Science.gov

Sample records for bed htgr cores

  1. 3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D

    SciTech Connect

    Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.

    2012-07-01

    As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)

  2. Safety research on iodine plateout during postulated HTGR core heatup events

    SciTech Connect

    Barsell, A.W.; Chawla, O.P.; Hoot, C.G.

    1980-11-01

    In support of probabilistic risk assessment (PRA) studies on the high-temperature gas-cooled reactor (HTGR), an experimental program was conducted for iodine plateout on HTGR primary circuit metals during core heatup conditions. Metal iodine formation and adsorption characteristics were measured primarily for mild steel and to a limited extent for Incoloy 800 and other alloys. Pseudoisopiestic tests indicated quantitative formation of less volatile and water soluble iodides, FeI/sub 2/ or CrI/sub 2/, during core heatup conditions. The rate of formation of FeI/sub 2/ was limited by mass transfer at temperatures above 570/sup 0/K and was proportional to the partial pressure of iodine. The rate of iodide formation on chrome-nickel alloys appeared to be temperature sensitive, indicating slower reaction kinetics. The iodides preferentially plated out on surfaces at 520 to 620/sup 0/K. Plateout tests were also performed for FeI/sub 2/ in helium carrier gas flowing over mild steel or quartz surfaces over which a temperature gradient was maintained. PADLOC computer program correlations of the plateout profile based on the FeI/sub 2/ vapor pressure assumed in the PRA studies were in fair agreement. The temperature at which most of the plateout occurred was from 620 to 700/sup 0/K, depending on the partial pressure of the FeI/sub 2/ tested.

  3. An effective thermal-hydraulics methodology for prismatic core HTGR and VHTR

    SciTech Connect

    Travis, B. W.; El-Genk, M. S.

    2012-07-01

    Optimizing the performance and design of a prismatic core HTGR or VHTR requires a full core thermal-hydraulics analysis. Owing to the complexity and massive core structure, such analysis requires extensive and massively parallelized computation capabilities and a relatively long time (weeks to months) to complete. These demanding requirements are not due to the 3-D simulation of heat conduction in the annular core of the reactor, but rather the 3-D computational fluid dynamics (CFD) simulation of the helium gas flow in the 10-m long cooling channels in the 102 hexagonal fuel elements and the axial graphite reflector blocks in the core. This paper applies and examines the effectiveness of using a 1-D simulation of the helium flow in the core coolant channels, coupled to a 3-D simulation of the heat conduction in the graphite and fuel compacts, to perform thermal-hydraulics analysis of a hexagonal fuel element and of a 1/6 full core. This methodology employs typical cosine and constant axial power profiles and an applicable convective heat transfer correlation for the helium flow in the coolant channels. The correlation has recently been validated for a 10 m tall, single channel fuel module and shown to significantly reduce the computation time and memory requirements without compromising the accuracy of the calculations. The fidelity and accuracy of the present results for a hexagonal fuel element are verified by comparing them to those of a full 3-D numerical analysis. In addition to the temperature fields, results compare the computation time and number of numerical grid elements for implementing the two numerical simulation methods. The results of the thermal-hydraulics analysis of a 1/6 full core with the simplified methodology are also presented. All performed analysis accounts for the temperature dependent properties of helium, graphite in the reactor core and reflector blocks and the TRISO particle fuel compacts. (authors)

  4. Thermal hydraulic method for whole core design analysis of an HTGR

    SciTech Connect

    Huning, A. J.; Garimella, S.

    2013-07-01

    A new thermal hydraulic method and initial results are presented for core-wide steady state analysis of prismatic High Temperature Gas-Cooled Reactors (HTGR). The method allows for the complete solution of temperature and coolant mass flow distribution by solving quasi-steady energy balances for the discretized core. Assembly blocks are discretized into unit cells for which the average temperature of each unit cell is determined. Convective heat removal is coupled to the unit cell energy balances by a 1-D axial flow model. The flow model uses established correlations for friction factor and Nusselt number. Bypass flow is explicitly calculated by using an initial guess for mass flow distribution and determining the exit pressure of each flow channel. The mass flow distribution is updated until a uniform core exit pressure condition is reached. Results are obtained for the MHTGR-350 with emphasis on the change in thermal hydraulic parameters due to various steady state power profiles and bypass gap widths. Steady state temperature distribution and its variations are discussed. (authors)

  5. Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event

    DOE PAGESBeta

    Strydom, Gerhard

    2013-01-01

    The Very High Temperature Reactor Methods Development group at the Idaho National Laboratory identified the need for a defensible and systematic uncertainty and sensitivity approach in 2009. This paper summarizes the results of an uncertainty and sensitivity quantification investigation performed with the SUSA code, utilizing the International Atomic Energy Agency CRP 5 Pebble Bed Modular Reactor benchmark and the INL code suite PEBBED-THERMIX. Eight model input parameters were selected for inclusion in this study, and after the input parameters variations and probability density functions were specified, a total of 800 steady state and depressurized loss of forced cooling (DLOFC) transientmore » PEBBED-THERMIX calculations were performed. The six data sets were statistically analyzed to determine the 5% and 95% DLOFC peak fuel temperature tolerance intervals with 95% confidence levels. It was found that the uncertainties in the decay heat and graphite thermal conductivities were the most significant contributors to the propagated DLOFC peak fuel temperature uncertainty. No significant differences were observed between the results of Simple Random Sampling (SRS) or Latin Hypercube Sampling (LHS) data sets, and use of uniform or normal input parameter distributions also did not lead to any significant differences between these data sets.« less

  6. HTGR Fuel performance basis

    SciTech Connect

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  7. Core Optimization of a Deep-Burn Pebble Bed Reactor

    SciTech Connect

    Brian Boer; Abderrafi M. Ougouag

    2010-06-01

    Achieving a high fuel burnup in the Deep-Burn (DB) pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum as compared to a ’standard’ UO2 fueled core. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. The DB concept focuses on the destruction of spent fuel transuranics in TRISO coated particle fueled gas-cooled reactors with the aim of a fractional fuel burnup of 60-70% in fissions per initial metal atom (FIMA), using a single-pass, multi in-core fuel (re)cycling scheme. In principle, the DB pebble bed concept employs the same reactor designs as the present low enriched uranium core designs, i.e. the 400 MWth Pebble Bed Modular Reactor (PBMR-400). A Pu and Minor Actinide fueled PBMR-400 design serves as the starting point for a core optimization study. The fuel temperature, power peak, temperature reactivity coefficients, and burnup capabilities of the modified designs are analyzed with the PEBBED code. A code-to-code coupling with the PASTA code allows for the analysis of the TRISO fuel performance for both normal and Loss Of Forced Cooling conditions. An improved core design is sought, maximizing the fuel discharge burnup, while retaining negative temperature reactivity feedback coefficients for the entire temperature range and avoiding high fuel temperatures (fuel failure probabilities).

  8. Automated Design and Optimization of Pebble-bed Reactor Cores

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2010-07-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  9. HTGR generic technology program plan (FY 80)

    SciTech Connect

    Not Available

    1980-01-01

    Purpose of the program is to develop base technology and to perform design and development common to the HTGR Steam Cycle, Gas Turbine, and Process Heat Plants. The generic technology program breaks into the base technology, generic component, pebble-bed study, technology transfer, and fresh fuel programs. (DLC)

  10. HTGR severe accident sequence analysis

    SciTech Connect

    Harrington, R.M.; Ball, S.J.; Kornegay, F.C.

    1982-01-01

    Thermal-hydraulic, fission product transport, and atmospheric dispersion calculations are presented for hypothetical severe accident release paths at the Fort St. Vrain (FSV) high temperature gas cooled reactor (HTGR). Off-site radiation exposures are calculated for assumed release of 100% of the 24 hour post-shutdown core xenon and krypton inventory and 5.5% of the iodine inventory. The results show conditions under which dose avoidance measures would be desirable and demonstrate the importance of specific release characteristics such as effective release height. 7 tables.

  11. HTGR Fuel Technology Program. Semiannual report for the period ending March 31, 1983

    SciTech Connect

    Not Available

    1983-07-01

    This document reports the technical accomplishments of the HTGR Fuel Technology Program at GA Technologies Inc. during the first half of FY 83. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, core component verification, and core technology transfer tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR.

  12. Safety and licensing analyses for the Fort St. Vrain HTGR

    SciTech Connect

    Ball, S.J.; Conklin, J.C.; Harrington, R.M.; Cleveland, J.C.; Clapp, N.E. Jr.

    1982-01-01

    The ORNL safety analysis program for the HTGR includes development and verification of system response simulation codes, and applications of these codes to specific Fort St. Vrain reactor licensing problems. Licensing studies addressed the oscillation problems and the concerns about large thermal stresses in the core support blocks during a postulated accident. Other work includes proposed experiment planning, TMI action plan applicability studies, and a new siting study on the 2240 MW(th) HTGR design.

  13. HTGR fuel element structural design considerations

    SciTech Connect

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development.

  14. Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012

    USGS Publications Warehouse

    Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.

  15. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    SciTech Connect

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  16. HTGR-process steam/cogeneration and HTGR-steam cycle program. Semiannual report, October 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-09-01

    Progress in the design of an 1170-MW(t) High-Temperature Gas-Cooled Reactor (HTGR) Nuclear Steam Supply (NSS) is described. This NSS can integrate favorably into present petrochemical and primary metal process industries, heavy oil recovery operations, and future shale oil recovery and synfuel processes. The economics appear especially attractive in comparison with alternative coal-fired steam generation. Cost estimates for central station power-generating 2240- and 3360-MW(t) HTGR-Steam Cycle (HTGR-SC) plants are updated. The 2240-MW(t) HTGR-SC is treated to a probabilistic risk evaluation. Compared with the earlier 3000-MW(t) design, the results predict a slightly increased risk of core heatup, owing to the result of eliminating the capability of the boiler feed pump to operate at atmospheric backpressure. The differences in risk, however, are within the calculational uncertainties. Preliminary results of the ranking of safety enhancement features for the 1170-MW(t) HTGR indicate that the following modifications offer the most promise: (1) capability for main loop rundown, (2) natural circulation core auxiliary cooling, and (3) PCRV blowdown capability through the helium purification system to minimize activity release during some core heatups.

  17. The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses

    NASA Astrophysics Data System (ADS)

    Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart

    2012-01-01

    This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.

  18. HTGR-GT and electrical load integrated control

    SciTech Connect

    Chan, T.; Openshaw, F.; Pfremmer, D.

    1980-05-01

    A discussion of the control and operation of the HTGR-GT power plant is presented in terms of its closely coupled electrical load and core cooling functions. The system and its controls are briefly described and comparisons are made with more conventional plants. The results of analyses of selected transients are presented to illustrate the operation and control of the HTGR-GT. The events presented were specifically chosen to show the controllability of the plant and to highlight some of the unique characteristics inherent in this multiloop closed-cycle plant.

  19. HTGR Cost Model Users' Manual

    SciTech Connect

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  20. Summary of foreign HTGR programs

    SciTech Connect

    Not Available

    1980-06-01

    This report contains pertinent information on the status, objectives, budgets, major projects and facilities, as well as user, industrial and governmental organizations involved in major foreign gas-cooled thermal reactor programs. This is the second issue of this document (the first was issued in March 1979). The format has been revised to consolidate material according to country. These sections are followed by the foreign HTGR program index which serves as a quick reference to some of the many acronyms associated with the foreign HTGR programs.

  1. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  2. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  3. HTGR nuclear heat source component design and experience

    SciTech Connect

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included.

  4. HTGR applications program advanced systems. Semiannual report, October 1, 1982-March 31, 1983

    SciTech Connect

    1983-05-01

    Work Breakdown Structure (WBS 41) activities emphasize the advanced HTGR modular reactor system (MRS) for reformer (R) and steam cycle/-cogeneration (SC/C) applications. This report describes progress in system performance for a 250-MW(t) MRS-R and a 300-MW(t) MRS-SC/C plant; it details the groundrules and parameters for the FY-83 nuclear core design and examines and compares fuel cycle economics. This report gives results from a study on decay heat removal transients for the MRS-R and MRS-SC/C variants. It evaluates the bypass valve system and the number and location of helium circulators, and it describes the progress on circulator component design, a prestressed concrete vessel steel closure design, and plant licensing and safety. Under the Advanced Technology Transfer Task (WBS 15), this report includes a section on a pebble bed reactor (PBR) MRS core heatup thermal model analysis. This report also gives the results of a survey on candidate reformer tube materials from GA Technologies Inc. to identify acceptable substitute materials for Inconel 617 to alleviate possible cobalt activation and carburization problems.

  5. HTGR Application Economic Model Users' Manual

    SciTech Connect

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  6. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  7. HTGR Fuel Technology Program. Semiannual report for the period ending March 31, 1981

    SciTech Connect

    Not Available

    1981-05-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at General Atomic during the first half of FY-81. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was initiated during this period was the preparation of input data for a long-range technology program plan.

  8. The paleoclimatic and geochronologic utility of coring red beds and evaporites: a case study from the RKB core (Permian, Kansas, USA)

    NASA Astrophysics Data System (ADS)

    Soreghan, Gerilyn S.; Benison, Kathleen C.; Foster, Tyler M.; Zambito, Jay; Soreghan, Michael J.

    2015-09-01

    Drill core is critical for robust and high-resolution reconstructions of Earth's climate record, as well demonstrated from both marine successions and modern long-lived lake systems. Deep-time climate reconstructions increasingly require core-based data, but some facies, notably red beds and evaporites, have garnered less attention for both paleoclimatic and geochronologic analyses. Here, we highlight studies from the Rebecca K. Bounds (RKB) core, a nearly continuous, >1.6 km drill core extending from the Cretaceous to the Mississippian, recovered from the US Midcontinent by Amoco Production Company in 1988, and serendipitously made available for academic research. Recent research conducted on this core illustrates the potential to recover high-resolution data for geochronologic and climatic reconstructions from both the fine-grained red bed strata, which largely represent paleo-loess deposits, and associated evaporite strata. In this case, availability of core was instrumental for (1) accessing a continuous vertical section that establishes unambiguous superposition key to both magnetostratigraphic and paleoclimatic analyses, and (2) providing pristine sample material from friable, soluble, and/or lithofacies and mineralogical species otherwise poorly preserved in surface exposures. The potential for high-resolution paleoclimatic reconstruction from coring of deep-time loess strata in particular remains severely underutilized.

  9. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  10. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    SciTech Connect

    Holcomb, D.J.; Zeuch, D.H.; Morin, K.; Hardy, R.; Tormey, T.V.

    1995-09-01

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0{degree}, {plus_minus}45{degrees} relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole.

  11. Investigating phosphorus interactions with bed sediments in a fluvial environment using a recirculating flume and intact soil cores.

    PubMed

    Barlow, Kirsten; Nash, David; Grayson, Rodger

    2004-01-01

    Phosphorus uptake by bed sediments in surface drains can reduce phosphorus exports from irrigated land. This paper reports on an investigation into the effects of velocity and water depth on phosphorus uptake by bed sediments, which consisted of eight sequential flow events conducted in a recirculating flume as well as a concurrent experiment using sediment cores. For the heavy clay bed sediment discussed in this paper, velocity and depth of water column had no significant effect on net phosphorus uptake and the rates of phosphorus uptake in either the cores or the recirculating flume. The most significant factor affecting phosphorus uptake was the experiment number which represented the sequential nature of experiments within the flume and increasing phosphorus saturation of the surface sediments. Of the kinetic equations used to describe phosphorus uptake (Elovich, boundary layer and diffusion) the Elovich equation provided the best representation of the results, both in terms of the adj-R2 values and the absence of systematic errors in the residuals. Results suggest that intact soil cores may be used to parameterise rate equations such as the Elovich equation for use in process-based mathematical models of phosphorus transport in fluvial systems.

  12. Modular HTGR Safety Basis and Approach

    SciTech Connect

    Thomas Hicks

    2011-08-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) capable of producing electricity and/or high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) process, as recommended in the NGNP Licensing Strategy - A Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy [DOE/NRC 2008]. Nuclear Regulatory Commission (NRC) licensing of the NGNP plant utilizing this process will demonstrate the efficacy for licensing future HTGRs for commercial industrial applications. This information paper is one in a series of submittals that address key generic issues of the priority licensing topics as part of the process for establishing HTGR regulatory requirements. This information paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach with the NRC staff and public stakeholders. The NGNP project does not expect to receive comments on this information paper because other white papers are addressing key generic issues of the priority licensing topics in greater detail.

  13. Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: Integrating hydrologic and biological processes using sediment perfusion cores

    USGS Publications Warehouse

    Sheibley, R.W.; Duff, J.H.; Jackman, A.P.; Triska, F.J.

    2003-01-01

    Inorganic N transformations were examined in streambed sediments from the Shingobee River using sediment perfusion cores. The experimental design simulated groundwater-stream water mixing within sediment cores, which provided a well-defined one-dimensional representation of in situ hydrologic conditions. Two distinct hydrologic and chemical settings were preserved in the sediment cores: the lowermost sediments, perfused with groundwater, remained anaerobic during the incubations, whereas the uppermost sediments, perfused with oxic water pumped from the overlying water column, simulated stream water penetration into the bed. The maintenance of oxic and anoxic zones formed a biologically active aerobic-anaerobic interface. Ammonium (NH4+) dissolved in groundwater was transported conservatively through the lower core zone but was removed as it mixed with aerated recycle water. Concurrently, a small quantity of nitrate (NO3-) equaling ???25% of the NH4+ loss was produced in the upper sediments. The NH4+ and NO3- profiles in the uppermost sediments resulted from coupled nitrification-denitrification, because assimilation and sorption were negligible. We hypothesize that anaerobic microsites within the aerated upper sediments supported denitrification. Rates of nitrification and denitrification in the perfusion cores ranged 42-209 and 53-160 mg N m-2 day-1, respectively. The use of modified perfusion cores permitted the identification and quantification of N transformations and verified process control by surface water exchange into the shallow hyporheic zone of the Shingobee River.

  14. HTGR generic technology program. Semiannual report ending March 31, 1980

    SciTech Connect

    Not Available

    1980-05-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants.

  15. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  16. Fission-product retention in HTGR fuels

    SciTech Connect

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  17. HTGR Mechanistic Source Terms White Paper

    SciTech Connect

    Wayne Moe

    2010-07-01

    The primary purposes of this white paper are: (1) to describe the proposed approach for developing event specific mechanistic source terms for HTGR design and licensing, (2) to describe the technology development programs required to validate the design methods used to predict these mechanistic source terms and (3) to obtain agreement from the NRC that, subject to appropriate validation through the technology development program, the approach for developing event specific mechanistic source terms is acceptable

  18. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    SciTech Connect

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers.

  19. Developmental assessment of the Fort St. Vrain version of the Composite HTGR Analysis Program (CHAP-2)

    SciTech Connect

    Stroh, K.R.

    1980-01-01

    The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain (FSV) version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are being used to partially verify the component modeling and dynamic smulation techniques used to predict plant response to postulated accident sequences.

  20. Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles

    SciTech Connect

    Didden, Arjen P.; Middelkoop, Joost; Krol, Roel van de; Besling, Wim F. A.; Nanu, Diana E.

    2014-01-15

    The design of a fluidized bed atomic layer deposition (ALD) reactor is described in detail. The reactor consists of three parts that have all been placed in one protective cabinet: precursor dosing, reactor, and residual gas treatment section. In the precursor dosing section, the chemicals needed for the ALD reaction are injected into the carrier gas using different methods for different precursors. The reactor section is designed in such a way that a homogeneous fluidized bed can be obtained with a constant, actively controlled, reactor pressure. Furthermore, no filters are required inside the reactor chamber, minimizing the risk of pressure increase due to fouling. The residual gas treatment section consists of a decomposition furnace to remove residual precursor and a particle filter and is installed to protect the pump. In order to demonstrate the performance of the reactor, SiO{sub 2} particles have been coated with TiO{sub 2} using tetrakis-dimethylamino titanium (TDMAT) and H{sub 2}O as precursors. Experiments with varying pulse times show that saturated growth can be obtained with TDMAT pulse times larger than 600 s. Analysis of the powder with High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) and energy dispersive X-ray spectroscopy confirmed that after 50 cycles, all SiO{sub 2} particles were coated with a 1.6 nm homogenous shell of TiO{sub 2}.

  1. Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles.

    PubMed

    Didden, Arjen P; Middelkoop, Joost; Besling, Wim F A; Nanu, Diana E; van de Krol, Roel

    2014-01-01

    The design of a fluidized bed atomic layer deposition (ALD) reactor is described in detail. The reactor consists of three parts that have all been placed in one protective cabinet: precursor dosing, reactor, and residual gas treatment section. In the precursor dosing section, the chemicals needed for the ALD reaction are injected into the carrier gas using different methods for different precursors. The reactor section is designed in such a way that a homogeneous fluidized bed can be obtained with a constant, actively controlled, reactor pressure. Furthermore, no filters are required inside the reactor chamber, minimizing the risk of pressure increase due to fouling. The residual gas treatment section consists of a decomposition furnace to remove residual precursor and a particle filter and is installed to protect the pump. In order to demonstrate the performance of the reactor, SiO2 particles have been coated with TiO2 using tetrakis-dimethylamino titanium (TDMAT) and H2O as precursors. Experiments with varying pulse times show that saturated growth can be obtained with TDMAT pulse times larger than 600 s. Analysis of the powder with High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) and energy dispersive X-ray spectroscopy confirmed that after 50 cycles, all SiO2 particles were coated with a 1.6 nm homogenous shell of TiO2.

  2. Looking after Lawns and Bedding. Youth Training Scheme. Core Exemplar Work Based Project.

    ERIC Educational Resources Information Center

    Further Education Staff Coll., Blagdon (England).

    This trainer's guide is intended to assist supervisors of work-based career training projects in teaching students about lawn care. The guide is one in a series of core curriculum modules that is intended for use in combination on- and off-the-job programs to familiarize youth with the skills, knowledge, and attitudes necessary for success in the…

  3. Research and developments on application of carbon-carbon composite to HTGR/VHTR in Japan

    NASA Astrophysics Data System (ADS)

    Eto, M.; Konishi, T.; Shibata, T.; Sumita, J.

    2011-10-01

    High Temperature Gas-cooled Reactor (HTGR) and Very High Temperature Reactor (VHTR) are attractive nuclear reactors to obtain high temperature helium gas at the reactor outlet. To enhance the thermal efficiency, the in-core internals of HTGR/VHTR, especially control rods, are subjected to the severe thermo-mechanical condition. The carbon-carbon (C/C) composite is one of the advanced material candidates for the control rod sheath of the advanced reactors where the excellent thermal resistance and stability are required because of the possible severe condition. The Research and development on the C/C composite application to HTGR have been carried out since 1990s. JAEA and Toyo Tanso have carried out the R & D on C/C composite to be used for control rod. Application of C/C composite is recently focused as one of the important subjects to develop VHTR in the international R & D activities. Scheme of the development in the JAEA/Toyo collaboration is outlined as follow: After the feasibility of C/C composite rod was demonstrated by a conceptual design, the procedure is progressing as follows; (1) Database establishment, (2) Design and manufacturing of components, and (3) Demonstration test by High Temperature engineering Test Reactor.

  4. The AVR (HTGR) decommissioning project with new strategy

    SciTech Connect

    Sterner, Hakan; Rittscher, Dieter

    2007-07-01

    The 15-MWel prototype pilot reactor AVR is a pebble bed HTGR. It was designed in the late 50's and was connected to the grid end of 1967. After 21 y of successful operation the reactor was shut down end of 1988. In 1994 the first decommissioning license was granted and work with defueling, dismantling and preparation of a Safe Enclosure started. The primary system is contaminated with the fission products Sr{sup 90} and Cs{sup 137} and the activation products are Co{sup 60}, C{sup 14} and H{sup 3}. Due to the large amounts of Sr and Cs bound to graphite dust, the dismantling of systems connected to the pressure vessel is very tedious. In 2003 the AVR company was restructured and the strategy of the decommissioning was changed from safe enclosure to green field, i.e. the complete direct dismantling of all facilities and clean up of the site. The highlight during the dismantling is the removal of the reactor vessel (diameter ca. 7.6 m and length ca. 26 m) in one piece. Before handling the reactor vessel it will be filled with low density cellular concrete. Subsequently the reactor building will be cut open and the reactor vessel (total weight ca. 2100 Mg) lifted out and transported to an interim store. (authors)

  5. Results for Phase I of the IAEA Coordinated Research Program on HTGR Uncertainties

    SciTech Connect

    Strydom, Gerhard; Bostelmann, Friederike; Yoon, Su Jong

    2015-01-01

    The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied. High Temperature Gas-cooled Reactors (HTGR) has its own peculiarities, coated particle design, large graphite quantities, different materials and high temperatures that also require other simulation requirements. The IAEA has therefore launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the HTR-PM (INET, China). This report summarizes the contributions of the HTGR Methods Simulation group at Idaho National Laboratory (INL) up to this point of the CRP. The activities at INL have been focused so far on creating the problem specifications for the prismatic design, as well as providing reference solutions for the exercises defined for Phase I. An overview is provided of the HTGR UAM objectives and scope, and the detailed specifications for Exercises I-1, I-2, I-3 and I-4 are also included here for completeness. The main focus of the report is the compilation and discussion of reference results for Phase I (i.e. for input parameters at their nominal or best-estimate values), which is defined as the first step of the uncertainty quantification process. These reference results can be used by other CRP participants for comparison with other codes or their own reference

  6. HTGR Economic / Business Analysis and Trade Studies Market Analysis for HTGR Technologies and Applications

    SciTech Connect

    Richards, Matt; Hamilton, Chris

    2013-11-01

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal to liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.

  7. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity

    NASA Astrophysics Data System (ADS)

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  8. Using SA508/533 for the HTGR Vessel Material

    SciTech Connect

    Larry Demick

    2012-06-01

    This paper examines the influence of High Temperature Gas-cooled Reactor (HTGR) module power rating and normal operating temperatures on the use of SA508/533 material for the HTGR vessel system with emphasis on the calculated times at elevated temperatures approaching or exceeding ASME Code Service Limits (Levels B&C) to which the reactor pressure vessel could be exposed during postulated pressurized and depressurized conduction cooldown events over its design lifetime.

  9. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  10. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  11. The IAEA Coordinated Research Program on HTGR Uncertainty Analysis: Phase I Status and Initial Results

    SciTech Connect

    Strydom, Gerhard; Bostelmann, Friederike; Ivanov, Kostadin

    2014-10-01

    required confidence level. In order to address uncertainty propagation in analysis and methods in the HTGR community the IAEA initiated a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) that officially started in 2013. Although this project focuses specifically on the peculiarities of HTGR designs and its simulation requirements, many lessons can be learned from the LWR community and the significant progress already made towards a consistent methodology uncertainty analysis. In the case of LWRs the NRC has already in 1988 amended 10 CFR 50.46 to allow best-estimate (plus uncertainties) calculations of emergency core cooling system performance. The Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development (OECD) also established an Expert Group on "Uncertainty Analysis in Modelling" which finally led to the definition of the "Benchmark for Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of LWRs". The CRP on HTGR UAM will follow as far as possible the on-going OECD Light Water Reactor UAM benchmark activity.

  12. Synthesis and characterization of organic-inorganic core-shell structure nanocomposite and application for Zn ions removal from aqueous solution in a fixed-bed column

    NASA Astrophysics Data System (ADS)

    Ghasemi, Shokoofeh; Ghorbani, Mohsen; Ghazi, Mohsen Mehdipour

    2015-12-01

    An organic-inorganic core/shell structure, γ-Fe2O3/polyrhodanine nanocomposite with γ-Fe2O3 nanoparticle as core with average diameter of 15 nm and polyrhodanine as shell with thickness of 1.5 nm, has been synthesized via chemical oxidation polymerization and applied for adsorption of Zn ions from aqueous solution in a fixed-bed column. The properties of nanocomposite were characterized with transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy and vibrating sample magnetometer (VSM). The performance of the column was assessed under variable bed heights (10, 15 and 20 cm) and influent Zn concentrations (50, 100 and 150 ppm) at a constant flow rate (0.5 mL/min). The results demonstrated that the breakthrough curves are S-shaped and the breakthrough time increases with increasing bed height and decreases with increasing influent concentration. Moreover, the dynamics of the adsorption process were evaluated by using Adams-Bohart, bed depth service time (BDST), Thomas and Yoon-Nelson kinetic models. The models were nearly in good agreement with the experimental data.

  13. HTGR Spent Fuel Treatment Program. HTGR Spent Fuel Treatment Development Program Plan

    SciTech Connect

    Not Available

    1984-12-01

    The spent fuel treatment (SFT) program plan addresses spent fuel volume reduction, packaging, storage, transportation, fuel recovery, and disposal to meet the needs of the HTGR Lead Plant and follow-on plants. In the near term, fuel refabrication will be addressed by following developments in fresh fuel fabrication and will be developed in the long term as decisions on the alternatives dictate. The formulation of this revised program plan considered the implications of the Nuclear Waste Policy Act of 1982 (NWPA) which, for the first time, established a definitive national policy for management and disposal of nuclear wastes. Although the primary intent of the program is to address technical issues, the divergence between commercial and government interests, which arises as a result of certain provisions of the NWPA, must be addressed in the economic assessment of technically feasible alternative paths in the management of spent HTGR fuel and waste. This new SFT program plan also incorporates a significant cooperative research and development program between the United States and the Federal Republic of Germany. The major objective of this international program is to reduce costs by avoiding duplicate efforts.

  14. A 454 survey reveals the community composition and core microbiome of the common bed bug (Cimex lectularius) across an Urban Landscape.

    PubMed

    Meriweather, Matthew; Matthews, Sara; Rio, Rita; Baucom, Regina S

    2013-01-01

    Elucidating the spatial dynamic and core constituents of the microbial communities found in association with arthropod hosts is of crucial importance for insects that may vector human or agricultural pathogens. The hematophagous Cimex lectularius (Hemiptera: Cimicidae), known as the human bed bug, has made a recent resurgence in North America, as well as worldwide, potentially owing to increased travel, climate change and resistance to insecticides. A comprehensive survey of the bed bug microbiome has not been performed to date, nor has an assessment of the spatial dynamics of its microbiome. Here we present a survey of internal and external bed bug microbial communities by amplifying the V4-V6 hypervariable region of the 16S rDNA gene region followed by 454 Titanium sequencing using 31 individuals from eight distinct collection locations obtained from residences in Cincinnati, OH. Across all samples, 97% of the microbial community is made up of two dominant OTUs, previously identified as the α-proteobacterium Wolbachia and an unnamed γ-proteobacterium from the Enterobacteriaceae. Microbial communities varied among host locations for measures of community diversity and exhibited structure according to collection location. This broad survey represents the most in-depth assessment, to date, of the microbes that associate with bed bugs.

  15. Simulation of thermal response of the 250 MWT modular HTGR during hypothetical uncontrolled heatup accidents

    SciTech Connect

    Harrington, R.M.; Ball, S.J.

    1985-01-01

    One of the central design features of the 250 MWT modular HTGR is the ability to withstand uncontrolled heatup accidents without severe consequences. This paper describes calculational studies, conducted to test this design feature. A multi-node thermal-hydraulic model of the 250 MWT modular HTGR reactor core was developed and implemented in the IBM CSMP (Continuous System Modeling Program) simulation language. Survey calculations show that the loss of forced circulation accident with loss of steam generator cooling water and with accidental depressurization is the most severe heatup accident. The peak hot-spot fuel temperature is in the neighborhood of 1600/sup 0/C. Fuel failure and fission product releases for such accidents would be minor. Sensitivity studies show that code input assumptions for thermal properties such as the side reflector conductivity have a significant effect on the peak temperature. A computer model of the reactor vessel cavity concrete wall and its surrounding earth was developed to simulate the extremely unlikely and very slowly-developing heatup accident that would take place if the worst-case loss of forced primary coolant circulation accident were further compounded by the loss of cooling water to the reactor vessel cavity liner cooling system. Results show that the ability of the earth surrounding the cavity to act as a satisfactory long-term heat sink is very sensitive to the assumed rate of decay heat generation and on the effective thermal conductivity of the earth.

  16. Enabling Scientific and Technological Improvements to Meet Core Partner Service Requirements in Alaska - An Arctic Test Bed

    NASA Astrophysics Data System (ADS)

    Petrescu, E. M.; Scott, C. A.

    2014-12-01

    NOAA/NWS Test beds, such as the Joint Hurricane Test Bed (Miami, FL) and the Hazardous Weather Test Bed (Norman, OK) have been highly effective in meeting unique or pressing science and service challenges for the NWS. NWS Alaska Region leadership has developed plans for a significant enhancement to our operational forecast and decision support capabilities in Alaska to address the emerging requirements of the Arctic: An Arctic Test Bed. Historically, the complexity of forecast operations and the inherent challenges in Alaska have not been addressed well by the R&D programs and projects that support the CONUS regions of the NWS. In addition, there are unique science,technology, and support challenges (e.g., sea ice forecasts and arctic drilling prospects) and opportunities (Bilateral agreements with Canada, Russia, and Norway) that would best be worked through Alaska operations. A dedicated test bed will provide a mechanism to transfer technology, research results, and observations advances into operations in a timely and effective manner in support of Weather Ready Nation goals and to enhance decision support services in Alaska. A NOAA Arctic Test Bed will provide a crucial nexus for ensuring NOAA's developers understand Alaska's needs, which are often cross disciplinary (atmosphere, ocean, cryosphere, and hydrologic), to improve NOAA's responsiveness to its Arctic-related science and service priorities among the NWS and OAR (CPO and ESRL), and enable better leveraging of other research initiatives and data sources external to NOAA, including academia, other government agencies, and the private sector, which are particular to the polar region (e.g., WWRP Polar Prediction Project). Organization, capabilities and opportunities will be presentation.

  17. Estimation and control in HTGR fuel rod fabrication

    SciTech Connect

    Downing, D J; Bailey, M J

    1980-01-01

    A control algorithm has been derived for a HTGR Fuel Rod Fabrication Process utilizing the method of Box and Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented.

  18. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    SciTech Connect

    John D. Bess; Leland M. Montierth

    2014-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  19. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    SciTech Connect

    John D. Bess; Leland M. Montierth

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  20. EFFECTS OF GRAPHITE SURFACE ROUGHNESS ON BYPASS FLOW COMPUTATIONS FOR AN HTGR

    SciTech Connect

    Rich Johnson; Yu-Hsin Tung; Hiroyuki Sato

    2011-07-01

    Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow, which has been estimated to be as much as 20% of the total helium coolant flow. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors on three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U. S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for flow in a single tube that is representative of a coolant channel in the prismatic HTGR core. The results are compared to published correlations for wall shear stress and Nusselt number in turbulent pipe flow. Turbulence models that perform well are then used to make bypass flow calculations in a symmetric onetwelfth sector of a prismatic block that includes bypass flow. The comparison of shear stress and Nusselt number results with published correlations constitutes a partial validation of the CFD model. Calculations are also compared to ones made previously using a different CFD code. Results indicate that

  1. Formation and characterization of fission-product aerosols under postulated HTGR accident conditions

    SciTech Connect

    Tang, I.N.; Munkelwitz, H.R.

    1982-07-01

    The paper presents the results of an experimental investigation on the formation mechanism and physical characterization of simulated nuclear aerosols that could likely be released during an HTGR core heat-up accident. Experiments were carried out in a high-temperature flow system consisting essentially of an inductively heated release source, a vapor deposition tube, and a filter assembly for collecting particulate matter. Simulated fission products Sr and Ba as oxides are separately impregnated in H451 graphite wafers and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperature. The release and transport of simulated fission product Ag as metal are also investigated.

  2. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    SciTech Connect

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.

  3. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1980

    SciTech Connect

    Not Available

    1980-11-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an LEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbines and process heat plants.

  4. Facies And Bedding Analysis of Deep-Marine, Arc-Related, Sediementary Rocks Cored on International Ocean Drilling Program Expedition 351.

    NASA Astrophysics Data System (ADS)

    Johnson, K. E.; Marsaglia, K. M.

    2015-12-01

    The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading

  5. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  6. Bed-parallel calcite veins in the core of Wills Mountain anticline: Implications for deformation conditions and fluid flow during the Alleghanian orogeny

    SciTech Connect

    Evans, M.A.; Battles, D.A. . Dept. of Geology and Geography)

    1994-03-01

    Thick, bed-parallel to sub-bed-parallel calcite veins are found in Upper Ordovician Trenton and Black River Group limestones exposed in the core of Wills Mountain anticline, Pendleton County, West Virginia. The veins range in thickness from less than 5 centimeters to over 2 meters, and contain individual crystals up to 20 centimeters across. The veins have a 1 to 3 mete spacing, and are planar to lensoid. They are also subhorizontal, and can be traced for tens of meters along the outcrop. The calcite is opaque to translucent white, and occasionally colorless and transparent. Tectonic slickenlines are found at the top and bottom margins of the veins, as well as within the veins. These slickenlines indicate transport directed toward 280[degree]--315[degree]. When crushed the calcite emits a strong odor of H[sub 2]S. The calcite contains abundant two-phase aqueous inclusions that have ice melting temperatures (T[sub m]) of [minus]9.0 to [minus]14.1 C. This corresponds to a salinity of 13 to 17 wt.% NaCl equiv. Inclusion homogenization (T[sub b]) values range from 91.8 to 135.1 C, with a medium value of 124 C. Since the calcite veins are bed-parallel and subhorizontal, they must have formed under lithostatic conditions. The calcite veins occur along a fault that is proposed to be a splay from the Ordovician Martinsburg Fm. decollement. This major decollement separates two Cambro-Ordovician carbonate flats east of the Wills Mountain anticline. The splay served as a conduit for the release of massive amounts of H[sub 2]S-saturated brine from the decollement.

  7. ORNL's NRC-sponsored HTGR safety and licensing analysis activities for Fort St. Vrain and advanced reactors

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Harrington, R.M.

    1985-01-01

    The ORNL safety analysis program for the HTGR was established in 1974 to provide technical assistance to the USNRC on licensing questions for both Fort St. Vrain and advanced plant concepts. The emphasis has been on development of major component and system dynamic simulation codes, and use of these codes to analyze specific licensing-related scenarios. The program has also emphasized code verification, using Fort St. Vrain data where applicable, and comparing results with industry-generated codes. By the use of model and parameter adjustment routines, safety-significant uncertainties have been identified. A major part of the analysis work has been done for the Fort St. Vrain HTGR, and has included analyses of FSAR accident scenario re-evaluations, the core block oscillation problem, core support thermal stress questions, technical specification upgrade review, and TMI action plan applicability studies. The large, 2240-MW(t) cogeneration lead plant design was analyzed in a multi-laboratory cooperative effort to estimate fission product source terms from postulated severe accidents.

  8. High-temperature gas reactor (HTGR) market assessment, synthetic fuels analysis

    SciTech Connect

    Not Available

    1980-08-01

    This study is an update of assessments made in TRW's October 1979 assessment of overall high-temperature gas-cooled reactor (HTGR) markets in the future synfuels industry (1985 to 2020). Three additional synfuels processes were assessed. Revised synfuel production forecasts were used. General environmental impacts were assessed. Additional market barriers, such as labor and materials, were researched. Market share estimates were used to consider the percent of markets applicable to the reference HTGR size plant. Eleven HTGR plants under nominal conditions and two under pessimistic assumptions are estimated for selection by 2020. No new HTGR markets were identified in the three additional synfuels processes studied. This reduction in TRW's earlier estimate is a result of later availability of HTGR's (commercial operation in 2008) and delayed build up in the total synfuels estimated markets. Also, a latest date for HTGR capture of a synfuels market could not be established because total markets continue to grow through 2020. If the nominal HTGR synfuels market is realized, just under one million tons of sulfur dioxide effluents and just over one million tons of nitrous oxide effluents will be avoided by 2020. Major barriers to a large synfuels industry discussed in this study include labor, materials, financing, siting, and licensing. Use of the HTGR intensifies these barriers.

  9. Innovative safety features of the modular HTGR

    SciTech Connect

    Silady, F.A.; Simon, W.A.

    1992-01-01

    The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency's Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant's response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

  10. Innovative safety features of the modular HTGR

    SciTech Connect

    Silady, F.A.; Simon, W.A.

    1992-01-01

    The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant`s operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency`s Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant`s response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

  11. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    SciTech Connect

    John D. Bess

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  12. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    SciTech Connect

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  13. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    SciTech Connect

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  14. HTGR technology development: status and direction

    SciTech Connect

    Kasten, P.R.

    1982-01-01

    During the last two years there has been an extensive and comprehensive effort expended primarily by General Atomic (GA) in generating a revised technology development plan. Oak Ridge National Laboratory (ORNL) has assisted in this effort, primarily through its interactions over the past years in working together with GA in technology development, but also through detailed review of the initial versions of the technology development plan as prepared by GA. The plan covers Fuel Technology, Materials Technology (including metals, graphite, and ceramics), Plant Technology (including methods, safety, structures, systems, heat exchangers, control and electrical, and mechanical), and Component Design Verification and Support areas (including the PCRV, control, fuel handling, service equipment, reactor core and internals, cooling and service systems).

  15. Design of the HTGR for process heat applications

    SciTech Connect

    Vrable, D.L.; Quade, R.N.

    1980-05-01

    This paper discusses a design study of an advanced 842-MW(t) HTGR with a reactor outlet temperature of 850/sup 0/C (1562/sup 0/F), coupled with a chemical process whose product is hydrogen (or a mixture of hydrogen and carbon monoxide) generated by steam reforming of a light hydrocarbon mixture. This paper discusses the plant layout and design for the major components of the primary and secondary heat transfer systems. Typical parametric system study results illustrate the capability of a computer code developed to model the plant performance and economics.

  16. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  17. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    SciTech Connect

    Beyer, Brian David; Beddingfield, David H; Durst, Philip; Bean, Robert

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  18. Development of non-destructive evaluation methods for degradation of HTGR graphite components

    NASA Astrophysics Data System (ADS)

    Shibata, Taiju; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro

    2008-10-01

    To develop the non-destructive evaluation method for degradation of HTGR graphite components, the applicability of the micro-indentation method to detect residual stress was studied. The fine-grained isotropic graphites IG-110 and IG-430, the candidates for the VHTR, were used. The following results were obtained: The residual stress in a graphite block at the HTTR in-core condition was analyzed. It was suggested that, for the components in the VHTR which would be used at much severer condition, the development of lifetime extension methods is an important subject. The micro-indentation behavior at stress free condition was investigated with some indenters. The spherical indenter R0.5 mm was selected to detect the specimen surface condition sensitively. The indentation load of 5 and 10 N was selected to avoid the pop-up effect in the loading process. The relationship between the average value of normalized indentation depth and compressive stress of the specimen was expressed by an empirical formula. It would be possible to evaluate the residual stress by the indentation behaviour. It is necessary to assess the variation of data with statistic method and it is the subject of future study.

  19. Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect

    Taylor, Larry Lorin

    2001-01-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

  20. HTGR (High Temperature Gas-Cooled Reactor) ingress analysis using MINET

    SciTech Connect

    Van Tuyle, G.J.; Yang, J.W.; Kroeger, P.G.; Mallen, A.N.; Aronson, A.L.

    1989-04-01

    Modeling of water/steam ingress into the primary (helium) cooling circuit of a High Temperature Gas-Cooled Reactor (HTGR) is described. This modeling was implemented in the MINET Code, which is a program for analyzing transients in intricate fluid flow and heat transfer networks. Results from the simulation of a water ingress event postulated for the Modular HTGR are discussed. 27 refs., 6 figs., 6 tabs.

  1. Sorption/desorption behavior of iodine on graphite. [HTGR

    SciTech Connect

    Lorenz, R.A.; Dyer, F.F.; Towns, R.L.

    1982-11-01

    An experimental program was undertaken to extend the data on the sorption and desorption of iodine on graphite to more realistic high-temperature gas-cooled reactor (HTGR) operating conditions. This was accomplished by heating compacts of H-451 or S-2020 graphite at 250 to 1000/sup 0/C in continuously flowing helium (at atmospheric pressure) that contained iodine at pressures of 10/sup -6/ Pa (10/sup -11/ to 10/sup -1/ to 10/sup -6/ bar). Equilibrium adsorption data were generally well-behaved and reproducible with the H-451 graphite. Type S-2020 graphite sorbed more iodine, especially in the temperature range 700 to 800/sup 0/C. Although desorption appeared to initiate as reversible sorption, the rate of loss of iodine decreased with time. During desorption from the S-2020 graphite at 700 and 800/sup 0/C, a temporary plateau was reached that was sensitive to helium flow and pressure.

  2. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  3. Geochemical characters of Quaternary tephra beds and their stratighraphic position in the sedimentary core drilled at the site U1343 in the central Bering Sea

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Asahi, H.; Nagatsuma, Y.; Kurihara, K.; Fukuoka, T.; Sakamoto, T.; Iijima, K.

    2012-12-01

    remarkably increases after BM boundary. Furthermore, during middle to late Pleistocene, the oxygen isotopic stratigraphy of benthic foranminiferal fossils in this core is clear and their oscillation is wider than early Pleistocene and Pliocene. So, volcanic glass shards in 'contaminated samples' which are expected to be provided from plural sources might be transported by seasonal sea ices, and ice berg which collapsed from the ice sheet around the Beringia. On the other hand, general character and geochemistry of glass-rich samples is as follows: The size of every tephra material is under 250 micrometer and there are rarely heavy minerals. Color of tephras has many varieties (white, brown, gray, and black) by geochemistry of volcanic glass shards. Content of SiO2 in volcanic glass shards varied approximately 58-72 wt%, Na2O is ~5.2 wt%, and K2O is ~3.2 wt% (basaltic andesite, andesite, dacite, and rhyolite). There is no sample in alkali rock series, 5 samples in tholeiitic rock series and the other 26 samples in calc-alkalic rock series. Six tephra layers of 0.378Ma, 0.518-0.529Ma, 0.822-0.824Ma, 1.008Ma, 1.108Ma, and 1.547Ma are several centimeters thickness, so they are expected to be recognized as time marker beds in Bering Sea widely.

  4. Bed bugs.

    PubMed

    Foulke, Galen T; Anderson, Bryan E

    2014-09-01

    The term bed bug is applied to 2 species of genus Cimex: lectularius describes the common or temperate bed bug, and hemipterus its tropical cousin. Cimex lectularius is aptly named; its genus and species derive from the Latin words for bug and bed, respectively. Though the tiny pest is receiving increased public attention and scrutiny, the bed bug is hardly a new problem. PMID:25577850

  5. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  6. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Nick R. Soelberg

    2010-11-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication.

  7. Interaction of fission products and SiC in TRISO fuel particles: a limiting HTGR design parameter

    SciTech Connect

    Stansfield, O.M.; Homan, F.J.; Simon, W.A.; Turner, R.F.

    1983-09-01

    The fuel particle system for the steam cycle cogeneration HTGR being developed in the US consists of 20% enriched UC/sub 0/./sub 3/O/sub 1/./sub 7/ and ThO/sub 2/ kernels with TRISO coatings. The reaction of fission products with the SiC coating is the limiting thermochemical coating failure mechanism affecting performance. The attack of the SiC by palladium (Pd) is considered the controlling reaction with systems of either oxide or carbide fuels. The lanthanides, such as cerium, neodymium, and praseodymium, also attack SiC in carbide fuel particles. In reactor design, the time-temperature relationships at local points in the core are used to calculate the depth of SiC-Pd reaction. The depth of penetration into the SiC during service varies with core power density, power distribution, outlet gas temperature, and fuel residence time. These parameters are adjusted in specifying the core design to avoid SiC coating failure.

  8. Irradiation performance of HTGR fuel in HFIR experiment HRB-13

    SciTech Connect

    Tiegs, T.N.

    1982-03-01

    Irradiation capsule HRB-13 tested High-Temperature Gas-Cooled Reactor (HTGR) fuel under accelerated conditions in the High Flux Isotope Reactor (HFIR) at ORNL. The ORNL part of the capsule was designed to provide definitive results on how variously misshapen kernels affect the irradiation performance of weak-acid-resin (WAR)-derived fissile fuel particles. Two batches of WAR fissile fuel particles were Triso-coated and shape-separated into four different fractions according to their deviation from spericity, which ranged from 9.6 to 29.7%. The fissile particles were irradiated for 7721 h. Heavy-metal burnups ranged from 80 to 82.5% FIMA (fraction of initial heavy-metal atoms). Fast neutron fluences (>0.18 MeV) ranged from 4.9 x 10/sup 25/ neutrons/m/sup 2/ to 8.5 x 10/sup 25/ neutrons/m/sup 2/. Postirradiation examination showed that the two batches of fissile particles contained chlorine, presumably introduced during deposition of the SiC coating.

  9. Iodine sorption on low-chromium alloy steel. [HTGR

    SciTech Connect

    Osborne, M.F.; Briggs, R.B.; Wichner, R.P.

    1982-01-01

    Studies of iodine sorption on low-alloy steel in helium atmosphere included both computer calculations and experimental measurements under conditions that could be related to the high-temperature gas-cooled reactor (HTGR). Adsorption measurements provide data on the potentially releasable inventory of iodine (a major radiological hazard) stored on surfaces in the coolant circuit during normal operation. Measurements of the rate and extent of iodine desorption when test conditions were changed are useful for evaluating the consequences of accidents. The results of calculations with the SOLGASMIX-PV computer program indicated that HI is the dominant iodine species in the system and that the deposition of CrI/sub 2/(s) or FeI/sub 2/(s) in the cooler regions will effectively limit the amount of iodine in the gas phase. Experimental measurements were obtained on 2-1/4% Cr-1% Mo steel specimens at iodine burdens as low as 10/sup -6/ Pa (10/sup -11/ atm), about 100 times lower than any previous work.

  10. Probabilistic risk assessment of the modular HTGR plant. Revision 1

    SciTech Connect

    Everline, C.J.; Bellis, E.A.; Vasquez, J.

    1986-06-01

    A preliminary probabilistic risk assessment (PRA) has been performed for the modular HTGR (MHTGR). This PRA is preliminary in the context that although it updates the PRA issued earlier to include a wider spectrum of events for Licensing Basis Events (LBE) selection, the final version will not be issued until later. The primary function of the assessment was to assure compliance with the NRC interim safety goals imposed by the top-level regulatory criteria, and utility/user requirements regarding public evacuation or sheltering. In addition, the assessment provides a basis for designer feedback regarding reliability allocations and barrier retention requirements as well as providing a basis for the selection of licensing basis events (LBEs) and the safety classification of structures, systems, and components. The assessment demonstrates that both the NRC interim safety goals and utility/user imposed sheltering/evacuation requirements are satisfied. Moreover, it is not anticipated that design changes introduced will jeopardize compliance with the interim safety goals or utility/user requirements. 61 refs., 48 figs., 24 tabs.

  11. Analytical results for 35 mine-waste tailings cores and six bed-sediment samples, and an estimate of the volume of contaminated material at Buckeye meadow on upper Basin Creek, northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, D.L.; Church, S.E.; Finney, C.J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acidgeneration and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50oC) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern

  12. IAEA CRP on HTGR Uncertainty Analysis: Benchmark Definition and Test Cases

    SciTech Connect

    Gerhard Strydom; Frederik Reitsma; Hans Gougar; Bismark Tyobeka; Kostadin Ivanov

    2012-11-01

    Uncertainty and sensitivity studies are essential elements of the reactor simulation code verification and validation process. Although several international uncertainty quantification activities have been launched in recent years in the LWR, BWR and VVER domains (e.g. the OECD/NEA BEMUSE program [1], from which the current OECD/NEA LWR Uncertainty Analysis in Modelling (UAM) benchmark [2] effort was derived), the systematic propagation of uncertainties in cross-section, manufacturing and model parameters for High Temperature Reactor (HTGR) designs has not been attempted yet. This paper summarises the scope, objectives and exercise definitions of the IAEA Coordinated Research Project (CRP) on HTGR UAM [3]. Note that no results will be included here, as the HTGR UAM benchmark was only launched formally in April 2012, and the specification is currently still under development.

  13. Preirradiation Data summary for the GRIT-II HTGR irradiation test specimens

    SciTech Connect

    Hollenbeck, J.L.

    1995-05-01

    This document comprises a report of preirradiation data on the NPR-5 and NPR-8 fuel types tested in the GRIT-II HTGR Irradiation Test in the Advanced Test Reactor. A summary of fuel characterization, GRIT-II test fabrication data, outlines of fabrication procedures, and a discussion of the GRIT technique for individual fuel bead testing is presented. Objective of the test is to provide individual irradiated HTGR fuel beads for post-irradiation valuation with total target burnups of 25, 50, and 75% fissions of initial metal atoms (FIMA).

  14. Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants

    SciTech Connect

    McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

    1980-02-01

    Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed.

  15. The IAEA coordinated research programme on HTGR uncertainty analysis: Phase I status and Ex. I-1 prismatic reference results

    DOE PAGESBeta

    Bostelmann, Friederike; Strydom, Gerhard; Reitsma, Frederik; Ivanov, Kostadin

    2016-01-11

    The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied, in contrast to the historical approach where sensitivity analysis were performed and uncertainties then determined by a simplified statistical combination of a few important inputmore » parameters. New methodologies are currently under development in the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity. High Temperature Gas-cooled Reactor (HTGR) designs require specific treatment of the double heterogeneous fuel design and large graphite quantities at high temperatures. The IAEA has therefore launched a Coordinated Research Project (CRP) on HTGR Uncertainty Analysis in Modelling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the Chinese HTR-PM. Work has started on the first phase and the current CRP status is reported in the paper. A comparison of the Serpent and SCALE/KENO-VI reference Monte Carlo results for Ex. I-1 of the MHTGR-350 design is also included. It was observed that the SCALE/KENO-VI Continuous Energy (CE) k∞ values were 395 pcm (Ex. I-1a) to 803 pcm (Ex. I-1b) higher than the respective Serpent lattice calculations, and that within the set of the SCALE results, the KENO-VI 238 Multi-Group (MG) k∞ values were up to 800 pcm lower than the KENO-VI CE values. The use of the

  16. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    SciTech Connect

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  17. HTGR Gas Turbine Program. Semiannual progress report for the period ending September 30, 1979

    SciTech Connect

    Not Available

    1980-05-01

    Information on the HTGR-GT program is presented concerning systems design methods; systems dynamics methods; alternate design; miscellaneous controls and auxiliary systems; structural mechanics; shielding analysis; licensing; safety; availability; reactor turbine system integration with plant; PCRV liners, penetrations, and closures; PCRV structures; thermal barrier; reactor internals; turbomachinery; turbomachine remote maintenance; control valve; heat exchangers; plant protection system; and plant control system.

  18. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    SciTech Connect

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

  19. Licensing topical report: the measurement and modelling of time-dependent fission product release from failed HTGR fuel particles under accident conditions

    SciTech Connect

    Myers, B.F.; Morrissey, R.E.

    1980-04-01

    The release of fission products from failed fuel particles was measured under simulated accident (core heatup) conditions. A generic model and specific model parameters that describe delayed fission product release from the kernels of failed HTGR fuel particles were developed from the experimental results. The release of fission products was measured from laser-failed BISO ThO/sub 2/ and highly enriched (HEU) TRISO UC/sub 2/ particles that had been irradiated to a range of kernel burnups. The burnups were 0.25, 1.4, and 15.7% FIMA for ThO/sub 2/ particles and 23.5 and 74% FIMA for UC/sub 2/ particles. The fission products measured were nuclides of xenon, iodine, krypton, tellurium, and cesium.

  20. Dynamic model verification studies for the thermal response of the Fort St. Vrain HTGR Core

    SciTech Connect

    Ball, S J

    1980-01-01

    The safety research program for high-temperature gas-cooled reactors at ORNL is directed primarily at addressing licensing questions on the Fort St. Vrain reactor near Denver, CO. An important part of the program is to make use of experimental data from the reactor to at least partially verify the dynamic simulations that are used to predict the effects of postulated accident sequences. Comparisons were made of predictions with data from four different reactor scram (trip) events from operating power levels between 30 and 50%. An optimization program was used to rationalize the differences between predictions and measurements, and, in general, excellent agreement can be obtained by adjustment of models and parameters within their uncertainty ranges. Although the optimized models are not necessarily unique, results of the study have identified areas in which some of the models were deficient.

  1. High power density reactors based on direct cooled particle beds

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  2. 1170 MW/sub t/ HTGR steamer cogeneration plant: design and cost study

    SciTech Connect

    1980-08-01

    A conceptual design and cost study is presented for intermediate size high temperature gas-cooled reactor (HTGR) for industrial energy applications performed by United Engineers and Constructors Inc., (UE and C) and The General Atomic Company (GAC). The study is part of a program at ORNL and has the objective to provide support in the evaluation of the technical and economic feasibility of a single unit 1170 MW/sub t/ HTGR steam cycle cogeneration plant (referred to as the Steamer plant) for the production of industrial process energy. Inherent in the achievement of this objective, it was essential to perform a number of basic tasks such as the development of plant concept, capital cost estimate, project schedule and annual operation and maintenance (O and M) cost.

  3. Small HTGR nuclear power plant concept for combined power generation and desalination

    SciTech Connect

    Petrek, J.P.; McDonald, C.F.; Quade, R.N.

    1984-08-01

    In this paper, a small, high-efficiency high temperature gascooled reactor (HTGR)/ desalination system is presented that has electrical power/water desalination operational flexibility. A small HTGR reactor, rated at 250 MW(t), with inherent safety features is proposed with a twin unit plant. Operating in a cogeneration/ desalination mode, the plant output would be about 180 MW(e) and 81,100 m/sup 3//d (21.4 million gallons per day (gpd)) of fresh water (from seawater) based on an advanced desalination system. For electricity and water capacities above this level, a multiplicity of reactor units could be used. Water costs are a strong function of electricity credits and plant financing costs. For a twin plant installation, water costs can range from $0 to $750/acre foot (Af) based on a current electricity value of 65 mills/kWh and investor or public financing.

  4. Summary of ORNL work on NRC-sponsored HTGR safety research, July 1974-September 1980

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Delene, J.G.; Harrington, R.M.; Hatta, M.; Hedrick, R.A.; Johnson, L.G.; Sanders, J.P.

    1982-03-01

    A summary is presented of the major accomplishments of the Oak Ridge National Laboratory (ORNL) research program on High-Temperature Gas-Cooled Reactor (HTGR) safety. This report is intended to help the nuclear Regulatory Commission establish goals for future research by comparing the status of the work here (as well as at other laboratories) with the perceived safety needs of the large HTGR. The ORNL program includes extensive work on dynamics-related safety code development, use of codes for studying postulated accident sequences, and use of experimental data for code verification. Cooperative efforts with other programs are also described. Suggestions for near-term and long-term research are presented.

  5. Assessment of modelling needs for safety analysis of current HTGR concepts

    SciTech Connect

    Kroeger, P.G.; Van Tuyle, G.J.

    1985-12-01

    In view of the recent shift in emphasis of the DOE/Industry HTGR development efforts to smaller modular designs it became necessary to review the modelling needs and the codes available to assess the safety performance of these new designs. This report provides a final assessment of the most urgent modelling needs, comparing these to the tools available, and outlining the most significant areas where further modelling is required. Plans to implement the required work are presented. 47 refs., 20 figs.

  6. Irradiation performance of HTGR fuel rods in HFIR experiments HRB-11 and -12

    SciTech Connect

    Homan, F.J.; Tiegs, T.N.; Kania, M.J.; Long, E.L. Jr.; Thoms, K.R.; Robbins, J.M.; Wagner, P.

    1980-06-01

    Capsules HRB-11 and -12 were irradiated in support of development of weak-acid-resin-derived recycle fuel for the high-enriched uranium (HEU) fuel cycle for the HTGR. Fissil fuel particles with initial oxygen-to-metal ratios between 1.0 and 1.7 performed acceptably to full burnup for HEU fuel. Particles with ratios below 1.0 showed excessive chemical interaction between rare earth fission products and the SiC layer.

  7. HTGR high temperature process heat design and cost status report. Volume II. Appendices

    SciTech Connect

    1981-12-01

    Information is presented concerning the 850/sup 0/C IDC reactor vessel; primary cooling system; secondary helium system; steam generator; heat cycle evaluations for the 850/sup 0/C IDC plant; 950/sup 0/C DC reactor vessel; 950/sup 0/C DC steam generator; direct and indirect cycle reformers; methanation plant; thermochemical pipeline; methodology for screening candidate synfuel processes; ECCG process; project technical requirements; process gas explosion assessment; HTGR program economic guidelines; and vendor respones.

  8. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    SciTech Connect

    A.M. Gandrik

    2012-04-01

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  9. HTR-Proteus Pebble Bed Experimental Program Cores 5,6,7,&8: Columnar Hexagonal Point-on-Point Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    Bess, John D.; Sterbentz, James W.; Snoj, Luka; Lengar, Igor; Koberl, Oliver

    2015-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  10. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    SciTech Connect

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  11. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  12. Bed Bugs FAQs

    MedlinePlus

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Bed Bugs FAQs Recommend on Facebook Tweet Share Compartir On ... are bed bugs treated and prevented? What are bed bugs? Bed bugs ( Cimex lectularius ) are small, flat, parasitic ...

  13. Head-end process for the reprocessing of HTGR spent fuel

    SciTech Connect

    Chen, J.; Wen, M.

    2013-07-01

    The reprocessing of HTGR spent fuels is in favor of the sustainable development of nuclear energy to realize the maximal use of nuclear resource and the minimum disposal of nuclear waste. The head-end of HTGR spent fuels reprocessing is different from that of the LWR spent fuels reprocessing because of the difference of spent fuel structure. The dismantling of the graphite spent fuel element and the highly effective dissolution of fuel kernel is the most difficult process in the head end of the reprocessing. Recently, some work on the head-end has been done in China. First, the electrochemical method with nitrate salt as electrolyte was studied to disintegrate the graphite matrix from HTGR fuel elements and release the coated fuel particles, to provide an option for the head-end technology of reprocessing. The results show that the graphite matrix can be effectively separated from the coated particle without any damage to the SiC layer. Secondly, the microwave-assisted heating was applied to dissolve the UO{sub 2} kernel from the crashed coated fuel particles. The ceramic UO{sub 2} as the solute has a good ability to absorb the microwave energy. The results of UO{sub 2} kernel dissolution from crushed coated particles by microwave heating show that the total dissolution percentage of UO{sub 2} is more than 99.99% after 3 times cross-flow dissolution with the following parameters: 8 mol/L HNO{sub 3}, temperature 100 Celsius degrees, initial ratio of solid to liquid 1.2 g/ml. (authors)

  14. HTGR-GT closed-cycle gas turbine. A plant concept with inherent cogeneration, power plus heat production, capability

    NASA Astrophysics Data System (ADS)

    McDonald, C. F.

    1980-04-01

    The high grade sensible heat rejection characteristic of the high temperature gas cooled reactor gas turbine plant is suited to cogeneration. Cogeneration broadly covers combined power and heat operation modes. Cogeneration in this nuclear closed cycle plant includes: (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. The HTGR-CT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes are discussed. The HTGR-CT plant, which potentially approaches 50 percent overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

  15. Postirradiation examination of capsules GF-1, GF-2, and GF-3. [HTGR

    SciTech Connect

    Kovacs, W.J.; Blanchard, R.; Pointud, M.L.

    1980-09-01

    The GF-1, GF-2, and GF-3 capsule tests were irradiated in the Siloe reactor at Grenoble, France, between October 31, 1973, and July 25, 1975. High-enriched uranium (HEU) mixed oxide (8Th,U)O/sub 2/ fissile and ThO/sub 2/ fertile particles were tested over the following exposure conditions: 3.8 to 11.0 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/; 960/sup 0/ to 1120/sup 0/C time volume average temperature; and mixed oxide (8Th,U)O/sub 2/ burnup between 5.3 and 11.4% FIMA and ThO/sub 2/ burnup between 1.1 and 3.6% FIMA. Postirradiation examination of HTGR fuel rods in capsules GF-1, GF-2, and GF-3 showed acceptable structural integrity and irradiation-induced dimensional changes that were consistent with model predictions. Pressure vessel failure levels between different TRISO-coated (8Th,U)O/sub 2/ fissile particle types showed that the 400-..mu..m-diameter kernel design was more conservative than the 500-..mu..m-diameter designs.

  16. System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect

    Jeffrey Bryan

    2009-06-01

    This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

  17. Packed Bed Reactor Experiment

    NASA Video Gallery

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  18. Apparatus for controlling molten core debris

    DOEpatents

    Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA

    1977-07-19

    Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

  19. Apparatus for controlling molten core debris. [LMFBR

    DOEpatents

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  20. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  1. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    SciTech Connect

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  2. Performance of HTGR biso- and triso-coated fertile particles irradiated in capsule HT-34

    SciTech Connect

    Long, E.L. Jr.; Tiegs, T.N.; Robbins, J.M.; Kania, M.J.

    1981-08-01

    Experiment HT-34, irradiated in the target region of the High Flux Isotope Reactor (HFIR), was designed to correlate HTGR Biso- and Triso-coated particle performance with fabrication parameters. Gamma analysis of the irradiated Triso-coated ThO/sub 2/ particles showed that the SiC deposited at the highest coating rate apparently had the best cesium-retention properties. Results of a similar analysis of the irradiated Biso-coated ThO/sub 2/ particles showed no differences in performance that could be related to coating conditions, but all the particles showed a significant loss of cesium (> 50%) at the higher temperatures. Pressure-vessel failures occurred with a significant number of particles; however, fission-gas-content measurements made at room temperature showed that the intact Biso particles from all batches except one became permeable during irradiation.

  3. OVERVIEW OF MODULAR HTGR SAFETY CHARACTERIZATION AND POSTULATED ACCIDENT BEHAVIOR LICENSING STRATEGY

    SciTech Connect

    Ball, Sydney J

    2014-06-01

    This report provides an update on modular high-temperature gas-cooled reactor (HTGR) accident analyses and risk assessments. One objective of this report is to improve the characterization of the safety case to better meet current regulatory practice, which is commonly geared to address features of today s light water reactors (LWRs). The approach makes use of surrogates for accident prevention and mitigation to make comparisons with LWRs. The safety related design features of modular HTGRs are described, along with the means for rigorously characterizing accident selection and progression methodologies. Approaches commonly used in the United States and elsewhere are described, along with detailed descriptions and comments on design basis (and beyond) postulated accident sequences.

  4. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that group of woven cloth products used as coverings on a bed. Bedding includes products such as...

  5. Preliminary plan for the qualification of the LEU/Th fuel cycle for the Fort St. Vrain HTGR

    SciTech Connect

    Gulden, T.D.; Gainey, B.W.; Altschwager, C.J.

    1980-03-01

    This plan was prepared to ensure that low-enriched uranium/thorium (LEU/Th) would be available as a backup to the highly enriched uranium/thorium (HEU/Th) fuel cycle currently being used in the Fort St. Vrain (FSV) high-temperature gas-cooled reactor (HTGR) in the event that the US nonproliferation policies require it. It describes the program that would be required to develop, qualify, and introduce an LEU/Th fuel cycle into the FSV HTGR on the earliest possible and most optimistic schedule. The results of the study indicate that licensing of the LEU/Th fuel cycle for FSV could be completed and fuel manufacturing could begin about 4.5 years from inception of the program.

  6. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  7. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  8. Practice Hospital Bed Safety

    MedlinePlus

    ... Bed? Todd says that there is no standard definition for hospital beds, a fact that consumers shopping ... in retail stores that don’t meet the definition of medical devices under the law, but which ...

  9. Enuresis (Bed-Wetting)

    MedlinePlus

    ... their development. Bed-wetting is more common among boys than girls. What causes bed-wetting? A number of things ... valves in boys or in the ureter in girls or boys Abnormalities in the spinal cord A small bladder ...

  10. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  11. Making a Bed

    ERIC Educational Resources Information Center

    Wexler, Anthony; Stein, Sherman

    2005-01-01

    The origins of this paper lay in making beds by putting pieces of plywood on a frame: If beds need to be 4 feet 6 inches by 6 feet 3 inches, and plywood comes in 4-foot by 8-foot sheets, how should one cut the plywood to minimize waste (and have stable beds)? The problem is of course generalized.

  12. Getting Rid of Bed Bugs

    MedlinePlus

    ... Bed Bugs — Do-it-yourself Bed Bug Control — Pesticides to Control Bed Bugs Bed Bug Information Clearinghouse ... Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems ...

  13. Modular high-temperature gas-cooled reactor core heatup accident simulations

    SciTech Connect

    Ball, S.J.; Conklin, J.C.

    1989-01-01

    The design features of the modular high-temperature gas-cooled reactor (HTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. Simulations of long-term loss-of-forced-convection (LOFC) accidents, both with and without depressurization of the primary coolant and with only passive cooling available to remove afterheat, have shown that maximum core temperatures stay below the point at which fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. 4 refs., 5 figs.

  14. Pre- and postirradiation evaluation of fuel in capsule HRB-14. [HTGR

    SciTech Connect

    Young, C.A.

    1980-09-01

    Capsule HRB-14 was irradiated jointly by Oak Ridge National Laboratory and General Atomic Company (GA). This report covers the pre- and postirradiation characterization and evaluation of the GA fuel. The experiment was primarily to characterize the irradiation performance of TRISO-coated low-enriched (Th,U)O/sub 2/, UC/sub 0/ /sub 7/O/sub 0/ /sub 5/, and UO/sub 2/ particles and TRISO ThO/sub 2/ particles. Twenty cured-in-place fuel rods containing the fuel particles were irradiated at 960/sup 0/ to 1130/sup 0/C. The fluence was 4.5 to 8.3 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/. The fertile burnup was 4.1% to 8.5% fissions per initial metal atom (FIMA); the mixed oxide burnup was 14.5% to 19.3% FIMA; the uranium fissile burnup was 27.9% to 29.5% FIMA.

  15. ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2016-05-01

    Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.

  16. Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river

    NASA Astrophysics Data System (ADS)

    Szupiany, R. N.; Amsler, M. L.; Hernandez, J.; Parsons, D. R.; Best, J. L.; Fornari, E.; Trento, A.

    2012-11-01

    Channel bifurcations associated with bars and islands are important nodes in braided rivers and may control flow partitioning and thus affect downstream confluences, as well as the formation and dynamics of bars. However, the morphodynamic processes associated with bar formation are poorly understood, and previous studies have largely concerned laboratory experiments, small natural streams, or numerical analyses with large Froude numbers, high slopes, and low Shields stresses. In these cases, the morphologic changes at bifurcations are relatively rapid, with predominant bed load transport and the suspended load playing a minor role. In this paper, the evolution of the flow structure and suspended bed sediment transport along four expansion-diffluence units in the Rio Paraná, Argentina, are described. The Rio Paraná is a large multichannel river with a bed composed of medium and fine sands and possesses low Froude numbers and high suspended bed material transport. Primary and secondary flow velocity components were measured with an acoustic Doppler current profiler (ADCP) along the expansion-diffluence units, and the backscatter signal of the ADCP was calibrated to allow simultaneous measurements of suspended bed sediment concentrations. The interactions between these variables show that the cores of primary flow velocity and suspended bed sediment concentration do not necessarily follow the thalweg at the bifurcation and that inertial effects on the suspended bed sediment may influence the morphodynamics of bar formation. It is suggested that changes in flow stage, as well as the presence of vegetation, may further increase the deposition of suspended bed sediment at the bar head. This study suggests that the ratio of suspended bed material to bed load is an important factor controlling the morphodynamics of bifurcations in large sand bed braided rivers.

  17. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  18. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  19. Summary of HTGR (high-temperature gas-cooled reactor) benchmark data from the high temperature lattice test reactor

    SciTech Connect

    Newman, D.F.

    1989-10-01

    The High Temperature Lattice Test Reactor (HTLTR) was a unique critical facility specifically built and operated to measure variations in neutronic characteristics of high temperature gas cooled reactor (HTGR) lattices at temperatures up to 1000{degree}C. The Los Alamos National Laboratory commissioned Pacific Northwest Laboratory (PNL) to prepare this summary reference report on the HTLTR benchmark data and its associated documentation. In the initial stages of the program, the principle of the measurement of k{sub {infinity}} using the unpoisoned technique (developed by R.E. Heineman of PNL) was subjected to extensive peer review within PNL and the General Atomic Company. A number of experiments were conducted at PNL in the Physical Constants Testing Reactor (PCTR) using both the unpoisoned technique and the well-established null reactivity technique that substantiated the equivalence of the measurements by direct comparison. Records of all data from fuel fabrication, the reactor experiments, and the analytical results were compiled and maintained to meet applicable quality assurance standards in place at PNL. Sensitivity of comparisons between measured and calculated k{sub {infinity}}(T) data for various HTGR lattices to changes in neutron cross section data, graphite scattering kernel models, and fuel block loading variations, were analyzed by PNL for the Electric Power Research Institute. As a part of this effort, the fuel rod composition in the dilute {sup 233}UO{sub 2}-ThO{sub 2} HTGR central cell (HTLTR Lattice {number sign}3) was sampled and analyzed by mass spectrometry. Values of k{sub {infinity}} calculated for that lattice were about 5% higher than those measured. Trace quantities of sodium chloride were found in the fuel rod that were equivalent to 22 atom parts-per-million of natural boron.

  20. Bed rest in pregnancy.

    PubMed

    Bigelow, Catherine; Stone, Joanne

    2011-01-01

    The use of bed rest in medicine dates back to Hippocrates, who first recommended bed rest as a restorative measure for pain. With the formalization of prenatal care in the early 1900s, maternal bed rest became a standard of care, especially toward the end of pregnancy. Antepartum bed rest is a common obstetric management tool, with up to 95% of obstetricians utilizing maternal activity restriction in some way in their practice. Bed rest is prescribed for a variety of complications of pregnancy, from threatened abortion and multiple gestations to preeclampsia and preterm labor. Although the use of bed rest is pervasive, there is a paucity of data to support its use. Additionally, many well-documented adverse physical, psychological, familial, societal, and financial effects have been discussed in the literature. There have been no complications of pregnancy for which the literature consistently demonstrates a benefit to antepartum bed rest. Given the well-documented adverse effects of bed rest, disruption of social relationships, and financial implications of this intervention, there is a real need for scientific investigation to establish whether this is an appropriate therapeutic modality. Well-designed randomized, controlled trials of bed rest versus normal activity for various complications of pregnancy are required to lay this debate to rest once and for all. PMID:21425272

  1. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  2. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  3. Bathing a patient in bed

    MedlinePlus

    Bed bath; Sponge bath ... Some patients cannot safely leave their beds to bathe. For these people, daily bed baths can help keep their skin healthy, control odor, and increase comfort. If moving the ...

  4. The Virtual Test Bed Project

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis

    2003-01-01

    This is a report of my activities as a NASA Fellow during the summer of 2003 at the NASA Kennedy Space Center (KSC). The core of these activities is the assigned project: the Virtual Test Bed (VTB) from the Spaceport Engineering and Technology Directorate. The VTB Project has its foundations in the NASA Ames Research Center (ARC) Intelligent Launch & Range Operations program (ILRO). The objective of the VTB project is to develop a unique collaborative computing environment where simulation models can be hosted and integrated in a seamless fashion. This collaborative computing environment will have as emphasis operational models. This report will focus on the decisions about the different simulation modeling environments considered, simulation platform development, technology and operational models assessment, and computing infrastructure implementation.

  5. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  6. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  7. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  8. Bed exit alarms.

    PubMed

    2004-09-01

    Bed-exit alarms alert caregivers that a patient who should not get out of bed unassisted is doing so. These alarms can help reduce the likelihood of falls and can promote speedy assistance to patients who have already fallen. But as we described in our May 2004 Guidance Article on bed-exit alarms, they don't themselves prevent falls. They are only effective if used as part of an overall fall-prevention program and with a clear understanding of their limitations. This Evaluation examines the effectiveness of 16 bed-exit alarms from seven suppliers. Our ratings focus primarily on each product's reliability in detecting bed-exit events and alerting caregivers, its ability to minimize nuisance alarms (alarms that sound even though the patient isn't leaving the bed or that sound while a caregiver is helping the patient to leave the bed), and its resistance to deliberate or inadvertent tampering. Twelve of the products use pressure-sensor-activated alarms (mainly sensor pads placed on or under the mattress); three use a cord that can attach to the patient's garment, alarming if the cord is pulled loose from the control unit; and one is a position-sensitive alarm attached to a leg cuff. All the products reliably detect attempted or successful bed exits. But they vary greatly in how effectively they alert staff, minimize nuisance alarms, and resist tampering. Ease of use and battery performance also vary for many units. Of the pressure-sensor units, three are rated Preferred. Those units meet most of our criteria and have no significant disadvantages. Five of the other pressure-sensor products are Acceptable, and the remaining four are Not Recommended. All three cord-activated alarms are rated Acceptable, as is the patient-worn alarm.

  9. Bed rest and immunity

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  10. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  11. Effects of surface condition on the corrosion of candidate structural materials in a simulated HTGR-GT environment

    SciTech Connect

    Thompson, L.D.

    1980-02-01

    A simulated high-temperature gas-cooled reactor (HTGR) helium environment was used to study the effects of surface finish conditions on the subsequent elevated-temperature corrosion behavior of key candidate structural materials. The environment contained helium with 500 ..mu..atm H/sub 2//50 ..mu..atm CO/50 ..mu..atm CH/sub 4//<0.5 ..mu..atm H/sub 2/O at 900/sup 0/C with total test exposure durations of 3000 hours. Specimens with lapped, grit-blasted, pickled, and preoxidized surface conditions were studied. Materials tested included two cast superalloys, IN 100 and IN 713LC; one centrifugally cast high-temperature alloy, HK 40 one oxice-dispersion-strengthened alloy, Inconel MA 754; and three wrought high-temperature alloys, Hastelloy Alloy X, Inconel Alloy 617, and Alloy 800H.

  12. Pressure Core Characterization

    NASA Astrophysics Data System (ADS)

    Santamarina, J. C.

    2014-12-01

    Natural gas hydrates form under high fluid pressure and low temperature, and are found in permafrost, deep lakes or ocean sediments. Hydrate dissociation by depressurization and/or heating is accompanied by a multifold hydrate volume expansion and host sediments with low permeability experience massive destructuration. Proper characterization requires coring, recovery, manipulation and testing under P-T conditions within the stability field. Pressure core technology allows for the reliable characterization of hydrate bearing sediments within the stability field in order to address scientific and engineering needs, including the measurement of parameters used in hydro-thermo-mechanical analyses, and the monitoring of hydrate dissociation under controlled pressure, temperature, effective stress and chemical conditions. Inherent sampling effects remain and need to be addressed in test protocols and data interpretation. Pressure core technology has been deployed to study hydrate bearing sediments at several locations around the world. In addition to pressure core testing, a comprehensive characterization program should include sediment analysis, testing of reconstituted specimens (with and without synthetic hydrate), and in situ testing. Pressure core characterization technology can be used to study other gas-charged formations such as deep sea sediments, coal bed methane and gas shales.

  13. Cooling of debris beds

    SciTech Connect

    Barleon, L.; Thomauske, K.; Werie, H.

    1984-04-01

    The dependence of the dryout heat flux for volume-heated particulate beds on bed height (less than or equal to40 cm), particle diameter (0.06 to 16 mm), stratification and boundary conditions (saturated and subcooled liquid, adiabatic and cooled bottom and sidewalls) has been determined for water and Freon-113. Channel penetration through subcooled layers and ''downward boiling'' due to capillarity effects have been observed. Different types of bed disturbances have been identified, and their effect on dryout has been studied. Using existing theoretical models, which have been verified by the experiments, the upper limit of the thermal load on support structures has been calculated as a function of the particle size and bottom temperature for reactor accident conditions (Pu/U-oxide particles in sodium).

  14. Treatment bed microbiological control

    NASA Technical Reports Server (NTRS)

    Janauer, Gilbert E.; Fitzpatrick, Timothy W.; Kril, Michael B.; Wilber, Georgia A.; Sauer, Richard L.

    1987-01-01

    The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.

  15. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  16. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  17. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-10-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  18. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  19. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  20. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  1. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  2. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  3. Technology test bed review

    NASA Astrophysics Data System (ADS)

    McConnaughey, H. V.

    1992-07-01

    The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.

  4. Technology test bed review

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.

    1992-01-01

    The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.

  5. Bed rest during pregnancy

    MedlinePlus

    ... for support groups, bulletin boards, and chat rooms online for moms-to-be who are also on bed rest. Expect emotional ups and downs. Share your hopes and worries with your partner. Let each other vent if needed. If sex is not allowed, look for other ways to ...

  6. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs.

  7. Interactive simulations of gas-turbine modular HTGR transients and heatup accidents

    SciTech Connect

    Ball, S.J.; Nypaver, D.J.

    1994-06-01

    An interactive workstation-based simulator has been developed for performing analyses of modular high-temperature gas-cooled reactor (MHTGR) core transients and accidents. It was originally developed at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission to assess the licensability of the US Department of Energy (DOE) steam cycle design 350-MW(t) MHTGR. Subsequently, the code was modified under DOE sponsorship to simulate the 450-MW(t) Gas Turbine (GT) design and to aid in development and design studies. Features of the code (MORECA-GT) include detailed modeling of 3-D core thermal-hydraulics, interactive workstation capabilities that allow user/analyst or ``operator`` involvement in accident scenarios, and options for studying anticipated transients without scram (ATWS) events. In addition to the detailed models for the core, MORECA includes models for the vessel, Shutdown Cooling System (SCS), and Reactor Cavity Cooling System (RCCS), and core point kinetics to accommodate ATWS events. The balance of plant (BOP) is currently not modeled. The interactive workstation features include options for on-line parameter plots and 3-D graphic temperature profiling. The studies to date show that the proposed MHTGR designs are very robust and can generally withstand the consequences of even the extremely low probability postulated accidents with little or no damage to the reactor`s fuel or metallic components.

  8. Design method for adsorption beds

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.; Jackson, J. K.

    1970-01-01

    Regenerable adsorption beds for long-term life support systems include synthetic geolite to remove carbon dioxide and silica gel to dehumidify the atmospheric gas prior to its passage through the geolite beds. Bed performance is evaluated from adsorption characteristics, heat and mass transfer, and pressure drop.

  9. Assessment of different bedding systems for lactating cows in freestall housing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare different bedding systems for lactating cows in freestall housing. Bedding systems included new sand (NS), recycled byproducts of manure separation (organic solids [OS] and recycled sand [RS]), and foam-core mattresses with a shallow layer of OS (MS). The e...

  10. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  11. Pebble Bed Reactor review update. Fiscal year 1979 annual report

    SciTech Connect

    Not Available

    1980-01-01

    Updated information is presented on the Pebble Bed Reactor (PBR) concept being developed in the Federal Republic of Germany for electricity generation and process heat applications. Information is presented concerning nuclear analysis and core performance, fuel cycle evaluation, reactor internals, and safety and availability.

  12. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    SciTech Connect

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  13. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  14. The Virtual Test Bed Project

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis C.

    2002-01-01

    This is a report of my activities as a NASA Fellow during the summer of 2002 at the NASA Kennedy Space Center (KSC). The core of these activities is the assigned project: the Virtual Test Bed (VTB) from the Spaceport Engineering and Technology Directorate. The VTB Project has its foundations in the NASA Ames Research Center (ARC) Intelligent Launch & Range Operations program. The objective of the VTB project is to develop a new and unique collaborative computing environment where simulation models can be hosted and integrated in a seamless fashion. This collaborative computing environment will be used to build a Virtual Range as well as a Virtual Spaceport. This project will work as a technology pipeline to research, develop, test and validate R&D efforts against real time operations without interfering with the actual operations or consuming the operational personnel s time. This report will also focus on the systems issues required to conceptualize and provide form to a systems architecture capable of handling the different demands.

  15. Calculational approach and results of the safe shutdown earthquake event for the pebble bed modular reactor

    SciTech Connect

    Van Heerden, G.; Sen, S.; Reitsma, F.

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) concept can be described as a high-temperature helium-cooled, graphite-moderated pebble-bed reactor with a multi-pass fuelling scheme. The fuel is contained in 6 cm diameter graphite spheres containing carbon-based coated UO{sub 2} kernels. An online fuel reload scheme is applied with the fuel spheres being circulated through the reactor. The pebble-bed reactor core thus consists of fuel pebbles packed in the core cavity in a random way. The packing densities and pebble flow is well known through analysis and tests done in the German experimental and development program. The pebble-bed typically has a packing fraction of 0.61. In the event of an earthquake this packing fraction may increase with the effect that the core geometry and core reactivity will change. The Safe Shutdown Earthquake (SSE) analysis performed for the PBMR 400 MW design is described in this paper, and it specifically covers SSE-induced pebble-bed packing fractions of 0.62 and 0.64. The main effects governing the addition of reactivity in the SSE event are the changes in core neutronic leakage due to the decreased core size and the decreased effectiveness of the control rods as the pebble-bed height decreases. This paper describes the models, methods and tools used to analyse the event, the results obtained for the different approaches and the consequences and safety implications of such an event. (authors)

  16. Characterization and irradiation performance of HTGR Biso-coated fertile particles in HFIR experiments HT-28, -29, and -30

    SciTech Connect

    Long, E.L. Jr.; Krautwasser, P.; Beatty, R.L.; Kania, M.J.; Morgan, C.S. Jr.; Yust, C.S.

    1980-07-01

    Capsules HT-28, -29, and -30 were irradiated in the target region of the High Flux Isotope Reactor at ORNL to determine the relative fast-neutron stability of pyrolytic carbons that had been prepared in a small laboratory coating furnace with various deposition conditions. The pyrolytic carbon coatings of 22 batches of particles of HTGR design were characterized by various methods, including optical anisotropy measurements, hot gaseous chlorine leaching, plasma oxidation, small-angle x-ray scattering (SAXS) measurements, mercury intrusion, immersion density, and, in a few cases, neon-helium permeability measurements. The results of the above measurements were used to quantify microstructural differences between pyrolytic coatings derived at various conditions and to correlate the performance of the coatings with the measured properties. The most consistent results were obtained by comparing various pore size distributions within the coatings (determined from SAXS measurements) with immersion density, mercury intrusion, chlorine leaching, and neon-helium permeability results and with irradiation performance of the coatings. This study also demonstrated that care must be exercised if experiments on coatings containing inert carbon kernels that were codeposited along with dense thoria kernels are to yield meaningful results.

  17. Coal Bed Methane Primer

    SciTech Connect

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  18. Bed Rest Muscular Atrophy

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  19. Bed drain cover assembly for a fluidized bed

    DOEpatents

    Comparato, Joseph R.; Jacobs, Martin

    1982-01-01

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  20. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  1. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  2. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  3. Fluidized-bed sorbents

    SciTech Connect

    Gangwal, S.K.; Gupta, R.P.

    1994-10-01

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

  4. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  5. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  6. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  7. Summary of Planned Implementation for the HTGR Lessons Learned Applicable to the NGNP

    SciTech Connect

    Ian Mckirdy

    2011-09-01

    This document presents a reconciliation of the lessons learned during a 2010 comprehensive evaluation of pertinent lessons learned from past and present high temperature gas-cooled reactors that apply to the Next Generation Nuclear Plant Project along with current and planned activities. The data used are from the latest Idaho National Laboratory research and development plans, the conceptual design report from General Atomics, and the pebble bed reactor technology readiness study from AREVA. Only those lessons related to the structures, systems, and components of the Next Generation Nuclear Plant (NGNP), as documented in the recently updated lessons learned report are addressed. These reconciliations are ordered according to plant area, followed by the affected system, subsystem, or component; lesson learned; and finally an NGNP implementation statement. This report (1) provides cross references to the original lessons learned document, (2) describes the lesson learned, (3) provides the current NGNP implementation status with design data needs associated with the lesson learned, (4) identifies the research and development being performed related to the lesson learned, and (5) summarizes with a status of how the lesson learned has been addressed by the NGNP Project.

  8. Gas-cooled reactor programs: High-Temperature Gas-Cooled Reactor Base-Technology Program. Annual progress report for period ending December 31, 1979

    SciTech Connect

    Not Available

    1980-07-01

    Progress in HTGR studies is reported in the following areas: HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; and evaluation of the pebble-bed HTR.

  9. 24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES FOR A BRASS GATE VALVE BODY MADE ON A CORE BOX, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  10. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  11. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  12. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  13. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  14. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  15. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  16. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  17. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  18. The Application of Long Esr Sensor Rods for Neutron and Gamma Dosimetry of the "weak" In-Reactor Irradiation of the Htgr Fuel

    NASA Astrophysics Data System (ADS)

    Usatyi, A. F.; Momot, G. V.; Kaynov, V. B.; Kuznetsov, A. I.

    2003-06-01

    In order to measure the general spatial distribution of the thermal neutron fluence during the so called "weak" irradiation (less than 1017 n/m2) of HTGR nuclear fuel for subsequent high temperature tests including fission products release, we apply local (0.3 cm rings) and distributed (long rods up to 65 cm) accumulative detectors of neutrons and gamma with results' reading by the electron spin resonance method (ESR-sensors). Sensors materials are: silicate ceramic (glass) containing B2O3 (neutron sensor) and quartz with Al2O3 addition (gamma sensor). The new possibilities of nontraditional ESR-sensors, a new type of nuclear radiation detectors are discussed.

  19. Dynamic bed reactor

    SciTech Connect

    Stormo, K.E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix. 27 figs.

  20. Dynamic bed reactor

    DOEpatents

    Stormo, Keith E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  1. Multiscale Analysis of Pebble Bed Reactors

    SciTech Connect

    Hans Gougar; Woo Yoon; Abderrafi Ougouag

    2010-10-01

    – The PEBBED code was developed at the Idaho National Laboratory for design and analysis of pebble-bed high temperature reactors. The diffusion-depletion-pebble-mixing algorithm of the original PEBBED code was enhanced through coupling with the THERMIX-KONVEK code for thermal fluid analysis and by the COMBINE code for online cross section generation. The COMBINE code solves the B-1 or B-3 approximations to the transport equation for neutron slowing down and resonance interactions in a homogeneous medium with simple corrections for shadowing and thermal self-shielding. The number densities of materials within specified regions of the core are averaged and transferred to COMBINE from PEBBED for updating during the burnup iteration. The simple treatment of self-shielding in previous versions of COMBINE led to inaccurate results for cross sections and unsatisfactory core performance calculations. A new version of COMBINE has been developed that treats all levels of heterogeneity using the 1D transport code ANISN. In a 3-stage calculation, slowing down is performed in 167 groups for each homogeneous subregion (kernel, particle layers, graphite shell, control rod absorber annulus, etc.) Particles in a local average pebble are homogenized using ANISN then passed to the next (pebble) stage. A 1D transport solution is again performed over the pebble geometry and the homogenized pebble cross sections are passed to a 1-d radial model of a wedge of the pebble bed core. This wedge may also include homogeneous reflector regions and a control rod region composed of annuli of different absorbing regions. Radial leakage effects are therefore captured with discrete ordinates transport while axial and azimuthal effects are captured with a transverse buckling term. In this paper, results of various PBR models will be compared with comparable models from literature. Performance of the code will be assessed.

  2. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  3. LSP Composite Test Bed Design

    NASA Technical Reports Server (NTRS)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  4. Core layering

    NASA Astrophysics Data System (ADS)

    Jacobson, S. A.; Rubie, D. C.; Hernlund, J. W.; Morbidelli, A.

    2015-12-01

    We have created a planetary accretion and differentiation model that self-consistently builds and evolves Earth's core. From this model, we show that the core grows stably stratified as the result of rising metal-silicate equilibration temperatures and pressures, which increases the concentrations of light element impurities into each newer core addition. This stable stratification would naturally resist convection and frustrate the onset of a geodynamo, however, late giant impacts could mechanically mix the distinct accreted core layers creating large homogenous regions. Within these regions, a geodynamo may operate. From this model, we interpret the difference between the planetary magnetic fields of Earth and Venus as a difference in giant impact histories. Our planetary accretion model is a numerical N-body integration of the Grand Tack scenario [1]—the most successful terrestrial planet formation model to date [2,3]. Then, we take the accretion histories of Earth-like and Venus-like planets from this model and post-process the growth of each terrestrial planet according to a well-tested planetary differentiation model [4,5]. This model fits Earth's mantle by modifying the oxygen content of the pre-cursor planetesimals and embryos as well as the conditions of metal-silicate equilibration. Other non-volatile major, minor and trace elements included in the model are assumed to be in CI chondrite proportions. The results from this model across many simulated terrestrial planet growth histories are robust. If the kinetic energy delivered by larger impacts is neglected, the core of each planet grows with a strong stable stratification that would significantly impede convection. However, if giant impact mixing is very efficient or if the impact history delivers large impacts late, than the stable stratification can be removed. [1] Walsh et al. Nature 475 (2011) [2] O'Brien et al. Icarus 223 (2014) [3] Jacobson & Morbidelli PTRSA 372 (2014) [4] Rubie et al. EPSL 301

  5. Pulling a patient up in bed

    MedlinePlus

    Moving a patient in bed ... You must move or pull someone up in bed the right way to avoid injuring the patient's ... people to safely move a patient up in bed. Friction from rubbing can scrape or tear the ...

  6. Exercise thermoregulation with bed rest, confinement, and immersion deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1997-01-01

    Altered thermoregulation following exposure to prolonged (12-14 days) of bed rest and 6 hr of head-down thermoneutral water immersion in humans, and cage confinement (8 weeks) in male, mongrel dogs resulted in occasional increased core temperature (Tcore) at rest, but consistent "excessive" increase in Tcore during submaximal exercise. This excessive increase in Tcore in nonexercising and exercising subjects was independent of the mode (isometric or isotonic) of exercise training during bed rest, and was associated with the consistent hypovolemia in men but not in women taking estrogen supplementation (1.25 mg premarin/ day) which restored plasma volume during bed rest to ambulatory control levels. Post-bed rest exercise sweating (evaporative heat loss) was unchanged or higher than control levels; however, calculated tissue heat conductance was significantly lower in men, and forearm venoconstriction was greater (venous volume was reduced) in women during exercise after bed rest. Because sweating appeared proportional to the increased level of Tcore, these findings suggest that one major factor for the excessive hyperthermia is decreased core to periphery heat conduction. Exercising dogs respond like humans with excessive increase in both rectal (Tre) and exercising muscle temperatures (Tmu) after confinement and, after eight weeks of exercise training on a treadmill following confinement, they had an attenuated rate of increase of Tre even below ambulatory control levels. Intravenous infusion of glucose also attenuated not only the rise in Tre during exercise in normal dogs, but also the excessive rise in Tre and exercising Tmu after confinement. Oral glucose also appeared to reduce the rate of increase in excessive Tre in men after immersion deconditioning. There was a greater rate of rise in Tcore in two cosmonauts during supine submaximal exercise (65% VO2 max) on the fifth recovery day after the 115-day Mir 18 mission. Thus, the excessive rise in core

  7. Particle pressures in fluidized beds

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.; Potapov, A.V.

    1992-01-01

    This is an experimental project to make detailed measurements of the particle pressures generated in fluidized beds. The focus lies in two principle areas: (1) the particle pressure distribution around single bubbles rising in a two-dimensional gas-fluidized bed and (2) the particle pressures measured in liquid-fluidized beds. This first year has largely been to constructing the experiments The design of the particle pressure probe has been improved and tested. A two-dimensional gas-fluidized bed has been constructed in order to measure the particle pressure generated around injected bubbles. The probe is also being adapted to work in a liquid fluidized bed. Finally, a two-dimensional liquid fluidized bed is also under construction. Preliminary measurements show that the majority of the particle pressures are generated in the wake of a bubble. However, the particle pressures generated in the liquid bed appear to be extremely small. Finally, while not directly associated with the particle pressure studies, some NERSC supercomputer time was granted alongside this project. This is being used to make large scale computer simulation of the flow of granular materials in hoppers.

  8. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, Jack L.

    1993-01-01

    The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded

  9. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOEpatents

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  10. Avionics test bed development plan

    NASA Technical Reports Server (NTRS)

    Harris, L. H.; Parks, J. M.; Murdock, C. R.

    1981-01-01

    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.

  11. Bed Bugs: The Australian Response.

    PubMed

    Doggett, Stephen L; Orton, Christopher J; Lilly, David G; Russell, Richard C

    2011-01-01

    Australia has experienced a sudden and unexpected resurgence in bed bug infestations from both Cimex lectularius L. and Cimex hemipterus F. A survey in 2006 revealed that infestations had increased across the nation by an average of 4,500% since the start of the decade. In response, a multi-disciplinary approach to combat the rise of this public health pest was implemented and involved the coordinated efforts of several organizations. The key components of the strategy included the introduction of a pest management standard 'A Code of Practice for the Control of Bed Bug Infestations in Australia' that defines and promotes 'best practice' in bed bug eradication, the development of a policy and procedural guide for accommodation providers, education of stakeholders in best management practices, and research. These strategies continue to evolve with developments that lead to improvements in 'best practice' while bed bugs remain problematic in Australia.

  12. Flight Analogs (Bed Rest Research)

    NASA Video Gallery

    Flight Analogs / Bed Rest Research Projects provide NASA with a ground based research platform to complement space research. By mimicking the conditions of weightlessness in the human body here on ...

  13. Bed Bugs: The Australian Response

    PubMed Central

    Doggett, Stephen L.; Orton, Christopher J.; Lilly, David G.; Russell, Richard C.

    2011-01-01

    Australia has experienced a sudden and unexpected resurgence in bed bug infestations from both Cimex lectularius L. and Cimex hemipterus F. A survey in 2006 revealed that infestations had increased across the nation by an average of 4,500% since the start of the decade. In response, a multi-disciplinary approach to combat the rise of this public health pest was implemented and involved the coordinated efforts of several organizations. The key components of the strategy included the introduction of a pest management standard ‘A Code of Practice for the Control of Bed Bug Infestations in Australia’ that defines and promotes ‘best practice’ in bed bug eradication, the development of a policy and procedural guide for accommodation providers, education of stakeholders in best management practices, and research. These strategies continue to evolve with developments that lead to improvements in ‘best practice’ while bed bugs remain problematic in Australia. PMID:26467616

  14. Fluid bed oligomerization of olefins

    SciTech Connect

    Harandi, M.N.; Owens, H.

    1991-08-27

    This patent describes a continuous process for upgrading lower olefins to increase gasoline yield and ease of LPG recovery. It comprises separating a C{sub 2}-C{sub 4} cracked olefinic gas into a primary overhead stream containing C{sub 2} hydrocarbons having at least about 10% ethene and a secondary stream comprising a major amount of C{sub 3}-c{sub 4} olefinic hydrocarbons; adding the primary stream containing C{sub 2} hydrocarbons to a primary fluidized reaction zone comprising solid crystalline zeolite catalyst particles in a reactor bed operating under high severity conditions; adding the secondary stream comprising C{sub 3}-C{sub 4} olefinic hydrocarbons to a secondary fluidized bed reaction zone comprising solid crystalline zeolite catalyst particles in a reactor bed operating under turbulent regime low severity conditions; and withdrawing a portion of partially deactivated catalyst particles from the primary high severity fluidized bed reaction zone.

  15. Operating characteristics of rotating beds

    SciTech Connect

    Keyvani, M.; Gardner, N.C.

    1988-01-01

    Vapor-liquid contacting in high gravitational fields offers prospects for significant reductions in the physical size, capital, and operating costs of packed towers. Pressure drops, power requirements, mass transfer coefficients and liquid residence time distributions are reported for a rotating bed separator. The beds studied were rigid, foamed aluminum, with specific surface areas ranging from 650 to 3000 m{sup 2}/m{sup 2}. Gravitational fields were varied from 50 to 300g.

  16. Bed-exit alarm effectiveness

    PubMed Central

    Capezuti, Elizabeth; Brush, Barbara L.; Lane, Stephen; Rabinowitz, Hannah U.; Secic, Michelle

    2009-01-01

    This study describes the accuracy of two types of bed-exit alarms to detect bed-exiting body movements: pressure-sensitive and a pressure sensitive combined with infrared beam detectors (dual sensor system). We also evaluated the occurrence of nuisance alarms, or alarms that are activated when a participant does not attempt to get out of bed. Fourteen nursing home residents were directly observed for a total of 256 nights or 1,636.5 hours; an average of 18.3 ± 22.3 (± S.D.) nights/participant for an average of 6.4 ± 1.2 hours/night. After adjusting for body movements via repeated measures, Poisson regression modeling, the least squares adjusted means show a marginally significant difference between the type of alarm groups on the number of true positives (mean/S.E.M. = 0.086/1.617) for pressure-sensitive vs. dual sensor alarm (0.593/1.238; p = 0.0599) indicating that the dual sensor alarm may have a higher number of true positives. While the dual sensor bed-exit alarm was more accurate than the pressure sensitive alarm in identifying bed-exiting body movements and reducing the incidence of false alarms, false alarms were not eliminated altogether. Alarms are not a substitute for staff; adequate staff availability is still necessary when residents need or wish to exit bed. PMID:18508138

  17. Bed-exit alarm effectiveness.

    PubMed

    Capezuti, Elizabeth; Brush, Barbara L; Lane, Stephen; Rabinowitz, Hannah U; Secic, Michelle

    2009-01-01

    This study describes the accuracy of two types of bed-exit alarms to detect bed-exiting body movements: pressure-sensitive and a pressure-sensitive combined with infrared (IR) beam detectors (dual sensor system). We also evaluated the occurrence of nuisance alarms, or alarms that are activated when a participant does not attempt to get out of bed. Fourteen nursing home residents were directly observed for a total of 256 nights or 1636.5h; an average of 18.3+/-22.3 (+/-S.D.) nights/participant for an average of 6.4+/-1.2 h/night. After adjusting for body movements via repeated measures, Poisson regression modeling, the least squares adjusted means (LSM) show a marginally significant difference between the type of alarm groups on the number of true positives (NTP) (mean/S.E.M.=0.086/1.617) for pressure-sensitive versus dual sensor alarm (0.593/1.238; p=0.0599) indicating that the dual sensor alarm may have a higher NTP. While the dual sensor bed-exit alarm was more accurate than the pressure-sensitive alarm in identifying bed-exiting body movements and reducing the incidence of false alarms, false alarms were not eliminated altogether. Alarms are not a substitute for staff; adequate staff availability is still necessary when residents need or wish to exit bed.

  18. Northern European Satellite Test Bed

    NASA Astrophysics Data System (ADS)

    Schuster-Bruce, Alan; Lawson, James; Quinlan, Michael; McGregor, Andrew

    Satellite Based Augmentation Systems are being developed in Europe (EGNOS), the USA (WAAS), and in Japan (MSAS). As part of their support to EGNOS, NATS and Racal have developed and deployed a prototype SBAS system called the Northern European Satellite Test Bed (NEST Bed). NEST Bed uses GPS L1/L2 reference stations at: Aberdeen, Rotterdam, Ankara, Cadiz, Keflavik, and Bronnoysund. Data is sent to the Master Control Centre at NATS Gatwick Services Management Centre for processing. The resulting 250 bits-per-second message is sent to Goonhilly for up-linking by BT to the Navigation Payload of either the Inmarsat AOR-E or F5 spare satellite. NEST Bed was deployed and commissioned during summer 1998, and flight tests were successfully demonstrated at the September 1998 Farnborough Air Show where approaches were flown to Boscombe Down on the DERA BAC1-11 aircraft. In October 1998, a NATS/FAA flight trial was held in Iceland involving NEST Bed and the FAA NSTB. NEST Bed is also being used for SARPS validation.

  19. 49 CFR 236.336 - Locking bed.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking bed. 236.336 Section 236.336 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.336 Locking bed. The various parts of the locking bed, locking bed supports, and tappet...

  20. 21 CFR 880.6070 - Bed board.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bed board. 880.6070 Section 880.6070 Food and....6070 Bed board. (a) Identification. A bed board is a device intended for medical purposes that consists of a stiff board used to increase the firmness of a bed. (b) Classification. Class I...

  1. Mercury's Core

    NASA Astrophysics Data System (ADS)

    Peale, S. J.

    2005-05-01

    In determining Mercury's core structure from its rotational properties, the location of Cassini state 1 is crucial. Convincing radar evidence indicates that the mantle rests on a liquid layer (Margot et al. 2005), but there are no empirical constraints on the moment of inertia C/MR2, which constraints must wait for the determination of the gravitational coefficients J2 and C22 from the MESSENGER orbiting spacecraft, and an accurate determination of the obliquity of the Cassini state. Tidal and core-mantle dissipation drive the spin to the Cassini state with a time scale O(105) years, so the spin should occupy the Cassini state and thereby define its obliquity---unless there has been a recent excitation of a free precession of the spin. Another way the spin might be displaced from the Cassini state is if the variations in the orbital elements, which change the position of the Cassini state, cause the spin axis to lag behind as it attempts to follow the state. Fortunately, the solid angle the spin axis encloses as it precesses around the Cassini state is an adiabatic invariant, and it is conserved if the orbital element variations are slow compared to the precession rate. As the precession period is O(1000) years, and the time scales of orbital parameter variations are O(105) years, the spin axis should remain very close to the Cassini state if it were ever close. But how close is close? The increasing precision of the radar and eventual spacecraft measurements warrants a check on the likely proximity of the spin axis to the Cassini state. By numerically following the positions of the spin axis and Cassini state with orbital parameters varying with time scales and amplitudes comparable to the real variations, we show that the spin should remain within 1″ of the Cassini state once dissipative torques bring it there. The current spin axis position should thus define the Cassini state sufficiently to put reasonably tight constraints on the core structure

  2. Rapid ignition of fluidized bed boiler

    DOEpatents

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  3. Clinical physiology of bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  4. Space station propulsion test bed

    NASA Technical Reports Server (NTRS)

    Briley, G. L.; Evans, S. A.

    1989-01-01

    A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

  5. Postirradiation examination report of TRISO and BISO coated ThO/sub 2/ particles irradiated in capsules HT-31 and HT-33. [HTGR

    SciTech Connect

    Sedlak, B.J.

    1980-01-01

    Capsules HT-31 and HT-33 were uninstrumented capsule experiments irradiated in the target position of the High-Flux Isotope Reactor at Oak Ridge National Laboratory. The experiments were used to evaluate the irradiation performance of (1) fuel fabricated in a 240-mm-diameter coater for production scale-up, (2) TRISO ThO/sub 2/ and BISO ThO/sub 2/ particles, and (3) fuel with certain OPyC variables. A total of 16 BISO particle samples and 32 TRISO particle samples were irradiated to fast neutron fluences ranging from 4.0 to 11.7 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/ and heavy metal burnups between 3.5% and 13.2% FIMA at temperatures from 1150/sup 0/ to 1530/sup 0/C.

  6. Creep-fatigue damage evaluation of a nickel-base heat-resistant alloy Hastelloy XR in simulated HTGR helium gas environment

    NASA Astrophysics Data System (ADS)

    Tsuji, Hirokazu; Nakajima, Hajime

    1994-02-01

    The properties of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the HTTR, under creep-fatigue interaction conditions were examined by performing a series of axial strain-controlled fully reversed fatigue tests in the simulated HTGR helium gas environment at 700, 800, 900 and 950°C. Two types of evaluation techniques, i.e., the life fraction rule and the ductility exhaustion one, were applied for the evaluation of the creep damage during the strain holding. The fatigue life reduction due to the strain holding is observed even at hold times of 6 s, and the saturation point of the fatigue life reduction shifts to the shorter hold time side with increasing temperature. The life fraction rule predicts an excessively conservative value for the creep damage. The ductility exhaustion rule can predict the fatigue life under the effective creep condition much more successfully than the life fraction one.

  7. Consider nonfouling fluidized bed exchangers

    SciTech Connect

    Klaren, D.G.; Baiiie, R.E. )

    1989-07-01

    Applications for fluidized bed heat exchangers in various industries, their operating principles and a detailed analysis of their suitability for replacing double-pipe scraped-surface heat exchangers in lube oil plants are discussed. Development of the fluidized bed heat exchanger started in the early 70s and was totally dedicated to improvement of the multistage flash evaporator for sea water desalination. This resulted in a demonstration plant with a fluidized bed heat exchanger with a total heat transfer surface of over 1,000 m/sup 2/. Over an operating period of more than 15,000 hours untreated sea water was heated to more than 120{sup 0}C without any fouling in the tubes due to scale deposits.

  8. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  9. Bed material agglomeration during fluidized bed combustion. Final report

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1996-01-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

  10. Effect of cage bedding on temperature regulation and metabolism of group-housed female mice.

    PubMed

    Gordon, Christopher J

    2004-02-01

    Mice are generally housed in groups in cages lined with an absorbent bedding material at ambient temperature (Ta) of 20 to 24 degrees C, which is comfortable for humans, but cool for mice. Little is known about the effects of bedding on thermoregulation of group-housed mice. To determine whether bedding material affects thermoregulatory stability, core temperature (Tc) and motor activity (MA) were monitored by use of radiotelemetry in female CD-1 mice housed in groups of four in a standard plastic cage at Ta of 23.5 degrees C. Ten groups were tested using three types of bedding material: a deep layer of heat-treated wood shavings (DWS) that allowed mice to burrow, a thin layer of wood shavings (TWS) just covering the bottom of the cage floor, or a layer of beta chips (BC). Mice could not burrow in the TWS or BC. The Tc and MA were affected by bedding type and time of day. Mice housed with DWS maintained a significantly higher Tc (deltaTc = 1.0 degrees C) during the day, compared with that in mice housed with TWS and BC. During the night, Tc and MA were high in all groups and there was no effect of bedding type on Tc or MA. Effect of bedding on metabolic rate (MR) was estimated by measuring oxygen consumption for six hours in groups of four mice at Ta of 23.5 degrees C. The Tc was significantly reduced in mice housed on the TWS and BC, but MR was unaffected by bedding type. There was a trend for higher MR in mice on BC. Compared with use of other bedding materials, housing mice on DWS and comparable materials provides an environment to burrow, thus reducing heat loss. The effects of bedding material on temperature regulation may affect rodent health and well being. Moreover, bedding will affect variability in toxicologic and pharmacologic studies whenever an endpoint is dependent on body temperature.

  11. Effect of cage bedding on temperature regulation and metabolism of group-housed female mice.

    PubMed

    Gordon, Christopher J

    2004-02-01

    Mice are generally housed in groups in cages lined with an absorbent bedding material at ambient temperature (Ta) of 20 to 24 degrees C, which is comfortable for humans, but cool for mice. Little is known about the effects of bedding on thermoregulation of group-housed mice. To determine whether bedding material affects thermoregulatory stability, core temperature (Tc) and motor activity (MA) were monitored by use of radiotelemetry in female CD-1 mice housed in groups of four in a standard plastic cage at Ta of 23.5 degrees C. Ten groups were tested using three types of bedding material: a deep layer of heat-treated wood shavings (DWS) that allowed mice to burrow, a thin layer of wood shavings (TWS) just covering the bottom of the cage floor, or a layer of beta chips (BC). Mice could not burrow in the TWS or BC. The Tc and MA were affected by bedding type and time of day. Mice housed with DWS maintained a significantly higher Tc (deltaTc = 1.0 degrees C) during the day, compared with that in mice housed with TWS and BC. During the night, Tc and MA were high in all groups and there was no effect of bedding type on Tc or MA. Effect of bedding on metabolic rate (MR) was estimated by measuring oxygen consumption for six hours in groups of four mice at Ta of 23.5 degrees C. The Tc was significantly reduced in mice housed on the TWS and BC, but MR was unaffected by bedding type. There was a trend for higher MR in mice on BC. Compared with use of other bedding materials, housing mice on DWS and comparable materials provides an environment to burrow, thus reducing heat loss. The effects of bedding material on temperature regulation may affect rodent health and well being. Moreover, bedding will affect variability in toxicologic and pharmacologic studies whenever an endpoint is dependent on body temperature. PMID:15027620

  12. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  13. Review: granulation and fluidized beds

    SciTech Connect

    Kono, H.

    1981-01-01

    The history of granulation techniques is very long; however, the systematic study of the granulation phenomenon began only after 1950. The first, distinguished paper treating the fundamental binding mechanism of granules was published by Rumpf in 1958. Although there are several binding forces, the discussion in this paper is confined to granulation involving the capillary energy of a liquid-particle system. This technique has been applied widely and successfully to various fields of powder technology because of its advantages of simplicity and economy (ref. 2). Granules with diameters larger than 5 mm can be prepared efficiently by rotating-type granulators, such as a pan or a trommel (ref. 3, 4, 5). On the other hand, the purpose of fluidized-bed granulators (hereafter abbreviated as FBG) is to produce small granules with diameters from 0.3 to 3 mm (ref. 6). Because it contains a small amount of liquid, a fluidized-bed granulator has a fluidization state differing significantly from that of an ordinary fluidized bed. The dispersion of liquid and powder in the bed plays an important role in the granulation mechanism. This mechanism is compared to that of pan granulators, and the differences in characteristics are discussed.

  14. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  15. Berlin Emissivity Database (BED) Archive

    NASA Astrophysics Data System (ADS)

    D'Amore, M.; Helbert, J.; Maturilli, A.

    2009-03-01

    The Berlin Emissivity Database ranges from 3 to 50 µm. BED comprises several grain-sized mineral, up to high temperature, and has a modular structure, to collect in the future Raman measurement, samples pictures, thin section images and so on.

  16. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  17. Laboratory rearing of bed bugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resurgence of bed bugs Cimex lectularius L. in the United States and worldwide has resulted in an increase in research by university, government, and industry scientists directed at the biology and control of this blood-sucking pest. A need has subsequently arisen for producing sufficient biolog...

  18. Bed stability in unconfined gravel bed mountain streams: With implications for salmon spawning viability in future climates

    NASA Astrophysics Data System (ADS)

    McKean, Jim; Tonina, Daniele

    2013-09-01

    Incubating eggs of autumn-spawning Chinook salmon (Oncorhynchus tshawytscha) could be at risk of midwinter high flows and substrate scour in a changing climate. A high-spatial-resolution multidimensional hydrodynamics model was used to assess the degree of scour risk in low-gradient unconfined gravel bed channels that are the favored environment for autumn-spawning salmon in mountain watersheds such as the Middle Fork Salmon River (MFSR), Idaho. In one of the most important MFSR spawning tributaries, near-bed shear stresses were relatively low at all discharges from base flows to 300% of bankfull. The highest stresses were found only in small areas of the central flow core and not at spawning sites. Median shear stresses did not increase in overbank flow conditions because poor channel confinement released the excess water into adjacent floodplains. Channel and floodplain topography, rather than discharge, control the maximum near-bed shear stresses. Over the modeled range of discharges, ~2% of the total surface area of the main stem channel bed was predicted to be mobile. Even in known spawning areas, where shear stresses are higher, ≤20% of the spawning surface area was mobile during overbank flows with a 2 year recurrence interval. Field measurements of little gravel transport during flows that were 93% of bankfull support the numerical model predictions. Regardless of some uncertainty in future climates in these watersheds, there appears to be relatively limited risk of extensive scour at salmon spawning sites in any likely hydrologic regimes.

  19. The NASA Bed Rest Project

    NASA Technical Reports Server (NTRS)

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  20. Doppler Scanning of Sediment Cores: A Useful Method for Studying Sedimentary Structures and Defining the Cutting Angle for Half Cores

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namik; Biltekin, Demet; Eris, Kadir; Albut, Gulum; Ogretmen, Nazik; Arslan, Tugce; Sari, Erol

    2014-05-01

    We tested the doppler ultrasound scanning of sediment cores in PVC liners using 8 megahertz ultrasonic waves for detection of angular laminations. The method was tested with artificially prepared cores as well as marine and lake sediment cores, and proven to be a useful and fast technique for imaging and determining the vertical angularity of sedimentary structures, such as laminations and beddings. Random cutting axes provide two angularities on X and Y dimensions. In this study, the main scientific problem is 'sequential angular disconformity'. Importance of detection of these anomalies on whole cores before dividing into half cores based on determining the right cutting axes. Successful imaging was obtained from top three centimeter depth of the sediments below the PVC liner, using a linear Doppler probe. Other Doppler probes (e.g., convex probe) did not work for core scanning because of their wave-form and reflection characteristics. Longitudinal and rotational scanning with gap filler and ultrasonic wave conductive gel material for keeping energy range of wave is necessary for detecting the variation in the dip of the bedding and laminae in the cores before separation. Another angular reasoned problem is about horizontal surface and can be easily solved with adjustable position of sensor or ray source placement. Border of sampling points between two different lithology must be stay with regard to neighbour sediment angles. Vertical angularity correction is not easy and its effect on signal propagation, detection biases and effectible to mixed samples contamination during physical sampling (particle size analyzing). Determining the attitude of angled bedding before core splitting is important for further core analyses such as elemental analysis and digital X-ray radiography. After Doppler scanning, the splitting direction (i.e., vertical to bedding and lamination) can be determined. The method is cheap, quick and non- hazardous to health, unlike the x

  1. Geochemical changes and fracture development in Woodford Shale cores following hydrous pyrolysis under uniaxial confinement

    USGS Publications Warehouse

    Birdwell, Justin E.; Lewan, Michael D.; Miller, Michael; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A uniaxial confinement clamp was used on Woodford Shale cores in hydrous pyrolysis experiments to study fracture development during thermal maturation. The clamp simulates overburden in that it prevents cores from expanding perpendicular to bedding fabric during the volume-increasing reactions associated with petroleum generation. Cores were cut from a slab of immature Woodford Shale and subjected to hydrous pyrolysis under confinement at 300, 330, and 365 °C for 72 hours to induce thermal maturities ranging from early bitumen to maximum expelled-oil generation. Two additional cores were used as experimental controls: (1) a confined core was saturated with water by heating it to 100 °C under hydrous pyrolysis conditions for 72 hours to use for characterization of the original rock, and (2) an unconfined core was heated at 365 °C for 72 hours to evaluate the effects of confinement on petroleum generation and expulsion. X-ray computed tomography (X-CT) imaging and other analyses identified five distinct beds within the cored interval. Using a tentative classification system, beds 1, 2, and 3 are described as dolomitic marlstone (DM) with total organic carbon (TOC) contents of 7.7, 5.8, and 7.7 wt. %, respectively; bed 4 is a cherty quartzose claystone (CQC) with TOC content of 5.5 wt. %; and bed 5 is a quartzose claystone with TOC content of 10.9 wt. %. Bed samples all had similar Rock-Eval hydrogen indices (600 ± 46 mg S2/g-TOC) and Tmax values (433 ± 2 °C), demonstrating organic matter uniformity and low thermal maturity. The X-CT scan of the core heated to 100 °C showed preexisting fractures that were nearly perpendicular to the bedding fabric primarily in the low-TOC DM bed 2 and CQC bed 4. Heating led to enhancement of preexisting fractures in the confined cores with the greatest enhancement occurring in CQC bed 4. The fractures increased in size and intensity with temperature. This is attributed to the internal pressure generated by volume

  2. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  3. [Historical analysis of the hospital bed].

    PubMed

    Fajardo-Ortiz, Guillermo; Fajardo-Dolci, Germán

    2010-01-01

    Until now the bed has been the basic physical resource in hospitals. This type of furniture has served to study and treat patients, through out the centuries it has undergone changes in the materials they are made of dimensions, functionality, accessories, aesthetic, and design. The hospital bed history is not well known, there are thousands of documents about the evolution of hospitals, but not enough is known about hospital beds, a link between the past and the present. The medical, anthropological, technological, social, and economic dynamics and knowledge have produced a variety of beds in general and hospital beds in particular. From instinctive, rustic, poor and irregular "sites" that have differed in shape and size they had evolved into ergonomic equipment. The history of the hospital bed reflects the culture, techniques and human thinking. Current hospital beds include several types: for adults, for children, for labor, for intensive therapy, emergency purposes, census and non census beds etc.

  4. Bacillus cereus in free-stall bedding.

    PubMed

    Magnusson, M; Svensson, B; Kolstrup, C; Christiansson, A

    2007-12-01

    To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log(10) B. cereus spores, 5.5 log(10) B. cereus, and 6.7 log(10) coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows' udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the

  5. Dual-core antiresonant hollow core fibers.

    PubMed

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters.

  6. Swing-beds: the Arizona experience.

    PubMed

    Williams, F G; Netting, F E

    1991-06-01

    Swing-beds are acute-care hospital beds temporarily used for long-term care. A demonstration program was developed to evaluate the effectiveness of using swing-beds as catalysts for the expansion of rural hospitals into community health centers to respond better to the needs of older persons in their respective communities. We examined the background and implementation issues of the swing-bed demonstration program in six rural Arizona hospitals.

  7. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-01

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle.

  8. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  9. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  10. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  11. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  12. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  13. Bed Bug Education for School Maintenance

    ERIC Educational Resources Information Center

    Henriksen, Missy

    2012-01-01

    Bed bugs are a growing problem, not only in homes and hotels, but also in schools and colleges. Facility administrators and staff need to understand the bed bug resurgence and develop best practices to deal with an infestation. In this article, the author offers tips for preventing and treating bed bugs in school and university settings.

  14. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  15. Dermatology Residents are Prescribing Tanning Bed Treatment.

    PubMed

    Anderson, Kathryn L; Huang, Karen E; Huang, William W; Feldman, Steven R

    2016-01-01

    Although 90% of dermatologists discourage the use of tanning beds, about half of psoriasis patients report using tanning beds and most of these note improvement. The purpose of this investigation was to determine if dermatology residents are advocating the tanning bed use to their patients. PMID:27617718

  16. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  17. Bed occupancy by diabetic patients.

    PubMed

    Moffitt, P; Fowler, J; Eather, G

    1979-03-24

    The Royal Newcastle Hospital Diabetic Education and Stabilization Centre was instituted primarily to improve diabetics' understanding of their disease and its everyday management. Simultaneously with a five-day education course, stabilization if insulin-dependent diabetics was undertaken on an outpatient basis. In order to disseminate diabetic education as widely as possible, trained nurses from near and far were included in each course. It is believed that these nurses will be able to offer good advice to diabetics who have no other source of reliable information. By actively attempting to reduce hospital bed occupancy by diabetics there has been a reduction of 1400 bed days per year. It is recommended that similar centres be instituted throughout Australia.

  18. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  19. Avionics test bed development plan

    NASA Technical Reports Server (NTRS)

    Harris, L. H.; Parks, J. M.; Murdock, C. R.

    1981-01-01

    The plan is for a facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements. This plan outlines a distributed data processing facility that will utilize the current JSC laboratory resources for the test bed development. The future studies required for implementation, the management system for project control, and the baseline system configuration are described.

  20. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  1. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    DOE PAGESBeta

    Bess, John D.; Montierth, Leland; Köberl, Oliver; Snoj, Luka

    2014-10-09

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the ²³⁵U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of keff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greatermore » than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of keff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  2. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    SciTech Connect

    Bess, John D.; Montierth, Leland; Köberl, Oliver; Snoj, Luka

    2014-10-09

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the ²³⁵U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of keff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of keff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  3. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  4. Clinical skills: bed making and patient positioning.

    PubMed

    Pellatt, Glynis Collis

    Providing a clean, comfortable bed and positioning a patient in the optimum posture for prevention of complications and to enable maximum independence are fundamental nursing skills. Bed-making is a daily routine that requires practical and technical skills. Selecting the correct posture for a patient in bed or in a chair is essential for physiological functioning and recovery. In this article bed-making is described, as are positioning and re-positioning in relation to patients in bed, armchairs and wheelchairs. Infection control and moving and handling issues are also considered. PMID:17505378

  5. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    DOEpatents

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  6. Bacterial counts associated with recycled newspaper bedding.

    PubMed

    Hogan, J S; Smith, K L; Todhunter, D A; Schoenberger, P S

    1990-07-01

    Bacterial counts associated with recycled newspaper, wood shavings, and pelleted corn cobs used as bedding for lactating dairy cows were compared. Chopped newspaper and pelleted corn cobs had similar gram-negative bacterial, coliform, and streptococcal bedding counts. Staphylococcal counts in pelleted corn cobs were greater than in chopped newspaper. Conversely, gram-negative bacterial, coliform, and staphylococcal counts in chopped newspaper were greater than in wood shavings. Coliform and streptococcal counts did not differ between chopped newspaper and wood shavings bedding materials. Teat swab counts from cows bedded on pelleted corn cobs were greater than those from cows bedded on chopped newspaper for gram-negative bacterial, coliform, Klebsiella species, and staphylococci. Streptococcal teat swab counts did not differ between cows bedded on chopped newspaper and pelleted corn cobs. Cows bedded on chopped newspaper and wood shavings had similar gram-negative bacterial, coliform, and Klebsiella species teat swab counts. Streptococcal and staphylococcal teat swab counts were greater from cows bedded on chopped newspaper than those from cows bedded on wood shavings. Teat swab and bedding counts were correlated. In general, bacterial counts in bedding suggest no advantage in using chopped newspaper over pelleted corn cobs or wood shavings in reducing exposure of teats to environmental mastitis pathogens. PMID:2229587

  7. Bed bug aggregation pheromone finally identified.

    PubMed

    Gries, Regine; Britton, Robert; Holmes, Michael; Zhai, Huimin; Draper, Jason; Gries, Gerhard

    2015-01-19

    Bed bugs have become a global epidemic and current detection tools are poorly suited for routine surveillance. Despite intense research on bed bug aggregation behavior and the aggregation pheromone, which could be used as a chemical lure, the complete composition of this pheromone has thus far proven elusive. Here, we report that the bed bug aggregation pheromone comprises five volatile components (dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal, 2-hexanone), which attract bed bugs to safe shelters, and one less-volatile component (histamine), which causes their arrestment upon contact. In infested premises, a blend of all six components is highly effective at luring bed bugs into traps. The trapping of juvenile and adult bed bugs, with or without recent blood meals, provides strong evidence that this unique pheromone bait could become an effective and inexpensive tool for bed bug detection and potentially their control. PMID:25529634

  8. Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.

  9. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  10. Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report

    SciTech Connect

    Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

    2002-11-01

    This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

  11. Pellet bed reactor concept for nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert

    1993-01-01

    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  12. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  13. The Berlin emissivity database (BED)

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Helbert, J.; Moroz, L.

    2008-03-01

    Remote-sensing infrared spectroscopy is the principal field of investigation for planetary surfaces composition. Past, present and future missions to the solar system bodies include in their payload, instruments measuring the emerging radiation in the infrared range. Apart from measuring the reflected radiance, more and more spacecrafts are equipped with instruments measuring directly the emitted radiation from the planetary surface. The emitted radiation is not only a function of the composition of the material but also of its texture and especially the grain size distribution. For the interpretation of the measured data an emissivity spectral library of planetary analogue materials in grain size fractions appropriate for planetary surfaces is needed. The Berlin emissivity database (BED) presented here is focused on relatively fine-grained size separates, providing thereby a realistic basis for the interpretation of thermal emission spectra of planetary regoliths. The BED is therefore complimentary to existing thermal emission libraries, like the ASU library for example. BED currently contains emissivity spectra of plagioclase and potassium feldspars, low Ca and high Ca pyroxenes, olivine, elemental sulfur, Martian analogue minerals and volcanic soils, and a lunar highland soil sample measured in the wavelength range from 7 to 22 μm as a function of particle size. For each sample we measured the spectra of four particle size separates ranging from <25 to 250 μm. The device we used is built at DLR (Berlin) and is coupled to a Fourier-transform infrared spectrometer Bruker IFS 88 purged with dry air and equipped with a nitrogen-cooled MCT detector. All spectra were acquired with a spectral resolution of 4 cm -1. We are currently working on upgrading our emissivity facility. A new spectrometer (Bruker VERTEX 80 V) and new detectors will allow us to measure the emissivity of samples in the wavelength range from 1 to 50 μm in a vacuum environment. This will be

  14. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  15. [Special beds. Pulmonary therapy system].

    PubMed

    Calixto Rodríguez, Joaquín; Rodríguez Martínez, Xavier; Marín i Vivó, Gemma; Paunellas Albert, Josep

    2008-10-01

    To be bedridden reduces one's capacity to move and produces muscular debility that affects the respiratory system leading to a decreased effectiveness in expectoration, the ability to spit up sputum. The pulmonary therapy system integrated in a bed is the result of applying motorized elements to the articulation points of the bad in order to achieve safe positions at therapeutic angles, which improve the breathing-perfusion (blood flow) relationship. This system also makes it possible to apply vibration waves to the patient which favor the elimination of bronchial-pulmonary secretions, the rehabilitation of the bedridden patient and decrease the work load for nursing personnel.

  16. MICROTURBULENCE IN GRAVEL BED STREAMS

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Kramer, C. M.

    2009-12-01

    The overarching objective of this investigation was to evaluate the role of relative submergence on the formation and evolution of cluster microforms in gravel bed streams and its implications to bedload transport. Secondary objectives of this research included (1) a detailed analysis of mean flow measurements around a clast; and (2) a selected number of experimental runs where the mean flow characteristics are linked together with the bed micro-topography observations around a clast. It is hypothesized that the relative submergence is an important parameter in defining the feedback processes between the flow and clasts, which governs the flow patterns around the clasts, thus directly affecting the depositional patterns of the incoming sediments. To examine the validity of the hypothesis and meet the objectives of this research, 19 detailed experimental runs were conducted in a tilting, water recirculating laboratory flume under well-controlled conditions. A fixed array of clast-obstacles were placed atop a well-packed bed with uniform size glass beads. During the runs, multifractional spherical particles were fed upstream of the clast section at a predetermined rate. State-of-the-art techniques/instruments, such as imaging analysis software, Large Scale Particle Velocimeter (LSPIV) and an Acoustic Doppler Velocimetry (ADV) were employed to provide unique quantitative measurements for bedload fluxes, clast/clusters geomorphic patterns, and mean flow characteristics in the vicinity of the clusters. Different flow patterns were recorded for the high relative submergence (HRS) and low relative submergence (LRS) experimental runs. The ADV measurements provided improved insight about the governing flow mechanisms for the HRS runs. These mechanisms were described with flow upwelling at the center of the flume and downwelling occurring along the flume walls. Flow downwelling corresponded to an increase in the free surface velocity. Additionally, the visual observations

  17. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  18. A fluidized bed enhances biotreatment

    SciTech Connect

    1996-03-01

    Chlorinated organics such as trichloroethylene (TCE) are often difficult to treat biologically because they degrade into intermediate compounds that are toxic to most microorganisms. But recent advances in fluidized bed biotreatment by Envirex, Inc. (Waukesha, Wis.) indicate that difficult-to-treat wastes like TCE can be successfully biodegraded. The key is to add chemicals (dubbed co-metabolic substrates), which promote the growth of microbes that preferentially degrade the unwanted intermediate compounds. Preliminary field tests using phenol, toluene and methane as the co-metabolic substrate show that TCE levels can be reduced by as much as 95%.

  19. Displacement calculations across a metamorphic core complex mylonite zone: Pinaleno Mountains, southeastern Arizona

    SciTech Connect

    Naruk, S.J.

    1987-07-01

    Minimum offset of 7 km across the Pinaleno Mountains metamorphic core complex is calculated by integrating the shear strains across the exposed width of the mylonite zone. The calculated displacement equals the offset on the associated detachment fault, estimated from offset marker beds. The method of determining displacement by strain integration may be directly applicable to many other metamorphic core complexes.

  20. Suicide following an infestation of bed bugs

    PubMed Central

    Burrows, Stephanie; Perron, Stéphane; Susser, Stephanie

    2013-01-01

    Patient: Male, 62 Final Diagnosis: Bipolar disorder Symptoms: Bordeline personality disorder Medication: — Clinical Procedure: Bed bug infestation Specialty: Psychiatry Objective: Unusual clinical course Background: In the past decade, bed bug infestations have been increasingly common in high income countries. Psychological consequences of these infestations are rarely examined in the scientific literature. Case Report: We present a case, based on a coroner’s investigation report, of a woman with previous psychiatric morbidity who jumped to her death following repeated bed bug infestations in her apartment. Our case report shows that the bed bug infestations were the likely trigger for the onset a negative psychological state that ultimately led to suicide. Conclusions: Given the recent surge in infestations, rapid action needs to be taken not only in an attempt to control and eradicate the bed bugs but also to adequately care for those infested by bed bugs. PMID:23826461

  1. Classifying bed inclination using pressure images.

    PubMed

    Baran Pouyan, M; Ostadabbas, S; Nourani, M; Pompeo, M

    2014-01-01

    Pressure ulcer is one of the most prevalent problems for bed-bound patients in hospitals and nursing homes. Pressure ulcers are painful for patients and costly for healthcare systems. Accurate in-bed posture analysis can significantly help in preventing pressure ulcers. Specifically, bed inclination (back angle) is a factor contributing to pressure ulcer development. In this paper, an efficient methodology is proposed to classify bed inclination. Our approach uses pressure values collected from a commercial pressure mat system. Then, by applying a number of image processing and machine learning techniques, the approximate degree of bed is estimated and classified. The proposed algorithm was tested on 15 subjects with various sizes and weights. The experimental results indicate that our method predicts bed inclination in three classes with 80.3% average accuracy.

  2. Low shear stress gravel-bed river

    USGS Publications Warehouse

    Milhous, Robert T.

    1997-01-01

    A low stress gravel bed river is a river where the cross-sectional average dimensionless shear stress (??*) rarely exceeds 0.047. That is the case for the Gunnison River below Delta in Western Colorado. The cross-sectional average ??* in the Gunnison River has not exceeded 0.047, except at one cross section during one year, in the 87 years of record. A ??* of 0.047 is the critical ??* in the bed-load equation considered to be most applicable to gravel/cobble bed rivers (the Meyer-Peter, Mueller equation). According to this equation, there has been no bed-material movement in the Gunnison River since 1920; in fact there has been bed-material movement and this movement is biologically important. Bed-material is moved when the ??* is 0.016 or larger. Streamflows that cause a ??* of at least 0.016 maintain the aquatic habitat in a low shear stress river.

  3. Physiology of prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1988-01-01

    Bed rest has been a normal procedure used by physicians for centuries in the treatment of injury and disease. Exposure of patients to prolonged bed rest in the horizontal position induces adaptive deconditioning responses. While deconditioning responses are appropriate for patients or test subjects in the horizontal position, they usually result in adverse physiological responses (fainting, muscular weakness) when the patient assume the upright posture. These deconditioning responses result from reduction in hydrostatic pressure within the cardiovascular system, virtual elimination of longitudinal pressure on the long bones, some decrease in total body metabolism, changes in diet, and perhaps psychological impact from the different environment. Almost every system in the body is affected. An early stimulus is the cephalic shift of fluid from the legs which increases atrial pressure and induces compensatory responses for fluid and electrolyte redistribution. Without countermeasures, deterioration in strength and muscle function occurs within 1 wk while increased calcium loss may continue for months. Research should also focus on drug and carbohydrate metabolism.

  4. The WCSAR telerobotics test bed

    NASA Technical Reports Server (NTRS)

    Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.

    1988-01-01

    Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.

  5. Evaluation of a clay-based acidic bedding conditioner for dairy cattle bedding.

    PubMed

    Proietto, R L; Hinckley, L S; Fox, L K; Andrew, S M

    2013-02-01

    This study investigated the effects of a clay-based acidic bedding conditioner on sawdust bedding pH, dry matter (DM), environmental pathogen counts, and environmental bacterial counts on teat ends of lactating dairy cows. Sixteen lactating Holstein cows were paired based on parity, days in milk, milk yield, and milk somatic cell count, and were negative for the presence of an intramammary pathogen. Within each pair, cows were randomly assigned to 1 of 2 treatments with 3-wk periods in a crossover design. Treatment groups consisted of 9 freestalls per group bedded with either untreated sawdust or sawdust with a clay-based acidic bedding conditioner, added at 3- to 4-d intervals over each 21-d period. Bedding and teat ends were aseptically sampled on d 0, 1, 2, 7, 14, and 21 for determination of environmental bacterial counts. At the same time points, bedding was sampled for DM and pH determination. The bacteria identified in the bedding material were total gram-negative bacteria, Streptococcus spp., and coliform bacteria. The bacteria identified on the teat ends were Streptococcus spp., coliform bacteria, and Klebsiella spp. Teat end score, milk somatic cell count, and intramammary pathogen presence were measured weekly. Bedding and teat cleanliness, environmental high and low temperatures, and dew point data were collected daily. The bedding conditioner reduced the pH, but not the DM, of the sawdust bedding compared with untreated sawdust. Overall environmental bacterial counts in bedding were lower for treated sawdust. Total bacterial counts in bedding and on teat ends increased with time over both periods. Compared with untreated sawdust, the treated bedding had lower counts of total gram-negative bacteria and streptococci, but not coliform counts. Teat end bacterial counts were lower for cows bedded on treated sawdust for streptococci, coliforms, and Klebsiella spp. compared with cows bedded on untreated sawdust. The clay-based acidic bedding conditioner

  6. Effect of bedding materials on concentration of odorous compounds and in beef cattle bedded manure packs.

    PubMed

    Spiehs, Mindy J; Brown-Brandl, Tami M; Parker, David B; Miller, Daniel N; Berry, Elaine D; Wells, James E

    2013-01-01

    The objectives of this study were to determine the effect of bedding material (corn stover, soybean stover, wheat straw, switchgrass, wood chips, wood shavings, corn cobs, and shredded paper) on concentration of odorous volatile organic compounds (VOC) in bedded pack material and to determine the effect of bedding material on the levels of total in laboratory-scaled bedded manure packs. Four bedded packs of each bedding material were maintained for two 6-wk periods ( = 64). Straight- and branched-chained fatty acids and aromatic compounds were measured. Corn cob bedding had the highest concentration of odorous VOC, and wood shavings had the lowest ( < 0.01). Calculated odor activity values were highest for corn cob bedding and shredded paper and lowest for wood shavings ( < 0.01). concentrations decreased from week to week for all treatments from Week 2 to Week 6. At Week 6, levels in bedded packs with shredded paper were higher ( < 0.05) than bedded packs containing wood shavings, wood chips, or switchgrass ( < 0.05). At Weeks 4, 5, and 6, concentrations in bedded packs with wood shavings were lower ( < 0.05) than bedded packs of all treatments except wood chips. Results of this study indicate that ground corn cobs or shredded paper may increase odor production and shredded paper may increase when used in deep-bedded livestock facilities, whereas wood shavings may have the least impact on air quality and . PMID:23673740

  7. Academic Rigor: The Core of the Core

    ERIC Educational Resources Information Center

    Brunner, Judy

    2013-01-01

    Some educators see the Common Core State Standards as reason for stress, most recognize the positive possibilities associated with them and are willing to make the professional commitment to implementing them so that academic rigor for all students will increase. But business leaders, parents, and the authors of the Common Core are not the only…

  8. Updraft Fixed Bed Gasification Aspen Plus Model

    SciTech Connect

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.

  9. Fluidized-Bed Reactor With Zone Heating

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1989-01-01

    Deposition of silicon on wall suppressed. In new fluidized bed, silicon seed particles heated in uppermost zone of reactor. Hot particles gradually mix with lower particles and descend through fluidized bed. Lower wall of vessel kept relatively cool. Because silane enters at bottom and circulates through reactor pyrolized to silicon at high temperatures, silicon deposited on particles in preference wall. Design of fluidized bed for production of silicon greatly reduces tendency of silicon to deposit on wall of reaction vessel.

  10. Fuel bed characteristics of Sierra Nevada conifers

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Benedict, J.M.; Sydoriak, W.M.

    1998-01-01

    A study of fuels in Sierra Nevada conifer forests showed that fuel bed depth and fuel bed weight significantly varied by tree species and developmental stage of the overstory. Specific values for depth and weight of woody, litter, and duff fuels are reported. There was a significant positive relationship between fuel bed depth and weight. Estimates of woody fuel weight using the planar intercept method were significantly related to sampled values. These relationships can be used to estimate fuel weights in the field.

  11. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  12. Battery using a metal particle bed electrode

    DOEpatents

    Evans, J.V.; Savaskan, G.

    1991-04-09

    A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

  13. Battery using a metal particle bed electrode

    DOEpatents

    Evans, James V.; Savaskan, Gultekin

    1991-01-01

    A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

  14. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  15. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  16. Properties of Spent Active Coke Particles Analysed via Comminution in Spouted Bed

    PubMed Central

    Buczek, Bronislaw

    2013-01-01

    Samples of active coke, fresh and spent after cleaning flue gases from communal waste incinerators, were investigated. The outer layers of both coke particles were separately removed by comminution in a spouted bed. The samples of both active cokes were analysed by means of densities, mercury porosimetry, and adsorption technique. Remaining cores were examined to determine the degree of consumption of coke by the sorption of hazardous emissions (SO2, HCl, and heavy metals) through its bed. Differences in contamination levels within the porous structure of the particles were estimated. The study demonstrated the effectiveness of commercial active coke in the cleaning of flue gases. PMID:24459454

  17. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    SciTech Connect

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    the SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided.

  18. Geologic, geotechnical, and geophysical properties of core from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming

    USGS Publications Warehouse

    Collins, Donley S.

    1983-01-01

    A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal

  19. Experimental investigation of bubbling in particle beds with high solid holdup

    SciTech Connect

    Cheng, Songbai; Hirahara, Daisuke; Tanaka, Youhei; Gondai, Yoji; Zhang, Bin; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu

    2011-02-15

    A series of experiments on bubbling behavior in particle beds was performed to clarify three-phase flow dynamics in debris beds formed after core-disruptive accident (CDA) in sodium-cooled fast breeder reactors (FBRs). Although in the past, several experiments have been performed in packed beds to investigate flow patterns, most of these were under comparatively higher gas flow rate, which may be not expected during an early sodium boiling period in debris beds. The current experiments were conducted under two dimensional (2D) and three dimensional (3D) conditions separately, in which water was used as liquid phase, and bubbles were generated by injecting nitrogen gas from the bottom of the viewing tank. Various particle-bed parameters were varied, including particle-bed height (from 30 mm to 200 mm), particle diameter (from 0.4 mm to 6 mm) and particle type (beads made of acrylic, glass, alumina and zirconia). Under these experimental conditions, three kinds of bubbling behavior were observed for the first time using digital image analysis methods that were further verified by quantitative detailed analysis of bubbling properties including surface bubbling frequency and surface bubble size under both 2D and 3D conditions. This investigation, which hopefully provides fundamental data for a better understanding and an improved estimation of CDAs in FBRs, is expected to benefit future analysis and verification of computer models developed in advanced fast reactor safety analysis codes. (author)

  20. Persisting intertidal seagrass beds in the northern Wadden Sea since the 1930s

    NASA Astrophysics Data System (ADS)

    Dolch, Tobias; Buschbaum, Christian; Reise, Karsten

    2013-09-01

    In contrast to the global crisis of seagrass ecosystems, intertidal Zostera-beds in the Northfrisian Wadden Sea (coastal North Sea) have recovered recently. Present areal extent resembles that of the mid 1930s. In spite of an intermittent loss in area by about 60% in the 1970s to 1990s, beds have maintained their general spatial distribution pattern. Aerial photographs from parts of the region in 1935-37, and the total region in 1958-59 and 2005 were visually analysed, and seagrass beds were recorded and quantified with a geographic information system (GIS). Data from direct aerial mapping were added to extend the survey until 2010. From the mid 2000s to 2010, intertidal seagrass areas estimated from these records range between 84 and 142 km2 (10-16% of the intertidal area), while records from the 1970 to 90s merely range between 30 and 40 km2 (3-5%) (Reise and Kohlus, 2008). Despite variation in size, core positions of individual seagrass beds were identified and they shifted very little over the last decades. Most beds occur in the upper intertidal zone and where barrier islands offer shelter against swell from the open sea. While land claim activities since the 1930s have irreversibly eliminated at least 11 km2 of seagrass beds, we suggest that intermittent losses of seagrass area were mainly caused by sediment dynamics and a phase of elevated eutrophication.

  1. CERTS Microgrid Laboratory Test Bed

    SciTech Connect

    Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

    2009-06-18

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations

  2. Spatially resolved measurement of rock core porosity.

    PubMed

    Marica, F; Chen, Q; Hamilton, A; Hall, C; Al, T; Balcom, B J

    2006-01-01

    Density weighted, centric scan, Conical SPRITE MRI techniques are applied in the current work for local porosity measurements in fluid saturated porous media. The methodology is tested on a series of sandstone core samples. These samples vary in both porosity and degree of local heterogeneity due to bedding plane structure. The MRI porosity measurement is in good agreement with traditional gravimetric measurements of porosity. Spatially resolved porosity measurements reveal significant porosity variation in some samples. This novel MRI technique should have applications to the characterization of local porosity in a wide variety of porous media. PMID:16216540

  3. Spatially resolved measurement of rock core porosity.

    PubMed

    Marica, F; Chen, Q; Hamilton, A; Hall, C; Al, T; Balcom, B J

    2006-01-01

    Density weighted, centric scan, Conical SPRITE MRI techniques are applied in the current work for local porosity measurements in fluid saturated porous media. The methodology is tested on a series of sandstone core samples. These samples vary in both porosity and degree of local heterogeneity due to bedding plane structure. The MRI porosity measurement is in good agreement with traditional gravimetric measurements of porosity. Spatially resolved porosity measurements reveal significant porosity variation in some samples. This novel MRI technique should have applications to the characterization of local porosity in a wide variety of porous media.

  4. As thick as three in a bed.

    PubMed

    Scheidegger, Christoph

    2016-07-01

    During the evolution of the lichen symbiosis, shifts from one main type of photobiont to another were infrequent (Miadlikowska et al. ) but some remarkable transitions from green algal to diazotrophic cyanobacterial photobionts are known from unrelated fungal clades within the ascomycetes. Cyanobacterial, including tripartite, associations (green algal and cyanobacterial photobionts in one lichen individual) facilitate these holobionts to live as C- and N-autotrophs. Tripartite lichens are among the most productive lichens, which provide N-fertilization to forest ecosystems under oceanic climates (Peltigerales) or deliver low, but ecologically significant N-input into subarctic and alpine soil communities (Lecanorales, Agyriales). In this issue of Molecular Ecology, Schneider et al. (2016) mapped morphometric data against an eight-locus fungal phylogeny across a transition of photobiont interactions from green algal to a tripartite association and used a phylogenetic comparative framework to explore the role of nitrogen-fixing cyanobacteria in size differences in the Trapelia-Placopsis clade (Agyriales). Within the group of tripartite species, the volume of cyanobacteria-containing structures (cephalodia) correlates with thallus thickness in both phylogenetic generalized least squares and phylogenetic generalized linear mixed-effects analyses, and the fruiting body core volume increased ninefold. The authors conclude that cyanobacterial symbiosis appears to have enabled lichens to overcome size constraints in oligotrophic environments such as rock surfaces. The Trapelia-Placopsis clade analyzed by Schneider et al. (2016) is an exciting example of interactions between ecology, phylogeny and lichen biology including development - from thin crustose green algal microlichens to thick placodioid, tripartite macrolichens: as thick as three in a bed (Scott ).

  5. As thick as three in a bed.

    PubMed

    Scheidegger, Christoph

    2016-07-01

    During the evolution of the lichen symbiosis, shifts from one main type of photobiont to another were infrequent (Miadlikowska et al. ) but some remarkable transitions from green algal to diazotrophic cyanobacterial photobionts are known from unrelated fungal clades within the ascomycetes. Cyanobacterial, including tripartite, associations (green algal and cyanobacterial photobionts in one lichen individual) facilitate these holobionts to live as C- and N-autotrophs. Tripartite lichens are among the most productive lichens, which provide N-fertilization to forest ecosystems under oceanic climates (Peltigerales) or deliver low, but ecologically significant N-input into subarctic and alpine soil communities (Lecanorales, Agyriales). In this issue of Molecular Ecology, Schneider et al. (2016) mapped morphometric data against an eight-locus fungal phylogeny across a transition of photobiont interactions from green algal to a tripartite association and used a phylogenetic comparative framework to explore the role of nitrogen-fixing cyanobacteria in size differences in the Trapelia-Placopsis clade (Agyriales). Within the group of tripartite species, the volume of cyanobacteria-containing structures (cephalodia) correlates with thallus thickness in both phylogenetic generalized least squares and phylogenetic generalized linear mixed-effects analyses, and the fruiting body core volume increased ninefold. The authors conclude that cyanobacterial symbiosis appears to have enabled lichens to overcome size constraints in oligotrophic environments such as rock surfaces. The Trapelia-Placopsis clade analyzed by Schneider et al. (2016) is an exciting example of interactions between ecology, phylogeny and lichen biology including development - from thin crustose green algal microlichens to thick placodioid, tripartite macrolichens: as thick as three in a bed (Scott ). PMID:27415413

  6. Building Controls Virtual Test Bed

    SciTech Connect

    Wetter, Michael; Haves, Philip; Coffey, Brian

    2008-04-01

    The Building Controls Virtual Test Bed (BCVTB) is a modular software environment that is based on the Ptolemy II software environment. The BCVTB can be used for design and analysis of heterogenous systems, such as building energy and controls systems. Our additions to Ptolemy II allow users to Couple to Ptolemy II simulation software such as EnergyPlus, MATLAB/Simulink or Dymola for data exchange during run-time. Future versions of the BCVTS will also contain an interface to BACnet which is a communication protocol for building Control systems, and interfaces to digital/analog converters that allow communication with controls hardware. Through Ptolemy II, the BCVTB provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run- time.

  7. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  8. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  9. Fluidized bed coal combustion reactor

    SciTech Connect

    Moynihan, P.I.; Young, D.L.

    1981-09-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor. Official Gazette of the U.S. Patent and Trademark Office

  10. Building Controls Virtual Test Bed

    2008-04-01

    The Building Controls Virtual Test Bed (BCVTB) is a modular software environment that is based on the Ptolemy II software environment. The BCVTB can be used for design and analysis of heterogenous systems, such as building energy and controls systems. Our additions to Ptolemy II allow users to Couple to Ptolemy II simulation software such as EnergyPlus, MATLAB/Simulink or Dymola for data exchange during run-time. Future versions of the BCVTS will also contain an interfacemore » to BACnet which is a communication protocol for building Control systems, and interfaces to digital/analog converters that allow communication with controls hardware. Through Ptolemy II, the BCVTB provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run- time.« less

  11. CERTS Microgrid Laboratory Test Bed

    SciTech Connect

    ETO, J.; LASSETER, R.; SCHENKMAN, B.; STEVENS, J.; KLAPP, D.; VOLKOMMER, H.; LINTON, E.; HURTADO, H.; ROY, J.

    2010-06-08

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1 a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2 an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3 a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources.

  12. Fluidized bed heat treating system

    SciTech Connect

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  13. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  14. The influence of bedding and pore space-anisotropy on strain localization, mechanical anisotropy and transport properties in porous sandstone

    NASA Astrophysics Data System (ADS)

    Baud, P.; Louis, L.; Meredith, P. G..; Townend, E.; Wong, T.-F.

    2009-04-01

    Significant anisotropy in mechanical behaviour and failure strength may arise from planar rock fabrics such as bedding or preferred alignment of inequant voids in sedimentary rocks, cleavage in slates, and preferred orientation and/or arrangement of minerals and cracks in crystalline igneous and metamorphic rocks. Elastic anisotropy of a rock can be related to its fabric, a seismic manifestation of which is shear-wave splitting. Textural anisotropy can also result in pronounced anisotropy of tensile and compressive strength, which may be associated with different failure modes and deformation mechanisms, depending on how stress is applied relative to the anisotropy planes. On the borehole scale mechanical anisotropy and anisotropic rock strength can significantly influence the morphology and interpretation of wellbore breakout as well as the inference of in situ stress. In this study, we focussed on sedimentary rocks and studied the microstructural attributes that govern anisotropic failure in Rothbach and Diemelstadt sandstones of nominal porosities 20 and 24%, respectively. Rothbach sandstone has a relatively heterogeneous structure with granulometric layering that alternates between zones with significant contrasts in porosity and grain size. Diemelstadt sandstone presents a relatively more homogeneous structure, significant P-Wave anisotropy and a mean pore space geometry inferred by magnetic susceptibility (AMS) approximating to an oblate spheroid. Conventional triaxial experiments were performed at constant strain rate and room temperature on saturated samples of both rocks cored at various orientations with respect to the sedimentary bedding. For Diemelstadt sandstone, the samples cored parallel to bedding were stronger than those cored perpendicular to bedding. The mechanical anisotropy was more pronounced and significantly different in Rothbach sandstone. The sample cored perpendicular to bedding were stronger than those cored parallel to bedding, while

  15. Core Design Applications

    1995-07-12

    CORD-2 is intended for core desigh applications of pressurized water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refueling).

  16. Prevalence, Knowledge, and Concern About Bed Bugs.

    PubMed

    Kaylor, Mary Beth; Wenning, Paul; Eddy, Christopher

    2015-01-01

    Recent research suggests that the resurgence of bed bugs in the U.S. has occurred at an alarming rate. Assumptions have been made that socioeconomic status is not associated with the prevalence of bed bug infestations. Little information is available at the local level, however, about the prevalence of bed bugs in private homes. The authors' pilot study aimed to identify prevalence, knowledge, and concern about bed bugs in one higher income village in Ohio utilizing survey methodology. Responses from 96 individuals who completed the Prevalence, Knowledge, and Concern About Bed Bugs survey were utilized for analysis. The majority of the sample respondents were white and 95% reported that they owned their residence. Only 6% knew someone with bed bugs. Additionally, 52% reported they were somewhat concerned about bed bugs. About 46% reported that they had changed their behavior. For a higher income area, the prevalence was dissimilar to the rate reported in the general public (about 20%). This suggests that bed bugs may be an environmental issue effecting low-income populations disproportionately. Further research is needed in areas of differing socioeconomic levels. PMID:26427264

  17. Effective Thermal Conductivity of Adsorbent Packed Beds

    NASA Astrophysics Data System (ADS)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  18. Bed Bugs: Clinical Relevance and Control Options

    PubMed Central

    Dwyer, Dominic E.; Peñas, Pablo F.; Russell, Richard C.

    2012-01-01

    Summary: Since the late 1990s, bed bugs of the species Cimex lectularius and Cimex hemipterus have undergone a worldwide resurgence. These bed bugs are blood-sucking insects that readily bite humans. Cutaneous reactions may occur and can start out as small macular lesions that can develop into distinctive wheals of around 5 cm in diameter, which are accompanied by intense itching. Occasionally, bullous eruptions may result. If bed bugs are numerous, the patient can present with widespread urticaria or eythematous rashes. Often, bites occur in lines along the limbs. Over 40 pathogens have been detected in bed bugs, but there is no definitive evidence that they transmit any disease-causing organisms to humans. Anemia may result when bed bugs are numerous, and their allergens can trigger asthmatic reactions. The misuse of chemicals and other technologies for controlling bed bugs has the potential to have a deleterious impact on human health, while the insect itself can be the cause of significant psychological trauma. The control of bed bugs is challenging and should encompass a multidisciplinary approach utilizing nonchemical means of control and the judicious use of insecticides. For accommodation providers, risk management procedures should be implemented to reduce the potential of bed bug infestations. PMID:22232375

  19. Modeling of fluidized bed silicon deposition process

    NASA Technical Reports Server (NTRS)

    Kim, K.; Hsu, G.; Lutwack, R.; PRATURI A. K.

    1977-01-01

    The model is intended for use as a means of improving fluidized bed reactor design and for the formulation of the research program in support of the contracts of Silicon Material Task for the development of the fluidized bed silicon deposition process. A computer program derived from the simple modeling is also described. Results of some sample calculations using the computer program are shown.

  20. International Standardization of Bed Rest Standard Measures

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2010-01-01

    This slide presentation gives an overview of the standardization of bed rest measures. The International Countermeasures Working Group attempted to define and agree internationally on standard measurements for spaceflight based bed rest studies. The group identified the experts amongst several stakeholder agencys. It included information on exercise, muscle, neurological, psychological, bone and cardiovascular measures.

  1. Particle pressures in fluidized beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  2. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  3. Measurement of the bed material of gravel-bed rivers

    USGS Publications Warehouse

    Milhous, R.T.; ,

    2002-01-01

    The measurement of the physical properties of a gravel-bed river is important in the calculation of sediment transport and physical habitat values for aquatic animals. These properties are not always easy to measure. One recent report on flushing of fines from the Klamath River did not contain information on one location because the grain size distribution of the armour could not be measured on a dry river bar. The grain size distribution could have been measured using a barrel sampler and converting the measurements to the same as would have been measured if a dry bar existed at the site. In another recent paper the porosity was calculated from an average value relation from the literature. The results of that paper may be sensitive to the actual value of porosity. Using the bulk density sampling technique based on a water displacement process presented in this paper the porosity could have been calculated from the measured bulk density. The principle topics of this paper are the measurement of the size distribution of the armour, and measurement of the porosity of the substrate. The 'standard' method of sampling of the armour is to do a Wolman-type count of the armour on a dry section of the river bed. When a dry bar does not exist the armour in an area of the wet streambed is to sample and the measurements transformed analytically to the same type of results that would have been obtained from the standard Wolman procedure. A comparison of the results for the San Miguel River in Colorado shows significant differences in the median size of the armour. The method use to determine the porosity is not 'high-tech' and there is a need improve knowledge of the porosity because of the importance of porosity in the aquatic ecosystem. The technique is to measure the in-situ volume of a substrate sample by measuring the volume of a frame over the substrate and then repeated the volume measurement after the sample is obtained from within the frame. The difference in the

  4. Does bedding affect the airway and allergy?

    PubMed

    Siebers, R W; Crane, J

    2011-04-01

    Various cross-sectional and longitudinal studies have suggested that synthetic bedding is associated with asthma, allergic rhinitis and eczema while feather bedding seems to be protective. Synthetic bedding items have higher house dust mite allergen levels than feather bedding items. This is possibly the mechanism involved although fungal and bacterial proinflammatory compounds and volatile organic compounds may play a role. In this review we present and discuss the epidemiological evidence and suggest possible mechanisms. Primary intervention studies are required to show whether feather bedding is protective for the development of childhood asthma and allergic diseases while secondary intervention studies are required to potentially reduce symptoms and medication use in subjects with established disease.

  5. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  6. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  7. Fluidized bed heating process and apparatus

    NASA Technical Reports Server (NTRS)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  8. Apparatus for fluid-bed catalytic reactions

    SciTech Connect

    Harandi, M.; Owen, H.

    1991-09-17

    This patent describes an apparatus for the conversion of hydrocarbons. It comprises a reactor vessel for containing a fluid bed reaction zone including finely divided catalyst, the reactor vessel further comprising a feed distributor positioned in a lower portion of the reactor vessel, a heat exchange conduit within the reactor vessel in direct contact with the fluid bed reaction zone for transferring heat from a hot circulating fluid to the fluid bed reaction zone, and a catalyst separator positioned in an upper section of the reactor vessel for segregating reaction products from entrained spent catalyst; a first conduit for withdrawing spent catalyst from the fluid bed reaction zone; a feed preheater vessel operatively connected to the first conduit for contacting an aliphatic feedstream with a fluidized bed of the spent catalyst, the feed preheater vessel being sized to provide spent catalyst circulation through the preheater vessel of from about 0.1 to about 100 volumes of spent catalyst per hour.

  9. Continuous austempering fluidized bed furnace. Final report

    SciTech Connect

    Srinivasan, M.N.

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  10. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2010-03-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

  11. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2009-11-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  12. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  13. Innovative Bed Load Measurement System for Large Alpine Gravel-Bed Rivers

    NASA Astrophysics Data System (ADS)

    Seitz, H.; Habersack, H. M.

    2009-04-01

    The aim of the work is to figure out the bed load transport processes using direct and surrogate measurement methods for the free flowing reach of the Drau River and its most important tributary Isel River, both large Alpine gravel-bed rivers, situated in the south western part of Austria. There are some techniques for bed load measurements in natural streams; we used collecting moving particles and indirectly determining transport intensity at the study sites. Former measurements in the study reach were performed also using mobile bed load samplers and fixed bed load samplers. Individually they all are adequate bed load measurement instruments - used in combination they are complementing one another, whereas each applied separately leads to specific deficits. The investigation payed special attention on results out of the geophone installations, whereas steel plate vibrations (the plates are mounted on top of concrete structures even with the river bed surface) caused by bed load particles with a diameter larger than about 20 mm are inducing a signal into the geophones. The signal above a defined threshold voltage than is recorded in a computer system as the sum of impacts during one minute intervals. The spatio-temporal distribution of the transported bed load material, its amount and the transport processes itself could be figured out for the first time out of continuous data collection since 2006 for large alpine gravel-bed rivers. Before building up the gauging stations there were no continuous recordings of bed load transport processes in large alpine rivers over their entire cross section, hence the investigation promises a better process understanding and the possibility to determine bed load transport rates and a rough approximation of the grain size distributions of the transported bed load material under different flow conditions. A relation between detected geophone records, the flow discharge and direct bed load sampling methods (Large Helley Smith

  14. Bed care for patients in palliative settings: considering risks to caregivers and bed surfaces.

    PubMed

    Fragala, Guy

    2015-02-01

    Ensuring patients are comfortable in bed is key to effective palliative care, but when moving and positioning patients in bed, health professionals face an occupational risk of injury. The turning and positioning (TAP) system is a new method of moving patients in bed, that evidence has shown to reduce the risk of injury to caregivers. Providing the correct bed surface is another aspect of bed care essential to the comfort of the palliative patient, and to aid wound prevention and treatment. It is important to take a patient-centred approach when considering the most appropriate bed surface patients. This article provides an overview and discussion of these two aspects of bed care for palliative patients.

  15. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    SciTech Connect

    Mie Hiruta; Gannon Johnson; Maziar Rostamian; Gabriel P. Potirniche; Abderrafi M. Ougouag; Massimo Bertino; Louis Franzel; Akira Tokuhiro

    2013-10-01

    This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  16. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  17. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    USGS Publications Warehouse

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  18. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  19. 23. CORE WORKER OPERATING A COREBLOWER THAT PNEUMATICALLY FILLED CORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORE WORKER OPERATING A CORE-BLOWER THAT PNEUMATICALLY FILLED CORE BOXES WITH RESIGN IMPREGNATED SAND AND CREATED A CORE THAT THEN REQUIRED BAKING, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  20. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and

  1. Modeling nitrate removal in a denitrification bed.

    PubMed

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C

    2015-03-15

    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality. PMID:25638338

  2. Preference for bedding material in Syrian hamsters.

    PubMed

    Lanteigne, M; Reebs, S G

    2006-10-01

    This study aimed to determine whether Syrian (golden) hamsters, Mesocricetus auratus, prefer certain bedding materials and whether bedding material can affect paw condition, body weight gain and wheel-running activity. In a first experiment, 26 male hamsters had access to two connected cages, each cage containing a different bedding material (either pine shavings, aspen shavings, corn cob or wood pellets). In a second experiment, 14 male hamsters had access to four connected cages that contained the different bedding materials and also a piece of paper towel to serve as nest material. In a third experiment, 30 male hamsters were each placed in a single cage, 10 of them with pine shavings, 10 with aspen shavings and 10 with corn cob, and they were monitored for 50 days. Significant preferences in the first experiment were: pine shavings over aspen shavings, corn cob over wood pellets, pine shavings over corn cob and aspen shavings over wood pellets (aspen shavings versus corn cob was not tested). However, there was no significant preference expressed in the second experiment, suggesting that the general preference for shavings in the first experiment was based on bedding material suitability as a nesting material. No significant effect of bedding material on paw condition, body weight gain and wheel-running activity was detected. None of the four bedding materials tested in this study can be judged to be inappropriate in the short term if nesting material is added to the cage and if the litter is changed regularly. PMID:17018212

  3. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  4. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  5. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  6. CERTS Microgrid Laboratory Test Bed

    SciTech Connect

    Lasseter, R. H.; Eto, J. H.; Schenkman, B.; Stevens, J.; Volkmmer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J.

    2010-06-08

    CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a 'microgrid'. The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults.

  7. Initial test bed concentrator characterization

    NASA Technical Reports Server (NTRS)

    Starkey, D. J.

    1980-01-01

    The operational characteristics and the mirror alignment technique of the test bed concentrator control system are highlighted. The final design of the TBC control system provided one axis of fast slew capability so that either the Sun acquisition or emergency off-Sun mode could be obtained in a minimum time. The procedure for getting on and off Sun is to run the elevation axis up to the approximate elevation of the Sun for the particular time of acquisition and then slew the concentrator on Sun in azimuth. The automatic Sun-acquisition system is controlled by two Sun sensors, one for each axis; each has a 2deg acquisition cone angle within which the concentrators are programmed to point. The mirror alignment technique chosen utilized a semi-distant incandescent light source which produced a reflected image on the focal point target. The concentrator was boresighted to the light by moving the concentrator while sighting along the cross hairs and through the apertures in the disks to the light source resulting in a maximum point error of 0.11 deg. Test plans to install a solar flux mapper to characterize the solar spot and to measure the size, shape, and intensity of the Sun's image are outlined.

  8. Keeping tabs on seagrass beds

    SciTech Connect

    Kuhl, D.E.; Sargent, F.J.; Leary, T.J.

    1997-06-01

    Seagrasses form the foundation of complex, fragile communities that include marine and estuarine animals, especially larval and juvenile fish, providing critical shelter and sustenance. Seagrasses also have a role in providing habitat for waterfowl, marine turtles and manimals. In addition, seagrasses improve water quality by stabilizing mobile sediments and converting some pollutants into plant biomass. The issue of propeller scarring or propeller dredging in seagrass beds has received much attention since 1990. The scarring of seagrass results from personal watercraft. Heightened interest has instigated numerous monitoring and mapping projects on propeller scarring and regrowth characteristics within seagrasses. The study areas selected for this paper are located within Tampa Bay, Florida. Specifically, they are Shell Island and Miquel Bay. Spatial monitoring for the extent of seagrass scarring in the Tampa Bay region was conducted in two ways, a regional (general) approach and a site specific (detailed) approach. Regional monitoring assessed the status of seagrass in Tampa Bay and identified {open_quote}hot spots{close_quote}. After identifying {open_quote}hot spots{close_quote}, boat surveys were used to confirm or deny the initial assessment. This poster involves the design of a propeller scarring monitoring program using several methods: Hi8 video, digital cameras, film cameras, and differential GPS combined with Arcview. A pilot program to evaluate the adequacy of these monitoring devices and the recommendation of specific actions in areas of severe propeller scarring will be presented.

  9. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization. PMID:27115446

  10. A model of coal particle drying in fluidized bed combustion reactor

    SciTech Connect

    Komatina, M.; Manovic, V.; Saljnikov, A.

    2007-02-15

    Experimental and theoretical investigation on drying of a single coal particle in fluidized bed combustor is presented. Coal particle drying was considered via the moist shrinking core mechanism. The results of the drying test runs of low-rank Serbian coals were used for experimental verification of the model. The temperature of the coal particle center was measured, assuming that drying was completed when the temperature equalled 100{sup o}C. The influence of different parameters (thermal conductivity and specific heat capacity of coal, fluidized bed temperature, moisture content and superheating of steam) on drying time and temperature profile within the coal particle was analyzed by a parametric analysis. The experimentally obtained results confirmed that the moist shrinking core mechanism can be applied for the mathematical description of a coal particle drying, while dependence between drying time and coal particle radius, a square law relationship, implicates heat transfer control of the process and confirms the validity of assumptions used in modeling.

  11. Characteristics and description of cores from the USGS core hole CRU-1, Parachute Creek Member, Green River Formation, east-central Uinta Basin, Utah

    USGS Publications Warehouse

    Keighin, C.W.

    1982-01-01

    Oil-yield, lithologic, and mineral distribution data were determined for cores taken from a 497.7-foot drill hole in the upper part of the Parachute Creek Member of the Eocene Green River Formation. The drill hole, 1050 feet FEL, 700 feet FNL, sec. 3, T. 12 S., R. 24 E., Uintah County, Utah, started slightly below the contact between the Uinta Formation, also of Eocene age, and the underlying Green River Formation. It ended 32 feet below the base of the Mahogany bed (the richest oil-shale bed between A groove and B groove--which define the upper and lower boundaries, respectively, of the Mahogany zone). Most of the interval studied is kerogen- or carbonate-rich, commonly tuffaceous, and is very fine grained. Several thin (<3 feet) oil-shale beds which yield as much as 25 gallons of oil per ton occur above the Mahogany zone, but are probably not of economic interest. The cored sequence contains several tuff beds. The thickest of these beds is approximately 2 feet thick; the average thickness is rarely greater than 0.5 feet. Two oil-saturated tuff beds occur approximately 65 feet above the Mahogany oil-shale bed. Although these two tuffs are exposed on nearby surface outcrops, no evidence of oil is seen on outcrop. The Mahogany zone is approximately 69 feet thick at the drill site; the lowermost few feet were not penetrated. At the site cored, the Mahogany zone is overlain by 435 feet of overburden. Fischer assays indicate that 42.3 feet of oil shale within the Mahogany zone could yield at least 25 gallons of oil per ton from beds at least 10 feet thick.

  12. Granular filtration in a fluidized bed

    SciTech Connect

    Mei, J.S.; Yue, P.C.; Halow, J.S.

    1995-12-01

    Successful development of advanced coal-fired power conversion systems often require reliable and efficient cleanup devices which can remove particulate and gaseous pollutants from high-temperature high-pressure gas streams. A novel filtration concept for particulate cleanup has been developed at the Morgantown Energy Technology Center (METC) of the U.S. Department of Energy. The filtration system consists of a fine metal screen filter immersed in a fluidized bed of granular material. As the gas stream passes through the fluidized bed, a layer of the bed granular material is entrained and deposited at the screen surface. This material provides a natural granular filter to separate fine particles from the gas stream passing through the bed. Since the filtering media is the granular material supplied by the fluidized bed, the filter is not subjected to blinding like candle filters. Because only the inflowing gas, not fine particle cohesive forces, maintains the granular layer at the screen surface, once the thickness and permeability of the granular layer is stabilized, it remains unchanged as long as the in-flowing gas flow rate remains constant. The weight of the particles and the turbulent nature of the fluidized bed limits the thickness of the granular layer on the filter leading to a self-cleaning attribute of the filter. This paper presents work since then on a continuous filtration system. The continuous filtration testing system consisted of a filter, a two-dimensional fluidized-bed, a continuous powder feeder, a laser-based in-line particle counting, sizing, and velocimeter (PCSV), and a continuous solids feeding/bed material withdrawal system. The two-dimensional, transparent fluidized-bed allowed clear observation of the general fluidized state of the granular material and the conditions under which fines are captured by the granular layer.

  13. A PROTOTYPE FOUR INCH SHORT HYDRIDE (FISH) BED AS A REPLACEMENT TRITIUM STORAGE BED

    SciTech Connect

    Klein, J.; Estochen, E.; Shanahan, K.; Heung, L.

    2011-02-23

    The Savannah River Site (SRS) tritium facilities have used 1st generation (Gen1) metal hydride storage bed assemblies with process vessels (PVs) fabricated from 3 inch nominal pipe size (NPS) pipe to hold up to 12.6 kg of LaNi{sub 4.25}Al{sub 0.75} metal hydride for tritium gas absorption, storage, and desorption for over 15 years. The 2nd generation (Gen2) of the bed design used the same NPS for the PV, but the added internal components produced a bed nominally 1.2 m long, and presented a significant challenge for heater cartridge replacement in a footprint limited glove-box. A prototype 3rd generation (Gen3) metal hydride storage bed has been designed and fabricated as a replacement candidate for the Gen2 storage bed. The prototype Gen3 bed uses a PV pipe diameter of 4 inch NPS so the bed length can be reduced below 0.7 m to facilitate heater cartridge replacement. For the Gen3 prototype bed, modeling results show increased absorption rates when using hydrides with lower absorption pressures. To improve absorption performance compared to the Gen2 beds, a LaNi{sub 4.15}Al{sub 0.85} material was procured and processed to obtain the desired pressure-composition-temperature (PCT) properties. Other bed design improvements are also presented.

  14. Bed bug outbreak in a neonatal unit.

    PubMed

    Bandyopadhyay, T; Kumar, A; Saili, A

    2015-10-01

    There has been a worldwide increase in bed bug infestations over the last 10-15 years. A major stigma is placed upon the institutions found to be infested. We report our experience with an outbreak of the tropical bed bug, Cimex hemipterus, in a neonatal unit. The outbreak not only affected the admitted newborns and mothers by causing a wide variety of rashes and inducing sleeplessness, but also impinged upon the health professionals and their families by producing similar symptomology. It is important for healthcare providers to be aware of, and for each healthcare facility to have, bed bug prevention and control policies. PMID:25591490

  15. Updraft Fixed Bed Gasification Aspen Plus Model

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability ofmore » the process model.« less

  16. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  17. How to prepare the wound bed.

    PubMed

    Krasner, D L

    2001-04-01

    This clinically focused article addresses the nuts and bolts of wound bed preparation. Preparing the wound bed is a frequently ignored step in the process of treating chronic wounds. In these days of high-tech instrumentation use for chronic wound care (i.e., adjunctive therapies, growth factors, and skin substitutes), clinicians should not forget the basics that are essential for optimizing wound healing. This article introduces the PREPARE Model (see Figure 1) as an aid for guiding care providers in wound bed preparation.

  18. Investigation of fluidized-bed biological denitrification

    SciTech Connect

    Acox, T.A.

    1982-12-16

    The performance of the fluidized-bed bioreactor was modelled for denitrification using a multiple linear regression. Reasonable accuracy was obtained; however, this type of analysis did not take into account the hydraulic characteristics of the fluidized-bed. The Mulcahy and LaMotta computer program previously used to model a fluidized-bed bioreactor cannot be used in this case due to the Michaelis-Menton constant k determined in this study, which was one to two orders of magnitude lower. With some additional bioreactor study and computer program modification, this may prove to be of some benefit.

  19. Riser simulation and radial porosity distribution characterization for gas-fluidized bed of cork particles

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Ouyang, Jie; Li, Qiang

    2014-08-01

    Numerical simulations are carried out for gas-solid fluidized bed of cork particles, using discrete element method. Results exhibit the existence of a so-called anti core-annular porosity profile with lower porosity in the core and higher porosity near the wall for non-slugging fluidization. The tendency to form this unfamiliar anti core-annular porosity profile is stronger when the solid flux is higher. There exist multiple inflection points in the simulated axial solid volume fraction profile for non-slugging fluidization. Results also show that the familiar core-annular porosity profile still appears for slugging fluidization. In addition, the classical choking phenomenon can be captured at the superficial gas velocity slightly lower than the correlated transport velocity.

  20. Two-dimensional thermal-hydraulics analyses of the Pellet Bed Reactor for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.

    1993-01-01

    Thermal-hydraulics design and analyses of the Pellet Bed Reactor for nuclear thermal propulsion are performed using the nuclear propulsion thermal-hydraulic analysis model to determine the 2D steady-state temperature, pressure, and flow fields in the core and optimize the orificing in the hot-frit to avoid hot spots in the core at full power operation. Results show that by properly adjusting the axial porosity profile in the hot frit, hot spots in the core can be essentially eliminated during full power operation. This important accomplishment is achieved at the expense of slightly larger pressure losses in the core because of flow restriction at the hot frit. However, the overall pressure losses is only about 11 percent of the propellant inlet pressure.

  1. Core sample extractor

    NASA Technical Reports Server (NTRS)

    Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark

    1989-01-01

    The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.

  2. Wall-to-suspension heat transfer in circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1995-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. Experimental investigations of circulating fluidized beds of low dimensionless pressure gradients with different solid particles like bronze, glass and polystyrene at ambient temperatures showed no influence of the conductivity and the heat capacity of the solids on the heat transfer coefficient. Consequently the heat transfer coefficient in the form of the dimensionless Nusselt number can be described by the dimensionless numbers which characterize the gas-solid-flow near the wall. These numbers are the Archimedes number and the pressure drop-number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. With the aid of a model of segregated vertical gas-solid flow, the flow pattern in the wall region can be calculated and thus the wall heat transfer which depends only on heat conduction in the gas and on the convective heat transfer by the gas. With elevated suspension temperatures, radiation contributes additionally to the heat transfer. When the solids concentration is low, the effect of the radiation on the heat transfer is high. Increasing solids concentration results in a decrease of the radiation effect due to the wall being shielded from the radiation of the hot particles in the core region by the cold solids clusters moving down the wall. A simple correlation is presented for calculating the wall-to-suspension heat transfer in circulating fluidized beds.

  3. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the ’standard’ UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  4. The core paradox.

    NASA Technical Reports Server (NTRS)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  5. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of 1s core correlation on properties and energy separations are analyzed using full configuration-interaction (FCI) calculations. The Be1S - 1P, the C 3P - 5S,m and CH(+) 1Sigma(+) - 1Pi separations, and CH(+) spectroscopic constants, dipole moment, and 1Sigma(+) - 1Pi transition dipole moment have been studied. The results of the FCI calculations are compared to those obtained using approximate methods.

  6. Bed Bug Infestations and Control Practices in China: Implications for Fighting the Global Bed Bug Resurgence.

    PubMed

    Wang, Changlu; Wen, Xiujun

    2011-01-01

    The bed bug resurgence in North America, Europe, and Australia has elicited interest in investigating the causes of the widespread and increasing infestations and in developing more effective control strategies. In order to extend global perspectives on bed bug management, we reviewed bed bug literature in China by searching five Chinese language electronic databases. We conducted telephone interviews of staff from 77 Health and Epidemic Prevention Stations in six Chinese cities in November 2010. We also conducted telephone interviews of 68 pest control firms in two cities during March 2011. Two species of bed bugs (Cimex lectularius L. and Cimex hemipterus (F.)) are known to occur in China. These were common urban pests before the early1980s. Nationwide "Four-Pest Elimination" campaigns (bed bugs being one of the targeted pests) were implemented in China from 1960 to the early 1980s. These campaigns succeeded in the elimination of bed bug infestations in most communities. Commonly used bed bug control methods included applications of hot water, sealing of bed bug harborages, physical removal, and applications of residual insecticides (mainly organophosphate sprays or dusts). Although international and domestic travel has increased rapidly in China over the past decade (2000-2010), there have only been sporadic new infestations reported in recent years. During 1999-2009, all documented bed bug infestations were found in group living facilities (military dormitories, worker dormitories, and prisons), hotels, or trains. One city (Shenzhen city near Hong Kong) experienced significantly higher number of bed bug infestations. This city is characterized by a high concentration of migratory factory workers. Current bed bug control practices include educating residents, washing, reducing clutter, putting items under the hot sun in summer, and applying insecticides (pyrethroids or organophosphates). There have not been any studies or reports on bed bug insecticide

  7. AN Core Analysis

    NASA Astrophysics Data System (ADS)

    Barbarino, Andrea; Tomatis, Daniele

    2014-06-01

    Several alternative approximations of neutron transport have been proposed in years to move around the known limitations imposed by neutron diffusion in the modeling of nuclear cores. However, only a few complied with the industrial requirements of fast numerical computation, concentrating more on physical accuracy. In this work, the AN transport methodology is discussed with particular interest in core performance calculations. The implementation of the methodology in full core codes is discussed with particular attention to numerical issues and to the integration within the entire simulation process. Finally, first results from core studies in AN transport are analyzed in detail and compared to standard results of neutron diffusion.

  8. Core Research Center

    USGS Publications Warehouse

    Hicks, Joshua; Adrian, Betty

    2009-01-01

    The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.

  9. Surveillance test bed for SDIO

    NASA Astrophysics Data System (ADS)

    Wesley, Michael; Osterheld, Robert; Kyser, Jeff; Farr, Michele; Vandergriff, Linda J.

    1991-08-01

    The Surveillance Test Bed (STB) is a program under development for the Strategic Defense Initiative Organization (SDIO). Its most salient features are (1) the integration of high fidelity backgrounds and optical signal processing models with algorithms for sensor tasking, bulk filtering, track/correlation and discrimination and (2) the integration of radar and optical estimates for track and discrimination. Backgrounds include induced environments such as nuclear events, fragments and debris, and natural environments, such as earth limb, zodiacal light, stars, sun and moon. At the highest level of fidelity, optical emulation hardware combines environmental information with threat information to produce detector samples for signal processing algorithms/hardware under test. Simulation of visible sensors and radars model measurement degradation due to the various environmental effects. The modeled threat is composed of multiple object classes. The number of discrimination classes are further increased by inclusion of fragments, debris and stars. High fidelity measurements will be used to drive bulk filtering algorithms that seek to reject fragments and debris and, in the case of optical sensors, stars. The output of the bulk filters will be used to drive track/correlation algorithms. Track algorithm output will include sequences of measurements that have been degraded by backgrounds, closely spaced objects (CSOs), signal processing errors, bulk filtering errors and miscorrelations; these measurements will be presented as input to the discrimination algorithms. The STB will implement baseline IR track file editing and IR and radar feature extraction and classification algorithms. The baseline will also include data fusion algorithms which will allow the combination of discrimination estimates from multiple sensors, including IR and radar; alternative discrimination algorithms may be substituted for the baseline after STB completion.

  10. Unique slider bed eliminates problematic idler rollers

    SciTech Connect

    Not Available

    1988-01-01

    Solidur Plastic's impact slide bed is an innovative solution to problems with idler rollers. The unit provides increased conveyor efficiency and prolonged belt life. It also reduces costly downtime and maintenance needs by eliminating typical idler and conveyor belting problems.

  11. EPA-Registered Bed Bug Products

    MedlinePlus

    ... if a pest isn’t listed on the product label, the pesticide has not been tested on that ... home unless bed bugs are named on the product label. Before using any pesticide product, READ THE LABEL ...

  12. Breastfeeding, Bed-Sharing, and Maternal Cortisol.

    PubMed

    Simon, Clarissa D; Adam, Emma K; McKinney, Chelsea O; Krohn, Julie B; Shalowitz, Madeleine U

    2016-05-01

    Prior studies have found that close mother-child sleep proximity helps increase rates of breastfeeding, and breastfeeding itself is linked to better maternal and infant health. In this study, we examine whether breastfeeding and infant bed-sharing are related to daily rhythms of the stress-responsive hormone cortisol. We found that bed-sharing was related to flatter diurnal cortisol slopes, and there was a marginal effect for breastfeeding to predict steeper cortisol slopes. Furthermore, mothers who breastfeed but do not bed-share had the steepest diurnal cortisol slopes, whereas mothers who bed-shared and did not breastfeed had the flattest slopes (P < .05). These results were significant after controlling for subjective sleep quality, perceived stress, depression, socioeconomic status, race, and maternal age. Findings from this study indicate that infant parenting choices recommended for infants (breastfeeding and separate sleep surfaces for babies) may also be associated with more optimal stress hormone profiles for mothers. PMID:26330120

  13. Effects Of Exercise During Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Bernauer, Edmund M.

    1993-01-01

    Pair of reports adds to growing body of knowledge of physical deconditioning caused by prolonged bed rest and effectiveness of various exercise regimens in preserving or restoring fitness. Major objective to determine what regimens to prescribe to astronauts before flight, during prolonged weightlessness, and immediately before returning to Earth. Knowledge also benefits patients confined by illness or injury. First report discusses experiment on effects of two types of periodic, intense, short-duration exercise during bed rest. Experiment also discussed in documents "Effects Of Exercise During Prolonged Bed Rest" (ARC-12190), and "Isotonic And Isokinetic Exercise During Bed Rest" (ARC-12180). Second report reviews knowledge acquired with view toward development of protocols for exercise regimens.

  14. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  15. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  16. On why gravel bed streams are paved

    SciTech Connect

    Parker, G.; Klingeman, P.C.

    1982-10-01

    Bedload transport in poorly sorted gravel bed streams downstream of dams is considered. Bedload and typical bed material (subpavement) size distributions are observed to be similar; it follows that the coarse half of the subpavement moves through a reach at a rate near that of the fine half. Since coarser grains are intrinsically less mobile than fine grains, it follows that some mechanism must act to nearly equalize mobility. It is hypothesized that the pavement seen in gravel bed streams at low flow is in fact in place during typical transport events capable of moving all available sizes. This pavement can provide the equalizing mechanism by exposing proportionally more coarse grains to the flow. Field data are used to quantify this concept and to develop a predictive relation for river pavement. The model indicates that pavement should be absent in most sand bed streams, in agreement with observation.

  17. Ultra high temperature particle bed reactor design

    NASA Technical Reports Server (NTRS)

    Lazareth, Otto; Ludewig, Hans; Perkins, K.; Powell, J.

    1990-01-01

    A direct nuclear propulsion engine which could be used for a mission to Mars is designed. The main features of this reactor design are high values for I(sub sp) and very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H2 passes over the fuel bed, removes the heat, and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this particle bed reactor design is suitable as a propulsion unit for this mission.

  18. Ross Sea Till Properties: Implications for Ice Sheet Bed Interaction

    NASA Astrophysics Data System (ADS)

    Halberstadt, A. R.; Anderson, J. B.; Simkins, L.; Prothro, L. O.; Bart, P. J.

    2015-12-01

    Since the discovery of a pervasive shearing till layer underlying Ice Stream B, the scientific community has categorized subglacial diamictons as either deformation till or lodgement till primarily based on shear strength. Deformation till is associated with streaming ice, formed through subglacial deformation of unconsolidated sediments. Lodgement till is believed to be deposited by the plastering of sediment entrained at the base of slow-flowing ice onto a rigid bed. Unfortunately, there has been a paucity of quantitative data on the spatial distribution of shear strength across the continental shelf. Cores collected from the Ross Sea on cruises NBP1502 and NBP9902 provide a rich dataset that can be used to interpret till shear strength variability. Till strengths are analyzed within the context of: (1) geologic substrate; (2) water content and other geotechnical properties; (3) ice sheet retreat history; and (4) geomorphic framework. Tills display a continuum of shear strengths rather than a bimodal distribution, suggesting that shear strength cannot be used to distinguish between lodgement and deformation till. Where the substrate below the LGM unconformity is comprised of older lithified deposits, till shear strengths are both highly variable within the till unit, as well as highly variable between cores. Conversely, where ice streams flowed across unconsolidated Plio-Pleistocene deposits, shear strengths are low and less variable within the unit and between cores. This suggests greater homogenization of cannibalized tills, and possibly a deeper pervasive shear layer. Coarser-grained tills are observed on banks and bank slopes, with finer tills in troughs. Highly variable and more poorly sorted tills are found in close proximity to sediment-based subglacial meltwater channels, attesting to a change in ice-bed interaction as subglacial water increases. Pellets (rounded sedimentary clasts of till matrix) are observed in Ross Sea cores, suggesting a history of

  19. Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor.

    PubMed

    Zhang, Pan; Duan, Ji H; Chen, Guang H; Wang, Wei W

    2015-01-01

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity.

  20. Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor.

    PubMed

    Zhang, Pan; Duan, Ji H; Chen, Guang H; Wang, Wei W

    2015-01-01

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729

  1. Effect of Bed Characters on the Direct Synthesis of Dimethyldichlorosilane in Fluidized Bed Reactor

    PubMed Central

    Zhang, Pan; Duan, Ji H.; Chen, Guang H.; Wang, Wei W.

    2015-01-01

    This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729

  2. Bedload transport of a bimodal sediment bed

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Lajeunesse, E.

    2012-12-01

    Despite several decades of investigations, accounting for the effect of the wide range of grain sizes composing the bed of rivers on bedload transport remains a challenging problem. We investigate this problem by studying experimentally the influence of grain size distribution on bedload transport in the simple configuration of a bimodal sediment bed composed of a mixture of 2 populations of quartz grains of sizes D1 = 0.7 ± 0.1 mm and D2 = 2.2 ± 0.4 mm, respectively. The experiments are carried out in a tilted rectangular flume inside which the sediment bed is sheared by a steady and spatially uniform turbulent flow. Using a high-speed video imaging system, we focus on the measurement of the average particle velocity and the surface density of moving particles, defined as the number of moving particles per unit surface of the bed. These two quantities are measured separately for each population of grains as a function of the dimensionless shear stress (or Shields number) and the fraction of the bed surface covered with small grains. We show that the average velocity and the surface density of moving particles obey the same equations as those reported by Lajeunesse et al. (2010) for a bed of homogeneous grain size. Once in motion, the grains follow therefore similar laws whether the bed is made of uniform sediment or of a bimodal mixture. This suggests that the erosion-deposition model established by Lajeunesse et al. (2010) for a bed of uniform sediment can be generalized to the case of a bimodal one. The only difference evidenced by our experiments concerns the critical Shields number for incipient sediment motion. Above a uniform sediment bed, the latter depends on the particle Reynolds number through the Shields curve. In the case of a bimodal bed, our experiments show that the critical Shields numbers of both populations of grains decrease linearly with the fraction of the bed surface covered with small grains. We propose a simple model to account for this

  3. Can Psychiatric Rehabilitation Be Core to CORE?

    ERIC Educational Resources Information Center

    Olney, Marjorie F.; Gill, Kenneth J.

    2016-01-01

    Purpose: In this article, we seek to determine whether psychiatric rehabilitation principles and practices have been more fully incorporated into the Council on Rehabilitation Education (CORE) standards, the extent to which they are covered in four rehabilitation counseling "foundations" textbooks, and how they are reflected in the…

  4. Upper Pleistocene turbidite sand beds and chaotic silt beds in the channelized, distal, outer-fan lobes of the Mississippi fan

    SciTech Connect

    Nelson, C.H.; Lee, H.L. ); Twichell, D.C.; Schwab, W.C. ); Kenyon, N.H. )

    1992-08-01

    Cores from a Mississippi outer-fan depositional lobe demonstrate that sublobes at the distal edge contain a complex local network of channelized-turbidite beds of graded sand and debris-flow beds of chaotic silt. Off-lobe basin plains lack siliciclastic coarse-grained beds. The basin-plain mud facies exhibit low acoustic backscatter on SeaMARC IA sidescan sonar images, whereas high acoustic backscatter is characteristic of the lobe sand and silt facies. The depth of the first sand-silt layer correlates with relative backscatter intensity and stratigraphic age of the distal sublobes (i.e., shallowest sand = highest backscatter and youngest sublobe). The high proportion (> 50%) of chaotic silt compared to graded sand in the distal, outer-fan sublobes may be related to the unstable, muddy, canyon-wall source areas of the extensive Mississippi delta-fed basin slope. A predominance of chaotic silt in cores or outcrops from outer-fan lobes thus may predict similar settings for ancient fans.

  5. Use of glow discharge in fluidized beds

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)

    1981-01-01

    Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.

  6. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  7. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  8. Experimental investigation of the pebble bed structure by using gamma ray tomography

    NASA Astrophysics Data System (ADS)

    Ahmed, Fadha Shakir

    Pebble Bed Reactors offer a future for new nuclear energy plants. They are small, inherently safe, and can be competitive with fossil fuels. The fuel forms a randomly stacked pebble with non-uniform fuel densities. The thermal-mechanical behavior of pebble bed reactor core is depends strongly on the spatial variation of packing fraction in the bed and in particular on the number of contacts between pebbles, and between the pebbles and the blanket walls. To investigate these effects, experimental data to characterize bed structure are needed along with other numerical simulation and computational tools for validation. In this study, a powerful technique of high-energy gamma-ray computed tomography (CT scanner system) is employed for the first time for the quantification of the structure of pebble bed in term of the cross-sectional time-averaged void and distributions, it radial profiles and the statistical analysis. The alternative minimization (AM) iteration algorithm is used for image reconstruction. The spatial resolution of the CT scan is about 2 mm with 100 x 100 pixel used to reconstruct the cross-sectional image. Results of tomography with this advanced technique on three different pebble sizes at different axial levels are presented. The bed consisted of a glass spheres (Marbles) with a diameter d1= 1.27 cm, d2= 2.54 cm and d3= 5 cm in a Plexiglas cylinder with diameter D = 30.48 cm (D/d1 = 24, D/d2 = 12 and D/d3 = 6), and had an average void fraction epsilon1= 0.389, epsilon2 = 0.40 and epsilon 3 =0.43, respectively. The radial void fraction profile showed large oscillations with the bigger pebble diameters and the void fraction is higher on the wall with a minimum void fraction of 0.33 at 0.68 pebble diameter away from the wall. It was found that the void distribution in random packed bed depends strongly on the pebble diameter with respect to the bed diameter (D/d p) and the packing mode. The oscillation is quiet large with the smaller aspect ratio (D

  9. The Physiology of Bed Rest. Chapter 39

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Schneider, Victor S.; Greenleaf, John E.

    1996-01-01

    Prolonged rest in bed has been utilized by physicians and other health-care workers to immobilize and confine patients for rehabilitation and restoration of health since time immemorial. The sitting or horizontal position is sought by the body to relieve the strain of the upright or vertical postures, for example during syncopal situations, bone fractures, muscle injuries, fatigue, and probably also to reduce energy expenditure. Most health-care personnel are aware that adaptive responses occurring during bed rest proceed concomitantly with the healing process; signs and symptoms associated with the former should be differentiated from those of the latter. Not all illnesses and infirmities benefit from prolonged bed rest. Considerations in prescribing bed rest for patients-including duration, body position, mode and duration of exercise, light-dark cycles, temperature, and humidity-have not been investigated adequately. More recently, adaptive physiological responses have been measured in normal, healthy subjects in the horizontal or slightly head-down postures during prolonged bed rest as analogs for the adaptive responses of astronauts exposed to the microgravity environment of outer and bed-rest research.

  10. Interpretation of acoustic signals from fluidzed beds

    SciTech Connect

    Halow, J.S.; Daw, C.S.; Finney, C.E.A.; Nguyen, K.

    1996-12-31

    Rhythmic {open_quotes}whooshing{close_quotes} sounds associated with rising bubbles are a characteristic feature of many fluidized beds. Although clearly distinguishable to the ear, these sounds are rather complicated in detail and seem to contain a large background of apparently irrelevant stochastic noise. While it is clear that these sounds contain some information about bed dynamics, it is not obvious how this information can be interpreted in a meaningful way. In this presentation we describe a technique for processing bed sounds that appears to work well for beds with large particles operating in a slugging or near-slugging mode. We find that our processing algorithm allows us to determine important bubble/slug features from sound measurements alone, including slug location at any point in time, the average bubble frequency and frequency variation, and corresponding dynamic pressure drops at different bed locations. We also have been able to correlate a portion of the acoustic signal with particle impacts on surfaces and particle motions near the grid. We conclude from our observations that relatively simple sound measurements can provide much diagnostic information and could be potentially used for bed control. 5 refs., 4 figs.

  11. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    SciTech Connect

    Hansen, E. K.

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  12. Estimation of the bed shear stress in vegetated and bare channels with smooth beds

    NASA Astrophysics Data System (ADS)

    Yang, Judy Q.; Kerger, Francois; Nepf, Heidi M.

    2015-05-01

    The shear stress at the bed of a channel influences important benthic processes such as sediment transport. Several methods exist to estimate the bed shear stress in bare channels without vegetation, but most of these are not appropriate for vegetated channels due to the impact of vegetation on the velocity profile and turbulence production. This study proposes a new model to estimate the bed shear stress in both vegetated and bare channels with smooth beds. The model, which is supported by measurements, indicates that for both bare and vegetated channels with smooth beds, within a viscous sublayer at the bed, the viscous stress decreases linearly with increasing distance from the bed, resulting in a parabolic velocity profile at the bed. For bare channels, the model describes the velocity profile in the overlap region of the Law of the Wall. For emergent canopies of sufficient density (frontal area per unit canopy volume a≥4.3 m-1), the thickness of the linear-stress layer is set by the stem diameter, leading to a simple estimate for bed shear stress.

  13. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    SciTech Connect

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul; Shahnam, Mehrdad

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.

  14. The winter bed crisis--quantifying seasonal effects on hospital bed usage.

    PubMed

    Fullerton, K J; Crawford, V L

    1999-04-01

    Winter bed crises are a common feature in NHS hospitals, and have given rise to great concern. We set out to determine the relative contribution of seasonal effects and other factors to bed occupancy in a large teaching hospital over one year. There were 190,804 occupied bed-days, which we analysed by specialty groupings. There was considerable variability in bed occupancy in each specialty. A significant winter peak occurred for general medicine and orthopaedics together with a significant increase on 'take-in' days. Virtually all specialties showed a significant variation in occupancy between weekdays. Geriatric Medicine had a high and fairly constant occupancy, with some seasonal effect. We conclude that seasonal trends in bed occupancy occur in 'front door' specialties and are predictable. In these specialties, admission policies also make a contribution to bed usage and are amenable to modification. There is no surge in occupancy in the immediate post-Christmas period, except that attributable to the seasonal trend. In the 'elective' specialties, bed occupancy fluctuates widely, with reduced occupancy at weekends and at Christmas. These differences are entirely amenable to modification. More effective bed management would make a very significant contribution to avoiding winter bed crises.

  15. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-08-01

    Research activities are described concerning HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; HTR core evaluation; reactor physics; shielding; application and project assessments; and HTR Core Flow Test Loop studies.

  16. Factors affecting the geochemistry of a thick, subbituminous coal bed in the Powder River Basin: volcanic, detrital, and peat-forming processes

    USGS Publications Warehouse

    Crowley, S.S.; Ruppert, L.F.; Belkin, H.E.; Stanton, R.W.; Moore, T.A.

    1993-01-01

    The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed

  17. Mercury's core evolution

    NASA Astrophysics Data System (ADS)

    Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim

    2016-10-01

    Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.

  18. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  19. NFE Core Bibliographies.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Inst. for International Studies in Education.

    This collection of core bibliographies, which expands on an initial bibliography published in 1979 of the core resources housed in the Non-Formal Education Information Center at Michigan State University, comprises a basic stock of materials on nonformal education and women in development that have been contributed by development planners,…

  20. CORE - Performance Feedback System

    SciTech Connect

    2009-10-02

    CORE is an architecture to bridge the gaps between disparate data integration and delivery of disparate information visualization. The CORE Technology Program includes a suite of tools and user-centered staff that can facilitate rapid delivery of a deployable integrated information to users.

  1. Iowa Core Annual Report

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2015

    2015-01-01

    One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…

  2. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  3. A preliminary report on a zone containing thick lignite beds, Denver Basin, Colorado

    USGS Publications Warehouse

    Soister, Paul E.

    1973-01-01

    A zone of lignite beds of Paleocene age in the Denver Formation (Upper Cretaceous and Paleocene) lies about 800-1,500 feet above the well-known and extensively mined coal beds of the Laramie Formation (Upper Cretaceous). The zone is a few hundred to as much as 500 feet thick. Where lignite beds lie within 1,000 feet of the surface, this zone underlies an area about 30 miles wide by about 75 miles long, stretching from just northeast of Denver to several miles south of Calhan. Fifteen mines were operated at various periods between 1874 and 1940 and probably produced a total of less than 100,000 tons of lignite, mostly for local use. From 1874 to 1974, several geologists have reported on this lignite zone or the enclosing beds, but no detailed reports have been written except for one by this writer. Drill holes are the main source of geologic data, owing to poor exposure. There are generally about 3 to 6 lignite beds, and they are mostly about 15 or 20 to a few tens of feet apart. Most or all beds typically contain numerous non-coal partings from a fraction of an inch to several inches thick, so that thickness of lignite beds should be stated as gross thickness and as net lignite thickness; net lignite thickness is generally from 70 to 90 percent of gross thickness. Many partings are composed of kaolin, but others are composed of other clay minerals, siltstone, and sandstone. The lignite beds range generally from 1 or 2 to several feet thick, and some are as much as 10-25 feet thick; the thickest known bed has a maximum thickness of 54.5 feet, with a net lignite thickness of 40 feet. Most lignite beds seem to have fair lateral continuity, and at least some beds are several miles in extent. The thickest known lignite bed was traced for at least 18 miles, from northwest to southeast of Watkins. The lignite is brownish-black to black, weathers, checks, and disintegrates rapidly, and even in drill cores from a few hundred feet in depth the lignite is easily broken by

  4. Internal core tightener

    DOEpatents

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  5. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  6. Mars' core and magnetism.

    PubMed

    Stevenson, D J

    2001-07-12

    The detection of strongly magnetized ancient crust on Mars is one of the most surprising outcomes of recent Mars exploration, and provides important insight about the history and nature of the martian core. The iron-rich core probably formed during the hot accretion of Mars approximately 4.5 billion years ago and subsequently cooled at a rate dictated by the overlying mantle. A core dynamo operated much like Earth's current dynamo, but was probably limited in duration to several hundred million years. The early demise of the dynamo could have arisen through a change in the cooling rate of the mantle, or even a switch in convective style that led to mantle heating. Presently, Mars probably has a liquid, conductive outer core and might have a solid inner core like Earth.

  7. 21 CFR 880.5140 - Pediatric hospital bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pediatric hospital bed. 880.5140 Section 880.5140... Devices § 880.5140 Pediatric hospital bed. (a) Identification. A pediatric hospital bed is a device intended for medical purposes that consists of a bed or crib designed for the use of a pediatric...

  8. 21 CFR 880.5140 - Pediatric hospital bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pediatric hospital bed. 880.5140 Section 880.5140... Devices § 880.5140 Pediatric hospital bed. (a) Identification. A pediatric hospital bed is a device intended for medical purposes that consists of a bed or crib designed for the use of a pediatric...

  9. 21 CFR 880.5140 - Pediatric hospital bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pediatric hospital bed. 880.5140 Section 880.5140... Devices § 880.5140 Pediatric hospital bed. (a) Identification. A pediatric hospital bed is a device intended for medical purposes that consists of a bed or crib designed for the use of a pediatric...

  10. 21 CFR 880.2400 - Bed-patient monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bed-patient monitor. 880.2400 Section 880.2400... Devices § 880.2400 Bed-patient monitor. (a) Identification. A bed-patient monitor is a battery-powered... to leave the bed. (b) Classification. Class I (general controls). The device is exempt from...

  11. 42 CFR 409.11 - Bed and board.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Bed and board. 409.11 Section 409.11 Public Health... § 409.11 Bed and board. (a) Semiprivate and ward accommodations. Except for applicable deductible and coinsurance amounts, Medicare Part A pays in full for bed and board and semiprivate (2 to 4 beds), or ward...

  12. 21 CFR 880.5120 - Manual adjustable hospital bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual adjustable hospital bed. 880.5120 Section... Therapeutic Devices § 880.5120 Manual adjustable hospital bed. (a) Identification. A manual adjustable hospital bed is a device intended for medical purposes that consists of a bed with a manual...

  13. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  14. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  15. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  16. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  17. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  18. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  19. Examining time trends in the Oldowan technology at Beds I and II, Olduvai Gorge.

    PubMed

    Kimura, Yuki

    2002-09-01

    The lithic analysis of the Bed I and II assemblages from Olduvai Gorge reveals both static and dynamic time trends in early hominids' technology from 1.8 to 1.2 m.y.a. The Bed I Oldowan (1.87-1.75 m.y.a.) is characterized by the least effort strategy in terms of raw material exploitation and tool production. The inclusion of new raw material, chert, for toolmaking in the following Developed Oldowan A (DOA, 1.65-1.53 m.y.a.) facilitated more distinctive and variable flaking strategies depending on the kind of raw materials. The unique characters of DOA are explainable by this raw material factor, rather than technological development of hominids. The disappearance of chert in the subsequent Developed Oldowan B and Acheulian (1.53-1.2 m.y.a.) necessitated a shift in tool production strategy more similar to that of Bed I Oldowan than DOA. However, the evidence suggests that Bed II hominids might have been more skillful toolmakers, intensive tool-users, and engaged in more active transport of stone tools than the Bed I predecessors. Koobi Fora hominids maintained a more static tool-using behavior than their Olduvai counterparts due mainly to a stable supply of raw materials. They differed from Olduvai hominids in terms of less battering of cores, consistent transport behavior, and few productions of side-struck flakes, indicating a regional variation of toolmaking and using practice. However, they shared with Olduvai hominids a temporal trend toward the production of larger flakes from larger cores after 1.6 m.y.a. Increased intake of animal resources and the expansion of ranging area of Homo ergaster would have led to the development of technological organization. Technological changes in the Oldowan industry are attested at Olduvai Gorge, Koobi Fora, and Sterkfontein, suggesting that it was a pan-African synchronous phenomenon, beginning at 1.5 m.y.a.

  20. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    NASA Astrophysics Data System (ADS)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  1. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  2. Stocks and sources of carbon buried in the salt marshes and seagrass beds of Patos Lagoon Estuary, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Patterson, Elizabeth; Johnson, Beverly; Dostie, Philip; Copertino, Margareth

    2016-04-01

    This project investigates carbon stocks in salt marshes and seagrass beds in the Patos Lagoon estuary, the largest choked lagoon in the world, located in Southern Brazil. The study was conducted in the mesohaline region, at three shallow shoals. At each shoal, three sediment cores (50 cm deep) and plant biomass samples (above and belowground) were collected along a transect line, spanning from the marsh to seagrass beds (total = 9 sediment cores). The 50cm cores were subsampled and analyzed for organic carbon (C) and nitrogen (N) content, C/N ratios, and the isotope ratios of 13C/12C, and 15N/14N. The organic carbon content of these sediments ranged between 10% (in surface sediments) and 1% (deeper in the core), suggesting that both the salt marshes and seagrass beds in this region are sequestering carbon. Early results indicate that cores taken in marsh dominated by C3 plants (Scirpus maritimus) tended to be the most depleted in 13C with δ13C values around -25‰. Cores taken in marsh dominated by C4 plants (Spartina alterniflora, Spartina densiflora), seagrass beds (Ruppia maritima) , and non vegetated areas were generally isotopically heavier with δ13C values ranging -20‰ to -15‰, indicating a mix of organic sources in the sediments. The δ15N values and C/N ratios both varied with most values falling in a range of 2-8‰ and 7-20 respectively. Analysis of the δ 34S isotope composition of the sediments is currently underway and may provide better information on the relative contributions of macro and micro algae in the sediments. The present data will reveal the carbon stock size, as well as the types and history of organic matter deposition in Patos Lagoon estuary.

  3. Placing bigger bets on fluidized-bed boilers

    SciTech Connect

    Not Available

    1984-10-17

    The situation in the US where second-generation fluidized-bed technology is being introduced by manufacturers is described. Examples of the circulating bed and multiple bed are given. Installations of first-generation bubbling bed are quoted. The advantages of fluidised-bed combustion in terms of efficiency, ability to burn low-cost, high-sulphur coals, and low emissions are cited.

  4. Ash bed level control system for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.; Rotunda, John R.

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  5. Coal fired fluid bed module for a single elevation style fluid bed power plant

    DOEpatents

    Waryasz, Richard E.

    1979-01-01

    A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.

  6. Bed Stability and Debris Flow Erosion: A Dynamic "Shields Criterion" Associated with Bed Structure

    NASA Astrophysics Data System (ADS)

    Longjas, A.; Hill, K. M.

    2015-12-01

    Debris flows are mass movements that play an important role in transporting sediment from steep uplands to rivers at lower slopes. As the debris flow moves downstream, it entrains materials such as loose boulders, gravel, sand and mud deposited locally by shorter flows such as slides and rockfalls. To capture the conditions under which debris flows entrain bed sediment, some models use something akin to the Shields' criterion and an excess shear stress of the flow. However, these models typically neglect granular-scale effects in the bed which can modify the conditions under which a debris flow is erosional or depositional. For example, it is well known that repeated shearing causes denser packing in loose dry soils, which undoubtedly changes their resistance to shear. Here, we present laboratory flume experiments showing that the conditions for entrainment by debris flows is significantly dependent on the aging of an erodible bed even for narrowly distributed spherical particles. We investigate this quantitatively using particle tracking measurements to quantify instantaneous erosion rates and the evolving bed structure or "fabric". With progressive experiments we find a signature that emerges in the bed fabric that is correlated with an increasing apparent "fragility" of the bed. Specifically, a system that is originally depositional may become erosional after repeated debris flow events, and an erodible bed becomes increasingly erodible with repeated flows. We hypothesize that related effects of bed aging at the field scale may be partly responsible for the increasing destructiveness of secondary flows of landslides and debris flows.

  7. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  8. Core shroud corner joints

    DOEpatents

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  9. Analytical results from samples collected during coal-bed methane exploration drilling in Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.

    2006-01-01

    In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.

  10. Moving Granular Bed Filter Development Program

    SciTech Connect

    Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

    1992-11-01

    The granular bed filter was developed through low pressure, high temperature (1600{degrees}F) testing in the late 1970`s and early 1980`s`. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

  11. Moving Granular Bed Filter Development Program

    SciTech Connect

    Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

    1992-01-01

    The granular bed filter was developed through low pressure, high temperature (1600[degrees]F) testing in the late 1970's and early 1980's'. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

  12. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  13. Measurement of powder bed density in powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Jacob, G.; Donmez, A.; Slotwinski, J.; Moylan, S.

    2016-11-01

    Many factors influence the performance of additive manufacturing (AM) processes, resulting in a high degree of variation in process outcomes. Therefore, quantifying these factors and their correlations to process outcomes are important challenges to overcome to enable widespread adoption of emerging AM technologies. In the powder bed fusion AM process, the density of the powder layers in the powder bed is a key influencing factor. This paper introduces a method to determine the powder bed density (PBD) during the powder bed fusion (PBF) process. A complete uncertainty analysis associated with the measurement method was also described. The resulting expanded measurement uncertainty, U PBD (k  =  2), was determined as 0.004 g · cm‑3. It was shown that this expanded measurement uncertainty is about three orders of magnitude smaller than the typical powder bed density. This method enables establishing correlations between the changes in PBD and the direction of motion of the powder recoating arm.

  14. Salmon-driven bed load transport and bed morphology in mountain streams

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Gottesfeld, Allen S.; Montgomery, David R.; Tunnicliffe, Jon F.; Clarke, Garry K. C.; Wynn, Graeme; Jones-Cox, Hale; Poirier, Ronald; MacIsaac, Erland; Herunter, Herb; Macdonald, Steve J.

    2008-02-01

    Analyses of bed load transport data from four streams in British Columbia show that the activity of mass spawning salmon moved an average of almost half of the annual bed load yield. Spawning-generated changes in bed surface topography persisted from August through May due to lack of floods during the winter season, defining the bed surface morphology for most of the year. Hence, salmon-driven bed load transport can substantially influence total sediment transport rates, and alter typical alluvial reach morphology. The finding that mass-spawning fish can dominate sediment transport in mountain drainage basins has fundamental implications for understanding controls on channel morphology and aquatic ecosystem dynamics, as well as stream responses to environmental change and designing river restoration programs for channels that have, or historically had large spawning runs.

  15. Spouted bed electrowinning of zinc: Part II. Investigations of the dynamics of particles in large thin spouted beds

    NASA Astrophysics Data System (ADS)

    Verma, A.; Evans, J. W.; Salas-Morales, Juan Carlos

    1997-02-01

    The behavior of particles in thin spouted beds, mostly equipped with draft tubes, has been investigated. Three apparatuses have been used: a laboratory-scale cylindrical bed, a 2-m-tall “flat” (rectangular cross section) bed and a 2-m-wide flat bed, the last equipped with multiple draft tubes. Most of the results were obtained on the tall bed. Minimum spouting flow rate, pressure distribution, particle velocities, and solid circulation rates were determined as a function of bed geometry (including draft tube dimensions and position). Observations were made of the direction of liquid flow in the bed outside the draft tube and of the occurrence of zones in the bed where the particles appeared stationary. The wide bed was used to determine that there is a maximum separation between draft tubes beyond which particles cannot be kept in motion across the whole width of the bed.

  16. Contaminated Sediment Core Profiling

    EPA Science Inventory

    Evaluating the environmental risk of sites containing contaminated sediments often poses major challenges due in part to the absence of detailed information available for a given location. Sediment core profiling is often utilized during preliminary environmental investigations ...

  17. Midland Core Repository

    SciTech Connect

    Tyler, Noel

    2000-08-14

    This report summarizes activities for this quarter in one table. Industrial users of this repository viewed and/or checked out 163 boxes of drill cores and cuttings samples from 18 wells during the quarter.

  18. Core helium flash

    SciTech Connect

    Cole, P.W.; Deupree, R.G.

    1980-01-01

    The role of convection in the core helium flash is simulated by two-dimensional eddies interacting with the thermonuclear runaway. These eddies are followed by the explicit solution of the 2D conservation laws with a 2D finite difference hydrodynamics code. Thus, no phenomenological theory of convection such as the local mixing length theory is required. The core helium flash is violent, producing a deflagration wave. This differs from the detonation wave (and subsequent disruption of the entire star) produced in previous spherically symmetric violent core helium flashes as the second dimension provides a degree of relief which allows the expansion wave to decouple itself from the burning front. Our results predict that a considerable amount of helium in the core will be burned before the horizontal branch is reached and that some envelope mass loss is likely.

  19. Biospecimen Core Resource - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) Biospecimen Core Resource centralized laboratory reviews and processes blood and tissue samples and their associated data using optimized standard operating procedures for the entire TCGA Research Network.

  20. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  1. Reservoir evaluation of thin-bedded turbidites and hydrocarbon pore thickness estimation for an accurate quantification of resource

    NASA Astrophysics Data System (ADS)

    Omoniyi, Bayonle; Stow, Dorrik

    2016-04-01

    One of the major challenges in the assessment of and production from turbidite reservoirs is to take full account of thin and medium-bedded turbidites (<10cm and <30cm respectively). Although such thinner, low-pay sands may comprise a significant proportion of the reservoir succession, they can go unnoticed by conventional analysis and so negatively impact on reserve estimation, particularly in fields producing from prolific thick-bedded turbidite reservoirs. Field development plans often take little note of such thin beds, which are therefore bypassed by mainstream production. In fact, the trapped and bypassed fluids can be vital where maximising field value and optimising production are key business drivers. We have studied in detail, a succession of thin-bedded turbidites associated with thicker-bedded reservoir facies in the North Brae Field, UKCS, using a combination of conventional logs and cores to assess the significance of thin-bedded turbidites in computing hydrocarbon pore thickness (HPT). This quantity, being an indirect measure of thickness, is critical for an accurate estimation of original-oil-in-place (OOIP). By using a combination of conventional and unconventional logging analysis techniques, we obtain three different results for the reservoir intervals studied. These results include estimated net sand thickness, average sand thickness, and their distribution trend within a 3D structural grid. The net sand thickness varies from 205 to 380 ft, and HPT ranges from 21.53 to 39.90 ft. We observe that an integrated approach (neutron-density cross plots conditioned to cores) to HPT quantification reduces the associated uncertainties significantly, resulting in estimation of 96% of actual HPT. Further work will focus on assessing the 3D dynamic connectivity of the low-pay sands with the surrounding thick-bedded turbidite facies.

  2. A sampler for coring sediments in rivers and estuaries

    USGS Publications Warehouse

    Prych, Edmund A.; Hubbell, D.W.

    1966-01-01

    A portable sampler developed to core submerged unconsolidated sediments collects cores that are 180 cm long and 4.75cm in diameter. The sampler is used from a 12-m boat in water depths up to 20 m and in flow velocities up to 1.5m per second to sample river and estuarine deposits ranging from silty clay to medium sand. Even in sand that cannot be penetrated with conventional corers, the sampler achieves easy penetration through the combined application of vibration, suction, and axial force. A piston in the core barrel creates suction, and the suspension system is arranged so that tension on the support cable produces both a downward force on the core barrel and a lateral support against overturning. Samples are usually retained because of slight compaction in the driving head; as a precaution, however, the bottom of the core barrel is covered by a plate that closes after the barrel is withdrawn from the bed. Tests show that sample-retainers placed within the driving head restrict penetration and limit core lengths. Stratification within cores is disrupted little as a result of the sampling process.

  3. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The

  4. Distribution of bromine in bedded halite in the Green River Formation, southwestern Wyoming

    USGS Publications Warehouse

    Higley, D.K.

    1983-01-01

    The Wilkins Peak Member of the Eocene Green River Formation of southwestern Wyoming contains a series of halite-trona beds deposited in ancestral Lake Gosiute. X-ray fluorescence analysis of 311) salt samples from 10 core holes revealed bromine contents ranging from 11 to 174 ppm. The average concentration, corrected to 100 percent sodium chloride, is approximately 80 ppm. The bromine content of most halite beds increases from the base upward. Variations or 'spikes' in the bromine profile and reversals of the upward increase in bromine are evidenced within several salt beds. Bromine of bed 10 salt zones exhibits a high degree of correlation laterally. No increase in bromine concentration for correlated salt zones was noted from the basin margins to the depositional center in the northeastern part of the study area. A great disparity in salt thickness from the depositional center to the margins suggests stratified lake conditions in which denser, sodium-chloride-saturated bottom brines did not extend to the margins during part of the depositional history of bed 10. Paleosalinity trends of Lake Gosiute determined from the bromine distribution include the following: (1) chemically stratified lake conditions with dense, highly saline bottom waters and a fresher water zone above during much of the depositional history of the halites, (2) gradual evaporation of lake waters in a closed basin with resultant upward increase in salinity for most intervals studied, and (3) absence of lateral lake-bottom salinity gradients or postdepositional salt alteration as determined by the lateral constancy of bromine concentrations for correlated bed 10 halite.

  5. Micro coring apparatus

    NASA Technical Reports Server (NTRS)

    Collins, David; Brooks, Marshall; Chen, Paul; Dwelle, Paul; Fischer, Ben

    1989-01-01

    A micro-coring apparatus for lunar exploration applications, that is compatible with the other components of the Walking Mobile Platform, was designed. The primary purpose of core sampling is to gain an understanding of the geological composition and properties of the prescribed environment. This procedure has been used extensively for Earth studies and in limited applications during lunar explorations. The corer is described and analyzed for effectiveness.

  6. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  7. Field assessment of alternative bed-load transport estimators

    USGS Publications Warehouse

    Gaeuman, G.; Jacobson, R.B.

    2007-01-01

    Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.

  8. Wound bed preparation: ultrasonic-assisted debridement.

    PubMed

    Butcher, Gillian; Pinnuck, Loreto

    Wound bed preparation is essential for the healing of wounds. The TIME framework (tissue, infection/inflammation, moisture balance, edge of wound) for wound bed preparation shows the importance of debridement in the treatment of chronic wounds. Debridement involves the removal of devitalised tissue from the wound bed. It also facilitates the removal of biofilms-complex microbial communities that are known to contribute to delayed wound healing and chronicity of wounds. Ultrasonic-assisted wound debridement (UAWD) is a lesser known debridement method that uses low-frequency ultrasound waves. There is evidence to show that the three clinical effects of atraumatic selective tissue debridement, wound stimulatory effects and antibacterial activity facilitate early healing of wounds, reducing the cost to the healthcare system and improving the patient's quality of life.

  9. New approach to calibrating bed load samplers

    USGS Publications Warehouse

    Hubbell, D.W.; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.

    1985-01-01

    Cyclic variations in bed load discharge at a point, which are an inherent part of the process of bed load movement, complicate calibration of bed load samplers and preclude the use of average rates to define sampling efficiencies. Calibration curves, rather than efficiencies, are derived by two independent methods using data collected with prototype versions of the Helley‐Smith sampler in a large calibration facility capable of continuously measuring transport rates across a 9 ft (2.7 m) width. Results from both methods agree. Composite calibration curves, based on matching probability distribution functions of samples and measured rates from different hydraulic conditions (runs), are obtained for six different versions of the sampler. Sampled rates corrected by the calibration curves agree with measured rates for individual runs.

  10. FPGA Based Reconfigurable ATM Switch Test Bed

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Jones, Robert E.

    1998-01-01

    Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.

  11. Pyrophoricity of tritium-storage bed materials

    SciTech Connect

    Longhurst, G.R.

    1988-09-01

    Experiments were conducted on samples of depleted uranium and on intermetallic compounds of zirconium-cobalt and lanthanum-nickel-aluminide to evaluate the pyrophoricity of the activated materials and their hydrides and deuterides on exposure to air. None of the materials spontaneously ignited when exposed to room temperature air, but the uranium and the zirconium-cobalt both ignited in air at moderately elevated temperatures. Activated dehyrdided materials ignited at essentially the same temperatures. Deuterides showed effectively the same characteristics as the hydrides except the ignition temperature of zirconium-cobalt deuteride was reduced by 20 - 50 K from that of the hydride. The pyrophoricity of these materials raises concern about the possibility of fires in tritium-storage beds with attendant damage to the bed and dispersal of tritiated debris, but fires may not occur until the bed is heated.

  12. Hydrodynamic model for a vibrofluidized granular bed

    NASA Astrophysics Data System (ADS)

    Martin, T. W.; Huntley, J. M.; Wildman, R. D.

    2005-07-01

    Equations relating the energy flux, energy dissipation rate, and pressure within a three-dimensional vibrofluidized bed are derived and solved numerically, using only observable system properties, such as particle number, size, mass and coefficient of restitution, to give the granular temperature and packing fraction distributions within the bed. These are compared with results obtained from positron emission particle tracking experiments and the two are found to be in good agreement, without using fitting parameters, except at high altitudes when using a modified heat law including a packing fraction gradient term. Criteria for the onset of the Knudsen regime are proposed and the resulting temperature profiles are found to agree more closely with the experimental distributions. The model is then used to predict the scaling relationship between the height of the centre of mass and mean weighted bed temperature with the number of particles in the system and the excitation level.

  13. SYNROC production using a fluid bed calciner

    SciTech Connect

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Campbell, J.H.

    1982-09-27

    SYNROC is a titanate-based ceramic developed for immobilization of high-level nuclear reactor wastes in solid form. Fluid-bed SYNROC production permits slurry drying, calcining and redox to be carried out in a single unit. We present results of studies from two fluid beds; the Idaho Exxon internally-heated unit and the externally-heated unit constructed at Lawrence Livermore National laboratory. Bed operation over a range of temperature, feed rate, fluidizing rate and redox conditions indicate that high density, uniform particle-size SYNROC powders are produced which facilitate the densification step and give HUP parts with dense, well-developed phases and good leaching characteristics. 3 figures, 3 tables.

  14. Particle withdrawal from fluidized bed systems

    DOEpatents

    Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  15. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  16. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  17. Bed posture classification for pressure ulcer prevention.

    PubMed

    Yousefi, R; Ostadabbas, S; Faezipour, M; Farshbaf, M; Nourani, M; Tamil, L; Pompeo, M

    2011-01-01

    Pressure ulcer is an age-old problem imposing a huge cost to our health care system. Detecting and keeping record of the patient's posture on bed, help care givers reposition patient more efficiently and reduce the risk of developing pressure ulcer. In this paper, a commercial pressure mapping system is used to create a time-stamped, whole-body pressure map of the patient. An image-based processing algorithm is developed to keep an unobtrusive and informative record of patient's bed posture over time. The experimental results show that proposed algorithm can predict patient's bed posture with up to 97.7% average accuracy. This algorithm could ultimately be used with current support surface technologies to reduce the risk of ulcer development. PMID:22255993

  18. Dynamic assessment of undersea pipeline bedding condition

    NASA Astrophysics Data System (ADS)

    Zhu, X. Q.; Hao, H.

    2007-04-01

    In this paper, a dynamic method will be developed to identify the surrounding bedding conditions of an undersea pipeline. The pipeline on the seabed is modeled as a simply supported beam on an elastic foundation. Two parameters are used to describe the scour or free span of the pipeline: they are the central location of the scour or span and the width of the scour or span. The study takes into account the dynamic interaction between the pipeline and the elastic foundation. The parameters are determined from natural frequencies of the pipeline. The effect of the number of natural frequencies and the measurement noise levels on the accuracy of the identification results of the pipeline bedding conditions is studied. Numerical simulation shows that the method is effective and reliable to assess the bedding conditions of the undersea pipeline.

  19. Wound bed preparation: TIME for an update.

    PubMed

    Harries, Rhiannon L; Bosanquet, David C; Harding, Keith G

    2016-09-01

    While the overwhelming majority of wounds heal rapidly, a significant proportion fail to progress through the wound-healing process. These resultant chronic wounds cause considerable morbidity and are costly to treat. Wound bed preparation, summarised by the TIME (Tissue, Inflammation/infection, Moisture imbalance, Epithelial edge advancement) concept, is a systematic approach for assessing chronic wounds. Each of these components needs to be addressed and optimised to improve the chances of successful wound closure. We present an up-to-date literature review of the most important recent aspects of wound bed preparation. While there are many novel therapies that are available to the treating clinician, often, there are limited data on which to assess their clinical value, and a lack of appreciation for adequate wound bed preparation needed before expensive therapy is used to heal a wound. PMID:27547958

  20. Control of a Circulating Fluidized Bed

    SciTech Connect

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard; Sams, W. Neal; Koduro, Praveen; Patankar, Amol; Davari, Assad; Lawson, Larry; Boyle, Edward J.

    2001-11-06

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  1. MCNP LWR Core Generator

    SciTech Connect

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  2. Emergency core cooling system

    DOEpatents

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  3. Wetlands and Aquatic Processes: A Bed Sediment Sampler for Precise Depth Profiling of Contaminant Concentrations in Aquatic Environments

    SciTech Connect

    Quinn, Nigel W. T.; Clyde, John R.

    1997-11-01

    A bed sediment and detritus sampler has been dec eloped for use in aquatic environments, such as in canals, rivers or lakes, for determining precise depth profiles of contaminants, The device is superior to currently available commercial push-tube and piston samplers in its simplicity, ease of use and its ability to retrieve and extrude sample cores. The sampler has been used with success during the past 12 mo to determine a profile of bed sediment Se concentrations within an earth-lined canal, alternatively used for conveyance of agricultural drainage and wetland water supply.

  4. Novel Simulated moving bed technologies

    SciTech Connect

    Purdue University

    2003-12-30

    Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars (i.e. glucose and xylose). Once these sugars are separated from other impurities, they can serve as feedstock in fermentation to produce ethanol (as fuels), lactic acid, or other valuable chemicals. The need for producing fuels and chemicals from renewable biomass has become abundantly clear over the last decade. However, the cost of producing fermentable sugars from biomass hydrolyzate using existing technology is relatively high and has been a major obstacle. The objective of this project is to develop an efficient and economical simulated moving bed (SMB) process to recover fermentable sugars from biomass hydrolyzate. Sulfuric acid can hydrolyze the cellulose and hemicellulose in biomass to sugars, but this process can generate byproducts such as acetic acid, and can lead to further degradation of the xylose to furfural and glucose to hydroxymethyl furfural (HMF). Also, lignin and other compounds in the biomass will degrade to various phenolic compounds. If the concentrations of these compounds exceed certain threshold levels, they will be toxic to the downstream fermentation, and will severely limit the usefulness of the derived sugars. Standard post-hydrolysis processing involves neutralization of sulfuric acid, usually with lime (calcium hydroxide). A study by Wooley et al.showed that the limed hydrolyzate gave a low ethanol yield in fermentation test (20% of theoretical yield compared to 77% of theoretical yield from fermentation of pure sugars). They showed that instead of adding lime, an ion exclusion chromatography process could be used to remove acids, as well as to isolate the sugars from the biomass hydrolyzate. In this project, we investigated the feasibility of developing an economical SMB process based on (1) a polymeric adsorbent, Dowex99, which was used by Wooley et al., (2) a second polymeric adsorbent, poly-4-vinyl pyridine (or PVP in short, Reilly

  5. Exercise countermeasures for bed-rest deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  6. Aperture modulated, translating bed total body irradiation

    SciTech Connect

    Hussain, Amjad; Villarreal-Barajas, Jose Eduardo; Dunscombe, Peter; Brown, Derek W.

    2011-02-15

    Purpose: Total body irradiation (TBI) techniques aim to deliver a uniform radiation dose to a patient with an irregular body contour and a heterogeneous density distribution to within {+-}10% of the prescribed dose. In the current article, the authors present a novel, aperture modulated, translating bed TBI (AMTBI) technique that produces a high degree of dose uniformity throughout the entire patient. Methods: The radiation beam is dynamically shaped in two dimensions using a multileaf collimator (MLC). The irregular surface compensation algorithm in the Eclipse treatment planning system is used for fluence optimization, which is performed based on penetration depth and internal inhomogeneities. Two optimal fluence maps (AP and PA) are generated and beam apertures are created to deliver these optimal fluences. During treatment, the patient/phantom is translated on a motorized bed close to the floor (source to bed distance: 204.5 cm) under a stationary radiation beam with 0 deg. gantry angle. The bed motion and dynamic beam apertures are synchronized. Results: The AMTBI technique produces a more homogeneous dose distribution than fixed open beam translating bed TBI. In phantom studies, the dose deviation along the midline is reduced from 10% to less than 5% of the prescribed dose in the longitudinal direction. Dose to the lung is reduced by more than 15% compared to the unshielded fixed open beam technique. At the lateral body edges, the dose received from the open beam technique was 20% higher than that prescribed at umbilicus midplane. With AMTBI the dose deviation in this same region is reduced to less than 3% of the prescribed dose. Validation of the technique was performed using thermoluminescent dosimeters in a Rando phantom. Agreement between calculation and measurement was better than 3% in all cases. Conclusions: A novel, translating bed, aperture modulated TBI technique that employs dynamically shaped MLC defined beams is shown to improve dose uniformity

  7. Loading and Unloading Finishing Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    PubMed Central

    Garcia, Arlene; McGlone, John J.

    2014-01-01

    Simple Summary Current guidelines suggest the use of ramps below 20 degrees to load and unload pigs; however, they do not suggest the use of any specific bedding. Bedding types (nothing, feed, sand, wood shavings, and hay) were tested with finishing pigs (70–120 kg) to determine which was most effective in reducing slips, falls, and vocalizations at three ramp angles, two moisture levels, over two seasons. Slips, falls, and vocalizations were summed to establish a scoring system for the types of beddings. Heart rate and the total time it took to load and unload pigs, increased as the slope increased. Bedding, bedding moisture, season, and ramp slope interacted to impact the total time it took for finishing pigs to load and unload the ramp. Selection of the best bedding depends on ramp slope, season, and wetness of bedding. Abstract The use of non-slip surfaces during loading and unloading of finishing pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps with a slope below 20 degrees to load and unload pigs. However, the total time it takes to load and unload animals and slips, falls, and vocalizations are a welfare concern. Three ramp angles (0, 10 or 20 degrees), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding, >50% moisture) over two seasons (>23.9 °C summer, <23.9 °C winter) were assessed for slips/falls/vocalizations (n = 2400 pig observations) and analyzed with a scoring system. The use of bedding during summer or winter played a role in the total time it took to load and unload the ramp (p < 0.05). Bedding, bedding moisture, season, and slope significantly interacted to impact the total time to load and unload finishing pigs (p < 0.05). Heart rate and the total time it took to load and unload the ramp increased as the slope of the ramp increased (p < 0.05). Heart rates were higher during the

  8. Cardiac atrophy after bed rest and spaceflight

    NASA Technical Reports Server (NTRS)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  9. Lake bed classification using acoustic data

    USGS Publications Warehouse

    Yin, Karen K.; Li, Xing; Bonde, John; Richards, Carl; Cholwek, Gary

    1998-01-01

    As part of our effort to identify the lake bed surficial substrates using remote sensing data, this work designs pattern classifiers by multivariate statistical methods. Probability distribution of the preprocessed acoustic signal is analyzed first. A confidence region approach is then adopted to improve the design of the existing classifier. A technique for further isolation is proposed which minimizes the expected loss from misclassification. The devices constructed are applicable for real-time lake bed categorization. A mimimax approach is suggested to treat more general cases where the a priori probability distribution of the substrate types is unknown. Comparison of the suggested methods with the traditional likelihood ratio tests is discussed.

  10. Enzymatic Catalytic Beds For Oxidation Of Alcohols

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.

    1993-01-01

    Modules containing beds of enzymatic material catalyzing oxidation of primary alcohols and some other organic compounds developed for use in wastewater-treatment systems of future spacecraft. Designed to be placed downstream of multifiltration modules, which contain filters and sorbent beds removing most of non-alcoholic contaminants but fail to remove significant amounts of low-molecular-weight, polar, nonionic compounds like alcohols. Catalytic modules also used on Earth to oxidize primary alcohols and other compounds in wastewater streams and industrial process streams.

  11. Swing beds: an approach to hospital utilization.

    PubMed

    Henderson, D R; Moomaw, A

    1986-11-01

    The need to use every available space for productive purposes is becoming a major concern for hospitals, especially rural hospitals. This need, coupled with the decline in the building of nursing homes, has given rise to the concept of the swing bed, a hospital bed that can be used to provide care to either acute or long-term care patients. This ability allows an acute care hospital to provide care to patients who might traditionally receive care in a nursing home. PMID:10301065

  12. Fracture spacing in slant/horizontal cores, Mesa Verde Formation, CO: Comparison with outcrop and vertical-core data

    SciTech Connect

    Lorenz, J.C. )

    1991-03-01

    Core from the U.S. Department of Energy's Slant Hole Completion Test well (SHCT-1) shows an irregular but remarkably close fracture spacing in flat-lying reservoirs of the Mesaverde Formation in northwestern Colorado. Core was taken from 30 ft thick lenticular sandstones where the wellbore is inclined 60{degree} to vertical (266 ft of core), and from a 60 ft thick marine blanket sandstone where the wellbore is near-horizontal (115 ft of core), at the vertical depths of about 7100 and 7850 ft, respectively. In both zones, fractures cut across the core at a near-orthogonal angle to the core axis, with true lateral spacing averaging about 3 ft/fracture. Fracture spacing is not proportional to bed thickness. Fractures occur in swarms of up to five fractures each, and swarms are somewhat more regularly spaced at 8-10 ft, although individual fracture spacing ranges from less than an inch to 17 ft. Only one fracture was present in the same zones in 175 ft of 4 in. diameter core taken in nearby vertical wells. Outcrops of the same facies, however, show irregular spacings that average on the order of 1.5 ft (lenticular sandstones) and 3 ft (blanket sandstones). Extrapolation of outcrop fracture data, or of fracture data from vertical wellbores, to engineering models of subsurface fracture spacing should be undertaken cautiously. However, subsurface fractures in flat-lying reservoirs can be more closely spaced than is commonly acknowledged.

  13. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase

  14. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  15. Influence of Sedimentary Bedding on Reactive Transport Parameters under Unsaturated Conditions

    SciTech Connect

    Mayes, Melanie; Tang, Guoping; Jardine, Philip M; McKay, Larry Donald; Yin, Xiangping Lisa; Pace, M. N.; Parker, Jack C; Zhang, Fan; Mehlhorn, Tonia L; Dansby-Sparks, Royce N

    2009-01-01

    Moisture and contaminant transport in partially saturated, heterogeneous, layered sediments is typically anisotropic. Solute transport parameters, including dispersivity and the adsorption coefficient, and the modeled concentration of reactive minerals may depend on the direction of flow with respect to sedimentary layering. Reaction rates, in contrast, should be independent of flow direction. We determined the influence of flow direction on transport parameters for nonreactive (Br{sup -}) and reactive (cobalt ethylenediaminetetraacetic acid [Co(II)EDTA{sup 2-}]) solutes under partially saturated conditions by imposing flow either parallel to or across sedimentary bedding in 11 intact sediment cores of various textures. Higher dispersivity of nonreactive tracers in parallel-bed cores suggested fluid channeling through permeable layers, while low-conductivity layers dampened channeling in cross-bed samples. Rates of transformation of Co(II)EDTA{sup 2-} into Co(III)EDTA{sup -} and of disassociation of Co{sup 2+} and EDTA{sup 4-} were modeled assuming that the reaction rates were independent of the flow direction. The concentration of Mn oxides that was responsible for the transformation reaction was dependent on the flow direction, which governed the extent of contact between the solution and the solid phase. Similarly, the adsorption constants of Co(II)EDTA{sup 2-} and Co(III)EDTA{sup -} were dependent on the flow direction but were also unique for each experiment. The modeled concentration of reactive minerals was the most sensitive parameter describing the reaction and transformation of Co(II)EDTA{sup 2-}.

  16. From Modern Push-Button Hospital-beds to 20th Century Mechatronic Beds: A Review

    NASA Astrophysics Data System (ADS)

    Ghersi, I.; Mariño, M.; Miralles, M. T.

    2016-04-01

    The aim of this work is to present the different aspects of modern high complexity electric beds of the period 1940 until 2000 exclusively. The chronology of the product has been strictly divided into three big stages: electric and semi-electric beds (until the 90’s), mechatronic beds (90’s until 2000) and, mechatronic intelligent beds of the last 15 years. The latter are not considered in this work due to the extension for its analysis. The justification for classifying the product is presented under the concepts of medical, assistive and mobility devices. Relevant aspects of common immobility problems of the different types of patients for which the beds are mainly addressed are shown in detail. The basic functioning of the patient’s movement generator and the implementation of actuators, together with IT programs, specific accessories and connectivity means and network-communication shown in this work, were those that gave origin to current mechatronic beds. We present the historical evolution of high complexity electric beds by illustrating cases extracted from a meticulous time line, based on patents, inventions and publications in newspapers and magazines of the world. The criteria adopted to evaluate the innovation were: characteristics of controls; accessories (mattresses, lighting, siderails, etc.), aesthetic and morphologic properties and outstanding functionalities.

  17. Numerical simulation of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis

    2012-11-01

    We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.

  18. Cross-channel patterns of bed material transport in a poorly sorted sand-bed channel

    NASA Astrophysics Data System (ADS)

    Haschenburger, J. K.

    2016-11-01

    Understanding of sediment transport comes largely from studies conducted on well-sorted sand-bed and poorly sorted gravel-bed channels. The aim of this study is to evaluate cross-channel patterns of transport rate and grain size in a poorly sorted sand-bed channel. Transport observations were collected from the San Antonio River using a Helley-Smith sampler during flows from 0.02 to 1.1 times bankfull capacity. Resulting transport rates and grain size distributions were pooled to describe eight sections across a channel transect that includes the lower bank and compared to local boundary material. Maximum transport rates are concentrated in the central zone of the streambed regardless of flow level, but gravels and coarse sands are conveyed preferentially on one side of the bed. Grain size distributions change relatively little with flow and approximate the local bed material supply. The size distributions associated with smaller transport rates near the channel margin become finer and more closely approximate the size characteristics of bank material at higher flows. Results extend patterns of differential routing of grain sizes to channel banks and establish the relative fluxes between the bed and bank environments. The small gravel content in poorly sorted sand beds requires further attention because it can contribute to cross-channel variation in sediment fluxes, limit the development of sandy bedforms, and influence the quality of streambed habitat.

  19. Perspectives for Fluidized Bed Nuclear Reactor Technology using Rotating Fluidized Beds in a Static Geometry

    NASA Astrophysics Data System (ADS)

    Broqueville, Axel De; Wilde, Juray De

    The new concept of a rotating fluidized bed in a static geometry opens perspectives for fluidized bed nuclear reactor technology and is experimentally and numerically investigated. With conventional fluidized bed technology, the maximum attainable power is rather limited and maximum at a certain fluidization gas flow rate. Using a rotating fluidized bed in a static geometry, the fluidization gas drives both the centrifugal force and the counteracting radial gas-solid drag force in a similar way. This allows operating the reactor at any chosen sufficiently high solids loading over a much wider fluidization gas flow rate range and in particular at much higher fluidization gas flow rates than with conventional fluidized bed reactor technology, offering increased flexibility with respect to cooling via the fluidization gas. Furthermore, the centrifugal force can be a multiple of earth gravity, allowing radial gas-solid slip velocities much higher than in conventional fluidized beds. The latter result in gas-solid heat transfer coefficients one or multiple orders of magnitude higher than in conventional fluidized beds. The combination of dense operation and high fluidization gas flow rates allows process intensification and a more compact reactor design.

  20. TRITIUM IN-BED ACCOUNTABILITY FOR A PASSIVELY COOLED, ELECTRICALLY HEATED HYDRIDE BED

    SciTech Connect

    Klein, J.; Foster, P.

    2011-01-21

    A PAssively Cooled, Electrically heated hydride (PACE) Bed has been deployed into tritium service in the Savannah River Site (SRS) Tritium Facilities. The bed design, absorption and desorption performance, and cold (non-radioactive) in-bed accountability (IBA) results have been reported previously. Six PACE Beds were fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory method. An IBA inventory calibration curve, flowing gas temperature rise ({Delta}T) versus simulated or actual tritium loading, was generated for each bed. Results for non-radioactive ('cold') tests using the internal electric heaters and tritium calibration results are presented. Changes in vacuum jacket pressure significantly impact measured IBA {Delta}T values. Higher jacket pressures produce lower IBA {Delta}T values which underestimate bed tritium inventories. The exhaust pressure of the IBA gas flow through the bed's U-tube has little influence on measured IBA {Delta}T values, but larger gas flows reduce the time to reach steady-state conditions and produce smaller tritium measurement uncertainties.

  1. Core description and analysis using X-radiography and cat-scanning: examples from Sacramento and San Joaquin basins, California

    SciTech Connect

    Fischer, P.J.; Setiawan, J.; Cherven, V.B.

    1986-04-01

    X-radiographs of cores from Forbes deep basin sands, the tar-saturated paralic sands of the Temblor and the Tulare fluvial sands and silts, as well as fractured siliceous units (the Monterey Formation and equivalents) reveal geologic features that are either not visible or barely discernible to the naked eye. These features include changes in grain size, grading, ripple lamination to cross-bedding, cyclic couplets in tidal sequences, bioturbation and burrowing, and fracture patterns and filling. Forbes core x-radiography from the northern Sacramento basin clearly shows a sequence of thinly bedded sand and mudstones that are microripple cross-laminated. Partial Bouma sequences (Ta-b or Tb with Ta-c) are characteristic of the thickly bedded sands below the ripple-laminated units. Cyclic sequences of mud-turbidites and finely laminated, very fine-grained sands to coarse silts characterize a sand-poor sequence that overlies a massive to indistinctly thin-bedded sand. Most of these features described above are barely discernible without x-radiography, yet all provide major input to the interpretation of the depositional environment of the Forbes Formation, as well as information regarding reservoir continuity. Tar or heavy-oil saturation of cores can be a severe problem when cores are examined. In a Tulare Formation core sequence that was x-radiographed, essentially no bedding was visible, even using UV photography. However, extensive fluvial cross-bedding throughout the core was revealed by the x-radiography. A similar, heavy oil masking problem in a Temblor Formation core near East Coalinga was also resolved by the x-ray technique. The reservoir is divided into multiple, thin, tidal couplets (4-6 in.) of oil-saturated sand separated by 1 to 3 in. thick mudstones.

  2. HTGR Resilient Control System Strategy

    SciTech Connect

    Lynne M. Stevens

    2010-09-01

    A preeminent objective for corporate and government organizations is the protection of major investments, which is attained by achieving state awareness, a comprehensive understanding of security and safety, for critical infrastructures. Given the dependence of critical infrastructure on control systems for automation, the integrity of these systems and their ability to provide owner/operators a high degree of state awareness is essential in attaining a high degree of investment protection and public acceptance. Operators as well as government are therefore burdened to ensure they have a timely understanding of the status of their plant or all plants, respectively, to ensure efficient operations and investment and public protection. “This characterization is a significant objective that must consider many aspects of instrumentation, control, and intelligent systems in order to achieve the required result. These aspects include sensory, communication, analysis, decision, and human system interfaces necessary to achieve fusion of data and presentation of results that will provide an understanding of what issues are important and why.

  3. Improving washing strategies of human mesenchymal stem cells using negative mode expanded bed chromatography.

    PubMed

    Cunha, Bárbara; Silva, Ricardo J S; Aguiar, Tiago; Serra, Margarida; Daicic, John; Maloisel, Jean-Luc; Clachan, John; Åkerblom, Anna; Carrondo, Manuel J T; Peixoto, Cristina; Alves, Paula M

    2016-01-15

    The use of human mesenchymal stem cells (hMSC) in clinical applications has been increasing over the last decade. However, to be applied in a clinical setting hMSC need to comply with specific requirements in terms of identity, potency and purity. This study reports the improvement of established tangential flow filtration (TFF)-based washing strategies, further increasing hMSC purity, using negative mode expanded bed adsorption (EBA) chromatography with a new multimodal prototype matrix based on core-shell bead technology. The matrix was characterized and a stable, expanded bed could be obtained using standard equipment adapted from what is used for conventional packed bed chromatography processes. The effect of different expansion rates on cell recovery yield and protein removal capacity was assessed. The best trade-off between cell recovery (89%) and protein clearance (67%) was achieved using an intermediate expansion bed rate (1.4). Furthermore, we also showed that EBA chromatography can be efficiently integrated on the already established process for the downstream processing (DSP) of hMSC, where it improved the washing efficiency more than 10-fold, recovering approximately 70% of cells after global processing. This strategy showed not to impact cell viability (>95%), neither hMSC's characteristics in terms of morphology, immunophenotype, proliferation, adhesion capacity and multipotent differentiation potential.

  4. Improving washing strategies of human mesenchymal stem cells using negative mode expanded bed chromatography.

    PubMed

    Cunha, Bárbara; Silva, Ricardo J S; Aguiar, Tiago; Serra, Margarida; Daicic, John; Maloisel, Jean-Luc; Clachan, John; Åkerblom, Anna; Carrondo, Manuel J T; Peixoto, Cristina; Alves, Paula M

    2016-01-15

    The use of human mesenchymal stem cells (hMSC) in clinical applications has been increasing over the last decade. However, to be applied in a clinical setting hMSC need to comply with specific requirements in terms of identity, potency and purity. This study reports the improvement of established tangential flow filtration (TFF)-based washing strategies, further increasing hMSC purity, using negative mode expanded bed adsorption (EBA) chromatography with a new multimodal prototype matrix based on core-shell bead technology. The matrix was characterized and a stable, expanded bed could be obtained using standard equipment adapted from what is used for conventional packed bed chromatography processes. The effect of different expansion rates on cell recovery yield and protein removal capacity was assessed. The best trade-off between cell recovery (89%) and protein clearance (67%) was achieved using an intermediate expansion bed rate (1.4). Furthermore, we also showed that EBA chromatography can be efficiently integrated on the already established process for the downstream processing (DSP) of hMSC, where it improved the washing efficiency more than 10-fold, recovering approximately 70% of cells after global processing. This strategy showed not to impact cell viability (>95%), neither hMSC's characteristics in terms of morphology, immunophenotype, proliferation, adhesion capacity and multipotent differentiation potential. PMID:26739915

  5. Heatup of the TMI-2 lower head during core relocation

    SciTech Connect

    Wang, S.K.; Sienicki, J.J.; Spencer, B.W.

    1989-01-01

    An analysis has been carried out to assess the potential of a melting attack upon the reactor vessel lower head and incore instrument nozzle penetration weldments during the TMI core relocation event at 224 minutes. Calculations were performed to determine the potential for molten corium to undergo breakup into droplets which freeze and form a debris bed versus impinging upon the lower head as one or more coherent streams. The effects of thermal-hydraulic interactions between corium streams and water inside the lower plenum, the effects of the core support assembly structure upon the corium, and the consequences of corium relocation by way of the core former region were examined. 19 refs., 24 figs.

  6. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    PubMed Central

    Garcia, Arlene; McGlone, John J.

    2014-01-01

    Simple Summary Current guidelines suggest the use of ramps below 20° to load and unload pigs; they do not suggest the use of any specific bedding. Bedding types (nothing, feed, sand, wood shavings, and hay) were tested with four week old weaned pigs to determine which was most effective in reducing slips, falls, and vocalizations at three ramp angles, two moistures, over two seasons. Slips, falls, and vocalizations were summed to establish a scoring system to evaluate treatments. Scores increased in a linear fashion as ramp slope increased. The amount of time it took to load and unload pigs was affected by bedding type and ramp angle. Overall, the use of selected bedding types minimized slips, falls, and vocalizations and improved animal welfare. Abstract The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20° to load and unload pigs. Three ramp angles (0°, 10° or 20°), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding; >50% moisture) over two seasons (>23.9 °C summer, <23.9 °C winter) were assessed for slips/falls/vocalizations (n = 6,000 pig observations). “Score” was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P < 0.01). Providing bedding reduced (P < 0.05) scores regardless of whether the bedding was dry or wet. Scores increased as the slope increased (P < 0.01). Provision of bedding, other than feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was affected by bedding type, ramp angle, and season (P < 0.05). Minimizing slips, falls, and vocalizations when loading and unloading pigs improved animal

  7. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure

    SciTech Connect

    Jinjing Li; Wei Wang; Hairui Yang; Junfu Lv; Guangxi Yue

    2009-05-15

    The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure. 15 refs., 10 figs., 1 tab.

  8. Internal dust recirculation system for a fluidized bed heat exchanger

    DOEpatents

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  9. 3-D capacitance density imaging of fluidized bed

    DOEpatents

    Fasching, George E.

    1990-01-01

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

  10. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  11. Solid fuel feed system for a fluidized bed

    DOEpatents

    Jones, Brian C.

    1982-01-01

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  12. Experimental Investigation on a Novel Four-bed Adsorption Chiller

    NASA Astrophysics Data System (ADS)

    Ng, Kim Choon; Chua, Hui Tong; Wang, Jin Bao; Wang, Xiao Lin; Kashiwagi, Takao; Akisawa, Atsushi; Saha, Bidyut Baran

    A prototype multi-bed regenerative adsorption chiller with a novel four-bed operation mode has been designed, fabricated and tested. The rating tests are conducted under assorted ARI coolant, using a purpose-built rating. The 4.bed design exhibits superior heat extraction capability from the heat source as its "slave-first-then-master" arrangement permits individual bed to maximize energy utilization in a batch cycle. Overall system performance of chiller is evaluated for various adsorption-desorption cycle and switching time at assorted coolant inlet temperatures. For fair comparison, the 4-bed chiller is also compared with that of a two-bed mode at the same working conditions.

  13. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  14. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    USGS Publications Warehouse

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  15. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  16. Trace element concentration of central Appalachian coal beds

    SciTech Connect

    McClure, M.; Miller, M.S.

    1996-09-01

    As a result of more stringent environmental regulations, there is increasing demand for coal beds with lower sulfur and trace element concentrations. Unfortunately, due to technical difficulties associated with the detection of elemental composition in parts-per-million, reliable trace element is scarce. Examination of the U.S.G.S. COALQUAL database of Appalachian coals was conducted for the following metals: antimony, arsenic, chromium, lead, and mercury. Within an area of approximately 14,000 square miles, 1,500 raw (core, underground and surface mine) coal samples with geographic coordinates were examined, and more than 100 named coal seams from Tennessee, southern West Virginia, eastern Kentucky, and southwestern Virginia were investigated. Some samples were obtained from formerly active mines which have since been depleted. Researchers have identified approximately 80 coal-related minerals including clays, carbonates, phosphates, chlorides, silicates, sulfates, and sulfides and, of these, sulfides have been found in chemical association with some trace elements. Quality trends over a broad region provide insights into geochemical and depositional processes which may have influenced trace element content. Furthermore, recently published E.P.R.I. data from {open_quotes}as-shipped{close_quotes} coal samples (located by state only) demonstrate similar patterns at the state level. Analysis of these data generally indicates a geographic and stratigraphic preference for coal beds with lower levels of trace elements along the southern edge of the Appalachian coal fields. While these quality trends may be a reasonably good first approximation, additional sampling is needed in minable reserve areas to further identify coal seams which possess favorable trace metal concentrations.

  17. Fluidized bed electrowinning of copper. Final report

    SciTech Connect

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  18. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  19. Subglacial till: the deforming glacier bed

    NASA Astrophysics Data System (ADS)

    van der Meer, Jaap J. M.; Menzies, John; Rose, James

    2003-07-01

    "Till is a sediment and is perhaps more variable than any sediment known by a single name." R.F. Flint 1957 Glacial and Pleistocene Geology Tills are commonly classified according to the perceived process of deposition. However, it is increasingly recognised that this classification, which is mainly based on macroscopic field data, has severe limitations. At the same time the concept of the deforming glacier bed has become more realistic as a framework for discussing tills and their properties, and this (tectonic) concept is irreconcilable with the existing (depositional) till classification scheme. Over the last 20 years large thin sections have been used to study tills, which has provided new insights into the textural and structural properties of tills. These results have revolutionised till sedimentology as they show that, in the main, subglacial tills possess deformational characteristics. Depositional properties are rare. Based on this new insight the process of subglacial till formation is discussed in terms of glacier/ice sheet basal velocity, clay, water and carbonate content and the variability of these properties in space and time. The end result of this discussion is: till, the deforming glacier bed. To distinguish subglacial till from depositional sediments the term 'tectomict' is proposed. Within the single framework of subglacial till as the deforming glacier bed, many textural, structural and geomorphological features of till beds can be more clearly and coherently explained and understood.

  20. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.