after dosing (from 1 to 240 h post-dosing). Water samples were assayed for FFC before, during and after the dosing period. Parameters monitored included daily feed consumption and biofilter function (levels of ammonia, nitrite and nitrate). Mean fillet FFA concentration decreased from 13.77 μg g−1 at 1-h post dosing to 0.39 μg g−1 at 240-h post dosing. Water FFC concentration decreased from a maximum of 1400 ng mL−1 at 1 day post-dosing to 847 ng mL−1 at 240 h post-dosing. There were no adverse effects noted on fish, feed consumption or biofilter function associated with FFC-medicated feed administration to tilapia.

  2. Depletion of florfenicol amine in tilapia (Oreochromis sp.) maintained in a recirculating aquaculture system following Aquaflor®-medicated feed therapy

    USGS Publications Warehouse

    Gaikowski, Mark P.; Whitsel, Melissa K.; Charles, Shawn; Schleis, Susan M.; Crouch, Louis S.; Endris, Richard G.

    2013-01-01

    Aquaflor® [50% w w−1 florfenicol (FFC)], is approved for use in freshwater-reared warmwater finfish which include tilapia Oreochromis spp. in the United States to control mortality from Streptococcus iniae. The depletion of florfenicol amine (FFA), the marker residue of FFC, was evaluated after feeding FFC-medicated feed to deliver a nominal 20 mg FFC kg−1 BW d−1 dose (1.33× the label use of 15 mg FFC kg−1 BW d−1) to Nile tilapia O. niloticus and hybrid tilapia O. niloticus × O. aureus held in a recirculating aquaculture system (RAS) at production-scale holding densities. Florfenicol amine concentrations were determined in fillets taken from 10 fish before dosing and from 20 fish at nine time points after dosing (from 1 to 240 h post-dosing). Water samples were assayed for FFC before, during and after the dosing period. Parameters monitored included daily feed consumption and biofilter function (levels of ammonia, nitrite and nitrate). Mean fillet FFA concentration decreased from 13.77 μg g−1 at 1-h post dosing to 0.39 μg g−1 at 240-h post dosing. Water FFC concentration decreased from a maximum of 1400 ng mL−1 at 1 day post-dosing to 847 ng mL−1 at 240 h post-dosing. There were no adverse effects noted on fish, feed consumption or biofilter function associated with FFC-medicated feed administration to tilapia.

  3. Removal of geosmin and 2-methylisoborneol by biological filtration.

    PubMed

    Elhadi, S L N; Huck, P M; Slawson, R M

    2004-01-01

    The quality of drinking water is sometimes diminished by the presence of certain compounds that can impart particular tastes or odours. One of the most common and problematic types of taste and odour is the earthy/musty odour produced by geosmin (trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneol). Taste and odour treatment processes including powdered activated carbon, and oxidation using chlorine, chloramines, potassium permanganate, and sometimes even ozone are largely ineffective for reducing these compounds to below their odour threshold concentration levels. Ozonation followed by biological filtration, however, has the potential to provide effective treatment. Ozone provides partial removal of geosmin and MIB but also creates other compounds more amenable to biodegradation and potentially undesirable biological instability. Subsequent biofiltration can remove residual geosmin and MIB in addition to removing these other biodegradable compounds. Bench scale experiments were conducted using two parallel filter columns containing fresh and exhausted granular activated carbon (GAC) media and sand. Source water consisted of dechlorinated tap water to which geosmin and MIB were added, as well as, a cocktail of easily biodegradable organic matter (i.e. typical ozonation by-products) in order to simulate water that had been subjected to ozonation prior to filtration. Using fresh GAC, total removals of geosmin ranged from 76 to 100% and total MIB removals ranged from 47% to 100%. The exhausted GAC initially removed less geosmin and MIB but removals increased over time. Overall the results of these experiments are encouraging for the use of biofiltration following ozonation as a means of geosmin and MIB removal. These results provide important information with respect to the role biofilters play during their startup phase in the reduction of these particular compounds. In addition, the results demonstrate the potential biofilters have in responding to transient geosmin and MIB episodes.

  4. Biofiltration of paint solvent mixtures in two reactor types: overloading by polar components.

    PubMed

    Paca, Jan; Halecky, Martin; Misiaczek, Ondrej; Kozliak, Evguenii I; Jones, Kim

    2012-01-01

    Steady-state performances of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing inlet concentrations of polar solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone and n-butyl acetate, were investigated, along with the system's dynamic responses. Throughout the entire experimentation time, a constant loading rate of aromatic components of 4 g(c)·m(-3)·h(-1) was maintained to observe the interactions between the polar substrates and aromatic hydrocarbons. Under low combined substrate loadings, the BF outperformed TBR not only in the removal of aromatic hydrocarbons but also in the removal of polar substrates. However, increasing the loading rate of polar components above the threshold value of 31-36 g(c)·m(-3)·h(-1) resulted in a steep and significant drop in the removal efficiencies of both polar (except for butyl acetate) and hydrophobic components, which was more pronounced in the BF; so the relative TBR/BF efficiency became reversed under such overloading conditions. A step-drop of the overall OL(POLAR) (combined loading by polar air pollutants) from overloading values to 7 g(c)·m(-3)·h(-1) resulted in an increase of all pollutant removal efficiencies, although in TBR the recovery was preceded by lag periods lasting between 5 min (methyl ethyl ketone) to 3.7 h (acetone). The occurrence of lag periods in the TBR recovery was, in part, due to the saturation of mineral medium with water-soluble polar solvents, particularly, acetone. The observed bioreactor behavior was consistent with the biological steps being rate-limiting.

  5. Study on the biomass and size spectra of bio-particles in vermifilter biofilms.

    PubMed

    Di, Wanyin; Xing, Meiyan

    2018-09-15

    In biological processes of sludge treatment, the sludge yield is closely related to the energy dissipation of entire microbial system. The vermifilter (VF), a novel biofilter, works efficiently due to the introduction of earthworms, which modifies the energy flow pathway through the variations of microbial size structure. For a deep insight into the sludge reduction in the VF, the biomass size spectrum (BSS) was employed to map the energy dissipation in the VF. The results indicated that bio-particles in the size class of [31, 63] μm were reduced most in the excess sludge after the VF treatment. In biofilms, bio-particles in the size class of [31, 63] μm varied most with the filter depth and earthworm density. Eight biomass and size spectra (BSS) were established for all beds of the VF and BF (the control of the VF, without earthworms). The normalized BSS were all linear both in the VF and BF, and their linear regression parameters, the slopes (k) and intercepts (b), varied with the filter depth and the earthworm density. The k and b of the VF were both significantly different from those of the BF. According to the k, the productivity level of largest bio-particles was higher in the VF than in the BF. According to the b, bio-particles at the bottom of size structure could be taken faster in the VF than in the BF. At last, some improvement approaches with some tries were proposed to enhance the sludge treatment capacity of the VF. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of radiation protraction on BED in the case of large fraction dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, V. Y.

    2013-08-15

    Purpose: To investigate the effect of radiation protraction on biologically effective dose (BED) in the case when dose per fraction is significantly greater than the standard dose of 2 Gy.Methods: By using the modified linear-quadratic model with monoexponential repair, the authors investigate the effect of long treatment times combined with dose escalation.Results: The dependences of the protraction factor and the corresponding BED on fraction time were determined for different doses per fraction typical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). In the calculations, the authors consider changes in the BED to the normal tissue under the conditionmore » of fixed BED to the target.Conclusion: The obtained results demonstrate that simultaneous increase in fraction time and dose per fraction can be beneficial for SRS and SBRT because of the related decrease in BED to normal structures while BED to the target is fixed.« less

  7. Effectiveness of bed bug monitors for detecting and trapping bed bugs in apartments.

    PubMed

    Wang, Changlu; Tsai, Wan-Tien; Cooper, Richard; White, Jeffrey

    2011-02-01

    Bed bugs, Cimex lectularius L., are now considered a serious urban pest in the United States. Because they are small and difficult to find, there has been strong interest in developing and using monitoring tools to detect bed bugs and evaluate the results of bed bug control efforts. Several bed bug monitoring devices were developed recently, but their effectiveness is unknown. We comparatively evaluated three active monitors that contain attractants: CDC3000, NightWatch, and a home-made dry ice trap. The Climbup Insect Interceptor, a passive monitor (without attractants), was used for estimating the bed bug numbers before and after placing active monitors. The results of the Interceptors also were compared with the results of the active monitors. In occupied apartments, the relative effectiveness of the active monitors was: dry ice trap > CDC3000 > NightWatch. In lightly infested apartments, the Interceptor (operated for 7 d) trapped similar number of bed bugs as the dry ice trap (operated for 1 d) and trapped more bed bugs than CDC3000 and NightWatch (operated for 1 d). The Interceptor was also more effective than visual inspections in detecting the presence of small numbers of bed bugs. CDC3000 and the dry ice trap operated for 1 d were equally as effective as the visual inspections for detecting very low level of infestations, whereas 1-d deployment of NightWatch detected significantly lower number of infestations compared with visual inspections. NightWatch was designed to be able to operate for several consecutive nights. When operated for four nights, NightWatch trapped similar number of bed bugs as the Interceptors operated for 10 d after deployment of NightWatch. We conclude these monitors are effective tools in detecting early bed bug infestations and evaluating the results of bed bug control programs.

  8. Screening of Fungi for Biodegradation of Volatile Organic Compounds

    DTIC Science & Technology

    2004-04-20

    more-robust alternative to bacteria in biofilter treatment. In the studies described herein, five fungal species, Exophiala lecanii-corni, Mucor ...degrade n-butyl acetate and methyl ethyl ketone but not benzene or p-xylene under the conditions tested. Mucor rouxii was able to use n-butyl...In the studies described herein, five fungal species, Exophiala lecanii-corni, Mucor rouxii (ATCC 44260), Phanerochaete chrysosporium (ATCC 24725

  9. Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using Biofilter, and gene-environment interactions using the PhenX Toolkit.

    PubMed

    Pendergrass, Sarah A; Verma, Shefali S; Holzinger, Emily R; Moore, Carrie B; Wallace, John; Dudek, Scott M; Huggins, Wayne; Kitchner, Terrie; Waudby, Carol; Berg, Richard; McCarty, Catherine A; Ritchie, Marylyn D

    2013-01-01

    Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, 2580 cataract cases and 1367 controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) Biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 529,431 single nucleotide polymorphisms (SNPs) with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using the Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 5 statistically significant models with an interaction term with p-value < 0.05, as well as an overall model with p-value < 0.05 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use; these environmental factors have been previously associated with the formation of cataracts. We found a total of 288 models that exhibit an interaction term with a p-value ≤ 1×10(-4) associated with cataract status. Our results show these approaches enable advanced searches for epistasis and gene-environment interactions beyond GWAS, and that the EHR based approach provides an additional source of data for seeking these advanced explanatory models of the etiology of complex disease/outcome such as cataracts.

  10. Ethylene Removal at Low Temperatures under Biofilter and Batch Conditions

    PubMed Central

    Elsgaard, Lars

    2000-01-01

    Removal of the plant hormone ethylene (C2H4) is often required by horticultural storage facilities, which are operated at temperatures below 10°C. The aim of this study was to demonstrate an efficient, biological C2H4 removal under such low-temperature conditions. Peat-soil, acclimated to degradation of C2H4, was packed in a biofilter (687 cm3) and subjected to an airflow (∼73 ml min−1) with 2 ppm (μl liter−1) C2H4. The C2H4 removal efficiencies achieved at 20, 10, and 5°C, respectively, were 99.0, 98.8, and 98.4%. This corresponded to C2H4 levels of 0.022 to 0.032 ppm in the biofilter outlet air. At 2°C, the average C2H4 removal efficiency dropped to 83%. The detailed temperature response of C2H4 removal was tested under batch conditions by incubation of 1-g soil samples in a temperature gradient ranging from 0 to 29°C with increments of 1°C. The C2H4 removal rate was highest at 26°C (0.85 μg of C2H4 g [dry weight]−1 h−1), but remained at levels of 0.14 to 0.28 μg of C2H4 g (dry weight)−1 h−1 at 0 to 10°C. At 35 to 40°C, the C2H4 removal rate was negligible (0.02 to 0.06 μg of C2H4 g [dry weight]−1 h−1). The Q10 (i.e., the ratio of rates 10°C apart) for C2H4 removal was 1.9 for the interval 0 to 10°C. In conclusion, the present results demonstrated microbial C2H4 removal, which proceeded at 0 to 2°C and produced a moderately psychrophilic temperature response. PMID:10966403

  11. Effects of ultralow oxygen and vacuum treatments on bed bug (Heteroptera: Cimicidae) survival

    USDA-ARS?s Scientific Manuscript database

    Control of bed bugs has always been problematic, balancing among efficacy, safety, and cost. In this study, ultralow oxygen (ULO) and vacuum treatments were tested on bed bugs to develop a safer, effective, and environmental friendly solution to bed bug infestations. ULO treatments were establishe...

  12. Effect of bed height and use of hands on trunk angular velocity during the sit-to-stand transfer.

    PubMed

    Lindemann, Ulrich; van Oosten, Leon; Evers, Jordi; Becker, Clemens; van Dieen, Jaap H; van Lummel, Rob C

    2014-01-01

    The ability to rise from a chair or bed is critical to an individual's quality of life because it determines functional independence. This study was to investigate the effect of bed height and use of hands on trunk angular velocity and trunk angles during the sit-to-stand (STS) performance. Twenty-four older persons (median age 74 years) were equipped with a body-fixed gyroscopic sensor and stood up from a bed adjusted to different heights, with and without the use of hands at each height. Peak angular velocity and trunk range of motion decreased with increasing bed height (all p ≤ 0.038) and were lower using hands during STS transfer indicating less effort. In conclusion, gyroscopic sensor data of the STS transfer of older persons show differences as an effect of bed height and use of hands. These results provide the rationale for recommending a relatively high bed height for most of the older persons. To minimise the effort during sit-to-stand transfer performance from bed, it is necessary to understand the effect of bed height and use of hands. It is concluded that a relatively high bed height and the use of hands is helpful for most of the older persons during sit-to-stand transfer.

  13. Use of radiation protraction to escalate biologically effective dose to the treatment target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, V. Y.; Spradlin, G. S.; Department of Mathematics, Embry-Riddle University, Daytona Beach, Florida 32114

    2011-12-15

    Purpose: The aim of this study is to evaluate how simultaneously increasing fraction time and dose per fraction affect biologically effective dose for the target (BED{sub tar}) while biologically effective dose for the normal tissue (BED{sub nt}) is fixed. Methods: In this investigation, BED{sub tar} and BED{sub nt} were studied by assuming mono-exponential repair of sublethal damage with tissue dependent repair half-time. Results: Our results demonstrate that under certain conditions simultaneously increasing fraction time and dose per fraction result in increased BED{sub tar} while BED{sub nt} is fixed. The dependence of biologically effective dose on fraction time is influenced bymore » the dose rate. In this investigation we analytically determined time-varying dose rate R-tilde which minimizes BED. Changes in BED with fraction time were compared for constant dose rate and for R-tilde. Conclusions: A number of recent experimental and theoretical studies have demonstrated that slow delivery of radiation (known as radiation protraction) leads to reduced therapeutic effect because of increased repair of sublethal damage. In contrast, our analysis shows that under certain conditions simultaneously increasing fraction time and dose per fraction are radiobiologically advantageous.« less

  14. Tracking bed bugs (Cimex lectularius): a study of the effect of physiological and extrinsic factors on the response to bed bug-derived volatiles.

    PubMed

    Weeks, E N I; Logan, J G; Birkett, M A; Pickett, J A; Cameron, M M

    2013-02-01

    The common bed bug, Cimex lectularius, feeds on the blood of mammal and bird hosts, and is a pest of global importance. Semiochemicals are chemicals involved in animal communication that may affect behaviour and/or physiology. Attractive semiochemicals that play a role in mediating bed bug behaviour could be exploited for the development of a highly effective novel monitoring device. Tracking software was used to record the response of bed bugs to volatiles from paper previously exposed to conspecific bugs in a still-air olfactometer illuminated by infrared lights, through a variety of activity variables. The effect of time of day as an extrinsic factor, and sex, stage, mating status and nutritional status as physiological factors on the response of bed bugs to the volatiles was examined. Bed bugs of both sexes and all stages responded to the volatiles from bed bug-exposed papers, showing significant attraction and orientation towards the volatile source whether they were starved or engorged. Confirmation that the physiological factors examined do not affect the response of bed bugs to the volatiles from bed bug-exposed papers provides evidence that these bed bug-derived volatiles contain aggregation cues, as semiochemicals that promote aggregation should by definition be detected by both sexes and all life stages. A device baited with such semiochemicals could play a major role in limiting the impact of the current bed bug resurgence by enabling timely detection of infestations, along with quantitative evaluation of control and effective surveillance of the geographical distribution of the pest species.

  15. Flow resistance under conditions of intense gravel transport

    USGS Publications Warehouse

    Pitlick, John

    1992-01-01

    A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.

  16. Atropine unmasks bed-rest effect - A spectral analysis of cardiac interbeat intervals

    NASA Technical Reports Server (NTRS)

    Goldberger, Ary L.; Goldwater, Danielle; Bhargava, Valmik

    1986-01-01

    Heart rate spectral data obtained for 10 male subjects between 35-49 years following orthostatic tolerance testing with lower body negative pressure prebed rest and after 7-10 days of bed rest, while on placebo and after intravenous atropine are analyzed. Comparison of the spectral atropine rms for subjects prebed rest and after bed rest reveal a decrease from 63 + or - 24 ms to 40 + or - 23 ms. It is observed that heart rate interval variability for subjects after bed rest and with atropine is reduced; the heart rate at bed rest with atropine is increased from 70.4 + or - 12.4 beats/min prebed rest to 83.7 + or - 18.9 beats/min; and the exercise tolerance time for subjects in the atropine prebed-rest phase (658 + or - 352 s) is higher than the bed-rest phase (505 + or - 252 s). It is noted that bed rest impairs the cardiovascular capacity to adaptively modulate physiological responses, atropine exposes bed-rest deconditioning effects, and spectral analysis is useful for studying the effects of bed-rest deconditioning on cardiac dynamics.

  17. Clinical phenotype of bipolar disorder with comorbid binge eating disorder

    PubMed Central

    McElroy, Susan L.; Crow, Scott; Biernacka, Joanna M.; Winham, Stacey; Geske, Jennifer; Cuellar Barboza, Alfredo B.; Prieto, Miguel L.; Chauhan, Mohit; Seymour, Lisa R.; Mori, Nicole; Frye, Mark A.

    2017-01-01

    Background To explore the relationship between binge eating disorder (BED) and obesity in patients with bipolar disorder (BP). Methods 717 patients participating in the Mayo Clinic Bipolar Biobank completed structured diagnostic interviews and questionnaires for demographic and illness-related variables. They also had weight and height measured to determine body mass index (BMI). The effects of BED and obesity (BMI≥30 kg/m2), as well as their interaction, were assessed on one measure of general medical burden and six proxies of psychiatric illness burden. Results 9.5% of patients received a clinical diagnosis of BED and 42.8% were obese. BED was associated with a significantly elevated BMI. Both BED and obesity were associated with greater psychiatric and general illness burden, but illness burden profiles differed. After controlling for obesity, BED was associated with suicidality, psychosis, mood instability, anxiety disorder comorbidity, and substance abuse comorbidity. After controlling for BED status, obesity was associated with greater general medical comorbidity, but lower substance abuse comorbidity. There were no significant interaction effects between obesity and BED, or BMI and BED, on any illness burden outcome. Limitations There may have been insufficient power to detect interactions between BED and obesity. Conclusions: Among patients with BP, BED and obesity are highly prevalent and correlated, but associated with different profiles of enhanced illness burden. As the association of BED with greater psychiatric illness burden remained significant even after accounting for the effect of obesity, BP with BED may represent a clinically important sub-phenotype. PMID:23742827

  18. Effect of Moxidectin on Bed Bug Feeding, Development, Fecundity, and Survivorship.

    PubMed

    Zha, Chen; Wang, Changlu; Sheele, Johnathan Michael

    2017-09-30

    The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is a blood-feeding ectoparasite which experienced world-wide resurgence during recent decades. The control of bed bugs is often challenging, due to their cryptic nature and resistance to commonly used insecticides. In this study, we evaluated the effect of the antiparasitic drug moxidectin on bed bug survival, reproduction, and development. The LC 50 (lethal concentration to kill half the members of a tested population) of moxidectin against bed bug male adults, female adults, and large nymphs were 52.7 (95% CI (confidence interval): 39.5-70.8), 29.3 (95% CI: 20.7-40.5), and 29.1 ng/mL (95% CI: 23.3-35.3), respectively. Moxidectin (≥ 25 ng/mL) reduced egg laying of bed bug females, but showed no significant effect on egg hatching. One time feeding on rabbit blood containing 20 and 40 ng/mL moxidectin showed no negative effects in bed bug feeding and blood meal ingestion, but significantly reduced digestion rates and nymph molting rates. Although moxidectin at concentrations of 20 and 40 ng/mL only caused moderate mortality in bed bugs, it significantly interrupted digestion, development, and oviposition of survived bed bugs for at least one week after feeding. Moxidectin is a promising supplement of the existing bed bug control materials if its use on humans can be approved in the future.

  19. Effect of bedding materials on concentration of odorous compounds and Escherichia coli in beef cattle bedded manure packs

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine the effect of bedding material (corn stover, soybean stover, wheat straw, switchgrass, wood chips, wood shavings, corn cobs, and shredded paper) on concentration of odorous volatile organic compounds (VOC) in bedded pack material, and to determine the e...

  20. Effects Of Exercise During Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Bernauer, Edmund M.

    1993-01-01

    Pair of reports adds to growing body of knowledge of physical deconditioning caused by prolonged bed rest and effectiveness of various exercise regimens in preserving or restoring fitness. Major objective to determine what regimens to prescribe to astronauts before flight, during prolonged weightlessness, and immediately before returning to Earth. Knowledge also benefits patients confined by illness or injury. First report discusses experiment on effects of two types of periodic, intense, short-duration exercise during bed rest. Experiment also discussed in documents "Effects Of Exercise During Prolonged Bed Rest" (ARC-12190), and "Isotonic And Isokinetic Exercise During Bed Rest" (ARC-12180). Second report reviews knowledge acquired with view toward development of protocols for exercise regimens.

  1. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia-loaded biofilter.

    PubMed

    Yasuda, T; Waki, M; Fukumoto, Y; Hanajima, D; Kuroda, K; Suzuki, K; Matsumoto, T; Uenishi, H

    2017-12-01

    To obtain insight into the complex behaviour of denitrifying and total bacterial groups during the nitrogen accumulation process in an ammonia-loaded biofiltration system. Denitrifying and total bacterial communities in a laboratory-scale rockwool biofilter with intermittent water recirculation were analysed by using denaturing gradient gel electrophoresis targeting nosZ and metabarcoding sequencing of the 16S rRNA gene. Gene abundance was evaluated by quantitative PCR. The nosZ number increased from 6·59 × 10 6 to 3·33 × 10 8 copies per gram dry sample over the 436 days of operation, during which nitrogen mass balance errors increased to 39%. The nosZ sequences associated with the genera Castellaniella, Hyphomicrobium and Pseudomonas were detected. Metabarcoding sequencing analysis indicated that the proportions of the genera for which at least one denitrifying strain or species possessing nosZ had been characterized corresponded well to the nitrogen loss. In addition, the genus Nitrosococcus (γ-proteobacteria) increased its relative abundance at days 317 and 436. The increased proportion of denitrifying bacteria in this ammonia-loaded biofiltration system could be related to the nitrogen loss. These results will help to clarify the complex behaviour of nitrifiers and denitrifiers within ammonia-loaded biofiltration systems. © 2017 The Society for Applied Microbiology.

  2. Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter.

    PubMed

    Ferraz, F M; Povinelli, J; Pozzi, E; Vieira, E M; Trofino, J C

    2014-08-01

    This study used a pilot-scale submerged aerobic biofilter (SAB) to evaluate the co-treatment of domestic wastewater and landfill leachate that was pre-treated by air stripping. The leachate tested volumetric ratios were 0, 2, and 5%. At a hydraulic retention time of 24 h, the SAB was best operated with a volumetric ratio of 2% and removed 98% of the biochemical oxygen demand (BOD), 80% of the chemical oxygen demand (COD) and dissolved organic carbon (DOC), and 90% of the total suspended solids (TSS). A proposed method, which we called the "equivalent in humic acid" (Eq.HA) approach, indicated that the hardly biodegradable organic matter in leachate was removed by partial degradation (71% of DOC Eq.HA removal). Adding leachate at a volumetric ratio of 5%, the concentration of the hardly biodegradable organic matter was decreased primarily as a result of dilution rather than biodegradation, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. The total ammoniacal nitrogen (TAN) was mostly removed (90%) by nitrification, and the SAB performances at the volumetric ratios of 0 and 2% were equal. For the three tested volumetric ratios of leachate (0, 2, and 5%), the concentrations of heavy metals in the treated samples were below the local limits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Discrete Element Modeling of the Mobilization of Coarse Gravel Beds by Finer Gravel Particles

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Tan, D.

    2012-12-01

    Recent research has shown that the addition of fine gravel particles to a coarse bed will mobilize the coarser bed, and that the effect is sufficiently strong that a pulse of fine gravel particles can mobilize an impacted coarser bed. Recent flume experiments have demonstrated that the degree of bed mobilization by finer particles is primarily dependent on the particle size ratio of the coarse and fine particles, rather than absolute size of either particle, provided both particles are sufficiently large. However, the mechanism behind the mobilization is not understood. It has previously been proposed that the mechanism is driven by a combination of geometric effects and hydraulic effects. For example, it has been argued that smaller particles fill in gaps along the bed, resulting in a smoother bed over which the larger particles are less likely to be disentrained and a reduced near-bed flow velocity and subsequent increased drag on protruding particles. Altered near-bed turbulence has also been cited as playing an important role. We perform simulations using the discrete element method with one-way fluid-solid coupling to conduct simulations of mobilization of a gravel bed by fine gravel particles. By independently and artificially controlling average and fluctuating velocity profiles, we systematically investigate the relative role that may be played by particle-particle interactions, average near-bed velocity profiles, and near-bed turbulence statistics. The simulations indicate that the relative importance of these mechanisms changes with the degree of mobilization of the bed. For higher bed mobility similar to bed sheets, particle-particle interactions, plays a significant role in an apparent rheology in the bed sheets, not unlike that observed in a dense granular flow of particles of different sizes. For conditions closer to a critical shear stress for bedload transport, the near-bed velocity profiles and turbulence statistics become increasingly important.

  4. The association between number of doctors per bed and readmission of elderly patients with pneumonia in South Korea.

    PubMed

    Lee, Joo Eun; Kim, Tae Hyun; Cho, Kyoung Hee; Han, Kyu-Tae; Park, Eun-Cheol

    2017-06-08

    There is an urgent need to reduce readmission of patients with pneumonia and improve quality of care. To assess the association between hospital resources and quality of care, we examined the effect of number of doctors per bed on 30-day readmission and investigated the combined effect of number of doctors per bed and number of beds. We used nationwide cohort sample data of health insurance claims by the National Health Insurance Service (NHIS) from 2002 to 2013. Pneumonia admissions to acute care hospitals among 7446 inpatients older than 65 were examined. We conducted a multivariate Cox proportional hazard model to analyze the association between the number of doctors per bed and 30-day readmission, as well as that of pneumonia-specific 30-day readmission with the combined effects of number of doctors per bed and number of beds. Overall, 1421 (19.1%) patients were readmitted within 30 days and 756 (11.2%) patients were readmitted for pneumonia within 30 days. Patients with pneumonia treated by very low or low number of doctors per bed showed higher readmission (pneumonia-specific readmission: hazard ratio [HR] = 1. 406, 95% confidence interval [CI] = 1.072-1.843 for low number of doctors per bed; all-cause readmissions: HR = 1.276, 95% CI = 1.026-1.587 for very low number of doctors per bed, and HR = 1.280, 95% CI = 1.064-1.540 for low number of doctors per bed). This empirical study showed that patients with pneumonia cared for in hospitals with more doctors were less likely to be readmitted. Pneumonia-specific 30-day readmission was also significantly associated with the combined effect of the number of doctors and the number of hospital beds.

  5. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  6. Potential population growth and harmful effects on humans from bed bug populations exposed to different feeding regimes.

    PubMed

    Pereira, R M; Taylor, A S; Lehnert, M P; Koehler, P G

    2013-06-01

    Effects of host availability and feeding period on bed bugs, Cimex lectularius (L.) (Hemiptera: Cimicidae), were measured. Population growth and the potential harmful effect of bed bug populations on human hosts were modelled. Bloodmeal sizes were affected by both feeding length and frequency, with >2-fold difference between insects fed daily or weekly. Blood consumption increased >2-fold between bed bugs fed occasionally and often, and 1.5-fold between occasional and daily feeding. Bed bugs fed more often than once a week, potentially every 2-4 days. Egg production was associated with nutrition, being strongly correlated with blood consumption in the previous week. Bed bug populations can grow under different feeding regimes and are hard to control with <80% mortality. Bed bugs can survive and grow even in locations with a limited blood supply, where bed bug persistence may be important for the continual spread of populations. Persistence in non-traditional locations and a potential association with human pathogens increase the health risks of bed bugs. Potential blood loss as a result of a bed bug can have serious consequences because uncontrolled populations can reach harmful levels in 3-8 months. The reproduction potential of bed bug populations suggests serious consequences to human health and the need for efficacious control measures. © 2012 The Royal Entomological Society.

  7. Efficacy of three different steamers for control of bed bugs (Cimex lectularius L.).

    PubMed

    Wang, Desen; Wang, Changlu; Wang, Guohong; Zha, Chen; Eiden, Amanda L; Cooper, Richard

    2018-04-15

    Bed bugs, Cimex lectularius L., have become one of the most difficult urban pests to control. Steam treatment is reported to be an effective method to kill bed bugs and is considered to be an important component of bed bug integrated pest management (IPM). We evaluated and compared the efficacy of two affordable consumer-grade commercial steamers to a commonly used professional-grade steamer for killing bed bugs. In laboratory experiments, the consumer-grade steamer at an affordable price achieved the same high control efficacy as the professional-grade steamer for treating bed bugs exposed on mattresses (100% bed bug mortality), located beneath a fabric cover (>89% bed bug mortality), or hiding in cracks (100% bed bug mortality). Bed bugs located behind a leather cover did not suffer significant mortality from steam treatment regardless of the type of steamers used and treatment duration. Proper use of steamers can kill all life stages of bed bugs. Affordable consumer-grade steamers are as effective as professional-grade steam machines for eliminating bed bugs resting on mattresses, hiding behind fabric materials, or in cracks. This article is protected by copyright. All rights reserved.

  8. Efficient phosphorus management practices in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.; Alvarez, O.; Tootoonchi, M.; Capasso, J.

    2016-12-01

    In the 450,000 acres of the Everglades Agricultural Area (EAA) of South Florida, farming practices have long been mindful of phosphorus (P) management as it relates to sufficiency and efficiency of P utilization. Over two decades of P best management practices have resulted in 3001 metric-ton of P load reduction from the EAA to downstream ecosystems. During the summer, more than 50,000 acres of fallow sugarcane land is available for rice production. The net value of growing flooded rice in the EAA as a rotational crop with sugarcane far exceeds its monetary return. Soil conservation, improvement in tilth and P load reduction are only some of the benefits. With no P fertilizer applied, a two-year field trial on flooded rice showed improved outflow P concentrations by up to 40% as a result of particulate setting and plant P uptake. Harvested whole grain rice can effectively remove a significant amount of P from a rice field per growing season. In parts of the EAA where soils are sandy, the application of using locally derived organic amendments as potential P fertilizer has gained interest over the past few years. The use of local agricultural and urban organic residues as amendments in sandy soils of South Florida provide options to enhance soil properties and improve sugarcane yields, while reducing waste and harmful effects of agricultural production on the environment. A lysimeter study conducted to determine the effect of mill ash and three types of biochar (rice hulls, yard waste, horse bedding) on sugarcane yields, soil properties, and drainage water quality in sandy soils showed that mill ash and rice hull biochar increased soil TP, Mehlich 3-P (M3-P), and cation exchange capacity (CEC) compared to the control. TP and M3-P content remained constant after 9 months, CEC showed a significant increase over time with rich hull biochar addition. Future projects include the utilization of aquatic vegetation, such as chara and southern naiad as bio-filters in farm ditches to reduce P load. This will be achieved by circulating high P concentration farm canal water through the ditches prior to being discharged off site. Optimizing the flow through the ditches will allow the aquatic vegetation to uptake P. The vegetation will ultimately be harvested and incorporated back on to the fields.

  9. Effect of Moxidectin on Bed Bug Feeding, Development, Fecundity, and Survivorship

    PubMed Central

    Zha, Chen; Sheele, Johnathan Michael

    2017-01-01

    The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is a blood-feeding ectoparasite which experienced world-wide resurgence during recent decades. The control of bed bugs is often challenging, due to their cryptic nature and resistance to commonly used insecticides. In this study, we evaluated the effect of the antiparasitic drug moxidectin on bed bug survival, reproduction, and development. The LC50 (lethal concentration to kill half the members of a tested population) of moxidectin against bed bug male adults, female adults, and large nymphs were 52.7 (95% CI (confidence interval): 39.5–70.8), 29.3 (95% CI: 20.7–40.5), and 29.1 ng/mL (95% CI: 23.3–35.3), respectively. Moxidectin (≥ 25 ng/mL) reduced egg laying of bed bug females, but showed no significant effect on egg hatching. One time feeding on rabbit blood containing 20 and 40 ng/mL moxidectin showed no negative effects in bed bug feeding and blood meal ingestion, but significantly reduced digestion rates and nymph molting rates. Although moxidectin at concentrations of 20 and 40 ng/mL only caused moderate mortality in bed bugs, it significantly interrupted digestion, development, and oviposition of survived bed bugs for at least one week after feeding. Moxidectin is a promising supplement of the existing bed bug control materials if its use on humans can be approved in the future. PMID:28973981

  10. Biological nutrient recovery from culturing of pearl gourami (Trichogaster leerii ) by cherry tomato (Solanum lycopersicum) in aquaponic system.

    PubMed

    Makhdom, Shima; Shekarabi, Seyed Pezhman Hosseini; Shamsaie Mehrgan, Mehdi

    2017-09-01

    The possibility of using different densities of cherry tomato as a bio-filter in a simple media-based aquaponic system to recycle nutrients from pearl gourami intensive culture wastewater was evaluated. Water quality parameters including total ammonia nitrogen (TAN), nitrite (NO 2 - ), nitrate (NO 3 - ), phosphate (PO 4 3- ), pH, and dissolved oxygen (DO) were determined in outlet of the aquaponic system during a 60-day experimental period. Cherry tomato was planted at four densities of 0 (control), 3 (T1), 6 (T2), and 9 (T3) plants per aquaponic unit with a constant fish stock density. Each treatment was equipped with aquaponic systems containing fish tank and plant growing bed. Productivity of the system was measured by recording the fish and plant growth indices. The potential in removing nitrogen of the water was the highest in T3 (with nine plants) compared to other treatments (p < 0.05). The highest concentrations of TAN (6.59 ± 0.241 mg/L), nitrite (0.42 ± 0.005 mg/L), nitrate (0.45 ± 0.162 mg/L), and phosphate (30.47 ± 0.371 mg/L) were obtained in control group, while the lowest concentrations of TAN (0.05 ± 0.091 mg/L), NO 2 - (0.11 ± 0.008 mg/L), NO 3 - (29.77 ± 0.205 mg/L), and phosphate (18.59 ± 0.185 mg/L) were detected in T3 (p < 0.05). The maximum fish weight gain was recorded in T3 (26 ± 0.014%) with 1.26 ± 0.059 FCR, and the lowest fish weight gain was measured in the control group (15 ± 0.024%) with 2.19 ± 0.446 FCR (p < 0.05). Total plant length gain was reached at the maximum value in T3 (74.70 ± 1.153 cm) in comparison to other groups (p < 0.05). It was concluded that small-scale aquaponic growing bed system can be created a sustainable ecosystem which both the plant and fish can thrive and suitable for home-made production system.

  11. Negative affect mediates the relationship between interpersonal problems and binge-eating disorder symptoms and psychopathology in a clinical sample: a test of the interpersonal model.

    PubMed

    Ivanova, Iryna V; Tasca, Giorgio A; Hammond, Nicole; Balfour, Louise; Ritchie, Kerri; Koszycki, Diana; Bissada, Hany

    2015-03-01

    This study evaluated the validity of the interpersonal model of binge-eating disorder (BED) psychopathology in a clinical sample of women with BED. Data from a cross-sectional sample of 255 women with BED were examined for the direct effects of interpersonal problems on BED symptoms and psychopathology, and indirect effects mediated by negative affect. Structural equation modelling analyses demonstrated that higher levels of interpersonal problems were associated with greater negative affect, and greater negative affect was associated with higher frequency of BED symptoms and psychopathology. There was a significant indirect effect of interpersonal problems on BED symptoms and psychopathology mediated through negative affect. Interpersonal problems may lead to greater BED symptoms and psychopathology, and this relationship may be partially explained by elevated negative affect. The results of the study are the first to provide support for the interpersonal model of BED symptoms and psychopathology in a clinical sample of women. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  12. The mental health impact of bed bug infestations: a scoping review.

    PubMed

    Ashcroft, Rachelle; Seko, Yukari; Chan, Lai Fong; Dere, Jessica; Kim, Jaemin; McKenzie, Kwame

    2015-11-01

    We conducted a scoping review to identify and summarize the current state of knowledge regarding the mental health effects associated with bed bugs. We employed a five-stage scoping review framework, to systematically identify and review eligible articles. Eligibility criteria included a focus on bed bug infestations and reference to mental health impacts. Descriptive information was then extracted from each article, including the specific mental health effects cited. An initial search yielded 920 unique articles on the topic of bed bugs. Of these, 261 underwent abstract review, and 167 underwent full-text review. Full-text review and subsequent review of reference lists yielded a final sample of 51 articles. Numerous mental health effects were linked to bed bug infestations, including severe psychiatric symptoms. However, the majority (n = 31) of the articles were commentary papers; only five original research articles were identified. Although significant mental health effects are often linked to bed bugs, such discussions remain largely anecdotal. Despite recognition that the impact of bed bugs constitutes an important public health concern, little empirical evidence currently exists on this topic.

  13. Bed bug aggregation pheromone finally identified.

    PubMed

    Gries, Regine; Britton, Robert; Holmes, Michael; Zhai, Huimin; Draper, Jason; Gries, Gerhard

    2015-01-19

    Bed bugs have become a global epidemic and current detection tools are poorly suited for routine surveillance. Despite intense research on bed bug aggregation behavior and the aggregation pheromone, which could be used as a chemical lure, the complete composition of this pheromone has thus far proven elusive. Here, we report that the bed bug aggregation pheromone comprises five volatile components (dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal, 2-hexanone), which attract bed bugs to safe shelters, and one less-volatile component (histamine), which causes their arrestment upon contact. In infested premises, a blend of all six components is highly effective at luring bed bugs into traps. The trapping of juvenile and adult bed bugs, with or without recent blood meals, provides strong evidence that this unique pheromone bait could become an effective and inexpensive tool for bed bug detection and potentially their control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of bed rest and exercise on body balance

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1974-01-01

    A battery of 11 body balance tests was administered to 7 men before and after 14 days of bedrest. Seven men who had not undergone bed rest served as controls. During bed rest, each subject underwent daily either isotonic, isometric, or no leg exercise. The results showed that, for the bed-rested no exercise, isotonic exercise, and isometric exercise groups, 2 weeks of bed rest produces significant body balance decrements on 3, 4, and 5 of the 11 tests, respectively. Daily leg exercise did not prevent the debilitating effects of bed rest on body balance. After bed rest, balance skill was relearned rapidly so that in most tests, performance had reached prebed-rest levels by the third recovery day. These data suggest that balance impairment is not due to loss of muscular strength in the legs but, perhaps, to a bed-rest-related change in the neurally coded information to postural control centers.

  15. Bacillus cereus in free-stall bedding.

    PubMed

    Magnusson, M; Svensson, B; Kolstrup, C; Christiansson, A

    2007-12-01

    To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log(10) B. cereus spores, 5.5 log(10) B. cereus, and 6.7 log(10) coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows' udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the beds had increased about 2 log units and were as high as they were before bed replacement. Therefore, free-stall management could, to a limited extent, reduce the content of B. cereus spores in the beds by daily bedding and entire bed replacement.

  16. Pharmacologic counter measures minimizing post-space flight orthostatic intolerance. [bed rest, drug disposition, and physiological function

    NASA Technical Reports Server (NTRS)

    Harrison, D. C.; Kates, R.

    1982-01-01

    The effect of bed rest on drug disposition and physiological function was investigated as part of a project to determine the cardiovascular effects of space flight. One group of subjects was given doses of lidocane, penicillin-G, and ICG during a control period and following seven days of bed rest. Cardiac function was evaluated by echo-cardiography. Renal function was evaluated in a second group before and after several days of bed rest. Inulin, para-aminohippurate, and dextran clearances were studied. In the first group, the post-bed rest parameters were not statistically different from the pre-bed rest valves. In the second study, renal function did not change significantly after seven days of bed rest. Plans for future research are reviewed.

  17. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.G.; Yun, S.H.; Chung, D.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the deliverymore » performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)« less

  18. A survey of attitudes, beliefs, and behavior regarding tanning bed use, sunbathing, and sunscreen use.

    PubMed

    Mawn, V B; Fleischer, A B

    1993-12-01

    Although cosmetic tanning and unprotected solar exposure are common, little is known about general attitudes, beliefs, and behavior regarding sunbathing, sunscreen use, and tanning salon use. We sought to determine the frequency of UV exposure in a select sample and to assess the knowledge and beliefs of the effects of UV irradiation. A written, anonymous questionnaire was distributed to a sample of 477 persons in a shopping mall, at a social gathering, and on a vacation cruise ship. The instrument explored demographic information, sunscreen use, sunbathing habits, tanning bed use, and cutaneous solar effects. Forty-two percent of respondents seldom or never used sunscreen, and 33% sunbathed at least once a week. Although the three sample populations differed in education, sunbathing habits, sunscreen use, and tanning bed use, they were equally informed about UV light hazards. Compared with those who had not used tanning beds, tanning bed users were more likely to be female and more knowledgeable about the long-term effects of UV. Tanning beds were most commonly used in tanning or hair salons, (mean 23 +/- 7 minutes at 2.3 +/- 1.1 times per week). Reported positive psychologic sequelae from tanning bed use were more common than negative physical sequelae. At least 10% would continue to use tanning beds if these were proved to cause skin cancer. In this select sample, sunbathing and tanning bed use were common. No group surveyed universally practiced sun protection and avoidance. Clientele of tanning beds may be aware of the damaging effects of the sun, but may not be aware that tanning bed use is associated with skin damage.

  19. Attentional bias for food cues in binge eating disorder.

    PubMed

    Schmitz, Florian; Naumann, Eva; Trentowska, Monika; Svaldi, Jennifer

    2014-09-01

    The aim of the present study was to investigate an attentional bias toward food stimuli in binge eating disorder (BED). To this end, a BED and a weight-matched control group (CG) completed a clarification task and a spatial cueing paradigm. The clarification task revealed that food stimuli were faster detected than neutral stimuli, and that this difference was more pronounced in BED than in the CG. The spatial cueing paradigm indicated a stimulus engagement effect in the BED group but not in the CG, suggesting that an early locus in stimulus processing contributes to differences between BED patients and obese controls. Both groups experienced difficulty disengaging attention from food stimuli, and this effect was only descriptively larger in the BED group. The effects obtained in both paradigms were found to be correlated with reported severity of BED symptoms. Of note, this relationship was partially mediated by the arousal associated with food stimuli relative to neutral stimuli, as predicted by an account on incentive sensitization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Experimental study and large eddy simulation of effect of terrain slope on marginal burning in shrub fuel beds

    Treesearch

    Xiangyang Zhou; Shankar Mahalingam; David Weise

    2007-01-01

    This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient...

  1. Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.

  2. Practical aspects and uncertainty analysis of biological effective dose (BED) regarding its three-dimensional calculation in multiphase radiotherapy treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauweloa, Kevin I., E-mail: Kauweloa@livemail.uthscsa.edu; Gutierrez, Alonso N.; Bergamo, Angelo

    2014-07-15

    Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximatemore » BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning systems due to the inconsistent accuracy of the approximate multiphase BED equation in most of the clinical situations.« less

  3. Bone metabolism and nutritional status during 30-day head-down-tilt bed rest

    PubMed Central

    Morgan, Jennifer L. L.; Zwart, Sara R.; Heer, Martina; Ploutz-Snyder, Robert; Ericson, Karen

    2012-01-01

    Bed rest studies provide an important tool for modeling physiological changes that occur during spaceflight. Markers of bone metabolism and nutritional status were evaluated in 12 subjects (8 men, 4 women; ages 25–49 yr) who participated in a 30-day −6° head-down-tilt diet-controlled bed rest study. Blood and urine samples were collected twice before, once a week during, and twice after bed rest. Data were analyzed using a mixed-effects linear regression with a priori contrasts comparing all days to the second week of the pre-bed rest acclimation period. During bed rest, all urinary markers of bone resorption increased ∼20% (P < 0.001), and serum parathyroid hormone decreased ∼25% (P < 0.001). Unlike longer (>60 days) bed rest studies, neither markers of oxidative damage nor iron status indexes changed over the 30 days of bed rest. Urinary oxalate excretion decreased ∼20% during bed rest (P < 0.001) and correlated inversely with urinary calcium (R = −0.18, P < 0.02). These data provide a broad overview of the biochemistry associated with short-duration bed rest studies and provide an impetus for using shorter studies to save time and costs wherever possible. For some effects related to bone biochemistry, short-duration bed rest will fulfill the scientific requirements to simulate spaceflight, but other effects (antioxidants/oxidative damage, iron status) do not manifest until subjects are in bed longer, in which case longer studies or other analogs may be needed. Regardless, maximizing research funding and opportunities will be critical to enable the next steps in space exploration. PMID:22995395

  4. Molecular Basis of N,N-Diethyl-3-Methylbenzamide (DEET) in Repelling the Common Bed Bug, Cimex lectularius.

    PubMed

    Liu, Feng; Xia, Xiaoming; Liu, Nannan

    2017-01-01

    As the most extensively used chemical repellent, N,N-diethyl-3-methylbenzamide (DEET) displayed repellency to a wide range of insects, including the common bed bug, Cimex lectularius . While the neuronal or molecular basis involved in DEET's repellency have been majorly focused on mosquitos and fruit flies, DEET's repellency to the common bed bug is largely unreached. To gain new insights into the cellular and molecular mechanisms in DEET's repellency to the common bed bug, we characterized the neuronal response of bed bugs to DEET, identified the olfactory receptors targeted by DEET and demonstrated the interfering effect of DEET on bed bug's responses to human odorants. High doses of DEET were required for activating the olfactory receptor neurons in the sensilla of bed bugs and at least three DEET-sensitive receptors were functionally deciphered. These DEET-sensitive receptors presented even more sensitive to certain botanical terpenes/terpenoids which also displayed repellency at varying levels for bed bugs. In addition, DEET produced a blocking effect on the neuronal responses of bed bugs to specific human odors and showed inhibitory effect on the function of odorant receptors in responding to certain human odors. Taken together, our results indicate that DEET may function as a stimulus that triggers avoidance behaviors and a molecular "confusant" for interrupting the host odor recognition in the odorant receptors of bed bugs. The receptors that coincidently responded to both synthetic DEET and botanical terpenes/terpenoids suggested that DEET probably target on receptors that originally responded to terpenes/terpenoids. This study gave novel insight into the mechanisms of DEET's repellency to bed bugs and also provided valuable information for developing new reagents for bed bug control.

  5. Cacao bean husk: an applicable bedding material in dairy free-stall barns.

    PubMed

    Yajima, Akira; Owada, Hisashi; Kobayashi, Suguru; Komatsu, Natsumi; Takehara, Kazuaki; Ito, Maria; Matsuda, Kazuhide; Sato, Kan; Itabashi, Hisao; Sugimura, Satoshi; Kanda, Shuhei

    2017-07-01

    The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns.

  6. Molecular Basis of N,N-Diethyl-3-Methylbenzamide (DEET) in Repelling the Common Bed Bug, Cimex lectularius

    PubMed Central

    Liu, Feng; Xia, Xiaoming; Liu, Nannan

    2017-01-01

    As the most extensively used chemical repellent, N,N-diethyl-3-methylbenzamide (DEET) displayed repellency to a wide range of insects, including the common bed bug, Cimex lectularius. While the neuronal or molecular basis involved in DEET's repellency have been majorly focused on mosquitos and fruit flies, DEET's repellency to the common bed bug is largely unreached. To gain new insights into the cellular and molecular mechanisms in DEET's repellency to the common bed bug, we characterized the neuronal response of bed bugs to DEET, identified the olfactory receptors targeted by DEET and demonstrated the interfering effect of DEET on bed bug's responses to human odorants. High doses of DEET were required for activating the olfactory receptor neurons in the sensilla of bed bugs and at least three DEET-sensitive receptors were functionally deciphered. These DEET-sensitive receptors presented even more sensitive to certain botanical terpenes/terpenoids which also displayed repellency at varying levels for bed bugs. In addition, DEET produced a blocking effect on the neuronal responses of bed bugs to specific human odors and showed inhibitory effect on the function of odorant receptors in responding to certain human odors. Taken together, our results indicate that DEET may function as a stimulus that triggers avoidance behaviors and a molecular “confusant” for interrupting the host odor recognition in the odorant receptors of bed bugs. The receptors that coincidently responded to both synthetic DEET and botanical terpenes/terpenoids suggested that DEET probably target on receptors that originally responded to terpenes/terpenoids. This study gave novel insight into the mechanisms of DEET's repellency to bed bugs and also provided valuable information for developing new reagents for bed bug control. PMID:28676765

  7. Hospital bed occupancy: more than queuing for a bed.

    PubMed

    Keegan, Andrew D

    2010-09-06

    Timely access to safe hospital care remains a major concern. Target bed-occupancy rates have been proposed as a measure of the ability of a hospital to function safely and effectively. High bed-occupancy rates have been shown to be associated with greater risks of hospital-associated infection and access block and to have a negative impact on staff health. Clinical observational data have suggested that bed occupancies above 85% could adversely affect safe, effective hospital function. Using this figure, at least initially, would be of value in the planning and operational management of public hospital beds in Australia. There is an urgent need to develop meaningful outcome measures of patient care that could replace the process measures currently in use.

  8. Effects of bedding systems selected by manual muscle testing on sleep and sleep-related respiratory disturbances.

    PubMed

    Tsai, Ling-Ling; Liu, Hau-Min

    2008-03-01

    In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.

  9. Bedding material affects mechanical thresholds, heat thresholds and texture preference

    PubMed Central

    Moehring, Francie; O’Hara, Crystal L.; Stucky, Cheryl L.

    2015-01-01

    It has long been known that the bedding type animals are housed on can affect breeding behavior and cage environment. Yet little is known about its effects on evoked behavior responses or non-reflexive behaviors. C57BL/6 mice were housed for two weeks on one of five bedding types: Aspen Sani Chips® (standard bedding for our institute), ALPHA-Dri®, Cellu-Dri™, Pure-o’Cel™ or TEK-Fresh. Mice housed on Aspen exhibited the lowest (most sensitive) mechanical thresholds while those on TEK-Fresh exhibited 3-fold higher thresholds. While bedding type had no effect on responses to punctate or dynamic light touch stimuli, TEK-Fresh housed animals exhibited greater responsiveness in a noxious needle assay, than those housed on the other bedding types. Heat sensitivity was also affected by bedding as animals housed on Aspen exhibited the shortest (most sensitive) latencies to withdrawal whereas those housed on TEK-Fresh had the longest (least sensitive) latencies to response. Slight differences between bedding types were also seen in a moderate cold temperature preference assay. A modified tactile conditioned place preference chamber assay revealed that animals preferred TEK-Fresh to Aspen bedding. Bedding type had no effect in a non-reflexive wheel running assay. In both acute (two day) and chronic (5 week) inflammation induced by injection of Complete Freund’s Adjuvant in the hindpaw, mechanical thresholds were reduced in all groups regardless of bedding type, but TEK-Fresh and Pure-o’Cel™ groups exhibited a greater dynamic range between controls and inflamed cohorts than Aspen housed mice. PMID:26456764

  10. A review of the effects of impermeable bedding encasements on dust-mite allergen exposure and bronchial hyper-responsiveness in dust-mite-sensitized patients.

    PubMed

    Recer, G M

    2004-02-01

    Sensitization and exposure to dust-mite antigens are causative factors in the development and exacerbation of asthma. Impermeable bedding encasements are considered a first-line treatment to reduce dust-mite antigen exposure in clinical asthma-management guidelines. Public-health recommendations for environmental asthma treatments should be based on the weight of evidence supporting the reliability of environmental interventions so that uncertainties regarding their effectiveness can be accurately communicated to patients, and so that limited public-health resources can be most effectively utilized. To evaluate the strength of a clinical-trial evidence supporting the efficacy of bedding encasements as an asthma treatment. A narrative review was conducted of all clinical trials involving bedding encasement for the treatment of asthma. Collective statistical analyses were also performed to characterize the quantitative effect of bedding encasement on dust-mite allergen exposure and bronchial hyper-responsiveness (BHR) when used by asthma patients. Over 30 clinical trials were reviewed. Of those studies reporting adequate exposure and BHR results, four reported significant reduction in dust-mite allergen exposure and concomitant BHR reduction in active-treatment groups using bedding encasements. In 10 studies, mite-allergen exposure was reportedly decreased during the study, but BHR was not changed in the active-treatment group or was reduced to a similar degree in the active-treatment and control groups. Five other studies reported a lack of significant effect of the intervention on exposure and BHR. Collective paired analyses found that the effect of bedding encasement on allergen exposure and BHR tended toward only a modest, non-significant improvement. Collectively, effects of bedding encasement on BHR and dust-mite allergen exposure were modestly correlated only when the baseline exposure was above 2 microg Type 1 antigen per gram settled dust. Although bedding encasement might be an effective asthma treatment under some conditions, when implemented in clinical trials by asthma patients, its effectiveness is inconsistent and appears to be, at best, modest. Therefore, its significance as a reliable asthma management modality for any individual asthma patient is uncertain. Where resource constraints are significant, targeting the use of variably effective interventions such as bedding encasements toward those patient sub-populations most likely to derive substantial benefit may gain the largest net public-health benefit.

  11. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    PubMed

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Testing the Bed-Blocking Hypothesis: Does Nursing and Care Home Supply Reduce Delayed Hospital Discharges?

    PubMed Central

    Gaughan, James; Gravelle, Hugh; Siciliani, Luigi

    2015-01-01

    Hospital bed-blocking occurs when hospital patients are ready to be discharged to a nursing home, but no place is available, so that hospital care acts as a more costly substitute for long-term care. We investigate the extent to which greater supply of nursing home beds or lower prices can reduce hospital bed-blocking using a new Local Authority (LA) level administrative data from England on hospital delayed discharges in 2009–2013. The results suggest that delayed discharges respond to the availability of care home beds, but the effect is modest: an increase in care home beds by 10% (250 additional beds per LA) would reduce social care delayed discharges by about 6–9%. We also find strong evidence of spillover effects across LAs: more care home beds or fewer patients aged over 65 years in nearby LAs are associated with fewer delayed discharges. © 2015 The Authors. Health Economics Published by John Wiley & Sons Ltd. PMID:25760581

  13. Effects of Ultralow Oxygen and Vacuum Treatments on Bed Bug (Heteroptera: Cimicidae) Survival.

    PubMed

    Liu, Yong-Biao; Haynes, Kenneth F

    2016-04-22

    Control of bed bugs is problematic, balancing among efficacy, safety, and cost. In this study, ultralow oxygen (ULO) and vacuum treatments were tested on bed bugs to develop a safer, effective, and environmentally friendly solution to kill bed bugs on infested items. ULO treatments were established by flushing sealed enclosures with nitrogen. All life stages of bed bugs were found to be susceptible to ULO and vacuum treatments, and efficacy of the treatments increased with reduced oxygen levels, increased treatment time, and temperature. In the ULO treatments, 100% mortality of bed bug nymphs and adults and >98% mortality of bed bug eggs were achieved in the 8-h treatment under 0.1% O 2 atmosphere at 30°C. Different levels of vacuum that yielded different oxygen levels were tested on all life stages of bed bugs. The susceptibility of different stages to vacuum treatments increased from nymphs to adults to eggs. Complete control of all life stages was achieved in 12 h under -982 mbar (-29.0 inHg) vacuum at 30°C. This study demonstrated that bed bugs were very susceptible to low oxygen stresses and ULO and vacuum treatments have potential to be used as effective and safe treatments to decontaminate bed bug-infested removable objects. Published by Oxford University Press on behalf of Entomological Society of America 2016.This work is written by US Government employees and is in the public domain in the United States.

  14. The role of commercial tanning beds and ultraviolet A light in the treatment of psoriasis.

    PubMed

    Su, Johanna; Pearce, Daniel J; Feldman, Steven R

    2005-01-01

    Phototherapy is an effective, safe psoriasis treatment administered via office-based units or home devices. There is controversy over the use of commercial tanning beds; ultraviolet B (UVB) has documented efficacy although commercial beds emit largely UVA. To determine the efficacy of UVA and the role of commercial tanning beds in treating psoriasis. A literature search of UVA and commercial tanning was performed. UVA can be effective for psoriasis, but achieving the high doses required may not be practical. Tanning beds do emit UVB although amounts are variable. Because of variability in UVA and UVB output in different tanning bulbs, it is difficult to predict response rates using commercial tanning beds. UVA can be used to treat psoriasis but may not be practical. Commercial tanning beds, emitting both UVA and UVB, have a role in treating psoriasis as an alternative to office-based therapy.

  15. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.« less

  16. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. Copyright © 2016. Published by Elsevier B.V.

  17. The effect of hydraulic bed movement on the quality of chest compressions.

    PubMed

    Park, Maeng Real; Lee, Dae Sup; In Kim, Yong; Ryu, Ji Ho; Cho, Young Mo; Kim, Hyung Bin; Yeom, Seok Ran; Min, Mun Ki

    2017-08-01

    The hydraulic height control systems of hospital beds provide convenience and shock absorption. However, movements in a hydraulic bed may reduce the effectiveness of chest compressions. This study investigated the effects of hydraulic bed movement on chest compressions. Twenty-eight participants were recruited for this study. All participants performed chest compressions for 2min on a manikin and three surfaces: the floor (Day 1), a firm plywood bed (Day 2), and a hydraulic bed (Day 3). We considered 28 participants of Day 1 as control and each 28 participants of Day 2 and Day 3 as study subjects. The compression rates, depths, and good compression ratios (>5-cm compressions/all compressions) were compared between the three surfaces. When we compared the three surfaces, we did not detect a significant difference in the speed of chest compressions (p=0.582). However, significantly lower values were observed on the hydraulic bed in terms of compression depth (p=0.001) and the good compression ratio (p=0.003) compared to floor compressions. When we compared the plywood and hydraulic beds, we did not detect significant differences in compression depth (p=0.351) and the good compression ratio (p=0.391). These results indicate that the movements in our hydraulic bed were associated with a non-statistically significant trend towards lower-quality chest compressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Artificial Gravity: Effects on Bone Turnover

    NASA Technical Reports Server (NTRS)

    Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.

  19. Effects of sawdust bedding dry matter on lying behavior of dairy cows: a dose-dependent response.

    PubMed

    Reich, L J; Weary, D M; Veira, D M; von Keyserlingk, M A G

    2010-04-01

    The objective was to determine the effect of sawdust bedding dry matter on the lying behavior of Holstein cows. Dry matter (DM) was varied systematically over 5 treatment levels to test how cows respond to damp bedding. This experiment was repeated during summer and winter to test if the effects of damp bedding varied with season. The 5 bedding treatments averaged (+/-SD) 89.8+/-3.7, 74.2+/-6.4, 62.2+/-6.3, 43.9+/-4.0, and 34.7+/-3.8% DM. Over the course of the trial, minimum and maximum temperatures in the barn were 2.6+/-2.0 and 6.8+/-2.2 degrees C in the winter and 13.3+/-2.5 and 22.6+/-4.1 degrees C in the summer. In both seasons, 5 groups of 3 nonlactating cows were housed in free stalls bedded with sawdust. Following a 5-d acclimation period on dry bedding, groups were exposed to the 5 bedding treatments in a 5 x 5 Latin square. Each treatment lasted 4 d, followed by 1 d when the cows were provided with dry bedding. Stall usage was assessed by 24-h video scanned at 5-min intervals. Responses were analyzed within group (n=5) as the observational unit. Bedding DM affected lying time, averaging 10.4+/-0.4 h/d on the wettest treatment and increasing to 11.5+/-0.4 h/d on the driest bedding. Lying time varied with season, averaging 12.1+/-0.4 h/d across treatments during the winter and 9.9+/-0.6 h/d during the summer, but season and bedding DM did not interact. These results indicate that access to dry bedding is important for dairy cows. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Toxicities of Selected Essential Oils, Silicone Oils, and Paraffin Oil against the Common Bed Bug (Hemiptera: Cimicidae).

    PubMed

    Zha, Chen; Wang, Changlu; Li, Andrew

    2018-02-09

    The common bed bug [Cimex lectularius L. (Hemiptera: Cimicidae)] and tropical bed bug [Cimex hemipterus F. (Hemiptera: Cimicidae)] resurged in the United States and many other countries over the past decades. The need for safe and effective bed bug control products propelled the development of numerous 'green insecticides', mostly with essential oils listed as active ingredients. Various inorganic and organic oils also were used for bed bug management. However, there are no published studies on their toxicities against bed bugs. In this study, we screened 18 essential oils, three silicone oils, and paraffin oil (C5-20 paraffins) for their toxicities against bed bugs. All the oils exhibited insecticidal activity in topical assays. Their toxicities varied significantly; all of the evaluated essential oils were less effective than silicone oils and paraffin oil. The LD50 values of the most effective essential oil (blood orange), paraffin oil, and the most effective silicone oil (dodecamethylpentasiloxane) are 0.184 ± 0.018, 0.069 ± 0.012, and 0.036 ± 0.005 mg per bug, respectively. Direct spray of 1% water solution of 3-[hydroxy (polyethyleneoxy) propyl] heptamethyltrisiloxane, the only silicone oil that mixes well with water, resulted in 92% bed bug mortality after 1 d. Results of this study indicate silicone oils and paraffin oil have the potential to be used as safer alternative bed bug control materials. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. A comparative study of two composts as filter media for the removal of gaseous reduced sulfur compounds (RSCs) by biofiltration: application at industrial scale.

    PubMed

    Hort, C; Gracy, S; Platel, V; Moynault, L

    2013-01-01

    This work presents the use of two composts as filter media for the treatment by biofiltration of odors emitted during the aerobic composting of a mixture containing sewage sludge and yard waste. The chemical analysis of the waste gas showed that the malodorous compounds at trace level were the reduced sulfur compounds (RSCs) which were dimethyl sulfide (Me(2)S), methanethiol (MeSH) and hydrogen sulfide (H(2)S). Laboratory tests for biofiltration treatment of RSCs were performed in order to compare the properties of two filter media, consisted of a mature compost with yard waste (YW) and a mixture of mature compost with sewage sludge and yard waste (SS/YW). The maximum elimination capacity (EC) values obtained with the YW mature compost as packing material were 12.5 mg m(-3)h(-1) for H(2)S, 7.9 mg m(-3)h(-1) for MeSH and 34 mg m(-3)h(-1) for Me(2)S, and the removal efficiency decreased in the order of: H(2)S>MeSH>Me(2)S. Moreover, the YW compost filter medium had a better behavior than the filter medium based on SS/YW in terms of acclimation of the microbial communities and moisture content. According to these results, a YW mature compost as packing material for an industrial biofilter were designed and this industrial biofilter was found effective under specified conditions (without inoculation and addition of water). The results showed that the maximum EC value of RSCs was 935 mg m(-3)h(-1) (100% removal efficiency, RE) for an inlet loads (IL) between 0 and 1000 mg m(-3)h(-1). Thus, YW compost medium was proven efficient for biofiltration of RSCs both at laboratory and industrial scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  3. Lab-scaled model to evaluate odor and gas production from cattle confinement facilities with deep bedded packs

    USDA-ARS?s Scientific Manuscript database

    A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...

  4. Effect of exercise on the pseudodiabetes of bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1982-01-01

    The effect of intensive isotonic exercise and isometric exercise (with its low metabolic rate) during bed rest on plasma insulin and glucose tolerance test was investigated. The subjects were seven healthy men, 19 to 22 years in age, 166 to 188 cm in height, and 62.40 to 103.80 kg in weight; maximal oxygen uptakes ranged from 3.36 to 4.38 liters/min. It appears that bed-rest-induced glucose intolerance is diminished with increasing energy expenditure during both bed rest and recovery.

  5. The effect of 8 days of strict bed rest on the incretin effect in healthy volunteers.

    PubMed

    Nielsen, Signe Tellerup; Harder-Lauridsen, Nina Majlund; Benatti, Fabiana Braga; Wedell-Neergaard, Anne-Sophie; Lyngbæk, Mark Preben; Møller, Kirsten; Pedersen, Bente Klarlund; Krogh-Madsen, Rikke

    2016-03-15

    Bed rest and physical inactivity are the consequences of hospital admission for many patients. Physical inactivity induces changes in glucose metabolism, but its effect on the incretin effect, which is reduced in, e.g., Type 2 diabetes, is unknown. To investigate how 8 days of strict bed rest affects the incretin effect, 10 healthy nonobese male volunteers underwent 8 days of strict bed rest. Before and after the intervention, all volunteers underwent an oral glucose tolerance test (OGTT) followed by an intravenous glucose infusion (IVGI) on the following day to mimic the blood glucose profile from the OGTT. Blood glucose, serum insulin, serum C-peptide, plasma incretin hormones [glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic peptide (GIP)], and serum glucagon were measured serially during both the OGTT and the IVGI. The incretin effect is calculated as the relative difference between the area under the curve for the insulin response during the OGTT and that of the corresponding IVGI, respectively. Concentrations of glucose, insulin, C-peptide, and GIP measured during the OGTT were higher after the bed rest intervention (all P < 0.05), whereas there was no difference in the levels of GLP-1 and Glucagon. Bed rest led to a mean loss of 2.4 kg of fat-free mass, and induced insulin resistance evaluated by the Matsuda index, but did not affect the incretin effect (P = 0.6). In conclusion, 8 days of bed rest induces insulin resistance, but we did not see evidence of an associated change in the incretin effect. Copyright © 2016 the American Physiological Society.

  6. Effects of disking, bedding, and subsoiling on survival and growth of three oak species in central Mississippi

    Treesearch

    J. Paul Jeffreys; Emily B. Schultz; Thomas G. Matney; W. Cade Booth; Jason M. Morris

    2010-01-01

    A replicated split-plot design experiment to evaluate the effects of three site preparation methods (disking, bedding, and subsoiling plus bedding) on survival and growth of three oak species (cherrybark, Quercus pagoda Raf.; Shumard, Quercus shumardii Buckl.; and Nuttall, Quercus texana Buckl.) was established...

  7. Dosimetric quality endpoints for low-dose-rate prostate brachytherapy using biological effective dose (bed) vs. conventional dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rachana; Al-Hallaq, Hania; Pelizzari, Charles A.

    2003-12-31

    The purpose of this study was to compare conventional low-dose-rate prostate brachytherapy dosimetric quality parameters with their biological effective dose (BED) counterparts. To validate a model for transformation from conventional dose to BED, the postimplant plans of 31 prostate brachytherapy patients were evaluated using conventional dose-volume histogram (DVH) quality endpoints and analogous BED-DVH endpoints. Based on CT scans obtained 4 weeks after implantation, DVHs were computed and standard dosimetric endpoints V100 (volume receiving 100% of the prescribed dose), V150, V200, HI (1-[V150/V100]), and D90 (dose that 90% of the target volume received) were obtained for quality analysis. Using known andmore » reported transformations, dose grids were transformed to BED-early ({alpha}/{beta} = 10 Gy) and BED-late ({alpha}/{beta} = 3 Gy) grids, and the same dosimetric endpoints were analyzed. For conventional, BED-early and BED-late DVHs, no differences in V100 were seen (0.896, 0.893, and 0.894, respectively). However, V150 and V200 were significantly higher for both BED-early (0.582 and 0.316) and BED-late (0.595 and 0.337), compared with the conventional (0.539 and 0.255) DVHs. D90 was significantly lower for the BED-early (103.1 Gy) and BED-late transformations (106.9 Gy) as compared with the conventional (119.5 Gy) DVHs. The conventional prescription parameter V100 is the same for the corresponding BED-early and BED-late transformed DVHs. The toxicity parameters V150 and V200 are slightly higher using the BED transformations, suggesting that the BED doses are somewhat higher than predicted using conventional DVHs. The prescription/quality parameter D90 is slightly lower, implying that target coverage is lower than predicted using conventional DVHs. This methodology can be applied to analyze BED dosimetric endpoints to improve clinical outcome and reduce complications of prostate brachytherapy.« less

  8. Decreasing ventromedial prefrontal cortex deactivation in risky decision making after simulated microgravity: effects of −6° head-down tilt bed rest

    PubMed Central

    Rao, Li-Lin; Zhou, Yuan; Liang, Zhu-Yuan; Rao, Henyi; Zheng, Rui; Sun, Yan; Tan, Cheng; Xiao, Yi; Tian, Zhi-Qiang; Chen, Xiao-Ping; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Space is characterized by risk and uncertainty. As humans play an important role in long-duration space missions, the ability to make risky decisions effectively is important for astronauts who spend extended time periods in space. The present study used the Balloon Analog Risk Task to conduct both behavioral and fMRI experiments to evaluate the effects of simulated microgravity on individuals' risk-taking behavior and the neural basis of the effect. The results showed that participants' risk-taking behavior was not affected by bed rest. However, we found that the ventromedial prefrontal cortex (VMPFC) showed less deactivation after bed rest and that the VMPFC activation in the active choice condition showed no significant difference between the win outcome and the loss outcome after bed rest, although its activation was significantly greater in the win outcome than in the loss outcome before bed rest. These results suggested that the participants showed a decreased level of value calculation after the bed rest. Our findings can contribute to a better understanding of the effect of microgravity on individual higher-level cognitive functioning. PMID:24904338

  9. Are tanning beds "safe"? Human studies of melanoma.

    PubMed

    Berwick, Marianne

    2008-10-01

    Controversy continues over the carcinogenic properties of tanning beds. The tanning industry "sells" tanning beds as a safe alternative to UV exposure for both tanning as well as vitamin D biosynthesis. But, how safe are tanning beds? Epidemiologic data - incomplete and unsatisfactory - suggests that tanning beds are not safer than solar ultraviolet radiation and that they may have independent effects from solar exposure that increase risk for melanoma.

  10. Removal of volatile organic compounds (VOC`s) generated by Forest Product Industries using biofiltration technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliland, G.A.; Ramaswami, R.D.; Patel, D.N.

    1995-12-31

    Implementation of Clean Air Act Title V and the increasing environmental concerns of the public are imposing greater demands on the Forest Product industries to control their air emissions. As implementation of this Clean Air Act has begun, Forest Product Industries are recognizing the overall lack of historical emissions data, emissions testing information and knowledge of the economics of emission control technologies needed to reduce emissions. This study was undertaken to evaluate the types of VOC`s produced in drying and pressing wood composites, and determine how effective biofiltration technology could be used in reducing the levels of these products beforemore » they are released into the air. More specifically, the experiments were conducted to isolate microorganisms capable of degrading VOC`s and determine their biodegradation rates using bench scale biofilters.« less

  11. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and O. Eiff, Erosion and deposition of particles on a bed sheared by a viscous flow, Journal of Fluid Mech., 519, 55-80, 2004 Frey, P. and Church, M. (2011), Bedload: a granular phenomenon. Earth Surf. Process. Landforms, 36: 58-69. doi: 10.1002/esp.2103 Turowski, J. M., A. Badoux, and D. Rickenmann (2011), Start and end of bedload transport in gravel-bed streams, Geophys. Res. Lett., 38, L04401, doi:10.1029/2010GL046558.

  12. Repellency of selected chemicals against the bed bug (Hemiptera: Cimicidae).

    PubMed

    Wang, Changlu; Lü, Lihua; Zhang, Aijun; Liu, Chaofeng

    2013-12-01

    In recent years, the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), became a major public health concern in urban communities. Bed bugs are notoriously difficult to control, and their bites are not tolerated by most people. The public has an urgent need for materials and methods to reduce bed bug introduction and bites during work, travel, or sleep. A repellent product will help achieve these goals by discouraging and preventing bed bugs from moving to a protected area. We evaluated the repellency of three commercially available insect repellent or control materials and five nonregistered materials with the goal of identifying safe and effective bed bug repellents. The two commercial repellent products that contained 7% picaridin or 0.5% permethrin had little repellency against bed bugs. N,N-diethyl-m-toluamide (DEET), the most commonly used insect repellent, provided a high level of repellency against bed bugs. When a host cue (carbon dioxide) was present, the minimum DEET concentration to repel > or = 94% of the bed bugs for a9-h period was 10%. The longevity of repellency of DEET was concentration dependent. At 25% concentration, DEET-treated fabric surface remained highly repellent to bed bugs for a 14-d period. However, DEET has a strong smell and dissolves certain plastic materials. Therefore, we evaluated several odorless, noncorrosive, and potentially effective repellents. Isolongifolenone and isolongifolanone, two natural products and recently reported insect repellents, exhibited strong repellent property against bed bugs but at significantly lower levels than DEET. Three novel potential repellent compounds discovered by Bedoukian Research Inc. (Danbury, CT) exhibited similar level of repellency and longevity as DEET for repelling bed bugs. These nonirritant and odorless compounds are promising candidates as alternatives to DEET for reducing the spread of bed bugs and bed bug bites.

  13. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    NASA Technical Reports Server (NTRS)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  14. Ability of bed bug-detecting canines to locate live bed bugs and viable bed bug eggs.

    PubMed

    Pfiester, Margie; Koehler, Philip G; Pereira, Roberto M

    2008-08-01

    The bed bug, Cimex lectularius L., like other bed bug species, is difficult to visually locate because it is cryptic. Detector dogs are useful for locating bed bugs because they use olfaction rather than vision. Dogs were trained to detect the bed bug (as few as one adult male or female) and viable bed bug eggs (five, collected 5-6 d after feeding) by using a modified food and verbal reward system. Their efficacy was tested with bed bugs and viable bed bug eggs placed in vented polyvinyl chloride containers. Dogs were able to discriminate bed bugs from Camponotus floridanus Buckley, Blattella germanica (L.), and Reticulitermes flavipes (Kollar), with a 97.5% positive indication rate (correct indication of bed bugs when present) and 0% false positives (incorrect indication of bed bugs when not present). Dogs also were able to discriminate live bed bugs and viable bed bug eggs from dead bed bugs, cast skins, and feces, with a 95% positive indication rate and a 3% false positive rate on bed bug feces. In a controlled experiment in hotel rooms, dogs were 98% accurate in locating live bed bugs. A pseudoscent prepared from pentane extraction of bed bugs was recognized by trained dogs as bed bug scent (100% indication). The pseudoscent could be used to facilitate detector dog training and quality assurance programs. If trained properly, dogs can be used effectively to locate live bed bugs and viable bed bug eggs.

  15. Bed rest in singleton pregnancies for preventing preterm birth.

    PubMed

    Sosa, C; Althabe, F; Belizán, J; Bergel, E

    2004-01-01

    Bed rest in hospital or at home is widely recommended for the prevention of preterm birth. This advice is based on the observation that hard work and hard physical activity during pregnancy could be associated with preterm birth and with the idea that bed rest could reduce uterine activity. However, bed rest may have some adverse effects on other outcomes. To evaluate the effect of prescription of bed rest in hospital or at home for preventing preterm birth in pregnant women at high risk of preterm birth. We searched the Cochrane Pregnancy and Childbirth Group trials register (July 2003), the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 2, 2003), MEDLINE (July 2003), LILACS (July 2003), EMBASE (July 2003), POPLINE (July 2003) and bibliographies of relevant papers. Randomized and quasi-randomized controlled trials with reported data that assess clinical outcomes in women at high risk of spontaneous preterm birth who were prescribed bed rest in hospital or at home for preventing preterm birth, and their babies. Two reviewers independently assessed eligibility, trial quality and extracted data. One study met the inclusion criteria (1266 women). This trial has uncertain methodological quality due to lack of reporting. Four hundred and thirty-two women were prescribed bed rest at home and a total of 834 women received a placebo (412) or no intervention (422). Preterm birth before 37 weeks was similar in both groups (7.9% in the intervention group versus 8.5% in the control group), and the relative risk was 0.92 with a 95% confidence interval from 0.62 to 1.37. No other results were available. There is no evidence, either supporting or refuting the use of bed rest at home or in hospital, to prevent preterm birth. Although bed rest in hospital or at home is widely used as the first step of treatment, there is no evidence that this practice could be beneficial. Due to the potential adverse effects that bed rest could have on women and their families, and the increased costs for the healthcare system, clinicians should not routinely advise women to rest in bed to prevent preterm birth. Potential benefits and harms should be discussed with women facing an increased risk of preterm birth. Appropriate research is mandatory. Future trials should evaluate both the effectiveness of bed rest, and the effectiveness of the prescription of bed rest, to prevent preterm birth.

  16. Design of fluidized-bed fermentors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, G.F.; Przezdziecki, J.

    1986-06-01

    Designing a fluidized-bed bioreactor requires choosing the best support particle (if any). Effectiveness factors (proportional to reactor volumetric productivity) are derived for flocs, solid spherical supports, porous supports, and adsorbent supports. The derivation demonstrates a mathematical procedure for reducing the diffusion/uptake equations for many components (substrates and inhibitory products) to a single equation, and for identifying the limiting component. With solid supports there exists a film thickness that maximizes the effectiveness, and the design objective is to keep the film near this optimum throughout the bed. This involves consideration of the effect of support particle density and film growth onmore » bed stratification. Other considerations in packing support particles are obtaining reasonable values for bed height and diameter, minimizing mass transfer resistance between liquid and biomass, and preventing surface shear from stripping off the biomass. 20 references.« less

  17. Phase holdups in three-phase fluidized beds in the presence of disc promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murty, M.S.N.; Ramesh, K.V.; Venkateswarlu, P.

    2011-02-15

    Three-phase fluidized beds are found to have wide applications in process industries. The present investigation essentially comprises of the studies on gas holdup, liquid holdup and bed porosity in three-phase fluidized beds with coaxially placed disc promoter. Holdup data were obtained from bed expansion and pressure drop measurements. Analysis of the data was done to elucidate the effects of dynamic and geometric parameters on gas holdup, liquid holdup and bed porosity. Data were correlated and useful equations were obtained from empirical modeling. (author)

  18. Sediment Transport of Fine Sand to Fine Gravel on Transverse Bed Slopes in Rotating Annular Flume Experiments

    NASA Astrophysics Data System (ADS)

    Baar, Anne W.; de Smit, Jaco; Uijttewaal, Wim S. J.; Kleinhans, Maarten G.

    2018-01-01

    Large-scale morphology, in particular meander bend depth, bar dimensions, and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by secondary flows. Overestimating the transverse bed slope effect in morphodynamic models leads to flattening of the morphology, while underestimating leads to unrealistically steep bars and banks and a higher braiding index downstream. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and in practice models are calibrated on measured morphology. The objective of this research is to experimentally quantify the transverse bed slope effect for a large range of near-bed flow conditions with varying secondary flow intensity, sediment sizes (0.17-4 mm), sediment transport mode, and bed state to test existing predictors. We conducted over 200 experiments in a rotating annular flume with counterrotating floor, which allows control of the secondary flow intensity separate from the streamwise flow velocity. Flow velocity vectors were determined with a calibrated analytical model accounting for rough bed conditions. We isolated separate effects of all important parameters on the transverse slope. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and secondary flow intensities that deviate from known predictors depending on Shields number, and strongly depend on bed state and sediment transport mode. Fitted functions are provided for application in morphodynamic modeling.

  19. Cacao bean husk: an applicable bedding material in dairy free-stall barns

    PubMed Central

    Yajima, Akira; Owada, Hisashi; Kobayashi, Suguru; Komatsu, Natsumi; Takehara, Kazuaki; Ito, Maria; Matsuda, Kazuhide; Sato, Kan; Itabashi, Hisao; Sugimura, Satoshi; Kanda, Shuhei

    2017-01-01

    Objective The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. Methods Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. Results The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. Conclusion Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns. PMID:28002931

  20. Adapting Biofilter Processes to Treat Spray Painting Exhausts: Concentration and Leveling of Vapor Delivery Rates, and Enhancement of Destruction by Exhaust Recirculation

    DTIC Science & Technology

    2001-12-20

    1992. "Consider biofiltration for decontaminating gases ," Chem. Eng. Prog. 88(4):34–40. Brunner, W., D. Staub, and T. Leisinger. 1980...Biotreatment processes, such as biofiltration , are environmentally friendly, and produce only non-hazardous by-products such as water, inorganic salts, and...biological air treatment system is biofiltration . Biofiltration is a process that utilizes microorganisms immobilized in the form of a biofilm layer on

  1. Abatement of synthetic landfill gas including limonene by biotrickling filter and membrane biofiltration.

    PubMed

    Hosoglu, Fatih; Fitch, Mark W

    2012-01-01

    In this study, a single silicone rubber membrane biofilter was compared to a lava rock biotrickling filter to examine the aerobic biofiltration of synthetic landfill gas including odorous limonene. The membrane bioreactor and biotrickling filter showed, respectively, maximum elimination capacities of 17 g m(-3) h(-1) and 31.3 g m(-3) h(-1) for limonene and removal efficiencies of 11 % and 18 % for methane. The membrane bioreactor was apparently mass transfer-limited and the biotrickling filter was reaction-limited.

  2. A preliminary evaluation of the potential of Beauveria bassiana for bed bug control.

    PubMed

    Barbarin, Alexis M; Jenkins, Nina E; Rajotte, Edwin G; Thomas, Matthew B

    2012-09-15

    Residual biopesticide treatments of Beauveria bassiana were tested against the bed bug Cimex lectularius. An oil formulation of conidia was applied to different substrates. Bed bugs were exposed for 1 h, transferred to an unsprayed environment and monitored for mortality. Separate bioassays evaluated the effect of bed bug strain, sex, life stage, and exposure substrate on mortality. Rapid mortality was observed in all bioassays, with bed bugs exposed to treated jersey knit cotton dying most rapidly. A further assay demonstrated efficient autodissemination of conidia from exposed bed bugs to unexposed bed bugs within artificial harborages. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Infant Sleeping Environment and Asthma at 7 Years: A Prospective Cohort Study

    PubMed Central

    Trevillian, Leigh F.; Ponsonby, Anne-Louise; Dwyer, Terence; Kemp, Andrew; Cochrane, Jennifer; Lim, Lynette L.-Y.; Carmichael, Allan

    2005-01-01

    Objectives. We investigated the role of infant bedding items, as part of a composite bedding environment, in the development of childhood wheezing. Methods. This prospective cohort investigation involved 863 children who participated in an infant survey in 1988 and an asthma study in Tasmania, Australia, in 1995. The derived 3 composite infant bedding categories corresponded to increasing numbers of house dust mite (HDM)–rich bedding items used. Outcomes measured included recent and frequent wheezing. Results. Composite infant bedding used was associated with recent wheezing. Effects increased at increasing levels of HDM–rich bedding items used. Effects were further enhanced by home environmental factors of bedroom heating, recent bedroom painting, and absence of bedroom carpeting. When any 2 or more of these environmental factors were present, a strong dose–response relationship was evident. Conclusions. Our results show that bedding exposures in infancy are prospectively associated with childhood wheezing and that home environmental conditions may modify this association. PMID:16304135

  4. Bed rest and immunity

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  5. Evaluation of bed load transport subject to high shear stress fluctuations

    NASA Astrophysics Data System (ADS)

    Cheng, Nian-Sheng; Tang, Hongwu; Zhu, Lijun

    2004-05-01

    Many formulas available in the literature for computing sediment transport rates are often expressed in terms of time mean variables such as time mean bed shear stress or flow velocity, while effects of turbulence intensity, e.g., bed shear stress fluctuation, on sediment transport were seldom considered. This may be due to the fact that turbulence fluctuation is relatively limited in laboratory open-channel flows, which are often used for conducting sediment transport experiments. However, turbulence intensity could be markedly enhanced in practice. This note presents an analytical method to compute bed load transport by including effects of fluctuations in the bed shear stress. The analytical results obtained show that the transport rate enhanced by turbulence can be expressed as a simple function of the relative fluctuation of the bed shear stress. The results are also verified using data that were collected recently from specifically designed laboratory experiments. The present analysis is applicable largely for the condition of a flat bed that is comprised of uniform sand particles subject to unidirectional flows.

  6. Effect of prolonged bed rest on lung volume in normal individuals

    NASA Technical Reports Server (NTRS)

    Beckett, W. S.; Vroman, N. B.; Nigro, D.; Thompson-Gorman, S.; Wilkerson, J. E.

    1986-01-01

    The effect of prolonged bed rest on the lung function was studied by measuring forced vital capacity (FVC) and total lung capacity (TLC) in normal subjects before, during, and after 11- to 12-day rest periods. It was found that both FVC and TLC increased during bed rest (compared with the ambulatory controls), while residual volume and functional residual capacity of the respiratory system did not change. It is concluded that the increase in TLC by prolonged bed rest is not dependent on alterations in plasma volume.

  7. Public hospital bed crisis: too few or too misused?

    PubMed

    Scott, Ian A

    2010-08-01

    * Increasing demand on public hospital beds has led to what many see as a hospital bed crisis requiring substantial increases in bed numbers. By 2050, if current bed use trends persist and as the numbers of frail older patients rise exponentially, a 62% increase in hospital beds will be required to meet expected demand, at a cost almost equal to the entire current Australian healthcare budget. * This article provides an overview of the effectiveness of different strategies for reducing hospital demand that may be viewed as primarily (although not exclusively) targeting the hospital sector - increasing capacity and throughput and reducing readmissions - or the non-hospital sector - facilitating early discharge or reducing presentations and admissions to hospital. Evidence of effectiveness was retrieved from a literature search of randomised trials and observational studies using broad search terms. * The principal findings were as follows: (1) within the hospital sector, throughput could be substantially improved by outsourcing public hospital clinical services to the private sector, undertaking whole-of-hospital reform of care processes and patient flow that address both access and exit block, separating acute from elective beds and services, increasing rates of day-only or short stay admissions, and curtailing ineffective or marginally effective clinical interventions; (2) in regards to the non-hospital sector, potentially the biggest gains in reducing hospital demand will come from improved access to residential care, rehabilitation services, and domiciliary support as patients awaiting such services currently account for 70% of acute hospital bed-days. More widespread use of acute care and advance care planning within residential care facilities and population-based chronic disease management programs can also assist. * This overview concludes that, in reducing hospital bed demand, clinical process redesign within hospitals and capacity enhancement of non-hospital care services and chronic disease management programs are effective strategies that should be considered before investing heavily in creating additional hospital beds devoid of any critical reappraisal of current models of care.

  8. Ability of the bed bug (Hemiptera: Cimicidae) defensive secretions (E)-2-hexenal and (E)-2-octenal to attract adult bed bugs

    USDA-ARS?s Scientific Manuscript database

    Accurate and timely surveillance of bed bug infestations is critical for development of effective control strategies. While the bed bug produced volatiles (E)-2-hexenal and (E)-2-octenal are considered defensive secretions, through use of EthoVision® video-tracking software we demonstrate that low ...

  9. Comparison of Three Bed Bug Management Strategies in a Low-Income Apartment Building.

    PubMed

    Wang, Changlu; Saltzmann, Kurt; Bennett, Gary; Gibb, Timothy

    2012-04-02

    Bed bug (Cimex lectularius L.) infestations are currently controlled by a variety of non-chemical and chemical methods. There have been few studies on the comparative effectiveness of these control techniques. We evaluated three bed bug management strategies in an apartment building: (1) non-chemical methods only (n = 9); (2) insecticides only (n = 6); and (3) integrated pest management including both non-chemical methods and insecticides (n = 9). The apartments were one-bedroom units occupied by seniors or people with disabilities. Bed bug numbers in each apartment were determined by visual inspection and/or installing intercepting devices under bed and sofa legs. The median (min, max) bed bug counts in the non-chemical methods only, insecticides only, and integrated pest management (IPM) treatment were: 4 (1, 57), 19 (1, 250), and 14 (1, 219), respectively prior to the treatments. The apartments were retreated if found necessary during biweekly to monthly inspections. After 10 weeks, bed bugs were found to be eliminated from 67, 33, and 44% of the apartments in the three treatment groups, respectively. The final (after 10 weeks) median (min, max) bed bug counts in the non-chemical methods only, insecticides only, and IPM treatment were: 0 (0, 134), 11.5 (0, 58), and 1 (0, 38), respectively. There were no significant differences in the speed of bed bug count reduction or the final bed bug counts. Lack of resident cooperation partially contributed to the failure in eliminating bed bugs from some of the apartments. Results of this study suggest that non-chemical methods can effectively eliminate bed bugs in lightly infested apartments.

  10. Induction log responses to layered, dipping, and anisotropic formations: Induction log shoulder-bed corrections to anisotropic formations and the effect of shale anisotropy in thinly laminated sand/shale sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiwara, Teruhiko

    1996-12-31

    Induction log responses to layered, dipping, and anisotropic formations are examined analytically. The analytical model is especially helpful in understanding induction log responses to thinly laminated binary formations, such as sand/shale sequences, that exhibit macroscopically anisotropic: resistivity. Two applications of the analytical model are discussed. In one application we examine special induction log shoulder-bed corrections for use when thin anisotropic beds are encountered. It is known that thinly laminated sand/shale sequences act as macroscopically anisotropic: formations. Hydrocarbon-bearing formations also act as macroscopically anisotropic formations when they consist of alternating layers of different grain-size distributions. When such formations are thick, inductionmore » logs accurately read the macroscopic conductivity, from which the hydrocarbon saturation in the formations can be computed. When the laminated formations are not thick, proper shoulder-bed corrections (or thin-bed corrections) should be applied to obtain the true macroscopic formation conductivity and to estimate the hydrocarbon saturation more accurately. The analytical model is used to calculate the thin-bed effect and to evaluate the shoulder-bed corrections. We will show that the formation resistivity and hence the hydrocarbon saturation are greatly overestimated when the anisotropy effect is not accounted for and conventional shoulder-bed corrections are applied to the log responses from such laminated formations.« less

  11. Evaluation of cage micro-environment of mice housed on various types of bedding materials

    USGS Publications Warehouse

    Smith, E.; Stockwell, J.D.; Schweitzer, I.; Langley, S.H.; Smith, A.L.

    2004-01-01

    A variety of environmental factors can affect the outcomes of studies using laboratory rodents. One such factor is bedding. Several new bedding materials and processing methods have been introduced to the market in recent years, but there are few reports of their performance. In the studies reported here, we have assessed the cage micro-environment (in-cage ammonia levels, temperature, and humidity) of mice housed on various kinds of bedding and their combinations. We also compared results for bedding supplied as Nestpaks versus loose bedding. We studied C57BL/6J mice (commonly used) and NOD/LtJ mice (heavy soilers) that were maintained, except in one study, in static duplex cages. In general, we observed little effect of bedding type on in-cage temperature or humidity; however, there was considerable variation in ammonia concentrations. The lowest ammonia concentrations occurred in cages housing mice on hardwood bedding or a mixture of corncob and alpha cellulose. In one experiment comparing the micro-environments of NOD/LtJ male mice housed on woodpulp fiber bedding in static versus ventilated caging, we showed a statistically significant decrease in ammonia concentrations in ventilated cages. Therefore, our data show that bedding type affects the micro-environment in static cages and that effects may differ for ventilated cages, which are being used in vivaria with increasing frequency.

  12. Evaluation of two least toxic integrated pest management programs for managing bed bugs (Heteroptera: Cimicidae) with discussion of a bed bug intercepting device.

    PubMed

    Wang, Changlu; Gibb, Timothy; Bennett, Gary W

    2009-05-01

    The cost and effectiveness of two bed bug (Cimex lectularius L.) integrated pest management (IPM) programs were evaluated for 10 wk. Sixteen bed bug-infested apartments were chosen from a high-rise low-income apartment building. The apartments were randomly divided into two treatment groups: diatomaceous earth dust-based IPM (D-IPM) and chlorfenapyr spray-based IPM (S-IPM). The initial median (minimum, maximum) bed bug counts (by visual inspection) of the two treatment groups were 73.5 (10, 352) and 77 (18, 3025), respectively. A seminar and an educational brochure were delivered to residents and staff. It was followed by installing encasements on mattresses and box springs and applying hot steam to bed bug-infested areas in all 16 apartments. Diatomaceous earth dust (Mother Earth-D) was applied in the D-IPM group 2 d after steaming. In addition, bed bug-intercepting devices were installed under legs of infested beds or sofas or chairs to intercept bed bugs. The S-IPM group only received 0.5% chlorfenapyr spray (Phantom) after the nonchemical treatments. All apartments were monitored bi-weekly and retreated when necessary. After 10 wk, bed bugs were eradicated from 50% of the apartments in each group. Bed bug count reduction (mean +/- SEM) was 97.6 +/- 1.6 and 89.7 +/- 7.3% in the D-IPM and S-IPM groups, respectively. Mean treatment costs in the 10-wk period were $463 and $482 per apartment in the D-IPM and S-IPM groups, respectively. Bed bug interceptors trapped an average of 219 +/- 135 bed bugs per apartment in 10 wk. The interceptors contributed to the IPM program efficacy and were much more effective than visual inspections in estimating bed bug numbers and determining the existence of bed bug infestations.

  13. Mother-child bed-sharing trajectories and psychiatric disorders at the age of 6 years.

    PubMed

    Santos, Iná S; Barros, Aluísio Jd; Barros, Fernando C; Munhoz, Tiago N; Da Silva, Bianca Del Ponte; Matijasevich, Alicia

    2017-01-15

    Little is known about the effect of bed-sharing with the mother over the child mental health. Population-based birth cohort conducted in Pelotas, Brazil. Children were enrolled at birth (n=4231) and followed-up at 3 months and at 1, 2, 4, and 6 years of age. Bed-sharing was defined as "habitual sharing of the bed between the child and the mother, for sleeping, for part of the night or the whole night". Trajectories of bed sharing between 3 months and 6 years of age were calculated. Mental health was assessed at the age of 6 years using the Development and Well-Being Assessment instrument that generates psychiatric diagnosis according to ICD-10 and DSM-IV criteria. Odds ratios (OR) with 95% confidence intervals were obtained by multivariate logistic regression. 3583 children were analyzed. Four trajectories were identified: non bed-sharers (44.4%), early-only (36.2%), late-onset (12.0%), and persistent bed-sharers (7.4%). In the adjusted analyses persistent bed-sharers were at increased odds of presenting any psychiatric disorder (OR=1.7; 1.2-2.5) and internalizing problems (OR=2.1; 1.4-3.1), as compared to non bed-sharers. Among the early-only bed-sharers OR for any psychiatric disorder was 1.4 (1.1-1.8) and for internalizing problems 1.6 (1.2-2.1). Although the effect of bed-sharing was adjusted for several covariates including the family socio-economic status, maternal mental health and excessive crying, there was no information on maternal personal reasons for bed-sharing. Mothers that bed-share intentionally and those that bed-share in reaction to a child sleep problem may have a different interpretation of their children behavior that may bias the study results. Bed-sharing is a common practice in our setting and is associated with impaired child mental health at the age of six years. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Utility of Recycled Bedding for Laboratory Rodents

    PubMed Central

    Miyamoto, Toru; Li, Zhixia; Kibushi, Tomomi; Okano, Shinya; Yamasaki, Nakamichi; Kasai, Noriyuki

    2009-01-01

    Animal facilities generate a large amount of used bedding containing excrement as medical waste. We developed a recycling system for used bedding that involves soft hydrothermal processing. In this study, we examined the effects of bedding type on growth, hematologic and serum biochemical values, and organ weights of female and male mice reared on either recycled or fresh bedding from 3 to 33 wk of age. Neither growth nor physiology differed between mice housed on recycled bedding compared with fresh bedding. When 14-wk-old mice were bred, litter size and total number of weaned pups showed no significant differences between animals raised on recycled or fresh bedding. Because bedding type influences the environment within cages and animal rooms, we evaluated particulate and ammonia data from cages and animal rooms. Values were significantly lower from cages and rooms that used recycled bedding than from those using fresh bedding, thus indicating that recycled bedding has the potential to improve the environment within both cages and animal rooms. Overall, this study revealed that recycled bedding is an excellent material for use in housing laboratory rodents. Specifically, recycled bedding may reduce medical waste and maintain healthy environments within cages and animal rooms. PMID:19653951

  15. Effects of bedding quality on lying behavior of dairy cows.

    PubMed

    Fregonesi, J A; Veira, D M; von Keyserlingk, M A G; Weary, D M

    2007-12-01

    Cows prefer to spend more time lying down in free stalls with more bedding, but no research to date has addressed the effects of bedding quality. Bedding in stalls often becomes wet either from exposure to the elements or from feces and urine. The aim of this study was to test the effect of wet bedding on stall preference and use. Four groups of 6 nonlactating Holstein cows were housed in free stalls bedded daily with approximately 0.1 m of fresh sawdust. Following a 5-d adaptation period, each group of cows was tested sequentially with access to stalls with either dry or wet sawdust bedding (86.4 +/- 2.1 vs. 26.5 +/- 2.1% dry matter), each for 2 d. These no-choice phases were followed by a 2-d free-choice phase during which cows had simultaneous access to stalls containing either wet or dry bedding. Stall usage was assessed by using 24-h video recordings scanned at 10-min intervals, and responses were analyzed by using a mixed model, with group (n = 4) as the observational unit. The minimum and maximum environmental temperatures during the experiment were 3.4 +/- 2.2 and 6.8 +/- 2.5 degrees C, respectively. When cows had access only to stalls with wet bedding, they spent 8.8 +/- 0.8 h/d lying down, which increased to 13.8 +/- 0.8 h/d when stalls with dry bedding were provided. Cows spent more time standing with their front 2 hooves in the stall when provided with wet vs. dry bedding (92 +/- 10 vs. 32 +/- 10 min/d). During the free-choice phase, all cows spent more time lying down in the dry stalls, spending 12.5 +/- 0.3 h/d in the dry stalls vs. 0.9 +/- 0.3 h/ d in stalls with wet bedding. In conclusion, dairy cows show a clear preference for a dry lying surface, and they spend much more time standing outside the stall when only wet bedding is available.

  16. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    NASA Technical Reports Server (NTRS)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; hide

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural equilibrium with HDT bed rest. This suggests that neuroplastic processes may facilitate adaptation to the HDT bed rest environment. The findings from this study provide novel insights into the neurobiology and future risk assessments of long-duration spaceflight.

  17. Bed Bug Guidance for School Nurses

    EPA Pesticide Factsheets

    School nurses are often called upon to provide vital information to students, parents, teachers, and administrators. These tips on identifying, managing and preventing bed bugs will help you to effectively respond if bed bugs appear in your school.

  18. Dynamics of bed bug infestations in three low-income housing communities with various bed bug management programs.

    PubMed

    Wang, Changlu; Eiden, Amanda; Singh, Narinderpal; Zha, Chen; Wang, Desen; Cooper, Richard

    2018-06-01

    Infestations of the common bed bug, Cimex lectularius L., have become common in low-income communities in the USA over the last 15 years. We evaluated community-based integrated pest management (IPM) programs for reducing bed bug infestations. Two housing authorities (Bayonne and Hackensack) implemented bed bug IPM programs. A third housing authority (Paterson) was used as the control site. Building-wide surveys were conducted in all communities, three times, to evaluate the effectiveness of the IPM programs. From 0 to 24 months, the infestation rate at Bayonne, Hackensack, and Paterson decreased by 49, 64, and 26%, respectively. The two sites that adopted IPM achieved faster bed bug elimination than the control site. The bed bug introduction rate over a 24-month period at Bayonne, Hackensack, and Paterson was 7, 3, and 11%, respectively. The introduction rate was positively associated with the initial infestation rate. Residents from buildings enrolled in IPM programs were more satisfied with the bed bug control services than residents from the control site. IPM programs were more effective in reducing bed bug infestations than traditional pest control services, but many factors contributed to the lower than desired level of reduction in infestation rate. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Evaluation of a model community-wide bed bug management program in affordable housing.

    PubMed

    Cooper, Richard A; Wang, Changlu; Singh, Narinderpal

    2016-01-01

    Low-income apartment communities in the United States are suffering from disproportionally high bed bug, Cimex lectularius L., infestations owing to lack of effective monitoring and treatment. Studies examining the effectiveness of integrated pest management (IPM) for the control of bed bugs in affordable housing have been limited to small subsets of bed-bug-infested apartments, rather than at the apartment community level. We developed, implemented and evaluated a complex-wide IPM program for bed bugs in an affordable housing community. Proactive inspections and biweekly treatments using a combination of non-chemical and chemical methods until bed bugs were not detected for three biweekly monitoring visits were key elements of the IPM program. A total of 55 bed-bug-infested apartments were identified during the initial inspection. Property management was unaware of 71% of these infestations. Over the next 12 months, 14 additional infested apartments were identified. The IPM program resulted in a 98% reduction in bed bug counts among treated apartments and reduced infestation rates from 15 to 2.2% after 12 months. Adopting a complex-wide bed bug IPM program, incorporating proactive monitoring, and biweekly treatments of infested apartments utilizing non-chemical and chemical methods can successfully reduce infestation rates to very low levels. © 2015 Society of Chemical Industry.

  20. Indoor tanning and problem behavior.

    PubMed

    Bagdasarov, Zhanna; Banerjee, Smita; Greene, Kathryn; Campo, Shelly

    2008-01-01

    The authors examined factors predicting college students' use of tanning beds. Undergraduate students (N = 745) at a large Northeastern university participated in the study by answering a survey measuring tanning behavior and other psychosocial variables, including sensation seeking, self-esteem, tanning image beliefs, and friends' tanning bed use. All 3 systems from problem behavior theory predicted past tanning bed use and intention to use tanning beds. The authors observed a positive association between sensation seeking and intention to use tanning beds. Tanning image beliefs were positively associated with both past tanning behavior and intention to use tanning beds. Interventions focusing on friend and acquaintance social network influences may be more effective than health-risk campaigns in reducing tanning bed use.

Top