Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.
1982-01-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Lewis pressurized, fluidized-bed combustion program. Data and calculated results
NASA Astrophysics Data System (ADS)
Rollbuhler, R. J.
1982-03-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
West Virginia Geological Survey's role in siting fluidized bed combustion facilities
Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.
1989-01-01
A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei-Ping Pan; Andy Wu; John T. Riley
This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved.more » Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.« less
Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua
2015-12-01
Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design assessment of a 150 kWt CFBC Test Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batu, A.; Selcuk, N.; Kulah, G.
2010-04-15
For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less
Ignition behavior of live California chaparral leaves
J.D. Engstrom; J.K Butler; S.G. Smith; L.L. Baxter; T.H. Fletcher; D.R. Weise
2004-01-01
Current forest fire models are largely empirical correlations based on data from beds of dead vegetation Improvement in model capabilities is sought by developing models of the combustion of live fuels. A facility was developed to determine the combustion behavior of small samples of live fuels, consisting of a flat-flame burner on a moveable platform Qualitative and...
Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process
NASA Technical Reports Server (NTRS)
Cooper, Beth A.; Young, Judith A.
2004-01-01
The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).
The extraction of bitumen from western oil sands: Volume 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.
1997-11-26
The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less
Pulse enhanced fluidized bed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, B.
1996-12-31
Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.
Cummins, Enda J; McDonnell, Kevin P; Ward, Shane M
2006-05-01
Due to the ban on meat and bone meal (MBM) as an animal feed, combustion with energy recovery has been considered a viable alternative usage for the mounting stocks of MBM. The effects of the co-combustion of MBM and peat on flue gas emissions and fluidisation were studied using a bubbling fluidised bed (BFB) test facility (20 kW). The dispersion of emissions such as nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), hydrogen chloride (HCl) and particulates was investigated for a proposed site and compared to the relevant national and international regulations. Concentrations of NO2, CO and HCl were less than 10% of legislative and guideline thresholds while ground level concentrations of SO2 were also below relevant EU and world guidelines. The results indicate the potential for using MBM as a co-fuel with peat in a BFB while maintaining high air quality standards.
A CFD model for biomass combustion in a packed bed furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Md. Rezwanul; Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704; Ovi, Ifat Rabbil Qudrat
Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is themore » most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.« less
Yang, Yao Bin; Swithenbank, Jim
2008-01-01
Packed bed combustion is still the most common way to burn municipal solid wastes. In this paper, a dispersion model for particle mixing, mainly caused by the movement of the grate in a moving-burning bed, has been proposed and transport equations for the continuity, momentum, species, and energy conservation are described. Particle-mixing coefficients obtained from model tests range from 2.0x10(-6) to 3.0x10(-5)m2/s. A numerical solution is sought to simulate the combustion behaviour of a full-scale 12-tonne-per-h waste incineration furnace at different levels of bed mixing. It is found that an increase in mixing causes a slight delay in the bed ignition but greatly enhances the combustion processes during the main combustion period in the bed. A medium-level mixing produces a combustion profile that is positioned more at the central part of the combustion chamber, and any leftover combustible gases (mainly CO) enter directly into the most intensive turbulence area created by the opposing secondary-air jets and thus are consumed quickly. Generally, the specific arrangement of the impinging secondary-air jets dumps most of the non-uniformity in temperature and CO into the gas flow coming from the bed-top, while medium-level mixing results in the lowest CO emission at the furnace exit and the highest combustion efficiency in the bed.
Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M
2015-05-01
In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reversed flow fluidized-bed combustion apparatus
Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.
1984-01-01
The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.
Starting procedure for internal combustion vessels
Harris, Harry A.
1978-09-26
A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Rui, E-mail: Sunsr@hit.edu.cn; Ismail, Tamer M., E-mail: temoil@aucegypt.edu; Ren, Xiaohan
Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on themore » combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.« less
Reducing mode circulating fluid bed combustion
Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien
1986-01-01
A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.
Fluidized-bed calciner with combustion nozzle and shroud
Wielang, Joseph A.; Palmer, William B.; Kerr, William B.
1977-01-01
A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.
Finney, Karen N; Ryu, Changkook; Sharifi, Vida N; Swithenbank, Jim
2009-01-01
Thermal treatment technologies were compared to determine an appropriate method of recovering energy from two wastes - spent mushroom compost and coal tailings. The raw compost and pellets of these wastes were combusted in a fluidised-bed and a packed-bed, and contrasted to pyrolysis and gasification. Quantitative combustion parameters were compared to assess the differences in efficiency between the technologies. Fluidised-bed combustion was more efficient than the packed-bed in both instances and pellet combustion was superior to that of the compost alone. Acid gas emissions (NO(x), SO(x) and HCl) were minimal for the fluidised-bed, thus little gas cleaning would be required. The fuels' high ash content (34%) also suggests fluidised-bed combustion would be preferred. The Alkali Index of the ash indicates the possibility of fouling/slagging within the system, caused by the presence of alkali metal oxides. Pyrolysis produced a range of low-calorific value-products, while gasification was not successful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Marzocchella, A.; Salatino, P.
1999-07-01
A simple lumped-parameter model of a bubbling fluidized bed combustor fueled with high-volatile solid fuels is presented. The combustor is divided into three sections: the dense bed, the splashing region and the freeboard. Material balances on fixed carbon, volatile matter and oxygen are set up, taking into account fuel particle fragmentation and attrition, volatile matter segregation as well as postcombustion of both carbon fines and volatiles escaping the bed. A basic assumption of the model is that the combustion pathway that foes from the raw fuel to the combustion products proceeds via the formation of three phases: volatile matter, relativelymore » large non-elutriable char particles and fine char particles of elutriable size. The study is complemented by a simplified thermal balance on the splashing zone taking into account volatiles and elutriated fines postcombustion and radiative and convective heat fluxes to the bed and the freeboard. Results from calculations with either low- or high-volatile solid fuels indicate that low-volatile bituminous coal combustion takes place essentially in the bed mostly via coarse char particles combustion, while high-volatile biomass fuel combustion occurs to comparable extents both in the bed and in the splashing region of the combustor. Depending on the extent of volatile matter segregation with respect to the bed, a significant fraction of the heat is released into the splashing region of the combustor and this results into an increase of temperature in this region. Extensive bed solids recirculation associated to bubble bursting/solids ejection at the bed surface together with effective gas-solids heat transfer promotes thermal feedback from this region to the bed of as much as 90% of the heat release by volatile matter and elutriated fines afterburning.« less
Fluidized bed injection assembly for coal gasification
Cherish, Peter; Salvador, Louis A.
1981-01-01
A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.
In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen
Capp, John P.; Bissett, Larry A.
1978-01-01
The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.
Experimental Replication of an Aeroengine Combustion Instability
NASA Technical Reports Server (NTRS)
Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.
2000-01-01
Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.
Experimental studies on combustion of composite biomass pellets in fluidized bed.
Guo, Feihong; Zhong, Zhaoping
2017-12-01
This work presents studies on the combustion of Composite Biomass Pellets (CBP S ) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBP S . The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBP S are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O 2 , CO, SO 2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O 2 and CO 2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO 2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration is found to be closely related to O 2 : the NO reaches its peak value after initial stage and later decreases with the continued depletion of O 2 . Towards the end of combustion, NO increases with the increase of O 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Characteristics of oily sludge combustion in circulating fluidized beds.
Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo
2009-10-15
Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.
Method for increasing the calorific value of gas produced by the in situ combustion of coal
Shuck, Lowell Z.
1978-01-01
The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.
Hybrid fluidized bed combuster
Kantesaria, Prabhudas P.; Matthews, Francis T.
1982-01-01
A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.
1977-08-01
TR~ANSIENT COMBUSTION PROCESSES IN MOBILE GRANULAR PROPELLANT BEDS Prqprid by The Pennsylvania Stats UnIversiV 197 Dopartme of Nmchanica! EngwineerIng...the ignition and flame spreadinb prc-eases by assuming that the granular propillents are fixed in space; and 3) modeling cf mobile granular beds so...through an aggrtgate of mobile "’actin&, partic~vi. The diffevewsoa Wi derivation of conservation equa~tions betvewu our approacit md this -f a Aivorain
FEASIBILITY OF BURNING COAL IN CATALYTIC COMBUSTORS
The report gives results of a study, showing that pulverized coal can be burned in a catalytic combustor. Pulverized coal combustion in catalytic beds is markedly different from gaseous fuel combustion. Gas combustion gives uniform bed temperatures and reaction rates over the ent...
NASA Technical Reports Server (NTRS)
Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.
1990-01-01
A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... design minimum and average temperature in the combustion zone and the combustion zone residence time. (B... establish the design minimum and average flame zone temperatures and combustion zone residence time, and... carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life...
Staged fluidized-bed combustion and filter system
Mei, Joseph S.; Halow, John S.
1994-01-01
A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro
1998-07-01
A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less
Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit
NASA Astrophysics Data System (ADS)
Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong
When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.
Modelling and simulation of wood chip combustion in a hot air generator system.
Rajika, J K A T; Narayana, Mahinsasa
2016-01-01
This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.
Fluidized bed heat exchanger with water cooled air distributor and dust hopper
Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.
1981-11-24
A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.
NASA Astrophysics Data System (ADS)
Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.
Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.
Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.
Kuprianov, Vladimir I; Arromdee, Porametr
2013-07-01
Combustion of peanut and tamarind shells was studied in the conical fluidized-bed combustor using alumina sand as the bed material to prevent bed agglomeration. Morphological, thermogravimetric and kinetic characteristics were investigated to compare thermal and combustion reactivity between the biomass fuels. The thermogravimetric kinetics of the biomasses was fitted using the Coats-Redfern method. Experimental tests on the combustor were performed at 60 and 45 kg/h fuel feed rates, with excess air within 20-80%. Temperature and gas concentrations were measured along radial and axial directions in the reactor and at stack. The axial temperature and gas concentration profiles inside the combustor exhibited sensible effects of fuel properties and operating conditions on combustion and emission performance. High (≈ 99%) combustion efficiency and acceptable levels of CO, CxHy, and NO emissions are achievable when firing peanut shells at excess air of about 40%, whereas 60% is more preferable for burning tamarind shells. Copyright © 2013 Elsevier Ltd. All rights reserved.
CIBO special project study: Fluidized bed combustion by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soyka, P.A.
1996-12-31
Information is outlined on a Council of Industrial Boiler Owners (CIBO) Special Project Study on fluidized bed combustion by-products. Data are presented on a fossil fuel combustion by-products (FFCB) Survey; study population and response pattern; survey respondent characteristics; FFCB characterization; productive use and impacts; on-site FFCB disposal; and environmental characteristics of FFCB disposal units.
Fluidized combustion of coal. [to limit SO2 and NOx emissions
NASA Technical Reports Server (NTRS)
Pope, M.
1978-01-01
A combustion technology that permits the burning of low quality coal, and other fuels, while maintaining stack emissions within State and Federal EPA limits is discussed. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600 F, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. The progress that has been made in the development of fluidized bed combustion technology and work currently underway are discussed.
Decontamination of combustion gases in fluidized bed incinerators
Leon, Albert M.
1982-01-01
Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.
You, Changfu; Xu, Xuchang
2008-04-01
Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.
Novel designs of fluidized bed combustors for low pollutant emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.; Bleek, C.M. van den; Dam-Johansen, K.
1995-12-31
It is known that NH{sub 3}, released during the devolatilization of fuel, is an important precursor for NO formation in fluidized bed combustors. On the other hand, NH{sub 3} may be used as a reducing agent in the thermal DeNO{sub x} process to reduce NO{sub x} emission levels. In this paper, a new concept of fluidized bed combustors is proposed based on the idea of in situ reduction of NO{sub x} by self-produced NH{sub 3} from fuel without lowering the sulfur capture level. This design is intended to separate the NH{sub 3} release process under reducing conditions from the charmore » combustion process under oxidizing conditions; this self-released NH{sub 3}, together with some combustibles, is mixed with gaseous combustion products in the upper part of the combustor for a further reduction of the NO{sub x} formed during combustion. Furthermore, the combustion of the combustibles may cause the temperature to rise in this upper zone and thereby reduce the emission of N{sub 2}O. The applications of this design to bubbling and circulating fluidized bed combustors are described and the mechanisms of the main reactions involved discussed.« less
Sealpot and method for controlling a solids flow rate therethrough
Chiu, John H.; Teigen, Bard C.
2015-10-20
A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.
Separation of particulate from flue gas of fossil fuel combustion and gasification
Yang, W.C.; Newby, R.A.; Lippert, T.E.
1997-08-05
The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.
Separation of particulate from flue gas of fossil fuel combustion and gasification
Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.
1997-01-01
The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.
Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan
2014-02-20
This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed.
2014-01-01
This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed. PMID:24678140
Pyrolysis reactor and fluidized bed combustion chamber
Green, Norman W.
1981-01-06
A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.
NASA Astrophysics Data System (ADS)
Kijo-Kleczkowska, Agnieszka
2012-10-01
In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. L. Abbott; K. N. Keck; R. E. Schindler
This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidifymore » (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.« less
Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar
2014-12-16
This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.
PARTICULATE EMISSIONS AND CONTROL IN FLUIDIZED-BED COMBUSTION: MODELING AND PARAMETRIC PERFORMANCE
The report discusses a model, developed to describe the physical characteristics of the particulates emitted from fluidized-bed combustion (FBC) systems and to evaluate data on FBC particulate control systems. The model, which describes the particulate emissions profile from FBC,...
Fluidized Bed Boiler Assessment for Navy Applications
1986-11-01
rather than removing it from the flue gas later with "scrubbing" devices. Intro- duction of limestone in the bed will reduce SO emissions; two...boiler in a satisfactory manner, the bed level, combustion temperature, and the flue gas composition and temperature should be continuously monitored...The flue gas composition should be c^-ɝely monitored for pollutants and combustion efficiency. EVOLUTION OF FBC BOILERS The performance of FBC
Solids feed nozzle for fluidized bed
Zielinski, Edward A.
1982-01-01
The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.
Tuttle, Kenneth L.
1980-01-01
A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.
Fluidized-bed combustion reduces atmospheric pollutants
NASA Technical Reports Server (NTRS)
Jonke, A. A.
1972-01-01
Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.
Characterization of coals for circulating fluidized bed combustion by pilot scale tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de
1995-12-31
The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less
Solid fuel combustion system for gas turbine engine
Wilkes, Colin; Mongia, Hukam C.
1993-01-01
A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.
Yu, Yong-Ho; Chung, Jinwook
2015-01-01
This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.
1992-11-01
heat transfer surfaces located in the path of the exiting combustion gases generate additional steam. Flue gas particulates entrained in the combustion...anid the overall heat transfer surface anid boiler volume can be reduced. After the hot flue gas exits thie bed, it enters the external COnv.ctfion...rates, underfeed stoker fired combustors emit little smoke, and only a low concentration of particulates entrained in the flue gas . Under these
Meat and bone meal as secondary fuel in fluidized bed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Fryda; K. Panopoulos; P. Vourliotis
2007-07-01
Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containingmore » bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.« less
Numerical study of rice husk and coal co-combustion characteristics in a circulating fluidized bed
NASA Astrophysics Data System (ADS)
Wang, Zuomin; Li, Jiuru
2018-02-01
This paper discussed the rationality of coal and rice husk co-combustion. Using ICEM software, a two-dimensional model of the riser has been established for circulating fluidized bed experimental table. Using Fluent software, numerical simulation has been made for the combustion reaction of different proportions of rice husk mixed with coal. The results show that, with the increase of rice husk ratio, both the combustion temperature and the amount of nitrogen oxides decrease and the effect is gradually reduced. In this simulation, the rice husks occupying about 30% is a reasonable proportion.
Pressurized fluidized bed combustion of coal for electric power generation the AEP approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markowsky J.J.; Wickstrom, B.
1982-08-01
American Electric Power (AEP), STAL-LAVAL Turbine A.B. (SL), and Deutsche Babcock Anlagen AG (DBA) are working on a program estimated to cost $250 million that will lead toward the construction of a large (170,000 KW) commercial demonstration of an advanced electric power plant incorporating Pressurized Fluidized Bed Combustion (PFBC) of coal. A pilot plant test program carried out during 1977-1980 verified combustor performance and demonstrated long gas turbine blade life. Parallel efforts during this period involved the design of the 170,000 kW Commercial Demonstration Plant (CDP) and a 500,000 kW Commercial Plant which essentially consists of two CDP combustors-gas turbinemore » modules and a larger capacity steam cycle. These efforts showed considerable economic advantages of PFBC-combined cycle power generation over other alternative technologies. A 15,000 KW (thermal) component test facility (CTF) is presently under construction in Sweden. Extensive testing is scheduled to begin in early 1982. Upon successful completion of these tests, AEP intends to start construction of the CDP in 1983; the plant is expected to supply power to the AEP network by 1986.« less
[Study on the calcium-based sorbent for removal fluorine during coal combustion].
Li, Shu-ling; Qi, Qing-jie; Liu, Jian-zhong; Cao, Xin-yu; Zhou, Jun-hu; Cen, Ke-fa
2004-03-01
In the paper, the reaction of CaO-HF and fluorine removal mechanics at high temperature by blending calcium-based sorbents with coal during coal combustion were discussed, and test results about fluorine retention during coal combustion in fluidized bed and chain-grate furnace were reported. The results identified that lime and calcium-based sorbets developed can restratin the emission of fluorine during coal combustion. The efficiency of fluorine removal can reach 66.7%-70.0% at Ca/F 60-70 by blending lime with coal in fluidized bed combustion, and the efficiency of fluorine removal are between 57.32% and 75.19% by blending calcium-based sorbets with coal in chain-grate furnace combustion. Blending CaO or lime with coal during coal combustion can remove SO2 and HF simultaneously.
Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed
2013-01-01
Background The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%. PMID:23289764
Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed.
Olek, Malgorzata; Baron, Jerzy; Zukowski, Witold
2013-01-06
The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.
Fluidized bed combustor and tube construction therefor
De Feo, Angelo; Hosek, William
1981-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
Tube construction for fluidized bed combustor
De Feo, Angelo; Hosek, William
1984-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
Propagation of a fluidization - combustion wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.
1994-05-01
A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.
Pressurized fluidized-bed component test program shows good promise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-04-01
The test program described has involved extensive theoretical and laboratory work since 1976, which culminated in a series of PFBC rig tests at the Coal Utilization Research Laboratories (CURL) in Leatherhead, England, and eventually in the design and construction of a component test facility (CTF) at the Oresund Power Station of Sydkraft in Malmo, Sweden. The rig tests are listed. Those preceding the 1000-hr test in 1979 were carried out with and without cooling tubes in the bed, and with different bed characteristics; the main emphasis was on gas clean-up, combustion efficiency, and emission of sulfur and nitrogen oxides. Inmore » these tests, the exhaust gases from the PFBC were passed through a cyclone train containing two cyclones to remove particulate matter, and then through a static cascade that contained parts of turbine blades from an ASEA STAL GT-120 machine. Good performance data, for the most part, are reported. 4 references, 3 figures.« less
Regeneration of lime from sulfates for fluidized-bed combustion
Yang, Ralph T.; Steinberg, Meyer
1980-01-01
In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.
Coal-feeding mechanism for a fluidized bed combustion chamber
Gall, Robert L.
1981-01-01
The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.
The Influence of Fuel Properties on Combustion Efficiency and the Partitioning of Pyrogenic Carbon
NASA Astrophysics Data System (ADS)
Urbanski, S. P.; Baker, S. P.; Lincoln, E.; Richardson, M.
2016-12-01
The partitioning of volatized pyrogenic carbon into CO2, CO, CH4, non-methane organic carbon, and particulate organic carbon (POC) and elemental carbon (PEC) depends on the combustion characteristics of biomass fires which are influenced by the moisture content, structure and arrangement of the fuels. Flaming combustion is characterized by efficient conversion of volatized carbon into CO2. In contrast, smoldering is less efficient and produces incomplete combustion products like CH4 and carbonaceous particles. This paper presents a laboratory study that has examined the relationship between the partitioning of volatized pyrogenic carbon and specific fuel properties. The study focused on fuel beds composed of simple fuel particles — ponderosa pine needles. Ponderosa pine was selected because it contains a common wildland fuel component, conifer needles, which can be easily arranged into fuel beds of variable structure (bulk density and depth) and moisture contents that are both representative of natural conditions and are easily replicated. Modified combustion efficiency (MCE, ΔCO2/[ΔCO2+ ΔCO]) and emission factors (EF) for CO2, CO, CH4, POC, and PEC were measured over a range of needle moisture content and fuel bed bulk density and depth representative of naturally occurring fuel beds. We found that, as expected, MCE decreases as the fuel bed bulk density increases and emissions of CO, CH4, PM2.5, and POC increased. However, fuel bed depth did not appear to have an effect on how effect on MCE or emission factors. Surprisingly, a consistent relationship between the needle moisture content and emissions was not identified. At the high bulk densities, moisture content had a strong influence on MCE which explained variability in EFCH4. However, moisture content appeared to have an influence EFPOC and EFPEC that was independent of MCE. These findings may have significant implications since many models of biomass burning assume that litter fuels, such as ponderosa pine needles, burn almost exclusively via flaming combustion with a high efficiency. Our results indicate that for fuel bed properties typical of many conifer forests, pollutants generated from fires will be higher than that predicted using standard biomass burning models.
Freeboard reactions in fluidized coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, P.M.; Dutta, A.; Beer, J.M.
1984-05-11
The objective of this study was to determine the contribution of freeboard combustion to overall fixed carbon conversion during atmospheric pressure fluidized bed combustion of Kentucky No. 9 high volatile bituminous coal. The progress of the O/sub 2//char reaction in the freeboard was inferred from O/sub 2/ profiles determined by gas sampling. The rates of O/sub 2/ consumption were in good agreement with the O/sub 2//char rate expression of Sergeant and Smith (1973), except at the lowest temperature investigated (964 K). The discrepancy in this case might be due to catalysis of the O/sub 2//char reaction by lime, since thismore » was the first run of the series. Extrapolation of the O/sub 2/ profile to the bed surface using the rate expression of Sergeant and Smith showed that approximately all of the fixed carbon conversion could be accounted for by freeboard combustion. A simple model is proposed in which devolatilization, fragmentation, attrition, and volatile combustion are limited to the bed; with combustion of the finely ground char occurring only in the freeboard. This model predicts O/sub 2/ at the combustor outlet within 60% of the measured values, except in the low temperature/high lime case.« less
Achieving Tier 4 Emissions in Biomass Cookstoves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchese, Anthony; DeFoort, Morgan; Gao, Xinfeng
Previous literature on top-lit updraft (TLUD) gasifier cookstoves suggested that these stoves have the potential to be the lowest emitting biomass cookstove. However, the previous literature also demonstrated a high degree of variability in TLUD emissions and performance, and a lack of general understanding of the TLUD combustion process. The objective of this study was to improve understanding of the combustion process in TLUD cookstoves. In a TLUD, biomass is gasified and the resulting producer gas is burned in a secondary flame located just above the fuel bed. The goal of this project is to enable the design of amore » more robust TLUD that consistently meets Tier 4 performance targets through a better understanding of the underlying combustion physics. The project featured a combined modeling, experimental and product design/development effort comprised of four different activities: Development of a model of the gasification process in the biomass fuel bed; Development of a CFD model of the secondary combustion zone; Experiments with a modular TLUD test bed to provide information on how stove design, fuel properties, and operating mode influence performance and provide data needed to validate the fuel bed model; Planar laser-induced fluorescence (PLIF) experiments with a two-dimensional optical test bed to provide insight into the flame dynamics in the secondary combustion zone and data to validate the CFD model; Design, development and field testing of a market ready TLUD prototype. Over 180 tests of 40 different configurations of the modular TLUD test bed were performed to demonstrate how stove design, fuel properties and operating mode influences performance, and the conditions under which Tier 4 emissions are obtainable. Images of OH and acetone PLIF were collected at 10 kHz with the optical test bed. The modeling and experimental results informed the design of a TLUD prototype that met Tier 3 to Tier 4 specifications in emissions and Tier 2 in efficiency. The final prototype was field tested in India.« less
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Guo, Feihong; Zhong, Zhaoping
2018-08-01
This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.
Co-combustion of pellets from Soma lignite and waste dusts of furniture works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, N.D.; Yilgin, M.; Pehlivan, D.
2008-07-01
In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a promptmore » effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.« less
Cyclic flow underground coal gasification process
Bissett, Larry A.
1978-01-01
The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.
Fluidized bed combustor modeling
NASA Technical Reports Server (NTRS)
Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.
1977-01-01
A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.
Method of removing sulfur emissions from a fluidized-bed combustion process
Vogel, Gerhard John; Jonke, Albert A.; Snyder, Robert B.
1978-01-01
Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.
Minnick, L. John
1981-01-01
Method for the production of cementitious compositions and aggregate derivatives of said compositions, and cementitious compositions and aggregates produced by said method, wherein fluidized bed combustion residue and pozzolanic material, such as pulverized coal combustion system fly ash, are incorporated in a cementitious mix. The mix is cast into desired shape and cured. If desired, the shape may then be crushed so as to result in a fluidized bed combustion residue-fly ash aggregate material or the shape may be used by itself.
Abatement of N{sub 2}O emissions from circulating fluidized bed combustion through afterburning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsson, L.; Leckner, B.
1995-04-01
A method for the abatement of N{sub 2}O emission from fluidized bed combustion has been investigated. The method consists of burning a secondary fuel after the normal circulating fluidized bed combustor. Liquefied petroleum gas (LPG), fuel oil, pulverized coal, and wood, as well as sawdust, were used as the secondary fuel. Experiments showed that the N{sub 2}O emission can be reduced by 90% or more by this technique. The resulting N{sub 2}O emission was principally a function of the gas temperature achieved in the afterburner and independent of afterburning fuel, but the amount of air in the combustion gases frommore » the primary combustion also influences the results. No negative effects on sulfur capture or on NO or CO emissions were recorded. In the experiments, the primary cyclone of the fluidized bed boiler was used for afterburning. If afterburning is implemented in a plant optimized for this purpose, an amount of secondary fuel corresponding to 10% of the total energy input should remove practically all N{sub 2}O. During the present experiments the secondary fuel consumption was greater than 10% of the total energy input due to various losses.« less
NASA Astrophysics Data System (ADS)
Yong, Yumei; Lu, Qinggang
2003-05-01
The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.
NASA Technical Reports Server (NTRS)
Horio, M.; Wen, C. Y.
1976-01-01
A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.
1998-01-13
Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.
1998-01-01
Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.
Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace
NASA Astrophysics Data System (ADS)
Karim, Md. Rezwanul; Naser, Jamal
2017-06-01
Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.
CFD Modelling Applied to the Co-Combustion of Paper Sludge and Coal in a 130 t/h CFB Boiler
NASA Astrophysics Data System (ADS)
Yu, Z. S.; Ma, X. Q.; Lai, Z. Y.; Xiao, H. M.
Three-dimensional mathematical model has been developed as a tool for co-combustion of paper sludge and coal in a 130 tJh Circulating Fluidized Bed (CFB) boiler. Mathematical methods had been used based on a commercial software FLUENT for combustion. The predicted results of CFB furnace show that the co-combustion of paper sludge/coal is initially intensively at the bottom of bed; the temperature reaches its maximum in the dense-phase zone, around l400K. It indicates that paper sludge spout into furnace from the recycle inlet can increase the furnace maximum temperature (l396.3K), area-weighted average temperature (l109.6K) and the furnace gas outlet area-weighted average temperature(996.8K).The mathematical modeling also predicts that 15 mass% paper sludge co-combustion is the highest temperature at the flue gas outlet, it is 1000.8K. Moreover, it is proved that mathematical models can serve as a tool for detailed analysis of co-combustion of paper sludge and coal processes in a circulating fluidized bed furnace when in view of its convenience. The results gained from numerical simulation show that paper sludge enter into furnace from the recycle inlet excelled than mixing with coal and at the underside of phase interface.
NASA Astrophysics Data System (ADS)
Nikolaeva, L. A.; Khusaenova, A. Z.
2014-05-01
A method for utilizing production wastes is considered, and a process circuit arrangement is proposed for utilizing a mixture of activated silt and sludge from chemical water treatment by incinerating it with possible heat recovery. The sorption capacity of the products from combusting a mixture of activated silt and sludge with respect to gaseous emissions is experimentally determined. A periodic-duty adsorber charged with a fixed bed of sludge is calculated, and the heat-recovery boiler efficiency is estimated together with the technical-economic indicators of the proposed utilization process circuit arrangement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.; Dawson, M.R.; Noble, S.D.
Agglomerates formed in laboratory coal combustion tests were analyzed to determine the chemical and mineral reactions which lead to the cohesion of bed particles. Combustion tests were conducted at 75, 90, 100, and 120% theoretical air values. The test at 75% theoretical air resulted in the formation of bed agglomerates within 30 minutes. Agglomerates which formed at the lower theoretical air values were compared to unagglomerated bed samples by X-ray diffraction analyses. Polished thin sections of the agglomerates were made for optical and scanning electron microscopy. The results of these analyses indicate there were, in a broad sense, two typesmore » of mineralogic reactions which lead to the cohesion of bed particles in the agglomerates. One mechanism of cohesion resulted from the melting of bed particles to form a viscous material which bridged other bed particles. Based on the chemical composition of the glass (which resulted from the melt), this material was probably derived from aluminosilicate minerals in the sand bed or from clays within the coal. Because of the high iron content in these glasses (4 to 5 wt%), it is likely that iron pyrites in the coal were involved in fluxing reactions. In addition, MgO appears to be relatively high in the glasses. It is suspected that Ca-Mg carbonates (dolomite) from the bed sand are also involved in mineralogic reactions with the aluminosilicate melt. The second type of mineralogic reaction appears to be a reaction involving calcium and magnesium with other bed particles and with the aluminosilicate melt to form new mineral phases. Although the composition of these phases is somewhat variable, some resemble single-chain silicates or pyroxenes.« less
Pulse Detonation Engine Test Bed Developed
NASA Technical Reports Server (NTRS)
Breisacher, Kevin J.
2002-01-01
A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.
Pulsed atmospheric fluidized bed combustor apparatus and process
Mansour, Momtaz N.
1992-01-01
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.
Lapa, N; Barbosa, R; Lopes, M H; Mendes, B; Abelha, P; Boavida, D; Gulyurtlu, I; Oliveira, J Santos
2007-08-17
In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type of thermal processes.
Development of a High Temperature Heater using an Yttria Stabilized Zirconia Cored Brick Matrix
NASA Technical Reports Server (NTRS)
Smith, K. W.; Decoursin, D. G.
1971-01-01
The Ames pilot heater is a ceramic regenerative heater that provides high temperature air for aerodynamic and combustion experiments. The development of this heater to provide a heat storage bed with temperature capability of about 4600 R is described. A bed was designed and installed having cored brick elements of yttria-stabilized zirconia. The bed dimensions were 14 inches in diameter by 10 feet high. The thermal stress limitations of the bed were studied and maximum air flow rates based upon these limits were established. A combustion reheat system was designed and installed to provide the necessary control over the bed temperature distribution. The revised heater system was successfully operated at a maximum bed temperature of 4600 R. The successful operation demonstrated that yttria-stabilized zirconia cored brick can satisfy the high temperature-long duration requirement for storage heater applications.
Effect of pulsation on black liquor gasification. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinn, B.T.; Jagoda, J.; Jeong, H.
1998-12-01
Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be usedmore » to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.« less
Hatanaka, T; Imagawa, T; Kitajima, A; Takeuchi, M
2001-12-15
Combustion experiments in a laboratory-scale fluidized-bed reactor were performed to elucidate the effects of combustion temperature on PCDD/Fs formation during incineration of model wastes with poly(vinyl chloride) or sodium chloride as a chlorine source and copper chloride as a catalyst. Each temperature of primary and secondary combustion zones in the reactor was set independently to 700, 800, and 900 degrees C using external electric heaters. The PCDD/Fs concentration is reduced as the temperature of the secondary combustion zone increases. It is effective to keep the temperature of the secondary combustion zone high enough to reduce their release during the waste incineration. On the other hand, as the temperature of the primary combustion zone rises, the PCDD/Fs concentration also increases. Lower temperature of the primary combustion zone results in less PCDD/Fs concentration in these experimental conditions. This result is probably related to the devolatilization rate of the solid waste in the primary combustion zone. The temperature decrease slows the devolatilization rate and promotes mixing of oxygen and volatile matters from the solid waste. This contributes to completing combustion reactions, resulting in reducing the PCDD/Fs concentration.
NASA Astrophysics Data System (ADS)
Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi
An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.
Dual fluidized bed design for the fast pyrolysis of biomass
USDA-ARS?s Scientific Manuscript database
A mechanism for the transport of solids between fluidised beds in dual fluidised bed systems for the fast pyrolysis of biomass process was selected. This mechanism makes use of an overflow standpipe to transport solids from the fluidised bed used for the combustion reactions to a second fluidised be...
Fuel processor for fuel cell power system
Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.
1987-01-01
A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.
Pulsed atmospheric fluidized bed combustor apparatus
Mansour, Momtaz N.
1993-10-26
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.
Conceptual design for the space station Freedom modular combustion facility
NASA Technical Reports Server (NTRS)
1989-01-01
A definition study and conceptual design for a combustion science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module is being performed. This modular, user-friendly facility, called the Modular Combustion Facility, will be available for use by industry, academic, and government research communities in the mid-1990's. The Facility will support research experiments dealing with the study of combustion and its byproducts. Because of the lack of gravity-induced convection, research into the mechanisms of combustion in the absence of gravity will help to provide a better understanding of the fundamentals of the combustion process. The background, current status, and future activities of the effort are covered.
Ribeiro, João Peres; Vicente, Estela Domingos; Alves, Célia; Querol, Xavier; Amato, Fulvio; Tarelho, Luís A C
2017-04-01
Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO 2 , MgO and K 2 O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, P.A.; Patel, N.M.; Painter, A.
Energy recovery from municipal solid waste (MSW) is an important component of an integrated waste management strategy. Waste management programs which remove or recover materials for recycling are particularly suited for considering the option of energy recovery via fluidized bed combustion (FBC). The last few years have seen growing interest in the application of FBC technology to the MSW treatment/disposal problem. This paper reviews and reports on the world-wide experience in fluidized bed combustion of MSW focusing particularly on the types and scales of the systems in operation in Japan and Scandinavia. In addition the paper also reports on themore » development of an energy from waste project employing circulating fluidized bed technology that is proposed for a local municipality in the UK. Japan currently has over 100 bubbling bed units in operation firing on 100% MSW; the technology is firmly established at scales of operation up to 160,000t/y (the largest single unit operates at 6.25t/h). The bubbling bed units accept MSW which has undergone only minimal pre-processing -- the waste is shredded to a nominal 300mm size fraction before being introduced to the furnace. There are distinct (combustion control) advantages to further processing of the waste stream prior to combustion. The Scandinavian countries in particular have been the prime movers in pioneering this technology to work in combination with circulating fluidized bed systems. Currently 2 units are in operation cofiring pre-processed MSW with a range of other biofuels. A number of FBC units firing 100% MSW are currently in the planning or construction stage around the world; they seem set to secure an increased market share particularly at the smaller scale of operation (up to about 200,000t/y).« less
Environmentally Compliant Disposal Method for Heavy Metal Containing Propellants
NASA Technical Reports Server (NTRS)
Decker, M. W.; Erickson, E. D.; Byrd, E. R.; Crispin, K. W. R.; Ferguson, B. W.
2000-01-01
ABSTRACT An environmentally friendly, cost effective technology has been developed and demonstrated by a team of Naval Air Warfare Center and Lockheed Martin personnel to dispose of Shillelagh solid rocket motor propellants. The Shillelagh is a surface to surface anti-tank weapon approaching the end of its service life. The current demilitarization process employs open detonation, but the presence of lead stearate in the N5 propellant grain motivated the need for the development of an environmentally friendly disposal method. Contained burning of the propellant followed by propellant exhaust processing was chosen as the disposal methodology. The developmental test bed, completed in February 1998, is inexpensive and transportable. Contained burning of Shillelagh propellants posed two technical hurdles: 1) removal of the sub micron lead and cadmium particulate generated during combustion, and 2) secondary combustion of the significant quantifies of carbon monoxide and hydrogen. A firing chamber with a stepped nozzle, air injection, and active ignition was developed to combust the carbon monoxide and hydrogen in real time. The hot gases and particulates from the combustion process are completely contained within a gas holder. The gases are subsequently cooled and routed through a treatment facility to remove the heavy metal particulate. Results indicate that the lead and cadmium particulates are removed below their respective detection limits (2 micro-g/cu m & 0.2 micro-g/cu m) of the analytical procedures employed and that the carbon monoxide and hydrogen levels have been reduced well below the lower flammability limits. Organic concentrations, principally benzene, are I ppm or less. A semi-automated machine has been developed which can rapidly prepare Shillelagh missiles for the contained burn facility. This machine allows the contained burn technology to be more competitive with current open bum open detonation disposal rates.
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L.
1979-01-01
Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.
Down-flow moving-bed gasifier with catalyst recycle
Halow, John S.
1999-01-01
The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.
Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen
Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.
1986-01-28
A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.
Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.; Kobak, J. A.
1980-01-01
The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.
FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS
NASA Technical Reports Server (NTRS)
Frate, David T.; Tofil, Todd A.
2001-01-01
The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.
Post-combustion CO2 capture with activated carbons using fixed bed adsorption
NASA Astrophysics Data System (ADS)
Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon
2018-03-01
In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.
Devolatilization of oil sludge in a lab-scale bubbling fluidized bed.
Liu, Jianguo; Jiang, Xiumin; Han, Xiangxin
2011-01-30
Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles. Copyright © 2010 Elsevier B.V. All rights reserved.
Solid fuel feed system for a fluidized bed
Jones, Brian C.
1982-01-01
A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.
Combustion and NOx emissions in deep-air-staging combustion of char in a circulating fluidized bed
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Wang, Zhentong; Wang, Lei; Du, Aixun
2017-10-01
Combustion and NOx emissions in deep-air-staging (with higher level secondary air (SA) injection) combustion of char have been investigated in a CFB test rig. A good fluidized condition and uniform temperature distribution can be achieved with injection of higher level SA. NOx emission decreases with injection of higher level SA and the reduction effect is more obvious at higher temperature. NOx emission decreases with combustion temperature increasing for char combustion.
Combustion of textile residues in a packed bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.
2007-08-15
Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materialsmore » at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)« less
Fluidized bed boiler feed system
Jones, Brian C.
1981-01-01
A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.
Heat exchanger support apparatus in a fluidized bed
Lawton, Carl W.
1982-01-01
A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.
Combustion Integration Rack (CIR) Testing
2015-02-18
Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.
Down-flow moving-bed gasifier with catalyst recycle
Halow, J.S.
1999-04-20
The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction. 1 fig.
Process for generating electricity in a pressurized fluidized-bed combustor system
Kasper, Stanley
1991-01-01
A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.
Fluidized bed coal combustion reactor
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L. (Inventor)
1981-01-01
A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.
The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...
Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-04-01
Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.
Boyle, Michael J.
1994-01-01
Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E. K.
2015-05-06
This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.
Catalyst Bed Instability Within the USFE H2O2/JP-8 Rocket Engine
NASA Technical Reports Server (NTRS)
Johnson, Curtis W.; Anderson, William; Ross, Robert; Lyles, G. (Technical Monitor)
2000-01-01
Orbital Sciences Corporation has been awarded a contract by NASA's Marshall Space Flight Center, in cooperation with the U.S. Air Force Research Laboratory's Military Space Plane Technology Program Office, for the Upper Stage Flight Experiment (USFE) program. Orbital is designing, developing, and will flight test a new low-cost, 10,000 lbf hydrogen peroxide/ JP-8 pressure fed liquid rocket. During combustion chamber tests at NASA Stennis Space Center (SSC) of the USFE engine, the catalyst bed showed a low frequency instability occurring as the H202 flow reached about 1/3 its design rate. This paper reviews the USFE catalyst bed and combustion chamber and its operation, then discusses the dynamics of the instability. Next the paper describes the dynamic computer model used to recreate the instability. The model was correlated to the SSC test data, and used to investigate possible solutions to the problem. The combustion chamber configuration which solved the instability is shown, and the subsequent stable operation presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleland, J.; Purvis, C.R.
1998-06-01
The paper discusses a biomass energy conversion project being sponsored by EPA to demonstrate an enviromentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple economical operation for units < 10 MW, and (3) the option of a clean cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving-bed gasifier utilizing hogged waste wood from the Marine Corps Base atmore » Camp Lejeune, NC. A moving-bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are described briefly, relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined.« less
COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES
The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...
Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G
2013-03-15
The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Songgeng Li; Shuang Deng; Andy Wu
Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6more » figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soko, W.A.; Biaecka, B.
1998-12-31
In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less
NASA Technical Reports Server (NTRS)
1981-01-01
Problems related to combustion generated pollution are explored, taking into account the mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence, the structure and similarity of nitric oxide production in turbulent diffusion flames, the effect of steam addition on NO formation, and the formation of NO2 by laminar flames. Other topics considered are concerned with propellant combustion, fluidized bed combustion, the combustion of droplets and sprays, premixed flame studies, fire studies, and flame stabilization. Attention is also given to coal flammability, chemical kinetics, turbulent combustion, soot, coal combustion, the modeling of combustion processes, combustion diagnostics, detonations and explosions, ignition, internal combustion engines, combustion studies, and furnaces.
Conceptual design of the Space Station combustion module
NASA Technical Reports Server (NTRS)
Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
NASA Astrophysics Data System (ADS)
Salatino, P.; Solimene, R.; Chirone, R.
The de-NOx potential of coal and of dried and pelletized sewage sludge, a waste-derived fuel candidate for cofiring with coal, is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the loss of reactivity of chars toward gasification by NOx as char is heat-treated for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char.
Provol, Steve J.; Russell, David B.; Isaksson, Matti J.
1994-01-01
A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.
Simulation of fluidized bed coal combustors
NASA Technical Reports Server (NTRS)
Rajan, R.
1979-01-01
The many deficiencies of previous work on simulation of fluidized bed combustion (FBC) processes are presented. An attempt is made to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements: (1) devolatilization of coal and the subsequent combustion of volatiles and residual char; (2) sulfur dioxide capture by limestone; (3) NOx release and reduction of NOx by char; (4) attrition and elutriation of char and limestone; (5) bubble hydrodynamics; (6) solids mixing; (7) heat transfer between gas and solid, and solid and heat exchange surfaces; and (8) freeboard reactions.
Method for in situ gasification of a subterranean coal bed
Shuck, Lowell Z.
1977-05-31
The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.
2009-01-05
ISS018-E-017796 (5 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works on the Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (PaRIS) in the Destiny laboratory of the International Space Station.
NASA Astrophysics Data System (ADS)
Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.
Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.
40 CFR 60.2030 - Who implements and enforces this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... qualifying small power production facility or cogeneration facility under § 60.2020(e) or (f) is combusting... qualifying small power production facility or cogeneration facility under § 60.2020(e) or (f) is combusting...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se
Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less
A Preliminary Study on Rock Bed Heat Storage from Biomass Combustion for Rice Drying
NASA Astrophysics Data System (ADS)
Nelwan, L. O.; Wulandani, D.; Subrata, I. D. M.
2018-05-01
One of the main constraints of biomass fuel utilization in a small scale rice drying system is the operating difficulties related to the adjustment of combustion/feeding rate. Use of thermal storage may reduce the problem since combustion operation can be accomplished in a much shorter time and then the use of heat can be regulated by simply adjusting the air flow. An integrated biomass furnace-rock bed thermal storage with a storage volume of 540 L was designed and tested. There were four experiments conducted in this study. Charging was performed within 1-2 hours with a combustion rate of 11.5-15.5 kg/h. In discharging process, the mixing of air passing through the rock bed and ambient air were regulated by valves. Without adjusting the valve during the discharging process, air temperature increased up to 80°C, which is not suitable for rice batch drying process. Charging with sufficiently high combustion rate (14 kg/h) within 1 hour continued by adjusting the valve during discharging process below 60°C increased the discharge-charge time ratio (DCTR) up to 5.33 at average air temperature of 49°C and ambient temperature of 33°C.The efficiency of heat discharging was ranged from 34.5 to 45.8%. From the simulation, as much as 156.8-268.8 kg of rice was able to be dried by the discharging conditions.
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Brandt, D. L.; Brauer, D. P.
1978-01-01
An apparatus and procedure are described for evaluating the toxicity of the gases evolved from the smoldering combustion of seating and bedding materials. The method combines initiation of smoldering combustion in fabric/cushion combinations by a lighted cigarette and exposure of laboratory animals to the gases evolved. The ratio of the surface available for smoldering to the compartment volume in this apparatus is approximately five times the ratio expected in a California living room, and 100 times the ratio expected in a wide-body aircraft passenger cabin. Based on fabric/cushion combinations tested, the toxicity of gases from smoldering combustion does not appear to be a significant hazard in aircraft passenger cabins, but seems to be a basis for careful selection of materials for residential environments.
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
Atabay, Keramettin
1979-01-01
The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.
An examination of flame shape related to convection heat transfer in deep-fuel beds
Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney
2010-01-01
Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....
Combustion of Coal Char Particles under Fluidized Bed Oxyfiring Conditions
NASA Astrophysics Data System (ADS)
Scala, Fabrizio; Chirone, Riccardo
In this work combustion of single coal char particles was studied at 850°C in a lab-scale fluidized bed under simulated oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O2 concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO2 in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to the bed one up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO2 gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be more important than under combustion conditions.
Ames Hybrid Combustion Facility
NASA Technical Reports Server (NTRS)
Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)
2003-01-01
The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.
40 CFR 60.43b - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) heat input, (i) If the affected facility combusts only coal, or (ii) If the affected facility combusts.... (2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal and other fuels and has... greater than 10 percent (0.10) for fuels other than coal. (3) 86 ng/J (0.20 lb/MMBtu) heat input if the...
Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rue, David
The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work inmore » this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner was stable over the full oxygen to fuel firing range (0.8 to 1.05 of fuel gas stoichiometry) and with all fuel gases (natural gas and two syngas compositions), with steam, and without steam. The lower Btu content of the syngases presented no combustion difficulties. The molten bed was stable throughout testing. The molten bed was easily established as a bed of molten glass. As the composition changed from glass cullet to cullet with slag, no instabilities were encountered. The bed temperature and product syngas temperature remained stable throughout testing, demonstrating that the bed serves as a good heat sink for the gasification process. Product syngas temperature measured above the bed was stable at ~1600ºF. Testing found that syngas quality measured as H 2/CO ratio increased with decreasing oxygen to fuel gas stoichiometric ratio, higher steam to inlet carbon ratio, higher temperature, and syngas compared with natural gas. The highest H 2/CO ratios achieved were in the range of 0.70 to 0.78. These values are well below the targets of 1.5 to 2.0 that were expected and were predicted by modeling. The team, however, is encouraged that the HMB process can and will achieve H 2/CO ratios up to 2.0. Changes needed include direct injection of coal into the molten bed of slag to prevent coal particle bypass into the product gas stream, elevation of the molten bed temperature to approximately 2500ºF, and further decrease of the oxygen to fuel gas ratio to well below the 0.85 minimum ratio used in the testing in this project.« less
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... test protocol and the means by which sampling variability and analytical variability were accounted for... also establish the design minimum and average temperature in the combustion zone and the combustion... the design minimum and average temperatures across the catalyst bed inlet and outlet. (C) For a boiler...
Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes
Talmud, Fred M.; Garcia-Mallol, Juan-Antonio
1980-01-01
A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.
Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.
Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti
2002-01-01
Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process.
Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS
NASA Astrophysics Data System (ADS)
Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.
Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.
[Anesthesia practice in Catalan hospitals and other health care facilities].
Villalonga, Antonio; Sabaté, Sergi; Campos, Juan Manuel; Fornaguera, Joan; Hernández, Carmen; Sistac, José María
2006-05-24
The aim of this arm of the ANESCAT study was to characterize anesthesia practice in the various types of health care facilities of Catalonia, Spain, in 2003. We analyzed data from the survey according to a) source of a facility's funding: public hospitals financed by the Catalan Public Health Authority (ICS), the network of subsidized hospitals for public use (XHUP), or private hospitals; b) size: facilities without hospital beds, hospitals with fewer than 250 beds, those with 251 to 500, and those with over 500; and c) training accreditation status: whether or not a facility gave medical resident training. A total of 131 facilities participated (11 under the ICS, 47 from the XHUP, and 73 private hospitals). Twenty-six clinics had no hospital beds, 78 facilities had fewer than 250, 21 had 251 to 500, and 6 had more than 500. Seventeen hospitals trained medical residents. XHUP hospitals performed 44.3% of all anesthetic procedures, private hospitals 36.7%, and ICS facilities 18.5%. Five percent of procedures were performed in clinics without beds, 42.9% in facilities with fewer than 250 beds, 35% in hospitals with 251 to 500, and 17.1% in hospitals with over 500. Anesthetists in teaching hospitals performed 35.5% of all procedures. The mean age of patients was lower in private hospitals, facilities with fewer than 250 beds, and hospitals that did not train medical residents. The physical status of patients was worse in ICS hospitals, in facilities with over 500 beds, and in teaching hospitals. It was noteworthy that 25% of anesthetic procedures were performed on an emergency basis in XHUP and ICS hospitals, in facilities with more than 250 beds, and in teaching hospitals. Anesthesia for outpatient procedures accounted for 40% of the total in private hospitals and 31% of the practice in ICS and XHUP hospitals. The duration of anesthesia and postanesthetic recovery was longer in ICS hospitals, in facilities with over 500 beds, and in those with medical resident training programs. The numbers of postoperative admissions to critical care units and of specialized analgesic techniques performed were higher in ICS hospitals, in facilities with over 500 beds, and in teaching hospitals. The complexity of both anesthesia and surgical practice and the severity of patient condition increased with hospital size and public funding status.
JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Hajicek; Jay Gunderson; Ann Henderson
2007-08-15
Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before itmore » could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash handling. A more efficient downstream sulfur scrubber capable of operation at a much lower Ca/S ratio would result in significantly higher boiler efficiency for this coal. At the operating temperature of a typical CFBC, bed agglomeration and convective pass fouling are not likely to be significant problems with this fuel. Compared to pulverized coal-firing, CFBC technology is clearly the better choice for this fuel. It provides more efficient sulfur capture, lower NO{sub x} emissions, better solids-handling capability, and can utilize a wetter feedstock, requiring less crushing and sizing. The lower operating temperature of CFBC boilers (820 C) reduces the risk of fouling and agglomeration. Care must be taken to minimize heat loss in the system to accommodate the low heating value of the coal.« less
40 CFR 63.1257 - Test methods and compliance procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the design minimum and average flame zone temperatures and combustion zone residence time; and shall... establish the design exhaust vent stream organic compound concentration level, adsorption cycle time, number... regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and...
40 CFR 63.1257 - Test methods and compliance procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the design minimum and average flame zone temperatures and combustion zone residence time; and shall... establish the design exhaust vent stream organic compound concentration level, adsorption cycle time, number... regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and...
The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...
Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko
2012-03-01
Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
Kundu, Sampa
2004-01-01
Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is included in the original extended abstract.
Multi-User Hardware Solutions to Combustion Science ISS Research
NASA Technical Reports Server (NTRS)
Otero, Angel M.
2001-01-01
In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time required to go from selection to space flight.
Emission studies from combustion of empty fruit bunch pellets in a fluidized bed combustor
NASA Astrophysics Data System (ADS)
Fazli Othaman, Muhamad; Sabudin, Sulastri; Faizal Mohideen Batcha, Mohd
2017-08-01
Malaysia is producing a very large amount of biomass annually from milling activities of oil palm. This biomass is currently being used efficiently in many ways including as fuel for boilers together with fossil fuels. This paper reports the emission characteristics from biomass combustion in a swirling fluidized bed combustor (SFBC). Pelletized empty fruit bunch (PEFB), one of largest biomass produced from oil palm industries were used as fuel in the present study. Combustion experiments were conducted with several quantitiesof excess air: 20%, 40%, 60% and 80% for a constant fuel feedrate of 30kg/hr. The effect of excess air was investigated for three major emissions gaseous namely CO, CO2 and NOx. Fly ash produced from the combustion was also analysed to find the contents of unburnt carbon and other impurities. From the results, it was found that the emission of CO decreased from 64 ppm to 40 ppm while the amount of CO2 increased slightly with the increasing of excess air from 20% to 80%. The NOx emission also increased from 290 ppm to 350 ppm because of N2 in the EA reacts with O2 due to high combustion temperature. The combustion efficiencies of about 99% obtained in the present study, showing the prospects of using SFBC in commercial scale.
Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju
2016-06-05
The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.
Industrial Facility Combustion Energy Use
McMillan, Colin
2016-08-01
Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.
Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán
2015-09-01
Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir
During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500ºC. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO 2 and SO x).« less
Regenerable cement sorbent for recycle fluidized-bed combustion systems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, H.J.; Steinberg, M.
1985-04-01
Agglomerated cement sorbent pellets (ACS) were investigated as a regenerable sorbent for the purpose of removing SO/sub 2/ in a circulating fluidized-bed combustion (CFBC) system. The systems concept is to use an intermediate size sorbent pellet so that fine flyash can be separated from the sorbent at the top end of the CFBC and the coarse gangue can be separated from the sorbent remaining in the bottom end. In this study, basic experimental data were obtained on the sulfur capture capacity and regenerability of the ACS pellets as a function of the concentration of flyash mixed with the pellets andmore » as a function of temperature. Thermogravimetric Analysis (TGA) was used for this purpose. A 40 mm bench-scale fluidized-bed unit operated with a simulated combustion gas mixture was used to determine the attrition resistance of the pellets. The results indicate that 30-100 mesh ACS pellets at 958/sup 0/C (1756/sup 0/F) maintain a 55-60% sulfation capacity mixed with coal flyash concentration up to 75% by weight. The sorbent pellets were 100% regenerable and did not lose reactivity in repeated cyclical sulfation and regeneration tests. At higher temperatures up to 1158/sup 0/C (2116/sup 0/F) reactivity towards SO/sub 2/ declines due to sintering of the flyash on the surface of the ACS pellets. Tests showed good attrition resistance with only 1% loss per cycle in cyclical operation. These initial basic results indicate that ACS pellets are potentially useful as a recoverable and regenerable high capacity SO/sub 2/ sorbent in a circulating fluidized-bed combustion system. 5 refs., 7 figs., 8 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir
During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500C. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO2 and SOx).« less
Novel CFB Boiler Technology with Reconstruction of its Fluidization State
NASA Astrophysics Data System (ADS)
Yang, H. R.; Zhang, H.; Lu, J. F.; Lfu, Q.; Wu, Y. X.; Yuet, G. X.; Su, J.; Fu, Z. P.
Compared with a conventional pulverized coal fired boiler, the combustion efficiency of a CFB boiler is lower while the self-consumed service power is 1-2% higher. The solution of these problems is the key research topic for researchers and manufacturers of CFB boilers. Based on the State Specification Design Theory of CFB boilers, Tsinghua University proposed a novel CFB technology by reconstruction of the fluidization state in the furnace by adjusting the bed inventory and bed quality. Theoretical analyses show that there is an optimal bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan power consumption. The proposed novel process was implemented in a 75t/h CFB boiler. The results of field tests on this boiler validated the theoretical analyses.
Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia
NASA Technical Reports Server (NTRS)
Branam, J. G.; Rosborough, W. W.
1977-01-01
The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.
Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...
Two-stage coal gasification and desulfurization apparatus
Bissett, Larry A.; Strickland, Larry D.
1991-01-01
The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.
Kumar, Rajesh; Singh, Ravi Inder
2017-12-01
The behavior of municipal sewage sludge (MSS) with biomass (Guar stalks (GS), Mustard Husk (MH), Prosopis Juliflora Wood (PJW)) has been investigated in a 20kW bubbling fluidized bed (BFB) combustor under both air-fired (A-F) and oxygen-enriched (O-E) conditions. The work presented is divided into three parts, first part cover the thermogravimetric analysis (TGA), second part cover the experimental investigation of BFB combustor, and third part covers the ash analysis. TGA was performed with a ratio of 50%MSS/50%biomass (GS, MH, PJW) and results show that 50%MSS/50%GS has highest combustion characteristic factor (CCF). The experimental investigation of BFB combustor was performed for two different ratios of MSS/biomass (50%/50% and 25%/75%) and the combustion characteristics of blends were distinctive under both A-F and O-E condition. Despite 50%MSS/50%GS showing the highest combustion performance in TGA analysis, it formed agglomerates during burning in BFB. Due to this formation of large amount of agglomerates, de-fluidization was observed in the combustor bed after 65-75min in A-F conditions. The rate of de-fluidization increased under O-E condition. The de-fluidization problem disappeared when the share of MSS was reduced to 25%, but small amounts of the agglomerate were still present in the bed. With oxygen enhancement, the combustion efficiency of BFB combustor was improved and flue gasses were found within permissible limit. The maximum conceivable combustion efficiency (97.1%) for BFB combustor was accomplished by using 50% MSS/50%PJW under O-E condition. Results show that a ratio of 25%MSS/75%biomass combusted successfully inside the BFB combustor and extensive work is required for efficient utilization of significant share of MSS with biomass. SEM/EDS analyses were performed for agglomerate produced and for the damaged heater to study the surface morphology and compositions. The elemental heterogeneity of fly ash generated during MSS/biomass combustion was analyzed using Microwave Plasma-Atomic Emission Spectroscopy (MP-AES). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2002-01-01
The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.
CRADA opportunities in removal of particulates from hot-gas streams by filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D H
1995-06-01
Our analyses of samples and operating data from the Pressurized Fluidized Bed Combustion (PFBC), cyclone, and filtration units of the Tidd Clean Coal demonstration facility show that calcined dolomitic sorbent reacted with SO{sub 2} (and O{sub 2}) to form Sulfates (CaSO{sub 4} and CaMgn [SO{sub 4}]n+1) not only in the PFBC bed, but also in the filtration vessel. Analyses of limited data from the journal literature suggest that the filter-vessel reactions may have produced sulfate {open_quotes}necks,{close_quotes} which bonded the particles together, thus substantially increasing the critical angle of repose and shear tensile strengths of the filtered powders. This proposed mechanismmore » rationalizes the {open_quotes}bridging{close_quotes} and other particle-accumulation problems that caused filter breakage. Engineering services potentially available to resolve these problems include elucidation and modeling of ex-situ and in-situ filter-vessel chemistry, measurement and modeling of particulate materials properties, and measurement and modeling of cleaning back-pulse aerodynamics and cleaning efficiencies.« less
Reactions homogenes en phase gazeuse dans les lits fluidises
NASA Astrophysics Data System (ADS)
Laviolette, Jean-Philippe
This thesis presents a study on homogeneous gas-phase reactions in fluidized beds. The main objective is to develop new tools to model and characterize homogeneous gas-phase reactions in this type of reactor. In the first part of this work, the non-premixed combustion of C 1 to C4 n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ≤ TB ≤ 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and two one-phase PFR models in series: one PFR to model the region close to the injector and another to represent the main fluidized bed body. The measured global reaction rates for C2 to C4 n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. In the second part of this work, propane combustion experiments were conducted in the freeboard of a fluidized bed of sand particles at temperatures between 818 K and 923 K and at superficial gas velocity twice the minimum fluidization velocity. The freeboard region was characterized by simultaneous measurements of solids flux, chemical composition, temperature and pressure. Autoignition was only recorded within 0.06 m of the bed surface at temperatures greater than 833 K. Propane conversion predicted by six different microkinetic mechanistic models were compared to the experimental measurements: all six models underestimated the reaction rate above the bed surface. However, accounting for the production of H2O2 during in-bed combustion significantly increased the calculated reaction rates and resulted in a better agreement between predicted and measured propane conversion. In the third part of this work, a novel spectroscopic method was developed to measure quantitatively and simultaneously solids volume fraction (1-epsilon) and gaseous species composition (Yi) in a gas/solid system. The method was comprised of an FT-IR coupled to a fibre-optic probe that could perform real-time and in-situ measurements of absorbance. The effect of (1-epsilon) and Yi on the absorbance spectra were additive and could be independently calibrated. Experiments were conducted with alkane/nitrogen mixtures and two types of particles: sand and FCC. Fuel mole fractions and (1-epsilon) were varied between 1.8 - 10.1 mol% and 0 - 0.45, respectively. The relative errors for Yi time-averaged measurements were below 6% and the error increased significantly with decreasing beam intensity. A proof of concept for a novel application in fluidized beds was also completed: the fibre-optic probe was used to measure the molar fraction of a tracer gas inside the emulsion and bubble phases during gas tracer experiments. (Abstract shortened by UMI.)
NETL- High-Pressure Combustion Research Facility
None
2018-02-14
NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.
USDA-ARS?s Scientific Manuscript database
A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Myhre, Craig A.
2000-01-01
The Fluids and Combustion Facility (FCF) is a multi-rack payload planned for the International Space Station (ISS) that will enable the study of fluid physics and combustion science in a microgravity environment. The Combustion Integrated Rack (CIR) is one of two International Standard Payload Racks of the FCF and is being designed primarily to support combustion science experiments. The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user apparatus designed to accommodate four different droplet combustion science experiments and is the first payload for CIR. The CIR will function independently until the later launch of the Fluids Integrated Rack component of the FCF. This paper provides an overview of the capabilities and the development status of the CIR and MDCA.
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
Oshita, Kazuyuki; Kawaguchi, Koji; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujimori, Takashi; Fujiwara, Taku
2015-10-06
This study investigates the emission of nitrous oxide (N 2 O) and discusses the reduction of N 2 O emissions during the 24-h combustion of cattle manure using a pilot-scale fluidized bed incinerator under various experimental conditions. The results of these experiments were then validated against previously reported data. In addition, the characteristics of cattle manure incineration ash and their changes under different combustion conditions were estimated. In incineration experiments with composted cattle manure, N 2 O concentrations using multi-stage combustion were 75% lower than the concentrations resulting from normal combustion without additional auxiliary fuel, since N 2 O could be decomposed in the high-temperature zone formed by the inlet of the secondary combustion air. The N 2 O emission factor under normal combustion conditions (800°C) was 6.0% g-N 2 O-N/g-N. This result is similar to the values found in previous studies at the same temperature. The N 2 O emission factor was decreased to 1.6% g-N 2 O-N/g-N using a multi-stage combustion procedure. The current Japanese N 2 O emission factor of 0.1% g-N 2 O-N/g-N is an underestimate for some conditions and should be uniquely specified for each condition. Finally, cattle manure ash contains ample fertilizer elements, little Fe, Al and Zn, but abundant Cl. Therefore if Cl could be removed by some kind of pretreatment, cattle manure ash could be used as a favourable fertilizer.
Studies of fly ash using thermal analysis techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hanxu; Shen, Xiang-Zhong; Sisk, B.
1996-12-31
Improved thermoanalytical methods have been developed that are capable of quantitative identification of various components of fly ash from a laboratory-scale fluidized bed combustion system. The thermogravimetric procedure developed can determine quantities of H{sub 2}O, Ca(OH){sub 2}, CaCO{sub 3}, CaSO{sub 4} and carbonaceous matter in fly ash with accuracy comparable to more time-consuming ASTM methods. This procedure is a modification of the Mikhail-Turcotte methods that can accurately analyze bed ash, with higher accuracy regarding the greater amount of carbonaceous matter in fly ash. In addition, in conjunction with FTIR and SEM/EDS analysis, the reduction mechanism of CaSO{sub 4} as CaSO{submore » 4} + 4H{sub 2} = CaS + 4H{sub 2}O has been confirmed in this study. This mechanism is important in analyzing and evaluating sulfur capture in fluidized-bed combustion systems.« less
Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Lit, Q. H.; Zhang, Y. G.; Meng, A. H.
The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.
High Pressure Combustion Experimental Facility(HPCEF) for Studies on Combustion in Reactive Flows
2017-12-13
SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...Report: High Pressure Combustion Experimental Facility (HPCEF) for Studies on Combustion in Reactive Flows The views, opinions and/or findings... contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so
Bed usage in a Dublin teaching hospital: a prospective audit.
John, A; Breen, D P; Ghafar, Aabdul; Olphert, T; Burke, C M
2004-01-01
We prospectively audited inpatient bed use in our hospital for the first three months of this year. While 70% (mean age 54 +/- 20.8 years) of our patients went home on the day they were medically discharged, 30% (mean age 70.3 +/- 18.3 years) remained in the hospital awaiting step-down facilities. The total of 486 bed days occupied by overstaying patients would if available, have allowed treatment of 54% more patients without any increase in the hospital complement of beds, preventing the cancellation of elective procedures and preventing patients remaining on trolleys overnight. These prospective data emphasise (1) a highly inefficient use of acute hospital beds; (2) the need for step-down facilities; (3) efficient use of existing hospital beds is the highest priority both for optimal patient care and optimal use of expensive hospital resources; (4) efficient use of existing facilities should be achieved before the construction of additional facilities.
International Space Station -- Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
2000-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles
2015-09-15
Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less
Soil Chemistry Still Affected 23 Years After Large Application of Fluidized Bed Material
USDA-ARS?s Scientific Manuscript database
This study was conducted to assess the movement of arsenic, aluminum, calcium, copper, iron, lead, magnesium, manganese, mercury and zinc in an old apple (Malus domestica Borkh) orchard that received a one time application of 36 kg/ m2 of fluidized bed combustion material (FBCM) 23 years earlier. S...
NASA Technical Reports Server (NTRS)
1975-01-01
The gasification reactions necessary for the production of hydrogen from montana subbituminous coal are presented. The coal composition is given. The gasifier types mentioned include: suspension (entrained) combustion; fluidized bed; and moving bed. Each gasification process is described. The steam-iron process, raw and product gas compositions, gasifier feed quantities, and process efficiency evaluations are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mah, C.S.; West, L.K.; Anderson, R.E.
1985-12-01
The Aerojet Energy Conversion Company, under contract with the United States Department of Energy, has performed a comparative economic study of the Aerojet Universal Atmospheric Fluidized Bed Combustion (UAFBC) system and a coventional atmospheric fluidized bed combustion (AFBC) system. The program title, ''System Design Study to Reduce Capital and Operating Cost and Bench Scale Testing of a Moving Distributor, AFB Concept,'' is a good description of the general objective of the program. The specific objective was to compare the UAFBC with the conventional AFBC in terms of normalized steam cost. The boilers were designed for 150,00 lb/hr of steam atmore » 650 psig and 750/sup 0/F. The reference coal used in the analysis was Pittsburgh No. 8 coal with a sulfur content of 4.3% and a higher heating value of 12,919 Bru/lb. The analysis assumed a plant life of 20 years and a discount rate of 15%. The UAFBC systems included the usual elements of the conventional cola-fired AFBC steam plant, but the coal preparation sysbsystem for the UAFBC was considerably simpler because the system can use ''run-of-mine'' coal. The UAFBC boiler itself consisted of a staged-combustion fluidized-bed, superimposed over a static bed, the latter supported by a moving distributor. It incorporated a fines burnup combustor, an entrained reciculating gas cleanup bed, and conventional convection boiler. The key features of the UAFBC design were: High fuel flexibility; low NO/sub x/ emission; and superior turndown capability. 30 refs., 52 figs., 12 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desroches-Ducarne, E.; Marty, E.; Martin, G.
1997-12-31
Municipal Solid Waste (MSW) incineration in fluidized beds has recently become the subject of intense research. In this paper, the authors chose to elaborate a simple model waste prepared with 4 of the main MSW components (paper, wood, PE, and PVC). The behaviors of typical French MSW and model waste during their combustion in a fluidized bed incinerator were studied. To establish the comparison, the emissions of NO, N{sub 2}O, SO{sub 2} and HCl were investigated. Moreover, experiments were performed according to statistical experimental designs to examine the effect of various operating parameters including bed temperature, excess air, limestone feedingmore » rate and waste moisture. On a qualitative point of view, the impact of the combustion conditions on the pollutants emissions was found to be the same for the two wastes. Bed temperature and excess air have, in both cases, an important impact on NO and N{sub 2}O emissions. Nitrogen oxides production was also directly related to limestone feed content. Very high sulphur and chlorine retention was obtained when limestone was added at much larger excess to the feed. N{sub 2}O emissions are less important during the model waste combustion. The nitrogen functionality seems to give rise to such a phenomenon. In MSW, nitrogen is included in high molecules which is released for a great part as HCN or remains in char, which are the main sources of N{sub 2}O. To confirm this assumption, tests for measuring the HCN/NH{sub 3} ratio for each fuel were performed.« less
Research and Development of Large Capacity CFB Boilers in TPRI
NASA Astrophysics Data System (ADS)
Xianbin, Sun; Minhua, Jiang
This paper presents an overview of advancements of circulating fluidized bed (CFB) technology in Thermal Power Research Institute (TPRI),including technologies and configuration and progress of scaling up. For devoloping large CFB boiler, the CFB combustion test facilities have been established, the key technologies of large capacity CFB boiler have been research systematically, the 100MW ˜330MW CFB boiler have been developed and manufactured. The first domestically designed 100MW and 210MW CFB boiler have been put into commericial operation and have good operating performance. Domestic 330MW CFB boiler demonstration project also has been put into commericial operation,which is H type CFB boiler with Compact heat exchanger. This boiler is China's largest CFB boiler. The technical plan of domestic 600MW supercritical CFB boiler are also briefly introduced.
Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P
2018-04-01
Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.
Combined fluidized bed retort and combustor
Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen
1984-01-01
The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.
Test Series 2. 2: Detailed Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Test Series 2.2 comprises the third sub-series of tests to be scheduled as a part of Test Series 2, the second stage of the combustion research program to be carried out at the Grimethorpe Experimental Pressurized Fluidized Bed Combustion Facility. Test Series 2.1, the first sub-series of tests, was completed in February 1983, and the first half of the second sub-series, Test Series 2.3, in October 1983. Test Series 2.2 is to consist of 350 data gathering hours, which it is hoped to complete within 560 coal burning hours. This document provides a brief description of the Facility and modificationsmore » which have been made following the completion of Test Series 2.1. No further modifications were made following the completion of the first half of Test Series 2.3. The operating requirements are specified. The tests will be performed using a UK coal (Kiveton Park), and a UK limestone (Middleton) both nominated by the FRG. Nine objectives are proposed which are to be fulfilled by thirteen test conditions. Six part load tests are included, as defined by Kraftwerk Union AG. The cascade is expected to be on line for each test condition and total cascade exposure is expected to be in excess of 450 hours. Details of sampling and special measurements are given. A test plan schedule envisages the test series being completed within a two month calendar period. Finally, a number of contingency strategies are proposed.« less
30 CFR 57.4430 - Surface storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...
30 CFR 57.4430 - Surface storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...
Particulate matter adjacent to cattle deep-bedded monoslope facilities
USDA-ARS?s Scientific Manuscript database
Purpose: Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region. Many of these facilities add organic bedding material to the pens once or twice per week. Particulate matter concentrations and emissions from these facilities have not been evaluate...
Saqib, Naeem; Bäckström, Mattias
2014-12-01
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Description of the PMAD systems test bed facility and data system
NASA Technical Reports Server (NTRS)
Trase, Larry; Fong, Don; Adkins, Vicki; Birchenough, Arthur
1992-01-01
The power management and distribution (PMAD) systems test bed facility, including the power sources and loads available, is discussed, and the PMAD data system (PDS) is described. The PDS controls the test-bed facility hardware, and monitors and records the electric power system control data bus and external data. The PDS architecture is discussed, and each of the subsystems is described.
Fluids and Combustion Facility-Combustion Integrated Rack
NASA Technical Reports Server (NTRS)
Francisco, David R.
1998-01-01
This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.
Facilities for microgravity combustion research
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.
1988-01-01
Combustion science and applications have benefited in unforeseen ways from experimental research performed in the low-gravity environment. The capability to control for the first time the influence of gravitational buoyancy has provided some insight into soot formation in droplet combustion, the nature of flammability limits in premixed gases, and the relationship between normal-gravity and low-gravity material flammability that may influence how materials are best selected for routine use in habitable spacecraft. The opportunity to learn about these complex phenomena is derived from the control of the ambient body-force field and, perhaps as importantly, the simplified boundary conditions that can be established in well designed low-gravity combustion experiments. A description of the test facilities and typical experimental apparatus are provided; and conceptual plans for a Space Station Freedom capability, the Modular Combustion Facility, are described.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... combustion by-products (CCB); two (2) landfills for the on-site disposal of CCB; an emergency drought water... Bed Electric Generating Unit by East Kentucky Power Cooperative, Inc., in Clark County, KY AGENCY: U.S... circulating fluidized bed electric generating unit by East Kentucky Power Cooperative, Inc. (EKPC), in Clark...
Char binder for fluidized beds
Borio, Richard W.; Accortt, Joseph I.
1981-01-01
An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.
Luan, Jingde; Li, Aimin; Su, Tong; Li, Xuan
2009-07-30
Oil shale and fly ash collected from two thermal power plants located in Huadian, the northeast city of China were subjected to fraction distribution, translocation regularity and toxicity assessment to provide preliminary assessment of suitability for land application. By Tessier sequential extraction, the results showed that Ni, Cr, Pb and Zn were mostly bounded with iron-manganese and organic bound in oil shale, but Cu and Cd were mostly associated with iron-manganese bound and residue fraction. Through circulated fluidized-bed combustion, high concentration of heavy metals (Cu, Cd, Ni, Cr, Pb, and Zn) was found in iron-manganese bound and residue fraction in fly ash. There was accumulation of all studied metals except Ni and Cr in fly ash and translocation mass of metals were as follows: Pb>Zn>Cu>Cd during circulated fluidized-bed combustion. Fly ash was contaminated with Cd higher than the pollution concentration limits listed in GB15168-1995, China. This work demonstrated that it was unadvisable way to carry out landfill without any treatment. By means of STI model, toxicity assessment of heavy metals was carried out to show that there was notable increase in toxicity from oil shale to fly ash.
Simulation of Combustion Systems with Realistic g-Jitter
NASA Technical Reports Server (NTRS)
Mell, W. E.; McGrattan, K. B.; Nakamura, Y.; Baum, H. R.
2001-01-01
A number of facilities are available for microgravity combustion experiments: aircraft, drop towers, sounding rockets, the space shuttle, and, in the future, the International Space Station (ISS). Acceleration disturbances or g-jitter about the background level of reduced gravity exist in all these microgravity facilities. While g-jitter is routinely measured, a quantitative comparison of the quality of g-jitter among the different microgravity facilities, in terms of its affects on combustion experiments, has not been compiled. Low frequency g-jitter (< 1 Hz) has been repeatedly observed to disturb a number of combustion systems. Guidelines regarding tolerable levels of acceleration disturbances for combustion experiments have been developed for use in the design of ISS experiments. The validity of these guidelines, however, remains unknown. In this project a transient, 3-D numerical model is under development to simulate the effects of realistic g-jitter on a number of combustion systems. The measured acceleration vector or some representation of it can be used as input to the simulation.
Relationship between fluid bed aerosol generator operation and the aerosol produced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R.L.; Yerkes, K.
1980-12-01
The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less
Petropower energia project under way in Chile promises refiner better economics at lower cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
Construction of the Republic of Chile`s first public/private industrial partnership project is well under way. Ground was broken for the $232-million Petropower Energia Limitada project early this year, shortly after the final contract between the parties - Foster Wheeler Power Systems, Inc. (FWPS); Petrox S.A. Refineria de Petroleo and Empresa Nacional del Petroleo (ENAP) - was signed. The Petropower project, located adjacent to Petrox`s 84,000-b/d refinery in Talcahuano, represents the first project ever to combine petroleum coking technology with cogeneration technology in a single project financing. Petropower is 85% owned by FWPS, 7.5% by ENAP, the Chilean national oil companymore » and parent of Petrox S.A. When completed in mid-1998, the Petropower project will enable Petrox to refine heavier crudes and enhance the refinery`s flexibility and economics. The project will consist of a delayed coking facility (a 12,000-b/d delayed coking unit and a 7,000-b/d hydrotreating plant) and a 67-MW (59 MW net) cogeneration plant. The coke produced will fuel a Foster Wheeler proprietary-design circulating fluidized-bed (CFB) boiler which will generate all the high-pressure steam and electric power needs of the Petrox refinery. This unit will be the first circulating fluidized-bed boiler to be built in Latin America. The cogeneration facility, using limestone as a reagent and equipped with a baghouse, will control SO{sub x} emissions from combustion of the green coke fuel and easily meet all Chilean environmental standards. Moreover, by constructing the cogeneration facility, Petrox will not have to proceed with capital improvements to existing facilities to ensure a reliable source of steam and electricity, resulting in substantial savings for Petrox. The cogeneration plant provides a permanent {open_quotes}disposal{close_quotes} for all coke produced by the delayed coker, thereby solving any future problems of unwanted or excess coke.« less
Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.
2000-01-01
At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-01-01
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junge, D.C.
1979-09-01
Significant quantits of wood resiue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of lodge pole pine wood chips. The data were obtained in a pilot scale combustion test facility at Oregon State University.« less
Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aciermo, J.; Richards, H.; Spindler, F.
1983-10-01
A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bedmore » boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.« less
Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal
2010-05-01
A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.
LIEKKI -- Combustion and gasification research in Finland 1988--1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hupa, M.; Matinlinna, J.
1996-12-31
The objective of the Combustion and Gasification Research Program LIEKKI is to develop environmentally sound energy production techniques that are based on combustion and/or gasification. The research supports equipment manufacturers in Finland as they develop and improve their top export products, such as the fluidized bed boilers, black liquor recovery boilers, and heavy diesel power plants. The research is also heavily focused on new techniques not yet on the market, ones with higher efficiency of electricity production and, simultaneously, significantly simpler emission control systems. The most important concepts here include combustors or gasifiers based on fluidized bed technology at elevatedmore » pressures. At present the LIEKKI program includes 49 research projects and it connects some 150 scientists and research engineers in the universities and research centers of Finland. The overall annual budget of the program has been around 10 Mill. USD, co-funded by the industry and the government agency TEKES (Technology Development Centre) in Finland. The program is coordinated by Aabo Akademi University in Turku, Finland.« less
NASA Astrophysics Data System (ADS)
Suojanen, Suvi; Hakkarainen, Elina; Kettunen, Ari; Kapela, Jukka; Paldanius, Juha; Tuononen, Minttu; Selek, Istvan; Kovács, Jenö; Tähtinen, Matti
2017-06-01
Hybridization of solar energy together with another energy source is an option to provide heat and power reliably on demand. Hybridization allows decreasing combustion related fuel consumption and emissions, assuring stable grid connection and cutting costs of concentrated solar power technology due to shared power production equipment. The research project "Integration of Concentrated Solar Power (CSP) and Circulating Fluidized Bed (CFB) Power Plants" (COMBO-CFB) has been carried out to investigate the technical possibilities and limitations of the concept. The main focus was on the effect of CSP integration on combustion dynamics and on the joint power cycle, and on the interactions of subsystems. The research provides new valuable experimental data and knowhow about dynamic behaviour of CFB combustion under boundary conditions of the hybrid system. Limiting factors for maximum solar share in different hybridization schemes and suggestions for enhancing the performance of the hybrid system are derived.
NASA Astrophysics Data System (ADS)
Sutliff, T. J.; Otero, A. M.; Urban, D. L.
2002-01-01
The Physical Sciences Research Program of NASA has chartered a broad suite of peer-reviewed research investigating both fundamental combustion phenomena and applied combustion research topics. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). The applied research benefit humans living and working in space through its fire safety program. The Combustion Science Discipline is implementing a structured flight research program utilizing the International Space Station (ISS) and two of its premier facilities, the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox to conduct this space-based research. This paper reviews the current vision of Combustion Science research planned for International Space Station implementation from 2003 through 2012. A variety of research efforts in droplets and sprays, solid-fuels combustion, and gaseous combustion have been independently selected and critiqued through a series of peer-review processes. During this period, while both the ISS carrier and its research facilities are under development, the Combustion Science Discipline has synergistically combined research efforts into sub-topical areas. To conduct this research aboard ISS in the most cost effective and resource efficient manner, the sub-topic research areas are implemented via a multi-user hardware approach. This paper also summarizes the multi-user hardware approach and recaps the progress made in developing these research hardware systems. A balanced program content has been developed to maximize the production of fundamental and applied combustion research results within the current budgetary and ISS operational resource constraints. Decisions on utilizing the Combustion Integrated Rack and the Microgravity Science Glovebox are made based on facility capabilities and research requirements. To maximize research potential, additional research objectives are specified as desires a priori during the research design phase. These expanded research goals, which are designed to be achievable even with late addition of operational resources, allow additional research of a known, peer-endorsed scope to be conducted at marginal cost. Additional operational resources such as upmass, crewtime, data downlink bandwidth, and stowage volume may be presented by the ISS planners late in the research mission planning process. The Combustion Discipline has put in place plans to be prepared to take full advantage of such opportunities.
USDA-ARS?s Scientific Manuscript database
Physical and chemical characteristics of organic bedding materials determine how well they will absorb and retain moisture and may influence the environment in livestock facilities where bedding is used. The objective of this study was to determine water holding capacity (WHC) and rate of evaporativ...
40 CFR 60.42c - Standard for sulfur dioxide (SO2).
Code of Federal Regulations, 2010 CFR
2010-07-01
....2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither... excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility.../MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50...
Baldwin, Richard; Chenoweth, Lynnette; Dela Rama, Marie; Wang, Alex Y
Theory suggests that structural factors such as aged care facility size (bed numbers) will influence service quality. There have been no recent published studies in support of this theory, and consequently, the available literature has not been useful in assisting decision makers with investment decisions on facility size. The study aimed to address that deficit by reviewing the international literature on the relationships between the size of residential aged care facilities, measured by number of beds, and service quality. A systematic review identified 30 studies that reported a relationship between facility size and quality and provided sufficient details to enable comparison. There are three groups of studies based on measurement of quality-those measuring only resident outcomes, those measuring care and resident outcomes using composite tools, and those focused on regulatory compliance. The overall findings support the posited theory to a large extent, that size is a factor in quality and smaller facilities yield the most favorable results. Studies using multiple indicators of service quality produced more consistent results in favor of smaller facilities, as did most studies of regulatory compliance. The theory that aged care facility size (bed numbers) will influence service quality was supported by 26 of the 30 studies reviewed. The review findings indicate that aged care facility size (number of beds) may be one important factor related to service quality. Smaller facilities are more likely to result in higher quality and better outcomes for residents than larger facilities. This has implications for those who make investment decisions concerning aged care facilities. The findings also raise implications for funders and policy makers to ensure that regulations and policies do not encourage the building of facilities inconsistent with these findings.
Characteristics of Pyrolytic Topping in Fluidized Bed for Different Volatile Coals
NASA Astrophysics Data System (ADS)
Xiong, R.; Dong, L.; Xu, G. W.
Coal is generally combusted or gasified directly to destroy completely the chemical structures, such as aromatic rings containing in volatile coals including bituminite and lignite. Coal topping refers to a process that extracts chemicals with aromatic rings from such volatile coals in advance of combustion or gasification and thereby takes advantage of the value of coal as a kind of chemical structure resource. CFB boiler is the coal utilization facility that can be easily retrofitted to implement coal topping. A critical issue for performing coal topping is the choice of the pyrolytic reactor that can be different types. The present study concerns fluidized bed reactor that has rarely been tested for use in coal topping. Two different types of coals, one being Xiaolongtan (XLT) lignite and the other Shanxi (SX) bituminous, were tested to clarify the yield and composition of pyrolysis liquid and gas under conditions simulating actual operations. The results showed that XLT lignite coals had the maximum tar yield in 823-873K and SX bituminite realized its highest tar yield in 873-923K. Overall, lignite produced lower tar yield than bituminous coal. The pyrolysis gas from lignite coals contained more CO and CO2 and less CH4, H2 and C2+C3 (C2H4, C2H6, C3H6, C3H8) components comparing to that from bituminous coal. TG-FTIR analysis of tars demonstrated that for different coals there are different amounts of typical chemical species. Using coal ash of CFB boiler, instead of quartz sand, as the fluidized particles decreased the yields of both tar and gas for all the tested coals. Besides, pyrolysis in a reaction atmosphere simulating the pyrolysis gas (instead of N2) resulted also in higher production of pyrolysis liquid.
A User's Guide for the Spacecraft Fire Safety Facility
NASA Technical Reports Server (NTRS)
Goldmeer, Jeffrey S.
2000-01-01
The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.
Combustor with multistage internal vortices
Shang, Jer Yu; Harrington, R.E.
1987-05-01
A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.
Combustor with multistage internal vortices
Shang, Jer Y.; Harrington, Richard E.
1989-01-01
A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.
Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin
2009-08-15
Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.
Bed material agglomeration during fluidized bed combustion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.; Dawson, M.R.; Smeenk, J.L.
The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occurmore » in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).« less
López-Vilariño, J M; Fernández-Martínez, G; Turnes-Carou, I; Muinategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2003-06-01
Behavior and contents of fluorine and chlorine in coal feedstock, combustion wastes (slag and fly ash) and emissions were studied in five conventional coal fired power plants and in a fluidized bed coal power plant. The halide levels found in the used coal were quite low. Mass balances and emission factors were calculated. The volatility of these elements makes the gaseous emission the main target between the residues. The influence of combustion parameters is not clearly established. Several analytical techniques (ion selective electrodes, capillary electrophoresis and ion chromatography) are employed to determinate the halide concentration in the different samples taken in the power plants studied (coal, slag, fly ash and flue gases).
Medicaid Bed-Hold Policy and Medicare Skilled Nursing Facility Rehospitalizations
Grabowski, David C; Feng, Zhanlian; Intrator, Orna; Mor, Vincent
2010-01-01
Objective To analyze the effect of states' Medicaid bed-hold policies on the 30-day rehospitalization of Medicare postacute skilled nursing facility (SNF) residents. Data Sources Minimum data set assessments were merged with Medicare claims and eligibility files for all first-time SNF admissions (N = 3,322,088) over the period 2000 through 2005; states' Medicaid bed-hold policies were obtained via survey. Study Design Regression specification incorporating facility fixed effects to examine changes in Medicaid bed-hold policies on the likelihood of a 30-day SNF rehospitalization. Principal Findings Using a continuous measure of bed-hold generosity, state Medicaid bed-hold was positively related to Medicare SNF rehospitalization. Specifically, the introduction of a bed-hold policy with average generosity increases Medicare rehospitalizations by 1.8 percent, representing roughly 12,000 SNF rehospitalizations at a cost to Medicare of approximately U.S.$100 million over our study period. Conclusions Although facilities do not receive a Medicaid bed-hold payment for Medicare SNF stays, we found that the adoption of more generous policies led to greater SNF rehospitalizations. This type of spillover is largely ignored in current discussions of Medicare payment reforms such as bundled payment. Neither Medicare nor Medicaid has an incentive to internalize the risks and benefits of its actions as they affect the other. PMID:20403059
Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai
2018-02-01
Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.
Proctor and gamble technology process assessment for bioenergy production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Hongqiang; Boardman, Richard Doin; Wright, Christopher Todd
P&G intends to replace as much as their current heat and power by renewable energy sources. For 2014, P&G’s total energy including electricity, natural gas and steam is approximately 1,540,000 MMBTU annually (Table 2). The biomass and wastes around P&G facility can be grouped into six categories (Figure 6): (1) Agriculture residue and grass, (2) Refuse (inorganic) solid material, (3) Food waste, (4) Organic waste stream, (5) livestock manure, (6) wastewater and sludge. The six feedstock sources can provide a total energy of 3,520,000 MMBTU per year (Table 10), among which the agriculture residue is the biggest fraction, about 67%,more » followed by livestock manures 27%. Therefore, the available energy sources around P&G facility are enough to meet their energy needs. These energy feedstocks would be treated by two processes: anaerobic digestion for biogas subsequently for heat and power and thermochemical process (combustion, pyrolysis and gasification) for heat and power (Figure 8 and 9). For AD, a one-stage complete mixing digester is preferable; and fluidized bed reactors are favorable for thermochemical process.« less
NASA Microgravity Combustion Science Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
2003-01-01
A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.
Energy - Sandia National Laboratories
; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs
; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs
Stationary Power - Sandia Energy
; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs
Transportation Energy - Sandia Energy
; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs
Grid Modernization - Sandia Energy
; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs
Regenerable activated bauxite adsorbent alkali monitor probe
Lee, S.H.D.
1992-12-22
A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.
COMBUSTION CONTROL OF TRACE ORGANIC AIR POLLUTANTS FROM MUNICIPAL WASTE COMBUSTORS
The US Environmental Protection Agency (EPA) is considering the use of combustion techniques for controlling air emissions of chlorinated dioxins, chlorinated furans, and other trace organics from municipal waste combustion (MWC) facilities. Recommendations for good combustion pr...
A Contribution to the Problem of Initiation of a Combustion Source in an Oil-Saturated Bed
NASA Astrophysics Data System (ADS)
Koznacheev, I. A.; Dobrego, K. V.
2013-11-01
The problem on in-situ self-ignition of an oil-saturated bed under the conditions of forced filtration of an oxygen-containing gas has been solved with analytical and numerical methods with account of the burnout of a deficient gas component. The influence of the burnout of this component and of convective removal of heat from the bed on the time of its self-ignition has been determined. Recommendations for the optimum regime of initiation of the self-ignition of the bed with account of variation of the blast flow rate and the oxygen content have been given.
Energy Fact Sheets - Sandia Energy
; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs
Peng, Tzu-Huan; Lin, Chiou-Liang
2014-12-15
In this study, a pilot-scale low-temperature two-stage fluidized bed incinerator was evaluated for the control of heavy metal emissions using various chlorine (Cl) additives. Artificial waste containing heavy metals was selected to simulate municipal solid waste (MSW). Operating parameters considered included the first-stage combustion temperature, gas velocity, and different kinds of Cl additives. Results showed that the low-temperature two-stage fluidized bed reactor can be an effective system for the treatment of MSW because of its low NO(x), CO, HCl, and heavy metal emissions. The NO(x) and HCl emissions could be decreased by 42% and 70%, respectively. Further, the results showed that heavy metal emissions were reduced by bed material adsorption and filtration in the second stage. Regarding the Cl addition, although the Cl addition would reduce the metal capture in the first-stage sand bed, but those emitted metals could be effectively captured by the filtration of second stage. No matter choose what kind of additive, metal emissions in the low-temperature two-stage system are still lower than in a traditional high-temperature one-stage system. The results also showed that metal emissions depend not only on the combustion temperature but also on the physicochemical properties of the different metal species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS
NASA Technical Reports Server (NTRS)
Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.
2001-01-01
At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junge, D.C.
1978-12-01
Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the the combustion process in industrialmore » boilers serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of Douglas Fir planer shavings. The data were obtained in a pilot scale combustion test facility at Oregon State Univerisity. Other technical reports present data on the combustion characteristics of: Douglas Fir bark, Red Alder sawdust, Red Alder bark, Ponderosa pine bark, Hemlock bark, and Eastern White Pine bark. An executive summary report is also available which compares the combustion characteristics of the various fuel species.« less
Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion.
Bahillo, A; Armesto, L; Cabanillas, A; Otero, J
2004-01-01
Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Footwear is the sector that consumes the major part of leather (60%). Logically, this industry is producing the largest quantity of leather wastes. The objective of this work was to demonstrate the technical feasibility of fluidized bed technology to recover the energy from burning footwear leather wastes. Considering the characteristics of leather waste, especially the heating value (12.5-21 MJ/kg), it can be considered a fairly good fuel. Moreover, leather waste has suitable characteristics for combustion, e.g., high volatile matter (76.5%) and low ash content (5.2%). Two factors deserve special attention: N3O and NOx emissions as a consequence of its unusual high nitrogen content (14.1%) and the chromium speciation because chromium is the main element of ash (3.2%) due to its use in leather tanning. A series of experiments has been carried out in a 0.1 MWt bubbling fluidized bed pilot plant. The combustion efficiency, flue gas composition and chromium speciation were investigated. Despite having high nitrogen content, a low conversion rate of fuel-N to NOx and N2O was attained. Chromium was concentrated in the solid streams and it was consistently found as Cr(III+); no presence of Cr(VI+) was detected.
Community residential facilities in mental health services: A ten-year comparison in Lombardy.
Barbato, Angelo; Civenti, Graziella; D'Avanzo, Barbara
2017-06-01
Residential mental health services grew steadily since 2000 in Italy. A reorganisation of residential facilities was implemented in 2007 in Lombardy, introducing supported housing in addition to staffed facilities. We compare the provision and characteristics of residential facilities in the 2007 and 2016. In 2007 there were 3462 beds (35.9/100,000 population) in 276 facilities. In 2016 beds were 4783 (47.8/100,000) in 520 facilities. The increase were unevenly distributed in the public and private sector, and the overall increase was due to a higher increase in the private sector. 72% of beds were in highly supervised facilities in 2007 and 66% in 2016. The public sector managed more facilities with a rehabilitation goal, while the private sector more for long-term accommodation. Mean numbers of beds were higher in facilities managed by the private sector in both years. The 2007 reorganisation and the stop to opening new facilities in the last years were not enough to correct the imbalance between highly supervised and flexible solutions. A wider and more diverse offer might have triggered off an increased demand, rather than a more rational use. Given the costs of highly staffed facilities, and the risk of reproducing custodial models, close evaluation of the use of residential facilities should inform policies. Copyright © 2017 Elsevier B.V. All rights reserved.
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.
2017-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
Arenillas, Ana; Rubiera, Fernando; Pis, José J
2002-12-15
Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with an on line battery of analyzers. The TG-MS-FTIR system was also used to perform a specific study on NO heterogeneous reduction reactions using chars with different surface chemistry. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behavior in other combustion equipments (i.e., fluidized bed combustors). It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range (<800 degrees C), NO heterogeneous reduction seems to be controlled by the evolution of surface complexes. In the high-temperature range (>800 degrees C), a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor.
Thermal Cracking of Tars in a Continuously Fed Reactor with Steam
2011-05-01
Fluidized Bed using biomass 8 Tars Mixture of organic components present in gasification product gas with high molecular weight hydrocarbons [MW...Disable sulfur removal systems FoulingPlugging [Ref. 3: Biomass Gasification – Tar and Particles in Product Gases Sampling and Analysis”, European...P., and Nussbaumer T., “Gas Cleaning Requirements for Internal Combustion Engine Applications of Fixed Bed Biomass Gasification ”, Biomass and
Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín
2011-01-01
This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes. PMID:22319349
Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín
2011-01-01
This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.
Wu, Ke; Zhu, Kai; Huang, Zhi-yi; Wang, Jin-chang; Yang, Qin-min; Liang, Pei
2012-08-01
By using the Rosemount gas analyzer and the test platform of fixed bed built by carbon furnace, the harmful gaseous compositions and the release rules of asphalt and mortar under high temperature rate were analyzed quantitatively based on infrared spectral analysis technology. The results indicated that the combustion process of the asphalt and mortar can be approximately divided into two stages stage of primary volatile combustion, and stage of secondary volatile release combined with fixed carbon combustion in isothermal condition with high heating rate. The major gaseous products are CO2, CO, NO, NO2 and SO2. the volatile content is one of the key factors affecting the release rules of gaseous combustion products in asphalt, and reducing the volatile content in asphalt materials can effectively reduce the generation of gaseous combustion products, especially CO.
Combustion toxicology of epoxy/carbon fiber composites
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.
1981-01-01
A combustion toxicology test was developed to screen materials for aerospace applications. The system is called the radiant panel test facility. A description of the facility and some preliminary results from tests on a Navy 3501-6AS composite, a typical composite for fighter aircraft, are presented.
Process aspects in combustion and gasification Waste-to-Energy (WtE) units.
Leckner, Bo
2015-03-01
The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.
Commercial investments in Combustion research aboard ISS
NASA Astrophysics Data System (ADS)
Schowengerdt, F. D.
2000-01-01
The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .
Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.
2005-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.
Spiehs, Mindy J; Berry, Elaine D; Wells, James E; Parker, David B; Brown-Brandl, Tami M
2017-07-01
Pine ( spp.) bedding has been shown to lower the concentration of odorous volatile organic compounds (VOCs) and pathogenic bacteria compared with corn ( L.) stover bedding, but availability and cost limit the use of pine bedding in cattle confinement facilities. The objectives of this study were to determine if the addition of pine wood chips to laboratory-scaled bedded packs containing corn stover (i) reduced odorous VOC emissions; (ii) reduced total ; and (iii) changed the nutrient composition of the resulting manure-bedded packs. Bedding treatments included 0, 10, 20, 30, 40, 60, 80, and 100% pine chips, with the balance being corn stover. Four bedded packs for each mixture were maintained for 42 d ( = 4 observations per bedding material). The production of total sulfur compounds increased significantly when 100% pine chips were used (44.72 ng L) compared with bedding mixture containing corn stover (18.0-24.56 ng L). The carbon-to-nitrogen ratio exceeded the ideal ratio of 24:1 for the optimum activity of soil microorganisms when ≥60% pine chips (25.3-27.5 ng L) were included in the mixture. The use of 100% pine chips as bedding increased sulfide concentration in the facility 1.8 to 2.4 times over the use of corn stover bedding. was not influenced by the addition of pine chips to the corn stover bedding material but did decrease as the bedded pack aged. Bedding material mixtures containing 30 to 60% pine and 40 to 70% corn stover may be the ideal combination to mitigate odors from livestock facilities using deep bedded systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Avionics test bed development plan
NASA Technical Reports Server (NTRS)
Harris, L. H.; Parks, J. M.; Murdock, C. R.
1981-01-01
A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.
Assessment of organic contaminants in emissions from refuse-derived fuel combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrostowski, J.; Wait, D.; Kwong, E.
1985-09-01
Organic contaminants in emissions from refuse-derived fuel combustion were investigated in a 20-inch-diameter atmospheric fluidized-bed combustor. Combinations of coal/EcoFuel/MSW/toluene were burned inthe combustor with temperatures ranging from 1250 to 1550 degrees F. A Source Assessment Sampling System (SASS) was used to sample the stack gas; Level 1 methodology was used to analyze the organic-contaminant levels. Combustion efficiencies of 93 to 98 percent were achieved in the test burns. Combustion of the EcoFuel generated fewer organic emissions than combustion of coal at similar combustion temperatures. The fine particulate collected by the SASS train filter contained higher concentrations of extractable organics thanmore » the reactor fly ash and the SASS cyclone samples. Combustion of a toluene/EcoFuel mix generated a large number of benzene derivatives not seen in the combustion of pure EcoFuel. Polycyclic aromatic hydrocarbons were the dominant organic compounds contained in the XAD-2 resin extract from coal combustion. A number of different priority pollutants were identified in the samples collected.« less
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
Synchronized smoldering combustion
NASA Astrophysics Data System (ADS)
Mikalsen, R. F.; Hagen, B. C.; Frette, V.
2018-03-01
Synchronized, pulsating temperatures are observed experimentally in smoldering fires. The entire sample volume (1.8 l) participates in the pulsations (pulse period 2–4 h). The synchrony lasts up to 25 h and is followed by a spontaneous transition to either disordered combustion or self-extinguishment. The synchronization is obtained when the fuel bed is cooled to the brink of extinguishment. Calculations for adiabatic conditions, including heat generation from combustion (nonlinear in temperature) and heat storage in sample (linear in temperature), predict diverging sample temperature. Experimentally, heat losses to surroundings (linear in temperature) prevent temperatures to increase without bounds and lead to pulsations.
Spiegel, D A; Nduaguba, A; Cherian, M N; Monono, M; Kelley, E T
2015-06-01
The sequelae of acute musculoskeletal conditions, especially injuries and infections, are responsible for significant disability in low- and middle-income countries. This study characterizes the availability of selected musculoskeletal surgical services at different tiers of the health system in a convenience sample of 883 health facilities from 24 low- and lower-middle-income countries. Selected data points from the World Health Organization's (WHO) tool of situational analysis of surgical availability were extracted from the WHO's database in December, 2013. These included infrastructure, physical resources and supplies, interventions, and human resources. For a descriptive analysis, facilities were divided into two groups based on number of beds (<100, 100-300, and >300) and level of facility (primary referral, secondary/tertiary, and Private/NGO/Mission). Statistical comparison was made between public and Private/NGO/Mission facilities based on number of beds (≤100, 100-300, and >300) using a Chi-Square analysis, with statistical significance at p < 0.05. Significant deficiencies were noted in infrastructure, physical resources and supplies, and human resources for the provision of essential orthopedic surgical services at all tiers of the health system. Availability was significantly lower in public versus Private/NGO/Mission facilities for nearly all categories in facilities with ≤100 beds, and in a subset of measures in facilities with between 100 and 300 beds. Deficiencies in the availability of orthopedic surgical services were observed at all levels of health facility and were most pronounced at facilities with ≤100 beds in the public sector. Strengthening the delivery of essential surgical services, including orthopedics, at the primary referral level must be prioritized if we are to reduce the burden of death and disability from a variety of emergent health conditions. There were no sources of funding.
Chemicl-looping combustion of coal with metal oxide oxygen carriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, R.; Tian, H.; Richards, G.
2009-01-01
The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 °C and complete the full combustion at 700 °C. In addition, the reduced copper can be fully reoxidized by air at 700 °C.more » The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 °C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.« less
Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics
NASA Astrophysics Data System (ADS)
Stenberg, Jari; Hernberg, Rolf; Vattulainen, Juha
1995-12-01
A technique for gas analysis based on pulsed-laser-induced photoacoustic spectroscopy in the UV and the visible is presented. The laser-based technique and the associated analysis probe have been developed for the analysis of pollutant chemistry in fluidized beds and other combustion environments with limited or no optical access. The photoacoustic-absorption spectrum of the analyzed gas is measured in a test cell located at the end of a tubular probe. This test cell is subject to the prevailing temperature and pressure in the combustion process. The instrument response has been calibrated for N2O, NO, NO2, NH3, SO2, and H2 S at atmospheric pressure between 20 and 910 deg C. The response of the probe was found to increase with pressure for N2O, NO, NH 3, and NO2 up to 1.2 MPa pressure. The method and the probe have been used for detection and ranging of gas concentrations in a premixed methane flame. Some preliminary tests in a large 12-MW circulating bed boiler have also been done.
Lu, Liang; Jin, Yuqi; Liu, Hongmei; Ma, Xiaojun; Yoshikawa, Kunio
2014-01-01
Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution. Copyright © 2013. Published by Elsevier Ltd.
Method of pyrolyzing brown coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, W.; Heberlein, I.; Ossowski, M.
A two-step method and apparatus are disclosed based on the fluidized bed principle, for the production of coke, rich gas and pyrolysis tar, with the object of executing the method in a compact apparatus arrangement, with high energy efficiency and high throughput capacity. This is accomplished by a sequence in which the fine grains removed from the drying vapor mixture are removed from the actual pyrolysis process, and a hot gas, alien to the carbonization, is used as fluidization medium in the pyrolysis reactor, and with a hot gas-high performance separator being used for the dust separation from the pyrolysismore » gas, with the combustion exhaust gas produced in the combustion chamber being used for the indirect heating of the fluidization medium, for the pre-heating of the gas, which is alien to the carbonization, and for the direct heating in the dryer. The dryer has a double casing in the area of the fluidized bed, and a mixing chamber is arranged directly underneath its initial flow bottom, while the pyrolysis reactor is directly connected to the combustion chamber and the pre-heater.« less
Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuhal Gogebakan; Nevin Selcuk
In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnutmore » shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.« less
Fox, Mary T; Sidani, Souraya; Brooks, Dina
2010-05-01
This cohort study examined differences in perceived insomnia and daytime sleepiness in 67 adults residing in extended care facilities for chronic disease management who had varying levels of bed days. One bed day was defined as spending 24 hours in bed. Planned pairwise comparisons, using Bonferroni adjustment, were made between participants who spent 0 (n = 21), 2 to 4 (n = 23), and 5 to 7 (n = 23) days in bed during 1 week of monitoring. Participants who spent 5 to 7 days in bed had significantly greater insomnia than those who spent 2 to 4 days in bed. No group differences were found in daytime sleepiness. Based on the findings, nurses may assess subjective insomnia and explore sleep hygiene strategies, such as increasing time out of bed with patients who have high levels of 5 to 7 bed days.
A Combustion Laboratory for Undergraduates.
ERIC Educational Resources Information Center
Peters, James E.
1985-01-01
Describes a combustion laboratory facility and experiments for a senior-level (undergraduate) course in mechanical engineering. The experiment reinforces basic thermodynamic concepts and provides many students with their first opportunity to work with a combustion system. (DH)
Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.
1985-11-27
report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No
Proceedings of the conference on Coal Feeding Systems
NASA Technical Reports Server (NTRS)
1977-01-01
Development of coal feed systems for coal gasification, fluidized bed combustion, and magnetohydrodynamic applications is discussed. Process operations experience, energy conversion efficiency, and environment effects are among the factors considered.
40 CFR 62.15120 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2013 CFR
2013-07-01
... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1988-01-01
The requirements for a nonintrusive optical diagnostic facility for Space Station are assessed by examining the needs of current and future combustion experiments to be flown aboard the Space Station. Requirements for test section geometry and size, spatial and temporal resolution, species type and concentration range, and temperature range are reviewed. The feasibility of the development of this system is also addressed. The suitability of this facility to non-combustion experiments in gases and liquids is also considered.
Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu
2016-08-01
A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.
1984-01-01
The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.
Löschau, Margit
2018-04-01
This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .
The coal-fired gas turbine locomotive - A new look
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.
1983-01-01
Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.
CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.
Frank, Alex; Castaldi, Marco J
2014-08-01
Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Greene, Sandy; Protz, Chris
2017-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
Modeling of circulating fluised beds for post-combustion carbon capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.; Shadle, L.; Miller, D.
2011-01-01
A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.
Experimental Supersonic Combustion Research at NASA Langley
NASA Technical Reports Server (NTRS)
Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne
1998-01-01
Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.
Langley Mach 4 scramjet test facility
NASA Technical Reports Server (NTRS)
Andrews, E. H., Jr.; Torrence, M. G.; Anderson, G. Y.; Northam, G. B.; Mackley, E. A.
1985-01-01
An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pflughoeft-Hassett, D.F.
1997-08-01
Information from DOE projects and commercial endeavors in fluidized-bed combustion and coal gasification is the focus of this task by the Energy and Environmental Research Center. The primary goal of this task is to provide an easily accessible compilation of characterization information on CCT (Clean Coal Technology) by-products to government agencies and industry to facilitate sound regulatory and management decisions. Supporting objectives are (1) to fully utilize information from previous DOE projects, (2) to coordinate with industry and other research groups, (3) to focus on by-products from pressurized fluidized-bed combustion (PFBC) and gasification, and (4) to provide information relevant tomore » the EPA evaluation criteria for the Phase 2 decision.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehmat, A.; Khinkis, M.
The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated withmore » ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.« less
Swing-bed services under the Medicare program, 1984-87
Silverman, Herbert A.
1990-01-01
Under Medicare, swing beds are beds that can be used by small rural hospitals to furnish both acute and post-acute care. The swing-bed program was instituted under the provisions of the Omnibus Reconciliation Act of 1980 (Public Law 96-499). Under Medicare, post-acute care in the hospital would be covered as services equivalent to skilled nursing facility level of care. Data show that the program has had a rapid rate of growth. By 1987, swing beds accounted for 9.7 percent of the admissions to skilled nursing facility services, 6.0 percent of the covered days of care, and 6.2 percent of the reimbursements. Over one-half of the swing-bed services are furnished in the North Central States. PMID:10113275
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
Spacecraft fire-safety experiments for space station: Technology development mission
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.
1988-01-01
Three concept designs for low-gravity, fire-safety related experiments are presented, as selected for the purpose of addressing key issues of enhancing safety and yet encouraging access to long-duration, manned spacecraft such as the NASA space station. The selected low-gravity experiments are the following: (1) an investigation of the flame-spread rate and combustion-product evolution of the burning of typical thicknesses of spacecraft materials in very low-speed flows; (2) an evaluation of the interaction of fires and candidate extinguishers in various fire scenarios; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion. Each experiment is expected to provide fundamental combustion-science data, as well as the fire-safety applications, and each requires the unique long-duration, low-gravity environment of the space station. Two generic test facilities, i.e., the Combustion Tunnel Facility and the Combustion Facility, are proposed for space station accommodation to support the selected experiments. In addition, three near-term, fire-safety related experiments are described along with other related precursor activities.
Saigal, Saurabh; Sharma, Jai Prakash; Pakhare, Abhijit; Bhaskar, Santosh; Dhanuka, Sanjay; Kumar, Sanjay; Sabde, Yogesh; Bhattacharya, Pradip; Joshi, Rajnish
2017-10-01
In low- and middle-income countries such as India, where health systems are weak, the number of available Critical Care Unit (Intensive Care Unit [ICU]) beds is expected to be low. There is no study from the Indian subcontinent that has reported the characteristics and distribution of existing ICUs. We performed this study to understand the characteristics and distribution of ICUs in Madhya Pradesh (MP) state of Central India. We also aimed to develop a consensus scoring system and internally validate it to define levels of care and to improve health system planning and to strengthen referral networks in the state. We obtained a list of potential ICU facilities from various sources and then performed a cross-sectional survey by visiting each facility and determining characteristics for each facility. We collected variables with respect to infrastructure, human resources, equipment, support services, procedures performed, training courses conducted, and in-place policies or standard operating procedure documents. We identified a total of 123 ICUs in MP. Of 123 ICUs, 35 were level 1 facilities, 74 were level 2 facilities, and only 14 were level 3 facilities. Overall, there were 0.17 facilities per 100,000 population (95* confidence interval [CI] 0.14-0.20 per 100,000 populations). There were a total of 1816 ICU beds in the state, with an average of 2.5 beds per 100,000 population (95* CI 2.4-2.6 per 100,000 population). Of the total number of ICU beds, 250 are in level 1, 1141 are in level 2, and 425 are in level 3 facilities. This amounts to 0.34, 1.57, and 0.59 ICU beds per 100,000 population for levels 1, 2, and 3, respectively. This study could just be an eye opener for our healthcare authorities at both state and national levels to estimate the proportion of ICU beds per lac population. Similar mapping of intensive care services from other States will generate national data that is hitherto unknown.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... - Louisville, Kentucky, Application for Subzone, Louisville Bedding Company (Household Bedding Products...-purpose subzone status for the bedding products manufacturing facilities of Louisville Bedding Company..., Louisville; Site 2 - warehouse (4.3 acres) located at 100 Quality Street, Munfordville; and, Site 3...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
..., California, Application for Subzone, Louisville Bedding Company (Household Bedding Products), Ontario... Avenue in Ontario, California. The facility is used to manufacture household bedding products, including... shipments for the domestic market, the finished household bedding products would be entered for consumption...
High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Curran, E.T.
1991-01-01
Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.
Air quality in bedded mono-slope beef barns
USDA-ARS?s Scientific Manuscript database
Bedded mono-slope barns are becoming more common in the upper Midwest. Because these are new facilities, little research has been published regarding environmental quality, building management and animal performance in these facilities. A team of researchers from South Dakota State University, USDA ...
NASA Technical Reports Server (NTRS)
Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Sevener, Kathleen M. (Inventor)
2004-01-01
A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.
A low tritium hydride bed inventory estimation technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.; Shanahan, K.L.; Baker, R.A.
2015-03-15
Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. Themore » first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-06-01
These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume I contains papers relating to coal preparation, oil shales, coal combustion, advanced coal utilization (fluidized bed combustion, MHD generators, OCGT, fuel cells), coal gasification, coal liquefaction, and fossil resource extraction (enhanced recovery). Separate abstracts for individual papers are prepared for inclusion in the Energy Data Base. (DMC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suuberg, E.M.
The emission of nitrogen oxides from combustion of coal remains a problem of considerable interest, whether the concern is with acid rain, stratospheric ozone chemistry, or {open_quotes}greenhouse{close_quotes} gases. Whereas earlier the concern was focused mainly on NO (as a primary combustion product) and to a lesser extent NO{sub 2} (since it is mainly a secondary product of combustion), in recent years the emissions of N{sub 2}O have also captured considerable attention, particularly in the context of fluidized bed combustion, in which the problem appears to be most acute. The research community has only recently begun to take solid hold onmore » the N{sub 2}O problem. This is in part because earlier estimates of the importance of N{sub 2}O in combustion processes were clouded by artifacts in sampling which have now been resolved. This project is concerned with the mechanism of reduction of both NO and N{sub 2}O by carbons. It was recognized some years ago that NO formed during fluidized bed coal combustion can be heterogeneously reduced in-situ by the carbonaceous solid intermediates of combustion. This has been recently supplemented by the knowledge that heterogeneous reaction with carbon can also play an important role in reducing emissions of N{sub 2}O, but that the NO-carbon reactions might also contribute to formation of N{sub 2}O. The precise role of carbon in N{sub 2}O reduction and formation has yet to be established, since in one case the authors of a recent study were compelled to comment that {open_quotes}the basic knowledge of N{sub 2}O formation and reduction still has to be improved{close_quotes}. The same can be said of the NO-carbon system. In this program, carbons studied include graphite, resin char, coconut char, and a Wyodak coal char.« less
Fluidized bed combustion of pelletized biomass and waste-derived fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Scala, F.; Solimene, R.
2008-10-15
The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less
Oil shale retorting and combustion system
Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.
1983-01-01
The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.
2000-01-31
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
Test Series 2. 4: detailed test plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Test Series 2.4 comprises the fourth sub-series of tests to be scheduled as a part of Test Series 2, the second stage of the combustion research program to be carried out at the Grimethorpe Experimental Pressurized Fluidized Bed Combustion Facility. Test Series 2.1, the first sub-series of tests, was completed in February 1983, and the first part of the second sub-series, Test Series 2.3, in October 1983. Test Series 2.2 was completed in February 1984 after which the second part of Test Series 2.3 commenced. The Plan for Test Series 2.4 consists of 350 data gathering hours to be completedmore » within 520 coal burning hours. This document provides a brief description of the Facility and modifications which have been made following the completion of Test Series 2.1. No further modifications were made following the completion of the first part of Test Series 2.3 or Test Series 2.2. The operating requirements for Test Series 2.4 are specified. The tests will be performed using a UK coal (Lady Windsor), and a UK limestone (Middleton) both nominated by the FRG. Seven objectives are proposed which are to be fulfilled by thirteen test conditions. Six part load tests based on input supplied by Kraftwerk Union AG are included. The cascade is expected to be on line for each test condition and total cascade exposure is expected to be in excess of 450 hours. Details of sampling and special measurements are given. A test plan schedule envisages the full test series being completed within a two month calendar period. Finally, a number of contingency strategies are proposed. 3 figures, 14 tables.« less
Conceptual Design of the Space Station Fluids Module
NASA Technical Reports Server (NTRS)
Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
EPA ASSESSMENT OF TECHNOLOGIES FOR CONTROLLING EMISSIONS FROM MUNICIPAL WASTE COMBUSTION
The article examines EPA technical activities relating to the development of regulations pertaining to the control of both new and existing municipal waste combustion facilities (MWCs). The activities include: (1) assessing combustion and flue gas cleaning technologies, (2) colle...
THE SITE DEMONSTRATION OF THE AMERICAN COMBUSTION PYRETRON OXYGEN-ENHANCED BURNER
A demonstration of the American Combustion PyretronTM oxygen-enhanced burner ws conducted under the Superfund Innovative Technology Evaluation (SITE) program. The Demonstration was conducted at the U.S. EPA's Combustion Research Facility (CRF) in Jefferson, Arkansas....
Flexible conduit for effecting lateral channelling in coal or oil shale beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabol, K.
1979-09-25
There is provided in accordance with the invention apparatus and a method for boring holes through carbonaceous deposits. The method involves the step of introducing combustion-supporting gases such as air under pressure through the apparatus installed in a well hole opposite the area to be bored. The apparatus comprises inner and outer flexible tubes with flexible, jointed armour and a directional nozzle which permits it to be bent and change attitude as necessary. The adjacent carbonaceous interface after being ignited is maintained in this condition by the combustion-supporting gas which is supplied under pressure. As the combustion proceeds, the pressuremore » expels the combustion products and the gas injector is advanced along the channel it has previously formed.« less
NASA Technical Reports Server (NTRS)
Dewitt, Richard L.
1978-01-01
The preliminary concept, specifications, and requirements of a reusable zero gravity combustion facility (0-GCF) for use by experimenters aboard the spacelab payload of the space transportation system (STS) orbiter are described. The facility will be amenable to any mission of the STS orbiter in which a spacelab habitable segment and pallet segment are integral and for which orbital mission plans specify induced accelerations of 0.0001 g or less for sufficiently long periods so as not to impact experiment performance.
Inclined fluidized bed system for drying fine coal
Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.
1992-02-11
Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.
Tanning facility use: are we exceeding Food and Drug Administration limits?
Hornung, Robin L; Magee, Kristin H; Lee, Willie J; Hansen, Lori A; Hsieh, Yi-Ching
2003-10-01
The US Food and Drug Administration (FDA) recommends exposure limits for tanning bed use. Tanning patrons may not be following these recommendations and may be overexposed to damaging ultraviolet radiation (UV). This study was conducted to assess tanning patrons' adherence to FDA-recommended exposure limits and to measure the amount of UVA and UVB radiation emitted by tanning beds. A community-based survey was administered during routine state inspections of North Carolina tanning facilities (n = 50). At each facility, patron records were randomly selected (n = 483) for a survey of exposure records, and UVA and UVB outputs were measured for each tanning bed. The recommended limits were exceeded by 95% of patrons, and 33% of patrons began tanning at the maximum doses recommended for maintenance tanning. Average tanning bed output was 192.1 W/m(2) UVA and 0.35 W/m(2) erythemally weighted UVB. Interventions for tanning bed operators and patrons are needed to increase compliance with federally recommended exposure limits.
Gaseous emissions from sewage sludge combustion in a moving bed combustor.
Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J
2015-12-01
Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions, such as the installation of exhaust gas-cleaning systems. According to previous studies, the efficient operation of such cleaning systems is also effective for metals emission control, which makes the combustion of sewage sludge a feasible treatment method from both energetic and environmental perspectives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cleaner, More Efficient Diesel Engines
Musculus, Mark
2018-01-16
Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... controlling oxides of nitrogen from the stationary reciprocating, diesel fuel fired, internal combustion... County. The facility contains two stationary reciprocating, diesel fuel fired, internal combustion... Conditions of Approval specify the NO X emissions limits, combustion process adjustments mentioned above...
Fluidized bed combustion residue as an alternative liming material and Ca source. [Prunus persica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J.H.; Horton, B.D.; White, A.W. Jr.
1985-01-01
Fluidized bed combustion residue (FBCR), a by-product of fossil fuel fired boilers, was evaluated as a liming material and a source of calcium for peaches (Prunus persica (L.) Batsch). Incubation studies involving a medium textured soil indicated that FBCR (calcite (FBCRC) or dolomitic (FBCRD) sources) was as effective a liming amendment as the respective agricultural limestone. Maximum soil pH occurred after 26 days incubation with FBCRC, but soil pH increased continuously throughout 137 days incubation with dolomitic limestone. Ammonium acetate extractable Ca was not affected by calcitic source, but Mg concentration increased with rates with the two dolomitic sources, andmore » was highest in the FBCRD source after 137 days incubation. In greenhouse studies with Elberta peach seedlings, FBCRC was more effective in neutralizing soil acidity and increasing extractable soil Ca than calcitic limestone.« less
Apparatus for fixed bed coal gasification
Sadowski, Richard S.
1992-01-01
An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.
NASA Astrophysics Data System (ADS)
Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong
2018-02-01
Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.
Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastellone, M.L.; Arena, U.
1999-05-01
Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor weremore » determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.« less
Komilis, Dimitrios; Katsafaros, Nikolaos; Vassilopoulos, Panagiotis
2011-08-01
The accurate calculation of the unit generation rates and composition of medical waste generated from medical facilities is necessary in order to design medical waste treatment systems. In this work, the unit medical waste generation rates of 95 public and private medical facilities in the Attica region were calculated based on daily weight records from a central medical waste incineration facility. The calculated medical waste generation rates (in kg bed(-1) day( -1)) varied widely with average values at 0.27 ± 113% and 0.24 ± 121%, for public and private medical facilities, respectively. The hazardous medical waste generation was measured, at the source, in the 40 bed hospital of the island of Ikaria for a period of 42 days during a 6 month period. The average hazardous medical waste generation rate was 1.204 kg occupied bed(-1) day(-1) or 0.33 kg (official) bed( -1) day(-1). From the above amounts, 54% resulted from the patients' room (solid and liquid wastes combined), 24% from the emergency department (solid waste), 17% from the clinical pathology lab and 6% from the X-ray lab. In average, 17% of the total hazardous medical waste was solely infectious. Conclusively, no correlation among the number of beds and the unit medical waste generation rate could be established. Each hospital should be studied separately, since medical waste generation and composition depends on the number and type of departments/laboratories at each hospital, number of external patients and number of occupied beds.
Low NO[sub x], cogeneration process and system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, R.D.
1993-07-06
A process is described for low NO[sub x] cogeneration to produce electricity and useful heat, which comprises: providing fuel and oxygen to an internal combustion engine connected to drive an electric generator, to thereby generate electricity; recovering from said engine an exhaust stream including elevated NO[sub x] levels and combined oxygen; adding to said exhaust stream sufficient fuel to create a fuel-rich mixture, the quantity of fuel being sufficient to react with the available oxygen and reduce the NO[sub x], in said exhaust stream; providing said fuel-enriched exhaust stream to a thermal reactor and reacting therein said fuel, NO[sub x]more » and available oxygen, to provide a heated oxygen-depleted stream; cooling said oxygen-depleted stream by passing same through a first heat exchanger; adding conversion oxygen to said cooled stream from said heat exchanger, and passing the cooled oxygen-augmented stream over a first catalyst bed operated at a temperature of about 750 to 1,250 F under overall reducing conditions, the quantity of conversion oxygen added being in stoichiometric excess of the amount of NO[sub x], but less than the amount of combustibles; whereby the NO[sub x] is first oxidized to NO[sub 2], and then the NO[sub 2] is reduced by the excess combustibles; cooling said stream from said first catalyst bed to a temperature of about 450 to 650 F by passing said stream through a second heat exchanger; adding air to the resulting cooled stream to produce a further cooled stream at a temperature of about 400 to 600 F, and having a stoichiometric excess of oxygen; and passing said stream having said stoichiometric excess of oxygen over an oxidizing catalyst bed at said temperature of 400 to 600 F to oxidize remaining excess combustibles, to thereby provide an effluent stream having environmentally safe characteristics.« less
1980-12-01
Detachment, White Oak Laboratory, Silver Spring Code 240, Sigmund Jacobs (1) G. B. Wilmot (1) 1 Naval Underwater Systems Center, Newport (Code 5B331...Models by Kenneth K. Kuo and Mridul Kumar Systems Associates DTIC Pennsylvanir State University ELECTE for the APR 8 1981 Research Department B...ACTIVTY OF THE NAVAL MATERIAL COMMAND FOREWORD This is the final report for a research program conducted by Systems Associates, Pennsylvania State
Solid Surface Combustion Experiment
1994-09-12
STS064-10-011 (12 Sept. 1994) --- The Solid Surface Combustion Experiment (SSCE), designed to supply information on flame spread over solid fuel surfaces in the reduced-gravity environment of space, is pictured during flight day four operations. The middeck experiment measured the rate of spreading, the solid-phase temperature, and the gas-phase temperature of flames spreading over rectangular fuel beds. STS-64 marked the seventh trip into space for the Lewis Research Center experiment. Photo credit: NASA or National Aeronautics and Space Administration
Particle withdrawal from fluidized bed systems
Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.
1982-01-01
Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.
Validating the MFiX-DEM Model for Flow Regime Prediction in a 3D Spouted Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Subhodeep; Guenther, Chris; Rogers, William A.
The spout-fluidized bed reactor with relatively large oxygen carrier particles offers several advantages in chemical looping combustion operation using solid fuels. The large difference in size and weight between the oxygen carrier particles and the smaller coal or ash particles allows the oxygen carrier to be easily segregated for recirculation; the increased solids mixing due to dynamic flow pattern in the spout-fluidization regime prevents agglomeration. The primary objective in this work is to determine the effectiveness of the MFiX-DEM model in predicting the flow regime in a spouted bed. Successful validation of the code will allow the user to finemore » tune the operating conditions of a spouted bed to achieve the desired operating condition.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods...: atmospheric or pressurized fluidized bed combustion, integrated gasification combined cycle...
Recent enlightening strategies for co2 capture: a review
NASA Astrophysics Data System (ADS)
Yuan, Peng; Qiu, Ziyang; Liu, Jia
2017-05-01
The global climate change has seriously affected the survival and prosperity of mankind, where greenhouse effect owing to atmospheric carbon dioxide (CO2) enrichment is a great cause. Accordingly, a series of down-to-earth measures need to be implemented urgently to control the output of CO2. As CO2 capture appears as a core issue in developing low-carbon economy, this review provides a comprehensive introduction of recent CO2 capture technologies used in power plants or other industries. Strategies for CO2 capture, e.g. pre-combustion, post-combustion and oxyfuel combustion, are covered in this article. Another enlightening technology for CO2 capture based on fluidized beds is intensively discussed.
Design and Development of a CPCI-Based Electronics Package for Space Station Experiments
NASA Technical Reports Server (NTRS)
Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.
2006-01-01
The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.
Method of increasing the sulfation capacity of alkaline earth sorbents
Shearer, J.A.; Turner, C.B.; Johnson, I.
1980-03-13
A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.
Method of increasing the sulfation capacity of alkaline earth sorbents
Shearer, John A.; Turner, Clarence B.; Johnson, Irving
1982-01-01
A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
NASA Astrophysics Data System (ADS)
Seo, Yong-Seog; Seo, Dong-Joo; Seo, Yu-Taek; Yoon, Wang-Lai
The objective of this study is to investigate numerically a compact steam methane reforming (SMR) system integrated with a water-gas shift (WGS) reactor. Separate numerical models are established for the combustion part, SMR and WGS reaction bed. The concentration of species at the exits of the SMR and WGS bed, and the temperatures in the WGS bed are in good agreement with the measured data. Heat transfer to the catalyst beds and the catalytic reactions in the SMR and WGS catalyst bed are investigated as a function of the operation parameters. The conversion of methane at the exit of the SMR catalyst bed is calculated to be 87%, and the carbon monoxide concentration at the outlet of the WGS bed is estimated to be 0.45%. The effects of the cooling heat flux at the outside wall of the system and steam-to-carbon (S/C) ratio are also examined. As the cooling heat flux increases, both the methane conversion and carbon monoxide content are reduced in the SMR bed, and the carbon monoxide conversion is improved in the WGS bed. Both methane conversion and carbon dioxide reduction increase with increasing steam-to-carbon ratio.
Pasini, III, Joseph; Shuck, Lowell Z.; Overbey, Jr., William K.
1977-01-01
This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.
Emissions from the combustion of eucalypt and pine chips in a fluidized bed reactor.
Vicente, E D; Tarelho, L A C; Teixeira, E R; Duarte, M; Nunes, T; Colombi, C; Gianelle, V; da Rocha, G O; Sanchez de la Campa, A; Alves, C A
2016-04-01
Interest in renewable energy sources has increased in recent years due to environmental concerns about global warming and air pollution, reduced costs and improved efficiency of technologies. Under the European Union (EU) energy directive, biomass is a suitable renewable source. The aim of this study was to experimentally quantify and characterize the emission of particulate matter (PM2.5) resulting from the combustion of two biomass fuels (chipped residual biomass from pine and eucalypt), in a pilot-scale bubbling fluidized bed (BFB) combustor under distinct operating conditions. The variables evaluated were the stoichiometry and, in the case of eucalypt, the leaching of the fuel. The CO and PM2.5 emission factors were lower when the stoichiometry used in the experiments was higher (0.33±0.1 g CO/kg and 16.8±1.0 mg PM2.5/kg, dry gases). The treatment of the fuel by leaching before its combustion has shown to promote higher PM2.5 emissions (55.2±2.5 mg/kg, as burned). Organic and elemental carbon represented 3.1 to 30 wt.% of the particle mass, while carbonate (CO3(2-)) accounted for between 2.3 and 8.5 wt.%. The particulate mass was mainly composed of inorganic matter (71% to 86% of the PM2.5 mass). Compared to residential stoves, BFB combustion generated very high mass fractions of inorganic elements. Chloride was the water soluble ion in higher concentration in the PM2.5 emitted by the combustion of eucalypt, while calcium was the dominant water soluble ion in the case of pine. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Shao, Yuanyuan; Zhu, Jesse; Preto, Fernando; Tourigny, Guy; Wang, Jinsheng; Badour, Chadi; Li, Hanning; Xu, Chunbao Charles
Characterizations of ash deposits from co-firing/co-combusting of a woody biomass (i.e., white pine) and lignite coal were investigated in a fluidized-bed combustor using a custom designed air-cooled probe installed in the freeboard region of the reactor. Ash deposition behaviors on a heat transfer surface were comprehensively investigated and discussed under different conditions including fuel type, fuel blending ratios (20-80% biomass on a thermal basis), and moisture contents. For the combustion of 100% lignite, the compositions of the deposited ash were very similar to those of the fuel ash, while in the combustion of 100% white pine pellets or sawdust the deposited ash contained a much lower contents of CaO, SO3, K2O and P2O5 compared with the fuel ash, but the deposited ash was enriched with SiO2, Al2O3 and MgO. A small addition of white pine (20% on a heat input basis) to the coal led to the highest ash deposition rates likely due to the strong interaction of the CaO and MgO (from the biomass ash) with the alumina and silica (from the lignite ash) during the co-combustion process, evidenced by the detection of high concentrations of calcium/magnesium sulfates, aluminates and silicates in the ash deposits. Interestingly, co-firing of white pine pellets and lignite at a 50% blending ratio led to the lowest ash deposition rates. Ash deposition rates in combustion of fuels as received with a higher moisture content was found to be much lower than those of oven-dried fuels.
An experimental investigation of the combustion performance of human faeces.
Onabanjo, Tosin; Kolios, Athanasios J; Patchigolla, Kumar; Wagland, Stuart T; Fidalgo, Beatriz; Jurado, Nelia; Hanak, Dawid P; Manovic, Vasilije; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean; Cartmell, Elise
2016-11-15
Poor sanitation is one of the major hindrances to the global sustainable development goals. The Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation is set to develop affordable, next-generation sanitary systems that can ensure safe treatment and wide accessibility without compromise on sustainable use of natural resources and the environment. Energy recovery from human excreta is likely to be a cornerstone of future sustainable sanitary systems. Faeces combustion was investigated using a bench-scale downdraft combustor test rig, alongside with wood biomass and simulant faeces. Parameters such as air flow rate, fuel pellet size, bed height, and fuel ignition mode were varied to establish the combustion operating range of the test rig and the optimum conditions for converting the faecal biomass to energy. The experimental results show that the dry human faeces had a higher energy content (∼25 MJ/kg) than wood biomass. At equivalence ratio between 0.86 and 1.12, the combustion temperature and fuel burn rate ranged from 431 to 558 °C and 1.53 to 2.30 g/min respectively. Preliminary results for the simulant faeces show that a minimum combustion bed temperature of 600 ± 10 °C can handle faeces up to 60 wt.% moisture at optimum air-to-fuel ratio. Further investigation is required to establish the appropriate trade-off limits for drying and energy recovery, considering different stool types, moisture content and drying characteristics. This is important for the design and further development of a self-sustained energy conversion and recovery systems for the NMT and similar sanitary solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chindaprasirt, Prinya; Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t
2010-04-15
In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electronmore » microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.« less
Use of aluminum sulfate (alum) to decrease ammonia emissions from beef cattle bedded manure packs
USDA-ARS?s Scientific Manuscript database
Confined cattle facilities are an increasingly common housing system in the Northern Great Plains of the United States. Ammonia volatilization from the surface of the floor and bedding in these confined facilities depends on several variables including pH, temperature, and moisture content. When pH ...
Hoops and Mono-Slopes: What We Have Learned About Management and Performance
USDA-ARS?s Scientific Manuscript database
In the past ten years, Iowa beef feedlots have striven to improve environmental management. To reduce the potential for feedlot run-off, there has been increased interest in feeding animals in deep-bedded enclosed facilities. Two types of deep-bedded facilities – hoop barns and mono-slope barns – ...
Particulate matter concentrations for mono-slope beef cattle facilities in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region of the United States. Producers may maintain a deep-bedded manure pack (Pack), they may remove all bedding/manure material from the pens weekly (Scrape), or use a combination of management styles...
Code of Federal Regulations, 2012 CFR
2012-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Code of Federal Regulations, 2011 CFR
2011-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Code of Federal Regulations, 2010 CFR
2010-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Code of Federal Regulations, 2013 CFR
2013-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Code of Federal Regulations, 2014 CFR
2014-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.
Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S
2002-10-15
Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.
Code of Federal Regulations, 2010 CFR
2010-07-01
... produces both electric (or mechanical) and useful thermal energy from the same primary energy source. Coke.... Conventional technology means wet flue gas desulfurization (FGD) technology, dry FGD technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology. Distillate oil means fuel oils...
Experimental investigation on secondary combustion characteristics of airbreathing rockets
NASA Astrophysics Data System (ADS)
Mano, Takeshi; Eguchi, Akihiro; Shinohara, Suetsugu; Etou, Takao; Kaneko, Yutaka; Yamamoto, Youichi; Nakagawa, Ichirou
Empirical correlations of the secondary combustion efficiency of the airbreathing rocket were derived. From the results of a series of experiments employing a connected pipe facility, the combustion efficiency was related to dominant parameters. The feasibility of the performance prediction by one-dimensional analysis was also discussed. The analysis was found to be applicable to the flow processes in the secondary combustor, which include two-stream mixing and combustion.
Fluidized bed boiler having a segmented grate
Waryasz, Richard E.
1984-01-01
A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.
3D-Simulation Of Concentration Distributions Inside Large-Scale Circulating Fluidized Bed Combustors
NASA Astrophysics Data System (ADS)
Wischnewski, R.; Ratschow, L.; Hartge, E. U.; Werthe, J.
With increasing size of modern CFB combustors the lateral mixing of fuels and secondary air gains more and more importance. Strong concentration gradients, which result from improper lateral mixing, can lead to operational problems, high flue gas emissions and lower boiler efficiencies. A 3D-model for the simulation of local gas and solids concentrations inside industrial-sized CFB boilers has been developed. The model is based on a macroscopic approach and considers all major mechanisms during fuel spreading and subsequent combustion of char and volatiles. Typical characteristics of modern boilers like staged combustion, a smaller cross-sectional area in the lower section of the combustion chamber and the co-combustion of additional fuels with coal can be considered. The 252 MWth combustor of Stadtwerke Duisburg AG is used for the validation of the model. A comprehensive picture of the local conditions inside the combustion chamber is achieved by the combination of local gas measurements and the three-dimensional simulation of concentration distributions.
PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.
Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Zhou, Chuncai
2017-12-01
The combustion characteristics, kinetic analysis and selenium retention-emission behavior during co-combustion of high ash coal (HAC) with pine wood (PW) biomass and torrefied pine wood (TPW) were investigated through a combination of thermogravimetric analysis (TGA) and laboratory-based circulating fluidized bed combustion experiment. Improved ignition behavior and thermal reactivity of HAC were observed through the addition of a suitable proportion of biomass and torrefied. During combustion of blends, higher values of relative enrichment factors in fly ash revealed the maximum content of condensing volatile selenium on fly ash particles, and depleted level in bottom ash. Selenium emission in blends decreased by the increasing ratio of both PW and TPW. Higher reductions in the total Se volatilization were found for HAC/TPW than individual HAC sample, recommending that TPW have the best potential of selenium retention. The interaction amongst selenium and fly ash particles may cause the retention of selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul Kwan Sing
2014-08-01
The thermal decomposition behavior of coal gangue, peanut shell, wheat straw and their blends during combustion were determined via thermogravimetric analysis. The coal gangue/agricultural biomass blends were prepared in four weight ratios and oxidized under dynamic conditions from room temperature to 1000 °C by various heating rates. Kinetic models were carried out to evaluate the thermal reactivity. The overall mass balance was performed to assess the partition behavior of coal gangue, peanut shell and their blends during combustion in a fixed bed reactor. The decomposition processes of agricultural biomass included evaporation, release of volatile matter and combustion as well as char oxidation. The thermal reactivity of coal gangue could be improved through the addition of agricultural biomass in suitable proportion and subsequent appropriate heating rate during combustion. In combination with the heating value and base/acid ratio limitations, a blending ratio of 30% agricultural biomass is conservatively selected as optimum blending. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.
1993-01-01
Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.
Integration Process for Payloads in the Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
Free, James M.; Nall, Marsha M.
2001-01-01
The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.
Bed Bug Education for School Maintenance
ERIC Educational Resources Information Center
Henriksen, Missy
2012-01-01
Bed bugs are a growing problem, not only in homes and hotels, but also in schools and colleges. Facility administrators and staff need to understand the bed bug resurgence and develop best practices to deal with an infestation. In this article, the author offers tips for preventing and treating bed bugs in school and university settings.
NASA Technical Reports Server (NTRS)
Over, Ann P.
2001-01-01
The Combustion Module-1 (CM-1) was a large, state-of-the-art space shuttle Spacelab facility that was designed, built, and operated on STS-83 and STS-94 by a team from the NASA Glenn Research Center composed of civil servants and local support contractors (Analex and Zin Technologies). CM-1 accomplished the incredible task of providing a safe environment to support flammable and toxic gases while providing a suite of diagnostics for science measurements more extensive than any prior shuttle experiment (or anything since). Finally, CM-1 proved that multiple science investigations can be accommodated in one facility, a crucial step for Glenn's Fluids and Combustion Facility developed for the International Space Station. However, the story does not end with CM-1. In 1998, CM-2 was authorized to take the CM-1 accomplishments a big step further by completing three major steps: Converting the entire experiment to operate in a SPACEHAB module. Conducting an extensive hardware refurbishment and upgrading diagnostics (e.g., cameras, gas chromatograph, and numerous sensors). Adding a new, completely different combustion experiment.
Space Station Freedom: A foothold on the future
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of the Space Station Freedom is given. Its modules are discussed and illustrated along with its microgravity research facilities. These facilities include the advanced protein crystal growth facility, the containerless processing facility, a furnace facility, a combustion facility, and a fluid physics/dynamics facility. The topic of living in space is also addressed.
Combustion modeling and performance evaluation in a full-scale rotary kiln incinerator.
Chen, K S; Hsu, W T; Lin, Y C; Ho, Y T; Wu, C H
2001-06-01
This work summarizes the results of numerical investigations and in situ measurements for turbulent combustion in a full-scale rotary kiln incinerator (RKI). The three-dimensional (3D) governing equations for mass, momentum, energy, and species, together with the kappa - epsilon turbulence model, are formulated and solved using a finite volume method. Volatile gases from solid waste were simulated by gaseous CH4 distributed nonuniformly along the kiln bed. The combustion process was considered to be a two-step stoichiometric reaction for primary air mixed with CH4 gas in the combustion chamber. The mixing-controlled eddy-dissipation model (EDM) was employed to predict the conversion rates of CH4, O2, CO2, and CO. The results of the prediction show that reverse flows occur near the entrance of the first combustion chamber (FCC) and the turning point at the entrance to the second combustion chamber (SCC). Temperature and species are nonuniform and are vertically stratified. Meanwhile, additional mixing in the SCC enhances postflame oxidation. A combustion efficiency of up to 99.96% can be achieved at approximately 150% excess air and 20-30% secondary air. Reasonable agreement is achieved between numerical predictions and in situ measurements.
2011-10-17
ISS029-E-029756 (17 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, works on the Combustion Integrated Rack / Fluids & Combustion Facility (CIR FCF) in the Destiny laboratory of the International Space Station.
USDA-ARS?s Scientific Manuscript database
Pine (Pinus spp.) bedding has been shown to lower the concentration of odorous volatile organic compounds (VOCs) and pathogenic bacteria compared with corn (Zea mays L.) stover bedding, but availability and cost limit the use of pine bedding in cattle confinement facilities. The objectives of this s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-11-30
Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report wasmore » submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.« less
Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim
2008-11-01
Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.
Evans, Tracy; Gross, Brian; Rittenhouse, Katelyn; Harnish, Carissa; Vellucci, Ashley; Bupp, Katherine; Horst, Michael; Miller, Jo Ann; Baier, Ron; Chandler, Roxanne; Rogers, Frederick B
2015-12-01
Geriatric living facilities have been associated with a high rate of falls. We sought to develop an innovative intervention approach targeting geriatric living facilities that would reduce geriatric fall admissions to our Level II trauma center. In 2011, a Trauma Prevention Taskforce visited 5 of 28 local geriatric living facilities to present a fall prevention protocol composed of three sections: fall education, risk factor identification, and fall prevention strategies. To determine the impact of the intervention, the trauma registry was queried for all geriatric fall admissions attributed to patients living at local geriatric living facilities. The fall admission rate (total fall admissions/total beds) of the pre-intervention period (2010-2011) was compared with that of the postintervention period (2012-2013) at the 5 intervention and 23 control facilities. A P value < 0.05 was considered statistically significant. From 2010 to 2013, there were 487 fall admissions attributed to local geriatric living facilities (intervention: 179 fall admissions; control: 308 fall admissions). The unadjusted fall rate decreased at intervention facilities from 8.9 fall admissions/bed pre-intervention to 8.1 fall admissions/bed postintervention, whereas fall admission rates increased at control sites from 5.9 to 7.7 fall admissions/bed during the same period [control/intervention odds ratio (OR), 95% confidence interval (CI) = 1.32, 1.05-1.67; period OR, 95%CI = 1.55, 1.18-2.04, P = 0.002; interaction of control/intervention group and period OR 95% CI = 0.68, 0.46-1.00, P = 0.047]. An aggressive intervention program targeting high-risk geriatric living facilities resulted in a statistically significant decrease in geriatric fall admissions to our Level II trauma center.
[Palliative care pathways of older patients].
Zubieta, Lourdes; Hébert, Réjean; Raîche, Michel
To determine the palliative care pathways of older patients in Sherbrooke, Qc by examining their transfers to other facilities. This analysis was conducted by linking 3 databases: emergency department, hospitalizations and nursing homes. The study period ranged from January 2011 to December 2015. SPSS was used for statistical analysis. The study only included palliative care patients. 25% of patients waited less than 7 days for transfer, and 74% waited less than 3 weeks. 64.9% of patients were transferred to a long-term facility for dependent adults (LTF), 15.2% returned home or were transferred to private accommodation, and 15.9% were transferred to an intermediate care facility. One-half of patients subsequently changed facility, mainly those in homes or intermediate care. Palliative care patient bed occupation rates represented 1% of available bed-days and less than 2% of total beds for 86.4% of days. Only 12% of patients returned to hospital within 90 days after discharge. The number of beds occupied by palliative care patients does not seem to disrupt the hospital capacity. The majority of the palliative care patients were well managed, as reflected by the low readmission rate. Our results indicate good management of transfers and an adequate supply of long-term care facilities and home services.
Support Services for Ceramic Fiber-Ceramic Matrix Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, J.P.
2000-06-06
Structural and functional materials used in solid- and liquid-fueled energy systems are subject to gas- and condensed-phase corrosion and erosion by entrained particles. For a given material, its temperature and the composition of the corrodents determine the corrosion rates, while gas flow conditions and particle aerodynamic diameters determine erosion rates. Because there are several mechanisms by which corrodents deposit on a surface, the corrodent composition depends not only on the composition of the fuel, but also on the temperature of the material and the size range of the particles being deposited. In general, it is difficult to simulate under controlledmore » laboratory conditions all of the possible corrosion and erosion mechanisms to which a material may be exposed in an energy system. Therefore, with funding from the Advanced Research Materials Program, the University of North Dakota Energy & Environmental Research Center (EERC) is coordinating with NCC Engineering and the National Energy Technology Laboratory (NETL) to provide researchers with no-cost opportunities to expose materials in pilot-scale systems to conditions of corrosion and erosion similar to those occurring in commercial power systems. The EERC has two pilot-scale solid-fuel systems available for exposure of materials coupons. The slagging furnace system (SFS) was built under the DOE Combustion 2000 Program as a testing facility for advanced heat exchanger subsystems. It is a 2.5-MMBtu/hr (2.6 x 10{sup 6} kJ/hr) solid-fuel combustion system with exit temperatures of 2700 to 2900 F to ensure that the ash in the main combustor is molten and flowing. Sample coupons may be exposed in the system either within the slagging zone or near the convective air heater at 1800 F (980 C). In addition, a pilot-scale entrained-bed gasifier system known as the transport reactor development unit (TRDU) is available. Also operating at approximately 2.5 MMBtu/hr (2.6 x 10{sup 6} kJ/hr), it is a pressurized unit built to simulate the Kellogg entrained-bed gasifier in use at the Southern Company Services Wilsonville facility, but at 1/10 of the firing rate. At the exit of the unit is a large candle filter vessel typically operated at approximately 1000 F (540 C) in which coupons of materials can be inserted to test their resistance to gasifier ash and gas corrosion. The system also has ports for testing of hydrogen separation membranes that are suitably contained in a pressure housing. In addition, NETL is operating the combustion and environmental research facility (CERF). In recent years, the 0.5 MMBtu/hr (0.5 x 10{sup 6} kJ/hr) CERF has served as a host for exposure of over 60 ceramic and alloy samples at ambient pressure as well as at 200 psig (for tubes). Samples have been inserted in five locations covering 1700-2600 F (930-1430 C), with exposures exceeding 1000 hours. In the present program, the higher priority metals are to be tested at 1500-1600 F (820-870 C) in one CERF location and near 1800-2000 F (980-1090 C) at other locations to compare results with those from the EERC tests.« less
Combustion of anaerobically digested humus as a fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayhanian, M.; Jenkins, B.M.; Baxter, L.L.
Two pilot scale combustion experiments were conducted to explore the application of an anaerobically digested humus as fuel for commercial boilers. The experiments were performed in a fluidized bed combustor (FBC) and a multifuel suspension combustor (MFC). The results obtained indicate that the humus, blended with another conventional fuel (e.g., wood), can be used as a fuel in commercial boilers. Preliminary results of ash deposit analyses from the MFC indicate that the rate of deposition was low compared to high fouling biomass fuels such as straws, and similar to deposits obtained from wood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waterland, L.; Lee, J.W.
1989-04-01
A series of demonstration tests of the American Combustion, Inc., Thermal Destruction System was performed under the SITE program. This oxygen-enhanced combustion system was retrofit to the rotary-kiln incinerator at EPA's Combustion Research Facility. The system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a coal tar waste (KO87). Comparative performance with conventional incinerator operation was also tested. Compliance with the incinerator performance standards of 99.99% principal organic hazardous constituents (POHC) destruction and removal efficiency and particulate emissions of less than 180 mg/dscm at 7% O2 was measured for all tests. Themore » Pyretron system was capable of in-compliance performance at double the mixed waste feedrate and at a 60% increase in batch waste charge mass than possible with conventional incineration. Scrubber blowdown and kiln ash contained no detectable levels of any of the POHCs chosen.« less
2011-08-17
ISS028-E-026402 (17 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, works with the Combustion Integrated Rack (CIR) Fluids and Combustion Facility (FCF) in the Destiny laboratory of the International Space Station.
2011-08-17
ISS028-E-026400 (17 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, works with the Combustion Integrated Rack (CIR) Fluids and Combustion Facility (FCF) in the Destiny laboratory of the International Space Station.
Werle, Sebastian
2014-10-01
This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio λ = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. © The Author(s) 2014.
Thermal exploitation of wastes with lignite for energy production.
Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George
2003-11-01
The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.
[Fluorine removal efficiency of organic-calcium during coal combustion].
Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa
2006-08-01
Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutanen, K.I.
Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the USmore » the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.« less
On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.
Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin
2015-11-17
The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.
CAPE-OPEN simulation of waste-to-energy technologies for urban cities
NASA Astrophysics Data System (ADS)
Andreadou, Christina; Martinopoulos, Georgios
2018-01-01
Uncontrolled waste disposal and unsustainable waste management not only damage the environment, but also affect human health. In most urban areas, municipal solid waste production is constantly increasing following the everlasting increase in energy consumption. Technologies aim to exploit wastes in order to recover energy, decrease the depletion rate of fossil fuels, and reduce waste disposal. In this paper, the annual amount of municipal solid waste disposed in the greater metropolitan area of Thessaloniki is taken into consideration, in order to size and model a combined heat and power facility for energy recovery. From the various waste-to-energy technologies available, a fluidised bed combustion boiler combined heat and power plant was selected and modelled through the use of COCO, a CAPE-OPEN simulation software, to estimate the amount of electrical and thermal energy that could be generated for different boiler pressures. Although average efficiency was similar in all cases, providing almost 15% of Thessaloniki's energy needs, a great variation in the electricity to thermal energy ratio was observed.
Hutchinson, Todd F.; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P.
2016-01-01
Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities. PMID:27536964
Dickinson, Matthew B; Hutchinson, Todd F; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P
2016-01-01
Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities.
NASA Astrophysics Data System (ADS)
Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B.; Pereira, A. L.; Nagamatsu, H. T.
2006-05-01
A new 0.6-m. diameter Hypersonic Shock Tunnel is been designed, fabricated and will be installed at the Laboratory of Aerothermodynamics and Hypersonics IEAv-CTA, Brazil. The brand new hypersonic facility, designated as T3, is primarily intended to be used as an important tool in the investigation of supersonic combustion management and of electromagnetic energy addition for flow control. The design of the runnel enables relatively long test times, 2-10 milliseconds, suitable for basic supersonic combustion and energy addition by laser experiments. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures of 200 atm. and 5,500 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization and the new facility is expected to be commissioned by the end of 2006.
Overpressure resulting from combustion of explosive gas in an unconfined geometry
NASA Astrophysics Data System (ADS)
Urtiew, P. A.
1982-02-01
In preparation for a series of large scale spill tests of liquefied gaseous fuels, the problem of designing safe storage facilities for the fuels as part of a proposed spill test facility arose. The design had to take into account the potential hazards associated with large quantities of fuel, including the hazard of overpressures which develop during various modes of combustion or explosion. The overpressure question, the results of which are presented, was studied. All the pertinent information on overpressure that is available in the open literature is summarized and is presented in a form that can be readily converted into design criteria for the fuel storage facility. Various modes of combustion are reviewed and categorized according to their capability of producing sizable overpressures, and some comments are made on how deviations from the ideal situations considered in analytical studies will affect the results.
2010-10-26
ISS025-E-009308 (26 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Kelly set up an experiment run on the Fluids & Combustion Facility (FCF) with a new fuel reservoir, ground-assisted by Payload Operations Integration Center/Huntsville (POIC).
Dowell, N Mac; Fajardy, M
2016-10-20
In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO 2 , with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO 2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJ heat per t CO 2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, M.L.
This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska wasmore » approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less
Study of Nox Emission Characteristics of a 1025t/h Coal-Fired Circulating Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Li, Q. Y.; Mi, Z. D.; Zhang, Q. F.
Measurements of emission are carried out in a 1025t/h CFB boiler. The effect of some factors including coal properties, bed temperature, unit load, excess air on the emission of NOx are investigated. The measurement results show that the N concentration in the coal is dominant parameter to predict the NOx emission from a large-scale CFB boiler. NOx emission from the 1025t/h CFB boiler increases with cyclone temperature and upper pressure drop due to post combustion and external cycle.
Pressurized fluidized bed offers promising route to cogeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
STAL-LAVAL has been monitoring the development of pressurized fluidized-bed combustion (PFBC) technology and has decided to apply it as a way to burn coal and satisfy the important criteria of efficiency, low cost, environmental acceptability, low investment cost, and the capacity to use a wide range of coal qualities. The present status of PFBC and co-generation technology is reviewed and examples of industrial as well as utiltiy applications are cited. A successful commercialization of PFBC could contribute to the success of coal-utilization policies. (DCK)
1982-07-20
These regulations implement sections 904 and 949 of Pub. L. 96-499, the Omnibus Reconciliation Act of 1980. Under section 904 (the swing-bed provision), certain small, rural hospitals may use their inpatient facilities to furnish skilled nursing facility (SNF) services to Medicare and Medicaid beneficiaries, and intermediate care facility (ICF) services to Medicaid beneficiaries. These hospitals will be reimbursed at rates appropriate for those services, which are generally lower than hospital rates. This statutory provision is intended to encourage the most efficient and effective use of inpatient hospital beds for delivery of either hospital or SNF and ICF services. Under section 949, rural hospitals of 50 or fewer beds may be exempted from certain personnel standards in the conditions of participation for hospitals. This exemption applies only to the extent that it does not jeopardize or adversely affect the health and safety of patients.
Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard
2017-01-01
The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666
Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung
2005-01-01
In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.
Experimental Investigation of Magnesium Powder Combustion With C02 for Mars Ascent Applications
NASA Technical Reports Server (NTRS)
Foote, John P.; Litchford, Ronald J.
2005-01-01
Combustion of metals with CO2 has been identified as a possible propellant for Mars ascent applications. CO2 could be condensed from the Martian atmosphere, reducing the amount of propellant that must be transported from Earth. An attractive feature of this approach compared to other in situ propellant concepts is that no chemical processing on Mars is required. Magnesium has been identified as the most promising metal for this application because it ignites and burns easily in CO2. Preliminary systems studies indicate a 2 to 1 delivered mass advantage for Mg ascent propulsion using in situ C02, as compared to a conventional storable propellant system. The Propulsion Research Center at MSFC is undertaking an experimental investigation of magnesium powder combustion with CO2 in order to provide fundamental data on the combustion performance of Mg powder + CO2 mixtures needed to assess the feasibility of developing a practical Mg powder + CO2 rocket engine. Initial combustion experiments will be carried out in a small scale atmospheric pressure dump combustor. Effects of varying the Mg particle size, firing rate and O/F ratio on combustion stability and efficiency will be investigated. The combustion process will be characterized by optical flame measurements and extraction of combustion product samples. The experimental facility is currently being prepared and combustion experiments will begin during the first quarter of 2005. The final paper will describe the test facility and initial experimental results.
Pressure ulcers and lateral rotation beds: a case study.
Russell, Teresa; Logsdon, Angela
2003-05-01
During a 6-month period, the WOC nurses at a 500-bed medical treatment facility noticed the development of nosocomial pressure ulcers on the sacrum, occiput, and heel areas of patients who were placed on lateral rotation specialty beds because they had pulmonary disorders. Measures were taken to address the problem by repositioning the patients and through a staff education program. Repositioning included repositioning the patient's head every 2 hours, thorough skin assessments every 2 hours, and ensuring that the patient's heels were subject to zero pressure. Staff education centered on the importance of using a risk assessment tool (the Braden scale) and understanding the clinical uses for lateral rotation beds. During the subsequent 6 months, the incidence of hospital-acquired pressure ulcers decreased by 52%. Efforts to further decrease the number of pressure ulcers related to the use of lateral rotation beds continue. Issues such as length of stay on the bed and the appropriateness of manufacturer's guidelines still need to be addressed at this facility. This case study highlights the potential issues associated with lateral rotation beds and identifies the need for further research.
NASA Technical Reports Server (NTRS)
Gradl, Paul; Barnett, Greg; Brandsmeier, Will; Greene, Sandy Elam; Protz, Chris
2016-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM) otherwise commonly referred to as additive manufacturing. The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for the GRCop-84 copper-alloy commensurate with powder bed additive manufacturing, evaluate bimetallic deposition and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. As a direct spin off of this program, NASA is working with industry partners to further develop the printing process for the GRCop-84 material in addition to the C-18150 (CuCrZr) material. To advance the process further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic additively manufactured chambers. A 1.2k sized thrust-chamber was designed and developed to compare the printing process of the GRCop-84 and C-18150 SLM materials. A series of similar MCC liners also completed development with an Inconel 625 jacket bonded to the GRcop-84 liner evaluating direct metal deposition (DMD) laser and arc-based techniques. This paper describes the design, development, manufacturing and testing of these combustion chambers and associated lessons learned throughout the design and development process.
CFD simulation of MSW combustion and SNCR in a commercial incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Zihong; Li, Jian; Wu, Tingting
Highlights: • Presented a CFD scheme for modeling MSW incinerator including SNCR process. • Performed a sensitivity analysis of SNCR operating conditions. • Non-uniform distributions of gas velocity, temperature and NO{sub x} in the incinerator. • The injection position of reagent was critical for a desirable performance of SNCR. • A NSR 1.5 was recommended as a compromise of NO{sub x} reduction rates and NH{sub 3} slip. - Abstract: A CFD scheme was presented for modeling municipal solid waste (MSW) combustion in a moving-grate incinerator, including the in-bed burning of solid wastes, the out-of-bed burnout of gaseous volatiles, and themore » selective non-catalytic reduction (SNCR) process between urea (CO(NH{sub 2}){sub 2}) and NO{sub x}. The in-bed calculations provided 2-D profiles of the gas–solid temperatures and the gas species concentrations along the bed length, which were then used as inlet conditions for the out-of-bed computations. The over-bed simulations provided the profiles of incident radiation heat flux on the top of bed. A 3-dimensional benchmark simulation was conducted with a 750 t/day commercial incinerator using the present coupling scheme incorporating with a reduced SNCR reduction mechanism. Numerical tests were performed to investigate the effects of operating parameters such as injection position, injection speed and the normalized stoichiometric ratio (NSR) on the SNCR performance. The simulation results showed that the distributions of gas velocity, temperature and NO{sub x} concentration were highly non-uniform, which made the injection position one of the most sensitive operating parameters influencing the SNCR performance of moving grate incinerators. The simulation results also showed that multi-layer injections were needed to meet the EU2000 standard, and a NSR 1.5 was suggested as a compromise of a satisfactory NO{sub x} reduction and reasonable NH{sub 3} slip rates. This work provided useful guides to the design and operation of SNCR process in moving-grate incinerators.« less
40 CFR 98.52 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 98.52 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 98.52 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 60.43Da - Standards for sulfur dioxide (SO2).
Code of Federal Regulations, 2014 CFR
2014-07-01
... into the atmosphere from any affected facility which combusts solid solvent refined coal (SRC-I) any... (1.2 lb/MWh) net energy output; or (iii) 3 percent of the potential combustion concentration (97...
40 CFR 60.43Da - Standards for sulfur dioxide (SO2).
Code of Federal Regulations, 2013 CFR
2013-07-01
... into the atmosphere from any affected facility which combusts solid solvent refined coal (SRC-I) any... (1.2 lb/MWh) net energy output; or (iii) 3 percent of the potential combustion concentration (97...
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Lebron, Ramon C.
1999-01-01
The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.
NASA Technical Reports Server (NTRS)
Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.
2004-01-01
The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND... submit a final control plan according to the schedule in table 1 of this subpart and comply with § 62...) Calculations of the current maximum combustion capacity and the planned maximum combustion capacity after the...
A new bed-exiting alarm system for welfare facility residents.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W
2009-01-01
A newly developed alarm system detects welfare facility residents leaving their beds, and does not respond to the care staff, who wear shoes or slippers. It employs a stainless steel tape electrode, several linear integrated circuits and a low-power 8-bit single chip microcomputer. The electrode, which is used as a bed-exiting detection sensor, is attached to the floor mat to record changes in the always-present AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the standard 100 volt, 60 Hz AC utility power wiring in the room walls and ceiling. The resident's body movements, before trying to get out of bed and after leaving the bed, are detected by the microcomputer from changes in the induced AC voltage. The microcomputer alerts the care staff station, via a power line communication system or PHS (personal handy phone System).
Combustion Module-2 Achieved Scientific Success on Shuttle Mission STS-107
NASA Technical Reports Server (NTRS)
Over, Ann P.
2004-01-01
The familiar teardrop shape of a candle is caused by hot, spent air rising and cool fresh air flowing behind it. This type of airflow obscures many of the fundamental processes of combustion and is an impediment to our understanding and modeling of key combustion controls used for manufacturing, transportation, fire safety, and pollution. Conducting experiments in the microgravity environment onboard the space shuttles eliminates these impediments. NASA Glenn Research Center's Combustion Module-2 (CM-2) and its three experiments successfully flew on STS-107/Columbia in the SPACEHAB module and provided the answers for many research questions. However, this research also opened up new questions. The CM-2 facility was the largest and most complex pressurized system ever flown by NASA and was a precursor to the Glenn Fluids and Combustion Facility planned to fly on the International Space Station. CM-2 operated three combustion experiments: Laminar Soot Processes (LSP), Structure of Flame Balls at Low Lewis-Number (SOFBALL), and Water Mist Fire Suppression Experiment (Mist). Although Columbia's mission ended in tragedy with the loss of her crew and much data, most of the CM-2 results were sent to the ground team during the mission.
40 CFR 94.5 - Reference materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Washington, DC 20460 or at the National Archives and Records Administration (NARA). For information on the.../code_of_federal_regulations/ibr_locations.html. (a) ASTM material. Table 1 of § 94.5 lists material... internal combustion engines—Exhaust emission measurement—Part 1: Test-bed measurement of gaseous and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, A. G.; Barker, S. N.; Phillips, R. N.
1981-09-01
Volume IV of the report on the 1000 hour programme consists of three appendices giving details of the enginmering/construction aspects of the plant and reports from Stal-Laval Turbin A.B. Appendix N has been entered individually. (LTN)
Current Capabilities and Capacity of Ebola Treatment Centers in the United States.
Herstein, Jocelyn J; Biddinger, Paul D; Kraft, Colleen S; Saiman, Lisa; Gibbs, Shawn G; Le, Aurora B; Smith, Philip W; Hewlett, Angela L; Lowe, John J
2016-03-01
To describe current Ebola treatment center (ETC) locations, their capacity to care for Ebola virus disease patients, and infection control infrastructure features. A 19-question survey was distributed electronically in April 2015. Responses were collected via email by June 2015 and analyzed in an electronic spreadsheet. The survey was sent to and completed by site representatives of each ETC. The survey was sent to all 55 ETCs; 47 (85%) responded. Of the 47 responding ETCs, there are 84 isolation beds available for adults and 91 for children; of these pediatric beds, 35 (38%) are in children's hospitals. In total, the simultaneous capacity of the 47 reporting ETCs is 121 beds. On the basis of the current US census, there are 0.38 beds per million population. Most ETCs have negative pressure isolation rooms, anterooms, and a process for category A waste sterilization, although only 11 facilities (23%) have the capability to sterilize infectious waste on site. Facilities developed ETCs on the basis of Centers for Disease Control and Prevention guidance, but specific capabilities are not mandated at this present time. Owing to the complex and costly nature of Ebola virus disease treatment and variability in capabilities from facility to facility, in conjunction with the lack of regulations, nationwide capacity in specialized facilities is limited. Further assessments should determine whether ETCs can adapt to safely manage other highly infectious disease threats.
Priorities for Microgravity Combustion Research and Goals for Workshop Discussions
NASA Technical Reports Server (NTRS)
Faeth, Gerard M.
1993-01-01
Several concerns motivate fundamental research: combustion-generated pollutants are re-emerging as a major problem, new combustion technologies are needed for effective energy utilization, municipal and hazardous waste incineration are needed to replace landfills and storage, new combustion technologies are needed for advanced aircraft and spacecraft propulsion systems, and current understanding of fires and explosion hazards is limited - particularly for space-craft environments. Thus, it is of interest to determine how experimentation using microgravity facilities can advance research relevant to these problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
(1) The proposed correlation of Equation (5) is recommended to predict the maximum value of heat transfer coefficient between a horzontal tube and a gas-solid fluidized bed of small particles under the conditions given. For high temperature applications (T/sub B/ > 600/sup 0/C), the radiative component is important and was estimated following Baskakov et al. (2) The proposed correlation of Equation (8) was found reliable to predict the existing data on the maximum value of heat transfer coefficient between a horizontal tube bundle and a gas-solid fluidized bed of small particles under the conditions given. At high temperatures, the radiativemore » component was estimated from the experimental data of Baskakov et al. (3) The correlation of Equation (8) predicted the GFETC data taken during the combustion of low-rank coal very well, when the contribution due to radiation was estimated following Baskakov et al. (4) The correlations proposed by Grewal and Bansal et al. were found to predict the data taken during low-rank coal combustion within +-25%, when the contribution due to radiation was included and estimated following Baskakov et al. (5) Finally, the correlations for large particles (anti d/sub p/ > 1mm) as proposed by Glicksman and Decker, Catipovic et al., Xavier and Davidson, and Zabrodsky et al. also predicted the data for low-rank coal fluidized bed combustor quite well, when the radiative component was estimated from the data of Baskakov et al. 64 references, 19 figures, 10 tables.« less
CLEANING OF FLUE GASES FROM WASTE COMBUSTORS
The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...
Efficiency of inpatient orthopedic surgery in Japan: a medical claims database analysis.
Nakata, Yoshinori; Yoshimura, Tatsuya; Watanabe, Yuichi; Otake, Hiroshi; Oiso, Giichiro; Sawa, Tomohiro
2017-07-10
Purpose The purpose of this paper is to determine the characteristics of healthcare facilities that produce the most efficient inpatient orthopedic surgery using a large-scale medical claims database in Japan. Design/methodology/approach Reimbursement claims data were obtained from April 1 through September 30, 2014. Input-oriented Banker-Charnes-Cooper model of data envelopment analysis (DEA) was employed. The decision-making unit was defined as a healthcare facility where orthopedic surgery was performed. Inputs were defined as the length of stay, the number of beds, and the total costs of expensive surgical devices. Output was defined as total surgical fees for each surgery. Efficiency scores of healthcare facilities were compared among different categories of healthcare facilities. Findings The efficiency scores of healthcare facilities with a diagnosis-procedure combination (DPC) reimbursement were significantly lower than those without DPC ( p=0.0000). All the efficiency scores of clinics with beds were 1. Their efficiency scores were significantly higher than those of university hospitals, public hospitals, and other hospitals ( p=0.0000). Originality/value This is the first research that applied DEA for orthopedic surgery in Japan. The healthcare facilities with DPC reimbursement were less efficient than those without DPC. The clinics with beds were the most efficient among all types of management bodies of healthcare facilities.
Combustion Of Interacting Droplet Arrays In Microgravity
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.
2003-01-01
Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.
NASA Astrophysics Data System (ADS)
Qu, Chengrui; Zhang, Mo; Mann, Michael. D.
2018-03-01
The effect of combustion temperature on the emission of trace elementswas studied under O2/CO2 atmosphere during coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine fly ash particles collected with a low pressure impactor(LPI)was quantified by X-Ray F1uorescence Spectrometer (XRF). The elemental composition of coal and bottom ash was quantified byinductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicate that the contents of Mn, Zn, Cd and Cr in the fly ash increase with the rise of combustion temperature. It is found that the enrichment of Zn and Cd is greater in the submicrometer particles than the supermicrometer particles, but Mn and Cr do not enrich in the submicrometer particles. Mn, Zn, Cd and Cr display one peak around 0.1 μm. The relative enrichment factor (Rij) of four elements is in the order of Zn, Cd, Mn and Cr. Zn and Cd are mostly retained in fly ashwhileMn and Cr are retained in both the fly ash and bottom ash.
Carbonaceous fuel combustion with improved desulfurization
Yang, Ralph T.; Shen, Ming-shing
1980-01-01
Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.
Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment
NASA Technical Reports Server (NTRS)
Smith, J. M.
1979-01-01
MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.
Laser systems for the combustion research facility - Diana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C.K.; Lavasek, J.W.; Jones, E.D.
1982-03-01
A 5-Joule/pulse, 1.8-..mu..s-pulse-width, 10-ppS flashlamp-pumped tunable-dye-laser system, called Diana, has been built for use in experiments to be performed at the Combustion Research Facility, Sandia National Laboratories, Livermore. Design specifications for the system and details of construction are described, and it is noted that performance of the laser meets or exceeds all design criteria. Areas for further performance improvements are discussed, and updates are suggested to enhance system usefulness.
Fluids and Combustion Facility: Fluids Integrated Rack Modal Model Correlation
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.
2005-01-01
The Fluids Integrated Rack (FIR) is one of two racks in the Fluids and Combustion Facility on the International Space Station. The FIR is dedicated to the scientific investigation of space system fluids management supporting NASA s Exploration of Space Initiative. The FIR hardware was modal tested and FIR finite element model updated to satisfy the International Space Station model correlation criteria. The final cross-orthogonality results between the correlated model and test mode shapes was greater than 90 percent for all primary target modes.
40 CFR 60.698 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 60.696(c). (c) A report that summarizes all inspections when a water seal was dry or otherwise... 3-hour period of operation during which the average temperature of the gas stream in the combustion... the average temperature of the gas stream immediately before the catalyst bed of a catalytic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J.L.; Garcia, F.; Garza, R.G.
Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculationalmore » method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.« less
Time lapse of CIR rack rotate and R&R
2014-07-21
ISS040-E-071994 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.
Time lapse of CIR rack rotate and R&R
2014-07-21
ISS040-E-072156 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.
Time lapse of CIR rack rotate and R&R
2014-07-21
ISS040-E-072228 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.
SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS
A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... amendments to Subchapter 4 ``Control and Prohibition of Particles from Combustion of Fuel,'' Subchapter 10... of Particles from Combustion of Fuel;'' Subchapter 8 ``Permits and Certificates for Minor Facilities... Prohibition [[Page 45485
Mission Success for Combustion Science
NASA Technical Reports Server (NTRS)
Weiland, Karen J.
2004-01-01
This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.
Shock Tunnel Studies of Scramjet Phenomena
NASA Technical Reports Server (NTRS)
Stalker, R. J.
1996-01-01
Work focussed on a large number of preliminary studies of supersonic combustion in a simple combustion duct - thrust nozzle combination, investigating effects of Mach number, equivalence ratio, combustor divergence, fuel injecting angle and other parameters with an influence on the combustion process. This phase lasted for some three or four years, during which strongest emphasis was placed on responding to the request for preliminary experimental information on high enthalpy effects, to support the technology maturation activities of the NASP program. As the need for preliminary data became less urgent, it was possible to conduct more systematic studies of high enthalpy combustion phenomena, and to initiate other projects aimed at improving the facilities and instrumentation used for studying scramjet phenomena at high enthalpies. The combustion studies were particularly directed towards hypersonic combustion, and to the effects of injecting fuel along the combustion chamber wall. A substantial effort was directed towards a study of the effect of scale on the supersonic combustion process. The influence of wave phenomena (both compression waves and expansion waves) on the realization of thrust from a supersonic combustion process was also investigated. The effect of chemical kinetics was looked into, particularly as it affected the composition of the test flow provided by a ground facility. The effect of injection of the fuel through wall orifices was compared with injection from a strut spanning the stream, and the effect of heating the fuel prior to injection was investigated. Studies of fuel-air mixing by shock impingement were also done, as well as mass spectrometer surveys of a combustion wake. The use of hypersonic nozzles with an expansion tube was investigated. A new method was developed for measuring the forces acting of a model in less than one millisecond. Also included in this report are listings of published journal papers and conference presentations.
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
Bed Bug Clearinghouse by Audience
This information is intended to help states, communities, and consumers prevent and control bed bug infestations. Find materials for emergency and health facilities, hotels, housing authorities, landlords, schools, pest management professionals, and more.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junge, D.C.
1978-12-01
Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. Data are presented on the combustion characteristics of eastern white pine bark mixed with Douglas fir planer shavings.« less
Ammonia, Total Reduced Sulfides, and Greenhouse Gases of Pine Chip and Corn Stover Bedding Packs.
Spiehs, Mindy J; Brown-Brandl, Tami M; Parker, David B; Miller, Daniel N; Berry, Elaine D; Wells, James E
2016-03-01
Bedding materials may affect air quality in livestock facilities. Our objective in this study was to compare headspace concentrations of ammonia (NH), total reduced sulfides (TRS), carbon dioxide (CO), methane (CH), and nitrous oxide (NO) when pine wood chips ( spp.) and corn stover ( L.) were mixed in various ratios (0, 10, 20, 30, 40, 60, 80, and 100% pine chips) and used as bedding with manure. Air samples were collected from the headspace of laboratory-scaled bedded manure packs weekly for 42 d. Ammonia concentrations were highest for bedded packs containing 0, 10, and 20% pine chips (equivalent to 501.7, 502.3, and 502.3 mg m, respectively) in the bedding mixture and were lowest when at least 80% pine chips were used as bedding (447.3 and 431.0 mg m, respectively for 80 and 100% pine chip bedding). The highest NH concentrations were observed at Day 28. The highest concentration of TRS was observed when 100% pine chips were used as bedding (11.4 µg m), with high concentrations occurring between Days 7 and 14, and again at Day 35. Greenhouse gases were largely unaffected by bedding material but CH and CO concentrations increased as the bedded packs aged and NO concentrations were highly variable throughout the incubation. We conclude that a mixture of bedding material that contains 30 to 40% pine chips may be the ideal combination to reduce both NH and TRS emissions. All gas concentrations increased as the bedded packs aged, suggesting that frequent cleaning of facilities would improve air quality in the barn, regardless of bedding materials used. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
PROGRESS REPORT: COFIRING PROJECTS FOR WILLOW ISLAND AND ALBRIGHT GENERATING STATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Payette; D. Tillman
During the period April 1, 2001--June 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) accelerated construction of the Willow Island cofiring project, completed the installation of foundations for the fuel storage facility, the fuel receiving facility, and the processing building. Allegheny received all processing equipment to be installed at Willow Island. Allegheny completed the combustion modeling for the Willow Island project. During this time period construction of the Albright Generating Station cofiring facility was completed, with few items left for final action. The facility was dedicated at a ceremony on June 29. Initial testing of cofiring at the facility commenced.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less
Tailored Granular Activated Carbon Treatment of Perchlorate in Drinking Water
2010-10-01
Science NCP National Contingency Plan NDEA N-nitrosodiethylamine NDMA N-nitrosodimethylamine NDPA N-Nitrosodi-n-propylamine NFESC Naval Facilities...nitrosodimethylamine [ NDMA ], N-nitrosodiethylamine [NDEA], and N-nitrosodi-n-propylamine [NDPA]) by EPA method 521 5.5.6 Demobilization Spent TGAC and...and monthly Influent Bed 1 and Effluent Bed 2. AFIT Conductivity 120.1 Once weekly at Influent Bed 1 and Effluent Bed 2. Weck Laboratories NDMA
An audit of the use of isolation facilities in a UK National Health Service trust.
Damji, S; Barlow, G D; Patterson, L; Nathwani, D
2005-07-01
To aid the ongoing battle against hospital-acquired infection in the UK, all acute National Health Service (NHS) trusts should have audit data about how dedicated isolation beds within the trust are being used. In a previously published audit, we demonstrated that one-third of patients admitted to a dedicated isolation room in Tayside were not thought to be an infection risk by experienced healthcare staff. Since this audit, Tayside's isolation facilities have moved from a small peripheral 'fever' hospital to a large central teaching hospital site. At the time of this move, and using the above audit data, we designed and implemented a guideline for general practitioners and hospital doctors regarding the admission of patients to an isolation bed. The aim of this study was to compare the use of isolation beds before and after the move to the new facilities, which we anticipated would increase the demand for isolation. The results show that by all three criteria used, the utilization of isolation beds has deteriorated following the move, mainly due to the increased admission of general medical 'boarders' and low-risk infection patients. At a time when hospital-acquired infections are increasing, NHS trusts should ensure that dedicated isolation beds are used appropriately.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-05-28
Solid-state synthesis ensures a high loading and well-dispersed growth of a large collection of metal-organic framework (MOF) nanostructures within a series of commercially available mesoporous silica. This approach provides a general, highly efficient, scalable, environmentally friendly, and inexpensive strategy for shaping MOFs into a fluidized form, thereby allowing their application in fluidized-bed reactors for diverse applications, such as CO 2 capture from post-combustion flue gas. A collection of polyamine-impregnated MOF/SiO 2 hybrid sorbents were evaluated for CO 2 capture under simulated flue gas conditions in a packed-bed reactor. Hybrid sorbents containing a moderate loading of (Zn)ZIF-8 are the most promising sorbents in terms of CO 2 adsorption capacity and long-term stability (up to 250 cycles in the presence of contaminants: SO 2 , NO x and H 2 S) and were successfully prepared at the kilogram scale. These hybrid sorbents demonstrated excellent fluidizability and performance under the relevant process conditions in a visual fluidized-bed reactor. Moreover, a biochemically inspired strategy for covalently linking polyamines to MOF/SiO 2 through strong phosphine bonds has been first introduced in this work as a powerful and highly versatile post-synthesis modification for MOF chemistry, thus providing a novel alternative towards more stable CO 2 solid sorbents.
Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, Douglas; Bayham, Samuel; Weber, Justin
The proposed Clean Power Plan requires CO 2 emission reductions of 30% by 2030 and further reductions are targeted by 2050. The current strategies to achieve the 30% reduction targets do not include options for coal. However, the 2016 Annual Energy Outlook suggests that coal will continue to provide more electricity than renewable sources for many regions of the country in 2035. Therefore, cost effective options to reduce greenhouse gas emissions from fossil fuel power plants are vital in order to achieve greenhouse gas reduction targets beyond 2030. As part of the U.S. Department of Energy’s Advanced Combustion Program, themore » National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO 2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metal-oxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections. The solid material that is used to transport oxygen is called an oxygen carrier material. The cost, durability, and performance of this material is a key issue for the CLC technology. Researchers at the NETL R&IC have developed an oxygen carrier material that consists of copper, iron, and alumina. This material has been tested extensively using lab scale instruments such as thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mechanical attrition (ASTM D5757), and small fluidized bed reactor tests. This report will describe the results from a realistic, circulating, proof-of-concept test that was completed using NETL’s 50kW th circulating Chemical Looping Reactor (CLR) test facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krish Krishnamurthy; Divy Acharya; Frank Fitch
In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream inmore » a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.« less
Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS
NASA Technical Reports Server (NTRS)
Motil, Brian; Urban, David
2012-01-01
From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.
... Administration’s (FDA) Center for Devices and Radiological Health (CDRH). "They are used not only in hospitals, but ... long-term care facilities, and in private homes." CDRH reports that about 2.5 million hospital beds ...
NASA Astrophysics Data System (ADS)
Myhre, C. A.
2002-01-01
The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with using liquid combustibles on Earth and in space. As a result of the concurrent design process of MDCA and CIR, the MDCA team continues to work closely with the CIR team, developing Integration Agreements and an Interface Control Document during preliminary integration activities. Integrated testing of hardware and software systems will occur at the Engineering Model and Flight Model phases. Because the engineering model is a high fidelity unit, it will be upgraded to a flight equivalent Ground Integration Unit (GIU) when the engineering model phase is completed. The GIU will be available on the ground for troubleshooting of any on-orbit problems. Integrated verification testing will be conducted with the MDCA flight unit and the CIR flight unit. Upon successful testing, the MDCA will be shipped to the Kennedy Space Center for a post-shipment checkout and final turn-over to CIR for final processing and launch to the International Space Station. Once on-orbit, the MDCA is managed from the GRC Telescience Support Center (TSC). The MDCA operations team resides at the TSC. Data is transmitted to the PI's at their home sites by means of TREK workstations, allowing direct interaction between the PI and operations staff to maximum science. Upon completion of a PI's experiment, the MDCA is reconfigured for the next of the three follow-on experiments or ultimately removed from the CIR, placed into stowage, and returned to Earth.
2013-01-01
flight vehicle . Many facilities are not large enough to perform free-jet testing of scramjet engines which include an inlet. Rather, testing is often...AFRL-RQ-WP-TR-2013-0029 TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow...TITLE AND SUBTITLE TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions 5a
USAF Aircraft Engine Emission Goals: A Critical Review.
1979-09-01
21 June 1965 and Change 1; and the National Pollution Discharge Elimination System . it applies to all Air Force installations and facilities, the Air...the combustion problems in turbine engines from a more applied viewpoint. He states: "While the combustion system was the primary limitation in... microemulsions and to determine their capacity for reducing smoke emissions from an aviation gas turbine combustion system . (2) A secondary objective is
Risk analysis of a biomass combustion process using MOSAR and FMEA methods.
Thivel, P-X; Bultel, Y; Delpech, F
2008-02-28
Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADS-MOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of SeverityxProbability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode.
Implementation of a Water Flow Control System into the ISS'S Planned Fluids & Combustion Facility
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2003-01-01
The Fluids and Combustion Facility (FCF) will become an ISS facility capable of performing basic combustion and fluids research. The facility consists of two independent payload racks specifically configured to support multiple experiments over the life of the ISS. Both racks will depend upon the ISS's Moderate Temperature Loop (MTL) for removing waste heat generated by the avionics and experiments operating within the racks. By using the MTL, constraints are imposed by the ISS vehicle on how the coolant resource is used. On the other hand, the FCF depends upon effective thermal control for maximizing life of the hardware and for supplying proper boundary conditions for the experiments. In the implementation of a design solution, significant factors in the selection of the hardware included ability to measure and control relatively low flow rates, ability to throttle flow within the time constraints of the ISS MTL, conserve energy usage, observe low mass and small volume requirements. An additional factor in the final design solution selection was considering how the system would respond to a loss of power event. This paper describes the method selected to satisfy the FCF design requirements while maintaining the constraints applied by the ISS vehicle.
International Space Station -- Combustion Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
International Space Station - Combustion Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown opened for installation of burn specimens. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
International Space Station -- Combustion Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
Hower, J.C.; Ruppert, L.F.; Williams, D.A.
2002-01-01
The Duckmantian-aged Amos coal bed is a thin (<51 cm) coal bed that occurs in lobate southwest-trending pods separated by thin sandstones in the Western Kentucky coalfield. The coal bed, which is comprised of up to two benches and a rider coal, is low in ash yield (<6%) and sulfur content (<1%). The coal tends to be thin (<40 cm), but it was heavily mined in the 1980s because it could be combusted as mined. Geochemical analysis of the Amos coal bed shows higher concentrations of B and Ge than other Western Kentucky coal beds. High total B concentrations as well as high B/Be, both considered to be indicators of marine environments, increase toward the top of the coal bed. Most of the B values for the Amos samples range from 66 to 103 ppm (whole coal basis) indicating deposition in a brackish environment. High Ge concentrations in coals have been considered to be a function of seam thickness and proximity to the top and bottom of the coal bed. Thin coals, such as the Amos, are dominated by the coal bed margins and, therefore, have a tendency to have relatively high Ge concentrations. In the case of the Amos coal bed, the lower bench has a higher Ge content, suggesting that the substrate was a more important source of Ge than the roof rock. ?? 2002 Elsevier Science B.V. All rights reserved.
40 CFR 240.200-2 - Recommended procedures: Design.
Code of Federal Regulations, 2014 CFR
2014-07-01
... processing. These include: Certain bulky wastes (e.g., combustible demolition and construction debris, tree... treatment facilities, raw sewage sludges, and septic tank pumpings. (b) If the facility is designed to...
40 CFR 240.200-2 - Recommended procedures: Design.
Code of Federal Regulations, 2012 CFR
2012-07-01
... processing. These include: Certain bulky wastes (e.g., combustible demolition and construction debris, tree... treatment facilities, raw sewage sludges, and septic tank pumpings. (b) If the facility is designed to...
Microlith Based Sorber for Removal of Environmental Contaminants
NASA Technical Reports Server (NTRS)
Roychoudhury, S.; Perry, J.
2004-01-01
The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI); thesemeshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated. Thus, the need for a separate trace contaminant unit is eliminated resulting in an opportunity for significant weight savings. Unlike the charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration. This paper describes the design and performance of a prototype sorber device for simultaneous CO2 and trace contarninant removal and its attendant weight and energy savings.
Evaluation of selected chemical processes for production of low-cost silicon, phases 1 and 2
NASA Technical Reports Server (NTRS)
Blocher, J. M.; Browning, M. F.
1978-01-01
A miniplant, consisting of a 5 cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency. Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl2 by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility. In view of the favorable technical and economic indications obtained, it was recommended that construction and operation of the 50 MT/year experimental facility be implemented.
Health effects of coal technologies: research needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidizedmore » bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.« less
Gas stream clean-up filter and method for forming same
Mei, Joseph S.; DeVault, James; Halow, John S.
1993-01-01
A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...
Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS
NASA Technical Reports Server (NTRS)
Motil, Brian; Urban, David
2012-01-01
From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in multiphase flows, capillary phenomena, and heat pipes. Finally in complex fluids, experiments in rheology and soft condensed materials will be presented.
Combustion experiments in a laboratory-scale fixed bed reactor were performed to determine the role of temperature and time in PCDD/F formation allowing a global kinetic expression to be written for PCDD/F formation due to soot oxidation in fly ash deposits. Rate constants were c...
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... complying with § 63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall... § 63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor...
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... complying with § 63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall... § 63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor...
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... with § 63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall either... § 63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor...
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... complying with § 63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall... § 63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Hui; Li Qin; Shen Lifeng
2010-01-15
In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solutionmore » as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.« less
Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi
2018-01-01
This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055
76 FR 69728 - SFIREG Full Committee; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... holidays. The Docket Facility telephone number is (703) 305-5805. II. Tentative Agenda Topics 1. Bed Bug IP... update. 15. Bed bug efforts update. 16. Regional issues. 17. Status of Worker Protection Standard...
NASA Astrophysics Data System (ADS)
Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui
2018-03-01
Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, O.L.
A first-principles model of a nominal 20-MW atmospheric-pressure fluidized-bed coal combustion (AFBC) power plant was developed to provide insight into fundamental dynamic behavior of fluidized-bed systems. The control system included major loops for firing rate, steam pressure and temperature, forced and induced draft air flow, SO/sub 2/ emission, drum water level, evaporator recirculation, and bed level. The model was used to investigate system sensitivity to design features such as the distribution of heat transfer surface among the bed boiler and superheater and the out-of-bed superheater. Also calculated were the sensitivities of temperatures, pressures, and flow rates to changes in throttle,more » attemperator, and feedwater valve settings and forced and induced draft damper settings. The large bed mass, accounting for approx.40% of the active heat capacity, may vary under load change and could impact controller tuning. Model analysis indicated, however, that for the design studied, the change in bed mass does not appear to significantly affect controller tuning even if the bed mass varies appreciably under load-following conditions. Several bed designs are being considered for AFBC plants, some with partitions between bed sections and some without, and these differences may significantly affect the load-following capability of the plant. The results indicated that the slumping mode of operation can cause distortion of the heat source/sink distribution in the bed such that the load-following capability (rate of load change) of the plant may be reduced by as much as a factor of 5 compared with the mode in which tube surface is exposed. 9 refs., 13 figs., 6 tabs.« less
Thermo-chemical modelling of a village cookstove for design improvement
NASA Astrophysics Data System (ADS)
Honkalaskar, Vijay H.; Sohoni, Milind; Bhandarkar, Upendra V.
2014-05-01
Cookstove operation comprises three basic processes, namely combustion of firewood, natural air draft due to the buoyancy induced by the temperature difference between the hearth and its surroundings, and heat transfer to the pot, stove body and surrounding atmosphere. Owing to the heterogenous and unsteady burning of solid fuel, there exist nonlinear and dynamic interrelationships among these process parameters. A steady-state analytical model of the cookstove operation is developed for its design improvement by splitting the hearth into three zones to study char combustion, volatile combustion and heat transfer to the pot bottom separately. It comprises a total of seven relations corresponding to a thorough analysis of the three basic processes. A novel method is proposed to model the combustion of wood to mimic the realities closely. Combustion space above the fuel bed is split into 1000 discrete parts to study the combustion of volatiles by considering a set of representative volatile gases. Model results are validated by comparing them with a set of water boiling tests carried on a traditional cookstove in the laboratory. It is found that the major thrust areas to improve the thermal performance are combustion of volatiles and the heat transfer to the pot. It is revealed that the existing design dimensions of the traditional cookstove are close to their optimal values. Addition of twisted-tape inserts in the hearth of the cookstove shows an improvement in the thermal performance due to increase in the heat transfer coefficient to the pot bottom and improved combustion of volatiles.
Sandia and General Motors: Advancing Clean Combustion Engines with
Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooldridge, Margaret
Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecularmore » structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.« less
Combustion of bark and wood waste in the fluidized bed boiler
NASA Astrophysics Data System (ADS)
Pleshanov, K. A.; Ionkin, I. L.; Roslyakov, P. V.; Maslov, R. S.; Ragutkin, A. V.; Kondrat'eva, O. E.
2016-11-01
In the Energy Development Strategy of Russia for the Period until 2035, special attention is paid to increased use of local fuel kinds—one of which is biofuel, in particular, bark and wood waste (BWW)— whose application at thermal power plants in Russia has been not developed due to the lack of appropriate technologies mastered by domestic energy mechanical engineering. The article describes the experience of BWW combustion in fluidized bed boilers installed on the energy objects of northern European countries. Based on this, reference points were defined (it is the section of boiler air-gas path where initially the approximate temperatures are set), making it possible to carry out a thermal design of a boiler and ensure its operation reliability. Permissible gas temperature at the furnace outlet at BWW combustion amounted to 950-1000°C. Exit gas temperature, depending on the implementation of special measures on protection of air heater from corrosion, amounted to 140-190°C. Recommended hot air temperature is within the range of 200-250°C. Recommendations for determining the boiler furnace dimensions are presented. Based on the presented reference temperatures in the main reference points, the thermal design of hot water boiler of KV-F-116-150 type with 116 MW capacity was carried out. The analysis of the results and comparison of designed boiler characteristics with operating energy boilers, in which a fuel is burned in a fluidized bed, were carried out. It is shown that, with increasing the boiler capacity, the ratio of its heating power Q to the crosssectional area of furnace chamber F rises. For power-generating boiler of thermal capacity of 100 MW, the ratio is within 1.8-2.2MW/m2. The boiler efficiency exceeds 90% in the range of changes of exit gas temperature typical for such equipment.
NASA Astrophysics Data System (ADS)
Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.
2018-04-01
Analysis of existing technologies for preparing foundation beds of oil and gas buildings and structures has revealed the lack of reasoned recommendations on the selection of rational technical and technological parameters of compaction. To study the nature of the dynamics of fast processes during compaction of foundation beds of oil and gas facilities, a specialized software and hardware system was developed. The method of calculating the basic technical parameters of the equipment for recording fast processes is presented, as well as the algorithm for processing the experimental data. The performed preliminary studies confirmed the accuracy of the decisions made and the calculations performed.
Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion
Shen, Ming-Shing; Yang, Ralph T.
1980-01-01
Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.
High-temperature catalyst for catalytic combustion and decomposition
NASA Technical Reports Server (NTRS)
Mays, Jeffrey A. (Inventor); Lohner, Kevin A. (Inventor); Sevener, Kathleen M. (Inventor); Jensen, Jeff J. (Inventor)
2005-01-01
A robust, high temperature mixed metal oxide catalyst for propellant composition, including high concentration hydrogen peroxide, and catalytic combustion, including methane air mixtures. The uses include target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The catalyst system requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. Start-up transients of less than 1 second have been demonstrated with catalyst bed and propellant temperatures as low as 50 degrees Fahrenheit. The catalyst system has consistently demonstrated high decomposition effeciency, extremely low decomposition roughness, and long operating life on multiple test particles.
Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipiti, Benjamin B.; Shoman, Nathan
The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less
Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control
NASA Technical Reports Server (NTRS)
1974-01-01
Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.
Marquez-Bravo, Lydia G; Briggs, Dean; Shayler, Hannah; McBride, Murray; Lopp, Donna; Stone, Edie; Ferenz, Gretchen; Bogdan, Kenneth G; Mitchell, Rebecca G; Spliethoff, Henry M
2016-02-01
A total of 69 soil samples from 20 community gardens in New York City (New York, USA) were collected and analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) and black carbon. For each garden, samples were collected from nongrowing areas (non-bed) and from vegetable-growing beds, including beds with and without visible sources of PAHs. The sum of the US Environmental Protection Agency's 16 priority PAHs ranged up to 150 mg/kg, and the median (5.4 mg/kg) and mean (14.2 mg/kg) were similar to those previously reported for urban areas in the northeast United States. Isomer ratios indicated that the main sources of PAHs were petroleum, coal, and wood combustion. The PAH concentrations were significantly and positively associated with black carbon and with modeled air PAH concentrations, suggesting a consistent relationship between historical deposition of atmospheric carbon-adsorbed PAHs and current PAH soil concentrations. Median PAH soil concentration from non-bed areas was higher (7.4 mg/kg) than median concentration from beds in the same garden (4.0 mg/kg), and significantly higher than the median from beds without visible sources of PAHs (3.5 mg/kg). Median PAH concentration in beds from gardens with records of soil amendments was 58% lower compared with beds from gardens without those records. These results suggest that gardening practices in garden beds without visible sources of PAHs contribute to reduce PAH soil concentrations. © 2015 SETAC.
Experimental Investigation and Aspen Plus Simulation of the MSW Pyrolysis Process
NASA Astrophysics Data System (ADS)
Ansah, Emmanuel
Municipal solid waste (MSW) is a potential feedstock for producing transportation fuels because it is readily available using an existing collection/transportation infrastructure and fees are provided by the suppliers or government agencies to treat MSW. North Carolina with a population of 9.4 millions generates 3.629 million metric tons of MSW each year, which contains about 113,396,356 TJs of energy. The average moisture content of MSW samples is 44.3% on a wet basis. About 77% of the dry MSW mass is combustible components including paper, organics, textile and plastics. The average heating values of MSW were 9.7, 17.5, and 22.7 MJ/kg on a wet basis, dry basis and dry combustible basis, respectively. The MSW generated in North Carolina can produce 7.619 million barrels of crude bio-oil or around 4% of total petroleum consumption in North Carolina. MSW can be thermally pyrolyzed into bio-oil in the absence of oxygen or air at a temperature of 500°C or above. As bio-oil can be easily stored and transported, compared to bulky MSW, landfill gas and electricity, pyrolysis offers significant logistical and economic advantages over landfilling and other thermal conversion processes such as combustion and gasification. Crude bio-oils produced from the pyrolysis of MSW can be further refined to transportation fuels in existing petroleum refinery facilities. The objective of this research is to analyze the technical and economic feasibility of pyrolyzing MSW into liquid transportation fuels. A combined thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC) instrument, which can serve as a micro-scale pyrolysis reactor, was used to simultaneously determine the degradation characteristics of MSW during pyrolysis. An ASPEN Plus-based mathematical model was further developed to analyze the technical and economic feasibility of pyrolysing of MSW into liquid transportation fuels in fixed bed reactors at varying operating conditions
30 CFR 56.4430 - Storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...
30 CFR 56.4430 - Storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...