Sample records for bed load sediment

  1. A method for improving predictions of bed-load discharges to reservoirs

    USGS Publications Warehouse

    Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.

    2007-01-01

    Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  2. Response of bed surface patchiness to reductions in sediment supply

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Venditti, Jeremy G.; Dietrich, William E.; Kirchner, James W.; Ikeda, Hiroshi; Iseya, Fujiko; Sklar, Leonard S.

    2009-06-01

    River beds are often arranged into patches of similar grain size and sorting. Patches can be distinguished into "free patches," which are zones of sorted material that move freely, such as bed load sheets; "forced patches," which are areas of sorting forced by topographic controls; and "fixed patches" of bed material rendered immobile through localized coarsening that remain fairly persistent through time. Two sets of flume experiments (one using bimodal, sand-rich sediment and the other using unimodal, sand-free sediment) are used to explore how fixed and free patches respond to stepwise reductions in sediment supply. At high sediment supply, migrating bed load sheets formed even in unimodal, sand-free sediment, yet grain interactions visibly played a central role in their formation. In both sets of experiments, reductions in supply led to the development of fixed coarse patches, which expanded at the expense of finer, more mobile patches, narrowing the zone of active bed load transport and leading to the eventual disappearance of migrating bed load sheets. Reductions in sediment supply decreased the migration rate of bed load sheets and increased the spacing between successive sheets. One-dimensional morphodynamic models of river channel beds generally are not designed to capture the observed variability, but should be capable of capturing the time-averaged character of the channel. When applied to our experiments, a 1-D morphodynamic model (RTe-bookAgDegNormGravMixPW.xls) predicted the bed load flux well, but overpredicted slope changes and was unable to predict the substantial variability in bed load flux (and load grain size) because of the migration of mobile patches. Our results suggest that (1) the distribution of free and fixed patches is primarily a function of sediment supply, (2) the dynamics of bed load sheets are primarily scaled by sediment supply, (3) channels with reduced sediment supply may inherently be unable to transport sediment uniformly across their width, and (4) cross-stream variability in shear stress and grain size can produce potentially large errors in width-averaged sediment flux calculations.

  3. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  4. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    EPA Science Inventory

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  5. Organochlorine pesticide residues in bed sediments of the San Joaquin River, California

    USGS Publications Warehouse

    Gilliom, Robert J.; Clifton, Daphne G.

    1990-01-01

    Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.

  6. The measurement of total sediment load in alluvial streams

    USGS Publications Warehouse

    Benedict, P.C.; Matejka, D.Q.; McNown, John S.; Boyer, M.C.

    1953-01-01

    The measurement of the total sediment load transported by streams that flow in alluvial channels has been a perplexing problem to engineers and geologists for over a century. Until the last decade the development of equipment to measure bed load and suspended load was carried on almost independently, and without primary consideration of the fundamental laws governing the transportation of fluvial sediments. French investigators during the nineteenth century described methods of measurement and a mathematical approach for computing the rate of bed-load movement. The comprehensive laboratory investigations by Gilbert early in this century provided data that are still being used for studies of sediment transport. Detailed laboratory investigations of bed-load movement conducted during the last two decades by a number of investigators have resulted in the development of additional mathematical formulas for computing rates of bed-load movement. Likewise, studies of turbulent flow have provided the turbulence suspension theory for suspended sediment as it is known today.

  7. Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2017-12-01

    The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (<10%) fraction of the total sediment load. In large rivers, capturing accurate estimates of the suspended- and bed- load fractions is difficult given the large channel widths and depths and the intrusive nature of typical methodologies. Yet, for the successful implementation of sustainable river, and delta, management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong delta. Our results indicate that the time-averaged suspended load transport rates for the Mekong River are 87 MT/yr, whilst bedload transport forms c. < 5% of the total sediment load within the Mekong River. Such estimates are integral to future channel management within this highly threatened river basin.

  8. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  9. Using multiple bed load measurements: Toward the identification of bed dilation and contraction in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Marquis, G. A.; Roy, A. G.

    2012-02-01

    This study examines bed load transport processes in a small gravel-bed river (Béard Creek, Québec) using three complementary methods: bed elevation changes between successive floods, bed activity surveys using tags inserted into the bed, and bed load transport rates from bed load traps. The analysis of 20 flood events capable of mobilizing bed material led to the identification of divergent results among the methods. In particular, bed elevation changes were not consistent with the bed activity surveys. In many cases, bed elevation changes were significant (1 to 2 times the D50) even if the bed surface had not been activated during the flood, leading to the identification of processes of bed dilation and contraction that occurred over 10% to 40% of the bed surface. These dynamics of the river bed prevent accurate derivation of bed load transport rates from topographic changes, especially for low magnitude floods. This paper discusses the mechanisms that could explain the dilation and contraction of particles within the bed and their implications in fluvial dynamics. Bed contraction seems to be the result of the winnowing of the fine sediments under very low gravel transport. Bed dilation seems to occur on patches of the bed at the threshold of motion where various processes such as fine sediment infiltration lead to the maintenance of a larger sediment framework volume. Both processes are also influenced by flood history and the initial local bed state and in turn may have a significant impact on sediment transport and morphological changes in gravel-bed rivers.

  10. Today's sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif

    NASA Astrophysics Data System (ADS)

    Frings, Roy M.; Gehres, Nicole; Promny, Markus; Middelkoop, Hans; Schüttrumpf, Holger; Vollmer, Stefan

    2014-01-01

    The river bed of the Rhine River is subject to severe erosion and sedimentation. Such high geomorphological process rates are unwanted for economical, ecological, and safety reasons. The objectives of this study were (1) to quantify the geomorphological development of the Rhine River between 1985 and 2006; (2) to investigate the bed erosion process; and (3) to distinguish between tectonic, hydrological, and human controls. We used a unique data set with thousands of bedload and suspended-load measurements and quantified the fluxes of gravel, sand, silt, and clay through the northern Upper Rhine Graben and the Rhenish Massif. Furthermore, we calculated bed level changes and evaluated the sediment budget of the channel. Sediment transport rates were found to change in the downstream direction: silt and clay loads increase because of tributary supply; sand loads increase because of erosion of sand from the bed; and gravel loads decrease because of reduced sediment mobility caused by the base-level control exerted by the uplifting Rhenish Massif. This base-level control shows tectonic setting, in addition to hydrology and human interventions, to represent a major control on morphodynamics in the Rhine. The Rhine bed appears to be in a state of disequilibrium, with an average net bed degradation of 3 mm/a. Sand being eroded from the bed is primarily washed away in suspension, indicating a rapid supply of sand to the Rhine delta. The degradation is the result of an increased sediment transport capacity caused by nineteenth and twentieth century's river training works. In order to reduce degradation, huge amounts of sediment are fed into the river by river managers. Bed degradation and artificial sediment feeding represent the major sources of sand and gravel to the study area; only small amounts of sediment are supplied naturally from upstream or by tributaries. Sediment sinks include dredging, abrasion, and the sediment output to the downstream area. Large uncertainties exist about the amounts of sediment deposited on floodplains and in groyne fields. Compared to the natural situation during the middle Holocene, the present-day gravel and sand loads seem to be lower, whereas the silt and clay loads seem to be higher. This is probably caused by the present-day absence of meander migration, the deforestation, and the reduced sediment trapping efficiency of the floodplains. Even under natural conditions no equilibrium bed level existed.

  11. Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.

    2014-03-01

    Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.

  12. Field assessment of alternative bed-load transport estimators

    USGS Publications Warehouse

    Gaeuman, G.; Jacobson, R.B.

    2007-01-01

    Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.

  13. Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales

    Treesearch

    Thomas E. Lisle; Jonathan M. Nelson; John Pitlick; Mary Ann Madej; Brent L. Barkett

    2000-01-01

    Abstract - Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility...

  14. Estimating sediment discharge: Appendix D

    USGS Publications Warehouse

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with different types of bed-load samplers may not be comparable (Gray et al. 1991; Childers 1999; Edwards and Glysson 1999). The total suspended solids (TSS) analytical method tends to produce concentration data from open-channel flows that are biased low with respect to their paired suspended-sediment concentration values, particularly when sand-size material composes more than about a quarter of the material in suspension. Instantaneous sediment-discharge values based on TSS data may differ from the more reliable product of suspended- sediment concentration values and the same water-discharge data by an order of magnitude (Gray et al. 2000; Bent et al. 2001; Glysson et al. 2000; 2001). An assessment of data comparability and reliability is an important first step in the estimation of sediment discharges. There are two approaches to obtaining values describing sediment loads in streams. One is based on direct measurement of the quantities of interest, and the other on relations developed between hydraulic parameters and sediment- transport potential. In the next sections, the most common techniques for both approaches are briefly addressed.

  15. Determining Relative Contributions of Eroded Landscape Sediment and Bank Sediment to the Suspended Load of Streams and Wetlands Using 7Be and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.

    2005-12-01

    The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.

  16. Statistical description of flume experiments on mixed-size bed-load transport and bed armoring processes

    NASA Astrophysics Data System (ADS)

    Chen, D.; Zhang, Y.

    2008-12-01

    The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.

  17. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.

  18. Data compilation for assessing sediment and toxic chemical loads from the Green River to the lower Duwamish Waterway, Washington

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.

    2014-01-01

    Between February and June 2013, the U.S. Geological Survey collected representative samples of whole water, suspended sediment, and (or) bed sediment from a single strategically located site on the Duwamish River, Washington, during seven periods of different flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including polycyclic aromatic hydrocarbons and other semivolatile compounds, polychlorinated biphenyl Aroclors and the 209 congeners, metals, dioxins/furans, volatile organic compounds, pesticides, butyltins, hexavalent chromium, and total organic carbon. Chemical concentrations associated with bulk bed sediment (<2 mm) and fine bed sediment (<62.5 μm) fractions were compared to chemical concentrations associated with suspended sediment. Bulk bed sediment concentrations generally were lower than fine bed sediment and suspended-sediment concentrations. Concurrent with the chemistry sampling, additional parameters were measured, including instantaneous river discharge, suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters. From these data, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated.

  19. Exploring the role of flood transience in coarse bed load sediment transport

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Singer, M. B.; Hill, K. M.; Paola, C.

    2015-12-01

    The rate of bed load transport under steady flow is known to vary both spatially and temporally due to various hydrologic and granular phenomena. Grain size distributions and riverbed properties (packing, imbrication, etc.) are known to affect flux for a particular value of applied flow stress, while hydrology is mainly assumed to control the magnitude of the applied bed stress above the threshold for bed material entrainment. The prediction of bed load sediment transport in field settings is further complicated by the inherent transience in flood hydrology, but little is known about how such flood transience influences bed load flux over a range of applied bed stress. Here we investigate the role of flood transience for gravel bed load transport through controlled laboratory experiments in a 28 m long 0.5 meter wide flume. We explore transient flow as the combination of unsteady and intermittent flow, where unsteady flow varies in magnitude over a given duration, and intermittent flow is characterized by turning the flow on and off. We systematically vary these details of flood hydrographs from one experiment to the next, and monitor the bed load as it varies with water discharge in real time by measuring sediment flux and tracking particles. We find that even with a narrow unimodal grain size distribution and constant sediment supply we observe hysteresis in bed load flux, different thresholds for entrainment and distrainment for the rising and falling limbs of a flood, and a threshold of entrainment that can vary one flood hydrograph to the next. Despite these complex phenomena we find that the total bed load transported for each flood plots along a linear trend with the integrated excess stress, consistent with prior field results. These results suggest that while the effects of transient flow and the shape of the hydrograph are measurable, they are second-order compared to the integrated excess stress.

  20. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.

  1. Bed load transport in gravel-bed rivers

    Treesearch

    Jeffrey J. Barry

    2007-01-01

    Bed load transport is a fundamental physical process in alluvial rivers, building and maintaining a channel geometry that reflects both the quantity and timing of water and the volume and caliber of sediment delivered from the watershed. A variety of formulae have been developed to predict bed load transport in gravel-bed rivers, but testing of the equations in natural...

  2. Bed Surface Adjustments to Spatially Variable Flow in Low Relative Submergence Regimes

    NASA Astrophysics Data System (ADS)

    Monsalve, A.; Yager, E. M.

    2017-11-01

    In mountainous rivers, large relatively immobile grains partly control the local and reach-averaged flow hydraulics and sediment fluxes. When the flow depth is similar to the size of these grains (low relative submergence), heterogeneous flow structures and plunging flow cause spatial distributions of bed surface elevations, textures, and sedimentation rates. To explore how the bed surface responds to these flow variations we conducted a set of experiments in which we varied the relative submergence of staggered hemispheres (simulated large boulders) between runs. All experiments had the same average sediment transport capacity, upstream sediment supply, and initial bed thickness and grain size distribution. We combined our laboratory measurements with a 3-D flow model to obtain the detailed flow structure around the hemispheres. The local bed shear stress field displayed substantial variability and controlled the bed load transport rates and direction in which sediment moved. The divergence in bed shear stress caused by the hemispheres promoted size-selective bed load deposition, which formed patches of coarse sediment upstream of the hemisphere. Sediment deposition caused a decrease in local bed shear stress, which combined with the coarser grain size, enhanced the stability of this patch. The region downstream of the hemispheres was largely controlled by a recirculation zone and had little to no change in grain size, bed elevation, and bed shear stress. The formation, development, and stability of sediment patches in mountain streams is controlled by the bed shear stress divergence and magnitude and direction of the local bed shear stress field.

  3. Sediment and Hydraulic Measurements with Computed Bed Load on the Missouri River, Sioux City to Hermann, 2014

    DTIC Science & Technology

    2017-05-01

    large sand bed river, with seven sites representing increasingly larger flows along the river length. The data set will be very useful for additional...quantity, quality , and types of data that can be obtained for the study of natural phenomenon. The study of riverine sedimentation is no exception...detail than in previous years. Additionally, new methodologies have been developed that allow the computation of bed-load transport in large sand bed

  4. Land factors affecting soil erosion during snow melting: a case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Darwich, Talal

    2014-05-01

    Soil erosion is one of the major problems facing the mountainous agricultural lands in Lebanon. In order to assess the land factors acting on soil erosion; a study was conducted in the upper watershed of Ibrahim River in the spring months of April, May and June. Water and bed load sediments from six locations alimented by six sub-basins were sampled. Four sub-basins (1, 2, 3 and 6) were dominated by agricultural lands while lands in sub-basins 4 and 7 were occupied by grassland and bare soils. The highest quantities of suspended sediments were found in waters originating from watersheds dominated by agricultural lands, such as Location 2 (713.72 mg L-1 in April 2012). Low clay content and the combination of land occupation (orchards = 71%) and slope (20.7 degrees) caused this ecosystem disturbance. Locations 1, 2, 3 and 6 were alimented by runoff water due to the melting of the snow. For this, the concentrations of sediments decreased by 4 fold between April and May in sub-basin 1 and by 11-14 fold in sub-basins 2, 3 and 6. Globally, some 1669.4 tons of sediments were delivered in the upper river during April. Bed load sediments were separated into 4 classes according to their size. The size of the particles found in the bed load reflected to a large extent the type of soils surrounding the watershed. The range of sand in the regions surrounding locations 6 and 7 was 64% and 82%, while the average in the bed load was 80.9% and 78.25% respectively. The silt content in locations 2, 3 and 5 was well reflected in the concentrations of silt in the bed load. In bed load samples, the exchangeable potassium ranged from 70-250 mg kg-1 in sub-basins dominated by agricultural lands against 20-50 mg kg-1 in sub-basins dominated by grassland and bare rocks. Further quantitative studies need to be conducted especially during the first rains to fully estimate the water load sediments after a prolonged dry season, characterizing the east Mediterranean. Action must be taken for land conservation by improving the farmer's practices, modifying the frequency of plowing and introducing no tillage beside the maintenance of terraces. Keywords: Mountains, erosion, sediments, East Mediterranean, river, bed load quality.

  5. The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds

    NASA Astrophysics Data System (ADS)

    Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.

    2018-02-01

    Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.

  6. Towards a better understanding on how large wood is controlling longitudinal sediment (dis)connectivity in mountain streams - concepts and first results

    NASA Astrophysics Data System (ADS)

    Schuchardt, Anne; Pöppl, Ronald; Morche, David

    2016-04-01

    Large wood (LW) provides various ecological and morphological functions. Recent research has focused on habitat diversity and abundance, effects on channel planforms, pool formation, flow regimes and increased storage of organic matter as well as storage of fine sediment. While LW studies and sediment transport rates are the focus of numerous research questions, the influence of large channel blocking barriers (e.g. LW) and their impact on sediment trapping and decoupling transportation pathways is less studied. This project tries to diminish the obvious gap and deals with the modifications of the sediment connectivity by LW. To investigate the influence of large wood on sediment transporting processes and sediment connectivity, the spatial distribution and characterization of LW (>1 m in length and >10 cm in diameter) in channels is examined by field mapping and dGPS measurements. Channel hydraulic parameters are determined by field measurements of channel long profiles and cross sections. To quantify the direct effects of LW on discharge and bed load transport the flow velocity and bed load up- and downstream of LW is measured using an Ott-Nautilus and a portable Helley-Smith bed load sampler during different water stages. Sediment storages behind LWD accumulations will be monitored with dGPS. While accumulation of sediment indicates in-channel sediment storage and thus disconnection from downstream bed load transport, erosion of sediment evidences downstream sediment connectivity. First results will be presented from two study areas in mountain ranges in Germany (Wetterstein Mountain Range) and Austria (Bohemian Massif).

  7. Modeling the Effects of Reservoir Releases on the Bed Material Sediment Flux of the Colorado River in western Colorado and eastern Utah

    NASA Astrophysics Data System (ADS)

    Pitlick, J.; Bizzi, S.; Schmitt, R. J. P.

    2017-12-01

    Warm-water reaches of the upper Colorado River have historically provided important habitat for four endangered fishes. Over time these habitats have been altered or lost due to reductions in peak flows and sediment loads caused by reservoir operations. In an effort to reverse these trends, controlled reservoir releases are now used to enhance sediment transport and restore channel complexity. In this presentation, we discuss the development of a sediment routing model designed to assess how changes in water and sediment supply can affect the mass balance of sediment. The model is formulated for ten reaches of the Colorado River spanning 250 km where values of bankfull discharge, width, and reach-average slope have been measured. Bed surface grain size distributions (GSDs) have also been measured throughout the study area; these distributions are used as a test of the model, not as input, except as an upstream boundary condition. In modeling fluxes and GSDs, we assume that the bed load transport capacity is determined by local hydraulic conditions and bed surface grain sizes. Estimates of the bankfull bed load transport capacity in each reach are computed for 14 size fractions of the surface bed material, and the fractional transport rates are summed to get the total transport capacity. In the adjacent reach, fluxes of each size fraction from upstream are used to determine the mean grain size, and the fractional transport capacity of that reach. Calculations proceed downstream and illustrate how linked changes in discharge, shear stress and mean grain size affect (1) the total bed load transport capacity, and (2) the size distribution of the bed surface sediment. The results show that model-derived GSDs match measured GSDs very closely, except for two reaches in the lower part of the study area where slope is affected by uplift associated with salt diapirs; here the model significantly overestimates the transport capacity in relation to the supply. Except for these two reaches, the modeled bed load fluxes seem reasonable (0.5-1.0 kg/m/s at bankfull flow), and exhibit downstream trends that are consistent with trends reported in previous studies. Finally, model simulations show that if reservoir releases fall short of target flows (e.g. bankfull) this can have a disproportionately negative effect on the mass balance of sediment.

  8. The Impact of Urbanization on Temporal Changes in Sediment Transport in a Gravel Bed Channel in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Plumb, B. D.; Annable, W. K.; Thompson, P. J.; Hassan, M. A.

    2017-10-01

    A field investigation has been undertaken to characterize the event-based bed load transport dynamics of a highly urbanized gravel bed stream. A combination of direct bed load and tracer particle measurements were taken over a 3 year period during which time approximately 30 sediment mobilizing events occurred. Sediment transport measurements were used to calibrate a fractional bed load transport model and combined with hydrometric data which represent four different land use conditions (ranging from rural to highly urbanized) to analyze the differences in discharge magnitude and frequency and its impact on sediment transport. Fractional transport analysis of the bed load measurements indicates that frequent intermediate discharge events can mobilize sand and fine gravel to an approximate equally mobile condition, however, the transport rates at these discharges exhibit greater variability than at discharges above the bankfull discharge. Path lengths of the coarse fraction, measured using tracer clasts, are insensitive to peak discharge, and instead transport at distances less than those reported in other gravel bed channels, which is attributed to the shorter duration discharge events common to urban streams. The magnitude-frequency analysis reveals that the frequency, time, and volume of competent sediment mobilizing events are increasing with urbanization. Variability in effective discharges suggests that a range of discharges, spanning between frequent, low magnitude events to less frequent, high magnitude events are geomorphically significant. However, trends in the different land use scenarios suggest that urbanization is shifting the geomorphic significance toward more frequent, lower magnitude events.

  9. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    USDA-ARS?s Scientific Manuscript database

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  10. Effect of large wood retention at check dams on sediment continuity

    NASA Astrophysics Data System (ADS)

    Schmocker, Lukas; Schalko, Isabella; Weitbrecht, Volker

    2017-04-01

    Large wood transport during flood events may seriously increase the damage potential due to accumulations at river infrastructures. The large wood is therefore mostly retained upstream of populated areas using retention structures that often combine a check dam with a debris rack. One disadvantages of this structures is, that the bed-load gets retained along with the wood. Especially if large wood blocks the rack early during a flood event, sediment continuity is completely interrupted. This may lead to severe bed erosion downstream of the check dam. So far, no common design to retain large wood but maintain sediment continuity is available. One attempt to separate the large wood from the bed-load was made with the large wood retention structure at River Sihl in Zürich, Switzerland. The retention of the large wood occurs in a bypass channel located along the main river. The bypass is located at an outer river bend, where a separation of bed-load and large wood results due to the secondary currents induced by the river curvature. Large wood floats towards the outer bend due to inertia and the secondary currents whereas bed-load remains at the inner bend. The bypass is separated by a side weir from the main river to ensure that the bed-load remains in the river during bed forming discharges and flood events. New model test are currently carried out at the Laboratory of Hydraulics, Hydrology, and Glaciology (VAW) of ETH Zurich, where sediment continuity should be achieved using an inclined rack. The rack is inclined in flow direction with a degree of 45° to 20°. First results show that the large wood deposits at the upper part of the rack whereas the lower part of the rack remains free for bed-load transport. Furthermore, the backwater rise for the inclined rack due to the accumulated wood is considerably reduced compared to a vertical rack, as a large part of the rack remains clear for the flow to pass. The findings of this studies help to understand the complex interaction between sediment and large wood at a check dam retention structure. Furthermore, new retention structures and rack designs are available, where sediment continuity can partially be maintained to reduce downstream bed erosion.

  11. Literature review for Texas Department of Transportation Research Project 0-4695: Guidance for design in areas of extreme bed-load mobility, Edwards Plateau, Texas

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Asquith, William H.; Fang, Xing; Thompson, David B.; Wang, Keh-Han

    2005-01-01

    A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0–4695: Guidance for Design in Areas of Extreme Bed-Load Mobility. The study area comprises the western half of the Edwards Plateau in central Texas. Three primary foci of the literature review are journal articles, edited volumes, and government publications. Major themes within the body of literature include deterministic sediment transport theory and equations, development of methods to measure and analyze fluvial sediment, applications and development of theory in natural channels and flume experiments, and recommendations for river management and structural design. The literature review provides an outline and foundation for the research project to characterize extreme bed-load mobility in rivers and streams across the study area. The literature review also provides a basis upon which potential modifications to low-water stream-crossing design in the study area can be made.

  12. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show <1 m of net bed elevation change over the entire 75-year period of record. Integrating bed elevation changes over the period of record, we estimate a total of 1.1-1.2 billion tons of sediment have been exported from the Missouri River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all rivers in the US lower 48 states, except the Mississippi and Colorado Rivers, and would rank in the top 50 of all rivers in the modern world.

  13. The volume of fine sediment in pools: An index of sediment supply in gravel-bed streams

    Treesearch

    Thomas E. Lisle; Sue Hilton

    1992-01-01

    Abstract - During waning flood flows in gravel-bed streams, fine-grained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes availabe to fill pools. The volume of fine sediment in pools...

  14. Sorting waves and associated eigenvalues

    NASA Astrophysics Data System (ADS)

    Carbonari, Costanza; Colombini, Marco; Solari, Luca

    2017-04-01

    The presence of mixed sediment always characterizes gravel bed rivers. Sorting processes take place during bed load transport of heterogeneous sediment mixtures. The two main elements necessary to the occurrence of sorting are the heterogeneous character of sediments and the presence of an active sediment transport. When these two key ingredients are simultaneously present, the segregation of bed material is consistently detected both in the field [7] and in laboratory [3] observations. In heterogeneous sediment transport, bed altimetric variations and sorting always coexist and both mechanisms are independently capable of driving the formation of morphological patterns. Indeed, consistent patterns of longitudinal and transverse sorting are identified almost ubiquitously. In some cases, such as bar formation [2] and channel bends [5], sorting acts as a stabilizing effect and therefore the dominant mechanism driving pattern formation is associated with bed altimetric variations. In other cases, such as longitudinal streaks, sorting enhances system instability and can therefore be considered the prevailing mechanism. Bedload sheets, first observed by Khunle and Southard [1], represent another classic example of a morphological pattern essentially triggered by sorting, as theoretical [4] and experimental [3] results suggested. These sorting waves cause strong spatial and temporal fluctuations of bedload transport rate typical observed in gravel bed rivers. The problem of bed load transport of a sediment mixture is formulated in the framework of a 1D linear stability analysis. The base state consists of a uniform flow in an infinitely wide channel with active bed load transport. The behaviour of the eigenvalues associated with fluid motion, bed evolution and sorting processes in the space of the significant flow and sediment parameters is analysed. A comparison is attempted with the results of the theoretical analysis of Seminara Colombini and Parker [4] and Stecca, Siviglia and Blom [6]. [1] Kuhnle, R.A. and Southard, J.B. 1988. Bed Load Transport Fluctuations in a Gravel Bed Laboratory Channel. Water Resources Research, 24(2), 247-260. [2] Lanzoni, S. and Tubino, M. 1999. Grain sorting and bar instability. Journal of Fluid Mechanics. 393, 149-174. [3] Recking, A., Frey, P., Paquier, A. and Belleudy, P. 2009. An experimental investigation of mechanisms involved in bed load sheet production and migration. Journal of Geophysical Research, 114, F03010. [4] Seminara, G., Colombini, M. and Parker, G. 1996. Nearly pure sorting waves and formation of bedload sheets. Journal of Fluid Mechanics. 312, (1996), 253-278. [5] Seminara, G., Solari, L. and Tubino, M. 1997. Finite amplitude scour and grain sorting in wide channel bends. XXVII IAHR Congress, San Francisco, 1445-1450. [6] Stecca, G., Siviglia, A. and Blom, A. 2014. Mathematical analysis of the Saint-Venant-Hirano model for mixed-sediment morphodynamics. Water Resources Research, 50, 7563-7589. [7] Whiting, P.J., Dietrich, W.E., Leopold, L. B., Drake, T. G. and Shreve, R.L. 1988. Bedload sheets in heterogeneous sediment. Geology, 16, 105-108.

  15. Wash load and bed-material load transport in the Yellow River

    USGS Publications Warehouse

    Yang, C.T.; Simoes, F.J.M.

    2005-01-01

    It has been the conventional assumption that wash load is supply limited and is only indirectly related to the hydraulics of a river. Hydraulic engineers also assumed that bed-material load concentration is independent of wash load concentration. This paper provides a detailed analysis of the Yellow River sediment transport data to determine whether the above assumptions are true and whether wash load concentration can be computed from the original unit stream power formula and the modified unit stream power formula for sediment-laden flows. A systematic and thorough analysis of 1,160 sets of data collected from 9 gauging stations along the Middle and Lower Yellow River confirmed that the method suggested by the conjunctive use of the two formulas can be used to compute wash load, bed-material load, and total load in the Yellow River with accuracy. Journal of Hydraulic Engineering ?? ASCE.

  16. Chemical concentrations and instantaneous loads, Green River to the Lower Duwamish Waterway near Seattle, Washington, 2013–15

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Vanderpool-Kimura, Ann M.; Foreman, James R.; Peterson, Norman T.; Senter, Craig A.; Sissel, Stephen K.

    2015-12-23

    Median chemical concentrations in suspended-sediment samples were greater than median chemical concentrations in fine bed sediment (less than 62.5 µm) samples, which were greater than median chemical concentrations in paired bulk bed sediment (less than 2 mm) samples. Suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters were measured concurrent with the chemistry sampling. From this discrete data, combined with the continuous streamflow record, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated. For most compounds, loads were higher during storms than during baseline conditions because of high streamflow and high chemical concentrations. The highest loads occurred during dam releases (periods when stored runoff from a prior storm is released from the Howard Hanson Dam into the upper Green River) because of the high river streamflow and high suspended-sediment concentration, even when chemical concentrations were lower than concentrations measured during storm events. 

  17. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and O. Eiff, Erosion and deposition of particles on a bed sheared by a viscous flow, Journal of Fluid Mech., 519, 55-80, 2004 Frey, P. and Church, M. (2011), Bedload: a granular phenomenon. Earth Surf. Process. Landforms, 36: 58-69. doi: 10.1002/esp.2103 Turowski, J. M., A. Badoux, and D. Rickenmann (2011), Start and end of bedload transport in gravel-bed streams, Geophys. Res. Lett., 38, L04401, doi:10.1029/2010GL046558.

  18. Lagrangian and Eulerian description of bed-load particle kinematics

    NASA Astrophysics Data System (ADS)

    Ballio, Francesco; Sadabadi, Seyed Abbas Hosseini; Pokrajac, Dubravka; Radice, Alessio

    2016-04-01

    The motion of bed-load sediment particles transported by a flow can be analyzed within a Lagrangian or an Eulerian framework. In the former case, we consider the particles as individual objects in motion and we study their kinematic properties. The latter approach is instead referred to suitably chosen control volumes. Quantities describing sediment motion in the two frameworks are different, and the relationships among the two approaches are not straightforward. In this work, we intend to discuss the kinematic properties of sediment transport: first, a set of quantities is univocally defined; then, relationships among different representations are explored. Proof-of-concept results presented in the study are from a recent experiment involving weak bed-load sediment transport, where the moving particles were released over a fixed rough bed. The bulk flow velocity was 1.4 times the critical value for incipient particle motion, and particles were mostly moving by rolling and sliding, with limited saltation. The particle motion was filmed from the top and the measurements were conducted by image-based methods, obtaining extensive samples of virtually-instantaneous quantities.

  19. Evaluation of bed load transport subject to high shear stress fluctuations

    NASA Astrophysics Data System (ADS)

    Cheng, Nian-Sheng; Tang, Hongwu; Zhu, Lijun

    2004-05-01

    Many formulas available in the literature for computing sediment transport rates are often expressed in terms of time mean variables such as time mean bed shear stress or flow velocity, while effects of turbulence intensity, e.g., bed shear stress fluctuation, on sediment transport were seldom considered. This may be due to the fact that turbulence fluctuation is relatively limited in laboratory open-channel flows, which are often used for conducting sediment transport experiments. However, turbulence intensity could be markedly enhanced in practice. This note presents an analytical method to compute bed load transport by including effects of fluctuations in the bed shear stress. The analytical results obtained show that the transport rate enhanced by turbulence can be expressed as a simple function of the relative fluctuation of the bed shear stress. The results are also verified using data that were collected recently from specifically designed laboratory experiments. The present analysis is applicable largely for the condition of a flat bed that is comprised of uniform sand particles subject to unidirectional flows.

  20. Large sized non-uniform sediment transport at high capacity on steep slopes

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, L.; Duan, J. G.

    2015-12-01

    Transport of large-sized particles such as cobbles in steep streams still remains poorly understood in spite of its importance in mountain stream morphdynamics. Here we explored the law of cobble transport and the effect of cobble existence on gravel bed material transport, using flume experiments with a steep slope (4.9%) and water and sediment constantly supplying. The experiments were conducted in an 8 m long and 0.6 m wide circulating flume with the maximal size up to 90 mm and cobble concentrations in the sediment bed ranging from 22 percent to 6 percent. The sediment transport rate is on the order of 1000 g/m/s, which could be taken as high rate transport compared with existing researches. Bed load transport rate and flow variables were measured after the flume reached an equilibrium state. Bed surface topography was also measured by applying Kinect range camera before and after each run in order to analyze the fractal characteristics of the bed surface under different flow conditions. Critical shear stress of each size friction was estimated from the reference transport method (RTM) and a new hiding function was recommended. Preliminary results show that the bed was nearly in an equal mobility transport regime. We then plot dimensionless fractional transport rate versus dimensionless shear stress and assess the existing bed load transport formulas of non-uniform sediments for their applicability at high sediment transport capacity. This study contributes to the comprehension of high rate sediment transport on steep slopes.

  1. The influence of sediment transport rate on the development of structure in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure

  2. Maintenance of an obstruction-forced pool in a gravel-bed channel: streamflow, channel morphology, and sediment transport.

    Treesearch

    Richard D. Woodsmith; Marwan A. Hassan

    2005-01-01

    Maintenance of pool morphology in a stream channel with a mobile bed requires hydraulic conditions at moderate to high flows that route bed load through the pool as it is delivered from upstream. Through field measurements of discharge, vertical velocity profiles, bed load transport, and streambed scour, fill, and grain-size distribution, we found that maintenance of a...

  3. Performance of bed load transport equations in mountain gravel-bed rivers: A re-analysis

    Treesearch

    Jeffrey J. Barry; John M. Buffington; John G. King; Peter Goodwin

    2006-01-01

    Our recent examination of bed load transport data from mountain gravel-bed rivers in the western United States shows that the data can be fit by a simple power function of discharge, with the coefficient being a function of drainage area (a surrogate for basin sediment supply) and the exponent being a function of supply-related channel armoring (transport capacity in...

  4. Temporal Variability of Suspended Sediment Load, Dissolved Load, and Bedload for Two Small Oak Forested Catchments with Contrasting Disturbance Levels in the Lesser Himalaya of North-West India

    NASA Astrophysics Data System (ADS)

    Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.

    2014-12-01

    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.

  5. Investigations of Sediment Transportation, Middle Loup River at Dunning, Nebraska: With Application of Data from Turbulence Flume

    USGS Publications Warehouse

    Hubbell, David Wellington; Matejka, Donald Quintin

    1959-01-01

    An investigation of fluvial sediments of the Middle Loup River at Dunning, Nebr., was begun in 1946 and expanded in 1949 to provide information on sediment transportation. Construction of an artificial turbulence flume at which the total sediment discharge of the Middle Loup River at Dunning, Nebr., could be measured with suspended-sediment sampling equipment was completed in 1949. Since that time. measurements have been made at the turbulence flume and at several selected sections in a reach upstream and downstream from the flume. The Middle Loup River upstream from Dunning traverses the sandhills region of north-central Nebraska and has a drainage area of approximately 1,760 square miles. The sandhills are underlain by the Ogallala formation of Tertiary age and are mantled by loess and dune sand. The topography is characterized by northwest-trending sand dunes, which are stabilized by grass cover. The valley floor upstream from Dunning is generally about half a mile wide, is about 80 feet lower than the uplands, and is composed of sand that was mostly stream deposited. The channel is defined by low banks. Bank erosion is prevalent and is the source of most of the sediment load. The flow originates mostly from ground-water accretion and varies between about 200 and 600 cfs (cubic feet per second). Measured suspended-sediment loads vary from about 200 to 2,000 tons per day, of which about 20 percent is finer than 0.062 millimeter and 100 percent is finer than 0.50 millimeter. Total sediment discharges vary from about 500 to 3,500 tons per day, of which about 10 percent is finer than 0.062 millimeter, about 90 percent is finer than 0.50 millimeter, and about 98 percent is finer than 2.0 millimeters. The measured suspended-sediment discharge in the reach near Dunning averages about one-half of the total sediment discharge as measured at the turbulence flume. This report contains information collected during the period October 1, 1948, to September 30, 1952. The information includes sediment discharges; particle-size analyses of total load, of measured suspended sediment, and of bed material; water discharges and other hydraulic data for the turbulence flume and the selected sections. Sediment discharges have been computed with several different formulas, and insofar as possible, each computed load has been compared with data from the turbulence flume. Sediment discharges computed with the Einstein procedure did not agree well, in general, with comparable measured loads. However, a satisfactory representative cross section for the reach could not be determined with the cross sections that were selected for this investigation. If the computed cross section was narrower and deeper than a representative cross section for the reach, computed loads were high; and if the computed cross section was wider and shallower than a representative cross section for the reach, computed loads were low. Total sediment discharges computed with the modified Einstein procedure compared very well with the loads of individual size ranges and the measured total loads at the turbulence flume. Sediment discharges computed with the Straub equation averaged about twice the measured total sediment discharge at the turbulence flume. Bed-load discharges computed with the Kalinske equation were of about the right magnitude; however, high computed loads were associated with low total loads, low unmeasured loads, and low concentrations of measured suspended sediment coarser than 0.125 millimeter. Bed-load discharges computed with the Schoklitsch equation seemed somewhat high; about one-third of the computed loads were slightly higher than comparable unmeasured loads. Although, in general, high computed discharges with the Schoklitsch equation were associated with high measured total loads, high unmeasured loads, and high concentrations of measured suspended sediment coarser than 0.125 millimeter, the trend was not consistent. Bed-load discharges computed

  6. Channel responses to varying sediment input: A flume experiment modeled after Redwood Creek, California

    USGS Publications Warehouse

    Madej, Mary Ann; Sutherland, D.G.; Lisle, T.E.; Pryor, B.

    2009-01-01

    At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30??years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.

  7. Interactions of frazil and anchor ice with sedimentary particles in a flume

    USGS Publications Warehouse

    Kempema, E.W.; Reimnitz, E.; Clayton, J.R.; Payne, J.R.

    1993-01-01

    Frazil and anchor ice forming in turbulent, supercooled water have been studied extensively because of problems posed to man-made hydraulic structures. In spite of many incidental observations of interactions of these ice forms with sediment, their geologic effects remain unknown. The present flume study was designed to learn about the effects of salinity, current speed, and sediment type on sediment dynamics in supercooled water. In fresh-water, frazil ice formed flocs as large as 8 cm in diameter that tended to roll along a sandy bottom and collect material from the bed. The heavy flocs often came to rest in the shelter of ripples, forming anchor ice that subsequently was buried by migrating ripples. Burial compressed porous anchor ice into ice-bonded, sediment-rich masses. This process disrupts normal ripple cross-bedding and may produce unique sedimentary structures. Salt-water flocs were smaller, incorporated less bed load, and formed less anchor ice than their fresh-water counterparts. In four experiments, frazil carried a high sediment load only for a short period in supercooled salt water, but released it with slight warming. This suggests that salt-water frazil is either sticky or traps particles only while surrounded by supercooled water (0.05 to 0.1 ??C supercooling), a short-lived phase in simple, small tanks. Salt water anchor ice formed readily on blocks of ice-bonded sediment, which may be common in nature. The theoretical maximum sediment load in neutrally-buoyant ice/sediment mixture is 122 g/l, never reported in nature so far. The maximum sediment load measured in this laboratory study was 88 g/l. Such high theoretical and measured sediment concentrations suggest that frazil and anchor ice are important sediment transport agents in rivers and oceans. ?? 1993.

  8. An analysis of bedload and suspended load interactions

    NASA Astrophysics Data System (ADS)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to standard convection diffusion equations.

  9. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.

    PubMed

    Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas J; Jerolmack, Douglas J

    2015-03-09

    Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where 'bed load' is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.

  10. Passive acoustic monitoring of bed load for fluvial applications

    USDA-ARS?s Scientific Manuscript database

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  11. Comparing particle-size distributions in modern and ancient sand-bed rivers

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.

  12. Predicting boundary shear stress and sediment transport over bed forms

    USGS Publications Warehouse

    McLean, S.R.; Wolfe, S.R.; Nelson, J.M.

    1999-01-01

    To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.

  13. Bed Load Variability and Morphology of Gravel Bed Rivers Subject to Unsteady Flow: A Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.

    2018-02-01

    Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.

  14. Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems

    NASA Astrophysics Data System (ADS)

    Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.

    2016-10-01

    Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.

  15. Measurement of gravel bed load using impact plates

    USDA-ARS?s Scientific Manuscript database

    Accurate determinations of the rate of bed load transport are difficult to make but important for determining the fate of sediment released after the removal of a dam. Two dams were removed from the Elwha River in the state of Washington beginning in 2011, and 72 impact plates were installed downst...

  16. Lithologic and hydraulic controls on network-scale variations in sediment yield: Big Wood and North Fork Big Lost Rivers, Idaho

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Pitlick, J.; Smith, M. E.

    2008-12-01

    Channel morphology and sediment textures in streams and rivers are a product of the flux of sediment and water conveyed to channel networks. Differences in sediment supply between watersheds should thus be reflected by differences in channel and bed-material properties. In order to address this directly, field measurements of channel morphology, substrate lithology, and bed sediment textures were made at 35 sites distributed evenly across two adjacent watersheds in south-central Idaho, the Big Wood River (BW) and N. Fork Big Lost River (NBL). Measurements of sediment transport indicate a five-fold difference in sediment yields between these basins, despite their geographic proximity. Three dominant lithologic modes (an intrusive and extrusive volcanic suite and a sedimentary suite) exist in different proportions between these basins. The spatial distribution of lithologies exhibits a first-order control on the variation in sediment supply, bed sediment textures, and size distribution of the bed load at the basin outlet. Here we document the coupled hydraulic and sedimentologic structuring of these stream channel networks to differences in sediment supply. The results show that width and depth are remarkably similar between the two basins across a range in channel gradient and drainage area, with the primary difference being decreased bed armoring in the NBL. As a result, dimensionless shear stress (τ*) increases downstream in the NBL with an average value of 0.073, despite declining slope. The opposite is true in the BW where τ* averages 0.048. Lithologic characterization of the substrate indicates that much of the discrepancy in bed armoring can be attributed to an increasing downstream supply of resistant intrusive granitic rocks to the BW, whereas the NBL is dominated by erodible extrusive volcanic and sedimentary rocks. A simple modeling approach using an excess shear stress-based bed load transport equation and observed channel geometry shows that subtle changes in sediment texture can reproduce the marked difference in sediment yield between basins. This suggests that in gravel-bed streams the flux of sediment through the channel network is governed as much by textural changes as by morphological changes, and that these textural changes are tightly coupled to source area lithology.

  17. The impact of benthic fauna on fluvial bed load transport: Challenges of upscaling laboratory experiments to river and landscape scales.

    NASA Astrophysics Data System (ADS)

    Rice, S. P.

    2012-04-01

    The impact on sediment transport processes and channel morphology of several relatively large, iconic animals including beaver and salmon is increasingly well understood. However, many other aquatic fauna are important zoogeomorphic agents and ecosystem engineers. These somewhat overlooked "Cinderella" species include benthic aquatic insect larvae, freshwater crustaceans and many species of fish. Despite relatively modest individual effects, the ubiquity, abundance and cumulative impact of these organisms makes them a potentially significant agency, with as yet undiscovered and unquantified impacts on channel morphology and sediment fluxes. Their actions (digging, foraging, moving, burrowing), constructions and secretions modify bed sediment characteristics (grain size distribution, interlock, imbrication, protrusion), alter bed topography (thence hydraulic roughness) and contribute to biogenic restraints on grain movement. In turn, they can affect the distribution of surface particle entrainment thresholds and bed shear stresses, with implications for bed load transport. Flume experiments have measured some of these impacts and provided direct observations of the mechanisms involved, but many of the most interesting research questions pertain to the impact of these animals at reach, catchment and even landscape scales: Not least, what is the impact of small aquatic animals on bed load flux and yield? This presentation will consider some of the challenges involved in answering this question; that is, of scaling up experimental understanding of how aquatic animals affect bed load transport processes to river scales. Pertinent themes include: (1) the potential impacts of experimental arrangements on the behaviours and activities that affect hydraulic or geomorphological processes; (2) field coincidence of the spatial and temporal distributions of (a) the animals and their behaviours with (b) the physical conditions (substrates, flows) under which those animals are understood to have an effect; (3) the magnitude of any demonstrable net field impact, relative to those other factors that control bed load transport rates.

  18. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  19. Coupling fine particle and bedload transport in gravel-bedded streams

    NASA Astrophysics Data System (ADS)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  20. Entrainment of bed sediment by debris flows: results from large-scale experiments

    USGS Publications Warehouse

    Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.

    2011-01-01

    When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.

  1. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    PubMed

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  2. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    PubMed Central

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  3. Using repeat lidar to estimate sediment transport in a steep stream

    NASA Astrophysics Data System (ADS)

    Anderson, Scott; Pitlick, John

    2014-03-01

    Sediment fluxes in steep mountain streams remain difficult to quantify, despite their importance in geomorphology, ecology, and hazard analysis. In this work, aerial lidar surveys, acquired in 2002, 2008, and 2012, are used to quantify such fluxes in Tahoma Creek, a proglacial stream on Mount Rainier, Washington. As these surveys encompass all coarse sediment sources in the basin, we are able to translate geomorphic change into total bed material transport volumes for the time steps between surveys. By assuming that the relationship between daily sediment transport and daily mean discharge is of the form Qs=a(Q-Qc)b, our two observed total loads and estimates of daily mean discharge allow us to numerically solve for values of a and b to create a bed material sediment rating curve. Comparisons of our transport estimates with sediment deposition in a downstream reservoir indicate that our transport estimates and derived rating curve are reasonable. The method we present thus represents a plausible means of estimating transport rates in energetic settings or during extreme events, applicable whenever at least two cumulative sediment loads and the driving hydrology are known. We use these results to assess the performance of several bed load transport equations. The equations generally overpredict transport at low to moderate flows but significantly underpredict transport rates during an extreme event. Using a critical shear stress value appropriate for steep streams improves agreement at lower flows, whereas a shear-partitioning technique accounting for form drag losses significantly underpredicts transport at all flows.

  4. Bed load transport and boundary roughness changes as competing causes of hysteresis in the relationship between river discharge and seismic amplitude recorded near a steep mountain stream

    NASA Astrophysics Data System (ADS)

    Roth, Danica L.; Finnegan, Noah J.; Brodsky, Emily E.; Rickenmann, Dieter; Turowski, Jens M.; Badoux, Alexandre; Gimbert, Florent

    2017-05-01

    Hysteresis in the relationship between bed load transport and river stage is a well-documented phenomenon with multiple known causes. Consequently, numerous studies have interpreted hysteresis in the relationship between seismic ground motion near rivers and some measure of flow strength (i.e., discharge or stage) as the signature of bed load transport. Here we test this hypothesis in the Erlenbach stream (Swiss Prealps) using a metric to quantitatively compare hysteresis in seismic data with hysteresis recorded by geophones attached beneath steel plates within the streambed, a well-calibrated proxy for direct sediment transport measurements. We find that while both the geophones and seismometers demonstrate hysteresis, the magnitude and direction of hysteresis are not significantly correlated between these data, indicating that the seismic signal at this site is primarily reflecting hysteresis in processes other than sediment transport. Seismic hysteresis also does not correlate significantly with the magnitude of sediment transport recorded by the geophones, contrary to previous studies' assumptions. We suggest that hydrologic sources and changes in water turbulence, for instance due to evolving boundary conditions at the bed, rather than changes in sediment transport rates, may sometimes contribute to or even dominate the hysteresis observed in seismic amplitudes near steep mountain rivers.Plain Language SummaryAn increasing number of studies have recently observed changes in the amount of seismic shaking (hysteresis) recorded near a river at a given discharge during floods. Most studies have assumed that this hysteresis was caused by changes in the amount of sediment being transported in the river and have therefore used the hysteresis to assess sediment transport rates and patterns. We examine concurrent seismic and sediment transport data from a steep mountain stream in the Swiss Prealps and find that changes in seismic shaking are unrelated and even opposed (increasing versus decreasing) to changes in sediment transport rates for four out of five transport events. Water turbulence, rather than sediment transport, appears to be the strongest source of seismic shaking, and changes in seismic shaking are most likely caused by changes in turbulence or how turbulence transmits energy through the river bed. These effects may be due to rearrangement of sediment around large boulders on the bed or slight shifting of the boulders themselves. Our results have significant implications for the growing field of fluvial seismology and the evaluation of seismic data near rivers, as previous interpretations of seismic hysteresis as evidence for sediment transport may not always be accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8646','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8646"><span>A new model for bed load sampler calibration to replace the probability-matching method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Robert B. Thomas; Jack Lewis</p> <p>1993-01-01</p> <p>In 1977 extensive data were collected to calibrate six Helley-Smith bed load samplers with four sediment particle sizes in a flume at the St. Anthony Falls Hydraulic Laboratory at the University of Minnesota. Because sampler data cannot be collected at the same time and place as ""true"" trap measurements, the ""probability-matching...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5903904','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5903904"><span>Universal characteristics of particle shape evolution by bed-load chipping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sipos, András Árpád; Shaw, Sam; Sarti, Giovanni; Domokos, Gábor</p> <p>2018-01-01</p> <p>River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth’s surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle’s attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains. PMID:29670937</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29670937','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29670937"><span>Universal characteristics of particle shape evolution by bed-load chipping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Novák-Szabó, Tímea; Sipos, András Árpád; Shaw, Sam; Bertoni, Duccio; Pozzebon, Alessandro; Grottoli, Edoardo; Sarti, Giovanni; Ciavola, Paolo; Domokos, Gábor; Jerolmack, Douglas J</p> <p>2018-03-01</p> <p>River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth's surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle's attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7864','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7864"><span>Effects of sediment transport on survival of salmonid embryos in a natural stream: A simulation approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle; Jack Lewis</p> <p>1992-01-01</p> <p>A model is presented that simulates the effects of streamflow and sediment transport on survival of salmonid embryos incubating in spawning gravels in a natural channel. Components of the model include a 6-yr streamflow record, an empirical bed load-transport function, a relation between transport and infiltration of sandy bedload into a gravel bed, effects of fine-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG34A1934L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG34A1934L"><span>Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.</p> <p>2016-02-01</p> <p>Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168739','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168739"><span>Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun</p> <p>2014-01-01</p> <p>Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4616S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4616S"><span>Modeling bed load transport and step-pool morphology with a reduced-complexity approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saletti, Matteo; Molnar, Peter; Hassan, Marwan A.; Burlando, Paolo</p> <p>2016-04-01</p> <p>Steep mountain channels are complex fluvial systems, where classical methods developed for lowland streams fail to capture the dynamics of sediment transport and bed morphology. Estimations of sediment transport based on average conditions have more than one order of magnitude of uncertainty because of the wide grain-size distribution of the bed material, the small relative submergence of coarse grains, the episodic character of sediment supply, and the complex boundary conditions. Most notably, bed load transport is modulated by the structure of the bed, where grains are imbricated in steps and similar bedforms and, therefore, they are much more stable then predicted. In this work we propose a new model based on a reduced-complexity (RC) approach focused on the reproduction of the step-pool morphology. In our 2-D cellular-automaton model entrainment, transport and deposition of particles are considered via intuitive rules based on physical principles. A parsimonious set of parameters allows the control of the behavior of the system, and the basic processes can be considered in a deterministic or stochastic way. The probability of entrainment of grains (and, as a consequence, particle travel distances and resting times) is a function of flow conditions and bed topography. Sediment input is fed at the upper boundary of the channel at a constant or variable rate. Our model yields realistic results in terms of longitudinal bed profiles and sediment transport trends. Phases of aggradation and degradation can be observed in the channel even under a constant input and the memory of the morphology can be quantified with long-range persistence indicators. Sediment yield at the channel outlet shows intermittency as observed in natural streams. Steps are self-formed in the channel and their stability is tested against the model parameters. Our results show the potential of RC models as complementary tools to more sophisticated models. They provide a realistic description of complex morphological systems and help to better identify the key physical principles that rule their dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53E..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53E..07C"><span>Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conklin, M. H.; Martin, S.</p> <p>2017-12-01</p> <p>This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada, headwater streams, to collect high temporal resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and baseflow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term, storm events. We propose conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, based on this and earlier work showing in-stream sources for bedload material. The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like, downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining both the accumulation rate of sediment stores at the margins, and the redistribution of sediment from margins to thalweg that "feeds" the conveyor-belt. Disturbance and recovery cycles are observed at multiple temporal scales, but long term, the channel beds are stable, suggesting the beds act as short-term storage for sediment, but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This type of high-temporal-resolution data provides insight into short term cycles of bedload movement in high gradient, forested, mountain streams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.301...68M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.301...68M"><span>Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Sarah E.; Conklin, Martha H.</p> <p>2018-01-01</p> <p>This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This type of high-temporal-resolution data provides insight into short-term cycles of bedload movement in high gradient, forested mountain streams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.7536F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.7536F"><span>Modeling sediment transport with an integrated view of the biofilm effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.</p> <p>2017-09-01</p> <p>Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19048320','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19048320"><span>Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia</p> <p>2009-03-01</p> <p>Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish. Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades. Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor. Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP33D..07N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP33D..07N"><span>Sand transport in the lower Mississippi River does not yield to dams: Applications for building deltaic land in Louisiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nittrouer, J. A.; Viparelli, E.</p> <p>2013-12-01</p> <p>The Mississippi Delta is presently undergoing a catastrophic drowning, whereby 5000 km2 of low-lying wetlands have converted to open water. This land loss is primarily the result of: a) relative sea-level rise, occurring due to the combined effect of rapid subsidence associated with subsurface fluids extraction and eustatic rise; b) leveeing and damming of the river and its tributaries, which restricts sediment delivery to and dispersal within the delta; and c) severe excavation of the delta for navigation channels. It has been argued that continued net land loss of the Mississippi Delta is inevitable due to declining measured total (sand and mud) suspended sediment loads over the past 6 decades. However, recent research has documented that the key to delta growth is deposition of sand, which accounts for ~50-70% of modern and ancient (up to 9 m.a.) Mississippi Delta deposits, but comprises only ~20% of the sampled portion of the total load. Here we present new analysis of existing data to show that sand transport has not diminished since dam construction. Furthermore, we produce a numerical model based on the mass balance of bed material loads over the lower 1600 km of the Mississippi River to show that mining of sand from the channel bed continues to replenish downstream sand loads. For example, our model results indicate that it requires approximately 240 years for a reduced sand load to reach the delta apex. Furthermore, our calculations indicate that sand load at the delta apex is reduced by a noticeable amount (17%) only after about 600 years. We also show how channel bed elevations are predicted to change over the lower 1600 km of the river channel due to channel mining. Channel-bed degradation is greatest at the upstream end of the study reach and decreases downstream. After 300 years the wave of significant degradation has just passed ~800 km downstream, or roughly half of our model domain. These results are in contrast to the measurements which concern the reduction of total suspended sediment load, and here we provide a reasonable hypothesis to help explain: sand possesses a much slower time scale of movement through a sand-bed river compared to mud, because sand exchanges with the bed, building dunes and bars that migrate gradually downstream, whereas the mud travels the length of the system in suspension as washload. This produces orders-of-magnitude difference in transport timescales between mud -- which accounts for ~80% of the total suspended sediment load of the Mississippi River -- and sand (bedload and suspended load). Combined with the abundance and availability of sand to be mined within the main channel, the river effectively buffers the reduction of sand load arising due to main-channel dams. Thus the bed of the lower Mississippi River downstream will provide a stable supply of sand to the delta for the foreseeable future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP12B..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP12B..04M"><span>Phase transition behavior of sediment transport at the sand-mud interface, across scales from flumes to the large rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, H.; Nittrouer, J. A.; Wu, B.; Zhang, Y.; Mohrig, D. C.; Lamb, M. P.; Wang, Y.; Fu, X.; Moodie, A. J.; Naito, K.; Parker, G.</p> <p>2017-12-01</p> <p>Sediment dispersal and deposition creates deltaic landscapes, establishes coastlines, and produces fertile floodplains, all of which serve as critical landforms inhabited by a large proportion of humankind. If poorly managed, sediment loads in these environments can elevate and clog channels, thereby enhancing hazards such as severe flooding. Predictive descriptions of sediment loads, however, are not well constrained, especially for fine-grained (silt and very-fine sand) dispersal systems, which often include river deltas and coastlines. Here, we show efforts to collect and analyze an extensive sediment load database for fine-grained channels, spanning from small flume experiments to large rivers, in order to evaluate the nature of sediment flux. Our analyses determined that sediment transport exhibits two distinct transport phases, separated by a discontinuous transition, whereby sediment flux differs by one to two orders of magnitude. It is determined that the transition responds to the bed material grain size, and we propose a phase diagram based on this metric alone. These findings help elucidate why previous theories of sediment transport at the sand-silt interface, which are typically continuous, are not able to give satisfactory predictions across different scales and environments. Our work serves to help evaluate anthropic influences on rivers, deltas, and coastlines, and can be applied to better constrain sediment flux of paleo-fluvial systems found on Earth and Mars. For example, in situ measurements of sediment flux for the silty-sandy bed of the lower Yellow River, China, validate the aforementioned phase transition behavior, and illustrate that the channel resides near the transition of high to low efficiency transport modes. Recent dam construction and resulting downstream coarsening of the bed via armoring, however, might lead to the unintended consequence of enhancing flood risk by driving the system to a low efficiency transport mode with high resistance to sediment-laden flow, which in turn will elevate the water stage under the same flood discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996HyPr...10..747T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996HyPr...10..747T"><span>Experimental Investigation and Analysis of HEC-6 River Morphological Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tingsanchali, Tawatchai; Supharatid, Seree</p> <p>1996-05-01</p> <p>Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer-Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval x and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1987/0531/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1987/0531/report.pdf"><span>Organochlorine pesticide residues in bed sediments of the San Joaquin River and its tributary streams, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gilliom, R.J.; Clifton, D.G.</p> <p>1987-01-01</p> <p>The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7362T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7362T"><span>Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele</p> <p>2015-04-01</p> <p>Soft-sediment deformations, such as convolute laminations, load structures and water escapes are very rapid deformations that occur in unconsolidated sediments near the depositional surface during or shortly after deposition and before significant diagenesis. These types of deformations develop when primary stratifications are deformed by a system of driving forces, while the sediment is temporarily in a weakened state due to the action of a deformation mechanism know as liquidization. This deformation occurs if the applied stress exceeds the sediment strength, either through an increase in the applied stress or through a temporary reduction in sediment strength. Liquidization mechanisms can be triggered by several agents, such as seismic shaking, rapid sedimentation with high-fallout rates or cyclic-pressure variations associated with storm waves or breaking waves. Consequently, soft-sediment deformations can be produced by different processes and form ubiquitous sedimentary structures characterizing many sedimentary environments. However, even though these types of structures are relatively well-known in terms of geometry and sedimentary characteristics, many doubts arise when the understanding of deformation and trigger mechanisms is attempted. As stressed also by the recent literature, the main problem lies in the fact that the existing approaches for the identification of triggering agents rely on criteria that are not diagnostic or not applicable to outcrop-based studies, because they are not always based on detailed facies analysis related to a paleoenvironmental-context approach. For this reason, this work discusses the significance of particular types of soft-sediment deformations that are very common in turbidite deposits, namely convolute laminations and load structures, especially on the basis of a deep knowledge of the stratigraphic framework and geological setting in which these structures are inserted. More precisely, detailed facies analyses of the turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1042/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1042/"><span>Sediment characteristics of the Yellowstone River in the vicinity of a proposed bypass chute near Glendive, Montana, 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hanson, Brent R.</p> <p>2012-01-01</p> <p>In 2011, sediment data were collected by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers on the Yellowstone River at the location of a proposed bypass chute. The sediment data were collected to provide an understanding of the sediment dynamics of the given reach of the Yellowstone River. Suspended-sediment concentrations collected at the three sites generally decreased with decreasing streamflow. In general, the highest suspendedsediment concentrations were found near the channel bed and towards the center of the channel with lower suspendedsediment concentrations near the channel banks and water surface. Suspended sediment was the primary component of the total sediment load for all three sampling locations on the Yellowstone River and contributed at least 98 percent of the total sediment load at each of the three sites. The amount of bedload measured at the three sites was a smaller load in comparison with the suspended-sediment load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1983/0069/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1983/0069/report.pdf"><span>Geologic, geotechnical, and geophysical properties of core from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Collins, Donley S.</p> <p>1983-01-01</p> <p>A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171414','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171414"><span>Flow resistance under conditions of intense gravel transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pitlick, John</p> <p>1992-01-01</p> <p>A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913693M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913693M"><span>Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning</p> <p>2017-04-01</p> <p>High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the contrary the importance of snow melt for sediment transport was indicated during the ablation season 2013. In total 3582 t of sediment were exported out of the Riffler Bach catchment in 2012, which is almost twice the solid sediment load of the ablation season 2013 (1953 t). Total solid load of the Riffler Bach River was 3511 t in 2014 Suspended sediment load was dominant in all ablation seasons. The result of additional DEM analysis reveals that 37 % of the catchment do not contribute or only contribute to a lesser amount to the fluvial sediment export out of the catchment. The findings of the grain size analysis imply glacigenic origin of the transported particles. Thus, the results indicate that solid sediment transport is not only a function of discharge. Also availability of sediment and the systems state of (dis-)connectivity, e.g. coupling of sediment sources to the river, need to be considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP34A..06J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP34A..06J"><span><p>Universal shape evolution of particles by bed-load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jerolmack, D. J.; Domokos, G.; Shaw, S.; Sipos, A.; Szabo, T.</p> <p>2016-12-01</p> <p>River currents, wind and waves drive bed-load transport, in which sediment particles collide with each other and the Earth's surface. A generic consequence is erosion and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the erosion of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of chipping erosion are insensitive to details of collisions and material properties. Here we present data from fluvial, aeolian and coastal environments that suggest a universal relation between particle circularity and mass lost due to bed-load chipping. Simulations and experiments support the diffusion model and demonstrate that three constraints are required to produce this universal curve: (i) initial particles are fragments; (ii) erosion is dominated by collisions among like-sized particles; and (iii) collision energy is small enough that chipping dominates over fragmentation. We show that the mechanics of bedrock weathering and bed-load transport select these constraints, providing the foundation to estimate a particle's erosion rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of chipping to downstream fining in rivers and deserts, and to infer transport conditions using only images of sediment grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SedG..344..112G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SedG..344..112G"><span>Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul lake (Kyrgyzstan)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.</p> <p>2016-10-01</p> <p>This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28784943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28784943"><span>Image-based Lagrangian Particle Tracking in Bed-load Experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Radice, Alessio; Sarkar, Sankar; Ballio, Francesco</p> <p>2017-07-20</p> <p>Image analysis has been increasingly used for the measurement of river flows due to its capabilities to furnish detailed quantitative depictions at a relatively low cost. This manuscript describes an application of particle tracking velocimetry (PTV) to a bed-load experiment with lightweight sediment. The key characteristics of the investigated sediment transport conditions were the presence of a covered flow and of a fixed rough bed above which particles were released in limited number at the flume inlet. Under the applied flow conditions, the motion of the individual bed-load particles was intermittent, with alternating movement and stillness terms. The flow pattern was preliminarily characterized by acoustic measurements of vertical profiles of the stream-wise velocity. During process visualization, a large field of view was obtained using two action-cameras placed at different locations along the flume. The experimental protocol is described in terms of channel calibration, experiment realization, image pre-processing, automatic particle tracking, and post-processing of particle track data from the two cameras. The presented proof-of-concept results include probability distributions of the particle hop length and duration. The achievements of this work are compared to those of existing literature to demonstrate the validity of the protocol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP43F..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP43F..03P"><span>The varying stability of benthic homes: hydrologic regime and sediment supply control the timing and intensity of bed mobility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfeiffer, A.; Finnegan, N. J.</p> <p>2017-12-01</p> <p>Gravel river beds provide an ephemeral architecture for the benthic inhabitants of river ecosystems. Periphyton and benthic macroinvertebrates that live on or within the gravel are subject to catastrophic disruption upon mobilization of the surface gravel during floods. Because sediment supply varies by orders of magnitude across North America, and rivers have adjusted to convey their imposed loads, river bed surface mobility varies enormously. Climate also varies widely across the continent, yielding a range of flood timing, duration, and intermittency. Together, the differences in sediment supply and hydrologic patterns result in diverse regimes of benthic habitat stability. To quantitatively characterize these regimes, we calculate decades-scale time series of estimated bed surface mobility using sediment transport equations (Wilcock and Crowe, 2003). The method requires measurements of the bed surface grainsize distribution, channel slope, and standard USGS stream gauging records. We calculate the fraction of the bed surface grain size distribution that is mobile at any given flow, as well as the intensity of transport. We use the time series of bed mobility to compare between rivers and regions. In many snowmelt-dominated rivers in Idaho, a period of moderate bed mobility (W* > 0.002) generally occurs during the annual melt, and can last for days. In rivers draining the central and northern Appalachians, bed mobility is comparatively rare and occurs during short duration floods. Rivers on the tectonically active West Coast tend to experience bed mobility during most winter storms, with brief (hours long) periods of high transport rates (W* > 0.02) during storm peaks. The timing and intensity of bed mobility varies with hydrologic regime and sediment supply; these contrasts in bed mobility lead to diverse structural templates for river ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21596394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21596394"><span>Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Katwijk, M M; van der Welle, M E W; Lucassen, E C H E T; Vonk, J A; Christianen, M J A; Kiswara, W; al Hakim, I Inayat; Arifin, A; Bouma, T J; Roelofs, J G M; Lamers, L P M</p> <p>2011-07-01</p> <p>In remote, tropical areas human influences increase, potentially threatening pristine seagrass systems. We aim (i) to provide a bench-mark for a near-pristine seagrass system in an archipelago in East Kalimantan, by quantifying a large spectrum of abiotic and biotic properties in seagrass meadows and (ii) to identify early warning indicators for river sediment and nutrient loading, by comparing the seagrass meadow properties over a gradient with varying river influence. Abiotic properties of water column, pore water and sediment were less suitable indicators for increased sediment and nutrient loading than seagrass properties. Seagrass meadows strongly responded to higher sediment and nutrient loads and proximity to the coast by decreasing seagrass cover, standing stock, number of seagrass species, changing species composition and shifts in tissue contents. Our study confirms that nutrient loads are more important than water nutrient concentrations. We identify seagrass system variables that are suitable indicators for sediment and nutrient loading, also in rapid survey scenarios with once-only measurements. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53..923H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53..923H"><span>Experimental study of the effect of grain sizes in a bimodal mixture on bed slope, bed texture, and the transition to washload</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, Kimberly M.; Gaffney, John; Baumgardner, Sarah; Wilcock, Peter; Paola, Chris</p> <p>2017-01-01</p> <p>When fine sediment is added to a coarse-grained system, the mobility and composition of the bed can change dramatically. We conducted a series of flume experiments to determine how the size of fine particles introduced to an active gravel bed influences the mobility and composition of the bed. We initiated our experiments using a constant water discharge and feed rate of gravel. After the system reached steady state, we doubled the feed rate by supplying a second sediment of equal or lesser size, creating size ratios from 1:1 to 1:150. As we decreased the relative size of the fine particles, the system transitioned among three regimes: (1) For particle size ratios close to one, the bed slope increased to transport the additional load of similar-sized particles. The bed surface remained planar and unchanged. (2) For intermediate particle size ratios, the bed slope decreased with the additional fines. The bed surface became patchy with regions of fine and coarse grains. (3) For the largest particle size ratios (the smallest fines), the bed slope remained relatively unchanged. The subsurface became clogged with fine sediment, but fine particles were not present in the surface layer. This third regime constitutes washload, defined by those fractions that do not affect bed-material transport conditions. Our results indicate washload should be defined in terms of three conditions: small grain size relative to that of the bed material, full suspension based on the Rouse number, and a small rate of fine sediment supply relative to transport capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SedG..194..155B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SedG..194..155B"><span>Petrography and chemistry of the bed sediments of the Red River in China and Vietnam: Provenance and chemical weathering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borges, Joniell; Huh, Youngsook</p> <p>2007-02-01</p> <p>The Red (Hong) River straddles southwestern China and northern Vietnam and drains the eastern Indo-Asian collision zone. We collected bed sediments from its tributaries and main channel and report the petrographic point counts of framework grains and major oxide compositions as well as organic and inorganic carbon contents. The Q:F:Rf ratios and Q:F:(L-L c) ratios of the bed-load indicate quartz-poor, mineralogically immature sediments of recycled orogen provenance. The weathering indices based on major oxides — the chemical index of alteration (CIA) and the weathering index of Parker — are also consistent with the recycled sedimentary nature of the bed sediments. Using geographic information system (GIS) we calculated for each sample basin such parameters as temperature, precipitation, potential evapotranspiration, runoff, basin length, area, relief, and areal exposure of igneous, metamorphic and sedimentary rocks. Statistically meaningful correlations are obtained between the two weathering indices, between CIA and sedimentary to metamorphic rock fragments ratio, S / (S + M), and between CIA and sedimentary rock cover, but otherwise correlations are poor. The bed sediments preserve signatures of their provenance, but the effect of weathering is not clearly seen. Subtle differences in the bed sediments are observed between the Red and the Himalayan rivers (Indus, Ganges, and Brahmaputra) as well as between sub-basins within the Red River system and are attributed mainly to differences in lithology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP52A..05O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP52A..05O"><span>A Laboratory Experiment on the Evolution of a Sand Gravel Reach Under a Lack of Sediment Supply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orru, C.; Chavarrias, V.; Ferrara, V.; Blom, A.</p> <p>2014-12-01</p> <p>A flume experiment was conducted to examine the evolution of a sand-gravel reach under a lack of sediment supply. The experimental data are used to validate a numerical sand-gravel model. A bed composed of a bi-modal sediment mixture is installed with a uniform slope and an imposed gradual fining pattern. Initially, the sand fraction gradually increases in streamwise direction until the bed is fully composed of sand. The water discharge and downstream water level were constant, and the sediment feed rate was equal to zero. The experiment was dominated by bed load, partial transport, and a subcritical flow regime was imposed. The flow rate was such that only sand was mobile (partial transport), which led to a coarsening over the upstream reach and a gradual reduction of the sediment transport rate during the experiment. New equipment was used to measure the evolution of the grain size distribution of the bed surface during the experiment over the entire flume using image analysis. In the upstream reach we observed a gradual coarsening over time and the formation of an armour layer, which resulted in a more abrupt transition in grain size of the bed surface. Bed degradation increased in streamwise direction. This is due to the initial streamwise increase in the availability of sand in the bed. The different volume fraction content of sand in the bed allowed for the gravel to sink more in the downstream part of the upstream reach. The sand reach suffered from a larger degradation. Finally, we see one reach dominated by sand, small bedforms, and a small bed slope, and a gravel reach dominated by a larger bed slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5042110','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5042110"><span>Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Measures, R.; Hicks, D. M.; Brasington, J.</p> <p>2016-01-01</p> <p>Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27708477','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27708477"><span>Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, R D; Measures, R; Hicks, D M; Brasington, J</p> <p>2016-08-01</p> <p>Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51I1942G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51I1942G"><span>Nutrient Removal through Oyster Habitat Restoration in the Indian River Lagoon, Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallagher, S. M.; Schmidt, C. A.; Walters, L.; Blank, R.</p> <p>2017-12-01</p> <p>In 2016, an algae bloom in the Indian River Lagoon (IRL) caused a state of emergency in Florida. As with many estuaries, nutrient loading in the IRL has led to periodic eutrophication. While previous studies have shown oyster bed restoration reduces suspended organic matter in estuaries, similar reductions to net nutrient loads are not well established. In addition, previous studies have focused on seasonal variation rather than ongoing yearly effects. Here, we determine the net nitrogen and phosphorus effects of oyster restoration in the IRL over seven years. Analysis of aerial images from 1943 and 2009 showed 14.7 ha of oyster beds were destroyed by boat traffic in the IRL (40% loss). According to our measurements of restored oyster bed sediment, this equates to a maximum of 1,580,000 kg•N•yr-1 of lost denitrification potential; this is equivalent to 150% of estimated current nitrogen loading in the IRL. Oyster restoration began in the IRL in 2007 and has recovered 7.7% of the lost beds and denitrification potential (1.13 ha and 107,000 kg•N•yr-1•ha-1). In all cases, denitrification reached a maximum within two years and remained significantly higher than open sediment for at least the seven years observed. Denitrification benefits came at the cost of mobilizing a maximum of 3450 kg ha-1 of recalcitrant phosphorus from restored bed sediment. This effect was limited to the two years following restoration, whereas increased denitrification was ongoing. Overall, our results show oyster restoration achieved maximum denitrification within two years and maintained significant denitrification benefits for at least seven years. In addition, our results are useful for future oyster restoration projects since they quantify nitrogen benefits in terms of phosphorus mobilization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP31D..05O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP31D..05O"><span>Spatially Explicit Estimates of Suspended Sediment and Bedload Transport Rates for Western Oregon and Northwestern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Connor, J. E.; Wise, D. R.; Mangano, J.; Jones, K.</p> <p>2015-12-01</p> <p>Empirical analyses of suspended sediment and bedload transport gives estimates of sediment flux for western Oregon and northwestern California. The estimates of both bedload and suspended load are from regression models relating measured annual sediment yield to geologic, physiographic, and climatic properties of contributing basins. The best models include generalized geology and either slope or precipitation. The best-fit suspended-sediment model is based on basin geology, precipitation, and area of recent wildfire. It explains 65% of the variance for 68 suspended sediment measurement sites within the model area. Predicted suspended sediment yields range from no yield from the High Cascades geologic province to 200 tonnes/ km2-yr in the northern Oregon Coast Range and 1000 tonnes/km2-yr in recently burned areas of the northern Klamath terrain. Bed-material yield is similarly estimated from a regression model based on 22 sites of measured bed-material transport, mostly from reservoir accumulation analyses but also from several bedload measurement programs. The resulting best-fit regression is based on basin slope and the presence/absence of the Klamath geologic terrane. For the Klamath terrane, bed-material yield is twice that of the other geologic provinces. This model explains more than 80% of the variance of the better-quality measurements. Predicted bed-material yields range up to 350 tonnes/ km2-yr in steep areas of the Klamath terrane. Applying these regressions to small individual watersheds (mean size; 66 km2 for bed-material; 3 km2 for suspended sediment) and cumulating totals down the hydrologic network (but also decreasing the bed-material flux by experimentally determined attrition rates) gives spatially explicit estimates of both bed-material and suspended sediment flux. This enables assessment of several management issues, including the effects of dams on bedload transport, instream gravel mining, habitat formation processes, and water-quality. The combined fluxes can also be compared to long-term rock uplift and cosmogenically determined landscape erosion rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRF..115.4030J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRF..115.4030J"><span>Functional relationships between vegetation, channel morphology, and flow efficiency in an alluvial (anabranching) river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jansen, John D.; Nanson, Gerald C.</p> <p>2010-12-01</p> <p>Water and sediment flux interactions are examined in Magela Creek, an alluvial (anabranching) sand bed river in the northern Australian tropics. Dense riparian vegetation stabilizes the channels and floodplains thereby preventing erosional instability at flow depths up to 6.2 times bankfull and discharges up to 15 times bankfull. Narrow anabranching channels characterize >92% of the alluvial reach and transport bed load more efficiently than short reaches of wide single-channels, yet overall 29 ± 12% of the bed load is sequestered and the average vertical accretion rate is 0.41 ± 0.17 mm yr-1 along the 12 km study reach. The most effective discharge for transporting sediment (40-45 m3 s-1) is consistent at all 5 stations (10 channels) examined and is equivalent to the channel-forming discharge. It has an average recurrence interval of 1.01 years, occurs for an exceptionally long portion (13-15%) of the annual flow duration, and averages a remarkable 2.1 times bankfull. The high flow efficiency (i.e., bed load transport rate to stream power ratio) of the anabranches is facilitated by low width/depth channels with banks reinforced by vegetation. Colonnades of bank top trees confine high-velocity flows overbed (i.e., over the channel bed) at stages well above bankfull. At even larger overbank flows, momentum exchange between the channels and forested floodplains restrains overbed velocities, in some cases causing them to decline, thereby limiting erosion. Magela Creek exhibits a complicated set of planform, cross-sectional and vegetative adjustments that boost overbed velocities and enhance bed load yield in multiple channels while restraining velocities and erosion at the largest discharges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3607L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3607L"><span>Dependence of ripple dimensions on cohesive and non-cohesive bed properties in the intertidal Dee Estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lichtman, Ian; Thorne, Peter; Baas, Jacobus; O'Boyle, Louise; Cooke, Richard; Amoudry, Laurent; Bell, Paul; Aspden, Rebecca; Bass, Sarah; Davies, Alan; Hope, Julie; Malarkey, Jonathan; Manning, Andrew; Parsons, Daniel; Paterson, David; Peakall, Jeffrey; Schindler, Robert; Ye, Leiping</p> <p>2014-05-01</p> <p>There is a need to better understand the effects of cohesive and mixed sediments on coastal processes, to improve sediment transport models for the management of coastal erosion, siltation of navigation channels and habitat change. Although reasonable sediment transport predictors are available for pure sands, it still is not the case for mixed cohesive and non-cohesive sediments. Existing predictors mostly relate ripple dimensions to hydrodynamic conditions and median sediment grain diameter, assuming a narrow unimodal particle size distribution. Properties typical of mixed conditions, such as composition and cohesion for example, are not usually taken into account. This presents severe shortcomings to predictors' abilities. Indeed, laboratory experiments using mixed cohesive sediments have shown that bedform dimensions decrease with increasing bed mud content. In the field, one may expect current predictors to match data for well-sorted sands closely, but poorly for mixed sediments. Our work is part of the COHBED project and aims to: (1) examine, in field conditions, if ripple dimensions are significantly different for mixed cohesive sediment beds compared to beds with pure sand; (2) compare the field data with laboratory results that showed reduced ripple length due to cohesive mud content; and (3) assess the performance of a selection of ripple predictors for mixed sediment data. The COHBED project was set up to undertake laboratory experiments and fieldwork to study how physical and biological processes influence bedform development in a mixed cohesive-cohesionless sediment environment. As part of COHBED, a suite of instruments was deployed on tidal flats in the Dee Estuary (on the NW coast of England), collecting co-located measurements of the hydrodynamics, suspended sediment properties and bed morphology. The instruments occupied three sites collecting data over different bed compositions during a two week period (21 May to 4 June 2013). One site was located above a sandy bed, and the two others were above mixed beds of different mud content. The tide covered a full cycle from neaps to neaps and the weather provided onshore and offshore winds of varying strength. Bedform measurements were taken every half an hour using an Acoustic Ripple Profiler (ARP) that covered an area of about two square metres. Dynamic measurements of tides and waves were made using an Acoustic Doppler Velocimeter (ADV) at 8 Hz. Bed samples were taken when the tidal flats dried out at low tide and a sediment trap collected suspended load near the bed. In the presentation, comparisons of the sites will be made from measurements of the proportion of mud and biological sediment binders at each site and the ripple dimensions for different hydrodynamic conditions. Key words: bed morphology, current ripple, mixed sediment, cohesion, hydrodynamics, observations, tidal flat, estuary, Dee</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP24A..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP24A..01P"><span>Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.</p> <p>2015-12-01</p> <p>To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to granular flow. These results provide a new perspective to connect the transport laws for soil creep, landslides/debris flows and river transport. Although our experiments are highly idealized, evidence from other studies suggest that our observations may be directly relevant to natural systems. Finally we show that our findings are robust for mixed grain sizes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H24F..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H24F..01C"><span>Fine Sediment Residency in Streambeds in Southeastern Australia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Croke, J. C.; Thompson, C. J.; Rhodes, E.</p> <p>2007-12-01</p> <p>A detailed understanding of channel forming and maintenance processes in streams requires some measurement and/or prediction of bed load transport and sediment mobility. Traditional field based measurements of such processes are often problematic due to the high discharge characteristics of upland streams. In part to compensate for such difficulties, empirical flow competence equations have also been developed to predict armour or bedform stabilising grain mobility. These equations have been applied to individual reaches to predict the entrainment of a threshold grain size and the vertical extent of flushing. In cobble- and boulder-bed channels the threshold grain size relates to the size of the bedform stabilising grains (eg. D84, D90). This then allows some prediction of when transport of the matrix material occurs. The application of Optically Stimulated Luminescence (OSL) dating is considered here as an alternative and innovative way to determine fine sediment residency times in stream beds. Age estimates derived from the technique are used to assist in calibrating sediment entrainment models to specific channel types and hydrological regimes. The results from a one-dimensional HEC-RAS model indicate that recurrence interval floods exceeding bankfull up to 13 years are competent to mobilise the maximum overlying surface grain sizes at the sites. OSL minimum age model results of well bleached quartz in the fine matrix particles are in general agreement with selected competence equation predictions. The apparent long (100-1400y) burial age of most of the mineral quartz suggests that competent flows are not able to flush all subsurface fine-bed material. Maximum bed load exchange (flushing) depth was limited to twice the depth of the overlying D90 grain size. Application of OSL in this study provides important insight into the nature of matrix material storage and flushing in mountain streams.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6112S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6112S"><span>Long term numerical investigations of measures to increase the structural variability and the fish passability of the river Iller</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seitz, Lydia; Haun, Stefan; Wieprecht, Silke</p> <p>2017-04-01</p> <p>The river Iller origins at Oberstdorf in the Allgäu Alps and drains after 147 km into the river Danube. During the past decades the river Iller was considerable modified due to hydropower development and due to the construction of weirs and ramps to avoid ongoing river bed deepening. As consequence between km 52.9 - 39.3 almost equilibrium conditions of the river bed were reached. The aim of this study is to investigate with a 1D - 2D coupled numerical sediment transport model the long term effects (50 years) of different measures, which will be implemented to improve structural variability of the river Iller and to improve the passability for fishes. In a first step long term morphological trends will be investigated for replacing weirs by ramps. This will enable and improve the passability for fishes and sediments. In a second step the remobilization of already deposited sediments is investigated. Therefore the weir downstream of a gravel bar will be lowered stepwise (between 1.0 and 2.5 m) to see under which conditions the sediments can be remobilized. In a third step artificial sediment feeding will be simulated to find adequate spots for the sediment supply and to investigate the amount of sediments which have to be added to the river to improve structural variability of the river Iller. The numerical model framework BASEMENT, developed at the ETH Zürich, is used for the investigations. In the model fractional sediment transport is implemented with 9 grain sizes between 0.5 mm and 128 mm. Two layers are implemented to simulate the armouring of the river bed. Due to absence of very fine sediments and the fact that bed load transport is the governing sediment transport mode the Meyer-Peter and Müller bed load transport formula, with an extension by Hunziker for multiple grain classes, is used for the simulations. The critical Shields parameter, used to obtain the critical shear stress in BASEMENT, is evaluated as a function of the dimensionless grain diameter accordingly to van Rijn. The results show that the passability can be increased by replacing weirs by ramps (three in total) without negative morphological effects on this section. Furthermore, the simulated results show that the deposited sediments can be remobilized by lowering the weir, resulting in ongoing dynamic morphological bed changes and so a structural variability of the river. However, it can be seen that this dynamic processes fade away over time due to the large number of hydraulic structures along the river. The results of the artificial sediment supply (one time supply with an amount between 5,000 to 12,500 m3) shows a similar trend as the lowering of the weir over time, where right at the beginning morphological bed changes can be seen, these processes decrease and even stop within a couple of years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.9325S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.9325S"><span>Temporal variability and memory in sediment transport in an experimental step-pool channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael</p> <p>2015-11-01</p> <p>Temporal dynamics of sediment transport in steep channels using two experiments performed in a steep flume (8%) with natural sediment composed of 12 grain sizes are studied. High-resolution (1 s) time series of sediment transport were measured for individual grain-size classes at the outlet of the flume for different combinations of sediment input rates and flow discharges. Our aim in this paper is to quantify (a) the relation of discharge and sediment transport and (b) the nature and strength of memory in grain-size-dependent transport. None of the simple statistical descriptors of sediment transport (mean, extreme values, and quantiles) display a clear relation with water discharge, in fact a large variability between discharge and sediment transport is observed. Instantaneous transport rates have probability density functions with heavy tails. Bed load bursts have a coarser grain-size distribution than that of the entire experiment. We quantify the strength and nature of memory in sediment transport rates by estimating the Hurst exponent and the autocorrelation coefficient of the time series for different grain sizes. Our results show the presence of the Hurst phenomenon in transport rates, indicating long-term memory which is grain-size dependent. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling duration of bed load transport rates in natural streams, especially for large fractions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25700','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25700"><span>A progress report on suspended sediment in several western Oregon and western Washington streams.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Manes Barton</p> <p>1951-01-01</p> <p>Streams transport their loads by traction (the bed load) in suspension (the suspended load) and as salts in solution (the solution load). The total load is the sum of these three and is commonly called the water quality. The amounts of and variation in stream flow and water quality have become in the past few years accepted criteria for evaluating watershed conditions...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS51A1144S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS51A1144S"><span>Computational Modeling of Sinkage of Objects into Porous Bed under Cyclic Loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheikh, B.; Qiu, T.; Liu, X.</p> <p>2017-12-01</p> <p>This work is a companion of another abstract submitted to this session on the computational modeling for the prediction of underwater munitions. In the other abstract, the focus is the hydrodynamics and sediment transport. In this work, the focus is on the geotechnical aspect and granular material behavior when the munitions interact with the porous bed. The final goal of the project is to create and utilize a comprehensive modeling framework, which integrates the flow and granular material models, to simulate and investigate the motion of the munitions. In this work, we present the computational modeling of one important process: the sinkage of rigid-body objects into porous bed under cyclic loading. To model the large deformation of granular bed materials around sinking objects under cyclic loading, a rate-independent elasto-plastic constitutive model is implemented into a Smoothed Particle Hydrodynamics (SPH) model. The effect of loading conditions (e.g., amplitude and frequency of shaking), object properties (e.g., geometry and density), and granular bed material properties (e.g., density) on object singkage is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..115..207J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..115..207J"><span>Evaluation of a numerical model's ability to predict bed load transport observed in braided river experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Javernick, Luke; Redolfi, Marco; Bertoldi, Walter</p> <p>2018-05-01</p> <p>New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1892g0002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1892g0002S"><span>Assessment of total bed material equations on selected Malaysia rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saleh, A.; Abustan, I.; Mohd Remy Rozainy, M. A. Z.; Sabtu, N.</p> <p>2017-10-01</p> <p>Assessment of total sediment load equations on selected Malaysia rivers was done based on 35 sediment loads and hydraulic data. Four rivers were selected to make this assessment which are Sungai Perak, Sungai Kemaman, Sungai Pergau and Sungai Kurau. These rivers can be divided into three categories based on the river width, with Sungai Perak (300-350m) and Sungai Kemaman (150-200m) can categorised as big rivers, meanwhile, Sungai Pergau (30-45m) and Sungai Kurau (10-11m) can categorised as medium and small river respectively. The total sediment load equations used in this assessment are Ackers-White, Brownlie, Engelund-Hansen, Graf, Molinas-Wu, Karim-Kennedy and Yang. This paper also tested the local total sediment load equations by Ariffin and Sinnakaudan et al. to evaluate capabilities of the equations on different rivers in Malaysia. The graphs of the calculated equations versus measured sediment transport rates were plotted to shows the accuracy of the tested equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175626','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175626"><span>Modeling flow, sediment transport and morphodynamics in rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake</p> <p>2016-01-01</p> <p>Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612026K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612026K"><span>Numerical modelling of fine-grained sediments remobilization in heavily polluted streams. Case study: Elbe and Bílina River, Czech Republic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar</p> <p>2014-05-01</p> <p>The study aimed to estimate remobilization of channel and riparian cohesive sediment of streams, heavily polluted by industrial emmissions. There were analyzed four stream stretches in Czech Republic: (1) Elbe River from Usti nad Labem to the boundary with Germany; (2) Bílina river, draining industrial and mining areas of Northwest Bohemia; (3) Midstream reach of Czech Elbe by the confluence with Vltava river, affected by chemical industry and (4) fluvial lakes in the riparian zone of Czech Elbe river downstream of Pardubice burdened by old loads from heavy chemical industry. Sediments of clay and silt character bedded in the riparian water-courses are regarded heavily polluted by wide range of toxic matters. In the sediment samples, there were found elevated concentrations of persistent organic matters (DDT, PCB, HCH, Fluoranthen), Heavy metals (Hg, As, Cd), and others. The pollution in sediment is resulting from the unregulated heavy industrial production in the area in the second half of 20th century during the socialistic regime in Czech republic that still play an important role in Elbe river water quality. The main goal of the study was to evaluate the risk of remobilization of polluted sediments by the assessment of discharge (values and return periods), initiating remobilization of sediment from the river bed. The modeling stems on basic assumption, that once the sediment is elevated from the bed, it could be transported far downstream in the form of suspended load. The evaluation was made on the basis of numerical hydrodynamic calculation coupled with sediment transport model. The MIKE by DHI modelling software with different levels of schematization was used according the flow conditions and available data sources. For 50 km stretch of Bílina river the 1D schematization (MIKE 11) was selected as the discharges driving remobilization were expected within the extent of channel capacity due to the stream regulation. For the lower and middle course of Elbe river and the riparian sediment evaluation the 2D schematization (MIKE 21 C) was selected. It enabled to distinguish flow characteristics in the zone with complicated hydrodynamic conditions. The risk of remobilization of fine-grained sediments was evaluated in order to define a threshold discharge value after that the spreading of pollution can be expected. The major contribution of the study, realized in the framework of international iniciative ELSA was the identification of threshold values for potential remobilization of sediment burdened by old loads in different environments. These threshold values are important information for identification and mitigation of risks related with old loads and hydrological extremes. From methodological point of view the study verified validity of applied distinct approaches for fine-grained sediment remobilization assessment and identified limits for their application. Key words: sediment, remobilization, old loads, modelling, hydrodynamics, Elbe river</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800061637&hterms=River+Erosion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRiver%2BErosion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800061637&hterms=River+Erosion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRiver%2BErosion"><span>Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Komar, P. D.</p> <p>1980-01-01</p> <p>The paper discusses application to Martian water flows of the criteria that determine which grain-size ranges are transported as bed load, suspension, and wash load. The results show nearly all sand-sized material and finer would have been transported as wash load and that basalt pebbles and even cobbles could have been transported at rapid rates of suspension. An analysis of the threshold of sediment motion on Mars further indicates that the flows would have been highly competent, the larger flows having been able to transport boulder-sized material. Comparisons with terrestrial rivers which transport hyperconcentration levels of sediments suggest that the Martian water flows could have achieved sediment concentrations up to 70% in weight. Although it is possible that flows could have picked up enough sediment to convert to pseudolaminar mud flows, they probably remained at hyperconcentration levels and fully turbulent in flow character.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRF..120.1436F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRF..120.1436F"><span>Reconstructing a sediment pulse: Modeling the effect of placer mining on Fraser River, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferguson, R. I.; Church, M.; Rennie, C. D.; Venditti, J. G.</p> <p>2015-07-01</p> <p>Gold mining along 525 km of the Fraser River between 1858 and 1909 added an estimated 1.1 × 108 t of tailings, half gravel and the rest finer, to the river's natural sediment load. We simulate the response using a 1-D multigrain size morphodynamic model. Since premining conditions are unknown and modern data are insufficient for tuning the process representation, we devised a novel modeling strategy which may be useful in other data-poor applications. We start the model from a smoothed version of the modern longitudinal profile with bed grain size distributions optimized to match alternative assumptions about natural sediment supply and compare runs that include mining with control runs that can be used to quantify the effects of deficiencies in process representation and initialization. Simulations with an appropriate choice of natural supply rate closely match the best available test data, which consist of a detailed 1952-1999 gravel budget for the distal part of the model domain. The simulations suggest that the main response to mining was rapid bed fining, which allowed a major increase in bed load transport rate with only slight (~0.1 m) mean aggradation within the mining region and most of the excess sediment exported well beyond the mountain front within the mining period or soon afterward. We compare this pattern of response by a large, powerful river with previous case studies of river adjustment to sediment supply change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4366508','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4366508"><span>Onset of sediment transport is a continuous transition driven by fluid shear and granular creep</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Houssais, Morgane; Ortiz, Carlos P.; Durian, Douglas J.; Jerolmack, Douglas J.</p> <p>2015-01-01</p> <p>Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models. PMID:25751296</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H51H..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H51H..07C"><span>The Influence of Relative Submergence on the Near-bed Flow Field: Implications for Bed-load Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooper, J.; Tait, S.; Marion, A.</p> <p>2005-12-01</p> <p>Bed-load is governed by interdependent mechanisms, the most significant being the interaction between bed roughness, surface layer composition and near-bed flow. Despite this, practically all transport rate equations are described as a function of average bed shear stress. Some workers have examined the role of turbulence in sediment transport (Nelson et al. 1995) but have not explored the potential significance of spatial variations in the near-bed flow field. This is unfortunate considering evidence showing that transport is spatially heterogeneous and could be linked to the spatial nature of the near-bed flow (Drake et al., 1988). An understanding is needed of both the temporal and spatial variability in the near-bed flow field. This paper presents detailed spatial velocity measurements of the near-bed flow field over a gravel-bed, obtained using Particle Image Velocimetry. These data have been collected in a laboratory flume under two regimes: (i) tests with one bed slope and different flow depths; and (ii) tests with a combination of flow depths and slopes at the same average bed shear stress. Results indicate spatial variation in the streamwise velocities of up to 45 per cent from the double-averaged velocity (averaged in both time and space). Under both regimes, as the depth increased, spatial variability in the flow field increased. The probability distributions of near-bed streamwise velocities became progressively more skewed towards the higher velocities. This change was more noticeable under regime (i). This has been combined with data from earlier tests in which the near-bed velocity close to an entraining grain was measured using a PIV/image analysis system (Chegini et al, 2002). This along with data on the shape of the probability density function of velocities capable of entraining individual grains derived from a discrete-particle model (Heald et al., 2004) has been used to estimate the distribution of local velocities required for grain motion in the above tests. The overlap between this distribution and the measured velocities are used to estimate entrainment rates. Predicted entrainment rates increase with relative submergence, even for similar bed shear stress. Assuming bed-load rate is the product of entrainment rate and hop length, and that hop lengths are sensibly stable, suggests that transport rate has a dependence on relative submergence. This demonstrates that transport rate is not a direct function of average bed shear stress. The results describe a mechanism that will cause river channels with contrasting morphologies (and different relative submergence) but similar levels of average bed stress to experience different levels of sediment mobility. Chegini A. Tait S. Heald J. McEwan I. 2002 The development of an automated system for the measurement of near bed turbulence and grain motion. Proc. ASCE Conf. on Hydraulic Measurements and Experimental Methods, ISBN 0-7844-0655-3. Drake T.G. Shreve R.L. Dietrich W.E. Whiting P.J. Leopold L.B. 1988 Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech., 192, 193-217. Heald J. McEwan I. Tait, S. 2004 Sediment transport over a flat bed in a unidirectional flow: simulations and validation, Phil. Trans. Roy. Soc. of London A, 362, 1973-1986. Nelson J.M. Shreve R.L. McLean S.R. Drake T.G. 1995 Role of near-bed turbulence structure in bed-load transport and bed form mechanics, Water. Res. Res., 31, 8, 2071-2086.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23168624','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23168624"><span>Field performance of self-siphon sediment cleansing set for sediment removal in deep CSO chamber.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Yongchao; Zhang, Yiping; Tang, Ping</p> <p>2013-01-01</p> <p>This paper presents a study of the self-siphon sediment cleansing set (SSCS), a system designed to remove sediment from the deep combined sewer overflow (CSO) chamber during dry-weather periods. In order to get a better understanding of the sediment removal effectiveness and operational conditions of the SSCS system, we carried out a full-scale field study and comparison analysis on the sediment depth changes in the deep CSO chambers under the conditions with and without the SSCS. The field investigation results demonstrated that the SSCS drains the dry-weather flow that accumulated for 50-57 min from the sewer channel to the intercepting system in about 10 min. It is estimated that the bed shear stress in the CSO chamber and sewer channel is improved almost 25 times on average. The SSCS acts to remove the near bed solids with high pollution load efficiently. Moreover, it cleans up not only the new sediment layer but also part of the previously accumulated sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdWR..110...59O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdWR..110...59O"><span>Vortex-induced suspension of sediment in the surf zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otsuka, Junichi; Saruwatari, Ayumi; Watanabe, Yasunori</p> <p>2017-12-01</p> <p>A major mechanism of sediment suspension by organized vortices produced under violent breaking waves in the surf zone was identified through physical and computational experiments. Counter-rotating flows within obliquely descending eddies produced between adjacent primary roller vortices induce transverse convergent near-bed flows, driving bed load transport to form regular patterns of transverse depositions. The deposited sediment is then rapidly ejected by upward carrier flows induced between the vortices. This mechanism of vortex-induced suspension is supported by experimental evidence that coherent sediment clouds are ejected where the obliquely descending eddies reach the sea bed after the breaking wave front has passed. In addition to the effects of settling and turbulent diffusion caused by breaking waves, the effect of the vortex-induced flows was incorporated into a suspension model on the basis of vorticity dynamics and parametric characteristics of transverse flows in breaking waves. The model proposed here reasonably predicts an exponential attenuation of the measured sediment concentration due to violent plunging waves and significantly improves the underprediction of the concentration produced by previous models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP51A0703R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP51A0703R"><span>Understanding Stream Channel Sediment Source Contributions For The Paradise Creek Watershed In Northern Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rittenburg, R.; Boll, J.; Brooks, E. S.</p> <p>2013-12-01</p> <p>Excess sediment from agricultural areas has been a major source of impairment for water bodies, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. In-stream contributions are not well understood, and are a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to differentiate stream bank and stream bed sediment contributions and better understand the role of legacy sediments. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was composed predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 39% of the total annual sediment load for the basin, with a 19-year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term cross sectional data in the watershed, and a sediment fingerprinting analysis will be presented to better understand sediment contributions from within the stream channel system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESuD....5..311T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESuD....5..311T"><span>A probabilistic framework for the cover effect in bedrock erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turowski, Jens M.; Hodge, Rebecca</p> <p>2017-06-01</p> <p>The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and long-term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover effect that can be applied to field, laboratory, and modelling data and thus allows the comparison of results from different sources. The framework describes the formation of sediment cover as a function of the probability of sediment being deposited on already alluviated areas of the bed. We define benchmark cases and suggest physical interpretations of deviations from these benchmarks. Furthermore, we develop a reach-scale model for sediment transfer in a bedrock channel and use it to clarify the relations between the sediment mass residing on the bed, the exposed bedrock fraction, and the transport stage. We derive system timescales and investigate cover response to cyclic perturbations. The model predicts that bedrock channels can achieve grade in steady state by adjusting bed cover. Thus, bedrock channels have at least two characteristic timescales of response. Over short timescales, the degree of bed cover is adjusted such that the supplied sediment load can just be transported, while over long timescales, channel morphology evolves such that the bedrock incision rate matches the tectonic uplift or base-level lowering rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RSOS....572018M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RSOS....572018M"><span>Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maldonado, Sergio; Borthwick, Alistair G. L.</p> <p>2018-02-01</p> <p>We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29515898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29515898"><span>Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maldonado, Sergio; Borthwick, Alistair G L</p> <p>2018-02-01</p> <p>We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED41A0765G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED41A0765G"><span>Bed structure and bedload transport: Sediment grain reorientation in response to high and low flows in an experimental flume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurer, M.; Sullivan, S.; Masteller, C.</p> <p>2016-12-01</p> <p>Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This new result suggests that the low flow reorientation of grains perpendicular to downstream flow drives observed differences in bedload transport during high flows. We conclude that low flow periods are important for the creation of bed structure and the stabilization of gravel river channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5085/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5085/"><span>Sources of suspended sediment in the Waikele watershed, Oʻahu, Hawaiʻi</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Izuka, Scot K.</p> <p>2012-01-01</p> <p>Data from streamflow/sediment gages and measurements of changes in channel-bed sediment storage were gathered between October 1, 2007, and September 30, 2010, to assess the sources of suspended sediment in the Waikele watershed, Oʻahu, Hawaiʻi. Streamflow from the watershed averaged 33 cubic feet per second during the study period, with interannual variations corresponding with variations in the frequency and magnitude of storm-flow peaks. Average streamflow during the study period was lower than the long-term average, but the study period included a storm on December 11, 2008, that caused record-high streamflows in parts of the watershed. Suspended-sediment yield from the Waikele watershed during the study period averaged 82,500 tons per year, which is 2.7 times higher than the long-term average. More than 90 percent of the yield during the study period was discharged during the December 11, 2008, storm. The study-period results are consistent with long-term records that show that the vast majority of suspended-sediment transport occurs during a few large storms. Results of this study also show that all but a small percentage of the suspended-sediment yield came from hillslopes. Only a small fraction of bed sediments is fine enough to be transported as suspended load; most bed sediments in the watershed are coarse. Silt and clay constitute less than 3 percent of the bed-sediment volume on average. Some larger clasts, however, can disintegrate during transport and contribute to the suspended load downstream. During the study period, suspended-sediment yield from the urbanized Mililani subbasin averaged 25 tons per year per square mile (tons/yr/mi2), which was much smaller than the yield from any other subbasin; these results indicate that urban land use yields much less sediment than other land uses. The wet, forested Kipapa subbasin had an average normalized hillslope suspended-sediment yield of 386 tons/yr/mi2; the average yield for forested areas in the watershed may be lower. Suspended-sediment yield from agricultural land use in the watershed is estimated to range between 5,590 and 6,440 tons/yr/mi2 during the study period; the long-term average is estimated to be 2,070 to 2,390 tons/yr/mi2. Of the three land uses considered, agriculture had by far the highest normalized suspended-sediment yield during this study - about an order of magnitude higher than forests and two orders of magnitude higher than urban areas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.277..251H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.277..251H"><span>Toward a unifying constitutive relation for sediment transport across environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Houssais, Morgane; Jerolmack, Douglas J.</p> <p>2017-01-01</p> <p>Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122.2411L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122.2411L"><span>The Importance of Splat Events to the Spatiotemporal Structure of Near-Bed Fluid Velocity and Bed Load Motion Over Bed Forms: Laboratory Experiments Downstream of a Backward Facing Step</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leary, K. C. P.; Schmeeckle, M. W.</p> <p>2017-12-01</p> <p>Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SedG..368...68X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SedG..368...68X"><span>Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi</p> <p>2018-06-01</p> <p>Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with Bouma sequences and thin- to thick massive sandstones. Such evolution patterns of hyperpycnal channel systems are ascribed to the progressive decrease in flow capacity of hyperpycnal flows, and provide an adequate explanation for the basinward channelization behavior of hyperpycnal systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://wi.water.usgs.gov/pubs/WRIR-99-4101/wrir-99-4101.pdf','USGSPUBS'); return false;" href="http://wi.water.usgs.gov/pubs/WRIR-99-4101/wrir-99-4101.pdf"><span>Distribution and transport of polychlorinated biphenyls and associated particulates in the Hayton Millpond, south branch Manitowoc River, 1993-95</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Steuer, Jeffrey S.; Hall, David W.; Fitzgerald, Sharon A.</p> <p>1999-01-01</p> <p>The distribution and transport of polychlorinated biphenyl (PCB) congeners was determined at two sites on Pine Creek and at the Hayton Millpond on the South Branch of the Manitowoc River in Wisconsin during 1993-95. PCB congener compositions were analyzed in the operationally defined dissolved phase, suspended particulate phase, and surficial bed sediments (0-2 centimeters depth) several times throughout the sampling period. The relative abundances of PCB congeners in the suspended particles and in surficial bed sediments were generally similar to each other and to a known Aroclor mixture (1254). PCB congener composites in the operationally defined dissolved phase were higher in the less chlorinated congeners in keeping with their lower hydrophobicity and higher predicted solubility relative to the more chlorinated congeners. Suspended particle-associated PCB concentrations exhibited two patterns: (1) a cyclical variation in spring and summer associated with algal growth, and (2) episodic increases associated with resuspension of bed sediments during storms. Computed total suspended-solids (TSS) load at the millpond outlet was as high as 920 tons over a 3-month period (June 30-Sept. 30, 1993). Annual TSS loads for the following two years were lower, 610 and 500 tons, respectively. Total PCB concentrations in the water column varied at the millpond outlet, ranging from 34 to 302 nanograms per liter, whereas concentrations upstream on Pine Creek were as high as 563 nanograms per liter. In general, 70 percent of PCB's in the water column were associated with suspended particles. The total congener-summation PCB (SPCB) concentration regression equation incorporated the universal soil loss coefficent to represent erosion of assumedly PCB-free sediment from fields upstream from the millpond. The SPCB load based on the regression relation was 3.4 kilograms during the 3-month high-flow interval (June 30-Sept. 30, 1993). Subsequent annual SPCB loads for the next two water years were 3.5 and 2.3 kilograms, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CSR....26.1826P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CSR....26.1826P"><span>Sensitivity analysis of non-cohesive sediment transport formulae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pinto, Lígia; Fortunato, André B.; Freire, Paula</p> <p>2006-10-01</p> <p>Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1986/4344/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1986/4344/report.pdf"><span>Sediment data sources and estimated annual suspended-sediment loads of rivers and streams in Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elliott, J.G.; DeFeyter, K.L.</p> <p>1986-01-01</p> <p>Sources of sediment data collected by several government agencies through water year 1984 are summarized for Colorado. The U.S. Geological Survey has collected suspended-sediment data at 243 sites; these data are stored in the U.S. Geological Survey 's water data storage and retrieval system. The U.S. Forest Service has collected suspended-sediment and bedload data at an additional 225 sites, and most of these data are stored in the U.S. Environmental Protection Agency 's water-quality-control information system. Additional unpublished sediment data are in the possession of the collecting entities. Annual suspended-sediment loads were computed for 133 U.S. Geological Survey sediment-data-collection sites using the daily mean water-discharge/sediment-transport-curve method. Sediment-transport curves were derived for each site by one of three techniques: (1) Least-squares linear regression of all pairs of suspended-sediment and corresponding water-discharge data, (2) least-squares linear regression of data sets subdivided on the basis of hydrograph season; and (3) graphical fit to a logarithm-logarithm plot of data. The curve-fitting technique used for each site depended on site-specific characteristics. Sediment-data sources and estimates of annual loads of suspended, bed, and total sediment from several other reports also are summarized. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP31B0936S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP31B0936S"><span>Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.</p> <p>2016-12-01</p> <p>The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610857D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610857D"><span>Modelling river bank erosion processes and mass failure mechanisms using 2-D depth averaged numerical model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Die Moran, Andres; El kadi Abderrezzak, Kamal; Tassi, Pablo; Herouvet, Jean-Michel</p> <p>2014-05-01</p> <p>Bank erosion is a key process that may cause a large number of economic and environmental problems (e.g. land loss, damage to structures and aquatic habitat). Stream bank erosion (toe erosion and mass failure) represents an important form of channel morphology changes and a significant source of sediment. With the advances made in computational techniques, two-dimensional (2-D) numerical models have become valuable tools for investigating flow and sediment transport in open channels at large temporal and spatial scales. However, the implementation of mass failure process in 2D numerical models is still a challenging task. In this paper, a simple, innovative algorithm is implemented in the Telemac-Mascaret modeling platform to handle bank failure: failure occurs whether the actual slope of one given bed element is higher than the internal friction angle. The unstable bed elements are rotated around an appropriate axis, ensuring mass conservation. Mass failure of a bank due to slope instability is applied at the end of each sediment transport evolution iteration, once the bed evolution due to bed load (and/or suspended load) has been computed, but before the global sediment mass balance is verified. This bank failure algorithm is successfully tested using two laboratory experimental cases. Then, bank failure in a 1:40 scale physical model of the Rhine River composed of non-uniform material is simulated. The main features of the bank erosion and failure are correctly reproduced in the numerical simulations, namely the mass wasting at the bank toe, followed by failure at the bank head, and subsequent transport of the mobilised material in an aggradation front. Volumes of eroded material obtained are of the same order of magnitude as the volumes measured during the laboratory tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-07-21/pdf/2011-18417.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-07-21/pdf/2011-18417.pdf"><span>76 FR 43685 - Designation of an Ocean Dredged Material Disposal Site (ODMDS) in the Gulf of Mexico Off the...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-07-21</p> <p>... Atchafalaya River and the Atchafalaya River Bar Channel (ARBC), located within the Federally-authorized and... Mexico. The ARBC is located in an area of heavy sedimentation. The bed load fraction of the sediment...) ODMDS on the east side of the channel (the ODMDS-East). Concern has been expressed, and Corps studies...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025841','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025841"><span>A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: Methodology and applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mahler, B.J.; Van Metre, P.C.</p> <p>2003-01-01</p> <p>Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027581','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027581"><span>Sediment calibration strategies of Phase 5 Chesapeake Bay watershed model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wu, J.; Shenk, G.W.; Raffensperger, Jeff P.; Moyer, D.; Linker, L.C.; ,</p> <p>2005-01-01</p> <p>Sediment is a primary constituent of concern for Chesapeake Bay due to its effect on water clarity. Accurate representation of sediment processes and behavior in Chesapeake Bay watershed model is critical for developing sound load reduction strategies. Sediment calibration remains one of the most difficult components of watershed-scale assessment. This is especially true for Chesapeake Bay watershed model given the size of the watershed being modeled and complexity involved in land and stream simulation processes. To obtain the best calibration, the Chesapeake Bay program has developed four different strategies for sediment calibration of Phase 5 watershed model, including 1) comparing observed and simulated sediment rating curves for different parts of the hydrograph; 2) analyzing change of bed depth over time; 3) relating deposition/scour to total annual sediment loads; and 4) calculating "goodness-of-fit' statistics. These strategies allow a more accurate sediment calibration, and also provide some insightful information on sediment processes and behavior in Chesapeake Bay watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9420C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9420C"><span>Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin</p> <p>2017-04-01</p> <p>Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.3660G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.3660G"><span>Channel morphology and patterns of bedload transport in fluvial, formerly-glaciated, forested headwater streams of the Columbia Mountains, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Green, Kim; Brardinoni, Francesco; Alila, Younes</p> <p>2013-04-01</p> <p>This study examines channel-reach morphology and bedload transport dynamics in relation to landscape structure and snowmelt hydrology in Cotton and Elk Creek, two headwater streams of the southern Columbia Mountains, Canada. Data collection is based on field surveys and GIS analysis in conjunction with a nested monitoring network of water discharge and bed load transfer. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of free-formed (i.e., boulder cascades, step pools, and riffle pools) and forced-alluvial morphologies (i.e., forced step pools) on bedload entrainment and transport. The landscape is characterized by subdued glaciated topography in which sediment is primarily supplied by bank failures and fluvial transfer dominates the channelized sediment cascade. The spatial distribution of channel types is mainly controlled by glacially imposed local slope together with availability of wood and glacigenic materials. Interestingly, downstream hydraulic geometry as well as downstream patterns of the coarse channel bed fraction and stream power are all insensitive to systematic changes of local slope along the typically stepped longitudinal profiles. An indication that the study alluvial systems are adjusted to the contemporary hydrologic and sedimentary regimes, and as such through post-LGM times have been able to compensate for the glacially-imposed boundary conditions. Stepwise multiple regression indicates that annual bedload yield is chiefly controlled by the number of peak events over threshold discharge. During such high flows, repeated destabilization of channel bed armouring and re-mobilization of sediment stored behind logjams can ensure sediment supply for bedload transport across the entire snowmelt season. In particular, channel morphology affects distinctively the variability of bed load response to hydrologic forcing. The observed spatial variability in annual bedload yield appears to correlate with inter-basin differences in basic morphometric attributes, among which slope aspect plays a prominent role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://il.water.usgs.gov/pubsearch/reports.cgi/view?series=WRIR&number=00-4115','USGSPUBS'); return false;" href="http://il.water.usgs.gov/pubsearch/reports.cgi/view?series=WRIR&number=00-4115"><span>Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schrader, David L.; Holmes, Robert R.</p> <p>2000-01-01</p> <p>The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the tributaries to the Fox Chain of Lakes. With the exception of Grass Lake Outlet at Lotus Woods, most of the bed sediments are sand size or larger. The bed material at the streamflow-gaging station at Grass Lake Outlet at Lotus Woods contains 31.5 percent silt- and clay-sized particles. The bed material at Nippersink Creek near Spring Grove also has higher silt content (10.7 percent) than the bed material found in the Fox River at Wilmot (2.1 percent) and Johnsburg (1.3 percent). Additionally, water velocities at 80 cross sections in the Fox Chain of Lakes were collected to provide sample circulation patterns during two separate 1-week periods, and discharge was measured at 18 locations in the lakes. These data were collected to be available for use in hydrodynamic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..241P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..241P"><span>Soft-sediment deformation structures in Cambrian Series 2 tidal deposits (NW Estonia): implications for identifying endogenic triggering mechanisms in ancient sedimentary record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Põldsaar, Kairi</p> <p>2015-04-01</p> <p>Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the formation of large sandstone pillows within the Tiskre-Lükati boundary interval at some localities. It is discussed here that the formation of the observed SSDS is genetically related to the restless dynamics of the storm-influenced open marine tidal depositional environment. The most obvious causes of deformation were rapid-deposition, shear and slumping caused by tidal surges, and storm-wave loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43J1596G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43J1596G"><span>Denitrification and Phosphorus Sequestration in Restored Oyster Beds in the Indian River Lagoon, Florida, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallagher, S. M.; Schmidt, C. A.; Walters, L.</p> <p>2016-12-01</p> <p>In 2016, an algae bloom in the St. Lucie River in Florida led the governor to declare a state of emergency. The river is part of a connected system of estuaries along the Atlantic coast of Florida called the Indian River Lagoon (IRL). As with many estuaries around the world, nutrient loading in the IRL has led to periodic eutrophication. As a result, much research has been done to address nutrients in these systems. Previous estuary studies have related oyster restoration to denitrification and phosphorus sequestration in their bed sediment. To this point, these studies have been inconclusive, and have only focused on seasonal variation in nutrient cycling. In 2007, yearly oyster bed installation and restoration began in a study area in the IRL. By 2016, beds aged up to eleven years were available for sampling. This unique advantage allowed investigation of bed sediment and nutrient cycling over long periods of time. Sediment from the IRL was measured for organic matter, microbial weight, carbon, nitrogen, and phosphorus. Denitrification was measured using an acetylene block technique. A statistical analysis was used to find differences in sediment characteristics and denitrification between restored beds and control sites over time. In addition, sequencing of 16S rRNA DNA and a variety of denitrifying genes was used to identify bacterial species and their denitrifying capability in the sediment. The ability to sequence denitrification genes in established oyster beds over a period of years was also unique to this study. Significant differences were found in soil properties, denitrification rates, and phosphorus sequestration between control sites and restored oyster beds. Gene sequencing also found differences in bacterial populations between the sites. Oyster bed restoration resulted in a rapid increase in nutrient removal as beds developed over three years, but additional benefits were limited as restoration progressed further. This study adds an investigation of IRL oysters to existing knowledge of nutrient removal by oysters in other estuaries. These results help clarify single year studies focused on seasonal changes by showing a rapid increase in oyster bed nutrient removal over a period of three years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006Geomo..76..122V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006Geomo..76..122V"><span>Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: The lower Ebro</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vericat, Damia; Batalla, Ramon J.; Garcia, Celso</p> <p>2006-06-01</p> <p>Changes in armour layer during floods under supply limited conditions are little known. This paper describes the breakup and the reestablishment of the bed armour layer in the regulated gravel-bed Ebro River during a flooding period. The study was conducted over a 28-km study reach from 2002 to 2004. The surface, subsurface and bed load grain size distribution constitute the bases for the analysis of bed-armouring dynamics. The results indicate that the magnitude of floods controlled the degree of armouring of the river bed. The initial mean armouring ratio was 2.3, with maximum values reaching 4.4. Floods in the winter of 2002-2003 ( Q8) caused the breakup of the armour layer in several sections. This resulted in the erratic bed load pattern observed during the December 2002 flushing flow and in the increase in bed load transport during successive events. Most grain size classes were entrained and transported, causing river bed incision. The mean armouring ratio decreased to 1.9. In contrast, during low magnitude floods in 2003-2004 ( Q2), the coarsest fractions (64 mm) did not take part in the bed load while finer particles were winnowed, thus surface deposits coarsened. As a result, the armour layer was reestablished (i.e., the mean armouring ratio increased to 2.3), and the supply of subsurface sediment decreased. The supply and transport of bed material appear to be in balance in the river reach immediately below the dam. In contrast, the transport of medium and finer size classes in the downstream reaches was higher than their supply from upstream, a phenomenon that progressively reduced their availability in the river bed surface, hence the armour layer reworking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP32A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP32A..05M"><span>Geomorphic response to large-dam removal: Impacts of a massive sediment release to the Elwha River, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.</p> <p>2015-12-01</p> <p>The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of deposition, sediment transport, and sediment-wave evolution were heterogeneously complex, challenging our efforts to classify the sediment wave in terms of simple dispersion or translation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916014C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916014C"><span>Morphodynamics modelling of bars in channels with graded sediment and sediment supply variation with the Telemac-Mascaret System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cordier, Florian; Tassi, Pablo; Claude, Nicolas; Crosato, Alessandra; Rodrigues, Stéphane; Pham van Bang, Damien</p> <p>2017-04-01</p> <p>Numerical modelling of graded sediment transport in rivers remains a challenge [Siviglia and Crosato, 2016] and only few studies have considered the non-uniform distribution of sediment, although sediment grading is an inherent characteristic of natural rivers. The present work aims at revisiting the morphodynamics module of the Telemac-Mascaret modelling system and to integrate the latest developments to model the effects of non-uniform sediment on i) the sediment transport capacity estimated at the interface between the flow and the riverbed and on ii) the vertical sorting of sediment deposits in response to sediment supply changes. The implementation of these two processes has a key role on the modelling of bar dynamics in aggrading/degrading channels [Blom, 2008]. Numerical modelling of graded sediment transport remains a challenge due to the difficulty to reproduce the non-linear interactions between grains of different shape and size. Application of classical bedload equations usually fails in reproducing relevant transport rates [Recking, 2010 and references therein]. In this work, the graded sediment transport model of Wilcock and Crowe [2003] and the active layer concept of Hirano [1971] for the formulation of the exchange layer are implemented. The ability to reproduce the formation and evolution of graded-sediment bars is assessed on the basis of laboratory experiences from the literature. References: Blom, A., Ribberink, J. S., and Parker, G. 2008. Vertical sorting and the morphodynamics of bed form-dominated rivers: A sorting evolution model. Journal of Geophysical Research: Earth Surface, 113(F1). Lauer, J. W., Viparelli, E., and Piégay, H. 2016. Morphodynamics and sediment tracers in 1-d (mast-1d): 1-d sediment transport that includes exchange with an off-channel sediment reservoir. Advances in Water Resources. Recking, A. 2010. A comparison between flume and field bed load transport data and consequences for surface-based bed load transport prediction. Water Resources Research, 46(3). W03518. Siviglia, A. and Crosato, A. 2016. Numerical modelling of river morphodynamics: latest developments and remaining challenges. Advances in Water Resources, 90:1-9. Wilcock, P. R. and Crowe, J. C. 2003. Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2):120-128.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52.9001H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52.9001H"><span>Modeling sediment transport after ditch network maintenance of a forested peatland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haahti, K.; Marttila, H.; Warsta, L.; Kokkonen, T.; Finér, L.; Koivusalo, H.</p> <p>2016-11-01</p> <p>Elevated suspended sediment (SS) loads released from peatlands after drainage operations and the resulting negative effect on the ecological status of the receiving water bodies have been widely recognized. Understanding the processes controlling erosion and sediment transport within the ditch network forms a prerequisite for adequate sediment control. While numerous experimental studies have been reported in this field, model based assessments are rare. This study presents a modeling approach to investigate sediment transport in a peatland ditch network. The transport model describes bed erosion, rain-induced bank erosion, floc deposition, and consolidation of the bed. Coupled to a distributed hydrological model, sediment transport was simulated in a 5.2 ha forestry-drained peatland catchment for 2 years after ditch cleaning. Comparing simulation results to measured SS concentrations suggested that the loose peat material, produced during excavation, contributed markedly to elevated SS concentrations immediately after ditch cleaning. Both snowmelt and summer rainstorms contributed critically to annual loads. Springtime peat erosion during snowmelt was driven by ditch flow whereas during summer rainfalls, bank erosion by raindrop impact was identified as an important process. Relating modeling results to observed spatial topographic changes in the ditch network was challenging and the results were difficult to verify. Nevertheless, the model has potential to identify risk areas for erosion. The results demonstrate that modeling is effective in separating the importance of different processes and complements pure experimental approaches. Modeling results can aid planning and designing efficient sediment control measures and guide the focus of experimental studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H51K1353V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H51K1353V"><span>Evolution of geometric and hydraulic parameters as function of discharge in two streams in the National Petroleum Reserve-Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vas, D. A.; Toniolo, H. A.; Bailey, J.; Kemnitz, R.</p> <p>2013-12-01</p> <p>Abstract The National Petroleum Reserve-Alaska (NPR-A) is a vast 22.8 million acre area that extends from the foot hills of the Brooks Range to the Beaufort Sea. The United States Department of Interior, Bureau of Land Management (BLM) in association with University of Alaska Fairbanks (UAF) is conducting hydrological research to establish baseline conditions to aid future infrastructure development related to oil and gas in the NPR-A region. Field measurements (discharge, cross-sectional area, top width, water slope) were carried out in Spring 2011, 2012 and 2013, during receding water levels in the streams when the flows were ice-free. The river gauges are located approximately 15 miles south of the rivers mouth on Beaufort Sea and 13 miles from each other. The contributing watershed areas upstream of the gauging stations are 620 and 128 square miles for Judy Creek and Ublutuoch River respectively. The streams have very different channel characteristics and sediment loads. The Judy Creek channel is somewhat unstable; bed sediment contains sand and fine gravel with a heavy sediment load during spring. Bed sediment on Ublutuoch River mainly comprise of coarse gravel, with heavily brush-vegetated steep banks and very limited sediment load during spring. We present a preliminary set of hydraulic geometric relationships describing the variation of channel width, depth, and velocity as function of discharge at the gauging sites on the rivers. Empirical equations indicate that exponents for channel width have similar values in both rivers (approximately 0.38), while exponents for velocity display different values and signs. Exponents for channel depth range from 0.55 to 0.71. Differences in prevailing sediment transport conditions seem to be, at least partially, responsible for the variation in the exponents. Additionally, roughness coefficients are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA073538','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA073538"><span>Deep River Velocity and Sediment Profiles and the Suspended Sand Load,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1963-02-01</p> <p>sippi / ( I D DC 11 Prepared for Federal Interagency Sedimentation Conference of the Subcommittee on Sedimentation, ICWR Jackson, Mississippi 28 January-i...in the Atchaf- a]. aya River at Simmesport and in the Mississippi River at Vicksburg to de- fine the vertical velocity distribution. Examination of...l.l5~~(~~) (1) in which y is distance above the bed, d is the depth of a mean-depth A 14 -- - - section, i~ is the average velocity of flow in the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015917','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015917"><span>Interaction of fine sediment with alluvial streambeds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jobson, Harvey E.; Carey, William P.</p> <p>1989-01-01</p> <p>More knowledge is needed about the physical processes that control the transport of fine sediment moving over an alluvial bed. The knowledge is needed to design rational sampling and monitoring programs that assess the transport and fate of toxic substances in surface waters because the toxics are often associated with silt- and clay-sized particles. This technical note reviews some of the past research in areas that may contribute to an increased understanding of the processes involved. An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. Alluvial flow tends to segregate the deposited material according to size and density. Some of the storage locations are temporary, but some can store the fine sediment for very long periods of time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2228N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2228N"><span>Boulder-Faced Log Dams and other Alternatives for Gabion Check Dams in First-Order Ephemeral Streams with Coarse Bed Load in Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nyssen, Jan; Gebreslassie, Seifu; Assefa, Romha; Deckers, Jozef; Guyassa, Etefa; Poesen, Jean; Frankl, Amaury</p> <p>2017-04-01</p> <p>Many thousands of gabion check dams have been installed to control gully erosion in Ethiopia, but several challenges still remain, such as the issue of gabion failure in ephemeral streams with coarse bed load, that abrades at the chute step. As an alternative for gabion check dams in torrents with coarse bed load, boulder-faced log dams were conceived, installed transversally across torrents and tested (n = 30). For this, logs (22-35 cm across) were embedded in the banks of torrents, 0.5-1 m above the bed and their upstream sides were faced with boulders (0.3-0.7 m across). Similar to gabion check dams, boulder-faced log dams lead to temporary ponding, spreading of peak flow over the entire channel width and sediment deposition. Results of testing under extreme flow conditions (including two storms with return periods of 5.6 and 7 years) show that 18 dams resisted strong floods. Beyond certain flood thresholds, represented by proxies such as Strahler's stream order, catchment area, D95 or channel width), 11 log dams were completely destroyed. Smallholder farmers see much potential in this type of structure to control first-order torrents with coarse bed load, since the technique is cost-effective and can be easily installed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70180363','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70180363"><span>Storms, channel changes, and a sediment budget for an urban-suburban stream, Difficult Run, Virginia, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gellis, Allen C.; Myers, Michael; Noe, Gregory; Hupp, Cliff R.; Shenk, Edward; Myers, Luke</p> <p>2017-01-01</p> <p>Determining erosion and deposition rates in urban-suburban settings and how these processes are affected by large storms is important to understanding geomorphic processes in these landscapes. Sediment yields in the suburban and urban Upper Difficult Run are among the highest ever recorded in the Chesapeake Bay watershed, ranging from 161 to 376 Mg/km2/y. Erosion and deposition of streambanks, channel bed, and bars and deposition of floodplains were monitored between 1 March 2010 and 18 January 2013 in Upper Difficult Run, Virginia, USA. We documented the effects of two large storms, Tropical Storm Lee (September 2011), a 100-year event, and Super Storm Sandy (October 2012) a 5-year event, on channel erosion and deposition. Variability in erosion and deposition rates for all geomorphic features, temporally and spatially, are important conclusions of this study. Tropical Storm Lee was an erosive event, where erosion occurred on 82% of all streambanks and where 88% of streambanks that were aggrading before Tropical Storm Lee became erosional. Statistical analysis indicated that drainage area explains linear changes (cm/y) in eroding streambanks and that channel top width explains cross-sectional area changes (cm2/y) in eroding streambanks and floodplain deposition (mm/y). A quasi-sediment budget constructed for the study period using the streambanks, channel bed, channel bars, and floodplain measurements underestimated the measured suspended-sediment load by 61% (2130 Mg/y). Underestimation of the sediment load may be caused by measurement errors and to contributions from upland sediment sources, which were not measured but estimated at 36% of the gross input of sediment. Eroding streambanks contributed 42% of the gross input of sediment and accounted for 70% of the measured suspended-sediment load. Similar to other urban watersheds, the large percentage of impervious area in Difficult Run and direct runoff of precipitation leads to increased streamflow and streambank erosion. This study emphasizes the importance of streambanks in urban-suburban sediment budgets but also suggests that other sediment sources, such as upland sources, which were not measured in this study, can be an important source of sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMEP34A..07V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMEP34A..07V"><span>Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.</p> <p>2012-12-01</p> <p>Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base level are accounted for in terms of a specified rate of sea level rise. In addition, the model allows a subsidence rate that varies in space and time. The time rate of change of channel bed elevation is computed solving the equation of mass conservation of the bed material. Validation of the model against field data is currently in progress in a relatively simplified setting, in which the bed material is characterized in terms of a single grain size. In addition, due to the lack of information on the geometry and the grain size characteristics of the floodplain, the modeling effort is restricted to the channel bed, and the procedure to route the washload through the system is not implemented. Having clearly in mind that the present Lowermost Mississippi River is not in equilibrium, validation runs are performed in two steps. The model is first run under pre-1930 conditions, under the assumption that the natural Mississippi River was not too far from long-term steady-state. The model is then run from the 1930s to the 2010s with the prevailing inputs of water and sediment and the model results are compared against field data. In the near future we plan to test the model with non-uniform bed material, and extend it to include inundation of the floodplain, and deposition of washload on it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRF..117.0A05E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRF..117.0A05E"><span>Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eaton, B. C.; Hassan, M. A.; Davidson, S. L.</p> <p>2012-12-01</p> <p>In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive physical habitats than efforts using LW pieces that are free to move, interact, and form LW jams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025617','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025617"><span>Depositional environments and processes in Upper Cretaceous nonmarine and marine sediments, Ocean Point dinosaur locality, North Slope, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phillips, R.L.</p> <p>2003-01-01</p> <p>A 178-m-thick stratigraphic section exposed along the lower Colville River in northern Alaska, near Ocean Point, represents the uppermost part of a 1500 m Upper Cretaceous stratigraphic section. Strata exposed at Ocean Point are assigned to the Prince Creek and Schrader Bluff formations. Three major depositional environments are identified consisting, in ascending order, of floodplain, interdistributary-bay, and shallow-marine shelf. Nonmarine strata, comprising the lower 140 m of this section, consist of fluvial distributaries, overbank sediments, tephra beds, organic-rich beds, and vertebrate remains. Tephras yield isotopic ages between 68 and 72.9 Ma, generally consistent with paleontologic ages of late Campanian-Maastrichtian determined from dinosaur remains, pollen, foraminifers, and ostracodes. Meandering low-energy rivers on a low-gradient, low-relief floodplain carried a suspended-sediment load. The rivers formed multistoried channel deposits (channels to 10 m deep) as well as solitary channel deposits (channels 2-5 m deep). Extensive overbank deposits resulting from episodic flooding formed fining-upward strata on the floodplain. The fining-upward strata are interbedded with tephra and beds of organic-rich sediment. Vertical-accretion deposits containing abundant roots indicate a sheet flood origin for many beds. Vertebrate and nonmarine invertebrate fossils along with plant debris were locally concentrated in the floodplain sediment. Deciduous conifers as well as abundant wetland plants, such as ferns, horsetails, and mosses, covered the coastal plain. Dinosaur skeletal remains have been found concentrated in floodplain sediments in organic-rich bone beds and as isolated bones in fluvial channel deposits in at least nine separate horizons within a 100-m-thick interval. Arenaceous foraminifers in some organic-rich beds and shallow fluvial distributaries indicate a lower coastal plain environment with marginal marine (bay) influence. Marginal marine strata representing interdistributary bay deposits overlie the nonmarine beds and comprise about 15 m of section. Extensive vegetated sand flats, shoals, and shallow channels overlain by shallow bay deposits (less than 7 m deep), containing storm-generated strata characterize the marginal marine beds. Abundant bioturbation and roots characterize the stratigraphic lowest bay deposits; bioturbated sediment, pelecypods, barnacles, and benthic microfossils are found in the overlying bay storm deposits. The sediments abruptly change upward from hummocky cross-stratified bay deposits to a muddy marsh deposit containing shallow organic-rich channels to prograding nonmarine to marginal marine beds. Transgressive, abundantly fossiliferous shallow-marine strata more than 13 m thick comprise the uppermost exposures at Ocean Point. The marine beds overlie nonmarine and bay strata and represent an environment dominated episodically by storms. The age of the marginal marine and marine beds is late Maastrichtian based on pollen. ?? 2003 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://wi.water.usgs.gov/pubs/WRIR-99-4100/wrir-99-4100.pdf','USGSPUBS'); return false;" href="http://wi.water.usgs.gov/pubs/WRIR-99-4100/wrir-99-4100.pdf"><span>Distribution and transport of polychlorinated biphenyls and associated particulates in the Milwaukee River System, Wisconsin, 1993-95</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Steuer, Jeffrey S.; Fitzgerald, Sharon A.; Hall, David W.</p> <p>1999-01-01</p> <p>The distribution and transport of polychlorinated biphenyl (PCB) congeners were determined at various sites on Cedar Creek and its receiving stream, the Milwaukee River. PCB congener distributions were determined in the operationally defined dissolved phase, suspended-particle phase, and surficial bed sediments (0?2 centimeters depth). At most sites, the relative abundances of PCB congeners in the suspended particles and surficial bed sediments were similar to each other, and in some cases, to known Aroclor mixtures (1242 and 1260). Dissolved PCB congener distributions were higher in the less chlorinated congeners as predicted by their lower hydrophobicity and higher solubility. Log partition coefficients for the dissolved and the particle-associated organic carbon phases ranged from 5.0 to 5.8 and 6.5 to 7.5, respectively, for SPCB?s (congener summation). Particle-associated PCB?s exhibited two patterns: (1) a general increase in spring and summer associated with algal growth and, (2) episodic increases associated with resuspension of bed sediments during storms. Total suspended solids loads in water year 1994 ranged from 8,700 tons at Pioneer Road to 15,800 tons at Estabrook Park. PCB loads decreased from Highland Road (3.7 kilograms) to Pioneer Road (1.8 kilograms) from August 1994 to August 1995, indicating PCB deposition between those sites. PCB transport at Estabrook Park was 8 to 16 kilograms during this same time period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP52A..06V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP52A..06V"><span>Controls on the abruptness of gravel-sand transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venditti, J. G.; Church, M. A.; Lamb, M. P.; Domarad, N.; Rennie, C. D.</p> <p>2014-12-01</p> <p>As gravel-bedded rivers fine downstream, they characteristically exhibit an abrupt transition from gravel- to sand-bed. This is the only abrupt transition in grain-size that occurs in the fluvial system and has attracted considerable attention. A number of competing theories have been proposed to account for the abruptness of the transition, including base-level control, attrition of ~10mm gravel to produce sand, and sediment sorting processes. The prevailing theory for the emergence of abrupt transitions is size selective sorting of bimodal sediment wherein gravel deposits due to downstream declining shear stress, fining the bedload until a sand-bed emerges. We explored this hypothesis by examining grain-size, shear stress, gravel mobility and sand suspension thresholds through the gravel-sand transition (GST) of the Fraser River, British Columbia. The Fraser GST is an arrested gravel wedge with patches of gravel downstream of the wedge forming a diffuse extension. There is an abrupt change in bed slope through the transition that leads to an abrupt change in shear stress. The GST, bed-slope change and backwater caused by the ocean are all coincident spatially, which enhances the sharpness of the GST. Interestingly, the bimodal reach of the river occurs downstream of the GST and exhibits no downstream gradients in shear stress, suspended sediment flux, gravel mobility or sand suspension thresholds. This calls into question the prevailing theory for the emergence of an abrupt GST by size selective sorting. We provide evidence, both empirical and theoretical, that suggests the emergence of an abrupt GST is caused by rapid deposition of sand when fine gravel deposits. We argue that the emergence of gravel-sand transitions is a consequence of gravel-bedded rivers adopting a steeper slope than sand-bedded rivers. The abruptness arises because the bed slope required to convey the gravel load fixes the distal location of a terminal gravel wedge, and once the river has lost the capacity to carry the gravel mixture, the river adopts the lower slope required to pass the sand load. Progressive downstream fining of a gravel-sand mixture is not a necessary condition for the emergence of a gravel-sand transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.1746P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.1746P"><span>Role of hydrological events in sediment and sediment-associated heavy metals transport within a continental transboundary river system - Tuul River case study (Mongolia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietroń, Jan; Jarsjö, Jerker</p> <p>2013-04-01</p> <p>The concentration of heavy metals in rivers is often greater in the sediment load than in the water solution. Overall, heavy metal conveyance with sediment transport is a significant contributor to the global transport of heavy metals. Heavy metals once released to a river system may remain in the deposits of the river from short to very long times, for instance depending on to which extent erosion and deposition can influence the sediment mass stored in the river bed. In general, the mobility of contaminated sediments to downstream water recipients may to large extent be governed by natural sediment transport dynamics during hydrological events, such as flow peaks following heavy rainfalls. The Tuul River (Northern Mongolia) belongs to a Tuul River-Orkhon River-Selenga River- transboundary river system that discharges into Lake Baikal. The river system is largely characterized by its natural hydrological regime with numerous rapid peak flow events of the spring-summer periods. However, recent studies indicate contamination of fine sediment with heavy metals coming from placer gold mining area (Zaamar Goldfield) located along the downstream Tuul River. In this work, the general idea is to create a one-dimensional sediment transport model of the downstream Tuul River, and use field-data supported modeling to investigate natural erosion-deposition rates and the role of peak flows in natural sediment transport at 14 km reach just downstream the gold mining area. The model results show that the sediment load of the finest investigated grain size has a great potential to be eroded from the bed of the studied reach, especially during the main peak flow events. However, the same events are associated with a significant deposition of the finest material. The model results also show different hysteresis behavior of the sediment load rating curves (clockwise and counter-clockwise) during the main peak flow events. These are interpreted as effects of changing in-channel sediment supplies due to sorting method applied in the model. More generally, the modelling may increase our knowledge about the sediment transport patterns of the reach downstream the mining area. This part of the river may be considered as a temporal sink of heavy metals which may accumulate and store sediments. The deposition in such sinks can considerably support attenuation of contaminated sediment loads. On the other hand, sediments that are accumulated in sinks can increase the concentration of contaminated sediment loads during peak flow events. Information about the rates of eroded and accumulated contaminated material in such sinks is important for future water protection planning, especially under changing climate conditions. This work may also provide scientific input to discussions on both adverse environmental consequences of placer mining, and suitable designs of sediment control measures in the Zaamar Goldfield and other continental river systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.H41G..07J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.H41G..07J"><span>Experimental Bedrock Channel Incision: Scaling, Sculpture and Sediment Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, J. P.; Whipple, K. X.</p> <p>2004-12-01</p> <p>Abrasion by sediment in turbulent flows often sculpts bedrock channels into dramatic forms; quantifying the feedbacks between fluid flow, sediment impacts, and channel morphology is needed to refine models of fluvial incision into bedrock. We present data from laboratory flume experiments funded by the National Center for Earth-Surface Dynamics and conducted at St. Anthony Falls Laboratory, University of Minnesota that show how the spatial and temporal distribution of erosion is strongly coupled to the evolving topography of the bed. These experiments focus on the high Froude number and tool-starved end of parameter space, where bed cover tends to be negligible. Independent variables include flume slope, water flux and sediment flux and size distribution. Sediment moves energetically as bedload, suspended load, or locally transitional between transport modes. Quantitative measurements of the evolving bed topography show that the synthetic brittle "bedrock" in the flume (cured sand-cement mixture) eroded to form narrow incised channels with tight scoops and potholes. The experimental erosional forms are similar in morphology, and sometimes in scale, to those observed in natural bedrock rivers in southeast Utah and other field settings. The experiments demonstrate that both the mean and distribution of measured erosion rates change as the bed topography evolves, even with constant water and sediment discharges. Even starting with a plane bed geometry, erosion and sediment transport very quickly become localized in interconnected topographic lows. Positive feedback develops between the evolving topography and the fluid velocity and sediment transport fields, resulting in the incision of an inner channel. Once formed, the erosion rate in the axis of the inner channel decreases as local bed shear stresses and fluid velocities are reduced by increasing wall drag, and sediment fluxes through the channel but causes less incision (no deposition). Decreasing the sediment flux (all else held equal) causes renewed incision, but of an even narrower inner channel; increasing the sediment flux leads to inner channel deposition. Where erosion is most vigorous, sediment generally moving as saltating bedload becomes locally suspended by upward-directed mean flow. For example, swirling clouds of "bedload" particles are continuously suspended by vortices developed within potholes such that the upward flux of particles out of the potholes balance the total sediment flux through the flume. Potholes spontaneously form where average bed slope and fluid velocities were highest, dramatically accelerating the local erosion rate. Our experimental potholes are smaller in scale but morphologically strikingly similar to many observed in the field, and include features such as corkscrew grooves down the outside walls and a protruding horn at the pothole center. More generally, abrasion becomes focused in places where the flow is spatially accelerated, such as in scoops and bends with high curvature. The knife-edge margins and spatial distribution of erosional forms indicate abrupt transitions in erosional efficiency that are tightly coupled to near-bed fluid flow patterns, which in turn are strongly influenced by the erosional forms themselves. Our experiments suggest that, in highly sculpted bedrock channels, naturally developed bed roughness presents a physical length scale that is important to controlling the interaction between sediment impacts and the bed, rather than a length scale based explicitly on sediment transport and average flow conditions such as the saltation hop length.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1993/0174/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1993/0174/report.pdf"><span>Streamflow and sediment-transport data, Colorado River and three tributaries in Grand Canyon, Arizona, 1983 and 1985-86</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Garrett, W.B.; van de Vanter, E.K.; Graf, J.B.</p> <p>1993-01-01</p> <p>The U.S. Geological Survey collected streamflow and sediment-transport data at 5 streamflow-gaging stations on the Colorado River between Glen Canyon Dam and Lake Mead as a part of an interagency environmental study. The data were collected for about 6 mo in 1983 and about 4 mo in 1985-86; data also were collected at 3 sites on tributary streams in 1983. The data were used for development of unsteady flow-routing and sediment-transport models, sand-load rating curves, and evaluation of channel changes. For the 1983 sampling period, 1,076 composite cross-section suspended-sediment samples were analyzed; 809 of these samples were collected on the main stem of the Colorado River and 267 samples were from the tributaries. Bed-material samples were obtained at 1,988 verticals; 161 samples of material in transport near the bed (bedload) were collected to define the location of sand, gravel, and bed rock in the channel cross section; and 664 discharge measurements were made. For the 1985-86 sampling period, 765 composite cross-section suspended-sediment samples and 887 individual vertical samples from cross sections were analyzed. Bed-material samples were obtained at 531 verticals, 159 samples of bedload were collected, and 218 discharge measurements were made. All data are presented in tabular form. Some types of data also are presented in graphs to better show trends or variations. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP43A0827B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP43A0827B"><span>Persistence of Salmonid Redds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buffington, J. M.; Buxton, T.; Fremier, A. K.; Hassan, M. A.; Yager, E.</p> <p>2013-12-01</p> <p>The construction of redds by spawning salmonids modifies fluvial processes in ways that are beneficial to egg and embryo survival. Redd topography induces hyporheic flow that oxygenates embryos incubating within the streambed and creates form drag that reduces bed mobility and scour of salmonid eggs. Winnowing of fine material during redd construction also coarsens the streambed, increasing bed porosity and hyporheic flow and reducing bed mobility. In addition to the biological benefits, redds may influence channel morphology by altering channel hydraulics and bed load transport rates depending on the size and extent of redds relative to the size of the channel. A key question is how long do the physical and biological effects of redds last? Field observations indicate that in some basins redds are ephemeral, with redd topography rapidly erased by subsequent floods, while in other basins, redds can persist for years. We hypothesize that redd persistence is a function of basin hydrology, sediment supply, and characteristics of the spawning fish. Hydrology controls the frequency and magnitude of bed mobilizing flows following spawning, while bed load supply (volume and caliber) controls the degree of textural fining and consequent bed mobility after spawning, as well as the potential for burial of redd features. The effectiveness of flows in terms of their magnitude and duration depend on hydroclimate (i.e., snowmelt, rainfall, or transitional hydrographs), while bed load supply depends on basin geology, land use, and natural disturbance regimes (e.g., wildfire). Location within the stream network may also influence redd persistence. In particular, lakes effectively trap sediment and regulate downstream flow, which may promote long-lived redds in stream reaches below lakes. These geomorphic controls are modulated by biological factors: fish species (size of fish controls size of redds and magnitude of streambed coarsening); life history (timing of spawning and incubation relative to high flows); and population size (density of redds and extent of streambed alteration within a given reach). Species and life history also control the location of spawning within the basin, dictating the flow and sediment supply regimes. A theoretical framework is developed for predicting redd persistence as a function of the above physical and biological factors. We expect that long-lived redds will indicate either that the river is not competent to re-work the effects of spawning or that spawning occurs after peak flow events that are capable of modifying redd features. The longevity of redds and their associated effects on fluvial processes also provides a measure of the degree of potential ecological conditioning for future generations of fish. Future work will test the framework in field and laboratory settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMEP51C0559D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMEP51C0559D"><span>Stability of River Bifurcations from Bedload to Suspended Load Dominated Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Haas, T.; Kleinhans, M. G.</p> <p>2010-12-01</p> <p>Bifurcations (also called diffluences) are as common as confluences in braided and anabranched rivers, and more common than confluences on alluvial fans and deltas where the network is essentially distributary. River bifurcations control the partitioning of both water and sediment through these systems with consequences for immediate river and coastal management and long-term evolution. Their stability is poorly understood and seems to differ between braided rivers, meandering river plains and deltas. In particular, it is the question to what extent the division of flow is asymmetrical in stable condition, where highly asymmetrical refers to channel closure and avulsion. Recent work showed that bifurcations in gravel bed braided rivers become more symmetrical with increasing sediment mobility, whereas bifurcations in a lowland sand delta become more asymmetrical with increasing sediment mobility. This difference is not understood and our objective is to resolve this issue. We use a one-dimensional network model with Y-shaped bifurcations to explore the parameter space from low to high sediment mobility. The model solves gradually varied flow, bedload transport and morphological change in a straightforward manner. Sediment is divided at the bifurcation including the transverse slope effect and the spiral flow effect caused by bends at the bifurcation. Width is evolved whilst conserving mass of eroded or built banks with the bed balance. The bifurcations are perturbed from perfect symmetry either by a subtle gradient advantage for one branch or a gentle bend at the bifurcation. Sediment transport was calculated with and without a critical threshold for sediment motion. Sediment mobility, determined in the upstream channel, was varied in three different ways to isolate the causal factor: by increasing discharge, increasing channel gradient and decreasing particle size. In reality the sediment mobility is mostly determined by particle size: gravel bed rivers are near the threshold for sediment motion whereas sand bed rivers have highly mobile sediment at channel-forming conditions. For sediment transport without a critical threshold for motion, bifurcations become more asymmetrical with increasing sediment mobility. In contrast, sediment transport prediction including the threshold for motion leads to highly asymmetrical bifurcations for low sediment mobility, more symmetrical bifurcations for higher mobility and again decreasing symmetry for higher mobility where results of transport with and without the threshold converge. Thus, the general trend is more asymmetrical bifurcations for higher sediment mobility, but the presence of the threshold for motion leads to an optimum in symmetry. Results were similar for the different options used to vary mobility, excluding first-order effects of backwater adaptation length and hydraulic roughness. We conclude that the seemingly conflicting results between gravel-bed and sand-bed rivers in literature are well explained by the difference in sediment mobility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H11B1256H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H11B1256H"><span>River bed Elevation Changes and Increasing Flood Hazards in the Nisqually River at Mount Rainier National Park, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halmon, S.; Kennard, P.; Beason, S.; Beaulieu, E.; Mitchell, L.</p> <p>2006-12-01</p> <p>Mount Rainier, located in Southwestern Washington, is the most heavily glaciated volcano of the Cascade Mountain Range. Due to the large quantities of glaciers, Mount Rainier also has a large number of braided rivers, which are formed by a heavy sediment load being released from the glaciers. As sediment builds in the river, its bed increases, or aggrades,its floodplain changes. Some contributions to a river's increased sediment load are debris flows, erosion, and runoff, which tend to carry trees, boulders, and sediment downstream. Over a period of time, the increased sediment load will result in the river's rise in elevation. The purpose of this study is to monitor aggradation rates, which is an increase in height of the river bed, in one of Mount Rainier's major rivers, the Nisqually. The studied location is near employee offices and visitor attractions in Longmire. The results of this study will also provide support to decision makers regarding geological hazard reduction in the area. The Nisqually glacier is located on the southern side of the volcano, which receives a lot of sunlight, thus releasing large amounts of snowmelt and sediment in the summer. Historical data indicate that several current features which may contribute to future flooding, such as the unnatural uphill slope to the river, which is due to a major depositional event in the late 1700s where 15 ft of material was deposited in this area. Other current features are the glaciers surrounding the Nisqually glacier, such as the Van Trump and Kaultz glaciers that produced large outbursts, affecting the Nisqually River and the Longmire area in 2001, 2003, and 2005. In an effort to further explore these areas, the research team used a surveying device, total station, in the Nisqually River to measure elevation change and angles of various positions within ten cross sections along the Longmire area. This data was then put into GIS for analyzation of its current sediment level and for comparison to previous cross sections, which were in 1993 and 2005. Results of the data analysis revealed changes in altitude of the sediment, as well as new areas of built up sediment. For example, a 7 foot increase in elevation, which was not revealed in the 2005 data, indicated there was an increased amount of debris that traveled from upstream. Further data will be obtained once all the cross sections are completed and data is closer analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H33O..08J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H33O..08J"><span>Granular controls on the dispersion of bed load tracers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jerolmack, D. J.; Martin, R. L.; Phillips, C. B.</p> <p>2014-12-01</p> <p>Coarse particles are transported in a river as bed load, i.e., they move in frequent contact with and are supported by the granular bed. This movement is typically intermittent and may be described by a series of steps are rests, the distributions of which determine particle dispersion. Laboratory and field studies of bed load tracer dispersion have reported sub- and super-diffusive behavior, both of which have been successfully reproduced with stochastic transport models. Although researchers have invoked heavy-tailed step lengths as the cause of anomalous dispersion, most observations report thin-tailed distributions. Little attention has been paid to rest periods, and stochastic transport models have not been connected to the underlying mechanics of particle motion. Based on theoretical and experimental evidence, we argue that step lengths are thin-tailed and do not control the longterm dispersion of bed load tracers; they are determined by momentum balance between the fluid and solid. Using laboratory experiments with both marbles and natural sediments, we demonstrate that the rest time distribution is power law, and argue that this distribution controls asymptotic dispersion. Observed rest times far exceed any hydrodynamic timescale. Experiments reveal that rest times of deposited particles are governed by fluctuations in river bed elevation; in particular, the return time for the bed to scour to the base of a deposited particle. Stochastic fluctuations in bed elevation are describable by an Ornstein-Uhlenbeck (mean-reverting random walk) model that contains two parameters, which we show are directly related to the granular shear rate and range of bed elevation fluctuations, respectively. Combining these results with the theory of asymmetric random walks (particles only move downstream), we predict superdiffusive behavior that is in quantitative agreement with our observations of tracer dispersion in a natural river.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP31B0938W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP31B0938W"><span>Human Influences on Geomorphic Dynamics in Western Montana Gravel-Bed Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilcox, A. C.</p> <p>2016-12-01</p> <p>Management of river ecosystems, river restoration, climate-change vulnerability assessments, and other applications require understanding of how current channel conditions and processes compare to historical ranges of variability. This is particularly true with respect to evaluation of sediment balances, including of whether and how current sediment supply compares to background conditions. In western Montana, management and restoration efforts are in some cases driven by the perception that anthropogenic activities have elevated sediment yields above background levels; human-induced erosional increases have been documented in certain environments, but empirical supporting evidence is lacking for western Montana rivers. Here, human-induced changes in channel form and in sediment balances, including flow, sediment supply, and erosion rates, are evaluated for rivers in western Montana, with a particular focus on the Clark Fork and Bitterroot Rivers. These rivers are characteristic of systems in the northern Rocky Mountains with gravel beds, historically wandering channel patterns, modest bed-material loads, and land uses including logging, mining, and agriculture. The Clark Fork is influenced by legacy mining-related sediments and associated contaminants, remediation efforts, and the 2008 removal of Milltown Dam. These influences have caused temporary shifts in sediment balances, but overall, sediment fluxes are modest (e.g., suspended sediment fluxes of 6 tonnes km-2 yr-1 at the USGS Turah gage). The Bitterroot River is influenced by a mix of glaciated and unglaciated landscapes with fire-dominated erosional regimes and larger sand supply than the Clark Fork, reflecting lithologic differences; erosion rates, and the imprint of anthropogenic activities on sediment dynamics, are being investigated. This work has implications for river restoration, including whether measures are needed to impose channel stability, and for evaluating how climate-change-induced changes in fire, runoff, and erosion will alter fluvial sediment balances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP52A..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP52A..02C"><span>Flow regulation in the Swiss Alps: a river network modelling approach to investigate the impacts on bed load and grain size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa, A.; Molnar, P.; Schmitt, R. J. P.</p> <p>2017-12-01</p> <p>The grain size distribution (GSD) of river bed sediment results from the long term balance between transport capacity and sediment supply. Changes in climate and human activities may alter the spatial distribution of transport capacity and sediment supply along channels and hence impact local bedload transport and GSD. The effects of changed flow are not easily inferable due the non-linear, threshold-based nature of the relation between discharge and sediment mobilization, and the network-scale control on local sediment supply. We present a network-scale model for fractional sediment transport to quantify the impact of hydropower (HP) operations on river network GSD. We represent the river network as a series of connected links for which we extract the geometric characteristics from satellite images and a digital elevation model. We assign surface roughness based on the channel bed GSD. Bed shear stress is estimated at link-scale under the assumptions of rectangular prismatic cross sections and normal flow. The mass balance between sediment supply and transport capacity, computed with the Wilcock and Crowe model, determines transport rates of multiple grain size classes and the resulting GSD. We apply the model to the upper Rhone basin, a large Alpine basin in Switzerland. Since 1960s, changed flow conditions due to HP operations and sediment storage behind dams have potentially altered the sediment transport of the basin. However, little is known on the magnitude and spatial distribution of these changes. We force the model with time series of daily discharge derived with a spatially distributed hydrological model for pre and post HP scenarios. We initialize GSD under the assumption that coarse grains (d90) are mobilized only during mean annual maximum flows, and on the basis of ratios between d90 and characteristic diameters estimated from field measurements. Results show that effects of flow regulation vary significantly in space and in time and are grain size dependent. HP operations led to an overall reduction of sediment transport at network scale, especially in summer and for coarser grains, leading to a general coarsening of the river bed sediments at the upstream reaches. The model allows investigating the impact of modified HP operations and climate change projections on sediment dynamics at the network scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.293..211P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.293..211P"><span>The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.</p> <p>2017-09-01</p> <p>Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in < 1% of the time). Downstream from the dam, sediments were transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was < 1000 t. Upstream, sediment load was equally distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing to the reduction of water and sediment loads.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5001/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5001/"><span>Sediment Loading from Crab Creek and Other Sources to Moses Lake, Washington, 2007 and 2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Magirl, Christopher S.; Cox, Stephen E.; Mastin, Mark C.; Huffman, Raegan L.</p> <p>2010-01-01</p> <p>The average sediment-accumulation rate on the bed of Moses Lake since 1980, based on the identification of Mount St. Helens ash in lakebed cores, was 0.24 inches per year. Summed over the lake surface area, the average sediment-accumulation rate on the lakebed is 190,000 tons per year. Based on USGS stream-gaging station data, the average annual sediment load to Moses Lake from Crab Creek was 32,000 tons per year between 1943 and 2008; the post Mount St. Helens eruption annual load from Crab Creek was calculated to be 13,000 tons per year. The total mass input from Crab Creek and other fluvially derived sediment sources since 1980 has been about 20,000 tons per year. Eolian sediment loading to Moses Lake was about 50,000 tons per year before irrigation and land-use development largely stabilized the Moses Lake dune field. Currently, eolian input to the lake is less than 2,000 tons per year. Considering all sediment sources to the lake, most (from 80 to 90 percent) of post-1980 lakebed-sediment accumulation is from autochthonous, or locally formed, mineral matter, including diatom frustuals and carbonate shells, derived from biogenic production in phytoplankton and zooplankton. Suspended-sediment samples collected from Crab Creek and similar nearby waterways in 2007 and 2008 combined with other USGS data from the region indicated that a proposed Bureau of Reclamation supplemental feed of as much as 650 cubic feet per second through Crab Creek might initially contain a sediment load of as much as 1,500 tons per day. With time, however, this sediment load would decrease to about 10 tons per day in the sediment-supply-limited creek as available sediment in the channel is depleted. Sediment loads in the supplemental feed ultimately would be similar to loads in other bypass canals near Moses Lake. Considering the hydrology and geomorphology of the creek over multiple years, there is little evidence that the proposed supplemental feed would substantially increase the overall sediment load from Crab Creek to Moses Lake relative to natural, background conditions. Because Moses Lake is relatively shallow and subject to significant wind-driven circulation currents, mixing also would redistribute some of the fluvial sediment load deposited from Crab Creek throughout Parker Horn and the rest of Moses Lake, further mitigating the local effect of Crab Creek sedimentation near the City of Moses Lake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP42A..08J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP42A..08J"><span>Insights on landscape dynamics from tiny spheres in oil, or: How I learned to stop worrying and love the lab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jerolmack, D. J.; Durian, D. J.; Ferdowsi, B.; Houssais, M.; Ortiz, C. P.</p> <p>2016-12-01</p> <p>As in most of Earth science, there is a tension in the design of sediment transport experiments between simplicity and the ability to isolate variables, and realism so that results maybe extrapolated to the field. This leads to tradeoffs in data acquisition, as "simple" experiments may be designed around the goal of maximizing observation of fundamental dynamics, while the dynamics of "realistic" experiments are typically more opaque. Here we present results from a series of "simple" sediment transport experiments involving a laminar shear flow over spherical plastic grains, where refractive-index matched scanning techniques are used to perform tomographic imaging of the sediment bed. This setup allows us to measure particle velocities over seven orders of magnitude - encompassing much of the range of natural flows from creeping soil to suspended load - and these measurements reveal new phenomena relevant for geomorphology and granular physics. We show that the onset of sediment transport is actually a continuous transition from creeping to bed load, and that sub-threshold creep in this laboratory "river" is similar to creep observed on hillslopes and in glassy materials. We also show that the transition from bed load to suspension can be modeled as a continuous transition from a dense to dilute granular flow, uniting sediment transport with granular rheology. We then perform experiments with bi-modal grains, which undergo granular segregation that delivers coarse grains from the subsurface to the surface. This results in armoring that is entirely consistent with observations of more realistic systems, but by a completely different mechanism from surface-transport based theories. Although these phenomena may likely be quantitatively or even qualitatively different in natural settings, they cannot be dismissed out of hand because experiments are "too simple". Indeed, most of our findings can be mapped to observations from more complicated experiments and also field studies. By embracing the control and resolution afforded by "simple" experiments, we allow the possibility to both determine the mechanistic underpinnings of transport, and to reveal fundamentally new dynamics that may change our perspective on how landscapes work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47433','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47433"><span>Comparisons of sediment losses from a newly constructed cross-country natural gas pipeline and an existing in-road pipeline</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Pamela J. Edwards; Bridget M. Harrison; Daniel J. Holz; Karl W.J. Williard; Jon E. Schoonover</p> <p>2014-01-01</p> <p>Sediment loads were measured for about one year from natural gas pipelines in two studies in north central West Virginia. One study involved a 1-year-old pipeline buried within the bed of a 25-year-old skid road, and the other involved a newly constructed cross-country pipeline. Both pipelines were the same diameter and were installed using similar trenching and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeCoA..72.1767G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeCoA..72.1767G"><span>Loading and fate of particulate organic carbon from the Himalaya to the Ganga Brahmaputra delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galy, Valier; France-Lanord, Christian; Lartiges, Bruno</p> <p>2008-04-01</p> <p>We use the evolution of river sediment characteristics and sedimentary C org from the Himalayan range to the delta to study the transport of C org in the Ganga-Brahmaputra system and especially its fate during floodplain transit. A detailed characterisation of both mineral and organic particles for a sampling set of river sediments allows taking into account the sediment heterogeneity characteristic of such large rivers. We study the relationships between sediment characteristics (mineralogy, grain size, specific area) and C org content in order to evaluate the controls on C org loading. Contributions of C3 and C4 plants are estimated from C org stable isotopic composition (δ 13C org). We use the evolution of δ 13C org values from the Himalayan range to the delta in order to study the fate of C org during floodplain transit. Ganga and Brahmaputra sediments define two distinct linear relations with specific area. In spite of 4-5 times higher specific area, Ganga sediments have similar C org content, grain size and mineralogy as Brahmaputra sediments, indicating that specific area does not exert a primary control on C org loading. The general correlation between the total C org content and Al/Si ratio indicates that C org loading is mainly related to: (1) segregation of organic particles under hydrodynamic forces in the river, and (2) the ability of mineral particles to form organo-mineral aggregates. Bed and suspended sediments have distinct δ 13C org values. In bed sediments, δ 13C org values are compatible with a dominant proportion of fossil C org derived from Himalayan rocks erosion. Suspended sediments from Himalayan tributaries at the outflow of the range have low δ 13C org values (-24.8‰ average) indicating a dominant proportion of C3 plant inputs. In the Brahmaputra basin, δ 13C org values of suspended sediments are constant along the river course in the plain. On the contrary, suspended sediments of the Ganga in Bangladesh have higher δ 13C org values (-22.4‰ to -20.0‰), consistent with a significant contribution of C4 plant derived from the floodplain. Our data indicate that, during the plain transit, more than 50% of the recent biogenic C org coming from the Himalaya is oxidised and replaced by floodplain C org. This renewal process likely occurs during successive deposition-erosion cycles and river course avulsions in the plain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1037455','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1037455"><span>Sediment and Hydraulic Measurements with Computed Bed Load on the Missouri River, Sioux City to Hermann, 2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-05-01</p> <p>all sites were surveyed three times, separated by at least 4 weeks (or 20% flow difference) between surveys . Multi-beam, acoustic Doppler current...10 3.4 Multi-beam surveys ...37 4.4 Multi-beam surveys</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25429460','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25429460"><span>Comparison of genetic algorithm and imperialist competitive algorithms in predicting bed load transport in clean pipe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ebtehaj, Isa; Bonakdari, Hossein</p> <p>2014-01-01</p> <p>The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030829','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030829"><span>Structure and composition of a watershed-scale sediment information network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Osterkamp, W.R.; Gray, J.R.; Laronne, J.B.; Martin, J.R.</p> <p>2007-01-01</p> <p>A 'Watershed-Scale Sediment Information Network' (WaSSIN), designed to complement UNESCO's International Sedimentation Initiative, was endorsed as an initial project by the World Association for Sedimentation and Erosion Research. WaSSIN is to address global fluvial-sediment information needs through a network approach based on consistent protocols for the collection, analysis, and storage of fluvial-sediment and ancillary information at smaller spatial scales than those of the International Sedimentation Initiative. As a second step of implementation, it is proposed herein that the WaSSIN have a general structure of two components, (1) monitoring and data acquisition and (2) research. Monitoring is to be conducted in small watersheds, each of which has an established database for discharge of water and suspended sediment and possibly for bed load, bed material, and bed topography. Ideally, documented protocols have been used for collecting, analyzing, storing, and sharing the derivative data. The research component is to continue the collection and interpretation of data, to compare those data among candidate watersheds, and to determine gradients of fluxes and processes among the selected watersheds. To define gradients and evaluate processes, the initial watersheds will have several common attributes. Watersheds of the first group will be: (1) six to ten in number, (2) less than 1000 km2 in area, (3) generally in mid-latitudes of continents, and (4) of semiarid climate. Potential candidate watersheds presently include the Weany Creek Basin, northeastern Australia, the Zhi Fanggou catchment, northern China, the Eshtemoa Watershed, southern Israel, the Metsemotlhaba River Basin, Botswana, the Aiuaba Experimental Basin, Brazil, and the Walnut Gulch Experimental Watershed, southwestern United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Geomo.248..382P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Geomo.248..382P"><span>Bedload transport over run-of-river dams, Delaware, U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearson, Adam J.; Pizzuto, Jim</p> <p>2015-11-01</p> <p>We document the detailed morphology and bed sediment size distribution of a stream channel upstream and downstream of a 200-year-old run-of-river dam on the Red Clay Creek, a fifth order stream in the Piedmont of northern Delaware, and combine these data with HEC-RAS modeling and bedload transport computations. We hypothesize that coarse bed material can be carried through run-of-river impoundments before they completely fill with sediment, and we explore mechanisms to facilitate this transport. Only 25% of the accommodation space in our study site is filled with sediment, and maximum water depths are approximately equal to the dam height. All grain-size fractions present upstream of the impoundment are also present throughout the impoundment. A characteristic coarse-grained sloping ramp leads from the floor of the impoundment to the crest of the dam. A 2.3-m-deep plunge pool has been excavated below the dam, followed immediately downstream by a mid-channel bar composed of coarse bed material similar in size distribution to the bed material of the impoundment. The mid-channel bar stores 1472 m3 of sediment, exceeding the volume excavated from the plunge pool by a factor of 2.8. These field observations are typical of five other sites nearby and suggest that all bed material grain-size fractions supplied from upstream can be transported through the impoundment, up the sloping ramp, and over the top of the dam. Sediment transport computations suggest that all grain sizes are in transport upstream and within the impoundment at all discharges with return periods from 1 to 50 years. Our computations suggest that transport of coarse bed material through the impoundment is facilitated by its smooth, sandy bed. Model results suggest that the impoundment is currently aggrading at 0.26 m/year, but bed elevations may be recovering after recent scour from a series of large floods during water year 2011-2012. We propose that impoundments upstream of these run-of-river dams behave as long pools that adjust their bed elevation and texture to transport the load supplied by the watershed, rather than as impounded reservoirs with little bed material transport capacity. Scour may only occur during episodic high flows, followed by aggradation during periods of low flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..556...87G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..556...87G"><span>Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel</p> <p>2018-01-01</p> <p>Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5218/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5218/"><span>Water- and Bed-Sediment Quality of Seguchie Creek and Selected Wetlands Tributary to Mille Lacs Lake in Crow Wing County, Minnesota, October 2003 to October 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fallon, James D.; Yaeger, Christine S.</p> <p>2009-01-01</p> <p>Mille Lacs Lake and its tributaries, located in east-central Minnesota, are important resources to the public. In addition, many wetlands and lakes that feed Mille Lacs Lake are of high resource quality and vulnerable to degradation. Construction of a new four-lane expansion of U.S. Highway 169 has been planned along the western part of the drainage area of Mille Lacs Lake in Crow Wing County. Concerns exist that the proposed highway could affect the resource quality of surface waters tributary to Mille Lacs Lake. Baseline water- and bed-sediment quality characteristics of surface waters tributary to Mille Lacs Lake were needed prior to the proposed highway construction. The U.S. Geological Survey, in cooperation with the Minnesota Department of Transportation, characterized the water- and bed-sediment quality at selected locations that the proposed route intersects from October 2003 to October 2006. Locations included Seguchie Creek upstream and downstream from the proposed route and three wetlands draining to Mille Lacs Lake. The mean streamflow of Seguchie Creek increased between the two sites: flow at the downstream streamflow-gaging station of 0.22 cubic meter per second was 5.6 percent greater than the mean streamflow at the upstream streamflow-gaging station of 0.21 cubic meter per second. Because of the large amount of storage immediately upstream from both gaging stations, increases in flow were gradual even during intense precipitation. The ranges of most constituent concentrations in water were nearly identical between the two sampling sites on Seguchie Creek. No concentrations exceeded applicable water-quality standards set by the State of Minnesota. Dissolved-oxygen concentrations at the downstream gaging station were less than the daily minimum standard of 4.0 milligrams per liter for 6 of 26 measurements. Constituent loads in Seguchie Creek were greater at the downstream site than the upstream site for all measured, including dissolved chloride (1.7 percent), ammonia plus organic nitrogen (13 percent), total phosphorus (62 percent), and suspended sediment (11 percent) during the study. All constituents had seasonal peaks in spring and fall. The large loads during the fall resulted from unusually large precipitation and streamflow patterns. This caused the two greatest streamflow peaks at both sites to occur during October (2004 and 2005). In Seguchie Creek, bed-sediment concentrations of five metals and trace elements (arsenic, cadmium, chromium, lead, and zinc) exceeded the Interim Sediment Quality Guidelines (ISQG) set by the Canadian Council of Ministers of the Environment. Bed-sediment samples from the upstream site had more exceedances of ISQGs for metals and trace elements than did samples from the downstream site (seven and two exceedances, respectively). Bed-sediment samples from the downstream site had more exceedances of ISQGs (20 exceedances) for semivolatile organic compounds than did samples from the upstream site (8 exceedances), indicating different sources for organic compounds than for metals and trace elements. Concentrations of 11 semivolatile organic compounds exceeded ISQGs: ancenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene. In bed-sediment samples collected from three wetlands, concentrations of all six metals exceeded ISQGs: arsenic, cadmium, chromium, copper, lead, and zinc. Concentrations of three semivolatile organic compounds exceeded ISQGs: flouranthene, phenanthrene, and pyrene. Results indicate that areas appearing relatively undisturbed and of high resource value can have degraded quality from previous unknown land use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP43B1880K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP43B1880K"><span>Freshwater mussel response to bedform movement: experimental stream studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozarek, J. L.; MacGregor, K. R.; Hornbach, D.; Hove, M.</p> <p>2017-12-01</p> <p>Freshwater mussels are intrinsically linked to near-bed sediment dynamics, but it remains unclear how mussels respond to changing sediment loads across spatial and temporal scales. The interactions between mussels and sediment transport are complex and often involve feedback loops. Mussels are filter feeders removing suspended particles from the water column and the physical presence of mussels can have significant impacts on the structure of riverbed habitat. We investigated the feedbacks between mussels, flow, and migrating bedforms during flood experiments in the St. Anthony Falls Laboratory Outdoor StreamLab (OSL) at the University of Minnesota. The OSL is a field-scale sand-bed meandering stream channel with independent control over sediment feed (recirculated) and water flow (diverted from the Mississippi River). Mussel location, orientation to flow, and protrusion from sediment was surveyed immediately before, after, and one and two days after each flood event. Flow fields, bed shear stress, bedform migration, and bar topography were measured during each flooding event with and without mussels present (density = 4/m2 and 8/m2) to quantify the influence of mussels on channel morphology and bedform migration. Mobile bedforms (up to 14 cm high) were present for all flood events with quasi-equilibrium, aggrading, and degrading bed conditions. Mussels moved little horizontally during all flood events, but were shown to move quickly to deeper water after the flood receded. However, mussels moved vertically, burrowing or being buried under mobile bedforms, during each flood event. The research presented here will focus on feedbacks between three mussel species with different shell sculptures, flow conditions, and migrating bedforms during flooding events. These results reveal how freshwater mussels respond to and affect flow and sediment transport during flood events that are difficult to observe in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMEP41E..02G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMEP41E..02G"><span>Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorrick, S.; Rodriguez, J. F.</p> <p>2011-12-01</p> <p>A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of bedforms and resulting drag can return similar levels of roughness to those in the field site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP31B0849G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP31B0849G"><span>Hydro-morphodynamic modelling of a volcano-induced sediment-laden outburst flood at Sólheimajökull, Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guan, M.; Wright, N.; Sleigh, P. A.; Carrivick, J.; Staines, K.</p> <p>2013-12-01</p> <p>Outburst floods are one of the most catastrophic natural hazards for populations and infrastructure. Such high-magnitude sudden onset floods generally comprise of an advancing intense kinematic water wave that can induce considerable sediment transport. The exploration and investigation of sediment-laden outburst floods cannot be limited solely to water flow but must also include the flood-induced sediment transport. Understanding the complex flow-bed interaction process in large (field) scale outburst floods is still limited, not least due to a lack of well-constrained field data, but also because consensus on appropriate modelling schemes has yet to be decided. In recent years, attention has focussed on the numerical models capable of describing the process of erosion, transport and deposition in such flows and they are now at a point at which they provide useful quantitative data. Although the "exact" measure of bed change is still unattainable the numerical models enhance and improve insights into large outburst flood events. In this study, a volcano-induced jökulhlaup or glacial outburst flood (GLOF) at Sólheimajökull, Iceland is reproduced by novel 2D hydro-morphodynamic model that considers both bedload and suspended load based on shallow water theory. The simulation of sediment-laden outburst flood is shown to perform well, with further insights into the flow-bed interaction behaviour obtained from the modelling output. These results are beneficial to flood risk management and hazard prevention and mitigation. In summary, the modelling outputs show that (1) the quantity of bed erosion and deposition are sensitive to the sediment gain size, yet, the influences are not so significant when considering flow discharge; (2) finer resolution of topography increases the computational time significantly yet the results are not affected correspondingly; (3) the bed changes simulated by the present model achieves reasonably good agreement with those by the commercial Delft3D; (4) the flood is accelerated by about 30% due to the incorporation of sediment transport; (5) the rapid sediment-laden outburst flood causes a rapid morphological change and considerable amount of erosion and deposition, and the total erosion and deposition volumes increase simultaneously and tend to an approximate constant value; (6) and the peak erosion rate and deposition rate occurs at the peak flow. Spatial distribution of bed erosion and deposition in the river channel after the GLOF</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP51A0899M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP51A0899M"><span>Spatio-temporal variation in bed-material load using dune topography collected during a severe flood on the coastal Trinity River, east TX, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, J.; Mohrig, D. C.</p> <p>2015-12-01</p> <p>A series of six repeat surveys along 27 kilometers of the coastal Trinity River in east Texas, USA, reveal the temporal and spatial changes in bed material load during and following a historically large flood. The river event was above the National Weather Service flood stage for 55 days at the Liberty USGS station, and had a maximum discharge of about 80,000 cfs. As a community, we are beginning to understand how fluvial geomorphology is influenced by the backwater effect, but we still lack an understanding of how the bed-material transport adjusts to accommodate larger-scale changes in river bend pattern and kinematics. Survey data from this project includes sidescan sonar along the channel centerline, multibeam bathymetry, and channel bed sediment samples. In combination, this data set provides new insight into how and when bed material, primarily medium sand with some pebbles, moves through this region, and how this connects to previously observed changes in channel geometry (including downstream decreases in channel width to depth ratio, bar form volume and surface area, and lateral migration rates of river bends). Preliminary examination of sidescan sonar of two bends within the survey area, one upstream and one downstream, reveal a striking difference in bedform behavior in response to the changing hydrograph. Upstream, bedforms decrease 80% in height and 83% in length and increase in 3-dimensionality throughout the extended peak flow. During the falling limb of the flood these same bedforms increase in size as they become more laterally continuous and straight-crested. Downstream, 3-dimensional bedforms decrease 80% in height and 87% in length throughout the extended peak flow and then remain this size during the falling limb of the flood. This presentation will discuss these results with respect to backwater dynamics, sediment supply and transport, implications for coastal geomorphology as well as sediment delivery into deltaic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25935811','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25935811"><span>Field experimental observations of highly graded sediment plumes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis</p> <p>2015-06-15</p> <p>A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.H52B0409A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.H52B0409A"><span>Bedload and Total Load Sediment Transport Equations for Rough Open-Channel Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abrahams, A. D.; Gao, P.</p> <p>2001-12-01</p> <p>The total sediment load transported by an open-channel flow may be divided into bedload and suspended load. Bedload transport occurs by saltation at low shear stress and by sheetflow at high shear stress. Dimensional analysis is used to identify the dimensionless variables that control the transport rate of noncohesive sediments over a plane bed, and regression analysis is employed to isolate the significant variables and determine the values of the coefficients. In the general bedload transport equation (i.e. for saltation and sheetflow) the dimensionless bedload transport rate is a function of the dimensionless shear stress, the friction factor, and an efficiency coefficient. For sheetflow the last term approaches 1, so that the bedload transport rate becomes a function of just the dimensionless shear stress and the friction factor. The dimensional analysis indicates that the dimensionless total load transport rate is a function of the dimensionless bedload transport rate and the dimensionless settling velocity of the sediment. Predicted values of the transport rates are graphed against the computed values of these variables for 505 flume experiments reported in the literature. These graphs indicate that the equations developed in this study give good unbiased predictions of both the bedload transport rate and total load transport rate over a wide range of conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031507','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031507"><span>Suspended sediment and sediment-associated contaminants in San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schoellhamer, D.H.; Mumley, T.E.; Leatherbarrow, J.E.</p> <p>2007-01-01</p> <p>Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls. ?? 2007 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17408611','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17408611"><span>Suspended sediment and sediment-associated contaminants in San Francisco Bay.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schoellhamer, David H; Mumley, Thomas E; Leatherbarrow, Jon E</p> <p>2007-09-01</p> <p>Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43G1531C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43G1531C"><span>Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corrigan, A.; Silins, U.; Stone, M.</p> <p>2016-12-01</p> <p>Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54..223B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54..223B"><span>Combined Flow Abstraction and Climate Change Impacts on an Aggrading Alpine River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bakker, M.; Costa, A.; Silva, T. A.; Stutenbecker, L.; Girardclos, S.; Loizeau, J.-L.; Molnar, P.; Schlunegger, F.; Lane, S. N.</p> <p>2018-01-01</p> <p>Recent climatic warming and associated glacial retreat may have a large impact on sediment release and transfer in Alpine river basins. Concurrently, the sediment transport capacity of many European Alpine streams is affected by hydropower exploitation, notably where flow is abstracted but the sediment supply downstream is maintained. Here, we investigate the combined effects of climate change and flow abstraction on morphodynamics and sediment transfer in the Borgne River, Switzerland. From photogrammetrically derived historical Digital Elevation Models (DEMs), we find considerable net aggradation of the braided river bed (up to 5 m) since the onset of flow abstraction in 1963. Reaches responded through bed level steepening which was strongest in the upper most reach. Widespread aggradation however did not commence until the onset of glacier retreat in the late 1980s and the dry and warm years of the early 1990s. Upstream flow intake data shows that this aggradation coincided with an increase in sediment supply, although aggradation accounts for no more than 25% of supplied material. The remainder was transferred through the studied reaches. Estimations of bed load transport capacity indicate that flow abstraction reduces transport capacity by 1-2 orders of magnitude. While residual transport rates vary with morphological evolution, they are in the same order of magnitude as the sediment supply rates, which is why significant transport remains. However, the reduction in transport capacity makes the system more sensitive to short-term (annual) changes in climate-driven hydrological variability and climate-induced changes in intake management and sediment delivery rates.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SedG..344..382T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SedG..344..382T"><span>Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinterri, R.; Muzzi Magalhaes, P.; Tagliaferri, A.; Cunha, R. S.</p> <p>2016-10-01</p> <p>This work discusses the significance of particular types of soft-sediment deformations very common within turbidite deposits, namely convolute laminations and load structures. Detailed facies analyses of the foredeep turbidites in the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) show that these deformational structures tend to increase near morphological obstacles, concomitantly with contained-reflected beds. The lateral and vertical distribution of convolute laminae and load structures, as well as their geometry, has a well-defined depositional logic related to flow decelerations and reflections against bounding slopes. This evidence suggests an interaction between fine-grained sediment and the presence of morphologic relief, and impulsive and cyclic-wave loadings, which are produced by flow impacts or reflected bores and internal waves related to impinging bipartite turbidity currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG54B2034S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG54B2034S"><span>Suspended and Bedload Sand dynamics in the Mekong River Channel and Export to the Coastal Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephens, J. D.; Di Leonardo, D. R.; Weathers, H. D., III; Allison, M. A.</p> <p>2016-02-01</p> <p>Two field campaigns were conducted in the tidal and estuarine reach of the Song Hau distributary of the Mekong River to examine the dynamics of sand transport and export to the coastal ocean. This study examines variation in suspended sand concentration and net transport with respect to changes in discharge between the October 2014 high discharge and March 2015 low discharge studies, and over semi-diurnal and spring-neap tidal cycles between Can Tho and the Tran De and Dinh An distributary channels in the Mekong Delta. Suspended sand concentrations were measured using a P-61 isokinetic suspended sediment sampler and a Sequoia Scientific LISST-100X used in vertical profiling mode. Stationary ADCP data are used to examine bed stress at cast sites. Bed load transport rates were calculated using a repeat multibeam transect methodology and dune translation rates with flow. Preliminary results indicate that suspended sand concentration increases towards the bed and is positively correlated with increasing shear stress controlled by river discharge and tides. However, sites with non-sandy bottoms, as indicated by multibeam bathymetry, have low suspended sand concentrations, suggesting a close linkage with a bed sand source. Bed load transport rates vary cross-sectionally with shear stress and are linked to dune size. Most bed load transport is taking place in or near the thalweg. The reduction in ebb flows at low discharge and the mantling of sand fields by salinity driven mud deposition, is suspected to control the low suspended sand concentrations observed in March. Results to date suggest that net sand export (suspended plus bed load) to the ocean occurs predominantly during the high discharge monsoon season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029049','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029049"><span>Variation in the reference Shields stress for bed load transport in gravel‐bed streams and rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mueller, Erich R.; Pitlick, John; Nelson, Jonathan M.</p> <p>2005-01-01</p> <p>The present study examines variations in the reference shear stress for bed load transport (τr) using coupled measurements of flow and bed load transport in 45 gravel‐bed streams and rivers. The study streams encompass a wide range in bank‐full discharge (1–2600 m3/s), average channel gradient (0.0003–0.05), and median surface grain size (0.027–0.21 m). A bed load transport relation was formed for each site by plotting individual values of the dimensionless transport rate W* versus the reach‐average dimensionless shear stress τ*. The reference dimensionless shear stress τ*r was then estimated by selecting the value of τ* corresponding to a reference transport rate of W* = 0.002. The results indicate that the discharge corresponding to τ*r averages 67% of the bank‐full discharge, with the variation independent of reach‐scale morphologic and sediment properties. However, values of τ*r increase systematically with average channel gradient, ranging from 0.025–0.035 at sites with slopes of 0.001–0.006 to values greater than 0.10 at sites with slopes greater than 0.02. A corresponding relation for the bank‐full dimensionless shear stress τ*bf, formulated with data from 159 sites in North America and England, mirrors the relation between τ*r and channel gradient, suggesting that the bank‐full channel geometry of gravel‐ and cobble‐bedded streams is adjusted to a relatively constant excess shear stress, τ*bf − τ*r, across a wide range of slopes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC23B1059P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC23B1059P"><span>Quantifying morphological changes of cape-related shoals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paniagua-Arroyave, J. F.; Adams, P. N.; Parra, S. M.; Valle-Levinson, A.</p> <p>2017-12-01</p> <p>The rising demand for marine resources has motivated the study of inner shelf transport processes, especially in locations with highly-developed coastlines, endangered-species habitats, and valuable economic resources. These characteristics are found at Cape Canaveral shoals, on the Florida Atlantic coast, where transport dynamics and morphological evolution are not well understood. To study morphological changes at these shoals, two sets of paired upward- and downward-pointing acoustic Doppler current profilers (ADCPs) were deployed in winter 2015-2016. One set was deployed at the inner swale of Shoal E, 20 km southeast of the cape tip in 13 m depth, while the other set was located at the edge of Southeast shoal in 5 m deep. Upward-pointing velocity profiles and suspended particle concentrations were implemented in the Exner equation to quantify instantaneous rates of change in bed elevation. This computation includes changes in sediment concentration and the advection of suspended particles, but does not account for spatial gradients in bed-load fluxes and water velocities. The results of the computation were then compared to bed change rates measured directly by the downward-pointing ADCPs. At the easternmost ridge, quantified bed elevation change rates ranged from -7×10-7 to 4×10-7 m/s, and those at the inner swale ranged from -4×10-7 to 8×10-7 m/s. These values were two orders of magnitude smaller than rates measured by downward-pointing ADCPs. Moreover, the cumulative changes were two orders of magnitude larger at the ridge (-0.33 m, downward, and -0.13, m upward) than at the inner swale (cf. -6×10-3 m, downward, and 3×10-3 m, upward). These values suggest that bedform migration may be occurring at the ridge, that suspended sediments account for up to 30% of total bed changes, and that gradients in bed-load fluxes exert control on morphological change over the shoals. Despite uncertainties related to the ADCP-derived sediment concentrations, these findings provide preliminary evidence about the spatial variability in morphological changes over cape-related shoals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1242/pdf/ofr20121242.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1242/pdf/ofr20121242.pdf"><span>Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.</p> <p>2012-01-01</p> <p>A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53F..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53F..03D"><span>Unexpected consequences of bedload diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devauchelle, O.; Abramian, A.; Lajeunesse, E.</p> <p>2017-12-01</p> <p>Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://repository.uwyo.edu/uwnpsrc_reports/vol30/iss1/5/','USGSPUBS'); return false;" href="http://repository.uwyo.edu/uwnpsrc_reports/vol30/iss1/5/"><span>Measurements of bed load transport on Pacific Creek, Buffalo Fork and The Snake River in Grand Teton National Park, Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Erwin, Susannah O.; Schmidt, J.C.</p> <p>2006-01-01</p> <p>Dams disrupt the flow of both of water and sediment through a watershed. Channel morphology is a function of discharge and sediment load, and perturbations caused by dams often alter channel form, causing significant geomorphic and, potentially, ecological changes (e.g. Petts and Gurnell, 2005). At the first order, dams often produce a flow regime that is profoundly altered in the timing, magnitude, and frequency of flows (Magilligan and Nislow, 2005). Yet, the nature of channel adjustments will be specific to both the physical setting, size of the river, dam characteristics, and nature and severity of the flow regulation (Church 1995; Knighton, 1998).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/809/pdf/ds809.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/809/pdf/ds809.pdf"><span>Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.</p> <p>2013-01-01</p> <p>The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4575G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4575G"><span>Dispersal and transport of river sediment on the Catalan Shelf (NW Mediterranean Sea).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grifoll, Manel; Gracia, Vicente; Espino, Manuel; Sánchez-Arcilla, Agustín</p> <p>2014-05-01</p> <p>A three-dimensional coupled hydrodynamics-sediment transport model for the Catalan shelf (NW Mediterranean Sea) is implemented and used to represent the fluvial sediment transport and depositional patterns. The modelling system COAWST (Warner et al., 2010) allows to exchange field from the water circulation model ROMS and the wave model SWAN including combined wave-current bed stress and both sediment transport mechanisms: bed and suspended load. Two rivers surrounding Barcelona harbour are considered in the numerical experiments. Different temporal and spatial scales are modelled in order to evaluate physical mechanisms such as: fine deposits formation in the inner-shelf, harbour siltation or sediment exporting to the outer shelf. Short-time simulations in a high-resolution mesh have been used to reproduce the initial stages of the sediment dispersal. In this case, sediment accumulation occurs confined in an area attached to the coastline. A subsequent reworking is observed due to the wave-induced bottom stresses which resuspend fine material exported then towards the mid-shelf by seawards fluxes. The long-term water circulation simulations explains the observed fine deposits over the shelf. The results provide knowledge of sediment transport processes in the near-shore area of a micro-tidal domain. REFERENCES: Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, v. 35, no. 3, p. 230-244.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982CSR.....1..159H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982CSR.....1..159H"><span>Oscillatory bedload transport: Data review and simple formulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hallermeier, Robert J.</p> <p>1982-11-01</p> <p>This review displays over 700 rates of sediment transport by oscillatory flow from 20 sources. Sediments include fine sands to pebbles, both of quartz and of lightweight materials, and the transport rates in water range over seven orders of magnitude. Most data are average gross (to and fro) bedload rates collinear with laboratory flow over a horizontal sediment bed, although other situations with net transport, suspended load, or oblique field waves are considered. As peak flow velocity nears twice the threshold velocity for sediment motion, bedload appears to be fully developed and the transport rate is near that given by a simple formula including flow frequency and peak velocity, and sediment size and density. At lesser peak velocities, bedload rates are markedly smaller and distinctly different regimes of sediment mobilization and transport may be identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15306426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15306426"><span>Modelling sheet-flow sediment transport in wave-bottom boundary layers using discrete-element modelling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Calantoni, Joseph; Holland, K Todd; Drake, Thomas G</p> <p>2004-09-15</p> <p>Sediment transport in oscillatory boundary layers is a process that drives coastal geomorphological change. Most formulae for bed-load transport in nearshore regions subsume the smallest-scale physics of the phenomena by parametrizing interactions amongst particles. In contrast, we directly simulate granular physics in the wave-bottom boundary layer using a discrete-element model comprised of a three-dimensional particle phase coupled to a one-dimensional fluid phase via Newton's third law through forces of buoyancy, drag and added mass. The particulate sediment phase is modelled using discrete particles formed to approximate natural grains by overlapping two spheres. Both the size of each sphere and the degree of overlap can be varied for these composite particles to generate a range of non-spherical grains. Simulations of particles having a range of shapes showed that the critical angle--the angle at which a grain pile will fail when tilted slowly from rest--increases from approximately 26 degrees for spherical particles to nearly 39 degrees for highly non-spherical composite particles having a dumbbell shape. Simulations of oscillatory sheet flow were conducted using composite particles with an angle of repose of approximately 33 degrees and a Corey shape factor greater than about 0.8, similar to the properties of beach sand. The results from the sheet-flow simulations with composite particles agreed more closely with laboratory measurements than similar simulations conducted using spherical particles. The findings suggest that particle shape may be an important factor for determining bed-load flux, particularly for larger bed slopes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1005066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1005066"><span>Insecticide residues on stream sediments in Ontario, Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miles, J R</p> <p>1976-12-01</p> <p>Insecticide residues on suspended and bottom sediments of streams of Ontario, Canada, have been studied in a tobacco-growing and a vegetable muck area. The proportion of TDE to DDT was less than 1 in water and greater than 1 in bottom sediments. The ratio of TDE to DDT in bottom material increased linearly from the contamination point at stream source to the mouth of Big Creek in Norfolk County, Ontario. Bed load samples contained three to six times greater concentrations of insecticides than bottom material. Adsorption of insecticides on suspended sediment decreased in order DDT greater than TDE greater than dieldrin greater than diazinon, which is consistent with the water solubility of these compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013HESSD..1010277N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013HESSD..1010277N"><span>Transport and retention of phosphorus in surface water in an urban slum area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.</p> <p>2013-08-01</p> <p>The transport of excessive phosphorus (P) discharged from unsewered informal settlements (slums) due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2). Samples were analyzed for orthophosphate (PO4-P), particulate P (PP), total P (TP) and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36-144 mg L-1), HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9). High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70120735','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70120735"><span>Sediment transport measurements: Chapter 5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Diplas, P.; Kuhnle, R.; Gray, J.; Glysson, D.; Edwards, T.; García, Marcelo H.</p> <p>2008-01-01</p> <p>Sediment erosion, transport, and deposition in fluvial systems are complex processes that are treated in detail in other sections of this book. Development of methods suitable for the collection of data that contribute to understanding these processes is a still-evolving science. Sediment and ancillary data are fundamental requirements for the proper management of river systems, including the design of structures, the determination of aspects of stream behavior, ascertaining the probable effect of removing an existing structure, estimation of bulk erosion, transport, and sediment delivery to the oceans, ascertaining the long-term usefulness of reservoirs and other public works, tracking movement of solid-phase contaminants, restoration of degraded or otherwise modified streams, and assistance in the calibration and validation of numerical models. This chapter presents techniques for measuring bed-material properties and suspended and bed-load discharges. Well-established and relatively recent, yet adequately tested, sampling equipment and methodologies, with designs that are guided by sound physical and statistical principles, are described. Where appropriate, the theory behind the development of the equipment and guidelines for its use are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2005/5220/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2005/5220/"><span>Analysis of pesticides in surface water and sediment from Yolo Bypass, California, 2004-2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smalling, Kelly L.; Orlando, James L.; Kuivila, Kathryn</p> <p>2005-01-01</p> <p>Inputs to the Yolo Bypass are potential sources of pesticides that could impact critical life stages of native fish. To assess the direct inputs during inundation, pesticide concentrations were analyzed in water, in suspended and bed-sediment samples collected from six source watersheds to the Yolo Bypass, and from three sites within the Bypass in 2004 and 2005. Water samples were collected in February 2004 from the six input sites to the Bypass during the first flood event of the year representing pesticide inputs during high-flow events. Samples were also collected along a transect across the Bypass in early March 2004 and from three sites within the Bypass in the spring of 2004 under low-flow conditions. Low-flow data were used to understand potential pesticide contamination and its effects on native fish if water from these areas were used to flood the Bypass in dry years. To assess loads of pesticides to the Bypass associated with suspended sediments, large-volume water samples were collected during high flows in 2004 and 2005 from three sites, whereas bed sediments were collected from six sites in the fall of 2004 during the dry season. Thirteen current-use pesticides were detected in surface water samples collected during the study. The highest pesticide concentrations detected at the input sites to the Bypass corresponded to the first high-flow event of the year. The highest pesticide concentrations at the two sites sampled within the Bypass during the early spring were detected in mid-April following a major flood event as the water began to subside. The pesticides detected and their concentrations in the surface waters varied by site; however, hexazinone and simazine were detected at all sites and at some of the highest concentrations. Thirteen current-use pesticides and three organochlorine insecticides were detected in bed and suspended sediments collected in 2004 and 2005. The pesticides detected and their concentrations varied by site and sediment sample type. Trifluralin, p,p'-DDE, and p,p'-DDT were highest in the bed sediments, whereas oxyfluorfen and thiobencarb were highest in the suspended sediments. With the exception of the three organochlorine insecticides, suspended sediments had higher pesticide concentrations compared with bed sediments, indicating the potential for pesticide transport throughout the Bypass, especially during high-flow events. Understanding the distribution of pesticides between the water and sediment is needed to assess fate and transport within the Bypass and to evaluate the potential effects on native fish.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5164/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5164/"><span>Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002-04</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, Chauncey W.</p> <p>2007-01-01</p> <p>Construction of a selective withdrawal tower at Cougar Reservoir in the South Fork McKenzie River, Oregon, during 2002-05 resulted in a prolonged release of sediment and high-turbidity water to downstream reaches throughout the summer of 2002, with additional episodic releases during storms in the following winters. Suspended-sediment concentrations and loads at five continuously monitored turbidity and discharge gaging stations were estimated using regression methods. Deposition in salmonid spawning beds was measured using infiltration bags. Stations were located upstream and downstream of Cougar Reservoir in the South Fork McKenzie River, in the mainstem of the McKenzie River upstream of the South Fork and downstream of Blue River, and in Blue River downstream of Blue River Reservoir. During 2002, Cougar Reservoir released approximately 17,000 tons of suspended sediment into the South Fork McKenzie River, or more than twice the incoming load from the South Fork upstream of the reservoir. In 2003 and 2004, the release of sediment from Cougar Reservoir decreased to 10,900 and 4,100 tons, respectively. Although Cougar Reservoir likely was a substantial source of sediment to the lower reaches during water years 2002 and 2003, the lack of continuous turbidity monitoring at stations other than the South Fork McKenzie River prior to January 2003 prevents quantification of the actual contribution to the mainstem. During water year 2004, the only year with complete records at all sites, Cougar Reservoir released about 24 percent (4,100 tons) of the sediment load estimated on the mainstem near Vida (16,900 tons); however, the relative contribution of Cougar Reservoir is expected to have been substantially larger during 2002 and 2003 when the newly exposed river channel in the upper reaches of the reservoir was actively eroding and migrating. Deposition of fine (less than 0.063-millimeter diameter) sediment into spawning beds, measured with the use of deployed infiltration bags, was greatest downstream of Cougar and Blue River Reservoirs (1.0 and 1.2 percent of total sediments, respectively). Deposition was least in the high-energy, unregulated environments (about 0.25 percent) of the South Fork McKenzie River above Cougar Reservoir and in the mainstem above the South Fork, and intermediate near Vida, the most downstream site on the mainstem. DDT, applied throughout much of the upper McKenzie River drainage basin to control spruce budworm during the 1950s, was detected in the South Fork near Rainbow in the form of its metabolites DDD and DDE in fine sediment captured in the infiltration bags. DDE also was detected in infiltration bags deployed in the McKenzie River near Vida, downstream of the South Fork. All concentrations of DDD and DDE were less than the aquatic-life criterion for bed sediment. DDT species were not detected in water samples, including samples collected during large storms. The reservoir apparently acted as a trap for sediment and DDT throughout the course of its existence, facilitating degradation of the trapped DDT, and may have been a source for both during the construction period in 2002-05, but the lack of detections during storms indicates that DDT transport was small. Transport of detectable amounts of DDT likely was limited to periods of high suspended-sediment concentrations (greater than 75-100 milligrams per liter). Infiltration bags were deployed during August 2003-July 2004 and were a useful device for measuring fine-sediment deposition and for chemical analysis of the deposited material. Deposition of fine-grained sediment downstream of the flood-control dams may be reduced if bed-moving events can be periodically reintroduced to those reaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6056L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6056L"><span>A general mixture model and its application to coastal sandbar migration simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Lixin; Yu, Xiping</p> <p>2017-04-01</p> <p>A mixture model for general description of sediment laden flows is developed and then applied to coastal sandbar migration simulation. Firstly the mixture model is derived based on the Eulerian-Eulerian approach of the complete two-phase flow theory. The basic equations of the model include the mass and momentum conservation equations for the water-sediment mixture and the continuity equation for sediment concentration. The turbulent motion of the mixture is formulated for the fluid and the particles respectively. A modified k-ɛ model is used to describe the fluid turbulence while an algebraic model is adopted for the particles. A general formulation for the relative velocity between the two phases in sediment laden flows, which is derived by manipulating the momentum equations of the enhanced two-phase flow model, is incorporated into the mixture model. A finite difference method based on SMAC scheme is utilized for numerical solutions. The model is validated by suspended sediment motion in steady open channel flows, both in equilibrium and non-equilibrium state, and in oscillatory flows as well. The computed sediment concentrations, horizontal velocity and turbulence kinetic energy of the mixture are all shown to be in good agreement with experimental data. The mixture model is then applied to the study of sediment suspension and sandbar migration in surf zones under a vertical 2D framework. The VOF method for the description of water-air free surface and topography reaction model is coupled. The bed load transport rate and suspended load entrainment rate are all decided by the sea bed shear stress, which is obtained from the boundary layer resolved mixture model. The simulation results indicated that, under small amplitude regular waves, erosion occurred on the sandbar slope against the wave propagation direction, while deposition dominated on the slope towards wave propagation, indicating an onshore migration tendency. The computation results also shows that the suspended load will also make great contributions to the topography change in the surf zone, which is usually neglected in some previous researches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018980','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018980"><span>Sewage contamination in the upper Mississippi River as measured by the fecal sterol, coprostanol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Writer, J.H.; Leenheer, J.A.; Barber, L.B.; Amy, G.L.; Chapra, S.C.</p> <p>1995-01-01</p> <p>The molecular sewage indicator, coprostanol, was measured in bed sediments of the Mississippi River for the purpose of determining sewage contamination. Coprostanol is a non-ionic, non-polar, organic molecule that associates with sediments in surface waters, and concentrations of coprostanol in bed sediments provide an indication of long-term sewage loads. Because coprostanol concentrations are dependent on particle size and percent organic carbon, a ratio between coprostanol (sewage sources) and cholestanol + cholesterol (sewage and non-sewage sources) was used to remove the biases related to particle size and percent organic carbon. The dynamics of contaminant transport in the Upper Mississippi River are influenced by both hydrologic and geochemical parameters. A mass balance model incorporating environmental parameters such as river and tributary discharge, suspended sediment concentration, fraction of organic carbon, sedimentation rates, municipal discharges and coprostanol decay rates was developed that describes coprostanol concentrations and therefore, expected patterns of municipal sewage effects on the Upper Mississippi River. Comparison of the computed and the measured coprostanol concentrations provides insight into the complex hydrologic and geochemical processes of contaminant transport and the ability to link measured chemical concentrations with hydrologic characteristics of the Mississippi River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192860','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192860"><span>Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Iwasaki, Toshiki; Nelson, Jonathan M.; Shimizu, Yasuyuki; Parker, Gary</p> <p>2017-01-01</p> <p>Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122..847I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122..847I"><span>Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwasaki, Toshiki; Nelson, Jonathan; Shimizu, Yasuyuki; Parker, Gary</p> <p>2017-04-01</p> <p>Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019608','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019608"><span>The relationship between land use and organochlorine compounds in streambed sediment and fish in the Central Columbia Plateau, Washington and Idaho, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Munn, M.D.; Gruber, S.J.</p> <p>1997-01-01</p> <p>We analyzeds streambed sediment and fish in the Central Columbia Plateau in eastern Washington and Idaho for or ganochlorine pesticides and polychlorinated biphenyls (ΣPCB). Our objective was to assess the effects of land use on the occurrence and distribution of these compounds; land uses in the study area included forest, dryland and irrigated farming, and urban. We detected 16 organochlorine compounds in streambed sediment and fish tissue; fish usually had more compounds and a greater frequency of detection. The most frequently detected compound was ΣDDT (sum of six isomers), which was found in 52% of bed sediment samples and 94% of whole fish composite samples. The other commonly detected compounds were dimethyl tetrachloroterephthalate (DCPA), dieldrin, hexachlorobenzene, and Σchlordane (sum of cis- and trans-chlordane, cis- and trans-nonachlor oxychlordane, heptachlor, and heptachlor epoxide). Forest was the only land use with no detections of organochlorine compounds in either fish or bed sediment. Hexachlorobenzene was the only organochlorine pesticide detected at concentrations that differed significantly among land uses: concentrations were higher in the dryland farming areas than in the irrigated farming or urban areas. In agricultural areas irrigated by surface water, ΣDDT concentrations in both streambed sediment and fish tissue were related to the percentage of land irrigated by water delivered via furrows (gravity irrigation), although ΣDDT was not detectable in bed sediments until gravity irrigation exceeded 30%. Because of the relation between gravity irrigation and soil erosion, our study supports the importance of controlling soil erosion in order to reduce the overall loading of organochlorine compounds to surface waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H51I0883C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H51I0883C"><span>Mercury Transport Modeling of the Carson River System, Nevada: An Investigation of Total and Dissolved Species and Associated Uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carroll, R. W.; Warwick, J. J.</p> <p>2009-12-01</p> <p>Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMOS43B1402M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMOS43B1402M"><span>A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehta, A. J.; Krishna, G.</p> <p>2009-12-01</p> <p>Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density, and a thorough verification against experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7241H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7241H"><span>Exploring the use of weathering indexes in an alluvial fan chronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hardenbicker, Ulrike; Watanabe, Makiko; Kotowich, Roberta</p> <p>2015-04-01</p> <p>Alluvial fan sediments can act as an archive of local environmental history. Two borehole cores (FN 350 cm and AG 850cm) from Holocene alluvial fans located in the Qu'Appelle Valley in southern Saskatchewan were analyzed in order to identify how changes in land use of upland catchment plateaus modified the pattern and rate of sediment delivery to the fan. Due to the lack of material for radiometric dating a chronology of depositional events within the alluvial fans was established by using lithostratigraphy data of soils and sediments. In order to establish a more detailed relative chronology we evaluated if weathering indexes (the Parker Index, the CaO/ZrO2 molar ratio, the Product Index) originally developed for studies of in situ weathering of bedrock, are suitable to assess sediment weathering within alluvial fan sediments. To quantify the degree of weathering within the sediment samples the three indexes of weathering were calculated using the proportions of elements measure by Energy Dispersive X-ray Spectroscopy and there is an inverse relationship between weathering index and sample age. For further statistical analyses the fan sediments were classified into three groups: a sheet flow facies of well sorted silt loam and sandy loam textures, bed load facies characterized by high sand and gravel content and layers with high organic matter in combination with higher clay content indicative of in situ weathering and soil development. First results show that the Product Index may be the most suitable weathering index to indicate weathering or input of less weathered sediment within the sheet flow and bed load facies. In general, the weathering indexes do not take into account complexities of the weathering processes nor the overall environmental conditions in an alluvial fan. But chemical weathering indexes accompanied by geophysical and geo-chemical information have value, especially when the amount of sample material is limited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997Geomo..18..279N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997Geomo..18..279N"><span>Influences of channelization on discharge of suspended sediment and wetland vegetation in Kushiro Marsh, northern Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Futoshi; Sudo, Tadashi; Kameyama, Satoshi; Jitsu, Mieko</p> <p>1997-03-01</p> <p>The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from normal. Original vegetation such as sedges and Alnus japonica were disappearing from the adjacent areas of the river channel and were being replaced by willow trees ( Salix spp.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SedG..235..200M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SedG..235..200M"><span>Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moretti, M.; Ronchi, A.</p> <p>2011-04-01</p> <p>Superbly exposed soft-sediment deformation structures in Pleistocene fluvio-lacustrine deposits along the southern border of the depression area called Bajo de Añelo (Departamento de Añelo, Neuquén Basin) have been analysed. In the study area, five stratigraphic sections were measured in detail: facies distributions and stacking patterns show that these sediments result from the interaction between fluvial and lacustrine systems, represented by cross-bedded and rippled strata, and varved deposits. The lateral extent of the deformation is some hundred metres and the deformed bed involves the lower-mid part of the 30-metre-thick succession. Deformation affects about 1.5 m of coarse-grained sand, fine-grained sand and rare gravel alternations. The base and top of the deformed layer are defined by planar surfaces: undeformed beds of similar thickness, lithology and facies to the deformed layer occur above and below. Deformation is represented by a complex vertical succession of disturbed layers: each layer shows a general load-structure morphology. It can be described as a multilayered unstable density gradient system: in each bed a partial gravitational re-adjustment occurred after liquefaction. Unequal loading related to lateral variation of both bed thickness and grain packing and porosity is a probable additional driving force that can be described in the undeformed beds. Trigger mechanism recognition for the observed liquefaction features can be based on the study of the geometry of deformed beds and on facies analysis results. Two key factors drive our interpretation: (1) the occurrence of undeformed beds below and above the deformed bed; (2) deformed and undeformed beds showing the same sedimentological features. These field data allow us to exclude the action of internal erosive and/or sedimentary processes (such as overloading, wave action, etc.) as possible trigger agents for liquefaction since deformation is totally absent in beds with similar sedimentary features. Furthermore, each internal erosive and/or sedimentary process can be discussed and easily excluded by analysing its specific signature in the geological record. Having excluded every possible internal trigger (autokinetic processes), the observed liquefaction effects can reasonably be interpreted as seismically induced (allokinetic trigger). From this point of view, this deformed bed is an important record of seismic activity in this sector of the Neuquén Basin during the Pleistocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..528..796K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..528..796K"><span>Comment of "Event-based soil loss models for construction sites" by Trenouth and Gharabaghi, J. Hydrol. doi: 10.1016/jhydrol.2015.03.010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kinnell, P. I. A.</p> <p>2015-09-01</p> <p>Trenouth and Gharabaghi (2015) present two models which replace the EI30 index used as the event erosivity index in the USLE/RUSLE with ones that include runoff and values of EI30 to powers that differ for 1.0 as the event erosivity factor in modelling soil loss for construction sites. Their analysis on the application of these models focused on data from 5 locations as a whole but did not show how the models worked at each location. Practically, the ability to predict sediment yields at a specific location is more relevant than the capacity of a model to predict sediment yields globally. Also, the mathematical structure of their proposed models shows little regard to the physical processes involved in causing erosion and sediment yield. There is still the need to develop event-based empirical models for construction sites that are robust because they give proper consideration to the erosion process involved, and take account of the fact that sediment yield is usually determined from measurements of suspended load whereas soil loss at the scale for which the USLE/RUSLE model was developed includes both suspended load and bed load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V53C1586R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V53C1586R"><span>A Mechanism for Stratifying Lava Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rice, A.</p> <p>2005-12-01</p> <p>Relict lava flows (e.g., komatiites) are often reported to be zoned in the vertical, each zone separated by a sharp contact. Such stratifications in igneous flows, both intrusive and extrusive, can be treated as analogues of suspended loads of sediments in rivers and streams, and hence amenable to quantitative treatment derived for the hydraulic environment as long as dynamic similitude is assured. Situations typically encountered in the hydraulic environment are streams carrying a bed load at the bottom of the stream, the bed load separated by a sharp horizon from a sediment load carried above it. This sediment load may be topped by others of decreasing density as one moves to the surface of the flow, with perhaps the uppermost layer clear of any suspended matter. Rules exist for estimating the thickness D of these loads: one of them is given by D ~ 4.4V3/rgcvs where V is the shear velocity or average velocity of the flow, r = (ρs - ρl)/ρl where ρs is the density of the suspended solid matter, ρl the density of the fluid, g the acceleration of gravity, c the concentration of the particulate content and vs the settling velocity. The settling velocity is secured through Stoke's Law and the velocity of the flow is given by V = R2/3S1/2/n where R is the hydraulic radius, S the gradient along which the fluid flows and n is the Manning Coefficient. In the igneous case, the bed load would be composed of primocrysts, i.e., of the first crystals to come out of solution as the flow cools along its run. This would leave the upper portions of the flow more evolved except perhaps for a quenched crust riding atop the flow. As the viscosity of the flow is dependent not only on temperature but on composition and crystal content, the mean velocity of each layer will be different from the layer above and below it. This requires shear at the interface of adjoining stratifications, which brings into play another mechanism: dispersive pressure (the Bagnold effect). Dispersive pressure will drive primocrysts into boundary layers such as that attending the bottom of the flow and at those separating stratifications. For instance, if the primocrysts were spinals, then a Cr high might be expected at the interfaces separating stratifications. Since the melt throughout is evolving as it moves down stream, compositional variations along strike (as well is in the vertical) might be expected. Application of the above notions falls within the confines of field observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP13B1612M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP13B1612M"><span>Assessing the Potential for Sediment Gravity-Driven Underflows at the Currently Active Mouth of the Huanghe Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mullane, M.; Kumpf, L. L.; Kineke, G. C.</p> <p>2017-12-01</p> <p>The Huanghe (Yellow River), once known for extremely high suspended-sediment concentrations (SSCs) that could produce hyperpycnal plumes (10s of g/l), has experienced a dramatic reduction in sediment load following the construction of several reservoirs, namely the Xiaolangdi reservoir completed in 1999. Except for managed flushing events, SSC in the lower river is now on the order of 1 g/l or less. Adaptations of the Chezy equation for gravity-driven transport show that dominant parameters driving hyperpycnal underflows include concentration (and therefore density), thickness of a sediment-laden layer and bed slope. The objectives of this research were to assess the potential for gravity-driven underflows given modern conditions at the active river mouth. Multiple shore-normal transects were conducted during research cruises in mid-July of 2016 and 2017 using a Knudsen dual-frequency echosounder to collect bathymetric data and to document the potential presence of fluid mud layers. An instrumented profiling tripod equipped with a CTD, optical backscatterance sensor and in-situ pump system were used to sample water column parameters. SSCs were determined from near-bottom and surface water samples. Echosounder data were analyzed for bed slopes at the delta-front and differences in depth of return for the two frequencies (50 and 200 kHz), which could indicate fluid muds. Bathymetric data analysis yielded bed slope measurements near or above threshold values to produce gravity-driven underflows (0.46°). The maximum observed thickness of a potential fluid mud layer was 0.7 m, and the highest sampled near-bed SSCs were nearly 14 g/l for both field campaigns. These results indicate that the modern delta maintains potential for sediment gravity-driven underflows, even during ambient conditions prior to maximum summer discharge. These results will inform future work quantitatively comparing the contributions of all sediment dispersal mechanisms near the active Huanghe delta environment, including advection of the buoyant river plume and wave resuspension and transport by tidal currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026865','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026865"><span>Flow resistance and suspended load in sand-bed rivers: Simplified stratification model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wright, S.; Parker, G.</p> <p>2004-01-01</p> <p>New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFDG13004K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFDG13004K"><span>Numerical simulation of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khosronejad, Ali; Sotiropoulos, Fotis</p> <p>2012-11-01</p> <p>We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017720','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017720"><span>Organochlorine compounds in bed sediment and fish tissue in the South Platte River Basin, USA, 1992-1993</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tate, C.M.; Heiny, J.S.</p> <p>1996-01-01</p> <p>Bed-sediment and fish-tissue samples were collected in the South Platte River Basin to determine the occurrence and distribution of organochlorine compounds in the basin. During August-November 1992 and August 1993, bed sediment (23 sites) and fish tissue (subset of 19 sites) were sampled and analyzed for 32 organochlorine compounds in bed sediment and 27 compounds in fish tissue. More types of organochlorine compounds were detected in fish tissue than in bed sediment. Total DDT, p,p???-DDE, o,p???-DDE, p,p???-DDD, total PCS, Dacthal??, dieldrin, cis-chlordane, cis-nonachlor, trans-nonachlor, and p,p???-DDT were detected in fish tissue at >25% of the sites; p,p???-DDE, total DDT, cis-chlordane, and trans-chlordane were detected in bed sediment at >25% of the sites. Organochlorine concentrations in bed sediment and fish tissue were related to land-use settings. Few organochlorine compounds were detected at minimally impacted sites located in rangeland, forest, and built-up land-use settings. Chlordane-related compounds and p,p???-methoxychlor in bed sediment and fish tissue, endrin in fish tissue, and endosulfan I in bed sediment were associated with urban and mixed (urban and agricultural) sites. Dacthal?? in bed sediment and fish tissue was associated with agricultural sites. The compounds HCB, ??-HCH, PCA, and toxaphene were detected only at mixed land-use sites. Although DDT and DDT-metabolites, dieldrin, and total PCB were detected in urban, mixed, and agricultural land-use settings, highest mean concentrations were detected at mixed land-use sites. Mixed land-use sites had the greatest number of organochlorine compounds detected in fish tissue, whereas urban and mixed sites had the greatest number of organochlorine compounds detected in bed sediment. Measuring concentrations of organochlorine compounds in bed sediment and fish tissue at the same site offers a more complete picture of the persistence of organochlorine compounds in the environment and their relation to land-use settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP42B..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP42B..07L"><span>The transition from intermittent to continuous bed-load transport arises from merger of "bursty" transport events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, D. B.; Jerolmack, D. J.</p> <p>2017-12-01</p> <p>Bed-load transport is notoriously unpredictable, in part due to stochastic fluctuations in grain entrainment and deposition. A general statistical mechanical framework has been proposed by Furbish and colleagues to formally derive average bed-load flux from grain-scale motion, and its application requires an intimate understanding of the probabilistic motion of individual grains. Recent work by Ancey et al. suggests that, near threshold, particles are entrained collectively. If so, understanding the scales of correlation is a necessary step to complete the probabilistic framework describing bed-load flux. We perform a series of experiments in a steep-sloped channel that directly quantifies fluctuations in grain motion as a function of the feed rate of particles (marbles). As the feed rate is increased, the necessary averaging time is decreased (i.e. transport grows less variable in time). Collective grain motion is defined as spatially clustered movement of several grains at once. We find that entrainment of particles is generally collective, but that these entrained particles deposit independently of each other. The size distribution of collective motion events follows an exponential decay that is consistent across sediment feed rates. To first order, changing feed rate does not change the kinematics of mobile grains, just the frequency of motion. For transport within a given region of the bed, we show that the total displacement of all entrained grains is proportional to the kinetic energy deposited into the bed by impacting grains. Individual grain-bed impacts are the likely cause of both collective and individual grain entrainment. The picture that emerges is similar to generic avalanching dynamics in sandpiles: "avalanches" (collective entrainment events) of a characteristic size relax with a characteristic timescale regardless of feed rate, but the frequency of avalanches increases in proportion to the feed rate. At high enough feed rates the avalanches merge, leading to progressively smoother and continuous transport. As most bed-load transport occurs in the intermittent regime, the length scale of collective entrainment should be considered a fundamental addition to a probabilistic framework that hopes to infer flux from grain motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.geoscienceworld.org/books/book/606/chapter/3804873/Sediment-regime-constraints-on-river-restoration','USGSPUBS'); return false;" href="https://pubs.geoscienceworld.org/books/book/606/chapter/3804873/Sediment-regime-constraints-on-river-restoration"><span>Sediment regime constraints on river restoration - An example from the lower Missouri river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jacobson, R.B.; Blevins, D.W.; Bitner, C.J.</p> <p>2009-01-01</p> <p>Dammed rivers are subject to changes in their flow, water-quality, and sediment regimes. Each of these changes may contribute to diminished aquatic habitat quality and quantity. Of the three factors, an altered sediment regime is a particularly unyielding challenge on many dammed rivers. The magnitude of the challenge is illustrated on the Lower Missouri River, where the largest water storage system in North America has decreased the downriver suspended-sediment load to 0.2%–17% of pre-dam loads. In response to the altered sediment regime, the Lower Missouri River channel has incised as much as 3.5 m just downstream of Gavins Point Dam, although the bed has been stable to slightly aggrading at other locations farther downstream. Effects of channel engineering and commercial dredging are superimposed on the broad-scale adjustments to the altered sediment regime.The altered sediment regime and geomorphic adjustments constrain restoration and management opportunities. Incision and aggradation limit some objectives of flow-regime management: In incising river segments, ecologically desirable reconnection of the floodplain requires discharges that are beyond operational limits, whereas in aggrading river segments, small spring pulses may inundate or saturate low-lying farmlands. Lack of sediment in the incising river segment downstream of Gavins Point Dam also limits sustainable restoration of sand-bar habitat for bird species listed under the Endangered Species Act. Creation of new shallow-water habitat for native fishes involves taking sediment out of floodplain storage and reintroducing most or all of it to the river, raising concerns about increased sediment, nutrient, and contaminant loads. Calculations indicate that effects of individual restoration projects are small relative to background loads, but cumulative effects may depend on sequence and locations of projects. An understanding of current and historical sediment fluxes, and how they vary along the river, provides a quantitative basis for defining management constraints and identifying opportunities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156313','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156313"><span>Tidal asymmetry and variability of bed shear stress and sediment bed flux at a site in San Francisco Bay, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brennan, Matthew L.; Schoellhamer, David H.; Burau, Jon R.; Monismith, Stephen G.; Winterwerp, J.C.; Kranenburg, C.</p> <p>2002-01-01</p> <p>The relationship between sediment bed flux and bed shear stress during a pair of field experiments in a partially stratified estuary is examined in this paper. Time series of flow velocity, vertical density profiles, and suspended sediment concentration were measured continuously throughout the water column and intensely within 1 meter of the bed. These time series were analyzed to determine bed shear stress, vertical turbulent sediment flux, and mass of sediment suspended in the water column. Resuspension, as inferred from near-bed measurements of vertical turbulent sediment flux, was flood dominant, in accordance with the flood-dominant bed shear stress. Bathymetry-induced residual flow, gravitational circulation, and ebb tide salinity stratification contributed to the flood dominance. In addition to this flow-induced asymmetry, the erodibility of the sediment appears to increase during the first 2 hours of flood tide. Tidal asymmetry in bed shear stress and erodibility help explain an estuarine turbidity maximum that is present during flood tide but absent during ebb tide. Because horizontal advection was insignificant during most of the observation periods, the change in bed mass can be estimated from changes in the total suspended sediment mass. The square wave shape of the bed mass time series indicates that suspended sediment rapidly deposited in an unconsolidated or concentrated benthic suspension layer at slack tides and instantly resuspended when the shear stress became sufficiently large during a subsequent tide. The variability of bed mass associated with the spring/neap cycle (about 60 mg/cm2) is similar to that associated with the semidiurnal tidal cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5154/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5154/"><span>Use of stable isotopes of carbon and nitrogen to identify sources of organic matter to bed sediments of the Tualatin River, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bonn, Bernadine A.; Rounds, Stewart A.</p> <p>2010-01-01</p> <p>The potential sources of organic matter to bed sediment of the Tualatin River in northwestern Oregon were investigated by comparing the isotopic fractionation of carbon and nitrogen and the carbon/nitrogen ratios of potential sources and bed sediments. Samples of bed sediment, suspended sediment, and seston, as well as potential source materials, such as soil, plant litter, duckweed, and wastewater treatment facility effluent particulate were collected in 1998-2000. Based on the isotopic data, terrestrial plants and soils were determined to be the most likely sources of organic material to Tualatin River bed sediments. The delta 13C fractionation matched well, and although the delta 15N and carbon/nitrogen ratio of fresh plant litter did not match those of bed sediments, the changes expected with decomposition would result in a good match. The fact that the isotopic composition of decomposed terrestrial plant material closely resembled that of soils and bed sediments supports this conclusion. Phytoplankton probably was not a major source of organic matter to bed sediments. Compared to the values for bed sediments, the delta 13C values and carbon/nitrogen ratios of phytoplankton were too low and the delta 15N values were too high. Decomposition would only exacerbate these differences. Although phytoplankton cannot be considered a major source of organic material to bed sediment, a few bed sediment samples in the lower reach of the river showed a small influence from phytoplankton as evidenced by lower delta 13C values than in other bed sediment samples. Isotopic data and carbon/nitrogen ratios for bed sediments generally were similar throughout the basin, supporting the idea of a widespread source such as terrestrial material. The delta 15N was slightly lower in tributaries and in the upper reaches of the river. Higher rates of sediment oxygen demand have been measured in the tributaries in previous studies and coupled with the isotopic data may indicate the presence of more labile organic matter in these areas. Results from this study indicate that strategies to improve oxygen conditions in the Tualatin River are likely to be more successful if they target sources of soil, leaf litter, and other terrestrially derived organic materials to the river rather than the instream growth of algae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/56155','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/56155"><span>Measuring mountain river discharge using seismographs emplaced within the hyporheic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. E. Anthony; R. C. Aster; S. Ryan; S. Rathburn; M. G. Baker</p> <p>2018-01-01</p> <p>Flow and sediment transport dynamics in fluvial systems play critical roles in shaping river morphology, in the design and use of riverine infrastructure, and in the broader management of watersheds. However, these properties are often difficult to measure comprehensively. Previous work has suggested the use of proximal seismic signals resulting from flow and bed load...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3795740','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3795740"><span>The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling</p> <p>2013-01-01</p> <p>A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H13C1533G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H13C1533G"><span>Developing Sediment Transport and Dredging Prediction Model of Ohio River at Olmsted Locks and Dams Area using HEC-RAS (1D/2D)By Ganesh Raj Ghimire1 and Bruce A. Devantier 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghimire, G. R.</p> <p>2015-12-01</p> <p>Sediment deposition is a serious issue in the construction and operation of large reservoir and inland navigation projects in the United States and around the world. Olmsted Locks and Dams in the Ohio River navigation system is facing similar challenges of huge sediment deposition during the ongoing in-wet construction methodology since 1993. HEC-RAS 5.0 integrated with ArcGIS, will be used to yield unsteady 2D hydrodynamic model of Ohio River at Olmsted area. Velocity, suspended sediment, bed sediment and hydrographic survey data acquired from public archives of USGS and USACE Louisville District will be input into the model. Calibration and validation of model will be performed against the measured stage, flow and velocity data. It will be subjected to completely unsteady 1D sediment transport modeling new to HEC-RAS 5.0 which incorporates sediment load and bed gradation via a DSS file, commercial dredging and BSTEM model. Sediment model will be calibrated to replicate the historical bed volume changes. Excavated cross-sections at Olmsted area will also be used to predict the sediment volume trapped inside the ditch over the period between excavations and placement of dam shells at site. Model will attempt to replicate historical dredging volume data and compare with the deposition volume from simulation model to formulate the dredging prediction model. Hence, the results of this research will generate a model that can form a basis for scheduling the dredging event prior to the placement of off-shore cast shells replacing the current as and when required approach of dredging plan. 1 Graduate Student, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603 2 Professor, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG34A1932H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG34A1932H"><span>A numerical investigation of fine sediment resuspension in the wave boundary layer - effect of hindered settling and bedforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, T. J.; Cheng, Z.; Yu, X.</p> <p>2016-02-01</p> <p>The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to the continental margin. Hence, studying the fine sediment resuspension in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycle. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with the sediment availability. As the sediment availability and hence the sediment-induced stable stratification increase, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to the floc dynamics and hindered settling. This study further investigate the effect of hindered settling. Particularly, for flocs with lower gelling concentrations, the hindered settling effect can play a key role in sustaining large amount of suspended sediment load and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A condition for the occurrence of gelling ignition is proposed for a range of wave intensities as a function of sediment/floc properties and erodibility parameters. These aforementioned studies are limited to fine sediment transport over a flat bed. However, recent field and laboratory observation show that a small amount of sand fraction can lead to the formation of small bedforms, which can armor the bed while in the meantime enhance near bed turbulence. Preliminary investigation on the effect of bedforms on the resulting transport modes will also be presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913488R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913488R"><span>The role of the hyporheic flow on sediment transport processes : an experimental approach using particle image velocimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe</p> <p>2017-04-01</p> <p>The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188563','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188563"><span>Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.</p> <p>2012-01-01</p> <p>Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment. These data provide robust tests for mechanical models of entrainment and demonstrate that a debris flow over wet bed sediment will be larger than the same flow over dry bed sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP33G..03V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP33G..03V"><span>Coupling MAST-1D, a sediment routing model for channel-floodplain complexes, with channel migration relationships to predict reach-averaged river morphodynamics. Preliminary results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viparelli, E.; Eke, E. C.; Lauer, J. W.</p> <p>2017-12-01</p> <p>Sediment exchange between the channel and floodplain can occur via meander migration, overbank deposition or erosion, and changes in channel geometry. Depending on channel and floodplain history, floodplains can act either as sources or sinks of bed material and/or wash load. Here we present preliminary modeling results that explicitly account for the feedbacks between the changes in floodplain geometry and sediment size distribution and the changes in channel geometry and migration. These results are obtained by coupling the Morphodynamics And Sediment Tracers in 1D (MAST-1D) program with the results of meander migration studies linking the bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. MAST-1D is a numerical model built to describe grain size specific transport of sediment and tracers and the long-term - i.e. decadal and longer - evolution of channel floodplain complexes. MAST-1D differs from other 1D numerical models because it allows for 1) uneven exchange of sediment and tracers between the river channel and the floodplain, 2) temporal changes in channel geometry, bed elevation and floodplain thickness, which result in changes in the channel hydraulic capacity, and 3) temporal changes of size distribution and tracer content in the floodplain, in the load and in the underlying substrate. Under conditions of constant base level, water and sediment supply, the system evolves toward a steady state wherein the amount of sediment deposited through point bar deposition and overbank sedimentation is balanced by the erosion of sediment from the floodplain through lateral migration. The current formulation couples MAST-1D with empirical channel migration relationships that link bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. Future development of this preliminary work will involve a fully coupled MAST-1D model with a standard meander migration model that will allow for the building of floodplain stratigraphy and tracking of the position of the meandering channel in space and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53E1030V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53E1030V"><span>Variations in Grain-Scale Sediment Structure in a Gravel-Bed Channel as a Function of Fine Sediment Content and Morphological Location</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.</p> <p>2016-12-01</p> <p>One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037182','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037182"><span>Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Domagalski, Joseph L.; Weston, Donald P.; Zhang, Minghua; Hladik, Michelle L.</p> <p>2010-01-01</p> <p>Pyrethroid insecticide use in California, USA, is growing, and there is a need to understand the fate of these compounds in the environment. Concentrations and toxicity were assessed in streambed sediment of the San Joaquin Valley of California, one of the most productive agricultural regions of the United States. Concentrations were also measured in the suspended sediment associated with irrigation or storm‐water runoff, and mass loads during storms were calculated. Western valley streambed sediments were frequently toxic to the amphipod, Hyalella azteca, with most of the toxicity attributable to bifenthrin and cyhalothrin. Up to 100% mortality was observed in some locations with concentrations of some pyrethroids up to 20 ng/g. The western San Joaquin Valley streams are mostly small watersheds with clay soils, and sediment‐laden irrigation runoff transports pyrethroid insecticides throughout the growing season. In contrast, eastern tributaries and the San Joaquin River had low bed sediment concentrations (<1 ng/g) and little or no toxicity because of the preponderance of sandy soils and sediments. Bifenthrin, cyhalothrin, and permethrin were the most frequently detected pyrethroids in irrigation and storm water runoff. Esfenvalerate, fenpropathrin, and resmethrin were also detected. All sampled streams contributed to the insecticide load of the San Joaquin River during storms, but some compounds detected in the smaller creeks were not detected in the San Joaquin River. The two smallest streams, Ingram and Hospital Creeks, which had high sediment toxicity during the irrigation season, accounted for less than 5% of the total discharge of the San Joaquin River during storm conditions, and as a result their contribution to the pyrethroid mass load of the larger river was minimal. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7858','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7858"><span>The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle; Yantao Cui; Gary Parker; James E. Pizzuto; Annjanette M. Dodd</p> <p>2001-01-01</p> <p>Abstract - Bed material waves are temporary zones of sediment accumulation created by large sediment inputs. Recent theoretical, experimental and field studies examine factors in fluencing dispersion and translation of bed material waves in quasi-uniform, gravel-bed channels. Exchanges of sediment between a channel and its floodplain are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6968D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6968D"><span>Bedload transport rates in a gravel bedded-river derived from high-resolution monitoring using seismic impact plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Downs, Peter; Soar, Philip</p> <p>2015-04-01</p> <p>Accurate characterisation of bedload transport rates is critical for a better understanding of geomorphological process dynamics, aquatic habitats, sediment budgets and strategies for catchment-scale initiatives in sediment management under conditions of climate change. However, rate estimation is challenging in practice: direct measurements are costly and logistically difficult to achieve with acceptable accuracy over geomorphologically-relevant time periods, and the uncertainty in transport rates predicted from empirical formulae and numerical simulation is rarely below 50 per cent. Partly reflecting these issues, passive technologies for continuous bedload monitoring are becoming increasingly popular. Sensors such as seismic impact plates offer the opportunity to characterise bedload activity at exceptionally high resolution - monitoring from the River Avon, (Devon, UK) indicated that despite significant intra-event and between-plate differences in apparent bedload transport aggregated over 5-minute periods, the magnitude-frequency product of discharge and impact frequency result in a highly plausible effective discharge, supporting the potential value of impact plates as indicators of relative sediment transport loads over annual timescales. Whereas the focus in bedload rate estimation to date has been on developing satisfactory sediment rating curves from detection signals, we instead develop a method for directly estimating bedload transport rates from impact plate data as a function of intensity of transport (count, n, per second), bed material mass (kg) and cross-stream transport variability. Bulk sediment samples are converted to a mass in transit for each instantaneous discharge according to the intensity of transport and a Monte Carlo simulation of the load in transit determined at random from the bed material particle size distribution. The lower detection threshold is determined using experimental calibration and the upper size limit is determined from incipient motion estimates thereby establishing the fraction of transported material sensed by the plates. The lateral variability in transport rates across the cross-section is estimated empirically using multiple plates or by interpolation. This procedure provides a potentially affordable and robust method of achieving uncertainty-bound indicative measures of bedload transport with the potential for wide-ranging practical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7241H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7241H"><span>Evaluation of critical shear stresses for consolidated cohesive sediment depositions by using PIV compared with field measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harb, Gabriele; Haun, Stefan</p> <p>2013-04-01</p> <p>Reservoir sedimentation is a common problem today. Due to the reduced flow velocities, turbulences and bed shear stresses the transported sediment load start to settle. These depositions reduce the worldwide average storage capacity in the range of about 1% per year. However, depending on the climate conditions and the geology in the catchment area this value may vary strongly. Therefore sediment management tasks, especially the removal of already accumulated sediments, have to be developed for each reservoir separately. The critical bed shear stress is a key parameter used to evaluate the different management tasks and depend strongly on the grain size distribution of the inflowing sediments. However, depositions which contain fine particles like clay and silt increase the critical bed shear stress due to occurring cohesive forces and the use of the Shield curve for evaluating the critical shear stress is no longer valid. Additional data is required for estimating the valid critical shear stress at the reservoir bed. In this study the critical shear stress was evaluated for cohesive sediment samples, taken from two different reservoirs, in a flume in the laboratory. The sediment samples were placed in an installed double bottom in the research flume and the discharge was increased stepwise until mass erosion took place (determined by visual inspection). A 2D PIV device was used to measure the flow conditions (velocities and turbulences) over the sediment sample. The obtained values were used to calculate the bed shear stress for the specific discharge rate by the gravity method and the Reynolds stress method. The results of both methods showed good agreement in the comparison of the values, what indicates that nearly uniform flow conditions occurred in the flume. The results from this study showed that the behaviour of natural cohesive sediments depend strongly on the natural conditions as a result of physical, chemical and biological processes. In this case especially the effect of the layer structure in the sediment samples was controlling the erosion mechanism. The results of the experiments showed also that the obtained average shear stress was above most of the values found in previous conducted studies, which may be explained by consolidation effects in the reservoirs. Additional conducted vane strength measurements have been carried out in situ. The in the field obtained vane strength values were set in relation to the critical shear stresses derived by the experimental tests from the laboratory and to data from a previous conducted study to develop a new relation function. This function may be used in future studies for a rough estimation of the critical shear stress, based on in situ measured vane strength values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1008201','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1008201"><span>Development of channel organization and roughness following sediment pulses in single‐thread, gravel bed rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Madej, Mary Ann</p> <p>2001-01-01</p> <p>Large, episodic inputs of coarse sediment (sediment pulses) in forested, mountain streams may result in changes in the size and arrangement of bed forms and in channel roughness. A conceptual model of channel organization delineates trajectories of response to sediment pulses for many types of gravel bed channels. Channels exhibited self‐organizing behavior to various degrees based on channel gradient, presence of large in‐channel wood or other forcing elements, the size of the sediment pulse, and the number of bed‐mobilizing flows since disturbance. Typical channel changes following a sediment pulse were initial decreases in water depth, in variability of bed elevations, and in the regularity of bed form spacing. Trajectories of change subsequently showed increased average water depth, more variable and complex bed topography, and increased uniformity of bed form spacing. Bed form spacing in streams with abundant forcing elements developed at a shorter spatial scale (two to five channel widths) than in streams without such forcing mechanisms (five to 10 channel widths). Channel roughness increased as bed forms developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3102/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3102/"><span>Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria</p> <p>2010-01-01</p> <p>As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1981/0207/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1981/0207/report.pdf"><span>Sediment analyses for selected sites on the South Platte River in Colorado and Nebraska, and the North Platte and Platte rivers in Nebraska; suspended sediment, bedload, and bed material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kircher, J.E.</p> <p>1981-01-01</p> <p>Sediment samples were collected on the South Platte, North Platte, and Platte Rivers in Colorado and Nebraska during the 1979 and 1980 runoff seasons. Suspended-sediment concentrations ranged from 62 to 3,705 milligrams per liter and the maximum load was 45,547 metric tons per day. The percentage of suspended sediment samller than sand (less than 0.062 millimeter) was as follows: 23 to 78 percent for the South Platte River, 9 to 30 percent for the North Platte River, and 2 to 89 percent for the Platte River. Bedload-transport rates ranged from 0.0085 to 0.67 kilogram per second per meter of channel width for the entire study area. The median grain size of bedload ranged from 0.6 to 2.6 millimeters for the South Platte River, 0.5 to 0.8 millimeter for the North Platte River, and 0.6 to 1.2 millimeters for th Platte River. The median grain size of bed material for the South Platte River ranged from 0.3 to 2.4 millimeters, compared to 0.5 to 0.9 millimeter for the North Platte River, and 0.4 to 3.1 millimeters for the Platte River. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..115...17Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..115...17Z"><span>Entrainment, transport and deposition of sediment by saline gravity currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zordan, Jessica; Juez, Carmelo; Schleiss, Anton J.; Franca, Mário J.</p> <p>2018-05-01</p> <p>Few studies have addressed simultaneously the feedback between the hydrodynamics of a gravity current and the geomorphological changes of a mobile bed. Hydrodynamic quantities such as turbulent and mean velocities, bed shear stress and turbulent stresses undoubtedly govern the processes of entrainment, transport and deposition. On the other hand, the incorporation of entrained sediment in the current may change its momentum by introducing extra internal stresses, introducing thus a feedback process. These two main questions are here investigated. Laboratory experiments of saline gravity currents, produced by lock-exchange, flowing over a mobile bed channel reach, are here reported. Different initial buoyancies of the current in the lock are tested together with three different grain sizes of the non-coherent sediment that form the erodible bed. Results from velocity measurements are combined with the visualization of the sediment movement in the mobile reach and with post-test topographic and photo surveys of the geomorphology modifications of the channel bed. Mean and turbulent velocities are measured and bed shear stress and Reynolds stresses are estimated. We show that the mean vertical component of the velocity and bed shear stress are highly correlated with the first instants of sediment entrainment. Vertical turbulent velocity is similarly related to entrainment, although with lower correlation values, contributing as well to the sediment movement. Bed shear stress and Reynolds shear stress measured near the bed are correlated with sediment entrainment for longer periods, indicating that these quantities are associated to distal transport as well. Geomorphological changes in the mobile bed are strongly related to the impulse caused by the bed shear stress on the sediment. On the other hand, we show that the nature of the grain of the mobile bed reach influences the hydrodynamics of the current which means that a feedback mechanisms between both occurs during the passage of the unsteady gravity current. The signature of this geomorphological changes, which is visible in the form of longitudinal steaks of accumulated sediment downstream the mobile bed, is related to the flow initial buoyancy and to the size of the mobile bed sediment. It is argued that the bed material and near-bed turbulent coherent motion interact and mutually influence each other. The geometry of the front of the gravity currents changes with the incorporation of the sediment, indicating that with the presence of sediment extra energy losses occur in the front of the current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1997/4002/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1997/4002/report.pdf"><span>Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; organic compounds and trace elements in bed sediment and fish tissue, 1992-93</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carter, L.F.; Anderholm, S.K.</p> <p>1997-01-01</p> <p>The occurrence and distribution of contaminants in aquatic systems are major components of the National Water-Quality Assessment (NAWQA) Program. Bed-sediment samples were collected at 18 sites in the Rio Grande Valley study unit between September 1992 and March 1993 to characterize the geographic distribution of organic compounds, including chlorinated insecticides, polychlorinated biphenyls (PCB's), and other chlorinated hydrocarbons, and also trace elements. Two-millimeter-size- fraction sediment was analyzed for organic compounds and less than 63-micron-size-fraction sediment was analyzed for trace elements. Concentrations of p,p'-DDE were detected in 33 percent of the bed-sediment samples. With the exception of DDT-related compounds, no other organochlorine insecticides or polychlorinated biphenyls were detected in samples of bed sediment. Whole-body fish samples were collected at 11 of the bed- sediment sites and analyzed for organic compounds. Organic compounds were reported more frequently in samples of fish, and more types of organic compounds were found in whole-body fish samples than in bed-sediment samples. Concentrations of p,p'-DDE were detected in 91 percent of whole-body fish samples. Polychlorinated biphenyls, cis-chlordane, trans-chlordane, trans- nonachlor, and hexachlorobenzene were other organic compounds detected in whole-body samples of fish from at least one site. Because of the extent of mineralized areas in the Rio Grande Basin arsenic, cadmium, copper, lead, mercury, selenium, and zinc concentrations in bed-sediment samples could represent natural conditions at most sites. However, a combination of natural conditions and human activities appears to be associated with elevated trace-element concentrations in the bed-sediment sample from the site Rio Grande near Creede, Colorado, because this sample exceeded the background trace-element concentrations calculated for this study. Fish-liver samples were collected at 12 of the bed-sediment sites and analyzed for trace elements. Certain trace elements were detected at higher concentrations in fish-liver samples than in bed-sediment samples from the same site. Both bed-sediment and fish-tissue samples are necessary for a complete environmental assessment of the occurrence and distribution of trace elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.983a2032A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.983a2032A"><span>Distribution of basic sediments (bedload transport) on changes in coastal coastline Donggala, Central Sulawesi Province, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amiruddin</p> <p>2018-03-01</p> <p>This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of abrasion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033776','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033776"><span>Persistence of effects of high sediment loading in a salmon-bearing river, northern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Madej, Mary Ann; Ozaki, V.</p> <p>2009-01-01</p> <p>Regional high-magnitude rainstorms have produced several large floods in north coastal California during the last century, which resulted in extensive massmovement activity and channel aggradation. Channel monitoring in Redwood Creek, through the use of cross-sectional surveys, thalweg profi les, and pebble counts, has documented the persistence and routing of channel-stored sediment following these large floods in the 1960s and 1970s. Channel response varied on the basis of timing of peak aggradation. Channel-stored sediment was evacuated rapidly from the upstream third of the Redwood Creek channel, and the channel bed stabilized by 1985 as the bed coarsened. Currently only narrow remnants of flood deposits remain and are well vegetated. In the downstream reach, channel aggradation peaked in the 1990s, and the channel is still incising. Channel-bed elevations throughout the watershed showed an approximate exponential decrease with time, but decay rates were highest in areas with the thickest flood deposits. Pool frequencies and depths generally increased from 1977 to 1995, as did median residual water depths, but a 10 yr flood in 1997 resulted in a moderate reversal of this trend. Channel aggradation generated during 25 yr return interval floods has persisted in Redwood Creek for more than 30 yr and has impacted many life cycles of salmon. Watershed restoration work is currently focused on correcting erosion problems on hillslopes to reduce future sediment supply to Redwood Creek instead of attempting in-channel manipulations. ?? 2009 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PIAHS.367..157G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PIAHS.367..157G"><span>The effect of coarse gravel on cohesive sediment entrapment in an annular flume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glasbergen, K.; Stone, M.; Krishnappan, B.; Dixon, J.; Silins, U.</p> <p>2015-03-01</p> <p>While cohesive sediment generally represents a small fraction (<0.5%) of the total sediment mass stored in gravel-bed rivers, it can strongly influence physical and biogeochemical processes in the hyporheic zone and alter aquatic habitat. This research was conducted to examine mechanisms governing the interaction of cohesive sediments with gravel beds in the Elbow River, Alberta, Canada. A series of erosion and deposition experiments with and without a gravel bed were conducted in a 5-m diameter annular flume. The critical shear stress for deposition and erosion of cohesive sediment without gravel was 0.115 Pa and 0.212 Pa, respectively. In experiments with a gravel bed, cohesive sediment moved from the water column into the gravel bed via the coupling of surface and pore water flow. Once in the gravel bed, cohesive sediments were not mobilized under the maximum applied shear stresses (1.11 Pa) used in the experiment. The gravel bed had an entrapment coefficient (ratio between the entrapment flux and the settling flux) of 0.2. Accordingly, when flow conditions are sufficient to produce a shear stress that will mobilize the armour layer of the gravel bed (>16 Pa), cohesive materials trapped within the gravel bed will be entrained and transported into the Glenmore Reservoir, where sediment-associated nutrients may pose treatment challenges to the drinking water supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CRGeo.350...43I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CRGeo.350...43I"><span>A field study of the confluence between Negro and Solimões Rivers. Part 2: Bed morphology and stratigraphy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ianniruberto, Marco; Trevethan, Mark; Pinheiro, Arthur; Andrade, Joao Fernando; Dantas, Elton; Filizola, Naziano; Santos, André; Gualtieri, Carlo</p> <p>2018-01-01</p> <p>The confluence of the Negro and Solimões Rivers is an interesting study area under several points of view: it represents the second largest river confluence of the Amazon Basin; the rivers are characterized by very distinct hydrologic behaviour; and it is situated in a peculiar tectonic setting. A field investigation was undertaken to study the characteristics of this confluence, aiming to better understand the bed morphology and stratigraphy resulting from the complex interaction of geological setting, hydrodynamics, and sediment load. Two field campaigns were carried out, during low- and high-flow conditions, using high-resolution seismic, echosounding, and acoustic Doppler current profiling. A third campaign was carried out just in a limited area of the confluence, with a multi-beam echosounder. The results of these surveys provided a more detailed view of the geology, morphology and sediment distribution about the confluence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6097J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6097J"><span>Origin of particulate organic matter exported during storm events in a forested headwater catchment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeanneau, Laurent; Rowland, Richard D.; Inamdar, Shreeram P.</p> <p>2016-04-01</p> <p>Particulate organic matter (POM) plays an important biogeochemical role towards ecology, ecotoxicology and carbon cycle. Moreover POM within the fluvial suspended sediment load during infrequent high flows can comprise a larger portion of long-term flux than dissolved species. It is well documented that storm events that constituted only 10-20% of the year contributed to >80% of POC exports. But the origin and composition of POM transferred during those hot moments remained unclear. In order to improve our knowledge on this topic we explore the variability in storm event-transported sediments' POM content and source down a continuum of catchment drainage locations. Wetland, upland and forest O horizons, litter, river banks and bed sediments were analyzed for their content in organic C, isotopic (13C) and molecular (thermochemiolysis-gas chromatography-mass spectrometry) fingerprints. The isotopic and molecular fingerprints recorded in suspended and deposited (differentiated into fine, medium and coarse particles) sediments sampled during different storm events down a continuum of catchment drainage locations (12 and 79 ha). This study highlights compositional differences between the catchment size (12 versus 79 ha), the particle size of deposited sediment (fine versus medium versus coarse) and the sampling time during a storm event (rising limb versus peak flow versus falling limb). Two sampling strategies were used. Suspended sediments sampled at a specific time during flood events allow evaluating changes along the hydrograph, while deposited sediments that integrate the entire event allow making comparisons with drainage scale. For deposited sediments, the proportion of OM coming from the endmembers wetland, litter and Forest O horizon decreases from the 12ha to the 79ha catchment, which exhibited a higher proportion of OM coming from stream bed sediment and river banks. For both catchments, from fine to coarse particles, the influence of stream bed sediments and river banks decreases while the influence of Forest O horizon increases. For suspended sediments, the evolution during storm events were opposite in the 12ha and the 79ha catchments. In the 12ha catchment, during the rising limb of the hydrograph, POM seems to be inherited from stream bed sediments and river banks, while from the rising limb to the peak flow, the influence of litter and/or wetland increases. This influence decreases during the falling limb. The opposite trend was observed in the 79ha catchment, with an increasing contribution of stream bed sediments to the OM exported during a storm event. What is the information to take away? First POM transferred in headwater catchments has multiple sources. Secondly, the combination of those sources is different along the size continuum of particles. Then, down a continuum of catchment drainage locations, the combination of sources changes both along the size continuum and during storm events. This information is critical for identifying the various drivers and mechanisms behind POM transport and for understanding the impacts of POM on aquatic metabolism and downstream water quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.H51F..05J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.H51F..05J"><span>Sediment Flux and Storage in a Rural Southeastern Piedmont River System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, C. R.; Martin, J. K.</p> <p>2001-12-01</p> <p>A sediment budget was developed for a representative rural southeastern Piedmont watershed to provide information on the relative importance of sediment sources. Sediment issues in the southeastern Piedmont are complicated by the so-called legacy sediment produced by poor farming practices during the cotton-farming era, approximately 1810-1930. The Murder Creek basin near Monticello, GA was chosen because: it featured forestry and agriculture as the principal land uses; a USGS gage provided a flow record; and the creek deposited in a reservoir built in 1948. Suspended load export was calculated using a sediment rating curve and the USGS flow time series. Bed load export was determined by estimating the volume of sediment deposited in the reservoir since construction. Unpaved road erosion was estimated using the WEPP model, and other surface erosion was estimated using USLE and delivery ratios. Historical floodplain storage was determined by coring floodplain deposits, measuring the depth to the pre-historic/historic sediment interface, and multiplying by the area of the floodplain. Recent accretion rates were estimated using dendrogeomorphology. Results showed that the practices of the cotton farming era deposited an average of 1.6 meters of sediment on the floodplains. This depth was relatively uniform across the watershed. The cotton-farming sediment in storage exceeds the current annual export by a factor of about 5000. Approximately half of the current export comes from current inputs, and half comes from remobilized floodplain sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H53C1081G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H53C1081G"><span>Sediment Transport Processes During Flood Events in the Middle LoireGauging and First Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gautier, J.; Rodrigues, S.; Juge, P.; Peters, J.</p> <p>2008-12-01</p> <p>A hydraulic and sediment transport survey campaign was organised in March 2007 on the Loire River, at the Bréhémont site. The aim was to collect data useful for the understanding of fluviomorphological mechanisms. A survey procedure, established at the end of the 1960's and relying on a follow-up bathymetric surveys and ancient sediments samplers was combined with modern technologies such as DGPS satellite positioning and ADCP flow gauging. The survey campaign allowed quantifying the sediment transport rates of the size fractions larger than 50 microns. The results confirm the earlier made hypothesis concerning the existence of a sediment load moving close to the bottom and distinct from the suspended load as described in the theories. This load was called "morphological" and is composed of solids having sizes between those of the river bed and those moving in suspension at higher elevations. This statement, made on the basis of surveys on other large streams in Africa, Asia and the America's questions the concepts on which have been based the majority of the sediment transport theories. The analysis shows also that the rate of bedload transport can be very high up to 60% in some verticals and nearly 50% on all a profil, that is much more than the rate usually admits. The present surveys show that campaigns as these are necessary in order to comprehend the processes, a condition prior to investigating solutions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12361379','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12361379"><span>Identification of in-sewer sources of organic solids contributing to combined sewer overflows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahyerre, M; Chebbo, G</p> <p>2002-09-01</p> <p>Previous research has shown that combined sewer systems are the main source of particle and organic pollution during rainfall events contributing to combined sewer overflow. The aim of this article is to identify in an urban catchment area called "Le Marais", in the center of Paris, the types of sediments that are eroded and contribute to the pollution of combined sewer overflow. Three sediment types are considered: granular material found in the inverts of pipes, organic biofilms and organic sediment at the water bed interface, identified as an immobile layer in the "Le Marais" catchment area. The method used consist, firstly, of sampling and assessing the organic pollutant loads and metallic loads of the particles in each type of sediment. Then, the mass of each type of sediment is assessed. The mass and the characteristics of each type of sediment is finally compared to the mass and characteristics of the particles eroded in the catchment area, estimated by mass balances, in order to find the source of eroded particles. The only identified type of deposit that can contribute to combined sewer overflows is the organic layer. Indeed, the solids of this layer have mean and metallic loads that are of the same order of magnitude as the eroded particles. Moreover, the mass of the organic layer considered over different time scales is of the same order of magnitude as the eroded masses during rainfall events and an erosion experiment showed that the organic layer is actually eroded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156677','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156677"><span>Eruption-related lahars and sedimentation response downstream of Mount Hood: Field guide to volcaniclastic deposits along the Sandy River, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian</p> <p>2009-01-01</p> <p>Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5224/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5224/"><span>Summary of Optical-Backscatter and Suspended-Sediment Data, Tomales Bay Watershed, California, Water Years 2004, 2005, and 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Curtis, Jennifer A.</p> <p>2007-01-01</p> <p>The U.S. Geological Survey, in cooperation with Point Reyes National Seashore, is studying suspended-sediment transport dynamics in the two primary tributaries to Tomales Bay, Lagunitas Creek and Walker Creek. Suspended-sediment samples and continuous optical backscatter (turbidity) data were collected at three locations during water years 2004?06 (October 1, 2003?September 30, 2006): at two sites in the Lagunitas Creek watershed and at one site in the Walker Creek watershed. Sediment samples were analyzed for suspended-sediment concentration, grain size, and turbidity. Data were used to estimate mean daily and annual seasonal suspended-sediment discharge, which were published in U.S. Geological Survey Annual Water-Data Reports. Data were utilized further in this report to develop field-based optical-backscatter calibration equations, which then were used to derive a continuous time series (15-minute interval) of suspended-sediment concentrations. Sensor fouling and aggradation of the channel bed occurred periodically throughout the project period, resulting in data loss. Although periods of data loss occurred, collection of optical sensor data improved our understanding of suspended-sediment dynamics in the Lagunitas Creek and Walker Creek watersheds by providing continuous time-series storm event data that were analyzed to determine durations of elevated sediment concentrations (periods of time when suspended-sediment concentration was greater than 100 mg/L). Data derived from this project contributed baseline suspended-sediment transport information that will be used to develop and implement sediment total maximum daily loads for Tomales Bay and its tributary watersheds, and provides supporting information for additional total maximum daily loads (pathogens, nutrients, and mercury) and restoration efforts for four federally listed aquatic species that are affected directly by sediment loading in the Tomales Bay watershed. In addition, this project provided an opportunity to evaluate the suitability of using optical data as a surrogate for more traditional labor-intensive methods of measuring suspended-sediment transport in steep coastal watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP31D..02G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP31D..02G"><span>Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gran, K. B.</p> <p>2015-12-01</p> <p>Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a series of inset terraces within the valley. The importance of sand on channel behavior thus extends beyond transport rates, affecting the depth of incision and volume of material excavated during a rainy to dry season transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614686S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614686S"><span>Laminar laboratory rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seizilles, Grégoire; Devauchelle, Olivier; Lajeunesse, Éric; Métivier, François</p> <p>2014-05-01</p> <p>A viscous fluid flowing over fine plastic grains spontaneously channelizes into a few centimeters-wide river. After reaching its equilibrium shape, this stable laboratory flume is able to carry a steady load of sediments, like many alluvial rivers. When the sediment discharge vanishes, the river size, shape and slope fit the threshold theory proposed by Glover and Florey (1951), which assumes that the Shields parameter is critical on the channel bed. As the sediment discharge is increased, the river widens and flattens. Surprisingly, the aspect ratio of its cross section depends on the sediment discharge only, regardless of the water discharge. We propose a theoretical interpretation of these findings based on the balance between gravity, which pulls particles towards the center of the channel, and the diffusion of bedload particles, which pushes them away from areas of intense bedload.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.291...45R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.291...45R"><span>Three decades of monitoring in the Rio Cordon instrumented basin: Sediment budget and temporal trend of sediment yield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G. R.; Lenzi, M. A.</p> <p>2017-08-01</p> <p>This paper investigates nearly 30 years of monitoring of sediment fluxes in an instrumented Alpine basin (Rio Cordon, Italy). The collected bedload and suspended sediment transport data allows sediment dynamics to be analyzed at different time scales, ranging from short- (single event) to long-term (three decades). The Rio Cordon monitoring station has been operating since 1986, continuously recording water discharge, bedload and suspended load. At the flood event scale, a good relationship was found between peak discharges (Qpeak) and sediment load (bedload and suspended load). The inter-annual sediment yields were analyzed, also assessing the contribution of the single floods to the total sediment budget. The annual suspended load ranges from 10 to 2524 t yr- 1, while the bedload varies from 0 to 1543 t yr- 1. The higher annual yields were recorded in the years when large floods occurred, highlighting that the sediment budget in the Rio Cordon is strongly controlled by the occurrence of high magnitude events. Investigation of the seasonal suspended load contribution demonstrated that from 1986 to 1993 most fine sediments were transported during the snowmelt/summer seasons, while autumn and snowmelt were the dominant seasons contributing to sediment yield in the periods 1994-2002 and 2003-2014, respectively. The mean annual sediment yield from 1986 to 2014 is equal to 103 t km- 2 yr- 1, and overall, bedload accounts for 21% of the total sediment yield. The ratio between the sediment transport and the effective runoff of the events allowed the temporal trends of transport efficiency to be inferred, highlighting the existence of periods characterized by different sediment availability. In particular, despite no significant changes in the hydrological variables (i.e. rainfall), nearly a decade (1994-2002) with high transport efficiency appears to have occurred after an exceptional event (recurrence interval > 100 years). This event affected the sediment availability at the basin and channel bed scales, and provided a legacy influencing the sediment dynamics in the basin over the long-term by increasing the transport efficiency for approximately a decade. This work benefits from the long-lasting monitoring program undertaken in the Rio Cordon and is the product of long-term data series. The quasi-unique dataset has provided detailed evidence of sediment dynamics over about three decades in a small Alpine basin, also enabling the effects triggered by an exceptional event to be analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170897','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170897"><span>Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Remo, Jonathan; Heine, Ruben A.; Ickes, Brian</p> <p>2016-01-01</p> <p>In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5081/sir20175081.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5081/sir20175081.pdf"><span>Characterization of sediment transport upstream and downstream from Lake Emory on the Little Tennessee River near Franklin, North Carolina, 2014–15</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.</p> <p>2017-09-06</p> <p>Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP33E..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP33E..08H"><span>Prediction of Suspended Sediment in Rivers Using Artificial Neural Networks: Implications for Development of Sediment Budgets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamshaw, S. D.; Underwood, K.; Rizzo, D.; Wemple, B. C.; Dewoolkar, M.</p> <p>2013-12-01</p> <p>Over 1,000 river miles in Vermont are either impaired or stressed by excessive sedimentation. The higher streamflows and incised river channels have resulted in increased bed and bank erosion. As the climate in Vermont is expected to feature greater and more frequent precipitation events and winter rainfall, the potential for increased sediment loading from erosion processes in the watershed and along the channel are high and a major concern for water resource managers. Typical sediment monitoring comprises periodic sampling during storm events and is often limited to gauged streams with flow data. Continuous turbidity monitoring enhances our understanding of river dynamics by offering high-resolution, temporal measurements to better quantify the total sediment loading occurring during and between storm events. Artificial neural networks, that mimic learning patterns of the human brain, have been effective at predicting flow in small, ungauged rivers using local climate data. This study advances this technology by using an ANN algorithm known as a counter-propagation neural network (CPNN) to predict discharge and suspended sediment in small streams. The first distributed network of continuous turbidity sensors (DTS-12) was deployed in Vermont in the Mad River Watershed, located in Central Vermont. The Mad River and five tributaries were selected as a test bed because seven years of periodic turbidity sampling data are available, it represents a range of watershed characteristics, and because the watershed is also being used for hydrologic model development using the Distributed-Hydrology-Soils-Vegetation Model (DHSVM). Comparison with the DHSVM simulations will allow estimation of the most-likely sources of sediment from the entire watershed and individual subwatersheds. In addition, recent field studies have commenced the quantification of erosion occurring from unpaved roads and streambanks in the same watershed. Periodic water quality sampling during storm events enabled turbidity versus TSS relationships to be established. Sub-watersheds with monitored turbidity and stage also have 15-minute precipitation, soil moisture and air and water temperature data being collected. Stage sensors and theoretical rating curves developed using HEC-RAS and calibrated with discharge measurements are used to validate the flow predictions from the CPNN. The real-time turbidity data are used to train and test the suspended sediment predictions from the CPNN network at each site. The turbidity data are also used to train the CPNN on a subset of tributaries and test on the remaining subwatersheds. Reasonable estimates of suspended sediment discharged from the tributaries and the main stem of the Mad River are calculated and compared enabling a more accurate foundation for building a sediment budget. Results of this study will assist managers in prioritizing mitigation projects to reduce impacts of sediment loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.8105F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.8105F"><span>Input-variable sensitivity assessment for sediment transport relations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernández, Roberto; Garcia, Marcelo H.</p> <p>2017-09-01</p> <p>A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP51A1631L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP51A1631L"><span>Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamba, J.; Karthikeyan, K.; Thompson, A.</p> <p>2017-12-01</p> <p>A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122.1090C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122.1090C"><span>Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.</p> <p>2017-05-01</p> <p>Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP43C2294F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP43C2294F"><span>Incorporating Sediment Compaction Into a Gravitationally Self-consistent Model for Global Sea-level Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferrier, K.; Mitrovica, J. X.</p> <p>2015-12-01</p> <p>In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2000/4159/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2000/4159/report.pdf"><span>Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maret, Terry R.; Skinner, K.D.</p> <p>2000-01-01</p> <p>Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20381091','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20381091"><span>Epiphyte loads on seagrasses and microphytobenthos abundance are not reliable indicators of nutrient availability in oligotrophic coastal ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fourqurean, James W; Muth, Meredith F; Boyer, Joseph N</p> <p>2010-07-01</p> <p>Despite marked gradients in nutrient availability that control the abundance and species composition of seagrasses in south Florida, and the importance of nutrient availability in controlling abundance and composition of epiphytes on seagrasses in other locations, we did not find that epiphyte load on the dominant seagrass, Thalassia testudinum, or that the relative contribution of algal epiphytes to the epiphyte community, was positively correlated with nutrient availability in the water column or the sediment in oligotrophic seagrass beds. Further, the abundance of microphytobenthos, as indicated by Chlorophyll-a concentration in the sediments, was not directly correlated with concentrations of nutrients in the sediments. Our results suggest that epiphyte and microphytobenthos abundance are not unambiguous indicators of nutrient availability in relatively pristine seagrass environments, and therefore would make poor candidates for indicators of the status and trends of seagrass ecosystems in relatively low-nutrient environments like the Florida Keys. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11258827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11258827"><span>The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bogen, J; Bønsnes, T E</p> <p>2001-02-05</p> <p>When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with a high water level in the reservoir and is likely to result in acceptable water quality in the fjord. However, during periods of low drawdown, sediment pollution may again become a problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC44A1230W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC44A1230W"><span>Long-term Sediment Accumulation in Mid-channel Bars of the Upper Reach of the Lower Mississippi River.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, B.; Xu, Y. J.</p> <p>2016-02-01</p> <p>A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.894a2037I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.894a2037I"><span>On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland</p> <p>2017-10-01</p> <p>Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7865','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7865"><span>Effects of recent logging on the main channel of North Fork Caspar Creek</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle; Michael Napolitano</p> <p>1998-01-01</p> <p>The response of the mainstem channel of North Fork Caspar Creek to recent logging is examined by time trends in bed load yield, scour and fill at resurveyed cross sections, and the volume and fine-sediment content of pools. Companion papers report that recent logging has increased streamflow during the summer and moderate winter rainfall events, and blowdowns from...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1995/0429/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1995/0429/report.pdf"><span>Water-quality, bed-sediment, and biological data (October 1993 through September 1994) and statistical summaries of data for streams in the Upper Clark Fork basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lambing, J.H.; Hornberger, Michelle I.; Axtmann, E.V.; Dodge, K.A.</p> <p>1995-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Water- quality data were obtained periodically at 16 stations during October 1993 through September 1994 (water year 1994); daily suspended-sediment data were obtained at six of these stations. Bed-sediment and biological data were obtained at 11 stations in August 1994. Sampling stations were located on the Clark Fork and major tributaries. The primary constituents analyzed were trace elements associated with mine tailings from historical mining and smelting activities. Water-quality data include concentrations of major ions, trace elements, and suspended sediment in samples collected periodically during water year 1994. Daily values of streamflow, suspended-sediment concentration, and suspended- sediment discharge are given for six stations. Bed- sediment data include trace-element concentrations in the fine and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of bed sediment, and biological data are provided for the period of record at each station since 1985.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.3113C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.3113C"><span>Stabilizing Effects of Bacterial Biofilms: EPS Penetration and Redistribution of Bed Stability Down the Sediment Profile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, X. D.; Zhang, C. K.; Zhou, Z.; Gong, Z.; Zhou, J. J.; Tao, J. F.; Paterson, D. M.; Feng, Q.</p> <p>2017-12-01</p> <p>Biofilms, consisting of microorganisms and their secreted extracellular polymeric substances (EPSs), serve as "ecosystem engineers" stabilizing sedimentary environments. Natural sediment bed provides an excellent substratum for biofilm growth. The porous structure and rich nutrients allow the EPS matrix to spread deeper into the bed. A series of laboratory-controlled experiments were conducted to investigate sediment colonization of Bacillus subtilis and the penetration of EPS into the sediment bed with incubation time. In addition to EPS accumulation on the bed surface, EPS also penetrated downward. However, EPS distribution developed strong vertical heterogeneity with a much higher content in the surface layer than in the bottom layer. Scanning electron microscope images of vertical layers also displayed different micromorphological properties of sediment-EPS matrix. In addition, colloidal and bound EPSs exhibited distinctive distribution patterns. After the full incubation, the biosedimentary beds were eroded to test the variation of bed stability induced by biological effects. This research provides an important reference for the prediction of sediment transport and hence deepens the understanding of the biologically mediated sediment system and broadens the scope of the burgeoning research field of "biomorphodynamics."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdWR..104..127S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdWR..104..127S"><span>Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Umesh; Crosato, Alessandra; Giri, Sanjay; Hicks, Murray</p> <p>2017-06-01</p> <p>The effects of sediment heterogeneity and sediment mobility on the morphology of braided rivers are still poorly studied, especially when the partial sediment mobility occurs. Nevertheless, increasing the bed sediment heterogeneity by coarse sediment supply is becoming a common practice in river restoration projects and habitat improvement all over the world. This research provides a step forward in the identification of the effects of sediment sorting on the evolution of sediment bars and braiding geometry of gravel-bed rivers. A two-dimensional morphodynamic model was used to simulate the long-term developments of a hypothetical braided system with discharge regime and morphodynamic parameters derived from the Waimakariri River, New Zealand. Several scenarios, differing in bed sediment heterogeneity and sediment mobility, were considered. The results agree with the tendencies already identified in linear analyses and experimental studies, showing that a larger sediment heterogeneity increases the braiding indes and reduces the bars length and height. The analyses allowed identifying the applicability limits of uniform sediment and variable discharge modelling approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMEP23B0814J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMEP23B0814J"><span>The coevolution of bed roughness, grain clustering, surface armoring, hydraulic roughness, and sediment transport rate in experimental coarse alluvial channels: implications for long-term effects of gravel augmentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, J. P.; Aronovitz, A. C.</p> <p>2012-12-01</p> <p>We conducted laboratory flume experiments to quantify changes in multiple factors leading to mountain river bed stability (i.e., minimal bed changes in space and time), and to understand how stable beds respond to perturbations in sediment supply. Experiments were run in a small flume 4 m long by 0.1 m wide. We imposed an initial well-graded size distribution of sediment (from coarse sand to up to 4 cm clasts), a steady water discharge (0.9 L/s), and initial bed surface slopes (8% and 12%). We measured outlet sediment flux and size distribution, bed topography and surface size distributions, and water depths; from these we calculated total shear stress, form drag and skin friction stress partitioning, and hydraulic roughness. The bed was initially allowed to stabilize with no imposed upstream sediment flux. This stabilization occurred due to significant changes in all of the factors listed in the title, and resulted in incipient step-pool like bed morphologies. In addition, this study was designed to explore possible long-term effects of gravel augmentation on mountain channel morphology and surface grain size. While the short-term goal of gravel augmentation is usually to cause fining of surface sediment patches, we find that the long-term effects may be opposite. We perturbed the stabilized channels by temporarily imposing an upstream sediment flux of the finest sediment size fraction (sand to granules). Median surface sizes initially decreased due to fine sediment deposition, although transport rates of intermediate-sized grains increased. When the fine sediment supply was stopped, beds evolved to be both rougher and coarser than they had been previously, because the largest grains remained on the bed but intermediate-sized grains were preferentially transported out, leaving higher fractions of larger grains on the surface. Existing models for mixed grain size transport actually predict changes in mobilization reasonably well, but do not explicity account for surface roughness evolution. Our results indicate a nonlinear relationship between surface median grain size and bed roughness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JHyd..514..114R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JHyd..514..114R"><span>Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal</p> <p>2014-06-01</p> <p>This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ms0176.photos.094052p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ms0176.photos.094052p/"><span>11. MOVABLE BED SEDIMENTATION MODELS. AUTOMATIC SEDIMENT FEEDER DESIGNED AND ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>11. MOVABLE BED SEDIMENTATION MODELS. AUTOMATIC SEDIMENT FEEDER DESIGNED AND BUILT BY WES. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035809','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035809"><span>Magnitude and timing of downstream channel aggradation and degradation in response to a dome-building eruption at Mount Hood, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pierson, Thomas C.; Pringle, Patrick T.; Cameron, Kenneth A.</p> <p>2011-01-01</p> <p>A dome-building eruption at Mount Hood, Oregon, starting in A.D. 1781 and lasting until ca. 1793, produced dome-collapse lithic pyroclastic flows that triggered lahars and intermittently fed 108 m3 of coarse volcaniclastic sediment to sediment reservoirs in headwater canyons of the Sandy River. Mobilization of dominantly sandy sediment from these reservoirs by lahars and seasonal floods initiated downstream migration of a sediment wave that resulted in a profound cycle of aggradation and degradation in the lowermost reach of the river (depositional reach), 61-87 km from the source. Stratigraphic and sedimentologic relations in the alluvial fill, together with dendrochronologic dating of degradation terraces, demonstrate that (1) channel aggradation in response to sediment loading in the headwater canyons raised the river bed in this reach at least 23 m in a decade or less; (2) the transition from aggradation to degradation in the upper part of this reach roughly coincided with the end of the dome-building eruption; (3) fluvial sediment transport and deposition, augmented by one lahar, achieved a minimum average aggradation rate of ~2 m/yr; (4) the degradation phase of the cycle was more prolonged than the aggradation phase, requiring more than half a century for the river to reach its present bed elevation; and (5) the present longitudinal profile of the Sandy River in this reach is at least 3 m above the pre-eruption profile. The pattern and rate of channel response and recovery in the Sandy River following heavy sediment loading resemble those of other rivers similarly subjected to very large sediment inputs. The magnitude of channel aggradation in the lower Sandy River, greater than that achieved at other volcanoes following much larger eruptions, was likely enhanced by lateral confinement of the channel within a narrow incised valley. A combination of at least one lahar and winter floods from frequent moderate-magnitude rainstorms and infrequent very large storms was responsible for flushing large volumes of sediment to the depositional reach. These conditions permitted a sedimentation response in the Sandy River that approached the magnitude of channel aggradation resulting elsewhere from large explosive eruptions and high-intensity rainfall regimes, despite the fact that the Sandy River aggradation was in response to an unremarkable dome-building eruption in a climate dominated by low to moderate rainfall intensities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70111258','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70111258"><span>Transport of fine sediment over a coarse, immobile riverbed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grams, Paul E.; Wilcock, Peter R.</p> <p>2014-01-01</p> <p>Sediment transport in cobble-boulder rivers consists mostly of fine sediment moving over a coarse, immobile bed. Transport rate depends on several interrelated factors: boundary shear stress, the grain size and volume of fine sediment, and the configuration of fine sediment into interstitial deposits and bed forms. Existing models do not incorporate all of these factors. Approaches that partition stress face a daunting challenge because most of the boundary shear is exerted on immobile grains. We present an alternative approach that divides the bed into sand patches and interstitial deposits and is well constrained by two clear end-member cases: full sand cover and absence of sand. Entrainment from sand patches is a function of their aerial coverage. Entrainment from interstices among immobile grains is a function of sand elevation relative to the size of the immobile grains. The bed-sand coverage function is used to predict the ratio of the rate of entrainment from a partially covered bed to the rate of entrainment from a completely sand-covered bed, which is determined using a standard sand transport model. We implement the bed-sand coverage function in a morphodynamic routing model and test it against observations of sand bed elevation and suspended sand concentration for conditions of nonuniform fine sediment transport in a large flume with steady uniform flow over immobile hemispheres. The results suggest that this approach may provide a simple and robust method for predicting the transport and migration of fine sediment through rivers with coarse, immobile beds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54...19B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54...19B"><span>Sediment Transport of Fine Sand to Fine Gravel on Transverse Bed Slopes in Rotating Annular Flume Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baar, Anne W.; de Smit, Jaco; Uijttewaal, Wim S. J.; Kleinhans, Maarten G.</p> <p>2018-01-01</p> <p>Large-scale morphology, in particular meander bend depth, bar dimensions, and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by secondary flows. Overestimating the transverse bed slope effect in morphodynamic models leads to flattening of the morphology, while underestimating leads to unrealistically steep bars and banks and a higher braiding index downstream. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and in practice models are calibrated on measured morphology. The objective of this research is to experimentally quantify the transverse bed slope effect for a large range of near-bed flow conditions with varying secondary flow intensity, sediment sizes (0.17-4 mm), sediment transport mode, and bed state to test existing predictors. We conducted over 200 experiments in a rotating annular flume with counterrotating floor, which allows control of the secondary flow intensity separate from the streamwise flow velocity. Flow velocity vectors were determined with a calibrated analytical model accounting for rough bed conditions. We isolated separate effects of all important parameters on the transverse slope. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and secondary flow intensities that deviate from known predictors depending on Shields number, and strongly depend on bed state and sediment transport mode. Fitted functions are provided for application in morphodynamic modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4294732','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4294732"><span>Predicting morphological changes DS New Naga-Hammadi Barrage for extreme Nile flood flows: A Monte Carlo analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sattar, Ahmed M.A.; Raslan, Yasser M.</p> <p>2013-01-01</p> <p>While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude. PMID:25685476</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25685476','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25685476"><span>Predicting morphological changes DS New Naga-Hammadi Barrage for extreme Nile flood flows: A Monte Carlo analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sattar, Ahmed M A; Raslan, Yasser M</p> <p>2014-01-01</p> <p>While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1266/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1266/"><span>Water-Quality, Bed-Sediment, and Biological Data (October 2004 through September 2005) and Statistical Summaries of Data for Streams in the Upper Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2006-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a long-term monitoring program, conducted in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the upper Clark Fork basin of western Montana. Sampling sites were located on the Clark Fork, six major tributaries, and three smaller tributaries. Water-quality samples were collected periodically at 18 sites during October 2004 through September 2005 (water year 2005). Bed-sediment and biological samples were collected once in August 2005. The primary constituents analyzed were trace elements associated with tailings from historical mining and smelting activities. This report summarizes the results of water-quality, bed-sediment, and biota samples col-lected in water year 2005 and provides statistical summaries of data collected since 1985. Water-quality data for samples collected periodically from streams include concentrations of selected major ions, trace ele-ments, and suspended sediment. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for three sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of water-quality, bed-sediment, and biological data are provided for the period of record since 1985 for each site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2001/fs-068-01/pdf/FS_068-01.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2001/fs-068-01/pdf/FS_068-01.pdf"><span>Reconnaissance for trace metals in bed sediment, Wright Patman Lake, near Texarkana, Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McKee, Paul W.</p> <p>2001-01-01</p> <p>Many contaminants can be introduced into the environment by urban and industrial activities. The drainage area of Wright Patman Lake is influenced by these activities. Among the contaminants associated with urban and industrial activities are trace metals such as arsenic, lead, mercury, and zinc. These contaminants are relatively insoluble in water and commonly are found in stream, lake, and reservoir bottom sediment, especially the clays and silts within the sediment.Wright Patman Lake serves as the major potable water supply for the city of Texarkana and surrounding communities. Texarkana, located in the northeastern corner of Texas and the southwestern corner of Arkansas, had a population of about 56,000 in 1998, which reflects an increase of about 3.4 percent from the 1990 census (Ramos, 1999). Texarkana Water Utilities, which manages the water-treatment facilities for Texarkana, proposes to dredge the lake bed near the water intake in the Elliot Creek arm of Wright Patman Lake. It is possible that arsenic, lead, mercury, and other trace metals might be released into the water if the bed sediment is disturbed. Bed sediment in the Elliot Creek arm of the lake, in particular, could contain trace metals because of its proximity to Red River Army Depot and because industrial land use is prevalent in the headwaters of Elliot Creek.The U.S. Geological Survey (USGS), in cooperation with Reconnaissance for Trace Metals in Bed Sediment, Wright Patman Lake, Near Texarkana, Texas In cooperation with the Texarkana Water Utilities conducted a reconnaissance of Wright Patman Lake to collect bed-sediment samples for analysis of trace metals. This report presents trace metal concentrations in bed-sediment samples collected at six sites along the Elliot Creek arm of the lake, one site each in two adjacent arms, and one site near the dam on June 16, 1999 (fig. 1). One bed-sediment sample was collected at each of the nine sites, and one sediment core was collected at each of two of the sites. Trace metal concentrations are compared to sediment-quality guidelines for the protection of aquatic life and to screening levels based on historical trace metal concentrations in bed sediment of Texas reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7831','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7831"><span>Dynamic transport capacity in gravel-bed river systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>T. E. Lisle; B. Smith</p> <p>2003-01-01</p> <p>Abstract - Sediment transport capacity mediates the transfer and storage of bed material between alluvial reservoirs in a drainage system. At intermediate time scales corresponding to the evolution of sediment pulses, conditions governing bed-material transport capacity under the hydrologic regime respond to variations in storage and sediment flux as pulses extend,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP53A0723M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP53A0723M"><span>Effects of Sediment Patches on Sediment Transport Predictions in Steep Mountain Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monsalve Sepulveda, A.; Yager, E.</p> <p>2013-12-01</p> <p>Bed surface patches occur in most gravel-bedded rivers and in steep streams can be divided between relatively immobile boulders and more mobile patches of cobbles and gravel. This spatial variability in grain size, roughness and sorting impact bed load transport by altering the relative local mobility of different grain sizes and creating complex local flow fields. Large boulders also bear a significant part of the total shear stress and we hypothesize that the remaining shear stress on a given mobile patch is a distribution of values that depend on the local topography, patch type and location relative to the large roughness elements and thalweg. Current sediment transport equations do not account for the variation in roughness, local flow and grain size distributions on and between patches and often use an area-weighted approach to obtain a representative grain size distribution and reach-averaged shear stress. Such equations also do not distinguish between active (patches where at least one grain size is in motion) and inactive patches or include the difference in mobility between patch classes as result of spatial shear stress distributions. To understand the effects of sediment patches on sediment transport in steep channels, we calculated the shear stress distributions over a range of patch classes in a 10% gradient step-pool stream. We surveyed the bed with a high density resolution (every 5 cm in horizontal and vertical directions over a 40 m long reach) using a total station and terrestrial LiDAR, mapped and classified patches by their grain size distributions, and measured water surface elevations and mean velocities for low to moderate flow events. Using these data we calibrated a quasi-three dimensional model (FaSTMECH) to obtain shear stress distributions over each patch for a range of flow discharges. We modified Parker's (1990) equations to use the calculated shear stress distribution, measured grain sizes, and a specific hiding function for each patch class, and then added the bedload fluxes for each patch to calculate the reach-averaged sediment transport rate. Sediment mobility in patches was highly dependent on the patch's class and location relative to the thalweg and large roughness elements. Compared to deterministic formulations, the use of distributions of shear stress improved predictions of bedload transport in steep mountain channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.7467H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.7467H"><span>Does small-bodied salmon spawning activity enhance streambed mobility?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassan, Marwan A.; Tonina, Daniele; Buxton, Todd H.</p> <p>2015-09-01</p> <p>Female salmonids bury and lay their eggs in streambeds by digging a pit, which is then covered with sediment from a second pit that is dug immediately upstream. The spawning process alters streambed topography, winnows fine sediment, and mixes sediment in the active layer. The resulting egg nests (redds) contain coarser and looser sediments than those of unspawned streambed areas, and display a dune-like shape with an amplitude and length that vary with fish size, substrate conditions, and flow conditions. Redds increase local bed surface roughness (<10-1 channel width, W), but may reduce the size of macro bedforms by eroding reach-scale topography (100-101W). Research has suggested that spawning may increase flow resistance due to redd form drag, resulting in lower grain shear stress and less particle mobility. Spawning, also prevents streambed armoring by mixing surface and subsurface material, potentially increasing particle mobility. Here we use two-dimensional hydraulic modeling with detailed prespawning and postspawning bathymetries and field observations to test the effect of spawning by small-bodied salmonids on sediment transport. Our results show that topographical roughness from small salmon redds has negligible effects on shear stress at the reach-unit scale, and limited effects at the local scale. Conversely, results indicate sediment mixing reduces armoring and enhances sediment mobility, which increases potential bed load transport by subsequent floods. River restoration in fish-bearing streams should take into consideration the effects of redd excavation on channel stability. This is particularly important for streams that historically supported salmonids and are the focus of habitat restoration actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2018/1029/ofr20181029.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2018/1029/ofr20181029.pdf"><span>Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.</p> <p>2018-02-28</p> <p>The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/1016/ds1016.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/1016/ds1016.pdf"><span>Toxicity of bed sediments from the Niagara River Area of Concern and tributaries, New York, to Chironomus dilutus and Hyalella azteca, 2014-15</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>George, Scott D.; Baldigo, Barry P.; Duffy, Brian T.</p> <p>2016-09-20</p> <p>The Niagara River was designated as an Area of Concern in 1987 on both the United States and Canadian sides of the international boundary line because past industrial discharges and hazardous waste sites had caused extensive degradation of aquatic habitats. The degradation of the “benthos”, or the benthic macroinvertebrate community, was identified as one of seven beneficial use impairments caused by contaminated bed sediments. The U.S. Geological Survey and the New York State Department of Environmental Conservation, in cooperation with the U.S. Environmental Protection Agency, conducted a study in 2014 and 2015 to gather more extensive data on (a) the toxicity of bed sediments and (b) the status of macroinvertebrate communities on the main stem and tributaries of the Niagara River. This report addresses the first component of that study (toxicity of bed sediments), and summarizes results from laboratory toxicity tests that compare the survival and growth of two macroinvertebrate species between bed sediments from study sites and laboratory controls. Sediment toxicity was negligible at most sites, however poor performance of one or both test species in bed sediments from several tributary sites suggests that the quality of sediments may be adversely affecting benthic macroinvertebrate communities in some tributaries to the Niagara River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S43A2793F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S43A2793F"><span>Monitoring the Transport of Sediment During Tropical Cyclones From High-frequency Seismic Noise in Two Rivers of La Réunion Island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fontaine, F. R.; Gonzalez, A.; Burtin, A.; Barruol, G.; Recking, A.; Join, J. L.; Delcher, E.</p> <p>2016-12-01</p> <p>La Réunion Island is a basaltic shield volcano located in the western Indian Ocean. The island undergoes heavy annual precipitations during tropical depressions and cyclones. These rainfalls modify the stream dynamics and sediment transport of rivers. The transport of sediment participates to the erosion of the volcanic island, however, in situ characterization is difficult during high water stage. In the frame of the Rivière des Pluies project, we are deploying a temporary seismic network of 10 three-component broadband seismometers around two rivers: Rivière des Pluies and Rivière du Mât. The goal of the project is to monitor spatial and temporal variations of the river's bed-load during tropical cyclones with high-frequency noise. Meteorological and hydrological stations are installed at both rivers providing valuable data such as precipitations, water discharge and water level. We will also sample the bed surface grain size distribution by visual count to determine its influence on the seismic noise. We present preliminary results from two broadband seismic stations located near instrumented streams. SALA station from the temporary RHUM-RUM seismic network (http://www.rhum-rum.net/en/) was installed close to the Rivière du Mât and the permanent GEOSCOPE RER station is located close to the Rivière de l'Est. We analyzed the footprint of the cyclone Bejisa in January 2014. We observe a significant increase of the precipitation when the cyclone eye is 300 km close to the island followed by the increase of the water discharge. Simultaneously the seismic signal shows a sudden increase of the power spectral density visible above 1 Hz. Further investigations on the relationship between the seismic noise and the hydrological and meteorological parameters will help us quantifying the river bed-load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP52B..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP52B..01G"><span>Co-evolution of Riparian Vegetation and Channel Dynamics in an Aggrading Braided River System, Mount Pinatubo, Philippines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gran, K. B.; Michal, T.</p> <p>2014-12-01</p> <p>Increased bank stability by riparian vegetation in braided rivers can decrease bed reworking rates and focus the flow. The magnitude of influence and resulting channel morphology are functions of vegetation strength vs. channel dynamics, a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. We investigate this relationship in an aggrading braided river at Mount Pinatubo, Philippines, and compare results to numerical and physical models. Gradual reductions in post-eruption sediment loads have reduced bed reworking rates, allowing vegetation to persist year-round and impact channel dynamics on the Pasig-Potrero and Sacobia Rivers. From 2009-2011, we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into RipRoot and BSTEM models shows cohesion due to roots increased from zero in unvegetated conditions to >10.2 kPa in densely-growing grasses. Field-based parameters were incorporated into a cellular model comparing vegetation growth and sediment mobility effects on braided channel dynamics. The model shows that both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. An estimated T* between 0.8 - 2.3 for the Pasig-Potrero River suggests channels were mobile enough to maintain the braidplain width clear of vegetation and even experience slight gains in area through annual removal of existing vegetation. However, persistent vegetation focused flow and thus aggradation over the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. While physical models predict continued narrowing of the active braidplain as T* declines, the future trajectory of channel-vegetation interactions at Pinatubo as sedimentation rates decline appears more complicated due to strong seasonal variability in precipitation and sediment loads. By 2011, seasonal incision in the dry season had started to occur, lowering the water-table, and impeding vegetation growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16143367','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16143367"><span>Geochemistry of bed and suspended sediment in the Mississippi river system: provenance versus weathering and winnowing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Piper, D Z; Ludington, Steve; Duval, J S; Taylor, H E</p> <p>2006-06-01</p> <p>Stream-bed sediment for the size fraction less than 150 microm, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030701','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030701"><span>Geochemistry of bed and suspended sediment in the Mississippi river system: Provenance versus weathering and winnowing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Piper, D.Z.; Ludington, S.; Duval, J.S.; Taylor, Howard E.</p> <p>2006-01-01</p> <p>Stream-bed sediment for the size fraction less than 150 ??m, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP33B1931P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP33B1931P"><span>Is the Critical Shields Stress for Incipient Sediment Motion Dependent on Bed Slope in Natural Channels? No.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, C. B.; Jerolmack, D. J.</p> <p>2017-12-01</p> <p>Understanding when coarse sediment begins to move in a river is essential for linking rivers to the evolution of mountainous landscapes. Unfortunately, the threshold of surface particle motion is notoriously difficult to measure in the field. However, recent studies have shown that the threshold of surface motion is empirically correlated with channel slope, a property that is easy to measure and readily available from the literature. These studies have thoroughly examined the mechanistic underpinnings behind the observed correlation and produced suitably complex models. These models are difficult to implement for natural rivers using widely available data, and thus others have treated the empirical regression between slope and the threshold of motion as a predictive model. We note that none of the authors of the original studies exploring this correlation suggested their empirical regressions be used in a predictive fashion, nevertheless these regressions between slope and the threshold of motion have found their way into numerous recent studies engendering potentially spurious conclusions. We demonstrate that there are two significant problems with using these empirical equations for prediction: (1) the empirical regressions are based on a limited sampling of the phase space of bed-load rivers and (2) the empirical measurements of bankfull and critical shear stresses are paired. The upshot of these problems limits the empirical relations predictive capacity to field sites drawn from the same region of the bed-load river phase space and that the paired nature of the data introduces a spurious correlation when considering the ratio of bankfull to critical shear stress. Using a large compilation of bed-load river hydraulic geometry data, we demonstrate that the variation within independently measured values of the threshold of motion changes systematically with bankfull shields stress and not channel slope. Additionally, we highlight using several recent datasets the potential pitfalls that one can encounter when using simplistic empirical regressions to predict the threshold of motion showing that while these concerns could be construed as subtle the resulting implications can be substantial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3097P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3097P"><span>Regional Variation in Gravel Riverbed Mobility, Controlled by Hydrologic Regime and Sediment Supply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfeiffer, Allison M.; Finnegan, Noah J.</p> <p>2018-04-01</p> <p>The frequency and intensity of riverbed mobility are of paramount importance to the inhabitants of river ecosystems as well as to the evolution of bed surface structure. Because sediment supply varies by orders of magnitude across North America, the intensity of bedload transport varies by over an order of magnitude. Climate also varies widely across the continent, yielding a range of flood timing, duration, and intermittency. Together, the differences in sediment supply and hydroclimate result in diverse regimes of bed surface stability. To quantitatively characterize this regional variation, we calculate multidecadal time series of estimated bed surface mobility for 29 rivers using sediment transport equations. We use these data to compare predicted bed mobility between rivers and regions. There are statistically significant regional differences in the (a) exceedance probability of bed-mobilizing flows (W* > 0.002), (b) maximum bed mobility, and (c) number of discrete bed-mobilizing events in a year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2004/1260/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2004/1260/"><span>Channel-morphology data for the Tongue River and selected tributaries, southeastern Montana, 2001-02</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chase, Katherine J.</p> <p>2004-01-01</p> <p>Coal-bed methane exploration and production have begun within the Tongue River watershed in southeastern Montana. The development of coal-bed methane requires production of large volumes of ground water, some of which may be discharged to streams, potentially increasing stream discharge and sediment load. Changes in stream discharge or sediment load may result in changes to channel morphology through changes in erosion and vegetation. These changes might be subtle and difficult to detect without baseline data that indicate stream-channel conditions before extensive coal-bed methane development began. In order to provide this baseline channel-morphology data, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, collected channel-morphology data in 2001-02 to document baseline conditions for several reaches along the Tongue River and selected tributaries. This report presents channel-morphology data for five sites on the mainstem Tongue River and four sites on its tributaries. Bankfull, water-surface, and thalweg elevations, channel sections, and streambed-particle sizes were measured along reaches near streamflow-gaging stations. At each site, the channel was classified using methods described by Rosgen. For six sites, bankfull discharge was determined from the stage- discharge relation at the gage for the stage corresponding to the bankfull elevation. For three sites, the step-backwater computer model HEC-RAS was used to estimate bankfull discharge. Recurrence intervals for the bankfull discharge also were estimated for eight of the nine sites. Channel-morphology data for each site are presented in maps, tables, graphs, and photographs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917593V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917593V"><span>Variations in grain-scale sediment structure and entrainment force in a gravel-bed channel as a function of fine sediment content and morphological location</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David</p> <p>2017-04-01</p> <p>One of the major causes of uncertainty in estimates of bedload transport rates in gravel-bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on the force required to entrain sediment. There are at least two factors that standard entrainment models do not consider. The first is the way in which the spatial arrangement and orientation of grains and the resultant forces varies throughout a channel and over time, ways that have yet to be fully quantified. The second is that sediment entrainment is a 3D process, yet calculations of entrainment thresholds for sediment grains are typically based on 2D diagrams where we calculate static moments of force vectors about a pivot angle, represented as a single point rather than as a more realistic axis of rotation. Our research addresses these limitations by quantifying variations in 3D sediment structure and entrainment force requirements across two key parameters: morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel-bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel-bed with a riffle-pool morphology containing varying amounts of fine sediment. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure and entrainment force requirements through measurement of 3D metrics including grain pivot angles, grain exposure and protrusion. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure and entrainment force requirement. These results have implications for the development of sediment entrainment models for gravel-bed rivers. Keywords: fluvial sediment, geomorphology, entrainment models, X-ray computed tomography, 3D imaging, vector mechanics</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA571118','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA571118"><span>Sediment Transport on Continental Shelves: Storm Bed Formation and Preservation in Heterogeneous Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-01-01</p> <p>occurred during the Cretaceous period. The simulated storm bed for such an extratropical cyclone that lasts 4 days was deposited as deep as 75 m and had...Int. Assoc. Sedimentol. Spec. Publ. (2012) 44, 295-310 Sediment transport on continental shelves: storm bed formation and preservation in...xDept. of Earth Science, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada ABSTRACT Many storm beds are constructed of silt/sand</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031417','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031417"><span>Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.</p> <p>2007-01-01</p> <p>For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the laboratory for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1360/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1360/"><span>Underwater Microscope for Measuring Spatial and Temporal Changes in Bed-Sediment Grain Size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.</p> <p>2006-01-01</p> <p>For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the lab for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in-situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2407T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2407T"><span>A Probabilistic Model for Sediment Entrainment: the Role of Bed Irregularity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thanos Papanicolaou, A. N.</p> <p>2017-04-01</p> <p>A generalized probabilistic model is developed in this study to predict sediment entrainment under the incipient motion, rolling, and pickup modes. A novelty of the proposed model is that it incorporates in its formulation the probability density function of the bed shear stress, instead of the near-bed velocity fluctuations, to account for the effects of both flow turbulence and bed surface irregularity on sediment entrainment. The proposed model incorporates in its formulation the collective effects of three parameters describing bed surface irregularity, namely the relative roughness, the volumetric fraction and relative position of sediment particles within the active layer. Another key feature of the model is that it provides a criterion for estimating the lift and drag coefficients jointly based on the recognition that lift and drag forces acting on sediment particles are interdependent and vary with particle protrusion and packing density. The model was validated using laboratory data of both fine and coarse sediment and was compared with previously published models. The study results show that for the fine sediment data, where the sediment particles have more uniform gradation and relative roughness is not a factor, all the examined models perform adequately. The proposed model was particularly suited for the coarse sediment data, where the increased bed irregularity was captured by the new parameters introduced in the model formulations. As a result, the proposed model yielded smaller prediction errors and physically acceptable values for the lift coefficient compared to the other models in case of the coarse sediment data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri004190','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri004190"><span>Organic compounds and trace elements in fish tissue and bed sediment from streams in the Yellowstone River basin, Montana and Wyoming, 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peterson, David A.; Boughton, Gregory K.</p> <p>2000-01-01</p> <p>A comprehensive water-quality investigation of the Yellowstone River Basin began in 1997, under the National Water-Quality Assessment (NAWQA) Program. Twenty-four sampling sites were selected for sampling of fish tissue and bed sediment during 1998. Organic compounds analyzed included organochlorine insecticides and their metabolites and total polychlorinated biphenyls (PCBs) from fish-tissue and bed-sediment samples, and semivolatile organic compounds from bed-sediment samples. A broad suite of trace elements was analyzed from both fish-tissue and bed-sediment samples, and a special study related to mercury also was conducted. Of the 12 organochlorine insecticides and metabolites detected in the fish-tissue samples, the most compounds per site were detected in samples from integrator sites which represent a mixture of land uses. The presence of DDT, and its metabolites DDD and DDE, in fish collected in the Yellowstone Park area likely reflects long-term residual effects from historical DDT-spraying programs for spruce budworm. Dieldrin, chlordane, and other organic compounds also were detected in the fish-tissue samples. The compound p, p'-DDE was detected at 71 percent of the sampling sites, more than any other compound. The concentrations of total DDT in fish samples were low, however, compared to concentrations from historical data from the study area, other NAWQA studies in the Rocky Mountains, and national baseline concentrations. Only 2 of the 27 organochlorine insecticides and metabolites and total PCBs analyzed in bed sediment were detected. Given that 12 of the compounds were detected in fish-tissue samples, fish appeared to be more sensitive indicators of contamination than bed sediment.Concentrations of some trace elements in fish and bed sediment were higher at sites in mineralized areas than at other sites. Concentrations of selenium in fish tissue from some sites were above background levels. Concentrations of arsenic, chromium, copper, and lead in some of the bed-sediment samples potentially exceeded criteria for the protection of aquatic life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SedG..208....1G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SedG..208....1G"><span>Sedimentology and architecture of De Geer moraines in the western Scottish Highlands, and implications for grounding-line glacier dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golledge, Nicholas R.; Phillips, Emrys</p> <p>2008-07-01</p> <p>Sedimentary exposures in moraines in a Scottish Highland valley (Glen Chaorach), reveal stacked sequences of bedded and laminated silt, sand and gravel, interspersed or capped with diamicton units. In four examples, faults and folds indicate deformation by glaciotectonism and syndepositional loading. We propose that these sediments were laid down in an ice-dammed lake, close to the last ice margin to occupy this glen. Individual units within cross-valley De Geer moraine ridges are interpreted by comparison with examples from similar environments elsewhere: stratified diamictons containing laminated or bedded lenses are interpreted as subaqueous ice-marginal debris-flow deposits; massive fine-grained deposits as hyperconcentrated flow deposits, and massive gravel units as high-density debris-flow deposits. Using an allostratigraphic approach we argue that glaciotectonically deformed coarsening-upward sand and gravel sequences that culminate in deposition of subglacial diamicton represent glacier advances into the ice-marginal lake, whereas undisturbed cross-bedded sand and gravel reflects channel or fan deposits laid down during glacier retreat. A flat terrace of bedded sand and gravel at the northern end of Glen Chaorach is interpreted as subaerial glaciofluvial outwash. On the basis of these inferences we propose the following three stage deglacial event chronology for Glen Chaorach. During glacier recession, ice separation and intra-lobe ponding first led to subaquaeous deposition of sorted and unsorted facies. Subsequent glacier stabilisation and ice-marginal oscillation produced glaciotectonic structures in the ice-marginal sediment pile and formed De Geer moraines. Finally, drainage of the ice-dammed lake allowed a subaerial ice-marginal drainage system to become established. Throughout deglaciation, deposition within the lake was characterized by abrupt changes in grain size and in the architecture of individual sediment bodies, reflecting changing delivery paths and sediment supply, and by dynamic margin oscillations typical of water-terminating glaciers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033903','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033903"><span>Field flume reveals aquatic vegetation's role in sediment and particulate phosphorus transport in a shallow aquatic ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harvey, J.W.; Noe, G.B.; Larsen, L.G.; Nowacki, D.J.; McPhillips, L.E.</p> <p>2011-01-01</p> <p>Flow interactions with aquatic vegetation and effects on sediment transport and nutrient redistribution are uncertain in shallow aquatic ecosystems. Here we quantified sediment transport in the Everglades by progressively increasing flow velocity in a field flume constructed around undisturbed bed sediment and emergent macrophytes. Suspended sediment 100 μm became dominant at higher velocity steps after a threshold shear stress for bed floc entrainment was exceeded. Shedding of vortices that had formed downstream of plant stems also occurred on that velocity step which promoted additional sediment detachment from epiphyton. Modeling determined that the potentially entrainable sediment reservoir, 46 g m−2, was similar to the reservoir of epiphyton (66 g m−2) but smaller than the reservoir of flocculent bed sediment (330 g m−2). All suspended sediment was enriched in phosphorus (by approximately twenty times) compared with bulk sediment on the bed surface and on plant stems, indicating that the most easily entrainable sediment is also the most nutrient rich (and likely the most biologically active).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6852141-biostratinomic-processes-development-mud-cast-logs-carboniferous-holocene-swamps','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6852141-biostratinomic-processes-development-mud-cast-logs-carboniferous-holocene-swamps"><span>Biostratinomic processes for the development of mud-cast logs in Carboniferous and Holocene swamps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gastaldo, R.A.; Demko, T.M.; Liu, Yuejin</p> <p>1989-08-01</p> <p>Prostrate trees are common features of fossil forest litters, and are frequently preserved as mud-casts. Specimens of Carboniferous mud-cast trees and a mud-filled incipient cast of a Holocene Taxodium have been investigated to determine the biostratinomic processes responsible for their formation. These processes are complex. Hollowing of tree trunks may take place during life or by degradation after death. Once the trunk has fallen, the hollow cavity is supported by surrounding wood and/or bark tissues and acts as a conduit for sediment-laden waters. Leaf litter may be preserved on bedding surfaces. The infilling sequence of horizontal, parallel bedded, fine-grained sedimentmore » is deposited from suspended load during multiple overbank flooding events. These results differ from experimentally produced pith casts in which the sediment grain size is of fine sand. In Holocene specimens, alluvial mud within the log may provide a substrate for infaunal invertebrates. No evidence of infaunal burrowing in Carboniferous analogues exists.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.4787C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.4787C"><span>Hindered erosion: The biological mediation of noncohesive sediment behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, X. D.; Zhang, C. K.; Paterson, D. M.; Thompson, C. E. L.; Townend, I. H.; Gong, Z.; Zhou, Z.; Feng, Q.</p> <p>2017-06-01</p> <p>Extracellular polymeric substances (EPS) are ubiquitous on tidal flats but their impact on sediment erosion has not been fully understood. Laboratory-controlled sediment beds were incubated with Bacillus subtilis for 5, 10, 16, and 22 days before the erosion experiments, to study the temporal and spatial variations in sediment stability caused by the bacterial secreted EPS. We found the biosedimentary systems showed different erosional behavior related to biofilm maturity and EPS distribution. In the first stage (5 days), the biosedimentary bed was more easily eroded than the clean sediment. With increasing growth period, bound EPS became more widely distributed over the vertical profile resulting in bed stabilization. After 22 days, the bound EPS was highly concentrated within a surface biofilm, but a relatively high content also extended to a depth of 5 mm and then decayed sharply with depth. The biofilm increased the critical shear stress of the bed and furthermore, it enabled the bed to withstand threshold conditions for an increased period of time as the biofilm degraded before eroding. After the loss of biofilm protection, the high EPS content in the sublayers continued to stabilize the sediment (hindered erosion) by binding individual grains, as visualized by electron microscopy. Consequently, the bed strength did not immediately revert to the abiotic condition but progressively adjusted, reflecting the depth profile of the EPS. Our experiments highlight the need to treat the EPS-sediment conditioning as a bed-age associated and depth-dependent variable that should be included in the next generation of sediment transport models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.H52A1150L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.H52A1150L"><span>Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lynds, R. M.; Mohrig, D.; Heller, P. L.</p> <p>2003-12-01</p> <p>Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H41I..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H41I..07W"><span>Initial Geomorphic Responses to Removal of Milltown Dam, Clark Fork River, Montana, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilcox, A. C.; Brinkerhoff, D.; Woelfle-Erskine, C.</p> <p>2008-12-01</p> <p>The removal of Milltown Dam on the Clark Fork River, Montana, USA, is creating a field-scale experiment on upstream and downstream responses to dam removal and on how gravel-bed rivers respond to sediment pulses. Milltown Dam was removed in 2008, reconnecting the Clark Fork River to its upstream basin in terms of sediment transport and fish passage. This dam removal is especially notable because (1) it is the largest dam removal to date in the United States in terms of the volume of reservoir sediment potentially available for downstream transport (over 3 million m3; 1.7 million m3 are being mechanically removed); and (2) the dam is the downstream end of the largest Superfund site in the United States, the Clark Fork Complex, and reservoir sediments are composed largely of contaminated mine tailings. Data collection on pre- and post-dam removal channel morphology, bed sediment characteristics, and sediment loads are being used to investigate spatial and temporal patterns of sediment transport and deposition associated with this dam removal. In the first several months following breaching of the dam, snowmelt runoff with a 3-year recurrence interval peak caused substantial erosion and downstream transport of metals-laden sediments from Milltown reservoir. Reservoir sediments in the Clark Fork arm of Milltown reservoir eroded at levels far exceeding modeling predictions as a result of both incision to the new base level created by dam removal and bank retreat of over 200 m in reaches upstream of a constructed bypass reach and remediation area. Copper and other metals in these eroded reservoir sediments provide a tracer for identifying whether sediment deposits observed downstream of the dam originated from Milltown reservoir or uncontaminated tributaries and indicate that Milltown sediments have reached over 200 km downstream. Downstream deposition has been greatest along channel margins and in side-channel areas, whereas the transport capacity of the active channel has limited channel changes there.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5248E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5248E"><span>First post-fire flush in a Mediterranean temporary stream: source ascription in bed sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Estrany Bertos, Joan; García-Comendador, Julián; Fortesa, Josep; Calsamiglia, Aleix; Garcias, Francesca</p> <p>2017-04-01</p> <p>First flushes can be of great importance for suspended-sediment transport in fluvial systems of drylands, being temporary streams a characteristic feature of Mediterranean basins. After a wildfire, storm flows may enhance runoff delivery to channels and then increasing the first-flush effect. 137Cs and 210Pbex were used as tracers for recognizing the first post-fire flush effect in the source ascription of bed sediments temporarily stored in a Mediterranean temporary stream severely affected by a wildfire. Thirty potential sediment source samples were collected along the main stem of a catchment located in Mallorca (Spain) during a field campaign developed some weeks after the wildfire. The sample collection was designed considering the wildfire affection, and also distinguishing between soil surface and channel bank. To quantify the relative source contribution to the bed sediment temporarily stored, five sediment samples -deposited during the first storm occurred three months after the wildfire- were collected into the bed stream of the main channel. The 137Cs and 210Pbex concentrations were measured by gamma spectrometry. Then, a linear mixing model was used to establish the relative contribution of each source type to the bed sediments discerning between the most upstream and the downstream parts of the catchment. Post-fire first-flush effect was generated by a torrential event with a suspended-sediment concentration peak ca. 33,618 mg L-1, although transmission losses under a very low runoff coefficient (1%) promoted sediment deposition. Significant differences were observed in fallout radionuclide concentrations between burned surface soil and channel bank samples (p < 0.05), as well as between burned and unburned sources at the downstream part of the catchment (p < 0.01). The radioactivity concentrations in bed sediments samples were statistically similar (p > 0.05). Source ascription in bed sediments in the middle stream shows that 67% was generated in burned hillslopes, reaching 75% in the downstream part because downstream propagation of the sediment derived from the burned area. Bed sediments were mostly generated in burned hillslopes because of the fire effects on soils and sediment availability, high intensity rainfall and limited contribution of channel banks that are fixed by dry-stone walls. This hydro-sedimentary response indicates an association between driven sediment transport factors and sediment availability, generating an effective slope-to-channel sediment connectivity. Long-term sediment sources monitoring will elucidate if the most effective period of the window of disturbance at catchment scale is further extended (i.e., ≈5 years).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1244/pdf/ofr2014-1244.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1244/pdf/ofr2014-1244.pdf"><span>Water-quality, bed-sediment, and biological data (October 2012 through September 2013) and statistical summaries of data for streams in the Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2014-01-01</p> <p>This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2012 through September 2013. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity and dissolved organic carbon were analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical sum-maries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1223/ofr20151223.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1223/ofr20151223.pdf"><span>Water-quality, bed-sediment, and biological data (October 2013 through September 2014) and statistical summaries of data for streams in the Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.</p> <p>2015-12-24</p> <p>This report presents the analytical results and qualityassurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2013 through September 2014. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, dissolved organic carbon and turbidity samples were collected. In addition, nitrogen (nitrate plus nitrite) samples were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele­ment concentrations in the fine-grained fraction. Biological data include trace-element concentrations in wholebody tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035246','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035246"><span>Geomorphic changes resulting from floods in reconfigured gravel-bed river channels in Colorado, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elliott, J.G.; Capesius, J.P.</p> <p>2009-01-01</p> <p>Geomorphic changes in reconfi gured reaches of three Colorado rivers in response to floods in 2005 provide a benchmark for "restoration" assessment. Sedimententrainment potential is expressed as the ratio of the shear stress from the 2 yr, 5 yr, 10 yr, and 2005 floods to the critical shear stress for sediment. Some observed response was explained by the excess of flood shear stress relative to the resisting force of the sediment. Bed-load entrainment in the Uncompahgre River and the North Fork Gunnison River, during 4 and 6 yr floods respectively, resulted in streambed scour, streambed deposition, lateral-bar accretion, and channel migration at various locations. Some constructed boulder and log structures failed because of high rates of bank erosion or bed-material deposition. The Lake Fork showed little or no net change after the 2005 flood; however, this channel had not conveyed floods greater than the 2.5 yr flood since reconfi guration. Channel slope and the 2 yr flood, a surrogate for bankfull discharge, from all three reconfi gured reaches plotted above the Leopold and Wolman channel-pattern threshold in the "braided channel" region, indicating that braiding, rather than a single-thread meandering channel, and midchannel bar formation may be the natural tendency of these gravel-bed reaches. When plotted against a total stream-power and median-sediment-size threshold for the 2 yr flood, however, the Lake Fork plotted in the "single-thread channel" region, the North Fork Gunnison plotted in the " multiplethread" region, and the Uncompahgre River plotted on the threshold. All three rivers plotted in the multiple-thread region for floods of 5 yr recurrence or greater. ?? 2009 Geological Society of America.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8928H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8928H"><span>How does sediment affect the hydraulics of bedrock-alluvial rivers?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodge, Rebecca; Hoey, Trevor; Maniatis, George; Leprêtre, Emilie</p> <p>2016-04-01</p> <p>Relationships between flow, sediment transport and channel morphology are relatively well established in coarse-grained alluvial channels. Developing equivalent relationships for bedrock-alluvial channels is complicated by the two different components that comprise the channel morphology: bedrock and sediment. These two components usually have very different response times to hydraulic forcing, meaning that the bedrock morphology may be inherited from previous conditions. The influence of changing sediment cover on channel morphology and roughness will depend on the relative magnitudes of the sediment size and the spatial variations in bedrock elevation. We report results from experiments in a 0.9m wide flume designed to quantify the interactions between flow and sediment patch morphology using two contrasting bedrock topographies. The first topography is a plane bed with sand-scale roughness, and the second is a 1:10 scale, 3D printed, model of a bedrock channel with spatially variable roughness (standard deviation of elevations = 12 mm in the flume). In all experiments, a sediment pulse was added to the flume (D50 between 7 and 15 mm) and sediment patches were allowed to stabilise under constant flow conditions. The flow was then incrementally increased in order to identify the discharges at which sediment patches and isolated grains were eroded. In the plane bed experiments ˜20% sediment cover is sufficient to alter the channel hydraulics through the increased roughness of the bed; this impact is expressed as the increased discharge at which isolated grains are entrained. In the scaled bed experiments, partial sediment cover decreased local flow velocities on a relatively smooth area of the bed. At the scale of the entire channel, the bed morphology, and the hydraulics induced by it, was a primary control on sediment cover stability at lower sediment inputs. At higher inputs, where sediment infilled the local bed topography, patches were relatively more stable, suggesting an increased impact on the hydraulics and the role of grain-grain interactions. We draw together these experiments using a theoretical framework to express the impact of sediment cover on channel roughness and hence hydraulics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62529&keyword=slope+AND+stability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62529&keyword=slope+AND+stability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ASSESSING STREAM BED STABILITY AND EXCESS SEDIMENTATION IN MOUNTAIN STREAMS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Land use and resource exploitation in headwaters catchments?such as logging, mining, and road building?often increase sediment supply to streams, potentially causing excess sedimentation. Decreases in mean substrate size and increases in fine stream bed sediments can lead to inc...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2001/4054/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2001/4054/report.pdf"><span>User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bennett, James P.</p> <p>2001-01-01</p> <p>This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015P%26SS..105...65W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015P%26SS..105...65W"><span>Dynamical modelling of river deltas on Titan and Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Witek, Piotr P.; Czechowski, Leszek</p> <p>2015-01-01</p> <p>The surface of Titan hosts a unique Earth-like environment with lakes and rivers, and active 'hydrologic' cycle of methane. We investigate sediment transport in Titanian rivers and deposition in Titanian lakes with particular attention to formation of river deltas. The obtained results are compared with analogous terrestrial processes. The numerical model based on Navier-Stokes equations for depth-integrated two dimensional turbulent flow and additional equations for bed-load and suspended-load sediment transport was used in our research. It is found that transport of icy grains in Titanian rivers is more effective than silicate grains of the same size in terrestrial rivers for the same assumed total discharge. This effect is explained theoretically using dimensionless form of equations or comparing forces acting on the grains. Our calculations confirm previous results (Burr et al., 2006. Icarus. 181, 235-242). We calculate also models with organic sediments of different densities, namely 1500 and 800 kg m-3. We found substantial differences between materials of varying densities on Titan, but they are less pronounced than differences between Titan and Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2004/5273/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2004/5273/"><span>Water Quality, Fish Tissue, and Bed Sediment Monitoring in Waterbodies of Fort Chaffee Maneuver Training Center, Arkansas, 2002-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Justus, B.G.; Stanton, Gregory P.</p> <p>2005-01-01</p> <p>The Fort Chaffee Maneuver Training Center is a facility used to train as many as 50,000 Arkansas National Guardsmen each year. Due to the nature of ongoing training and also to a poor understanding of environmental procedures that were practiced in the World War II era, areas within Fort Chaffee have the potential to be sources of a large number of contaminants. Because some streams flow on to Fort Chaffee, there is also the potential for sources that are off post to affect environmental conditions on post. This study evaluates constituent concentrations in water, fish tissue, and bed sediment collected from waterbodies on Fort Chaffee between September 2002 and July 2004. Constituent concentrations detected in the three media and measured at nine stream sites and four lake sites were compared to national and regional criteria when available. Two of the larger streams, Big and Vache Grasse Creeks, were sampled at multiple sites. All three sampled media were analyzed for insecticides, PCBs, explosives, and trace elements. Additionally, water samples were analyzed for nutrients and herbicides. The different constituents detected in the three sample media (water, fish tissue, and bed sediment) indicate that land-use activities both on and off post are influencing environmental conditions. Contaminants such as explosives that were sometimes detected in water samples have an obvious relation to military training; however, the occurrence and locations of some nutrients, insecticides, and trace elements suggest that land use both on and off post also could be influencing environmental conditions to some degree. Constituent concentrations at sites on Vache Grasse Creek, and particularly the most upstream site, which was located immediately downstream from an off-post wastewater-treatment facility, indicate that environmental conditions were being influenced by an off-post source. The most upstream site on Vache Grasse Creek had both the highest number of detections and the highest concentrations detected of all sites sampled. Event-mean storm concentrations and storm loads calculated from storm-flow samples at two sites each for Big and Vache Grasse Creeks indicate that storm loads were highest at the two Vache Grasse Creek sites for 24 of the 25 constituents detected. Further evaluation by normalizing storm loads at Big Creek to storm loads at Vache Grasse Creek by stream flow indicate that event loads at Vache Grasse Creek were about two or more times higher than those on Big Creek for 15 of the 25 constituents measured. Low concentrations of arsenic and lead were detected in water samples, but all detections for the two trace elements occurred in samples collected at the upstream site on Vache Grasse Creek. The nickel concentration in fish livers collected from the upstream site on Vache Grasse Creek was 45 percent higher than the median of a national study of 145 sites. Mercury concentrations in edible fish tissue, which are a widespread concern in the United States, exceeded an USEPA criterion for methylmercury of 300 ?g/kg in four of nine samples; however, concentrations are typical of mercury concentrations in fish tissues for the State of Arkansas. Constituent concentrations at some sites indicate that environmental conditions are being influenced by on-post activities. Of the 55 (excluding total organic carbon) organic constituents analyzed in water samples, only 10 were detected above the minimum detection limit but four of those were explosives. Bed-sediment samples from one site located on Grayson Creek, and nearest the administrative and residential (cantonment) area, had detections for arsenic, copper, lead, manganese, nickel, and zinc that were above background concentrations, and concentrations for arsenic and nickel at this site exceeded lowest effect level criteria established by the U.S. Environmental Protection Agency. The site on Grayson Creek also had the only detections of DDT metabolites in bed sedi</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2011/1067/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2011/1067/"><span>Trace element, semivolatile organic, and chlorinated organic compound concentrations in bed sediments of selected streams at Fort Gordon, Georgia, February-April 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thomas, Lashun K.; Journey, Celeste A.; Stringfield, Whitney J.; Clark, Jimmy M.; Bradley, Paul M.; Wellborn, John B.; Ratliff, Hagan; Abrahamsen, Thomas A.</p> <p>2011-01-01</p> <p>A spatial survey of streams was conducted from February to April 2010 to assess the concentrations of major ions, selected trace elements, semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls associated with the bed sediments of surface waters at Fort Gordon military installation near Augusta, Georgia. This investigation expanded a previous study conducted in May 1998 by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, that evaluated the streambed sediment quality of selected surface waters at Fort Gordon. The data presented in this report are intended to help evaluate bed sediment quality in relation to guidelines for the protection of aquatic life, and identify temporal trends in trace elements and semivolatile organic compound concentrations at streambed sites previously sampled. Concentrations of 34 major ions and trace elements and 102 semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl compounds were determined in the fine-grained fraction of bed sediment samples collected from 13 of the original 29 sites in the previous study, and 22 additional sites at Fort Gordon. Three of the sites were considered reference sites as they were presumed to be located away from potential sources of contaminants and were selected to represent surface waters flowing onto the fort, and the remaining 32 nonreference sites were presumed to be located within the contamination area at the fort. Temporal trends in trace elements and semivolatile organic compound concentrations also were evaluated at 13 of the 32 nonreference sites to provide an assessment of the variability in the number of detections and concentrations of constituents in bed sediment associated with potential sources, accumulation, and attenuation processes. Major ion and trace element concentrations in fine-grained bed sediment samples from most nonreference sites exceeded concentrations in samples from reference sites at Fort Gordon. Bed sediments from one of the nonreference sites sampled contained the highest concentrations of copper and lead with elevated levels of zinc and chromium relative to reference sites. The percentage change of major ions, trace elements, and total organic carbon that had been detected at sites previously sampled in May 1998 and current bed sediment sites ranged from -4 to 8 percent with an average percentage change of less than 1 percent. Concentrations of major ions and trace elements in bed sediments exceeded probable effect levels for aquatic life (based on the amphipod Hyalella azteca) established by the U.S. Environmental Protection Agency at 46 and 69 percent of the current and previously sampled locations, respectively. The greatest frequency of exceedances for major ions and trace elements in bed sediments was observed for lead. Concentrations of semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls were detected in bed sediment samples at 94 percent of the sites currently sampled. Detections of these organic compounds were reported with greater frequency in bed sediments at upstream sampling locations, when compared to downstream locations. The greatest number of detections of these compounds was reported for bed sediment samples collected from two creeks above a lake. The percentage change of semivolatile organic compounds detected at previously sampled and current bed sediment sites ranged from -68 to 100 percent with the greatest percentage increase reported for one of the creeks above the lake. Concentrations of semivolatile organic compounds and polychlorinated biphenyls in bed sediments exceeded aquatic life criteria established by the U.S. Environmental Protection Agency at three sites. Contaminant compounds exceeding aquatic life criteria included fluoranthene, phenanthrene, anthracene, benzo(a)anthracene</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190124','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190124"><span>Coevolution of bed surface patchiness and channel morphology: 1. Mechanisms of forced patch formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.</p> <p>2015-01-01</p> <p>Riverbeds frequently display a spatial structure where the sediment mixture composing the channel bed has been sorted into discrete patches of similar grain size. Even though patches are a fundamental feature in gravel bed rivers, we have little understanding of how patches form, evolve, and interact. Here we present a two-dimensional morphodynamic model that is used to examine in greater detail the mechanisms responsible for the development of forced bed surface patches and the coevolution of bed morphology and bed surface patchiness. The model computes the depth-averaged channel hydrodynamics, mixed-grain-size sediment transport, and bed evolution by coupling the river morphodynamic model Flow and Sediment Transport with Morphological Evolution of Channels (FaSTMECH) with a transport relation for gravel mixtures and the mixed-grain-size Exner equation using the active layer assumption. To test the model, we use it to simulate a flume experiment in which the bed developed a sequence of alternate bars and temporally and spatially persistent forced patches with a general pattern of coarse bar tops and fine pools. Cross-stream sediment flux causes sediment to be exported off of bars and imported into pools at a rate that balances downstream gradients in the streamwise sediment transport rate, allowing quasi-steady bar-pool topography to persist. The relative importance of lateral gravitational forces on the cross-stream component of sediment transport is a primary control on the amplitude of the bars. Because boundary shear stress declines as flow shoals over the bars, the lateral sediment transport is increasingly size selective and leads to the development of coarse bar tops and fine pools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRF..121.1597H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRF..121.1597H"><span>A Froude-scaled model of a bedrock-alluvial channel reach: 2. Sediment cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodge, Rebecca A.; Hoey, Trevor B.</p> <p>2016-09-01</p> <p>Previous research into sediment cover in bedrock-alluvial channels has focussed on total sediment cover, rather than the spatial distribution of cover within the channel. The latter is important because it determines the bedrock areas that are protected from erosion and the start and end of sediment transport pathways. We use a 1:10 Froude-scaled model of an 18 by 9 m reach of a bedrock-alluvial channel to study the production and erosion of sediment patches and hence the spatial relationships between flow, bed topography, and sediment dynamics. The hydraulic data from this bed are presented in the companion paper. In these experiments specified volumes of sediment were supplied at the upstream edge of the model reach as single inputs, at each of a range of discharges. This sediment formed patches, and once these stabilized, flow was steadily increased to erode the patches. In summary: (1) patches tend to initiate in the lowest areas of the bed, but areas of topographically induced high flow velocity can inhibit patch development; (2) at low sediment inputs the extent of sediment patches is determined by the bed topography and can be insensitive to the exact volume of sediment supplied; and (3) at higher sediment inputs more extensive patches are produced, stabilized by grain-grain and grain-flow interactions and less influenced by the bed topography. Bedrock topography can therefore be an important constraint on sediment patch dynamics, and topographic metrics are required that incorporate its within-reach variability. The magnitude and timing of sediment input events controls reach-scale sediment cover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179352','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179352"><span>Elementary theory of bed-sediment entrainment by debris flows and avalanches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Iverson, Richard M.</p> <p>2012-01-01</p> <p>Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22573539','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22573539"><span>Reed beds may facilitate transfer of tributyltin from aquatic to terrestrial ecosystems through insect vectors in the Archipelago Sea, SW Finland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lilley, Thomas M; Meierjohann, Axel; Ruokolainen, Lasse; Peltonen, Jani; Vesterinen, Eero; Kronberg, Leif; Nikinmaa, Mikko</p> <p>2012-08-01</p> <p>Due to their adsorptive behavior, organotin compounds (OTCs), such as tributyltin (TBT), are accumulated in aquatic sediments. They resist biodegradation and, despite a ban in 2008, are a potential source for future exposure. Sediment OTCs have mostly been measured from sites of known high concentrations such as ports, shipping lanes, and marine dredging waste sites. The possible flow of OTCs from marine to terrestrial ecosystems, however, has not been studied. In the present study, the authors assessed whether sediments in common reed beds (Phragmites australis) accumulate TBT and whether chironomid (Diptera: Chironomidae) communities developing in reed-bed sediments act as vectors in the transfer of TBT from aquatic to terrestrial ecosystems in the Airisto channel, Archipelago Sea. The authors also investigated whether distance from the only known source and depth and TBT concentration of the adjacent shipping lane affect reed-bed concentrations. Thirty-six sites along the Airisto channel were sampled at 2-km intervals with triplicate samples from reed beds and the adjacent shipping lane for sediment and seven reed-bed sites for chironomids, and these were analyzed with an solid phase extraction liquid chromatography tamdem mass spectrometry method. The closer to the source the sample site was, the higher the measured TBT concentrations were; and the deeper the shipping lane, the lower the concentration of TBT in reed-bed sediments. The chironomid TBT concentrations correlated with reed-bed sediment TBT concentrations and showed evidence of accumulation. Therefore, TBT may be transferred, through the food web, from aquatic to terrestrial ecosystems relatively close to a source through ecosystem boundaries, such as common reed beds, which are areas of high insect biomass production in the Archipelago Sea. Copyright © 2012 SETAC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7830','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7830"><span>Response of bed mobility to sediment supply in natural gravel bed channels: A detailed examination and evaluation of mobility parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>T. E. Lisle; J. M. Nelson; B. L. Barkett; J. Pitlick; M. A. Madej</p> <p>1998-01-01</p> <p>Recent laboratory experiments have shown that bed mobility in gravel bed channels responds to changes in sediment supply, but detailed examinations of this adjustment in natural channels have been lacking, and practical methodologies to measure bed mobility have not been tested. We examined six gravel-bed, alternate-bar channels which have a wide range in annual...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/tm/tm8c2/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/tm/tm8c2/"><span>Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.</p> <p>2012-01-01</p> <p>Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce sufficiently accurate estimates of sediment loads. Finally, conventional suspended-sediment measurements are both labor and cost intensive and may not be possible at the resolution required to resolve discharge-independent changes in suspended-sediment concentration, especially in more remote locations. For these reasons, the U.S. Geological Survey has pursued the use of surrogate technologies (such as acoustic and laser diffraction) for providing higher-resolution measurements of suspended-sediment concentration and grain size than are possible by using conventional suspended-sediment measurements alone. These factors prompted the U.S. Geological Survey's Grand Canyon Monitoring and Research Center to design and construct a network to automatically measure suspended-sediment transport at 15-minute intervals by using acoustic and laser-diffraction surrogate technologies at remote locations along the Colorado River within Marble and Grand Canyons in Grand Canyon National Park. Because of the remoteness of the Colorado River in this reach, this network also included the design of a broadband satellite-telemetry system to communicate with the instruments deployed at each station in this network. Although the sediment-transport monitoring network described in this report was developed for the Colorado River in Grand Canyon National Park, the design of this network can easily be adapted for use on other rivers, no matter how remote. In the Colorado River case-study example described in this report, suspended-sediment concentration and grain size are measured at five remote stations. At each of these stations, surrogate measurements of suspended-sediment concentration and grain size are made at 15-minute intervals using an array of different single-frequency acoustic-Doppler side-looking profilers. Laser-diffraction instruments are also used at two of these stations to measure both suspended-sediment concentrations and grain-size distributions. Cross-section calibrations of these instruments have been constructed and verified by using either equal-discharge-increment (EDI) or equal-width-increment (EWI) measurements of the velocity-weighted suspended-sediment concentration and grain-size distribution. The suspended-silt-and-clay concentration parts of these calibration relations have also included information from EDI- or EWI-calibrated samples collected by automatic pump samplers. Three of the monitoring stations are equipped with two-way satellite broadband telemetry systems that operate once a day to remotely monitor and program the instruments and download data. Data from these stations are typically downloaded twice per month; data from stations without satellite-telemetry systems are downloaded during site visits, which occur every 2 months or semiannually, depending on the remoteness of the site. Upon downloading and processing, suspended-silt-and-clay concentration, suspended-sand concentration, and suspended-sand median grain size are posted on the World Wide Web. Satellite telemetry in combination with the high-resolution sediment surrogate measurements can generate near-real-time suspended-sediment-concentration and grain-size data (limited only by the time required to download the instruments and process the data). The approach for measuring suspended-sediment concentration and grain size using this monitoring network is more practical, and can be done at a much lower cost and with higher temporal resolution, than any other method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.4367C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.4367C"><span>SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian</p> <p>2017-11-01</p> <p>In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H21D1083F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H21D1083F"><span>Anomalous diffusion for bed load transport with a physically-based model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, N.; Singh, A.; Foufoula-Georgiou, E.; Wu, B.</p> <p>2013-12-01</p> <p>Diffusion of bed load particles shows both normal and anomalous behavior for different spatial-temporal scales. Understanding and quantifying these different types of diffusion is important not only for the development of theoretical models of particle transport but also for practical purposes, e.g., river management. Here we extend a recently proposed physically-based model of particle transport by Fan et al. [2013] to further develop an Episodic Langevin equation (ELE) for individual particle motion which reproduces the episodic movement (start and stop) of sediment particles. Using the proposed ELE we simulate particle movements for a large number of uniform size particles, incorporating different probability distribution functions (PDFs) of particle waiting time. For exponential PDFs of waiting times, particles reveal ballistic motion in short time scales and turn to normal diffusion at long time scales. The PDF of simulated particle travel distances also shows a change in its shape from exponential to Gamma to Gaussian with a change in timescale implying different diffusion scaling regimes. For power-law PDF (with power - μ) of waiting times, the asymptotic behavior of particles at long time scales reveals both super-diffusion and sub-diffusion, however, only very heavy tailed waiting times (i.e. 1.0 < μ < 1.5) could result in sub-diffusion. We suggest that the contrast between our results and previous studies (for e.g., studies based on fractional advection-diffusion models of thin/heavy tailed particle hops and waiting times) results could be due the assumption in those studies that the hops are achieved instantaneously, but in reality, particles achieve their hops within finite times (as we simulate here) instead of instantaneously, even if the hop times are much shorter than waiting times. In summary, this study stresses on the need to rethink the alternative models to the previous models, such as, fractional advection-diffusion equations, for studying the anomalous diffusion of bed load particles. The implications of these results for modeling sediment transport are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC13A..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC13A..02C"><span>Observations of Morphodynamics During a Winter Storm at the Mouth of the Misa River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calantoni, J.; Sheremet, A.; Brocchini, M.; Postacchini, M.</p> <p>2016-02-01</p> <p>The shallow mouth of the Misa River, Senigallia, Italy is exposed to wind and waves from the Adriatic Sea and is vulnerable to morphodynamic activity during even moderate storm events. Sediment loads and transport patterns may be strongly influenced by the confluence of fine cohesive suspended sediment contained in the discharge from the river mixing with coarser sandy material stirred up by waves impinging on the river mouth. Observations of rapid changes in bed elevation along a transect extending offshore of the river mouth were made using a combination of instruments deployed from 23-27 January 2014 at two locations in roughly 5 m water depth and 6 m water depth. Additionally, an up looking ADCP was located farther offshore in approximately 7 m water depth. The deposited sediment quickly consolidated into a hardened mixture of sand, mud, and venerids over the base of our instrument frames. At the 5 m water depth location over 0.4 m of deposition was observed roughly during a 6-hour period. Similarly, at the 6 m water depth location nearly 0.2 m of deposition was observed roughly over a 6-hour period with approximately a two-hour time lag. The onset of deposition was concurrent with a change in direction of the mean currents at both locations and a change in direction of wave skewness observed at the 5 m water depth location. We hypothesize that sandbar migration was responsible for the observed changes in bed elevation at both locations. Our analysis will focus on sediment transport modeling to explain rates of deposition and time lag of the observed changes in bed elevation at the 5 m and 6 m water depth locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH43B1839G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH43B1839G"><span>Modeling of Grain Size Distribution of Tsunami Sand Deposits in V-shaped Valley of Numanohama During the 2011 Tohoku Tsunami</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gusman, A. R.; Satake, K.; Goto, T.; Takahashi, T.</p> <p>2016-12-01</p> <p>Estimating tsunami amplitude from tsunami sand deposit has been a challenge. The grain size distribution of tsunami sand deposit may have correlation with tsunami inundation process, and further with its source characteristics. In order to test this hypothesis, we need a tsunami sediment transport model that can accurately estimate grain size distribution of tsunami deposit. Here, we built and validate a tsunami sediment transport model that can simulate grain size distribution. Our numerical model has three layers which are suspended load layer, active bed layer, and parent bed layer. The two bed layers contain information about the grain size distribution. This numerical model can handle a wide range of grain sizes from 0.063 (4 ϕ) to 5.657 mm (-2.5 ϕ). We apply the numerical model to simulate the sedimentation process during the 2011 Tohoku earthquake in Numanohama, Iwate prefecture, Japan. The grain size distributions at 15 sample points along a 900 m transect from the beach are used to validate the tsunami sediment transport model. The tsunami deposits are dominated by coarse sand with diameter of 0.5 - 1 mm and their thickness are up to 25 cm. Our tsunami model can well reproduce the observed tsunami run-ups that are ranged from 16 to 34 m along the steep valley in Numanohama. The shapes of the simulated grain size distributions at many sample points located within 300 m from the shoreline are similar to the observations. The differences between observed and simulated peak of grain size distributions are less than 1 ϕ. Our result also shows that the simulated sand thickness distribution along the transect is consistent with the observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021456','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021456"><span>Geomorphological assessment of sediment contamination in an urban stream system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rhoads, B.L.; Cahill, R.A.</p> <p>1999-01-01</p> <p>Little is known about the influence of fluvial-geomorphological features on the dispersal of sediment-related contaminants in urban drainage systems. This study investigates the relation between reach-scale geomorphological conditions and network-scale patterns of trace-element concentrations in a partially urbanized stream system in East-Central Illinois, USA Robust statistical analysis of bulk sediment samples reveals levels of Cr, Cu, Pb, Ni, and Zn exceed contamination thresholds in the portion of the watershed in close proximity to potential sources of pollution-in this case storm-sewer outfalls. Although trace-element concentrations decrease rapidly downstream from these sources, substantial local variability in metal levels exists within contaminated reaches. This local variability is related to reach-scale variation in fluvial-geomorphic conditions, which in turn produces variation in the degree of sorting and organic-matter content of bed material. Metal concentrations at contaminated sites also exhibit considerable variability over time. Analytical tests on specific size fractions of material collected at a highly contaminated site indicate that Cr and Ni are concentrated in the 0.063 to 0.250 mm fraction of the sediment. This fraction also has elevated concentration of Zr. SEM analysis shows that the fine sand fraction contains shards of stainless steel within a matrix of zircon sand, an industrial material associated with a nearby alloy casting operation. Samples of suspended load and bedload at the contaminated site also have elevated amounts of trace metals, but concentrations of Ni and Cr in the bedload are less than concentrations in the bed material, suggesting that these trace elements are relatively immobile. Off the other hand, amounts of CU and Zn in the bedload exceed concentrations in the bed material, implying that these trace metals are preferentially mobilized during transport events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2005/5111/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2005/5111/"><span>Nutrients, organic compounds, and mercury in the Meduxnekeag River watershed, Maine, 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schalk, Charles W.; Tornes, Lan</p> <p>2005-01-01</p> <p>In 2003, the U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, sampled streambed sediments and surface water of the Meduxnekeag River watershed in northeastern Maine under various hydrologic conditions for nutrients, hydrophobic organic compounds, and mercury. Nutrients were sampled to address concerns related to summer algal blooms, and organic compounds and mercury were sampled to address concerns about regional depositional patterns and overall watershed quality. In most surface-water samples, phosphorus was not detected or was detected at concentrations below the minimum reporting limit. Nitrate and organic nitrogen were detected in every surface-water sample for which they were analyzed; the highest concentration of total nitrogen was 0.75 milligrams per liter during low flow. Instantaneous nitrogen loads and yields were calculated at four stations for two sampling events. These data indicate that the part of the watershed that includes Houlton, its wastewater-treatment plant, and four small urban brooks may have contributed high concentrations of nitrate to Meduxnekeag River during the high flows on April 23-24 and high concentrations of both organic and nitrate nitrogen on June 2-3. Mercury was detected in all three bed-sediment samples for which it was analyzed; concentrations were similar to those reported from regional studies. Notable organic compounds detected in bed sediments included p,p'-DDE and p,p'-DDT (pesticides of the DDT family) and several polycyclic aromatic hydrocarbons. Polychlorinated biphenyls (PCBs) and phthalates were not detected in any sample, whereas p-cresol was the only phenolic compound detected. Phosphorus was detected at concentrations below 700 milligrams per kilogram in each bed-sediment sample for which it was analyzed. Data were insufficient to establish whether the lack of large algal blooms in 2003 was related to low concentrations of phosphorus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15589261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15589261"><span>Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bowes, M J; Leach, D V; House, W A</p> <p>2005-01-05</p> <p>Chalk streams provide unique, environmentally important habitats, but are particularly susceptible to human activities, such as water abstraction, fish farming and intensive agricultural activity on their fertile flood-meadows, resulting in increased nutrient concentrations. Weekly phosphorus, nitrate, dissolved silicon, chloride and flow measurements were made at nine sites along a 32 km stretch of the River Frome and its tributaries, over a 15 month period. The stretch was divided into two sections (termed the middle and lower reach) and mass balances were calculated for each determinand by totalling the inputs from upstream, tributaries, sewage treatment works and an estimate of groundwater input, and subtracting this from the load exported from each reach. Phosphorus and nitrate were retained within the river channel during the summer months, due to bioaccumulation into river biota and adsorption of phosphorus to bed sediments. During the autumn to spring periods, there was a net export, attributed to increased diffuse inputs from the catchment during storms, decomposition of channel biomass and remobilisation of phosphorus from the bed sediment. This seasonality of retention and remobilisation was higher in the lower reach than the middle reach, which was attributed to downstream changes in land use and fine sediment availability. Silicon showed much less seasonality, but did have periods of rapid retention in spring, due to diatom uptake within the river channel, and a subsequent release from the bed sediments during storm events. Chloride did not produce a seasonal pattern, indicating that the observed phosphorus and nitrate seasonality was a product of annual variation in diffuse inputs and internal riverine processes, rather than an artefact of sampling, flow gauging and analytical errors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7565D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7565D"><span>How much suspended particulate matter enters long-term in-channel storage?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dietrich, Stephan; Kleisinger, Carmen; Kehl, Nora; Schubert, Birgit; Hillebrand, Gudrun</p> <p>2017-04-01</p> <p>The route of suspended particulate matter (SPM) downstream rivers strongly depends on discharge conditions and involves transport times and periods with resting times in deposits e.g. at areas with low-flow conditions near the channel bed. It is, however, difficult to estimate the contribution of SPM on the bed load. In this study, particle-bound polychlorinated biphenyls (PCB), which were released by an incident in the Elbe river (Central Europe) in spring 2015, could be used as unique tracer for transport pathways of SPM along the whole river stretch (over 700 km length), including low mountain ranges, lowlands, and the estuary. In 2015 the Elbe River was characterized by low-discharge conditions. Thus, the export of SPM on flood plains was strongly limited. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from ten monitoring stations (settling tanks) are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal (hereafter PCB6 ratio). We demonstrate that both the load of PCB as well as its chemical fingerprint allows the estimation of transport durations for the transport processes involved. Only a little part of the suspension has been transported via wash load. The PCB6 ratio is used to estimate mean transport velocities of the wash load fraction. A direct transport of wash load via the mean flow velocity of the water was not observed. Shortly after the incident, the PCB6 ratio was monitored 257 km downstream of the incident site in April 2015, in May first occurrence was monitored 514 km downstream of the incident site and in July it reaches the tidal weir 626 km downstream and enters the estuary. Here the transport velocity strongly decreases and the PCB6 ratio was not detected 25 km downstream the tidal weir before December 2015. The major part of the PCB-marked suspension is transported via suspended load. Interestingly, the reduction of total PCB tagged SPM load within the first 514 km downstream of the incident site indicates that roughly 75% of the annual SPM load (of the most upstream monitoring station located 43 km downstream of the incident site) is stored in the sediments of the Elbe River, suggesting that suspended sediment in transport enters storage after a relatively short distance. Once SPM settles, significant storage can occur over decadal time scales.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028678','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028678"><span>Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Singer, Michael B.; Dunne, Thomas</p> <p>2006-01-01</p> <p>A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018446','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018446"><span>Lower and lower Middle Pennsylvanian fluvial to estuarine deposition, central Appalachian basin: Effects of eustasy, tectonics, and climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greb, S.F.; Chesnut, D.R.</p> <p>1996-01-01</p> <p>Interpretations of Pennsylvanian sedimentation and peat accumulation commonly use examples from the Appalachian basin because of the excellent outcrops and large reserve of coal (>100 billion metric tons) in the region. Particularly controversial is the origin of Lower and lower Middle Pennsylvanian quartzose sandstones; beach-barrier, marine-bar, tidalstrait, and fluvial models all have been applied to a series of sand bodies along the western outcrop margin of the basin. Inter-pretations of these sandstones and their inferred lateral relationships are critical for understanding the relative degree of eustatic, tectonic, and climatic controls on Early Pennsylvanian sedimentation. Cross sections utilizing >1000 subsurface records and detailed sedimentological analysis of the Livingston Conglomerate, Rockcastle Sandstone, Corbin Sandstone, and Pine Creek sandstone (an informal member) of the Breathitt Group were used to show that each of the principal quartzose sandstones on the margin of the central Appalachian basin contains both fluvial and marginal marine facies. The four sandstones are fluvially dominated and are inferred to represent successive bed-load trunk systems of the Appalachian foreland. Base-level rise and an associated decrease in extra-basinal sediment at the end of each fluvial episode led to the development of local estuaries and marine reworking of the tops of the sand belts. Each of the sand belts is capped locally by a coal, regardless of whether the upper surfaces of the sand belts are of fluvial or estuarine origin, suggesting allocyclic controls on deposition. Peats were controlled by a tropical ever-wet climate, which also influenced sandstone composition through weathering of stored sands in slowly aggrading braidplains. Recurrent stacking of thick, coarse-grained, fluvial deposits with extra-basinal quartz pebbles; dominance of bed-load fluvial-lowstand deposits over mixed-load, estuarine-transgressive deposits; thinning of sand belts around tectonic highs and along faults; cratonward shift and amalgamation of successive sand belts on the margin of the basin; and truncation of successive sand belts toward the fault-bound margin of the basin are interpreted as regional responses to Alleghenian tectonism, inferred to have been the dominant control on accommodation space and sediment flux in the Early Pennsylvanian basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/6704','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/6704"><span>Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John G. King; William W. Emmett; Peter J. Whiting; Robert P. Kenworthy; Jeffrey J. Barry</p> <p>2004-01-01</p> <p>This report and associated web site files provide sediment transport and related data for coarse-bed streams and rivers to potential users. Information on bedload and suspended sediment transport, streamflow, channel geometry, channel bed material, floodplain material, and large particle transport is provided for 33 study reaches in Idaho that represent a wide range of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..967F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..967F"><span>Understanding catchment scale sediment sources using geochemical tracers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, Carla S. S.; Walsh, Rory P. D.; Shakesby, Richard A.; Steenhuis, Tammo S.; Ferreira, António J. D.; Coelho, Celeste O. A.</p> <p>2013-04-01</p> <p>It is well-established that urbanization leads to increased erosion (at least locally) as well as enhanced overland flow and streamflow peaks. Less is known about how the spatial distribution of erosion sources and scale of increases in erosion vary with the nature of urbanization in different climatic and socio-economic settings. This is important in order to prevent or reduce adverse impacts of erosion on downstream sedimentation, channel siltation and shifting, and river pollution. This paper adopts a sediment fingerprinting approach to assess the impact of partial urbanization and associated land-use change on sediment sources within a peri-urban catchment (6 km2), Ribeira dos Covões on the outskirts of the city of Coimbra in central Portugal. Urban land-use has increased from just 6% in 1958 to 30% in 2009. The urban pattern includes some well-defined urban residential centres, but also areas of discontinuous urban sprawl, including educational, health and small industrial facilities, numerous new roads and an enterprise park is under construction on the upper part of the catchment. The catchment has a wet Mediterranean climate and the lithology comprises sandstone in the west and limestone in the east. Soil depth is generally >40cm. The average slope angle is 8° (maximum 47°). Altitude ranges from 30m to 205m. A sediment fingerprinting approach was adopted to help establish the relative importance of sediment inputs from different urban areas. During September 2012 current bed-sediment samples (0-3 cm depth) were collected from 11 channel sites along the main stream and in different tributaries. At sites where bed-sediment was deeper, additional samples were taken at 3cm intervals to a maximum depth of around 42cm. In addition, overbank sediment samples (0-3cm depth) were collected at 11 locations around the catchment. All samples were oven-dried (at 38°C) and different particle size fractions (0.125-2mm, 0.063-0.125mm and <0.063mm) obtained, where the <0.063mm fraction was considered equivalent to the suspended sediment load during storm events. The elemental composition (33 elements) of each fraction was assessed using a Niton X-ray fluorescence analyzer. The results were used to identify distinctive composite signatures of each tributary catchment and their influence on the geochemistry of the catchment outlet bed-sediment was explored. An unmixing model was applied to estimate the relative contribution of each tributary to channel-stored sediment at the catchment outlet. Many of the chemical elements analysed, including Zr, Sr, Zn and Ti, showed significant differences between sandstone and limestone areas. The closeness of values at the catchment outlet to those of sandstone stream bed-sediment indicates that most of the current catchment erosion is derived from the sandstone area. This is supported by the higher measured discharges and suspended sediment concentrations in storm events from the latter. Eroded sediments from urban areas still under construction also showed distinctive characteristics. It is concluded that this methodology represents a potentially useful tool for river managers and policy-makers to detect and assess sediment sources in urbanized catchments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..251H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..251H"><span>Microplastic contamination of river beds significantly reduced by catchment-wide flooding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hurley, Rachel; Woodward, Jamie; Rothwell, James J.</p> <p>2018-04-01</p> <p>Microplastic contamination of the oceans is one of the world's most pressing environmental concerns. The terrestrial component of the global microplastic budget is not well understood because sources, stores and fluxes are poorly quantified. We report catchment-wide patterns of microplastic contamination, classified by type, size and density, in channel bed sediments at 40 sites across urban, suburban and rural river catchments in northwest England. Microplastic contamination was pervasive on all river channel beds. We found multiple urban contamination hotspots with a maximum microplastic concentration of approximately 517,000 particles m-2. After a period of severe flooding in winter 2015/16, all sites were resampled. Microplastic concentrations had fallen at 28 sites and 18 saw a decrease of one order of magnitude. The flooding exported approximately 70% of the microplastic load stored on these river beds (equivalent to 0.85 ± 0.27 tonnes or 43 ± 14 billion particles) and eradicated microbead contamination at 7 sites. We conclude that microplastic contamination is efficiently flushed from river catchments during flooding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOUC...16..738F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOUC...16..738F"><span>Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun</p> <p>2017-10-01</p> <p>Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7519W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7519W"><span>Tidal River Elbe - a sediment budget for the grain size fraction of medium sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winterscheid, Axel</p> <p>2016-04-01</p> <p>Human interventions have a historic and ongoing impact on estuarine sediment budgets across many estuaries worldwide. An early inference was the construction of embankments resulting in a constant loss of intertidal flats. Additionally, settlement activities and large scale land use changes in the upstream catchment areas had also an effect on sediment inflow rates. Today, the navigation channels in estuaries have been deepened for larger and more efficient vessels to reach a well-developed infrastructure of harbors and industrial areas often located far inland. In the past few years and just within the North-East Atlantic, the total annual amount of dredged sediments dumped at sea varied from 80 to 130 million tons (OSPAR Commission). In most estuaries across Europe the resulting human impact on the sediment fluxes and morphodynamics is significant. A good understanding of estuarine processes is essential for determining useful and meaningful measures to mitigate negative effects and to improve the current situation. Maintenance dredging and its environmental effects are therefore in the focus of public attention. Against this background, it is the aim of the presentation to identify and therefore to separate the particular effect that maintenance dredging has on sediment fluxes and budgets in the estuarine environment. Case study is the Tidal River Elbe in Germany, and here we set the focus on the grain size fraction of medium sand. In the past, river engineering measures forced the natural dynamics to form a concentrated stream flow along a fixed channel, except at a number of locations where side channels still exist. In addition to that, the main channel was deepened several times. The last deepening was in 1999/2000. The most significant deepening, however, took place from 1957 to 1962. Until then, an erosion-stable layer of marine clay (in German called "Klei") formed a flat bottom along most sections of the main channel. After removal of this layer of marine clay by capital dredging, Weichselion sandy deposits, which formed the geological layer underneath, now became part of the sediment transport regime. Nowadays, most sections of the main channel are morphologically characterized by a medium sandy river bed and subaquatic dunes of several meters height followed by sections of a poorly structured river bed caused by the sedimentation of silty sediments. By setting up the sediment balance for medium sand, the fluxes entering the estuary from the inland Elbe is one source term in the equation. The average annual load for the medium sand is estimated to be 110,000 m³/year (1996 - 2008, measurement station Neu Darchau). Further downstream in the tidal part of the river there are no further measurement stations located, but the analysis of a time series of multibeam sonar data (2000 to 2014) shows that large amounts of medium sand episodically pass the tidal weir at Geesthacht only in the event of extreme flood. This is due to a significant increase in bed volume between Geesthacht and the Port of Hamburg in the aftermath of a singular extreme event. Until the next extreme event the bed volume (functions as temporary storage for medium sand) is eroding again, which is the second source term. By comparing the information on bed load fluxes, the evolution of bed volumes over time and the dredging statistics we can conclude for the longer term that the total amount of medium sand that has been dredged and taken out of the system for constructional purposes is the same order of magnitude compared to the sum of both source terms. Hence, there is no or very limited net transport of medium sand passing the port area and entering the downstream river section. From the subsequent analysis of multibeam sonar data (2008 - 2014) we know for the river section from Hamburg to Brunsbuettel (total distance of 40 km) that there has been a continuous loss of about 1 Mio. m³/a in bed volumes, which means a deficit situation for medium sand. Currently, the Weichselion deposit is the active source for medium sand, but due to the lack of medium sand fluxes from upstream this at the cost of having an ongoing deepening of the main channel. The presumed cause for this deficit situation is the current management of the sandy dredged material. First of all, dredging and subsequent extraction of the dredged material is strongly affecting the longitudinal transport of medium sandy sediments from upstream through the Port of Hamburg in seaward direction. Further downstream in the river section in deficit, all dredged material, which is about 1 Mio m³/a solely for the fraction of medium sand, is transported by hopper dredgers over a long distance up to 40 km in seaward direction and disposed on a single site near Brunsbuettel. This 1 Mio m³/a is a similar volume in comparison to the loss in bed volume. From an analysis of the geometry of the subaquatic dunes we know for sandy sediments a seaward net transport that exists for large parts of this river section. All in one, there is an irretrievable and ongoing loss of medium sandy sediments. Vice versa for the river section next to Brunsbuettel, which is the location of the disposal site, the data show an increase of bed volumes and dredging amounts at the same time. For the Elbe case study we could demonstrate that maintenance dredging (and the subsequent disposal) could have a significant impact on the large scale sediment budget. Appropriate measures to stabilize the sediment budget in the inner part of the Tidal River Elbe for medium sand is (a) to dispose all medium sandy dredged material as close as possible to the location of dredging and (b) to reduce the extraction of medium sand in the Hamburg Port area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5008/sir20175008.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5008/sir20175008.pdf"><span>Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hermosillo, Edyth; Coes, Alissa L.</p> <p>2017-03-01</p> <p>Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14C1001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14C1001C"><span>Field Observations of Swash-Zone Dynamics on a Sea-Breeze Dominated Beach at the Yucatán Peninsula, México</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chardon-Maldonado, P.; Puleo, J. A.; Torres-Freyermuth, A.</p> <p>2016-02-01</p> <p>Sea breezes can modify the nearshore processes and alter beach morphology depending on the geographical location. Prior studies have shown that surf zone wave energy intensifies during strong sea-breeze conditions (wind speeds > 10 ms-1) and the impact on the coast can be similar to a small storm. However, few research efforts have investigated the coastal dynamics on sea-breeze dominated beaches (e.g., Masselink and Pattiaratchi, 1998, Mar. Geol.; Pattiaratchi et al., 1997, Cont. Shelf Res.) and, to the authors' knowledge, only one study has focused on swash-zone processes (Sonu et al., 1973, EOS). A field study was performed on a microtidal, low wave energy, sea-breeze dominated sandy beach in order to investigate the effects of local (sea breeze) and synoptic (storm) scale meteorological events on swash-zone dynamics. In-situ measurements of swash-zone hydrodynamics and sediment transport processes were collected from March 31st to April 12th, 2014 in Sisal, Yucatán located on the northern coast of the Yucatán Peninsula. Flow velocities and suspended sediment concentrations were measured concurrently, at multiple cross-shore and alongshore locations, using Vectrino-II profiling velocimeters and optical backscatter sensors, respectively. The high resolution data allowed the quantification of bed shear stress, turbulent dissipation rate, sediment loads and sediment flux during a mesoscale frontal system (cold-front passage referred to as an El Norte) and local sea-breeze cycles. Field observations showed that strong swash-zone bed shear stresses, turbulence intensity and sediment suspension occur during energetic conditions (i.e., El Norte event). On the other hand, despite milder energy conditions during the sea-breeze events, the alongshore component of bed-shear stresses and velocities can be significant owing to the high incidence wave angle associated with the sea-breeze system in the study area. The increased forcing in the swash zone induced sediment suspension, eroding the foreshore and causing accretion in the surf zone. The preliminary analysis demonstrates that strong sea-breeze events induce a significant alongshore swash-zone sediment transport that may be more important than that observed during an El Norte event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16206852','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16206852"><span>Investigating the effect of storm events on the particle size distribution in a combined sewer simulator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Biggs, C A; Prall, C; Tait, S; Ashley, R</p> <p>2005-01-01</p> <p>The changes in particle size of sewer sediment particles rapidly eroded from a previously deposited sediment bed are described, using a rotating annular flume as a laboratory scale sewer simulator. This is the first time that particle size distributions of eroded sewer sediments from a previously deposited sediment bed have been monitored in such a controlled experimental environment. Sediments from Loenen, The Netherlands and Dundee, UK were used to form deposits in the base of the annular flume (WL Delft Netherlands) with varying conditions for consolidation in order to investigate the effect of changing consolidation time, temperature and sediment type on the amount and size of particles eroded from a bed under conditions of increasing shear. The median size of the eroded particles did not change significantly with temperature, although the eroded suspended solids concentration was greater for the higher temperature under the same shear stresses, indicating a weaker bed deposit. An increase in consolidation time caused an increase in median size of eroded solids at higher bed shear stresses, and this was accompanied by higher suspended solids concentrations. As the shear stress increased, the solids eroded from the bed developed under a longer consolidation time (56 hours) tended towards a broad unimodal distribution, whilst the size distribution of solids eroded from beds developed under shorter consolidation times (18 or 42 hours) retained a bi- or tri-modal distribution. Using different types of sediment in the flume had a marked effect on the size of particles eroded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032148','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032148"><span>Influence of dams on river-floodplain dynamics in the Elwha River, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kloehn, K.K.; Beechie, T.J.; Morley, S.A.; Coe, H.J.; Duda, J.J.</p> <p>2008-01-01</p> <p>The Elwha dam removal project presents an ideal opportunity to study how historic reduction and subsequent restoration of sediment supply alter river-floodplain dynamics in a large, forested river floodplain. We used remote sensing and onsite data collection to establish a historical record of floodplain dynamics and a baseline of current conditions. Analysis was based on four river reaches, three from the Elwha River and the fourth from the East Fork of the Quinault River. We found that the percentage of floodplain surfaces between 25 and 75 years old decreased and the percentage of surfaces >75 years increased in reaches below the Elwha dams. We also found that particle size decreased as downstream distance from dams increased. This trend was evident in both mainstem and side channels. Previous studies have found that removal of the two Elwha dams will initially release fine sediment stored in the reservoirs, then in subsequent decades gravel bed load supply will increase and gradually return to natural levels, aggrading river beds up to 1 m in some areas. We predict the release of fine sediments will initially create bi-modal grain size distributions in reaches downstream of the dams, and eventual recovery of natural sediment supply will significantly increase lateral channel migration and erosion of floodplain surfaces, gradually shifting floodplain age distributions towards younger age classes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=282622&keyword=Tuberculosis+AND+pulmonary+OR+Mexico&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=282622&keyword=Tuberculosis+AND+pulmonary+OR+Mexico&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Bedded Sediment Conditions and Macroinvertebrate Responses in New Mexico Streams: A First Step in Establishing Sediment Criteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Aquatic life protection was the impetus for a New Mexico Environment Department (NMED) effort to define bedded sediment conditions in streams that were natural and tolerable, especially to benthic macroinvertebrates. Sediments were measured using surveys of streambed particles to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=313314','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=313314"><span>Effect of sediment transport boundary conditions on the numerical modeling of bed morphodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Experimental sediment transport studies in laboratory flumes can use two sediment-supply methods: an imposed feed at the upstream end or recirculation of sediment from the downstream end to the upstream end. These methods generally produce similar equilibrium bed morphology, but temporal evolution c...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018098','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018098"><span>Paleoslumps in coal-bearing strata of the Breathitt Group (Pennsylvanian), Eastern Kentucky Coal Field, U.S.A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greb, S.F.; Weisenfluh, G.A.</p> <p>1996-01-01</p> <p>The benefits of geologic analysis for roof-control studies and hazard prediction in coal mines are well documented. Numerous case studies have illustrated the importance of recognizing geologic features such as paleochannels, coal riders, and kettlebottoms in mine roofs. Relatively understudied features, in terms of mining, are paleoslumps. Paleoslumps represent ancient movement and rotation of semi-consolidated sediment. Because bedding in paleoslumps is deformed or inclined, these features cause instability in mine roofs, haul roads, surface highwalls, and other excavations. Various types of paleoslumps above coals in the Eastern Kentucky Coal Field were studied in order to aid in their recognition and prediction in mines. The paleoslumps studied all showed characteristic slump-deformation features, although some differences in magnitude of deformation and overall slump size were noted. Coals beneath slumps often exhibited folding, reverse displacements, truncation, clastic dikes, and locally increased thickness. Slumps are inferred to have been triggered by a wide range of mechanisms, such as loading of water-saturated sediment on rigid substrates, synsedimentary faulting, and over-pressurization of channel margin and bar slopes. Analysis of paleoslumps in underground mines, where paleoslumps are viewed from beneath rather than in profile is difficult, since characteristic bed rotation may not be conspicuous. Sudden increases in bed-dip angle inferred from changes in rock type or bedding contacts in the roof; occurrence of bounding, polished rotation surfaces; or roof irregularity and occurrence of loading features may indicate the presence of paleoslumps. Another key to recognition may be the sudden appearance of over-thickened coal, which can occur because of slump-created paleotopography, synsedimentary faults, and slump-generated overthrusting. In addition, steeply inclined, folded, or transported coal marginal to paleoslumps can create apparent increases in coal thickness in cores. Although thick coals are obviously a target of exploration, anomalously thick coals may actually indicate adjacent paleoslumps accompanied by hazardous roof conditions and loss of seam thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1669b/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1669b/report.pdf"><span>Sediment characteristics of small streams in southern Wisconsin, 1954-59</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Collier, Charles R.</p> <p>1963-01-01</p> <p>The results of investigations of the sediment and water discharge characteristics of Black Earth Creek, Mount Vernon Creek, and Yellowstone River from 1954 to 1959 and Dell Creek for 1958 and 1959 indicate large differences in annual runoff and sediment yields. The suspended-sediment discharge of Black Earth Creek averaged 3,260 tons per year or 71 tons per square mile : the annual yields ranged from 27 to 102 tons per square mile. The annual suspended-sediment yield of Mount Vernon Creek ranged from 48 to 171 tons per square mile and averaged 96 tons per square mile. The maximum daily discharge was 1,120 tons on April 1, 1960, during a storm which produced 67 percent of the suspended load for that water year and exceeded the discharge for the preceding 3 years. The sediment discharge of the Yellowstone River averaged 6,870 tons per year or 236 tons per square riffle. The maximum daily sediment discharge, 3,750 tons on April 1, 1959, occurred during a 14-day period of high flow during which the sediment discharge was 15,480 tons. In 1958 and 1959, Dell Creek had suspended-sediment yields of 4.7 and 26 tons per square mile of drainage area. The suspended sediment transported by Black Earth and Mount Vernon Creeks is about two-thirds clay and one-third silt. For Yellowstone River the particle-size distribution of the suspended sediment ranged from three-fourths clay and one-fourth silt during periods of low sediment discharge to one-third clay and two-thirds silt during high sediment discharges. For Dell Creek nearly all of the suspended sediment is clay, but the bed load is sand. The mean sediment concentration of storm runoff averaged two to three times more in the summer than in the winter. No significant changes with time occurred in the relation between storm runoff and sediment yield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27321802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27321802"><span>Artificial soft sediment resuspension and high density opportunistic macroalgal mat fragmentation as method for increasing sediment zoobenthic assemblage diversity in a eutrophic lagoon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martelloni, Tatiana; Tomassetti, Paolo; Gennaro, Paola; Vani, Danilo; Persia, Emma; Persiano, Marco; Falchi, Riccardo; Porrello, Salvatore; Lenzi, Mauro</p> <p>2016-09-15</p> <p>Superficial soft sediment resuspension and partial fragmentation of high density opportunistic macroalgal mats were investigated by boat to determine the impact on zoobenthic assemblages in a eutrophic Mediterranean lagoon. Sediment resuspension was used to oxidise superficial organic sediments as a method to counteract the effects of eutrophication. Likewise, artificial decay of macroalgal mat was calculated to reduce a permanent source of sediment organic matter. An area of 9ha was disturbed (zone D) and two other areas of the same size were left undisturbed (zones U). We measured chemical-physical variables, estimated algal biomass and sedimentary organic matter, and conducted qualitative and quantitative determinations of the zoobenthic species detected in sediment and among algal mats. The results showed a constant major reduction in labile organic matter (LOM) and algal biomass in D, whereas values in U remained stable or increased. In the three zones, however, bare patches of lagoon bed increased in size, either by direct effect of the boats in D or by anaerobic decay of the algal mass in U. Zoobenthic assemblages in algal mats reduced the number of species in D, probably due to the sharp reduction in biomass, but remained stable in U, whereas in all three areas abundance increased. Sediment zoobenthic assemblages increased the number of species in D, as expected, due to drastic reduction in LOM, whereas values in U remained stable and again abundance increased in all three zones. In conclusion, we confirmed that reduction of sediment organic load enabled an increase in the number of species, while the algal mats proved to be an important substrate in the lagoon environment for zoobenthic assemblages, especially when mat alternated with bare intermat areas of lagoon bed. Sediment resuspension is confirmed as a management criterion for counteracting the effects of eutrophication and improving the biodiversity of zoobenthic assemblages in eutrophic lagoon environments. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035787','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035787"><span>Water-quality assessment of the largely urban blue river basin, Metropolitan Kansas City, USA, 1998 to 2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilkison, D.H.; Armstrong, D.J.; Hampton, S.A.</p> <p>2009-01-01</p> <p>From 1998 through 2007, over 750 surface-water or bed-sediment samples in the Blue River Basin - a largely urban basin in metropolitan Kansas City - were analyzed for more than 100 anthropogenic compounds. Compounds analyzed included nutrients, fecal-indicator bacteria, suspended sediment, pharmaceuticals and personal care products. Non-point source runoff, hydrologic alterations, and numerous waste-water discharge points resulted in the routine detection of complex mixtures of anthropogenic compounds in samples from basin stream sites. Temporal and spatial variations in concentrations and loads of nutrients, pharmaceuticals, and organic wastewater compounds were observed, primarily related to a site's proximity to point-source discharges and stream-flow dynamics. ?? 2009 ASCE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171407','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171407"><span>Accumulation of radionuclides in bed sediments of the Columbia River between Hanford reactors and McNary Dam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, Jack L.; Haushild, W.L.</p> <p>1970-01-01</p> <p>Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2011/1314/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2011/1314/"><span>Water-quality, bed-sediment, and biological data (October 2009 through September 2010) and statistical summaries of data for streams in the Clark Fork basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2012-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2009 through September 2010. Bed-sediment and biota samples were collected once at 13 sites during August 2010. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2009 through September 2010. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1034/pdf/of2014-1034.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1034/pdf/of2014-1034.pdf"><span>Water-quality, bed-sediment, and biological data (October 2011 through September 2012) and statistical summaries of data for streams in the Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2014-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2011 through September 2012. Bed-sediment and biota samples were collected once at 13 sites during August 2012. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2011 through September 2012. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record since 1985.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bsr/2000/0001/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bsr/2000/0001/report.pdf"><span>Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.</p> <p>2001-01-01</p> <p>Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream water; (3) to develop site-specific thresholds for toxicity of Zn and Cu in stream water; and (4) to develop models of the contributions of Cu and Zn to toxicity of stream water, which may be used to characterize toxicity before and after planned remediation efforts. We evaluated the toxicity of metal-contaminated sediments by conducting sediment toxicity tests with two species of benthic invertebrates, the midge, Chironomus tentans. and the amphipod, Hyalella azteca. Laboratory toxicity tests with both taxa, exposed to fine stream-bed sediments collected in September 1997, showed some evidence of sediment toxicity, as survival of midge larvae in sediments from Cement Creek (C48) and lower Mineral Creek (M34), and growth of amphipods in sediments from these sites and three Animas River sites (A68, Animas at Silverton; A72, Animas below Silverton, and A73, Animas at Elk Park) were significantly reduced compared to a reference site, South Mineral Creek (SMC) . Amphipods were also exposed to site water and fine stream-bed sediment, separately and in combination, during the late summer low flow period (August-September) of 1998. In these studies, stream water, with no sediment present, from all five sites tested (same sites as above, except C48) caused 90% to 100% mortality of amphipods. In contrast, significant reductions in survival of amphipods occurred at two sites (A72 and SMC) in exposures with field-collected sediment plus stream water, and at only one site (A72) in exposures with sediments and clean overlying water. Concentrations of Zn, Pb, Cu, and Cd were high in both sediment and pore water (interstitial water) from most sites tested, but greatest sediment toxicity was apparently associated with greater concentrations of Fe and/or Al in sediments. These results suggest that fine stream-bed sediments of the more contaminated stream reaches of the upper Animas River watershed are toxic to benthic invertebrates, but that these impacts are less serious than tox</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H51H..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H51H..05V"><span>Can coarse surface layers in gravel-bedded rivers be mobilized by finer gravel bedload?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venditti, J. G.; Dietrich, W. E.; Nelson, P. A.; Wydzga, M. A.; Fadde, J.; Sklar, L.</p> <p>2005-12-01</p> <p>In response to reductions in sediment supply, gravel-bed rivers undergo a coarsening of the sediments that comprise the river's bed and, over some longer time scale, a river's grade may also be reduced as sediments are depleted from upstream reaches. Coarse, degraded river reaches are commonly observed downstream of dams across the Western United States. Following dam closure, these riverbeds become immobile under the altered flow and sediment supply regimes, leading to a reduction in the available salmon spawning and rearing habitat. Gravel augmentation to these streams is now common practice. This augmentation is typically seen as resurfacing the static coarse bed. As an alternative, we propose that the addition of appropriately finer gravels to these channels may be capable of mobilizing an otherwise immobile coarse surface layer, creating the potential to release fine material trapped beneath the surface. A series of laboratory experiments are being undertaken to test this hypothesis in a 30 m long and 0.86 m wide gravel-bedded flume channel using a constant discharge and a unimodal bed sediment with a median grain size of 8 mm and no sand present. The channel width-to-depth ratio of ~4 suppresses the development of lateral topography and allows us to focus on grain-to-grain interactions. Experiments proceed by maintaining a constant sediment feed until an equilibrium grade and transport rate are established, starving the flume of sediment for at least 24 hours, and then adding narrowly graded gravel over a period of one to two hours at a rate that is ~4x the bedload rate observed prior to terminating the sediment supply. The bed prior to sediment addition has an armor median grain size that is typically twice that of the subsurface and feed size distribution. The volume and median grain size of the resulting pulses are varied. Pulses move downstream rapidly with well-defined fronts in the form of bedload sheets and cause peaks in the sediment flux approximately equal to the supply rate. Once the pulse has passed through the flume, bedload flux rapidly drops to background values, leaving few introduced grains on the bed. When the sediment feed is the median grain size of the subsurface bed material mixture, few armor grains are mobilized, although there is some exchange between the surface and bedload. Pulses composed of the fine tail of the surface grain size distribution are capable of mobilizing all grain sizes in the armor (including the largest grains) as finer bedload fills the interstices of the coarse surface layer. This suggests that gravel augmentation using fine gravel may provide an effective means of improving bed mobility conditions. Further experiments are underway to explore the effects of repeated fine gravel addition on bed state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6208B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6208B"><span>Effect of geometrical configuration of sediment replenishment on the development of bed form patterns in a gravel bed channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Battisacco, Elena; Franca, Mário J.; Schleiss, Anton J.</p> <p>2016-04-01</p> <p>Dams interrupt the longitudinal continuity of river reaches since they store water and trap sediment in the upstream reservoir. By the interruption of the sediment continuum, the transport capacity of downstream stretch exceeds the sediment supply, thus the flow becomes "hungry". Sediment replenishment is an increasingly used method for restoring the continuity in rivers and for re-establishing the sediment regime of such disturbed river reaches. This research evaluates the effect of different geometrical configurations of sediment replenishment on the evolution of the bed morphology by systematic laboratory experiments. A typical straight armoured gravel reach is reproduced in a laboratory flume in terms of slope, grain size and cross section. The total amount of replenished sediment is placed in four identical volumes on both channel banks, forming six different geometrical configurations. Both alternated and parallel combinations are studied. Preliminary studies demonstrate that a complete submergence condition of the replenishment deposits is most adequate for obtaining a complete erosion and a high persistence of the replenished material in the channel. The response of the channel bed morphology to replenishment is documented by camera and laser scanners installed on a moveable carriage. The parallel configurations create an initially strong narrowing of the channel section. The transport capacity is thus higher and most of the replenished sediments exit the channel. The parallel configurations result in a more spread distribution of grains but with no clear morphological pattern. Clear bed form patterns can be observed when applying alternated configurations. Furthermore, the wavelength of depositions correspond to the replenishment deposit length. These morphological forms can be assumed as mounds. In order to enhance channel bed morphology on an armoured bed by sediment replenishment, alternated deposit configurations are more favourable and effective. The present study is supported by FOEN (Federal Office for the Environment, Switzerland).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26573308','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26573308"><span>The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hotton, Veronica K; Sutherland, Ross A</p> <p>2016-03-01</p> <p>The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54..107R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54..107R"><span>Variability of Bed Load Transport During Six Summers of Continuous Measurements in Two Austrian Mountain Streams (Fischbach and Ruetz)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rickenmann, Dieter</p> <p>2018-01-01</p> <p>Previous measurements of bed load transport in gravel bed streams revealed a large temporal and spatial variability of bed load transport rates. Using an impact plate geophone system, continuous bed load transport measurements were made during 6 years in two mountain streams in Austria. The two streams have a snow-melt and glacier-melt dominated hydrologic regime resulting in frequent transport activity during the summer half year. Periods of days to weeks were identified which are associated with approximately constant Shields values that indicate quasi-stable bed conditions. Between these stable periods, the position of the bed load transport function varied while its steepness remained approximately constant. For integration time scales of several hours to 1 day, the fluctuations in bed load transport decreased and the correlation between bed load transport and water discharge increased. For integration times of about 70-100 days, bed load transport is determined by discharge or shear stress to within a factor of about 2, relative to the 6 year mean level. Bed load texture increased with increasing mean flow strength and mean transport intensity. Weak and predominantly clockwise daily hysteresis of bed load transport was found for the first half of the summer period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2361I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2361I"><span>Spaced planar laminations formed by repetitive basal erosion and resurgence to high-sedimentation-rate regime: new insight from a bedform-like structures and laterally continuous exposures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishihara, Yoshiro; Yuri, Onishi; Tsuda, Keisuke; Yokokawa, Miwa</p> <p>2017-04-01</p> <p>Spaced planar laminations (SPL), or so-called traction carpet deposits, are frequently observed in deposits of sediment gravity flows. Several sedimentation models for a succession of inversely graded units have been suggested from field observations and flume experiments. The formation of the inversely graded unit could be summarized as follows: (1) abrupt sedimentation on freezing of an inversely graded layer, or (2) interruptions in flow causing a freezing of an inversely graded layer at the most basal part of flow. In either case, traction carpets as a bed load overlying the erosive boundary at the base of flow are required. Although some descriptions have reported SPLs forming antidune bedform-like structures and the association of SPLs with structureless massive deposits have not been clearly explained. In this study, we suggest a novel model of SPL formation by repetition of basal erosion and resurgence to high-sedimentation rates, based on detail examinations of SPLs both showing bedform-like structures and lateral extents of hundreds of meters. SPLs were investigated in the Mio-Pliocene Kiyosumi Formation in central Japan and the Miocene Aoshima Formation in southwest Japan. In a turbidite in the Kiyosumi Formation, SPLs show three mound-like structures, suggesting antidune bedforms with wavelengths of about 6 to 7 m. On the upcurrent flanks, SPLs show lenticular cross laminations or pinching out of units; those units do not show clear inverse grading. Rip-up mud clasts and relatively high-angle imbrications are also observed. On the other hand, SPLs on the downcurrent flanks show relatively clear inverse grading and transition downcurrent into a massive structureless bed. In the Aoshima Formation, SPLs with ca. 1 cm unit thickness continue approximately 50 m along a palaeocurrent direction without changes in thickness. These SPLs gradually transition upward into a massive structureless unit. From the observations described above, in addition to descriptions from previous studies, it is suggested that SPLs comprising mound-like bedforms exhibit erosive conditions in the upcurrent flanks and depositional conditions in the downcurrent flanks, whereas SPLs on flat sea-floor extensively maintain their structure. Also, massive structureless beds are observed when erosion did not occur. These facts indicate that SPLs are strongly associated with an erosional process at the base of sediment gravity flows under a supercritical flow condition. The formation of SPLs does not necessary require a traction carpet and they may reflect basal erosion with a lag deposit of fine-grained particles, followed by resurgence to conditions of high sedimentation rates and massive structureless bed deposition. Repetitions of inversely graded units could occur when basal shear stresses are changed by fluctuations of flow depth, such as internal waves in a sediment gravity flow. This model can explain the concurrence of massive structureless beds with SPLs and examples of bedform-like structures without a unit thickness control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1994/0375/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1994/0375/report.pdf"><span>Water-quality, bed-sediment, and biological data (October 1992 through September 1993) and statistical summaries of water-quality data (March 1985 through September 1993) for streams in the upper Clark Fork basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lambing, John H.</p> <p>1994-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Water-quality data were obtained periodically at 16 stations during October 1992 through September 1993 (water year 1993); daily suspended-sediment data were obtained at six of these stations. Bed-sediment and biological data were obtained at 11 stations in August 1993. Sampling stations were located on the Clark Fork and major tributaries. The primary constituents analyzed were trace elements associated with mine tailings from historic mining and smelting activities. Water-quality data include concentra- tions of major ions, trace elements, and suspended sediment in samples collected periodically during water year 1993. A statistical summary of water- quality data is provided for the period of record at each station since 1985. Daily values of streamflow, suspended-sediment concentration, and suspended-sediment discharge are given for six stations. Bed-sediment data include trace- element concentrations in the fine and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/23942','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/23942"><span>A general power equation for predicting bed load transport rates in gravel bed rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jeffrey J. Barry; John M. Buffington; John G. King</p> <p>2004-01-01</p> <p>A variety of formulae has been developed to predict bed load transport in gravel bed rivers, ranging from simple regressions to complex multiparameter formulations. The ability to test these formulae across numerous field sites has, until recently, been hampered by a paucity of bed load transport data for gravel bed rivers. We use 2104 bed load transport observations...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..DFD.HM004F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..DFD.HM004F"><span>Wave Driven Fluid-Sediment Interactions over Rippled Beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foster, Diane; Nichols, Claire</p> <p>2008-11-01</p> <p>Empirical investigations relating vortex shedding over rippled beds to oscillatory flows date back to Darwin in 1883. Observations of the shedding induced by oscillating forcing over fixed beds have shown vortical structures to reach maximum strength at 90 degrees when the horizontal velocity is largest. The objective of this effort is to examine the vortex generation and ejection over movable rippled beds in a full-scale, free surface wave environment. Observations of the two-dimensional time-varying velocity field over a movable sediment bed were obtained with a submersible Particle Image Velocimetry (PIV) system in two wave flumes. One wave flume was full scale and had a natural sand bed and the other flume had an artificial sediment bed with a specific gravity of 1.6. Full scale observations over an irregularly rippled bed show that the vortices generated during offshore directed flow over the steeper bed form slope were regularly ejected into the water column and were consistent with conceptual models of the oscillatory flow over a backward facing step. The results also show that vortices remain coherent during ejection when the background flow stalls (i.e. both the velocity and acceleration temporarily approach zero). These results offer new insight into fluid sediment interaction over rippled beds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006WRR....4210419W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006WRR....4210419W"><span>Predicting the distribution of bed material accumulation using river network sediment budgets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.</p> <p>2006-10-01</p> <p>Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981SedG...29..171V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981SedG...29..171V"><span>Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vos, Richard G.; Tankard, Anthony J.</p> <p>1981-07-01</p> <p>Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186200','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186200"><span>Marginal bed load transport in a gravel bed stream, Sagehen Creek, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Andrews, E.D.</p> <p>1994-01-01</p> <p>Marginal bed load transport describes the condition when relatively few bed particles are moving at any time. Bed particles resting in the shallowest bed pockets will move when the dimensionless shear stress т* exceeds a value of about 0.020. As т* increases, the number of bed particles moving increases. Significant motion of bed particles, i.e., when a substantial fraction of the bed particles are moving, occurs when т* exceeds a value of about 0.060. Thus marginal bed load transport occurs over the domain 0.020 < т* < 0.060. Marginal bed load transport rates and associated hydraulic characteristics of Sagehen Creek, a small mountain gravel bed stream, were measured on 55 days at discharges ranging from slightly less than one half of the bank-full discharge to more than 4 times the bank-full discharge. Dimensionless shear stress varied from 0.032 to 0.042, and bed particles as large as the 80th percentile of the bed surface were transported. The relation between reference dimensionless shear stress and relative particle protrusion for Sagehen Creek was determined by varying т*ri to obtain the best fit of the Parker bed load function to the measured transport rates. During the period of record (water years 1954–1991), the mean annual quantity of bed load transported past the Sagehen Creek gage was 24.7 tons. Forty-seven percent of all bed load transported during the 38 years of record occurred in just 6 years. During 10 of the 38 years of record, essentially no bed load was transported. The median diameter of bed load was 26 mm, compared to 58 mm in the surface bed material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811665G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811665G"><span>Testing fine sediment connectivity hypotheses using fallout radionuclide tracers in a small catchment with badlands. Vallcebre Research Catchments (NE Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallart, Francesc; Latron, Jérôme; Vuolo, Diego; Martínez-Carreras, Núria; Pérez-Gallego, Nuria; Ferrer, Laura; Estrany, Joan</p> <p>2016-04-01</p> <p>In the Vallcebre Research Catchments (NE Spain), results obtained during over 20 years showed that badlands are the primary sources of sediments to the drainage network. Parent lutitic rocks are weathered during winter producing regoliths, which are eroded from badland surfaces mainly during summer intense rainstorms. Even if the produced sediments are mainly fine, due to the ephemeral nature of summer runoff events most of them are deposited on the stream beds, where they may remain during some time (months to years). Within the MEDhyCON project, a fallout radionuclides (FRNs) tracing experiment (i.e., excess lead 210 (Pbx-210) and beryllium 7 (Be-7)) is being carried out in order to investigate sediment connectivity. A simplified Pbx-210 balance model on badland surfaces suggested a seasonal sawtooth-like activity pattern: FRN being accumulated in regoliths from October to June and depleted in summer. Early summer erosion events would produce the sediments with the highest activity whereas late summer events would produce sediments with the lowest activity coming from the deeper regolith horizons. These findings lead us to launch two sediment transfer connectivity hypotheses analysing respectively the temporal and spatial variability of the Pb-210 activities within the fine sediments at the small catchment scale: (1) The temporal variability of suspended sediment activities at the gauging stations is a measure of sediment transfer immediacy, ergo connectivity. Hence, a high variability in suspended sediment activities, mimicking regolith activity temporal pattern would indicate high connectivity, whereas a low variability, meaning that sediments are mostly pooled in a large and slowly moving stock, would indicate low connectivity. (2) In a drainage system where fine sediments temporarily remain on the dry stream bed, the ratio between fine sediment activities at the sources and fine in-stream sediment activities downstream is a measure of sediment connectivity. Indeed, long residence time of stream bed sediments allowing FRN accumulation is suggested by (i) fine in-stream sediment activities higher than those measured at their sources and (ii) increasing activities downstream. Results showed a more intricate behaviour than expected. Pbx-210 activities of fine bed and suspended sediments were usually below detectable levels or had large uncertainty bounds, confirming that they come mainly from fresh rocks but making difficult the hypotheses testing. Fine sediments on the stream beds had low activities in contradiction with hypothesis 2. Activities of in-stream suspended sediments partly followed hypothesis 1 but they decreased with the increasing capacity of runoff events to mobilise low-activity sediments from the stream bed. Shorter-lived Be-7 activity was detectable only on badland regoliths and suspended sediments, with activities increasing downstream; this cannot be attributed to the accumulation of FRN in old sediments, because of the short life of Be-7. Instead, fine bed sediments might be brought into suspension by raindrop impacts, and most of the FRN content of these raindrops would be flushed with the suspended sediment, impeding its accumulation on bed sediments and disabling hypothesis 2. Overall, several lines of evidence suggest that FRNs were quickly sequestered by the more dynamic sediment particles, preventing its accumulation on coarser sediment particles and surfaces exposed to overland or stream flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011E%26PSL.302..107G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011E%26PSL.302..107G"><span>Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garzanti, Eduardo; Andó, Sergio; France-Lanord, Christian; Censi, Paolo; Vignola, Pietro; Galy, Valier; Lupker, Maarten</p> <p>2011-02-01</p> <p>Sediments carried in suspension represent a fundamental part of fluvial transport. Nonetheless, largely because of technical problems, they have been hitherto widely neglected in provenance studies. In order to determine with maximum possible precision the mineralogy of suspended load collected in vertical profiles from water surface to channel bottom of Rivers Ganga and Brahmaputra, we combined Raman spectroscopy with traditional heavy-mineral and X-ray diffraction analyses, carried out separately on low-density and dense fractions of all significant size classes in each sample (multiple-window approach). Suspended load resulted to be a ternary mixture of dominant silt enriched in phyllosilicates, subordinate clay largely derived from weathered floodplains, and sand mainly produced by physical erosion and mechanical grinding during transport in Himalayan streams. Sediment concentration and grain size increase steadily with water depth. Whereas absolute concentration of clay associated with Fe-oxyhydroxides and organic matter is almost depth-invariant, regular mineralogical and consequently chemical changes from shallow to deep load result from marked increase of faster-settling, coarser, denser, or more spherical grains toward the bed. Such steady intersample compositional variability can be modeled as a mixture of clay, silt and sand modes with distinct mineralogical and chemical composition. With classical formulas describing sediment transport by turbulent diffusion, absolute and relative concentrations can be predicted at any depth for each textural mode and each detrital component. Based on assumptions on average chemistry of detrital minerals and empirical formulas to calculate their settling velocities, the suspension-sorting model successfully reproduces mineralogy and chemistry of suspended load at different depths. Principal outputs include assessment of contributions by each detrital mineral to the chemical budget, and calibration of dense minerals too rare to be precisely estimated by optical or Raman analysis but crucial in both detrital-geochronology and settling-equivalence studies. Hydrodynamic conditions during monsoonal discharge could also be evaluated. Understanding compositional variability of suspended load is a fundamental pre-requisite to correctly interpret mineralogical and geochemical data in provenance analysis of modern and ancient sedimentary deposits, to accurately assess weathering processes, sediment fluxes and erosion patterns, and to unambiguously evaluate the effects of anthropogenic modifications on the natural environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=182484&keyword=Atlantic+AND+forest&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=182484&keyword=Atlantic+AND+forest&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>DEVELOPING WATER QUALITY CRITERIA FOR SUSPENDED AND BEDDED SEDIMENTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The U.S. EPA’s Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) is a nationally-consistent process for developing ambient sediment quality criteria for surface waters. The SABS Framework accommodates natural variation among wa...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026952','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026952"><span>Density stratification effects in sand-bed rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wright, S.; Parker, G.</p> <p>2004-01-01</p> <p>In this paper the effects of density stratification in sand-bed rivers are studied by the application of a model of vertical velocity and concentration profiles, coupled through the use of a turbulence closure that retains the buoyancy terms. By making the governing equations dimensionless, it is revealed that the slope is the additional dimensionless parameter introduced by inclusion of the buoyancy terms. The primary new finding is that in general density stratification effects tend to be greater in large, low-slope rivers than in their smaller, steeper brethren. Under high flow conditions the total suspended load and size distribution of suspended sediment can be significantly affected by density stratification, and should be accounted for in any general theory of suspended transport. ?? ASCE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12871740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12871740"><span>The contribution of particles washed from rooftops to contaminant loading to urban streams.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van Metre, P C; Mahler, B J</p> <p>2003-09-01</p> <p>Rooftops are both a source of and a pathway for contaminated runoff in urban environments. To investigate the importance of particle-associated contamination in rooftop runoff, particles washed from asphalt shingle and galvanized metal roofs at sites 12 and 102 m from a major expressway were analyzed for major and trace elements and PAHs. Concentrations and yields from rooftops were compared among locations and roofing material types and to loads monitored during runoff events in the receiving urban stream to evaluate rooftop sources and their potential contribution to stream loading. Concentrations of zinc, lead, pyrene, and chrysene on a mass per mass basis in a majority of rooftop samples exceeded established sediment quality guidelines for probable toxicity of bed sediments to benthic biota. Fallout near the expressway was greater than farther away, as indicated by larger yields of all contaminants investigated, although some concentrations were lower. Metal roofing was a source of cadmium and zinc and asphalt shingles a source of lead. The contribution of rooftop washoff to watershed loading was estimated to range from 6 percent for chromium and arsenic to 55 percent for zinc. Estimated contributions from roofing material to total watershed load were greatest for zinc and lead, contributing about 20 and 18 percent, respectively. The contribution from atmospheric deposition of particles onto rooftops to total watershed loads in stormwater was estimated to be greatest for mercury, contributing about 46 percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Geomo..64..255M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Geomo..64..255M"><span>An assessment of the impact of upland afforestation on lowland river reaches: the Afon Trannon, mid-Wales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mount, N. J.; Sambrook Smith, G. H.; Stott, T. A.</p> <p>2005-01-01</p> <p>Upland afforestation in the UK was the largest rural land-use change last century. As a consequence, the bed load yields of upland catchments increased substantially. Circumstantial evidence suggests that, when this increased load reaches the lowland catchment, it is deposited, triggering flow diversion and channel instability. However, despite the widespread adoption of this theory, it remains to be properly tested. This paper uses aerial photograph analysis and contemporary channel digital terrain models (DTMs) to assess this concept on the Afon Trannon, mid-Wales, the upper catchment of which was afforested between 1948 and 1978. Construction of a sediment budget demonstrates that upland catchment bed load yields are only equivalent to localized inputs of gravel from bank erosion and are therefore unlikely to be totally responsible for producing the high rates of channel change observed in some lowland reaches. Channel instability appears to be more related to the nature of the local bank input as those reaches where gravel is not present in the bank material are stable. Additionally, flood magnitude and frequency are shown to have increased since 1988, a factor of at least equal importance to that of bed load yields from either upland catchments or local bank erosion. It is concluded that, in contrast to previous work, afforestation in the uplands has only a minor influence on downstream reaches of the Afon Trannon. Situations where upland afforestation may have a greater impact on downstream reaches are discussed and the implications for best management practice explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380060','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380060"><span>Sediment supply controls equilibrium channel geometry in gravel rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Finnegan, Noah J.; Willenbring, Jane K.</p> <p>2017-01-01</p> <p>In many gravel-bedded rivers, floods that fill the channel banks create just enough shear stress to move the median-sized gravel particles on the bed surface (D50). Because this observation is common and is supported by theory, the coincidence of bankfull flow and the incipient motion of D50 has become a commonly used assumption. However, not all natural gravel channels actually conform to this simple relationship; some channels maintain bankfull stresses far in excess of the critical stress required to initiate sediment transport. We use a database of >300 gravel-bedded rivers and >600 10Be-derived erosion rates from across North America to explore the hypothesis that sediment supply drives the magnitude of bankfull shear stress relative to the critical stress required to mobilize the median bed surface grain size (τbf*/τc*). We find that τbf*/τc* is significantly higher in West Coast river reaches (2.35, n = 96) than in river reaches elsewhere on the continent (1.03, n = 245). This pattern parallels patterns in erosion rates (and hence sediment supplies). Supporting our hypothesis, we find a significant correlation between upstream erosion rate and local τbf*/τc* at sites where this comparison is possible. Our analysis reveals a decrease in bed surface armoring with increasing τbf*/τc*, suggesting channels accommodate changes in sediment supply through adjustments in bed surface grain size, as also shown through numerical modeling. Our findings demonstrate that sediment supply is encoded in the bankfull hydraulic geometry of gravel bedded channels through its control on bed surface grain size. PMID:28289212</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036735','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036735"><span>Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.</p> <p>2011-01-01</p> <p>Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP31B0933G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP31B0933G"><span>Human Impact on the Geomorphological Evolution of the Opak River Following the 2010 Large Volcanic Event of the Merapi (Indonesia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gob, F.; Gautier, E.; Virmoux, C.; Grancher, D.; Tamisier, V.; Primanda, K. W.; Wibowo, S. B.</p> <p>2016-12-01</p> <p>During large eruptions, active volcanos may introduce very large quantities of sediment to the drainage system through tephra falls and pyroclastic flows, thus modifying the river system. Once remobilized, the sediment inputs propagate downstream as a sediment wave modifying the channel geometry of the river and reloading the sediment cascade of the catchments. Considering the extreme nature of the volcanic events, the parameters that control the post-eruption evolution of the river system are generally only described as natural and the role played by human activities seems negligible. Communities that live on the volcano slopes and foothills are rather considered to suffer from natural disasters associated with the eruption and its consequences (lahars, etc.) or take advantage of the benefits of the volcanic environment (rich soil, mining and geothermal resources, etc.). This study examines the impact of human influence on the fluvial readjustment of a Javanese river impacted by a major eruption of the Merapi volcano (Indonesia) in October/November 2010. The basin of the Opak River was subject to substantial sediment input related to massive pyroclastic deposits that were remobilized by numerous lahars during the year after the eruption. Two study sites were equipped in order to evaluate the morphodynamic evolution of the riverbed of the Opak River. Topographic surveys, bedload particle marking and suspended sediment sampling revealed an important sediment mobilization during efficient flash-floods. Surprisingly, no bed aggradation related to the progradation of a sediment wave was observed. Two years after the eruptive event, marked bed incision was observed. The Opak River readjustment differs from that of other fluvial systems affected by massive eruptions in two ways. Firstly, the local population massively extracted the sand and blocks injected by the eruption as they represent a valuable economic resource. Secondly, several dams trapped the major part of the sediment load remobilized by lahars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047452','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047452"><span>Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.</p> <p>2013-01-01</p> <p>Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026789','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026789"><span>Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Landmeyer, J.E.; Tanner, T.L.; Watt, B.E.</p> <p>2004-01-01</p> <p>The largest documented release of organotin compounds to a freshwater river system in the United States occurred in early 2000 in central South Carolina. The release consisted of an unknown volume of various organotin compounds such tetrabutyltin (TTBT), tributyltin (TBT), tetraoctyltin (TTOT), and trioctyl tin (TOT) and resulted in a massive fish kill and the permanent closures of a municipal wastewater treatment plant and a local city's only drinking-water intake. Initial sampling events in 2000 and 2001 indicated that concentrations of the ecologically toxic TTBT and TBT were each greater than 10 000 ??g/kg in surface-water bed sediments in depositional areas, such as lakes and beaver ponds downstream of the release. Bed-sediment samples collected between 2001 and 2003, however, revealed a substantial decrease in bed-sediment organotin concentrations and an increase in concentrations of degradation intermediate compounds. For example, in bed sediments of a representative beaver pond located about 1.6 km downstream of the release, total organotin concentrations [the sum of TTBT, TBT, and the TBT degradation intermediates dibutyltin (DBT) and monobutyltin (MBT)] decreased from 38 670 to 298 ??g/kg. In Crystal Lake, a large lake about 0.4 km downstream from the beaver pond, total organotin concentrations decreased from 28 300 to less than 5 ??g/kg during the same time period. Moreover, bed-sediment inorganic tin concentrations increased from pre-release levels of less than 800 to 32 700 ??g/kg during this time. These field data suggest that the released organotin compounds, such as TBT, are being transformed into inorganic tin by bed-sediment microbial processes. Microcosms were created in the laboratory that contained bed sediment from the two sites and were amended with tributyltin (as tributyltin chloride) under an ambient air headspace and sacrificially analyzed periodically for TBT, the biodegradation intermediates DBT and MBT, and tin. TBT concentrations decreased faster [half-life (t1/2) = 28 d] in the organic-rich sediments (21.5%) that characterized the beaver pond as compared to the slower (t1/2 = 78 d) degradation rate in the sandy, organic-poor, sediments (0.43%) of Crystal Lake. Moreover, the concentration of inorganic tin increased in microcosms containing bed sediments from both locations. These field and laboratory results suggest that biotransformation of the released organotins, in particular the ecologically detrimental TBT, does occur in this fresh surface-water system impacted with high concentrations of neat organotin compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190123','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190123"><span>Effects of lateral confinement in natural and leveed reaches of a gravel-bed river: Snake River, Wyoming, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leonard, Christina M.; Legleiter, Carl; Overstreet, Brandon T.</p> <p>2017-01-01</p> <p>This study examined the effects of natural and anthropogenic changes in confining margin width by applying remote sensing techniques – fusing LiDAR topography with image-derived bathymetry – over a large spatial extent: 58 km of the Snake River, Wyoming, USA. Fused digital elevation models from 2007 and 2012 were differenced to quantify changes in the volume of stored sediment, develop morphological sediment budgets, and infer spatial gradients in bed material transport. Our study spanned two similar reaches that were subject to different controls on confining margin width: natural terraces versus artificial levees. Channel planform in reaches with similar slope and confining margin width differed depending on whether the margins were natural or anthropogenic. The effects of tributaries also differed between the two reaches. Generally, the natural reach featured greater confining margin widths and was depositional, whereas artificial lateral constriction in the leveed reach produced a sediment budget that was closer to balanced. Although our remote sensing methods provided topographic data over a large area, net volumetric changes were not statistically significant due to the uncertainty associated with bed elevation estimates. We therefore focused on along-channel spatial differences in bed material transport rather than absolute volumes of sediment. To complement indirect estimates of sediment transport derived by morphological sediment budgeting, we collected field data on bed mobility through a tracer study. Surface and subsurface grain size measurements were combined with bed mobility observations to calculate armoring and dimensionless sediment transport ratios, which indicated that sediment supply exceeded transport capacity in the natural reach and vice versa in the leveed reach. We hypothesize that constriction by levees induced an initial phase of incision and bed armoring. Because levees prevented bank erosion, the channel excavated sediment by migrating rapidly across the restricted braidplain and eroding bars and islands. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1201/ofr20161201.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1201/ofr20161201.pdf"><span>Water-quality, bed-sediment, and biological data (October 2014 through September 2015) and statistical summaries of data for streams in the Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.</p> <p>2017-01-19</p> <p>Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2014 through September 2015. Bed-sediment and biota samples were collected once at 13 sites during August 2015.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2014 through September 2015. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, samples for analysis of dissolved organic carbon and turbidity were collected. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1017/OF13-1017_508.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1017/OF13-1017_508.pdf"><span>Water-quality, bed-sediment, and biological data (October 2010 through September 2011) and statistical summaries of data for streams in the Clark Fork basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2013-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin of western Montana; additional water samples were collected from near Galen to near Missoula at select sites as part of a supplemental sampling program. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2010 through September 2011. Bed-sediment and biota samples were collected once at 14 sites during August 2011. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2010 through September 2011. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pubs/of/2017/1136/ofr20171136.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pubs/of/2017/1136/ofr20171136.pdf"><span>Water-quality, bed-sediment, and biological data (October 2015 through September 2016) and statistical summaries of data for streams in the Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.</p> <p>2018-03-30</p> <p>Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2015 through September 2016. Bed-sediment and biota samples were collected once at 13 sites during August 2016.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2015 through September 2016. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Samples for analysis of turbidity were collected at 13 sites, whereas samples for analysis of dissolved organic carbon were collected at 10 sites. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained (less than 0.063 millimeter) fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP33A3615L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP33A3615L"><span>Evaluating the Effects of Constriction by Levees on a Dynamic Gravel-Bed River through Morphological Sediment Budgeting and Bed Mobility Studies, Snake River, WY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leonard, C.; Legleiter, C. J.</p> <p>2014-12-01</p> <p>High-energy gravel-bed rivers are subject to a range of management practices used to control the system's dynamic behavior. The Snake River, near Jackson, WY, offers an opportunity to study the morphological effects of management practices through a comparison of a reach confined by levees to an unmanaged reach just upstream within Grand Teton National Park (GTNP). I hypothesize that levees have reduced sediment supply by disconnecting the river from its banks and increased transport capacity by increasing flow velocity. Together, these effects accentuate the sediment deficit in the leveed reach. To test this I am developing a morphological sediment budget from GTNP to Wilson, WY, using LiDAR data from 2007 and 2012. This analysis will yield insight as to how sediment transport varies between the relatively natural reach in GTNP and the leveed reach downstream. A problem inherent to morphological budgets is the inability to decipher when change occurs within the budget timeframe. To combat this, a partial mobility study was executed using 300 PIT tagged gravels within the leveed reach. Gravels were relocated to decipher how bed mobility and sediment transport varied with grain size under a range of hydraulic conditions. These results are then used to estimate a critical discharge representing the inception of bed motion and geomorphic change. The critical discharge will be used to reconstruct the timing of bed mobility based on streamflow records and thus deconvolve when morphological change occurred during the sediment budget period. I further hypothesize that a greater imbalance between transport capacity and sediment supply in the leveed reach causes the bed to armor, resulting in larger critical shear stresses and implying that the bed will be mobilized only during greater discharge events. To test this hypothesis I will measure armor ratios within the leveed reach and examine how bed mobility differs between the two reaches by comparing the results of our partial mobility study to a previous tracer study within GTNP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029075','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029075"><span>A new sampler design for measuring sedimentation in streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hedrick, Lara B.; Welsh, S.A.; Hedrick, J.D.</p> <p>2005-01-01</p> <p>Sedimentation alters aquatic habitats and negatively affects fish and invertebrate communities but is difficult to quantify. To monitor bed load sedimentation, we designed a sampler with a 10.16-cm polyvinyl chloride coupling and removable sediment trap. We conducted a trial study of our samplers in riffle and pool habitats upstream and downstream of highway construction on a first-order Appalachian stream. Sediment samples were collected over three 6-week intervals, dried, and separated into five size-classes by means of nested sieves (U.S. standard sieve numbers 4, 8, 14, and 20). Downstream sediment accumulated in size-classes 1 and 2, and the total amount accumulated was significantly greater during all three sampling periods. Size-classes 3 and 4 had significantly greater amounts of sediment for the first two sampling periods at the downstream site. Differences between upstream and downstream sites narrowed during the 5-month sampling period. This probably reflects changes in site conditions, including the addition of more effective sediment control measures after the first 6-week period of the study. The sediment sampler design allowed for long-term placement of traps without continual disturbance of the streambed and was successful at providing repeat measures of sediment at paired sites. ?? Copyright by the American Fisheries Society 2005.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910711Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910711Y"><span>The role of bio-physical cohesive substrates on sediment winnowing and bedform development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Leiping; Parsons, Daniel; Manning, Andrew</p> <p>2017-04-01</p> <p>Existing sediment transport and bedform size predictions for natural open-channel flows in many environments are seriously impeded by a lack of process-based knowledge concerning the dynamics of complex bed sediment mixtures comprising cohesionless sand and biologically-active cohesive muds. A series of flume experiments (14 experimental runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substance) are combined with a detailed estuarine field survey (Dee estuary, NW England) to investigate the development of bedform morphologies and characteristics of suspended sediment over bio-physical cohesive substrates. The experimental results indicate that winnowing and sediment sorting can occur pervasively in bio-physical cohesive sediment - flow systems. Importantly however, the evolution of the bed and bedform dynamics, and hence turbulence production, is significantly reduced as bed substrate cohesivity increases. The estuarine subtidal zone survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed plays a significant role in controlling the interactions between bed substrate and sediment suspension, deposition and bedform generation. The work will be presented here concludes by outlining the need to extend and revisit the effects of cohesivity in morphodynamic systems and the sets of parameters presently used in numerical modelling, particularly in the context of the impact of climate change on estuarine and coastal systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70146259','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70146259"><span>Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Larsen, Laurel G.; Harvey, Judson; Crimaldi, John P.</p> <p>2009-01-01</p> <p>Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1994/4007/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1994/4007/report.pdf"><span>Annual replenishment of bed material by sediment transport in the Wind River near Riverton, Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smalley, M.L.; Emmett, W.W.; Wacker, A.M.</p> <p>1994-01-01</p> <p>The U.S. Geological Survey, in cooperation with the Wyoming Department of Transportation, conducted a study during 1985-87 to determine the annual replenishment of sand and gravel along a point bar in the Wind River near Riverton, Wyoming. Hydraulic- geometry relations determined from streamflow measurements; streamflow characteristics determined from 45 years of record at the study site; and analyses of suspended-sediment, bedload, and bed- material samples were used to describe river transport characteristics and to estimate the annual replenishment of sand and gravel. The Wind River is a perennial, snowmelt-fed stream. Average daily discharge at the study site is about 734 cubic feet per second, and bankfull discharge (recurrence interval about 1.5 years) is about 5,000 cubic feet per second. At bankfull discharge, the river is about 136 feet wide and has an average depth of about 5.5 feet and average velocity of about 6.7 feet per second. Streams slope is about 0.0010 foot per foot. Bed material sampled on the point bar before the 1986 high flows ranged from sand to cobbles, with a median diameter of about 22 millimeters. Data for sediment samples collected during water year 1986 were used to develop regression equations between suspended-sediment load and water discharge and between bedload and water discharge. Average annual suspended-sediment load was computed to be about 561,000 tons per year using the regression equation in combination with flow-duration data. The regression equation for estimating bedload was not used; instead, average annual bedload was computed as 1.5 percent of average annual suspended load about 8,410 tons per year. This amount of bedload material is estimated to be in temporary storage along a reach containing seven riffles--a length of approximately 1 river mile. On the basis of bedload material sampled during the 1986 high flows, about 75 percent (by weight) is sand (2 millimeters in diameter or finer); median particle size is about 0.5 milli- meter. About 20 percent (by weight) is medium gravel to small cobbles--12.7 millimeters (0.5 inch) or coarser. The bedload moves slowly (about 0.03 percent of the water speed) and briefly (about 10 percent of the time). The average travel distance of a median-sized particle is about 1 river mile per year. The study results indicate that the average replenishment rate of bedload material coarser than 12.7 millimeters is about 1,500 to 2,000 tons (less than 1,500 cubic yards) per year. Finer material (0.075 to 6.4 millimeters in diameter) is replen- ishment at about 4,500 to 5,000 cubic yards per year. The total volume of potentially usable material would average about 6,000 cubic yards per year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/circ1276/+','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/circ1276/+"><span>Proceedings of the Federal Interagency Sediment Monitoring Instrument and Analysis Research Workshop, September 9-11, 2003, Flagstaff, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gray, John R.</p> <p>2005-01-01</p> <p>The Advisory Committee on Water Information's Subcommittee on Sedimentation sponsored the Federal Interagency Sediment Monitoring Instrument and Analysis Research Workshop on September 9-11, 2003, at the U.S. Geological Survey Flagstaff Field Center, Arizona. The workshop brought together a diverse group representing most Federal agencies whose mission includes fluvial-sediment issues; academia; the private sector; and others with interests and expertise in fluvial-sediment monitoring ? suspended sediment, bedload, bed material, and bed topography ? and associated data-analysis techniques. The workshop emphasized technological and theoretical advances related to measurements of suspended sediment, bedload, bed material and bed topography, and data analyses. This workshop followed and expanded upon part of the 2002 Federal Interagency Workshop on Turbidity and Other Sediment Surrogates (http://water.usgs.gov/pubs/circ/2003/circ1250/), which initiated a process to provide national standards for measurement and use of turbidity and other sediment-surrogate data. This report provides a description of the salient attributes of the workshop and related information, major deliberations and findings, and principal recommendations. This information is available for evaluation by the Subcommittee on Sedimentation, which may opt to develop an action plan based on the recommendations that it endorses for consideration by the Advisory Committee on Water Information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29879687','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29879687"><span>Effects of vegetation and fecal pellets on the erodibility of cohesive sediments: Ganghwa tidal flat, west coast of Korea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ha, Ho Kyung; Ha, Hun Jun; Seo, Jun Young; Choi, Sun Min</p> <p>2018-06-04</p> <p>Although the Korean tidal flats in the Yellow Sea have been highlighted as a typical macrotidal system, so far, there have been no measurements of the sediment erodibility and critical shear stress for erosion (τ ce ). Using the Gust erosion microcosm system, a series of field experiments has been conducted in the Ganghwa tidal flat to investigate quantitatively the effects of biogenic materials on the erodibility of intertidal cohesive sediments. Four representative sediment cores with different surficial conditions were analyzed to estimate the τ ce and eroded mass. Results show that τ ce of the "free" sediment bed not covered by any biogenic material on the Ganghwa tidal flat was in the range of 0.1-0.2 Pa, whereas the sediment bed partially covered by vegetation (Phragmites communis) or fecal pellets had enhanced τ ce up to 0.45-0.6 Pa. The physical presence of vegetation or fecal pellets contributed to protection of the sediment bed by blocking the turbulent energy. An inverse relationship between the organic matter included in the eroded mass and the applied shear stress was observed. This suggests that the organic matter enriched in a near-bed fluff layer is highly erodible, and the organic matter within the underlying sediment layer becomes depleted and less erodible with depth. Our study underlines the role of biogenic material in stabilizing the benthic sediment bed in the intertidal zone. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174928','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174928"><span>Variability of bed drag on cohesive beds under wave action</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Safak, Ilgar</p> <p>2016-01-01</p> <p>Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7840','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7840"><span>Particle size variations between bed load and bed material in natural gravel bed channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle</p> <p>1995-01-01</p> <p>Abstract - Particle sizes of bed load and bed material that represent materials transported and stored over a period of years are used to investigate selective transport in 13 previously sampled, natural gravel bed channels. The ratio (D*) of median particle size of bed material to the transport- and frequency-weighted mean of median bed load size decreases to unity...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5150/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5150/"><span>Organic Compounds and Trace Elements in Fish Tissue and Bed Sediment in the Delaware River Basin, New Jersey, Pennsylvania, New York, and Delaware, 1998-2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Romanok, Kristin M.; Fischer, Jeffrey M.; Riva-Murray, Karen; Brightbill, Robin; Bilger, Michael</p> <p>2006-01-01</p> <p>As part of the National Water-Quality Assessment (NAWQA) program activities in the Delaware River Basin (DELR), samples of fish tissue from 21 sites and samples of bed sediment from 35 sites were analyzed for a suite of organic compounds and trace elements. The sampling sites, within subbasins ranging in size from 11 to 600 square miles, were selected to represent 5 main land-use categories in the DELR -forest, low-agricultural, agricultural, urban, and mixed use. Samples of both fish tissue and bed sediment were also collected from 4 'large-river' sites that represented drainage areas ranging from 1,300 to 6,800 square miles, areas in which the land is used for a variety of purposes. One or more of the organochlorine compounds-DDT and chlordane metabolites, polychlorinated biphenyls (total PCBs), and dieldrin- were detected frequently in samples collected over a wide geographic area. One or more of these compounds were detected in fish-tissue samples from 92 percent of the sites and in bed-sediment samples from 82 percent of the sites. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in whole white suckers and in bed sediment were significantly related to urban/industrial basin characteristics, such as percentage of urban land use and population density. Semi-volatile organic compounds (SVOCs)-total polycyclic aromatic hydrocarbons (PAHs), total phthalates, and phenols- were detected frequently in bed-sediment samples. All three types of SVOCs were detected in samples from at least one site in each land-use category. The highest detection rates and concentrations typically were in samples from sites in the urban and mixed land-use categories, as well as from the large-river sites. Concentrations of total PAHs and total phthalates in bed-sediment samples were found to be statistically related to percentages of urban land use and to population density in the drainage areas represented by the sampling sites. The samples of fish tissue and bed sediment collected throughout the DELR were analyzed for a large suite of trace elements, but results of the analyses for eight elements-arsenic, cadmium, chromium, copper, lead, nickel, mercury, and zinc- that are considered contaminants of concern are described in this report. One or more of the eight trace elements were detected in samples from every fish tissue and bed-sediment sampling site, and all of the trace elements were detected in samples from 97 percent of the bed-sediment sites. The concentrations of organic compounds and trace elements in the DELR samples were compared to applicable guidelines for the protection of wildlife and other biological organisms. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in fish-tissue samples from 14 sites exceeded one or more of the Wildlife Protective Guidelines established by the New York State Department of Environmental Conservation. Concentrations of one or more organic compounds in samples from 16 bed-sediment sites exceeded the Threshold Effects Concentrations (TEC) of the Canadian Sediment Quality Guidelines, and concentrations of one or more of the eight trace elements in samples from 38 bed-sediment sites exceeded the TEC. (The TEC is the concentration below which adverse biological effects in freshwater ecosystems are expected to be rare.) Concentrations of organic compounds in samples from some bed-sediment sites exceeded the Canadian Probable Effects Concentrations (PEC), and concentrations of trace elements in samples from 18 sites exceeded the PEC. (The PEC is the concentration above which adverse effects to biological organisms are expected to occur frequently). Concentrations of organic compounds and trace elements in samples from the DELR were compared to similar data from other NAWQA study units in the northeastern United States and also data from the Mobile River (Alabama) Basin and the Northern Rockies Intermontane Basin study units. Median concentrations of to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H51E0794G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H51E0794G"><span>Coarse sediment transport dynamics at three spatial scales of bedrock channel bed complexity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goode, J. R.; Wohl, E.</p> <p>2007-12-01</p> <p>Rivers incised into bedrock in fold-dominated terrain display a complex bed topography that strongly interacts with local hydraulics to produce spatial differences in bed sediment flux. We used painted tracer clasts to investigate how this complex bed topography influences coarse sediment transport at three spatial scales (reach, cross- section and grain). The study was conducted along the Ocoee River gorge, Tennessee between the TVA Ocoee #3 dam and the 1996 Olympic whitewater course. The bed topography consists of undulating bedrock ribs, which are formed at a consistent strike to the bedding and cleavage of the metagreywake and phyllite substrate. Ribs vary in their orientation to flow (from parallel to oblique) and amplitude among three study reaches. These bedrock ribs create a rough bed topography that substantially alters the local flow field and influences reach- scale roughness. In each reach, 300 tracer clasts were randomly selected from the existing bed material. Tracer clasts were surveyed and transport distances were calculated after five scheduled summer releases and a suite of slightly larger but sporadic winter releases. Transport distances were examined as a function of rib orientation and amplitude (reach scale), spatial proximity to bedrock ribs and standard deviation of the bed elevation (cross- section scale), and whether clasts were hydraulically shielded by surrounding clasts, incorporated in the armour layer, imbricated, and/or existed in a pothole, in addition to size and angularity. At the reach scale, where ribs are parallel to flow, lower reach-scale roughness leads to greater sediment transport capacity, sediment flux and transport distances because transport is uninhibited in the downstream direction. Preliminary results indicate that cross section scale characteristics of bed topography exert a greater control on transport distances than grain size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.B21A0700K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.B21A0700K"><span>Streambed Mobility and Dispersal of Aquatic Insect Larvae: Results from a Laboratory Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kenworthy, S. T.</p> <p>2002-12-01</p> <p>Three series of flume experiments were conducted to quantify relationships between entrainment of surface layer gravels and displacement of benthic insect larvae. One series (B) utilized a sediment mixture with a median size 6.9 mm, maximum size 45 mm, and 10% < 2mm. Two other series examined the effects of locally coarsening the bed surface (Bc) and increasing the < 2mm fraction to 20% (S). Aquatic insect larvae were collected in the field and placed in an upstream segment of the flume bed. Flow rate, flume slope, and sediment transport rate were varied systematically among experiments. Displaced larvae were collected in a net at the end of the flume. The distribution of larvae remaining in the bed was obtained by sorting larvae from the sediment in 25 channel segments. Flow rate and mean boundary shear stress varied among runs by factors of 1.2 and 2.4 respectively. Proportional entrainment of >11mm surface grains ranged from <0.05 to >0.90. Displacement of insect larvae increased in a regular and consistent manner with increasing flow strength and surface sediment entrainment. Significant displacement occurred for some types of larvae (Ephemerellid mayflies) over a relatively low range of shear stress and bed surface entrainment. Other larvae (Atherix sp.) were displaced only at the highest levels of bed surface entrainment. Displacement was lower from coarsened bed surfaces in series Bc, and higher from sandier sediments in series S experiments. The differential effects of bed surface entrainment upon various types of larvae are consistent with anatomical and behavioral differences that influence exposure to near-bed flow and bedload transport. These results suggest that spatial patterns of sediment mobilization are important for understanding patterns of dispersal and disturbance of streambed communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP51C1661R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP51C1661R"><span>Experiments on Pool-riffle Sequences with Multi-fractional Sediment Bed During Floods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez, J. F.; Vahidi, E.; Bayat, E.; de Almeida, G. A. M.; Saco, P. M.</p> <p>2017-12-01</p> <p>The morphodynamics of pools and riffles has been the subject of research for over a century and has more recently attracted intense attention for their central role in providing habitat diversity conditions, both in terms of flow and substrate. Initial efforts to explain the long-term stability of the pool-riffle (PR) sequences (often referred to as self-maintenance) focused almost exclusively on cross sectional flow characteristics (either average or near bed velocity or shear stress), using episodic shifts in higher shear stress or velocities from riffles to pools during floods (i.e. reversal conditions) as an indication of the long-term self-maintenance of the structures.. However, less attention has been paid to the interactions of flow unsteadiness, sediment supply and sedimentological contrasts as the drivers for maintaining PR sequences. Here we investigate these effects through laboratory experiments on a scaled-down PR sequence of an existing gravel bed river. Froude similitude and equality of Shields' number were applied to scale one- to four-year recurrence flood events and sediment size distributions, respectively. We conducted experiments with different hydrographs and different sedimentological conditions. In each experiment we continuously measured velocities and shear stresses (using acoustic velocity profilers) bed levels (using a bed profiler) and bed grain size distribution (using an automatic digital technique on the painted bed sediments) during the hydrographs. Our results show that the most important factors for self-maintenance were the sediment bed composition, the level of infilling of the pool and the sediment supply grainsize distribution. These results highlight the need to consider the time varying sedimentological characteristics of a PR sequence to assess its capacity for self-maintenance.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53C0985P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53C0985P"><span>Beyond the threshold for motion: river channel geometry and grain size reflect sediment supply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfeiffer, A.; Finnegan, N. J.; Willenbring, J. K.</p> <p>2016-12-01</p> <p>In many gravel-bedded rivers, floods that fill the ch­­annel banks create just enough shear stress to move the median-sized gravel particles on the bed surface (D50). Because this observation is common and is supported by theory, the coincidence of bankfull flow and the incipient motion of D50 has become a­­ commonly employed assumption. However, not all natural gravel channels actually conform to this simple relationship; some channels maintain bankfull stresses far in excess of the critical stress required to initiate sediment transport. We use a database of >300 gravel-bedded rivers and >600 10Be-derived erosion rates from across North America to explore the hypothesis that sediment supply drives the magnitude of bankfull shear stress relative to the critical stress required to mobilize the median bed surface grain size. We find that the ratio of bankfull to critical stress is significantly higher in West Coast river reaches (2.47, n= 84) than in river reaches in the rest of the continent (1.03, n = 245). This pattern parallels trends in erosion rates (and hence sediment supplies). Supporting our hypothesis, we find a significant correlation between upstream erosion rate and local τ*bf/τ*c at sites where this comparison is possible. Our analysis reveals a decrease in bed surface armoring with increasing τ*bf/τ*c, suggesting that channels accommodate changes in sediment supply through adjustments in bed surface grain size, as predicted through numerical modeling. Our findings demonstrate that sediment supply is encoded in the bankfull hydraulic geometry of gravel-bedded channels through its control on bed surface grain size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP43B1888F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP43B1888F"><span>Riparian Vegetation Uprooting Due to High Floods: Field, Experiments and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Francalanci, S.; Calvani, G.; Errico, A.; Giambastiani, Y.; Paris, E.; Preti, F.; Solari, L.</p> <p>2017-12-01</p> <p>The morphodynamic evolution of river channel is a complex combination of many concurrent aspects such as the hydrological regime, sediment transport and the presence of riparian vegetation.Only recently, the vegetation has been included in the study of the complex process of river evolution. Juvenile riparian vegetation interacts with sediment transport and river planform morphology, while, on the other hand, well-established rigid vegetation can be uprooted only during the most intense flood events. Consequently, uprooting and breakage of plants during high flow conditions may give rise to significant changes in the flow field and sediment transport between the rising and falling limbs of the hydrograph. In this work, we focused on vegetation uprooting during high flood events, combining field, laboratory and modelling approaches. Field tests were conducted in order to estimate the resistance of root apparatus to uprooting; the field site is Arno River (Italy), where several tall trees were stressed with a known increasing force until the root breakage occurred. We found that the resistance of vegetation scales with the geometric dimension of the plants, and it is well interpreted by the theoretical model (Preti et al 2010). Moreover, laboratory experiments were conducted to better understand the interaction of rigid riparian vegetation and sediment transport in shaping the morphodynamics of river bed in the case of altered hydrological events: we reproduced a bar morphology with hydraulic conditions that are typical of gravel bed rivers in terms of water depth, bed slope and bed load, that is the dominant mode of transport. Then we reproduced the colonizing effect of riparian vegetation on emerged river bars, and we simulated a sequence of peak hydrographs, in order to understand the interaction with bedload transport and verify the stability of the vegetated system towards intense floods. Results showed that the resistance of the root apparatus is well predicted by the theoretical model and that the highest intense floods produce such forcing on the system that plant uprooting can occur. ReferencesPreti, F., Dani, A., Laio, F., 2010. Root profile assessment by means of hydrological, pedological and above-ground vegetation information for bio-engineering purposes. Ecol. Eng. 36, 305-316</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP41A1812L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP41A1812L"><span>Assessing the Importance of Cross-Stream Transport in Bedload Flux Estimates from Migrating Dunes: Colorado River, Grand Canyon National Park</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.</p> <p>2017-12-01</p> <p>Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially variable translation and deformation rates. Parameterization of cross-stream sediment transport could lead to accounting for ambiguities in bedload flux calculations caused by dune deformation, which in turn could significantly improve overall calculation of bedload and total load sediment transport in sand bedded rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197213','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197213"><span>Sediment erosion and delivery from Toutle River basin after the 1980 eruption of Mount St. Helens: A 30-year perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Major, Jon J.; Mosbrucker, Adam; Spicer, Kurt R.; Crisafulli, Charles; Dale, V.</p> <p>2018-01-01</p> <p>Exceptional sediment yields persist in Toutle River valley more than 30 years after the major 1980 eruption of Mount St. Helens. Differencing of decadal-scale digital elevation models shows the elevated load comes largely from persistent lateral channel erosion across the debris-avalanche deposit. Since the mid-1980s, rates of channel-bed-elevation change have diminished, and magnitudes of lateral erosion have outpaced those of channel incision. A digital elevation model of difference from 1999 to 2009 shows erosion across the debris-avalanche deposit is more spatially distributed compared to a model from 1987 to 1999, in which erosion was strongly focused along specific reaches of the channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1029/2009WR008600','USGSPUBS'); return false;" href="http://dx.doi.org/10.1029/2009WR008600"><span>An approach for modeling sediment budgets in supply-limited rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wright, Scott A.; Topping, David J.; Rubin, David M.; Melis, Theodore S.</p> <p>2010-01-01</p> <p>Reliable predictions of sediment transport and river morphology in response to variations in natural and human-induced drivers are necessary for river engineering and management. Because engineering and management applications may span a wide range of space and time scales, a broad spectrum of modeling approaches has been developed, ranging from suspended-sediment "rating curves" to complex three-dimensional morphodynamic models. Suspended sediment rating curves are an attractive approach for evaluating changes in multi-year sediment budgets resulting from changes in flow regimes because they are simple to implement, computationally efficient, and the empirical parameters can be estimated from quantities that are commonly measured in the field (i.e., suspended sediment concentration and water discharge). However, the standard rating curve approach assumes a unique suspended sediment concentration for a given water discharge. This assumption is not valid in rivers where sediment supply varies enough to cause changes in particle size or changes in areal coverage of sediment on the bed; both of these changes cause variations in suspended sediment concentration for a given water discharge. More complex numerical models of hydraulics and morphodynamics have been developed to address such physical changes of the bed. This additional complexity comes at a cost in terms of computations as well as the type and amount of data required for model setup, calibration, and testing. Moreover, application of the resulting sediment-transport models may require observations of bed-sediment boundary conditions that require extensive (and expensive) observations or, alternatively, require the use of an additional model (subject to its own errors) merely to predict the bed-sediment boundary conditions for use by the transport model. In this paper we present a hybrid approach that combines aspects of the rating curve method and the more complex morphodynamic models. Our primary objective was to develop an approach complex enough to capture the processes related to sediment supply limitation but simple enough to allow for rapid calculations of multi-year sediment budgets. The approach relies on empirical relations between suspended sediment concentration and discharge but on a particle size specific basis and also tracks and incorporates the particle size distribution of the bed sediment. We have applied this approach to the Colorado River below Glen Canyon Dam (GCD), a reach that is particularly suited to such an approach because it is substantially sediment supply limited such that transport rates are strongly dependent on both water discharge and sediment supply. The results confirm the ability of the approach to simulate the effects of supply limitation, including periods of accumulation and bed fining as well as erosion and bed coarsening, using a very simple formulation. Although more empirical in nature than standard one-dimensional morphodynamic models, this alternative approach is attractive because its simplicity allows for rapid evaluation of multi-year sediment budgets under a range of flow regimes and sediment supply conditions, and also because it requires substantially less data for model setup and use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP21C0918H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP21C0918H"><span>Cyclic Sediment Trading Between Channel and River Bed Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haddadchi, A.</p> <p>2015-12-01</p> <p>Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (<10 μm), silts (10-63 μm), and fine sands (63-212 μm). The contribution of the initial soil/rock type sources to river bed and alluvial sediments at each sampling site was identical for all three different size fractions, but varied along the stream. Combining these findings it is concluded that proximal alluvial stores dominated the supply of sediment to the river at each location, with this being particularly evident at the catchment outlet. Identical contribution of rock type sources to both river bed and alluvial pockets together with the dominant erosion being from channel banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDR29011K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDR29011K"><span>Large-eddy simulation of sand dune morphodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team</p> <p>2015-11-01</p> <p>Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1981/0128/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1981/0128/report.pdf"><span>Sediment and channel-geometry investigations for the Kansas River bank stabilization study, Kansas, Nebraska, and Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Osterkamp, W.R.; Curtis, R.E.; Crowther, H.G.</p> <p>1982-01-01</p> <p>Analysis of hydrologic data from the Kansas River basin suggests that the channels of the lower Solomon, Saline, and Smoky Hill Rivers have narrowed and stabilized as a result of construction of upstream reservoirs. The Kansas River channel, however, remains relatively unstable and locally active. Streamflow regulation and sediment trapping by reservoirs are possible causes of changes occurring at various Kansas River sites. An inferred deficiency of the suspended-sediment load, however, is likely to cause continuing instability. Suspended sediment in the Kansas River apparently is too sparse to form and maintain stable alluvial banks. The deficiency probably results in an increase of bed material movement, general channel widening, and local braiding. Significant channel degradation is lacking at most sites, but may occur in response to long-term (decades-to-centuries) regulation. Recent degradation near Bonner Springs, Kans., may be the result of sand and gravel removal. Any imposed changes that shorten the channel or reduce the suspended-sediment discharge of the Kansas River are expected to cause additional channel instability. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030723','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030723"><span>Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morton, Robert A.; Gelfenbaum, Guy; Jaffe, Bruce E.</p> <p>2007-01-01</p> <p>Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity. Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally 30 cm thick, generally extend The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1301/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1301/"><span>Water-Quality, Bed-Sediment, and Biological Data (October 2005 through September 2006) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2007-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2005 through September 2006. Bed-sediment and biological samples were collected once at 12 sites during August 2006. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2005 through September 2006. Water-quality data include concentrations of selected major ions, trace ele-ments, and suspended sediment. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP41A1819L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP41A1819L"><span>Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lind, P.; McDowell, P. F.</p> <p>2017-12-01</p> <p>Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport were made through high-resolution repeat photogrammetric surveys (Structure From Motion). As some of the first research of this type on a steep tropical montane system, this study expands our knowledge of tropical rivers and sediment transport by providing a broad view of bedload sediment flux in a hydrologically dynamic humid tropical montane system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70038510','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70038510"><span>Erosion, storage, and transport of sediment in two subbasins of the Rio Puerco, New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gellis, A.C.; Pavich, M.J.; Ellwein, A.L.; Aby, S.; Clark, I.; Wieczorek, M.E.; Viger, R.</p> <p>2012-01-01</p> <p>Arroyos in the American Southwest proceed through cut-and-fill cycles that operate at centennial to millennial time scales. The geomorphic community has put much effort into understanding the causes of arroyo cutting in the late Quaternary and in the modern record (late 1800s), while little effort has gone into understanding how arroyos fill and the sources of this fill. Here, we successfully develop a geographic information system (GIS)-modeled sediment budget that is based on detailed field measurements of hillslope and channel erosion and deposition. Field measurements were made in two arroyo basins draining different lithologies and undergoing different land disturbance (Volcano Hill Wash, 9.30 km2; Arroyo Chavez, 2.11 km2) over a 3 yr period. Both basins have incised channels that formed in response to the late nineteenth-century incision of the Rio Puerco. Large volumes of sediment were generated during arroyo incision, equal to more than 100 yr of the current annual total sediment load (bed load + suspended load) in each basin. Downstream reaches in both arroyos are presently aggrading, and the main source of the sediment is from channel erosion in upstream reaches and first- and second-order tributaries. The sediment budget shows that channel erosion is the largest source of sediment in the current stage of the arroyo cycle: 98% and 80% of the sediment exported out of Volcano Hill Wash and Arroyo Chavez, respectively. The geomorphic surface most affected by arroyo incision and one of the most important sediment sources is the valley alluvium, where channel erosion, gullying, soil piping, and grazing all occur. Erosion rates calculated for the entire Volcano Hill Wash (-0.26 mm/yr) and Arroyo Chavez (-0.53 mm/yr) basins are higher than the modeled upland erosion rates in each basin, reflecting the large contributions from channel erosion. Erosion rates in each basin are affected by a combination of land disturbance (grazing) and lithology--erodible sandstones and shales in Arroyo Chavez compared with basalt for Volcano Hill Wash. Despite these differences, hillslope sediment yields are similar to long-term denudation rates. As the arroyo fills over time from mouth to headwaters, hillslope sediment becomes a more significant sediment source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP43E1915H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP43E1915H"><span>Continuous Probabilistic Modeling of Tracer Stone Dispersal in Upper Regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez Moreira, R. R.; Viparelli, E.</p> <p>2017-12-01</p> <p>Morphodynamic models that specifically account for the non-uniformity of the bed material are generally based on some form of the active layer approximation. These models have proven to be useful tools in the study of transport, erosion and deposition of non-uniform bed material in the case of channel bed aggradation and degradation. However, when local spatial effects over short time scales compared to those characterizing the changes in mean bed elevation dominate the vertical sediment fluxes, as is the presence of bedforms, active layer models cannot capture key details of the sediment transport process. To overcome the limitations of active layer based models, Parker, Paola and Leclair (PPL) proposed a continuous probabilistic modeling frameworks in which the sediment exchange between the bedload transport and the mobile bed is described in terms of probability density functions of bed elevation, entrainment and deposition. Here we present the implementation of a modified version of the PPL modeling framework for the study of tracer stones dispsersal in upper regime bedload transport conditions (i.e. upper regime plane bed at the transition between dunes and antidunes, downstream migrating antidunes and upper regime plane bed with bedload transport in sheet flow mode) in which the probability functions are based on measured time series of bed elevation fluctuations. The extension to the more general case of mixtures of sediments differing in size is the future development of the proposed work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.7607L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.7607L"><span>Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: Implications for flow resistance and sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamb, Michael P.; Brun, Fanny; Fuller, Brian M.</p> <p>2017-09-01</p> <p>Steep mountain streams have higher resistance to flow and lower sediment transport rates than expected by comparison with low gradient rivers, and often these differences are attributed to reduced near-bed flow velocities and stresses associated with form drag on channel forms and immobile boulders. However, few studies have directly measured drag and lift forces acting on bed sediment for shallow flows over coarse sediment, which ultimately control sediment transport rates and grain-scale flow resistance. Here we report on particle lift and drag force measurements in flume experiments using a planar, fixed cobble bed over a wide range of channel slopes (0.004 < S < 0.3) and water discharges. Drag coefficients are similar to previous findings for submerged particles (CD ˜ 0.7) but increase significantly for partially submerged particles. In contrast, lift coefficients decrease from near unity to zero as the flow shallows and are strongly negative for partially submerged particles, indicating a downward force that pulls particles toward the bed. Fluctuating forces in lift and drag decrease with increasing relative roughness, and they scale with the depth-averaged velocity squared rather than the bed shear stress. We find that, even in the absence of complex bed topography, shallow flows over coarse sediment are characterized by high flow resistance because of grain drag within a roughness layer that occupies a significant fraction of the total flow depth, and by heightened critical Shields numbers and reduced sediment fluxes because of reduced lift forces and reduced turbulent fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDA13006G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDA13006G"><span>Sediment morpho-dynamics induced by a swirl-flow: an experimental study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzalez-Vera, Alfredo; Duran-Matute, Matias; van Heijst, Gertjan</p> <p>2016-11-01</p> <p>This research focuses on a detailed experimental study of the effect of a swirl-flow over a sediment bed in a cylindrical domain. Experiments were performed in a water-filled cylindrical rotating tank with a bottom layer of translucent polystyrene particles acting as a sediment bed. The experiments started by slowly spinning the tank up until the fluid had reached a solid-body rotation at a selected rotation speed (Ωi). Once this state was reached, a swirl-flow was generated by spinning-down the system to a lower rotation rate (Ωf). Under the flow's influence, particles from the bed were displaced, which changed the bed morphology, and under certain conditions, pattern formation was observed. Changes in the bed height distribution were measured by utilizing a Light Attenuation Technique (LAT). For this purpose, the particle layer was illuminated from below. Images of the transmitted light distribution provided quantitative information about the local thickness of the sediment bed. The experiments revealed a few characteristic regimes corresponding to sediment displacement, pattern formation and the occurrence of particle pick-up. Such regimes depend on both the Reynolds (Re) and Rossby (Ro) numbers. This research is funded by CONACYT (Mexico) through the Ph.D. Grant (383903) and NWO (the Netherlands) through the VENI Grant (863.13.022).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP31C3569H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP31C3569H"><span>Hydrodynamic impacts on biogenic stabilisation and the fate of extracellular polymeric substances (EPS) in mixed sediment bedforms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hope, J. A.; Aspden, R.; Schindler, R.; Parsons, D. R.; Ye, L.; Baas, J.; Paterson, D. M.</p> <p>2014-12-01</p> <p>The stability and morphology of bedforms have traditionally been treated as a function of mean flow velocity/non-dimensional bed shear stress and sediment particle size, despite the known influence of key biological components such as extracellular polymeric substances (EPS). EPS is produced by microbial communities and can increase erosion thresholds by more than 300%. However, the mechanisms behind the influence of EPS on sediment transport and bedform dynamics is poorly understood, as is the fate of EPS and exchange of EPS between the sediment bed and water column during ripple formation. The exchange of EPS between the sediment bed and water column is dynamic, with important implications for a range of physical and geochemical processes, with the spatio-temporal variation in EPS content, from source to eventual fate, being extremely important for determining the behaviour and natural variability of sedimentary systems. This paper reports on a series of flume experiments where a tripartite mixture of sand, clay and model EPS (xanthan gum) was used to create a sediment substrate, which was subject to a unidirectional current (0.8 ms-1 for 10.5 hrs, n=6). For each run the spatio-temporal changes in concentration, distribution, and effect of EPS, on the evolving bed of mixed sediment was monitored throughout, with complete 3D bed morphology scans also acquired at ~360 s intervals. The various substrate mixtures produced bedforms varying from ripples to dunes and biochemical analysis of EPS concentration across the formed bedforms, suggest EPS is winnowed from the sediment - water interface, particularly at the bedform crests. The depth of winnowing in each run was found to be related to the bedform size, with variation in the stoss, crest and trough of the bedforms identified. The loss of EPS was also significantly correlated with the depth to which clay was winnowed, presumably due to a close association between the clay mineral and EPS fractions. The paper will discuss how sediment processes and flow are linked by migration of dissolved and particulate substances into and out of the bed and how this exchange is affected by the topography of the sediment bed and advective pore water transfers. Finally, the implications for natural systems and larger scale sediment-biota linkages will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP32C..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP32C..04H"><span>What controls the location of sediment cover in bedrock-alluvial channels?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodge, R. A.; Hoey, T.</p> <p>2016-12-01</p> <p>The extent of sediment cover in a bedrock alluvial channel is a key factor in understanding the processes within these channels, and hence how they evolve over time. However, sediment cover is typically quantified as a single value, with little consideration as to where that sediment is located on the bed. The spatial location of the cover is important because sediment grains typically move between sediment patches, hence sediment transport lengths are controlled by inter-patch distances. Furthermore, the location of sediment cover affects its stability, with patches in deep hollows likely to be more stable that isolated grains on flat bedrock surfaces. We present data that attempts to identify the key factors affecting the location and stability of sediment cover. Field data were collected from rivers with c.10-30% sediment cover. Froude-scaled flume experiments were undertaken using a 3D printed 1:10 scale replica of one of the field sites, Trout Beck. In the flume, we undertook two sets of experiments: 1) spatially-distributed hydraulic measurements at a range of discharges; and 2) pulses of sediment input at a constant discharge, and the subjected to an increasing discharge in order to identify the discharge needed to remove the sediment patches. We found that local topography was an important control on sediment patch location, but that the additional influence of hydraulics means that sediment patches do not just fill the bed from the lowest elevations. The extent to which topography was important also depended on the size of the sediment pulse, with larger sediment pulses being stabilised by grain-grain and grain-flow interactions and less influenced by the bed topography. These results are consistent with field data where the geometry of the patches reflects bed topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5169A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5169A"><span>Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian</p> <p>2017-06-01</p> <p>Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.<abstract type="synopsis"><title type="main">Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments. Contrary to previous studies, the pore pressure gradient exhibited a range of values when erosion occurred, which indicates that erosion is the result of multiple physical mechanisms competing to secure or destabilize the sediment bed. The observations provide a better understanding of the forces acting within the sediment, and could improve parameters used in coastal sediment transport models to better predict coastal change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=138243&keyword=ASP&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=138243&keyword=ASP&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ANALYSIS OF BACTERIAL COMMUNITIES IN SEAGRASS BED SEDIMENTS BY DOUBLE-GRADIENT DENATURING GRADIENT GEL ELECTROPHORESIS OF PCR-AMPLIFIED 16SRRNA GENES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Bacterial communities associated with seagrass bed sediments are not well studied. The work presented here investigated several factors, including the presence or absence of vegetation, depth into sediment, and season, and their impact on bacterial community diversity. Double gra...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2011/5208/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2011/5208/"><span>Wastewater indicator compounds in wastewater effluent, surface water, and bed sediment in the St. Croix National Scenic Riverway and implications for water resources and aquatic biota, Minnesota and Wisconsin, 2007-08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tomasek, Abigail A.; Lee, Kathy E.; Hansen, Donald S.</p> <p>2012-01-01</p> <p>The results of this study indicate that aquatic biota in the St. Croix River are exposed to a wide variety of organic contaminants that originate from diverse sources including WWTP effluent. The data on wastewater indicator compounds indicate that exposures are temporally and spatially variable and that OWCs may accumulate in bed sediment. These results also indicate that OWCs in water and bed sediment increase downstream from discharges of wastewater effluent to the St. Croix River; however, the presence of OWCs in surface water and bed sediment at the Sunrise site indicates that potential sources of compounds, such as WWTPs or other sources, are upstream from the Taylors Falls-St. Croix Falls area.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Geomo.274...50H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Geomo.274...50H"><span>Deriving spatial and temporal patterns of coastal marsh aggradation from hurricane storm surge marker beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodge, Joshua; Williams, Harry</p> <p>2016-12-01</p> <p>This study uses storm surge sediment beds deposited by Hurricanes Audrey (1957), Carla (1961), Rita (2005) and Ike (2008) to investigate spatial and temporal changes in marsh sedimentation on the McFaddin National Wildlife Refuge in Southeastern Texas. Fourteen sediment cores were collected along a transect extending 1230 m inland from the Gulf coast. Storm-surge-deposited sediment beds were identified by texture, organic content, carbonate content, the presence of marine microfossils and 137Cs dating. The hurricane-derived sediment beds facilitate assessment of changes in marsh sedimentation from nearshore to inland locations and over decadal to annual timescales. Spatial variation along the transect reflects varying contributions from three prevailing sediment sources: flooding, overwash and organic sedimentation from marsh plants. Over about the last decade, hurricane overwash has been the predominant sediment source for nearshore locations because of large sediment inputs from Hurricanes Rita and Ike. Farther inland, hurricane inputs diminish and sedimentation is dominated by deposition from flood waters and a larger organic component. Temporal variations in sedimentation reflect hurricane activity, changes in marsh surface elevation and degree of compaction of marsh sediments, which is time-dependent. There was little to no marsh sedimentation in the period 2008-2014, firstly because no hurricanes impacted the study area and secondly because overwash sedimentation prior to 2008 had increased nearshore marsh surface elevations by up to 0.68 m, reducing subsequent inputs from flooding. Marsh sedimentation rates were relatively high in the period 2005-2008, averaging 2.13 cm/year and possibly reflecting sediment contributions from Hurricanes Humberto and Gustav. However, these marsh sediments are highly organic and largely uncompacted. Older, deeper marsh deposits formed between 1961 and 2005 are less organic-rich, more compacted and have an average annual sedimentation rate of 0.38 cm/year, which is closely comparable to long-term sedimentation rates in similar marsh settings nearby. These results demonstrate the utility of using hurricane storm surge marker beds to investigate marsh sedimentation, provide insights into the sedimentary response of coastal marshes to hurricanes and provide useful guidance to public policy aimed at combating the effects of sea-level rise on coastal marshes along the northern Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5041097','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5041097"><span>Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min</p> <p>2016-01-01</p> <p>Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments. PMID:27681994</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27681994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27681994"><span>Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min</p> <p>2016-09-29</p> <p>Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...634250H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...634250H"><span>Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min</p> <p>2016-09-01</p> <p>Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/32966','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/32966"><span>Sediment transport primer: estimating bed-material transport in gravel-bed rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Peter Wilcock; John Pitlick; Yantao Cui</p> <p>2009-01-01</p> <p>This primer accompanies the release of BAGS, software developed to calculate sediment transport rate in gravel-bed rivers. BAGS and other programs facilitate calculation and can reduce some errors, but cannot ensure that calculations are accurate or relevant. This primer was written to help the software user define relevant and tractable problems, select appropriate...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2010/3087/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2010/3087/"><span>Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kinzel, P.J.; Runge, J.T.</p> <p>2010-01-01</p> <p>Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated manipulation of streamflows on the channel morphology and habitat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1318/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1318/"><span>Water-Quality, Bed-Sediment, and Biological Data (October 2006 through September 2007) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2008-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2006 through September 2007. Bed-sediment and biological samples were collected once at 12 sites during August 2007. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2006 through September 2007. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for samples collected at sites where seasonal daily values of turbidity were being determined. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1178/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1178/"><span>Water-Quality, Bed-Sediment, and Biological Data (October 2007 through September 2008) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2009-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to near Missoula as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 23 sites from October 2007 through September 2008. Bed-sediment and biota samples were collected once at 13 sites during August 2008. This report presents the analytical results and quality assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2007 through September 2008. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at sites where seasonal daily values of turbidity were being determined and at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1267/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1267/"><span>Water-quality, bed-sediment, and biological data (October 2008 through September 2009) and statistical summaries of long-term data for streams in the Clark Fork basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica</p> <p>2010-01-01</p> <p>Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 24 sites from October 2008 through September 2009. Bed-sediment and biota samples were collected once at 13 sites during August 2009. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2008 through September 2009. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined as well as at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027687','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027687"><span>A simple autocorrelation algorithm for determining grain size from digital images of sediment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rubin, D.M.</p> <p>2004-01-01</p> <p>Autocorrelation between pixels in digital images of sediment can be used to measure average grain size of sediment on the bed, grain-size distribution of bed sediment, and vertical profiles in grain size in a cross-sectional image through a bed. The technique is less sensitive than traditional laboratory analyses to tails of a grain-size distribution, but it offers substantial other advantages: it is 100 times as fast; it is ideal for sampling surficial sediment (the part that interacts with a flow); it can determine vertical profiles in grain size on a scale finer than can be sampled physically; and it can be used in the field to provide almost real-time grain-size analysis. The technique can be applied to digital images obtained using any source with sufficient resolution, including digital cameras, digital video, or underwater digital microscopes (for real-time grain-size mapping of the bed). ?? 2004, SEPM (Society for Sedimentary Geology).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030507','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030507"><span>Influence of a dam on fine-sediment storage in a canyon river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hazel, J.E.; Topping, D.J.; Schmidt, J.C.; Kaplinski, M.</p> <p>2006-01-01</p> <p>Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (???17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases without significant input of tributary sediment will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon. Copyright 2006 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035019','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035019"><span>Predicting fractional bed load transport rates: Application of the Wilcock‐Crowe equations to a regulated gravel bed river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gaeuman, David; Andrews, E.D.; Krause, Andreas; Smith, Wes</p> <p>2009-01-01</p> <p>Bed load samples from four locations in the Trinity River of northern California are analyzed to evaluate the performance of the Wilcock‐Crowe bed load transport equations for predicting fractional bed load transport rates. Bed surface particles become smaller and the fraction of sand on the bed increases with distance downstream from Lewiston Dam. The dimensionless reference shear stress for the mean bed particle size (τ*rm) is largest near the dam, but varies relatively little between the more downstream locations. The relation between τ*rm and the reference shear stresses for other size fractions is constant across all locations. Total bed load transport rates predicted with the Wilcock‐Crowe equations are within a factor of 2 of sampled transport rates for 68% of all samples. The Wilcock‐Crowe equations nonetheless consistently under‐predict the transport of particles larger than 128 mm, frequently by more than an order of magnitude. Accurate prediction of the transport rates of the largest particles is important for models in which the evolution of the surface grain size distribution determines subsequent bed load transport rates. Values of τ*rm estimated from bed load samples are up to 50% larger than those predicted with the Wilcock‐Crowe equations, and sampled bed load transport approximates equal mobility across a wider range of grain sizes than is implied by the equations. Modifications to the Wilcock‐Crowe equation for determining τ*rm and the hiding function used to scale τ*rm to other grain size fractions are proposed to achieve the best fit to observed bed load transport in the Trinity River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP33A1053L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP33A1053L"><span>Grain velocity of bedload movement in an armored non-uniform mobile bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, C.</p> <p>2015-12-01</p> <p>The velocity of bedload particles, which directly reflects the interaction between flow and sediment, is one of the important parameters to predict sediment transport rate, is also one of the fundamental problems for sediment transport. Many excellent works have been accomplished in this filed. However, the existing researches are mostly based on the artificial fixed bed, few moveable bed studies are focus on uniform sediment bed, these boundary conditions are different from a real river. In this research, an experiment on non-uniform sediment with an armored, moveable bed were carried out in a flume, the range of bed material is from 0.2mm to 20mm. With a special hanging glass and illumination system, the motion particles in the bed were clearly shoot on top of the flume by a video camera, avoiding the interference of waves at the flow surface. The speed of the camera is 50 frames per second. About 7000 unique coordinates of moving particles were determined from 3000 frames of successive pictures, the particle velocity of longitudinal and crosswise directions were obtained from the coordinates. The results show that, the probability density distribution of grain velocities of both directions are similar to that in the uniform sediment, which have an exponent decay trend, whereas the value of cross velocity of particles is clearly greater than that in the uniform sediment condition. Negative particle velocity was recognized in the experiment, it is shown that these negative may occur at two conditions, one is the backflow of fine particles behind the coarser particles, and the other is a state of movement change, such as a particle from static state to motion or vice versa. Furthermore, the particle movement was strongly affected by the arrangement of local coarse particles. The influence of coarser particles to the movement of fine particles also identified by two opposite effects, one is the acceleration effects in a 'tunnel' between pair of series particles, the other is the deceleration effects out of the tunnel, or fine particles captured by the backwater flow just behind a coarse particle. In addition, ensemble particle velocity in the armored bed is distinctly less than which in the fixed bed and uniform bed condition with same particle Reynolds number and Shields parameter. (Supported by(2012BAB04B01;NSFC(11472310))</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP41A1822C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP41A1822C"><span>Modeling Paragenesis: Erosion Opposite to Gravity in Cave Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooper, M. P.; Covington, M. D.</p> <p>2017-12-01</p> <p>Sediment plays an important role in bedrock channels, providing both tools and cover that influence patterns of bed erosion. It has also been shown that sediment load influences bedrock channel width, with increased sediment leading to wider channels. A variety of models have been developed to explore these effects. In caves, it is hypothesized that sediments covering the floors of fully flooded channels that are forming beneath the water table (phreatic zone) can force dissolution upwards towards the water table, leading to upward erosion balanced by gradual deposition of sediment within the channel bottom. This strange process is termed paragenesis, and while there are conceptual and experimental models of the process, no prior mathematical models of cave passage evolution has captured these effects. Consequently, there is little quantitative understanding of the processes that drive paragenesis and how they link to the morphology of the cave channels that develop. We adapt a previously developed algorithm for estimating boundary shear stress within channels with free-surface flows to enable calculation of boundary shear stress in pipe-full conditions. This model successfully duplicates scaling relationships in surface channels, and geometries of caves formed in the phreatic zone such as phreatic tubes. Once sediment flux is incorporated the model successfully duplicates the hypothesized processes of paragenetic gallery formation: the cover effect prevents dissolution in the direction of gravity; passages are enlarged upwards reducing the sediment transport capacity; sediment is deposited and the process drives a continuing feedback loop. Simulations reveal that equilibrium paragenetic channel widths scale with both sediment flux and discharge. Unlike in open channel settings, increased sediment load actually narrows paragenetic channels. The cross section evolution model also reveals that the existence of equilibrium widths in such galleries requires erosion to scale with shear stress, suggesting a role of either mechanical erosion or transport limited dissolution. These types of erosion contrast with current numerical models of speleogenesis, where chemically limited dissolution, a process independent of shear stress, is predicted to occur in most turbulent flow settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1015/ofr20161015.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1015/ofr20161015.pdf"><span>Relation between Enterococcus concentrations and turbidity in fresh and saline recreational waters, coastal Horry County, South Carolina, 2003–04</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Landmeyer, James E.; Garigen, Thomas J.</p> <p>2016-06-24</p> <p>The positive relation observed between turbidity and Enterococcus concentrations in surface water at the water-quality data collection station located in the channel that drains a freshwater swamp may be attributed to bacterial survival in the abundant channel bed sediments that characterized this more naturalized area. Surface-water bed sediments collected near each water-quality data collection station and the surf zone were incubated in static microcosms in the laboratory and analyzed for Enterococcus concentrations over time. Enterococcus concentrations continued to persist in bed sediments collected in the channel that drains the swamp even after almost 4 months of incubation. Conversely, enterococci were not observed to persist in bed sediments characterized by high specific conductance. Although it is currently (2016) unknown whether this persistence of enterococci demonstrates growth or viability, the data indicate that enterococci can exist in channel bed-sediment environments outside of a host for a long time. This observation confirms previous reports that challenge the use of Enterococcus concentrations as an indicator of the recent introduction of fecal-related material and the associated acute risk to other pathogens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29866544','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29866544"><span>Is the microplastic selective according to the habitat? Records in amphioxus sands, Mäerl bed habitats and Cymodocea nodosa habitats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Renzi, Monia; Blašković, Andrea; Fastelli, Paolo; Marcelli, Massimiliano; Guerranti, Cristiana; Cannas, Susanna; Barone, Lorenzo; Massara, Francesca</p> <p>2018-05-01</p> <p>This study estimated for the first time the total loads of plastic litter (macro- meso- and micro-plastics) in sediments of different habitat types from the Northern Adriatic Sea. Samples were collected in March 2016. The sampling sites were settled in shoreline, on the C. nodosa bottoms, Amphioxus sands, and Mäerl bed habitats. Microplastics items were present in all sampling site and ranging within 137-703 items/kg d.w. from Mäerl bed habitat to the shoreline. In C. nodosa bottoms 170 items/kg d.w. were found, while in Amphioxus sands were recorded on average 194 items/kg d.w. Due to the absence of statistical associations among litter levels and abundance of B. lanceolatum in the study area, this research present the needs to develop a new method and more research to for the evaluation of how much the interrelation between sensible habitats and microplastic exist. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP33A1050M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP33A1050M"><span>Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minear, J. T.; Wright, S. A.</p> <p>2015-12-01</p> <p>In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing flows that gradually remove sand and expose the coarser substrate. In effect, the inset channel is analogous to a flume subject to periodic sediment loading events from upstream (runoff events) with long periods of negligible upstream sediment supply between the events (wastewater discharges).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.137..360U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.137..360U"><span>Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uncles, R. J.; Stephens, J. A.; Harris, C.</p> <p>2015-09-01</p> <p>Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915180B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915180B"><span>Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Canelas, Ricardo B.; Huhn, Katrin</p> <p>2017-04-01</p> <p>With experimental techniques it is difficult to measure flow characteristics, e.g. the velocity of pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the effect of fluid flow at the surface and in the interior of a sediment bed on particle motion is not yet fully understood. Numerical models may help to overcome these problems. In this study Smoothed Particle Hydrodynamics (SPH) was chosen since it is ideally suited to simulate flows in sediment beds, at a high temporal and spatial resolution. The solver chosen is DualSPHysics 4.0 (www.dual.sphysics.org), since this is validated for a range of flow conditions. For the present investigation a 3D numerical flow channel was generated with a length of 15.0 cm, a width of 0.5 cm and a height of 4.0 cm. The entire domain was flooded with 8 million fluid particles, while 400 mobile sediment particles were deposited under applied gravity (grain diameter D50=10 mm) to generate randomly packed beds. Periodic boundaries were applied to the sidewalls to mimic an endless flow. To drive the flow, an acceleration perpendicular to the bed was applied to the fluid, reaching a target value of 0.3 cm/s, simulating 12 seconds of real time. Comparison of the model results to the law of the wall showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid surrounding the sediment particles revealed critical threshold velocities, subsequently resulting in the initiation of motion due to drag. Sediment flux measurements indicated that with increasing simulation time a larger quantity of sediment particles was transported at the direct vicinity of the bed, whereas the amount of transported particles along with flow speed values, within the pore spaces, decreased with depth. Moreover, sediment - sediment particle collisions at the sediment surface lead to the opening of new pore spaces. As a result, higher quantities of fluid particles infiltrated through the larger interstices between the sediment particles, which successively increased the potential for the initiation of motion of sediment particles located in the deeper horizons. This effect has been underestimated in prior studies and highlights the importance of sediment - sediment particle collision and fluid infiltration as an important characteristic that can eventually help to better understand the development of the shear layer but also various sediment morphological features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122..807F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122..807F"><span>Bed load tracer mobility in a mixed bedrock/alluvial channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferguson, R. I.; Sharma, B. P.; Hodge, R. A.; Hardy, R. J.; Warburton, J.</p> <p>2017-04-01</p> <p>The presence of bare or partially covered rock in an otherwise alluvial river implies a downstream change in transport capacity relative to supply. Field investigations of this change and what causes it are lacking. We used two sets of magnet-tagged tracer clasts to investigate bed load transport during the same sequence of floods in fully alluvial, bare rock, and partial-cover reaches of an upland stream. High-flow shear stresses in different reaches were calculated by using stage loggers. Tracers seeded in the upstream alluvial channel moved more slowly than elsewhere until the frontrunners reached bare rock and sped up. Tracers seeded on bare rock moved rapidly off it and accumulated just upstream from, and later in, a partial-cover zone with many boulders. The backwater effect of the boulder-rich zone is significant in reducing tracer mobility. Tracer movement over full or partial sediment cover was size selective but dispersion over bare rock was not. Along-channel changes in tracer mobility are interpreted in terms of measured differences in shear stress and estimated differences in threshold stress.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26PSL.401..359D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26PSL.401..359D"><span>Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dellinger, Mathieu; Gaillardet, Jérôme; Bouchez, Julien; Calmels, Damien; Galy, Valier; Hilton, Robert G.; Louvat, Pascale; France-Lanord, Christian</p> <p>2014-09-01</p> <p>The erosion of major mountain ranges is thought to be largely cannibalistic, recycling sediments that were deposited in the ocean or on the continents prior to mountain uplift. Despite this recognition, it has not yet been possible to quantify the amount of recycled material that is presently transported by rivers to the ocean. Here, we have analyzed the Li content and isotope composition (δLi7) of suspended sediments sampled along river depth profiles and bed sands in three of the largest Earth's river systems (Amazon, Mackenzie and Ganga-Brahmaputra rivers). The δLi7 values of river-sediments transported by these rivers range from +5.3 to -3.6‰ and decrease with sediment grain size. We interpret these variations as reflecting a mixture of unweathered rock fragments (preferentially transported at depth in the coarse fraction) and present-day weathering products (preferentially transported at the surface in the finest fraction). Only the finest surface sediments contain the complementary reservoir of Li solubilized by water-rock interactions within the watersheds. Li isotopes also show that river bed sands can be interpreted as a mixture between unweathered fragments of igneous and sedimentary rocks. A mass budget approach, based on Li isotopes, Li/Al and Na/Al ratios, solved by an inverse method allows us to estimate that, for the large rivers analyzed here, the part of solid weathering products formed by present-day weathering reactions and transported to the ocean do not exceed 35%. Li isotopes also show that the sediments transported by the Amazon, Mackenzie and Ganga-Brahmaputra river systems are mostly sourced from sedimentary rocks (>60%) rather than igneous rocks. This study shows that Li isotopes in the river particulate load are a good proxy for quantifying both the erosional rock sources and the fingerprint of present-day weathering processes. Overall, Li isotopes in river sediments confirm the cannibalistic nature of erosion and weathering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ECSS..202..232A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ECSS..202..232A"><span>Sediment transport and fluid mud layer formation in the macro-tidal Chikugo river estuary during a fortnightly tidal cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Azhikodan, Gubash; Yokoyama, Katsuhide</p> <p>2018-03-01</p> <p>The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ECSS..112...52V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ECSS..112...52V"><span>Experimental investigation of the impact of macroalgal mats on flow dynamics and sediment stability in shallow tidal areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venier, C.; Figueiredo da Silva, J.; McLelland, S. J.; Duck, R. W.; Lanzoni, S.</p> <p>2012-10-01</p> <p>This study aims to quantify the impact of macroalgal mats of Ulva intestinalis on flow dynamics and sediment stability. Such mats are becoming increasingly common in many coastal and estuarine intertidal habitats, thus it is important to determine whether they increase flow resistance, promote bed stability and therefore reduce the risk of erosion leading to tidal flooding or to degradation of coastal lagoons. The study has been carried out through a systematic series of experiments conducted in the large open-channel flume of the Total Environment Simulator (TES) facility, University of Hull, UK. The experimental facility was set up with a bed of fine sand, partially covered by strands of U. intestinalis; living individuals attached to large clasts were collected from Budle Bay, in the Lindisfarne National Nature Reserve, UK, and transplanted to the flume. The TES was equipped with acoustic doppler velocimetry (ADV) and acoustic backscatter (ABS) sensors, which measured current velocity, water level, bed level, and suspended sediment concentration. The experiments consisted of several unidirectional flow runs, firstly with a mobile sediment bed covered with U. intestinalis, then with a bare sediment surface, conducted at three different water depths. Under the investigated experimental range of velocities, typical of tidal environments, the macroalgal filaments were bent parallel to the sediment bed. The resulting velocity profile departed from the classical logarithmic trend, implying an increase of the overall roughness. This result reflects the different vertical Reynolds shear stress profiles and energy spectra features of the turbulent flow with respect to a bare sandy bed configuration. Macroalgae are also found to affect the morphological configuration of bedforms. The overall result is significant bio-stabilization, with increased flow resistance and reduced sediment transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25603248','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25603248"><span>Stream Sediment Sources in Midwest Agricultural Basins with Land Retirement along Channel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williamson, T N; Christensen, V G; Richardson, W B; Frey, J W; Gellis, A C; Kieta, K A; Fitzpatrick, F A</p> <p>2014-09-01</p> <p>Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70116314','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70116314"><span>Stream sediment sources in midwest agricultural basins with land retirement along channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Williamson, Tanja N.; Christensen, Victoria G.; Richardson, William B.; Frey, Jeffrey W.; Gellis, Allen C.; Kieta, K. A.; Fitzpatrick, Faith A.</p> <p>2014-01-01</p> <p>Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20970182','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20970182"><span>Relationship between sedimentation rates and benthic impact on Maërl beds derived from fish farming in the Mediterranean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanz-Lázaro, Carlos; Belando, María Dolores; Marín-Guirao, Lázaro; Navarrete-Mier, Francisco; Marín, Arnaldo</p> <p>2011-02-01</p> <p>The aim of this work was to study the dispersion of particulate wastes derived from marine fish farming and correlate the data with the impact on the seabed. Carbon and nutrients were correlated with the physico-chemical parameters of the sediment and the benthic community structure. The sedimentation rates in the benthic system were 1.09, 0.09 and 0.13 g m⁻² day⁻¹ for particulate organic carbon (POC), particulate organic nitrogen (PON) and total phosphorus (TP), respectively. TP was a reliable parameter for establishing the spatial extent of the fish farm particulate wastes. Fish farming was seen to influence not only physico-chemical and biological parameters but also the functioning of the ecosystem from a trophic point of view, particularly affecting the grazers and the balance among the trophic groups. POC, PON and TP sedimentation dynamics reflected the physico-chemical status of the sediment along the distance gradient studied, while their impact on the benthic community extended further. Therefore, the level of fish farm impact on the benthic community might be underestimated if it is assessed by merely taking into account data obtained from waste dispersion rates. The benthic habitat beneath the fish farm, Maërl bed, was seen to be very sensitive to aquaculture impact compared with other unvegetated benthic habitats, with an estimated POC-carrying capacity to maintain current diversity of 0.087 g C m⁻² day⁻¹ (only 36% greater than the basal POC input). Environmental protection agencies should define different aquaculture waste load thresholds for different benthic communities affected by finfish farming, according to their particular degree of sensitivity, in order to maintain natural ecosystem functions. © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/unnumbered/70047728/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/unnumbered/70047728/report.pdf"><span>Sediment investigations of the Platte River near Overton, Nebraska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Albert, C.D.; Guy, H.P.</p> <p>1955-01-01</p> <p>This report contains results of sediment-transport investigations on the Platte River near Overton,. Nebr. from January 1950 to September 1953. The basic data of suspended-sediment studies, results of bed-material analyses, and determinations of water-surface slopes from staff readings are given. The data indicate that a reliable determination of suspended sediment, hence total load, is difficult. Because of the nature of the river at the station and the limited scope of the investigations, the suspended-sediment data may not be representative. The Platte River is characterized by a wide braided channel, a small hydraulic radius, low banks, and a wide flood plain. (See figs. 1 and 2.,) The river bed is composed of coarse to fine sands. Near Overton, natural flow of the river is controlled or modified by diversions, storage reservoirs, power development, return flow from irrigation, and withdrawals of ground water. A temporary jetty was extended into the river below the bridge during the summer of 1952 as part of commercial sand pumping operations. Beavers carry on active construction in the narrows and shallows, particularly upstream from the sampling section. Daily fluctuations in water discharge at the gaging station at the bridge are caused by regulation of the flow, mainly from the generation of power by release of water from a reservoir The water discharge at the station begins increasing about 9:30 a.m., reaches a crest about 2:00 p.m and then immediately recede. Weekly water-discharge measurements of alternate high and low stages indicate a daily variation from 200 to more than 1,000 cfs. During spring summer, and fall increases in water dis charge are also caused by thunderstorm activity in the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70141968','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70141968"><span>Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.</p> <p>2015-01-01</p> <p>As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..156C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..156C"><span>Experimental modelling of outburst flood - bed interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.</p> <p>2009-04-01</p> <p>Outburst floods are a sudden release and advancing wave of water and sediment, with a peak discharge that is often several orders of magnitude greater than perennial flows. Common outburst floods from natural sources include those from glacial and moraine-impounded lakes, freshwater dyke and levee bursts, volcanic debris dams, landslides, avalanches, coastal bay-bars, and those from tree or vegetation dams. Outburst flood hazards are regularly incorporated into risk assessments for urban, coastal and mountainous areas, for example. Outburst flood hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to outburst floods. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental outburst floods. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow depths, 0.5 Hz Ultrasonic Velocimeter Profiling to measure within-flow velocities, and Ultrasonic High-Concentration Meter (UHCM) to measure sediment concentrations, for example, all at increments of space and time. These instruments can only be used without a mobile sediment bed and some could be rendered as a source of error because they are intrusive to the flow. Digital video and automated still photography is therefore also important for recording hydraulic and bedform changes through time in flows with freely-moving sediment. This paper will report initial results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..158C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..158C"><span>Experimental modelling of flow - bed interactions in Jökulhlaups</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.</p> <p>2009-04-01</p> <p>Jökulhlaups (glacial outburst floods) are a sudden release and advancing wave of water and sediment from a glacier, with a peak discharge that is often several orders of magnitude greater than perennial flows. Jökulhlaup hazards are regularly incorporated into risk assessments for glaciated areas because the associated flood hazards are numerous. Jökulhlaup hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to jökulhlaups. However, direct measurement of such phenomena is virtually impossible. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental jökulhlaups. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow depths, 0.5 Hz Ultrasonic Velocimeter Profiling to measure within-flow velocities, and Ultrasonic High-Concentration Meter (UHCM) to measure sediment concentrations, for example, all at increments of space and time. These instruments can only be used without a mobile sediment bed and some could be rendered as a source of error because they are intrusive to the flow. Digital video and automated still photography is therefore also important for recording hydraulic and bedform changes through time in flows with freely-moving sediment. This paper will report initial results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5617238','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5617238"><span>Eighty years of food-web response to interannual variation in discharge recorded in river diatom frustules from an ocean sediment core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sculley, John B.; Lowe, Rex L.; Nittrouer, Charles A.; Drexler, Tina M.; Power, Mary E.</p> <p>2017-01-01</p> <p>Little is known about the importance of food-web processes as controls of river primary production due to the paucity of both long-term studies and of depositional environments which would allow retrospective fossil analysis. To investigate how freshwater algal production in the Eel River, northern California, varied over eight decades, we quantified siliceous shells (frustules) of freshwater diatoms from a well-dated undisturbed sediment core in a nearshore marine environment. Abundances of freshwater diatom frustules exported to Eel Canyon sediment from 1988 to 2001 were positively correlated with annual biomass of Cladophora surveyed over these years in upper portions of the Eel basin. Over 28 years of contemporary field research, peak algal biomass was generally higher in summers following bankfull, bed-scouring winter floods. Field surveys and experiments suggested that bed-mobilizing floods scour away overwintering grazers, releasing algae from spring and early summer grazing. During wet years, growth conditions for algae could also be enhanced by increased nutrient loading from the watershed, or by sustained summer base flows. Total annual rainfall and frustule densities in laminae over a longer 83-year record were weakly and negatively correlated, however, suggesting that positive effects of floods on annual algal production were primarily mediated by “top-down” (consumer release) rather than “bottom-up” (growth promoting) controls. PMID:28874576</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28874576','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28874576"><span>Eighty years of food-web response to interannual variation in discharge recorded in river diatom frustules from an ocean sediment core.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sculley, John B; Lowe, Rex L; Nittrouer, Charles A; Drexler, Tina M; Power, Mary E</p> <p>2017-09-19</p> <p>Little is known about the importance of food-web processes as controls of river primary production due to the paucity of both long-term studies and of depositional environments which would allow retrospective fossil analysis. To investigate how freshwater algal production in the Eel River, northern California, varied over eight decades, we quantified siliceous shells (frustules) of freshwater diatoms from a well-dated undisturbed sediment core in a nearshore marine environment. Abundances of freshwater diatom frustules exported to Eel Canyon sediment from 1988 to 2001 were positively correlated with annual biomass of Cladophora surveyed over these years in upper portions of the Eel basin. Over 28 years of contemporary field research, peak algal biomass was generally higher in summers following bankfull, bed-scouring winter floods. Field surveys and experiments suggested that bed-mobilizing floods scour away overwintering grazers, releasing algae from spring and early summer grazing. During wet years, growth conditions for algae could also be enhanced by increased nutrient loading from the watershed, or by sustained summer base flows. Total annual rainfall and frustule densities in laminae over a longer 83-year record were weakly and negatively correlated, however, suggesting that positive effects of floods on annual algal production were primarily mediated by "top-down" (consumer release) rather than "bottom-up" (growth promoting) controls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://oh.water.usgs.gov/reports/Abstracts/wrir00-4200.html','USGSPUBS'); return false;" href="http://oh.water.usgs.gov/reports/Abstracts/wrir00-4200.html"><span>Areal distribution and concentrations of contaminants of concern in surficial streambed and lakebed sediments, Lake Erie-Lake Saint Clair Drainages, 1990-97</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rheaume, S.J.; Button, D.T.; Myers, Donna N.; Hubbell, D.L.</p> <p>2001-01-01</p> <p>Concerns about elevated concentrations of contaminants such as polychlorinated biphenyls and mercury in aquatic bed sediments throughout the Great Lakes Basin have resulted in a need for better understanding of the scope and severity of the problem. Various organochlorine pesticides, polychlorinated biphenyls, trace metals, and polycyclic aromatic hydrocarbons are a concern because of their ability to persist and accumulate in aquatic sediments and their association with adverse aquatic biological effects. The areal distribution and concentrations in surficial bed sediments of 20 contaminants of concern with established bed-sediment-toxicity guidelines were examined in relation to their potential effects on freshwater aquatic biota. Contaminants at more than 800 sampling locations are characterized in this report. Surficial bed-sediment-quality data collected from 1990 to 1997 in the Lake Erie?Lake Saint Clair Drainages were evaluated to reflect recent conditions. In descending order, concentrations of total polycyclic aromatic hydrocarbons, phenanthrene, total polychlorinated biphenyls, chrysene, benz[a]anthracene, benzo[a]pyrene, cadmium, lead, zinc, arsenic, and mercury were the contaminants that most commonly exceeded levels associated with probable adverse effects on aquatic benthic organisms. The highest concentrations of most of these contaminants in aquatic bed sediments are confined to the 12 specific geographic Areas of Concern identified in the 1987 Revisions to the Great Lakes Water Quality Agreement of 1972. An exception is arsenic, which was detected at concentrations exceeding threshold effect levels at many locations outside Areas of Concern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5102/SIR12-5102.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5102/SIR12-5102.pdf"><span>Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.</p> <p>2013-01-01</p> <p>In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to determine fluxes of suspended sediment for the median particle size and for the measured range of particle sizes in the channel. Three different techniques were investigated for making the suspended-sediment predictions; these techniques have varying degrees of reliance on measured data and also have greatly differing degrees of complexity. Based on these data, the calibrated Rouse method provided the best balance between accuracy and both computational and data collection costs; the presence of substantial washload was the primary factor in eliminating the simpler and the more complex techniques. Based on this work, using the selected technique at additional sites in the watershed to determine relative loads and source areas appears plausible. However, to ensure that the methodology presented in this report yields reasonable results at other selected sites in the basin, it is necessary to collect additional verification data sets at those locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2271/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2271/report.pdf"><span>Pesticides in the nation's rivers, 1975-1980, and implications for future monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gilliom, Robert J.; Alexander, Richard B.; Smith, Richard A.</p> <p>1985-01-01</p> <p>Water samples were taken four times per year and bed-sediment samples two times per year during 1975-80 at 160 to 180 stations on major rivers of the United States. Samples were analyzed for 18 insecticides and 4 herbicides, which together accounted for about one-third of the total amount of all pesticides applied to major crops during 1975-80. Fewer than 10 percent of almost 3,000 water samples and fewer than 20 percent of almost 1,000 bed-sediment samples contained reportable concentrations of any of the compounds. The patterns of detection result from a combination of widely variable detection capabilities, chemical properties, and use. Most detections in water samples were of relatively persistent yet soluble compounds: atrazine (4.8 percent of samples), diazinon (1.2), and lindane (1.1). Most detections in bed-sediment samples were of the hydrophobic and persistent insecticides: DDE (17 percent of samples), DDD (12), dieldrin (12), chlordane (9.9), and DDT (8.5). Only for atrazine in water, and for DDE, DDD, DDT, and chlordane in bed sediments, were geographic patterns of detection correlated (pH<0.10) with use on farms. Detections of organochlorine insecticides in both water and bed sediments appear to have erratically but gradually decreased during 1975-80. For the 1975-79 period, more stations had downtrends than had uptrends in bed-sediment levels of organochlorines. No clear trends were evident in concentrations of organophosphate insecticides or herbicides in either water or bed sediments. Findings suggest that future pesticide monitoring efforts must be responsive to changes in pesticides used and to geographic patterns of use. Different types of monitoring approaches are necesssary for chemicals having different chemical and physical properties. Before an effective dynamic monitoring effort can be designed, however, selected case studies are needed to characterize and refine sampling and analytical capabilities for different types of chemicals, river environments, and sample types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA268207','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA268207"><span>Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Full Life-Cycle Exposure to Bedded Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-06-01</p> <p>COMMUNITY ENZYME OSMOREGULATION ENERGY FLOW DNA/RNA BEHAVIOR NUTRIENT CYCLING END POINT MEMBRANES METABOLISM INTRASPECIFIC HISTOPATHOLOGY SURVIVAL...Miscellaneous Paper D-93-2AD-A268 207 June 1993 US Army Corps of Engineers Waterways Experiment Station Long-Term Effects of Dredging Operations...Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Full Life-Cycle Exposure to Bedded Sediments by</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027092','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027092"><span>Effects of wave shape on sheet flow sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hsu, T.-J.; Hanes, D.M.</p> <p>2004-01-01</p> <p>A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDN14001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDN14001S"><span>Sand Waves in Environmental Flows: Insights gained by LES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sotiropoulos, Fotis</p> <p>2014-11-01</p> <p>In fluvial and coastal environments, sediment transport processes induced by near-bed coherent structures in the turbulent boundary layer developing over a mobile sediment bed result in the formation of dynamically rich sand waves, or bed forms, which grow and migrate continuously. Bed form migration alters streambed roughness and provides the primary mechanism for transporting large amounts of sediment through riverine systems impacting the morphology, streambank stability, and ecology of waterways. I will present recent computational advances, which have enabled coupled, hydro-morphodynamic large-eddy simulation (LES) of turbulent flow in mobile-bed open channels. Numerical simulations: 1) elucidate the role of near-bed sweeps in the turbulent boundary layer as the mechanism for initiating the instability of the initially flat sand bed; 2) show how near-bed processes give rise to aperiodic eruptions of suspended sediment at the free surface; and 3) clarify the mechanism via which sand waves migrate. Furthermore, in agreement with recent experimental observations, the computed spectra of the resolved velocity fluctuations above the bed exhibit a distinct spectral gap whose width increases with distance from the bed. The spectral gap delineates the spectrum of turbulence from that of slowly evolving coherent structures associated with sand wave migration. The talk will also present computational results demonstrating the feasibility of carrying out coupled, hydro-morphodynamic LES of large dunes migrating in meandering streams and rivers with embedded hydraulic structures and discuss future challenges and opportunities. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7802','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7802"><span>A simulation model for the infiltration of heterogeneous sediment into a stream bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Tim Lauck; Roland Lamberson; Thomas E. Lisle</p> <p>1993-01-01</p> <p>Abstract - Salmonid embryos depend on the adequate flow of oxygenated water to survive and interstitial passageways to emerge from the gravel bed. Spawning gravels are initially cleaned by the spawning female, but sediment transported during subsequent high-runoff events can nfiltrate the porous substrate. In many gravel-bed channels used for spawning, most of the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B13F0573A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B13F0573A"><span>Anomalies in Trace Metal and Rare-Earth Loads below a Waste-Water Treatment Plant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antweiler, R.; Writer, J. H.; Murphy, S.</p> <p>2013-12-01</p> <p>The changes in chemical loads were examined for 54 inorganic elements and compounds in a 5.4-km reach of Boulder Creek, Colorado downstream of a waste water treatment plant (WWTP) outfall. Elements were partitioned into three categories: those showing a decrease in loading downstream, those showing an increase, and those which were conservative, at least over the length of the study reach. Dissolved loads which declined - generally indicative of in-stream loss via precipitation or sorption - were typically rapid (occurring largely before the first sampling site, 2.3 km downstream); elements showing this behavior were Bi, Cr, Cs, Ga, Ge, Hg, Se and Sn. These results were as expected before the experiment was performed. However, a large group (28 elements, including all the rare-earth elements, REE, except Gd) exhibited dissolved load increases indicating in-stream gains. These gains may be due to particulate matter dissolving or disaggregating, or that desorption is occurring below the WWTP. As with the in-stream loss group, the processes tended to be rapid, typically occurring before the first sampling site. Whole-water samples collected concurrently also had a large group of elements which showed an increase in load downstream of the WWTP. Among these were most of the group which had increases in the dissolved load, including all the REE (except Gd). Because whole-water samples include both dissolved and suspended particulates within them, increases in loads cannot be accounted for by invoking desorption or disaggregation mechanisms; thus, the only source for these increases is from the bed load of the stream. Further, the difference between the whole-water and dissolved loads is a measure of the particulate load, and calculations show that not only did the dissolved and whole-water loads increase, but so did the particulate loads. This implies that at the time of sampling the bed sediment was supplying a significant contribution to the suspended load. In general, it seems untenable as a hypothesis to suppose that the stream bed material can permanently supply the source of the in-stream load increases of a large group of inorganic elements. We propose that the anomalous increase in loads was more a function of the time of sampling (both diurnally and seasonally) and that sampling at different times of day or different seasons during the year would give contradictory results to those seen here. If this is so, inorganic loading studies must include multiple sampling both over the course of a day and during different seasons and flow regimes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/307/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/307/"><span>Data on Mercury in Water, Bed Sediment, and Fish from Streams Across the United States, 1998-2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bauch, Nancy J.; Chasar, Lia C.; Scudder, Barbara C.; Moran, Patrick W.; Hitt, Kerie J.; Brigham, Mark E.; Lutz, Michelle A.; Wentz, Dennis A.</p> <p>2009-01-01</p> <p>The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Toxic Substances Hydrology Programs conducted the National Mercury Pilot Study in 1998 to examine relations of mercury (Hg) in water, bed sediment and fish in streams across the United States, including Alaska and Hawaii. Water and bed-sediment samples were analyzed for total Hg (THg), methylmercury (MeHg), and other constituents; fish were analyzed for THg. Similar sampling was conducted at additional streams across the country in 2002 and 2004-05. This report summarizes sample collection and processing protocols, analytical methods, environmental data, and quality-assurance data for stream water, bed sediment, and fish for these national studies. To extend the geographic coverage of the data, this report also includes four regional USGS Hg studies conducted during 1998-2001 and 2004. The environmental data for these national and regional Hg studies are provided in an electronic format.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.136....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.136....1S"><span>Shoreface to estuarine sedimentation in the late Paleocene Matanomadh Formation, Kachchh, western India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, V. K.; Singh, B. P.</p> <p>2017-04-01</p> <p>Late Paleocene sedimentation in the pericratonic Kachchh Basin marks the initial marine transgression during the Cenozoic era. A 17 m thick sandstone-dominated succession, known as the clastic member (CM) of the Matanomadh Formation (MF), is exposed sporadically in the basin. Three facies associations are reconstructed in the succession in three different sections. Facies association-1 contains matrix-supported pebbly conglomerate facies, horizontally-laminated sandstone-mudstone alternation facies, hummocky- and swaley cross-bedded sandstone facies, wave-rippled sandstone facies and climbing ripple cross-laminated sandstone facies. This facies association developed between shoreface and foreshore zone under the influence of storms on a barrier ridge. Facies association-2 contains sigmoidal cross-bedded sandstone facies, sandstone-mudstone alternation facies, flaser-bedded sandstone facies, herringbone cross-bedded sandstone facies and tangential cross-bedded sandstone facies. This facies association possessing tidal bundles and herringbone cross-beds developed on a tidal flat with strong tidal influence. Facies association-3 comprises pebbly sandstone facies, horizontally-bedded sandstone facies, tangential cross-bedded sandstone facies exhibiting reactivation surfaces and tabular cross-bedded sandstone facies. This facies association represents sedimentation in a river-dominated estuary and reactivation surfaces and herringbone cross-beds indicating tidal influence. The bipolar paleocurrent pattern changes to unipolar up-section because of the change in the depositional currents from tidal to fluvial. The sedimentation took place in an open coast similar to the Korean coast. The presence of neap-spring tidal rhythmites further suggests that a semidiurnal system similar to the modern day Indian Ocean was responsible for the sedimentation. Here, the overall sequence developed during the transgressive phase where barrier ridge succession is succeeded by the tidal flat succession and the latter, in turn, is succeeded by the estuarine succession. This study resolves the most debated issue of initial marine transgression in the Kachchh Basin during the Cenozoic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21558043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21558043"><span>Modelling sediment-microbial dynamics in the South Nation River, Ontario, Canada: Towards the prediction of aquatic and human health risk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Droppo, I G; Krishnappan, B G; Liss, S N; Marvin, C; Biberhofer, J</p> <p>2011-06-01</p> <p>Runoff from agricultural watersheds can carry a number of agricultural pollutants and pathogens; often associated with the sediment fraction. Deposition of this sediment can impact water quality and the ecology of the river, and the re-suspension of such sediment can become sources of contamination for reaches downstream. In this paper a modelling framework to predict sediment and associated microbial erosion, transport and deposition is proposed for the South Nation River, Ontario, Canada. The modelling framework is based on empirical relationships (deposition and re-suspension fluxes), derived from laboratory experiments in a rotating circular flume using sediment collected from the river bed. The bed shear stress governing the deposition and re-suspension processes in the stream was predicted using a one dimensional mobile boundary flow model called MOBED. Counts of live bacteria associated with the suspended and bed sediments were used in conjunction with measured suspended sediment concentration at an upstream section to allow for the estimation of sediment associated microbial erosion, transport and deposition within the modelled river reach. Results suggest that the South Nation River is dominated by deposition periods with erosion only occurring at flows above approximately 250 m(3) s(-1) (above this threshold, all sediment (suspended and eroded) with associated bacteria are transported through the modelled reach). As microbes are often associated with sediments, and can survive for extended periods of time, the river bed is shown to be a possible source of pathogenic organisms for erosion and transport downstream during large storm events. It is clear that, shear levels, bacteria concentrations and suspended sediment are interrelated requiring that these parameters be studied together in order to understand aquatic microbial dynamics. It is important that any management strategies and operational assessments for the protection of human and aquatic health incorporate the sediment compartments (suspended and bed sediment) and the energy dynamics within the system in order to better predict the concentration of indicator organism. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19475941','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19475941"><span>Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marvin-Dipasquale, Mark; Lutz, Michelle A; Brigham, Mark E; Krabbenhoft, David P; Aiken, George R; Orem, William H; Hall, Britt D</p> <p>2009-04-15</p> <p>Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment-pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 microm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 +/- 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd's for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9007V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9007V"><span>Comparisons of Derived Metrics from Computed Tomography (CT) Scanned Images of Fluvial Sediment from Gravel-Bed Flume Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David</p> <p>2016-04-01</p> <p>Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. Here metrics are derived for images from two flume experiments: one with a bed of coarse grains (>4mm) and the other where sand and clay were incorporated into the coarse flume bed. In addition to deriving force networks, comparison of metrics such as critical shear stress, pivot angles, grain distributions, principle axis orientation, and pore space over depth are made. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics, inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty, as well as improved understanding of relationships between sediment structure, grain size distribution and channel topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1997/4057/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1997/4057/report.pdf"><span>Occurrence and Distribution of Organochlorine Compounds in Biological Tissue and Bed Sediment From Streams in the Trinity River Basin, Texas, 1992-93</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moring, J. Bruce</p> <p>1997-01-01</p> <p>This report describes the occurrence and distribution of organochlorine compounds in biological tissue and bed sediment from the Trinity River Basin study area of the National Water-Quality Assessment Program. Concentrations of organochlorine pesticides, polychlorinated biphenyls (PCBs), and other organochlorine compounds were determined in biological tissue and surficial bed sediment from 16 stream sites in the Trinity River Basin of east-central Texas. Asiatic clams (Corbicula fluminea) were collected at 10 sites, and fish, including blue catfish (Ictalurus furcatus), common carp (Cyprinus carpio), bluegill (Lepomis cyanellus), and yellow bullhead (Ameiurus natalis) were collected at all mainstem and two tributary sites. Thirty of the 36 compounds analyzed in biological tissue or surficial bed sediment were detected in one or both media. Overall, more organochlorine compounds were detected in bed sediment than in biological tissue; however, various chlordane isomers, DDT metabolites, and PCBs were detected more frequently in tissue than in sediment. The chlordane isomers and PCBs that were detected more frequently in biological tissue also were detected more frequently at urban sites than at agricultural sites. Organochlorine compound concentrations generally were highest in fish tissue from Trinity River mainstem sites. Fish tissue from the mainstem sites contained a higher percentage of lipids than did fish- and clam-tissue samples from the tributary sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12666796','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12666796"><span>In situ observation of the water-sediment interface in combined sewers, using endoscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oms, C; Gromaire, M C; Chebbo, G</p> <p>2003-01-01</p> <p>A new method for water-sediment interface observation has been designed. This system is based on a small diameter endoscope protected by a graduated plastic tube. It makes it possible to visualise in a non-destructive manner the sediments and the water-sediment interface. The endoscope was used to investigate Le Marais catchment (Paris): an immobile organic layer was observed at the water-sediment interface. This layer appears in pools of gross bed sediment, at the upstream of collectors, in zones where velocity is slow and where bed shear stress is less than 0.03 N/m2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032895','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032895"><span>Sediment delivery after a wildfire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reneau, Steven L.; Katzman, D.; Kuyumjian, G.A.; Lavine, A.; Malmon, D.V.</p> <p>2007-01-01</p> <p>We use a record of sedimentation a small reservoir within the Cerro Grande burn area, New Mexico, to document postfire delivery of ash, other fine-grained sediment carried in suspension within floods, and coarse-grained sediment transported as bedload over a five-year period. Ash content of sediment layers is estimated using fallout 137Cs as a tracer, and ash concentrations are shown to rapidly decrease through a series of moderate-intensity convective storms in the first rainy season after the fire. Over 90% of the ash was delivered to the reservoir in the first year, and ash concentrations in suspended sediment were negligible after the second year. Delivery of the remainder of the fine sediment also declined rapidly after the first year despite the occurrence of higher-intensity storms in the second year. Fine sediment loads after five years remained significantly above prefire averages. Deposition of coarse-grained sediment was irregular in time and was associated with transport by snowmelt runoff of sediment stored along the upstream channel during short-duration summer floods. Coarse sediment delivery in the first four years was strongly correlated with snowmelt volume, suggesting a transport-limited system with abundant available sediment. Transport rates of coarse sediment declined in the fifth year, consistent with a transition to a more stable channel as the accessible sediment supply was depleted and the channel bed coarsened. Maximum impacts from ash and other fine-grained sediment therefore occurred soon after the fire, whereas the downstream impacts from coarse-grained sediment were attenuated by the more gradual process of bedload sediment transport. ?? 2007 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4962282','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4962282"><span>Contamination and Risk Assessment of Heavy Metals in Lake Bed Sediment of a Large Lake Scenic Area in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wan, Li; Xu, Liang; Fu, Yongsheng</p> <p>2016-01-01</p> <p>The exposure of heavy metals to lake bed sediment of scenic areas may pose risks on aquatic ecosystems and human health, however very few studies on risk assessment have been reported for scenic areas. Accordingly, this study determined concentration levels, and assessed contamination characteristics and risks, of heavy metals in lake bed sediment of National Scenic Areas Songhuahu (NSAS) in China. The concentrations of Zn, Cr, Pb, Ni, and Cu were determined in 29 bed sediment samples. Results showed that the mean values of Zn, Cr, Pb, Ni, and Cu were 92.69, 90.73, 38.29, 46.77, and 49.44 mg/kg, respectively. Pearson correlation coefficients indicated that organic matter was a major factor influencing distribution of heavy metals. The results for enrichment factors indicated that contamination rates and anthropogenic inputs of single heavy metals decreased in the order Cu > Ni > Pb > Cr > Zn; results of Nemerow integrated pollution index suggested that 72.41% of sampling sites were exposed to low to moderately integrated pollution, and 27.59% of sampling sites were exposed to strongly integrated pollution. According to results for potential ecological risk index, ecological risks of single and all the heavy metals in bed sediment from all the sampling sites were low. Human risks were assessed with hazardous quotients, and the results suggested that exposure of heavy metals to bed sediment posed no or little risk to human health, and the pathway of ingestion significantly contributed to human health risks. PMID:27455296</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5223/pdf/sir20125223.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5223/pdf/sir20125223.pdf"><span>Sources and sinks of filtered total mercury and concentrations of total mercury of solids and of filtered methylmercury, Sinclair Inlet, Kitsap County, Washington, 2007-10</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Paulson, Anthony J.; Dinicola, Richard S.; Noble, Marlene A.; Wagner, Richard J.; Huffman, Raegan L.; Moran, Patrick W.; DeWild, John F.</p> <p>2012-01-01</p> <p>The majority of filtered total mercury in the marine water of Sinclair Inlet originates from salt water flowing from Puget Sound. About 420 grams of filtered total mercury are added to Sinclair Inlet each year from atmospheric, terrestrial, and sedimentary sources, which has increased filtered total mercury concentrations in Sinclair Inlet (0.33 nanograms per liter) to concentrations greater than those of the Puget Sound (0.2 nanograms per liter). The category with the largest loading of filtered total mercury to Sinclair Inlet included diffusion of porewaters from marine sediment to the water column of Sinclair Inlet and discharge through the largest stormwater drain on the Bremerton naval complex, Bremerton, Washington. However, few data are available to estimate porewater and stormwater releases with any certainty. The release from the stormwater drain does not originate from overland flow of stormwater. Rather total mercury on soils is extracted by the chloride ions in seawater as the stormwater is drained and adjacent soils are flushed with seawater by tidal pumping. Filtered total mercury released by an unknown freshwater mechanism also was observed in the stormwater flowing through this drain. Direct atmospheric deposition on the Sinclair Inlet, freshwater discharge from creek and stormwater basins draining into Sinclair Inlet, and saline discharges from the dry dock sumps of the naval complex are included in the next largest loading category of sources of filtered total mercury. Individual discharges from a municipal wastewater treatment plant and from the industrial steam plant of the naval complex constituted the loading category with the third largest loadings. Stormwater discharge from the shipyard portion of the naval complex and groundwater discharge from the base are included in the loading category with the smallest loading of filtered total mercury. Presently, the origins of the solids depositing to the sediment of Sinclair Inlet are uncertain, and consequently, concentrations of sediments can be qualitatively compared only to total mercury concentrations of solids suspended in the water column. Concentrations of total mercury of suspended solids from creeks, stormwater, and even wastewater effluent discharging into greater Sinclair Inlet were comparable to concentrations of solids suspended in the water column of Sinclair Inlet. Concentrations of total mercury of suspended solids were significantly lower than those of marine bed sediment of Sinclair Inlet; these suspended solids have been shown to settle in Sinclair Inlet. The settling of suspended solids in the greater Sinclair Inlet and in Operable Unit B Marine of the naval complex likely will result in lower concentrations of total mercury in sediments. Such a decrease in total mercury concentrations was observed in the sediment of Operable Unit B Marine in 2010. However, total mercury concentrations of solids discharged from several sources from the Bremerton naval complex were higher than concentrations in sediment collected from Operable Unit B Marine. The combined loading of solids from these sources is small compared to the amount of solids depositing in OU B Marine. However, total mercury concentration in sediment collected at a monitoring station just offshore one of these sources, the largest stormwater drain on the Bremerton naval complex, increased considerably in 2010. Low methylmercury concentrations were detected in groundwater, stormwater, and effluents discharged from the Bremerton naval complex. The highest methylmercury concentrations were measured in the porewaters of highly reducing marine sediment in greater Sinclair Inlet. The marine sediment collected off the largest stormwater drain contained low concentrations of methylmercury in porewater because these sediments were not highly reducing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148030','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148030"><span>Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.</p> <p>2014-01-01</p> <p>Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ECSS...91..169P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ECSS...91..169P"><span>Contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the sandprawn Callianassa kraussi in a marine-dominated lagoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pillay, D.; Branch, G. M.; Dawson, J.; Henry, D.</p> <p>2011-01-01</p> <p>Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a "bare zone" of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the "bare zone" had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl- a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal richness was unexpected. By loosening sediments, reducing anoxia and enhancing organic content, C. kraussi may engineer these high shore habitats to ameliorate environmental stresses or increase food availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMIP22C..04I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMIP22C..04I"><span>A Bed-Deformation Experiment Beneath Engabreen, Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.</p> <p>2001-12-01</p> <p>Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a Coulomb material, a model for till advocated by B. Kamb.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48473','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48473"><span>Effects of sediment supply on surface textures of gravel-bed rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John M. Buffington; David R. Montgomery</p> <p>1999-01-01</p> <p>Using previously published data from flume studies, we test a new approach for quantifying the effects of sediment supply (i.e., bed material supply) on surface grain size of equilibrium gravel channels. Textural response to sediment supply is evaluated relative to a theoretical prediction of competent median grain size (D’50). We find that surface median grain size (...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4355M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4355M"><span>Do predator-prey relationships on the river bed affect fine sediment ingress?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mathers, Kate; Rice, Stephen; Wood, Paul</p> <p>2016-04-01</p> <p>Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between predator and prey) resulted in intermediate fine sediment infiltration rates. The results suggest that reductions in prey availability may enhance crayfish foraging behaviour and therefore their impact on fine sediment ingress into river beds. Consequently, as invading species become more established and prey resources are depleted, the implications of invasive crayfish on fine sediment dynamics may become more prominent. These experiments demonstrate the importance of abiotic-biotic coupling in fluvial systems for both geomorphological and ecological understanding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/4580','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/4580"><span>Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Kristin Bunte; Steven R. Abt</p> <p>2001-01-01</p> <p>This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38897','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38897"><span>Transport and storage of bed material in a gravel-bed channel during episodes of aggradation and degradation: a field and flume study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Bonnie Smith Pryor; Thomas Lisle; Diane Sutherland Montoya; Sue Hilton</p> <p>2011-01-01</p> <p>The dynamics of sediment transport capacity in gravel-bed rivers is critical to understanding the formation and preservation of fluvial landforms and formulating sediment-routing models in drainage systems. We examine transport-storage relations during cycles of aggradation and degradation by augmenting observations of three events of channel aggradation and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/unnumbered/70047695/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/unnumbered/70047695/report.pdf"><span>A study of flow in alluvial channels: the effect of large concentrations of fine sediment on the mechanics of flow in a small flume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haushild, William Leland; Simons, Daryl Baldwin; Richadrson, Everett V.</p> <p>1961-01-01</p> <p>concentration with the dune bed form and was increased by as much as 550 percent for the transition, standing wave, and antidune forms of bed roughness. Resistance to flow was less (C/√ g increased by 45 percent) with fine sediment-laden flow than with clear-water flow for the dune, and transition bed forms; and was greater (C/√ g   reduced by 25 percent) for the standing waves and the antidunes. A narrow range of bentonite concentration for each form of bed roughness was established as a limit below which only minor changes in bed form, bed material transport, and resistance to flow occurred. The variation of the liquid properties, specific weight and viscosity, for water-bentonite dispersions were studied and their effect on the properties of the bed material particles measured. The fall velocity of the particles in a dispersion of 100, 000 parts per million fine sediment in water was reduced to about one-half their fall velocity in clear water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Geomo.118..105C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Geomo.118..105C"><span>Temporal and spatial scales of geomorphic adjustments to reduced competency following flow regulation in bedload-dominated systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curtis, Katherine E.; Renshaw, Carl E.; Magilligan, Francis J.; Dade, William B.</p> <p>2010-05-01</p> <p>Because of the combined effects of reduced sediment transport capacity and competency following flow regulation, morphological changes are expected to occur in channels downstream from dams and, specifically, at tributary junctions where local inputs of water and sediment occur. Using a combination of historical aerial photographs, mainstem- and tributary-channel pebble counts, and HEC-RAS flow modeling for two watersheds in south-central VT, one unregulated and the other regulated since 1961, we document the time series of post-regulation channel narrowing and associated bar growth due to the influx of tributary sediment. Channel adjustments at regulated tributary junctions have been significant in ca. 50 years following impoundment, with channels downstream of the confluences narrowing over 15% after an initial ca. 20-year lag before the onset of accelerated narrowing. Moreover, flow modeling suggests that downstream of regulated confluences, the modern median grain size ( d50) along the channel bed is immobile. No significant channel narrowing has occurred either above or below unregulated tributary junctions or on the mainstem upstream of regulated confluences. However, greater channel sediment fining is observed upstream of regulated confluences than above unregulated confluences. Thus, the primary mode of mainstem channel adjustment differs up- and downstream of regulated tributaries. These confluence effects have occurred where the tributary drainage area is only 0.2 times that of the mainstem, well below the threshold ratio of 0.6 required for significant geomorphic effects at unregulated confluences, highlighting the geomorphic scale shift of dams. Lastly, we evaluate the downstream length required for a river to recover from the impacts of impoundment and demonstrate that even distal locations are impacted by flow regulation. Unlike the impacts of flow regulation in the western US where channel incision and bar erosion predominate following impoundment, we find that in situations where bed incision is minimal and where sediment loads are low but bed caliber high, bar growth and channel narrowing are significant adjustments at tributary junctions following impoundment. Therefore, at our sites the effects of dams on reduced competency may be more profound than on reduced sediment transport capacity, highlighting the importance of geologic and geomorphic settings in understanding fluvial responses to impoundment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1988/0333/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1988/0333/report.pdf"><span>Sediment sources in the Lake Tahoe Basin, California-Nevada; preliminary results of a four-year study, August 1983-September 1987</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hill, B.R.; Hill, J.R.; Nolan, K.M.</p> <p>1988-01-01</p> <p>Data were collected during a 4-yr study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood, General, Edgewood, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel mapping; analyses of bank and bed material samples; tabulations of bed material point counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1989/0618/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1989/0618/report.pdf"><span>Sediment-source data for four basins tributary to Lake Tahoe, California and Nevada; August 1983-June 1988</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hill, B.R.; Hill, J.R.; Nolan, K.M.</p> <p>1990-01-01</p> <p>Data were collected during a 5-year study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood Creek, General Creek, Edgewood Creek, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel inventories; analyses of bank and bed material samples; tabulations of bed-material pebble counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021989','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021989"><span>Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.</p> <p>1999-01-01</p> <p>Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6003Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6003Z"><span>Changes to channel sediments resulting from complex human impacts in a gravel-bed river, Polish Carpathians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zawiejska, Joanna; Wyżga, Bartłomiej; Hajdukiewicz, Hanna; Radecki-Pawlik, Artur; Mikuś, Paweł</p> <p>2016-04-01</p> <p>During the second half of the twentieth century, many sections of the Czarny Dunajec River, Polish Carpathians, were considerably modified by channelization as well as gravel-mining and the resultant channel incision (up to 3.5 m). This paper examines changes to the longitudinal pattern of grain size and sorting of bed material in an 18-km-long river reach. Surface bed-material grain size was established on 47 gravel bars and compared with a reference downstream fining trend of bar sediments derived from the sites with average river width and a vertically stable channel. Contrary to expectations, the extraction of cobbles from the channel bed in the upper part of the study reach, conducted in the past decades, has resulted in the marked coarsening of bed material in this river section. The extraction facilitated entrainment of exposed finer grains and has led to rapid bed degradation, whereas the concentration of flood flows in the increasingly deep and narrow channel has increased their competence and enabled a delivery of the coarse particles previously typical of the upstream reach. The middle section of the study reach, channelized to prevent sediment delivery to a downstream reservoir, now transfers the bed material flushed out from the incising upstream section. With considerably increased transport capacity of the river and with sediment delivery from bank erosion eliminated by bank reinforcements, bar sediments in the channelized section are typified by increased size of the finer fraction and better-than-average sorting. In the wide, multi-thread channel in the lower part of the reach, low unit stream power and high channel-form roughness facilitate sediment deposition and are reflected in relatively fine grades of bar gravels. The study showed that selective extraction of larger particles from the channel bed leads to channel incision at and upstream of the mining site. However, unlike bulk gravel mining, selective extraction does not result in sediment deficit downstream as large volumes of finer bed material are flushed out from the incising channel section. Grain-size analyses of bulk gravels and measurements of 100 coarsest particles within the channel sediment ranging in age from 5200 years BP to the present, performed in this deeply incised section, indicated that grain size of channel sediments changed relatively little since mid-Holocene to the 1960s, but has increased rapidly over the last half-century as a result of human interventions and rapidly progressing channel incision. This study was performed within the scope of the Research Project DEC-2013/09/B/ST10/00056 financed by the National Science Centre of Poland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029430','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029430"><span>Sheet flow and suspended sediment due to wave groups in a large wave flume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dohmen-Janssen, C. M.; Hanes, D.M.</p> <p>2005-01-01</p> <p>A series of sand bed experiments was carried out in the Large Wave Flume in Hannover, Germany as a component of the SISTEX99 experiment. The experiments focussed on the dynamic sediment response due to wave group forcing over a flat sand bed in order to improve understanding of cross-shore sediment transport mechanisms and determine sediment concentrations, fluxes and net transport rates under these conditions. Sediment concentrations were measured within the sheet flow layer (thickness in the order of 10 grain diameters) and in the suspension region (thickness in the order of centimetres). Within the sheet flow layer, the concentrations are highly coherent with the instantaneous near-bed velocities due to each wave within the wave group. However, in the suspension layer concentrations respond much more slowly to changes in near-bed velocity. At several centimetres above the bed, the suspended sediment concentrations vary on the time scale of the wave group, with a time delay relative to the peak wave within the wave group. The thickness of the sheet flow changes with time. It is strongly coherent with the wave forcing, and is not influenced by the history or sequence of the waves within the group. The velocity of the sediment was also measured within the sheet flow layer some of the time (during the larger wave crests of the group), and the velocity of the fluid was measured at several cm above the sheet flow layer. The grain velocity and concentration estimates can be combined to estimate the sediment flux. The estimates were found to be consistent with previous measurements under monochromatic waves. Under these conditions, without any significant mean current, the sediment flux within the sheet flow layer was found to greatly exceed the sediment flux in the suspension layer. As a result, net transport rates under wave groups are similar to those under monochromatic waves. ?? 2004 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019473','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019473"><span>Concentrations of chlorinated organic compounds in biota and bed sediment in streams of the San Joaquin Valley, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brown, L.R.</p> <p>1997-01-01</p> <p>Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 15 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of ??DDT (sum of o,p'- and p, p' forms of DDD, DDE, and DDT) were statistically different among groups of sites for both tissue and sediment (Kruskal- Wallis, p < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of ??DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (p < 0.05), which are indicators of the proportion of irrigation return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total organic carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (p < 0.05). Regressions of the concentration of ??DDT in tissue, as a function of ??DDT in bed sediment, were significant and explained up to 76% of the variance in the data. The concentration of ??DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment. The results of this study did not indicate any clear advantage to using either bed sediment or tissues in studies of organochlorine chemicals in the environment. Some guidelines for protection of fish and wildlife were exceeded. Concentrations of organochlorine chemicals in biota, and perhaps sediment, have declined from concentrations measured in the 1970s and 1980s, but remain high compared to other regions of the United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986PhDT.......195S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986PhDT.......195S"><span>Sedimentology and tectonics of the collision complex in the east arm of Sulawesi Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simandjuntak, Tohap Oculair</p> <p></p> <p>An imbricated Mesozoic to Palaeogene continental margin sequence is juxtaposed with ophiolitic rocks in the East Arm of Sulawesi, Indonesia. The two tectonic terranes are bounded by the Batui Thrust and Balantak Fault System, which are considered to be the surface expression of the collision zone between the Banggai-Sula Platform and the Eastern Sulawesi Ophiolite Belt. The collision complex contains three distinctive sedimentary sequences : 1) Triassic-Palaeogene continental margin sediments, ii) Cretaceous pelagic sediments and iii) Neogene coarse clastic sediments and volcanogenic turbidites. (i) Late Triassic Lemo Beds consisting largely of carbonate-slope deposits and subsidiary clastics including quartz-rich lithic sandstones and lensoidal pebbly mudstone and conglomeratic breccia. The hemipelagic limestones are rich in micro-fossils. Some beds of the limestone contain bivalves and ammonites, including Misolia, which typifies the Triassic-Jurassic sequence of eastern Indonesia. The Jurassic Kapali Beds are dominated by quartzose arenites containing significant amounts of plant remains and lumps of coal. The Late Jurassic sediments consist of neritic carbonate deposits (Nambo Beds and Sinsidik Beds) containing ammonites and belemnites, including Belemnopsis uhligi Stevens, of Late Jurassic age. The Jurassic sediments are overlain unconformably by Late Cretaceous Luok Beds which are predominantly calcilutite with chert nodules rich in microfossils. The Luok Beds are unconformably overlain by the Palaeogene Salodik Limestones which consist of carbonate platform sediments rich in both benthic and planktonic foraminifera of Eocene to Early Miocene age. These sediments were deposited on the continental margin of the Banggai-Sula Platform. (ii) Deep-sea sediments (Boba Beds) consist largely of chert and subsidiary calcilutite rich in radiolaria of Cretaceous age. These rocks are part of an ophiolite suite. (iii) Coarse clastic sediments (Kolo Beds and Biak Conglomerates) are typical post-orogenic clastic rocks deposited on top of the collision complex. They are composed of material derived from both the continental margin sequence and ophiolite suite. Volcanogenic Lonsuit Turbidites occur in the northern part of the East Arm in Poh Head and unconformably overlie the ophiolite suite. Late Miocene to Pliocene planktonic foraminifera occur in the intercalated marlstone and marly sandstone beds within these rocks. The collision zone is marked by the occurrence of Kolokolo Melange, which contain exotic fragments detached from both the ophiolite suite and the continental margin sequence and a matrix of calcareous mudstone and marlstone rich in planktonic foraminifera of late Middle Miocene to Pliocene age. The melange is believed to have been formed during and after the collision of the Banggai-Sula Platform with the Eastern Sulawesi Ophiolite Belt. Hence, the collision event took place in Middle Miocene time. The occurrence of at least three terraces of Quaternary coraline reefs on the south coast of the East Arm of Sulawesi testifies to the rapid uplift of the region. Seismic data suggest that the collision might still be in progress at the present time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/0867/pdf/ds867.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/0867/pdf/ds867.pdf"><span>Characterization of selected bed-sediment-bound organic and inorganic contaminants and toxicity, Barnegat Bay and major tributaries, New Jersey, 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Romanok, Kristin M.; Reilly, Timothy J.; Lopez, Anthony R.; Trainor, John J.; Hladik, Michelle; Stanley, Jacob K.; Farrar, Daniel</p> <p>2014-01-01</p> <p>A study of bed-sediment toxicity and organic and inorganic contaminants was conducted by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). Bed-sediment samples were collected once from 22 sites in Barnegat Bay and selected major tributaries during August–September 2012 and analyzed for toxicity and a suite of organic and inorganic contaminants by the USGS and the U.S. Army Corps of Engineers. Sampling sites were selected to coincide with an existing water-quality monitoring network used by the NJDEP and others in order to evaluate water-quality conditions in Barnegat Bay and the surrounding watershed. Two of the 22 sites are reference sites and are within or adjacent to the study area; bed-sediment samples from reference sites allow for comparisons of results for the Barnegat Bay watershed to results from less affected settings within the region. Toxicity testing was conducted by exposing the estuarine amphipod Leptocheirus plumulosus and the freshwater amphipod Hyalella azteca to sediments for 28 days, and the percent survival, difference in biomass, and individual dry weights were measured. Reproductive effects also were evaluated for estuarine samples. Bed-sediment samples from four sites within Barnegat Bay were subjected to a toxicity identification evaluation to determine probable causes of toxicity. Samples were analyzed for a suite of 94 currently-used pesticides, 21 legacy pesticides, 24 trace elements, 40 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls (PCBs) as Arochlor mixtures, and 145 individual PCB congeners. Concentrations of detected compounds were compared to sediment-quality guidelines, where appropriate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..179...87E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..179...87E"><span>Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eyles, Nick; Arbelaez Moreno, Lina; Sookhan, Shane</p> <p>2018-01-01</p> <p>The Late Wisconsin Cordilleran Ice Sheet (CIS) of western North America is thought to have reached its maximum extent (∼2.5 × 106 km2) as late at c. 14.5 ka. Most (80%) of the ice sheet's bed consists of high mountains but its 'core zone' sited on plateaux of the Intermontane Belt of British Columbia and coterminous parts of the USA, shows broad swaths of subglacially-streamlined rock and sediment. Broad scale mapping from new digital imagery data identifies three subglacial bed types: 1) 'hard beds' of variably streamlined bedrock; 2) drumlinized 'soft beds' of deformation till reworked from antecedent sediment, and 3) 'mixed beds' of variably-streamlined bedrock protruding through drumlinized sediment. Drumlins on soft beds appear to be erosional features cut into till and antecedent sediments, and identify the catchment areas of paleo ice streams expressed downglacier as flow sets of megascale glacial lineations (MSGLs). 'Grooved' and 'cloned' drumlins appear to record the transition from drumlins to MSGLs. The location of paleo ice streams reflects topographic funneling of ice from plateau surfaces through outlet valleys and a soft bed that sustained fast flow; rock-cut MSGLs are also present locally on the floors of outlet valleys. CIS disintegrated in <1000 years shortly after c. 13.0 ka releasing very large volumes of meltwater and sediment to the Pacific coast. Abrupt deglaciation may reflect unsustainable calving of marine-based ice streams along the glacio-isostatically depressed coast; large deep 'fiord lakes' in the ice sheet's interior may have played an analogous role. Mapping of the broad scale distribution of bed types across the Cordilleran Ice Sheet provides key information for paleoglaciological modelling and also for understanding the beds of modern ice masses such as the Greenland Ice Sheet which is of a comparable topographic setting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2496/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2496/report.pdf"><span>Sediment-quality assessment of Franklin D. Roosevelt Lake and the upstream reach of the Columbia River, Washington, 1992</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bortleson, Gilbert Carl; Cox, S.E.; Munn, M.D.; Schumaker, R.J.; Block, E.K.</p> <p>2001-01-01</p> <p>Elevated concentrations of trace elements were found in bed sediment of Lake Roosevelt and the Columbia River, its principal source of inflow. Trace-element concentrations in whole water samples did not exceed criteria for freshwater organisms. Bed sediments of Lake Roosevelt were analyzed for organic compounds associated with wood-pulp waste. Dioxins and furans were found in suspended sediment and water of the Columbia River. Abundance and diversity of benthic invertebrate communities were analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA454191','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA454191"><span>Sand Waves That Impede Navigation of Coastal Inlet Navigation Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-08-01</p> <p>Merrymeeting Bay. The bay collects coarse-grained sediment from unconsolidated ice-contact and periglacial deposits (Fenster and FitzGerald 1996). During...bed, which is a layer of denser or larger sized sediment left after finer material has been winnowed by a strong current, can inhibit bed form...Order Descriptors (important) • Superposition: simple or compound. • Sediment Characteristics (size, sorting). Third Order Descriptors (useful</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48474','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48474"><span>Can rapid assessment protocols be used to judge sediment impairment in gravel-bed streams? A commentary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle; John M. Buffington; Peter R. Wilcock; Kristin Bunte</p> <p>2015-01-01</p> <p>Land management agencies commonly use rapid assessments to evaluate the impairment of gravel-bed streams by sediment inputs from anthropogenic sources. We question whether rapid assessment can be used to reliably judge sediment impairment at a site or in a region. Beyond the challenges of repeatable and accurate sampling, we argue that a single metric or protocol is...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=95703&keyword=thalassia&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=95703&keyword=thalassia&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>SULFUR CYCLING IN THALASSIA TESTUDINUM SEAGRASS BED SEDIMENTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Quarles, Robert L., Jessica A. Rivord and Richard Devereux. In press. Sulfur Cycling in Thalassia testudinum Seagrass Bed Sediments (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems of the Gulf of Mexico and S...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP32B..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP32B..05B"><span>Formation Mechanisms for Spur and Groove Features on Fringing Reefs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bramante, J. F.; Ashton, A. D.; Perron, J. T.</p> <p>2016-12-01</p> <p>Spur and groove systems (SAGs) are ubiquitous morphological features found on fore-reef slopes globally. SAGs consist of parallel, roughly shore-normal ridges of actively growing coral and coralline algae (spurs) separated by offshore-sloping depressions typically carpeted by a veneer of sediment (grooves). Although anecdotal observations and recent statistical analyses have reported correlations between wave exposure and the distribution of SAGs on fore-reef slopes, the physical mechanisms driving SAG formation remain poorly understood. For example, there remains significant debate regarding the importance of coral growth versus bed erosion for SAG formation. Here we investigate a hypothesis that SAG formation is controlled by feedbacks between sediment production and diffusion and coral growth. Using linear stability analysis, we find that sediment production, coral growth, and the feedbacks between them are unable to produce stable periodic structures without a sediment sink. However, if incipient grooves act as conduits for sediment transport offshore, a positive feedback can develop as the groove bed erodes through wave-driven abrasion during offshore transport. Eventually a negative feedback slows groove deepening when the groove bed is armored by sediment, and the groove bed relaxes to a sediment-veneered equilibrium profile analogous to sediment-rich shorefaces. To test this hypothesis, we apply a numerical model that incorporates coral growth and sediment production, sediment diffusion, non-linear wave-driven abrasion, and sediment advection offshore. This model produces the periodic, linear features characteristic of SAG morphology. The relative magnitude of growth, production, diffusion, abrasion, and advection rates affect periodic spacing or wavelength of the modeled SAGs. Finally, we evaluate the ability of the model to replicate geographical variability in SAG characteristics using previously published datasets and reanalysis wave data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..423S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..423S"><span>The abiotic environment of the interstitial of a small Swiss river in the foothills of the Alps and its influence on gravel spawning brown trout (Salmo trutta L.)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schindler, Yael; Michel, Christian; Holm, Patricia; Alewell, Christine</p> <p>2010-05-01</p> <p>The hyporheic zone can be characterized by multiple abiotic parameters (e.g. bulk density, texture, temperature, oxygen, ammonium, nitrate) which are all influenced directly or indirectly by the exchange processes between surface water and groundwater. These processes can vary both in time and space and are mainly driven by river discharge, ground water level and flow patterns. The input of fine sediment particles can change water-riverbed interactions through river bed clogging potentially affecting the embryonal development and survival of gravel spawning fish, such as brown trout (Salmo trutta L.). With our investigations we aim to understand these complex interactions spatially and temporally on a relevant small scale, i.e. within individual artificial brown trout redds. We designed an experimental field setup to directly investigate i) the influence of the abiotic river and redd environment on brown trout embryo development and ii) the hydrological dynamics affecting the abiotic environment in artificial brown trout. Additionally, our setup allows investigating the temporal dynamics of i) fine-sediment infiltration into the artificial redds and ii) embryo survival to two distinct developmental stages (i.e. eyed stage and hatch) The experiment was conducted in three sites of a typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. Individual sites represented a high, medium and low fine-sediment load. In each site, six artificial redds (18 in total) were built and data were collected during the entire incubation phase. Redds were located in places where natural spawning of brown trout is present. We adapted multiple established methods to the smaller scale of our river to study the dynamics of the most relevant abiotic parameters potentially affecting embryo development: Oxygen content and temperature was monitored continuously in different depths, fine sediment (bedload, suspended sediment load and its input in the river bed) was measured weekly and water samples for DOC and nitrogen components analysis were collected regularly. In addition, all redds were equipped with mini piezometers to measure the hydraulic gradient through the redds. Finally, water stage and turbidity were monitored continuously. Results of the first spawning season will be presented. Dynamic of abiotic parameters and their influence on spawning of brown trout will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP41B1837H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP41B1837H"><span>Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holo, S.; Kite, E. S.</p> <p>2017-12-01</p> <p>Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale required for the delta forming flows to fill the crater. Comparison with the outflow channel dimensions from other craters on Mars provides the potential to both test our hypothesis of contemporaneous lake filling/channel incision and also constrain the hydrologic sources responsible for filling crater lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP21A0889F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP21A0889F"><span>Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.</p> <p>2015-12-01</p> <p>Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRF..119.2653M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRF..119.2653M"><span>Bed load transport over a broad range of timescales: Determination of three regimes of fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Hongbo; Heyman, Joris; Fu, Xudong; Mettra, Francois; Ancey, Christophe; Parker, Gary</p> <p>2014-12-01</p> <p>This paper describes the relationship between the statistics of bed load transport flux and the timescale over which it is sampled. A stochastic formulation is developed for the probability distribution function of bed load transport flux, based on the Ancey et al. (2008) theory. An analytical solution for the variance of bed load transport flux over differing sampling timescales is presented. The solution demonstrates that the timescale dependence of the variance of bed load transport flux reduces to a three-regime relation demarcated by an intermittency timescale (tI) and a memory timescale (tc). As the sampling timescale increases, this variance passes through an intermittent stage (≪tI), an invariant stage (tI < t < tc), and a memoryless stage (≫ tc). We propose a dimensionless number (Ra) to represent the relative strength of fluctuation, which provides a common ground for comparison of fluctuation strength among different experiments, as well as different sampling timescales for each experiment. Our analysis indicates that correlated motion and the discrete nature of bed load particles are responsible for this three-regime behavior. We use the data from three experiments with high temporal resolution of bed load transport flux to validate the proposed three-regime behavior. The theoretical solution for the variance agrees well with all three sets of experimental data. Our findings contribute to the understanding of the observed fluctuations of bed load transport flux over monosize/multiple-size grain beds, to the characterization of an inherent connection between short-term measurements and long-term statistics, and to the design of appropriate sampling strategies for bed load transport flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7732S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7732S"><span>Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skov, Daniel S.; Egholm, David L.</p> <p>2016-04-01</p> <p>Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at the same time the channel bed in the lower parts become shielded from incision by a perpetual sediment cover and incision stalls. These differences cause transients of erosion to migrate through the drainage network. Beer, Alexander R., and J. M. Turowski. "Bedload transport controls bedrock erosion under sediment-starved conditions." Earth Surface Dynamics 3.3 (2015): 291-309. Herman, Frédéric, et al. "Worldwide acceleration of mountain erosion under a cooling climate." Nature 504.7480 (2013): 423-426. Lease, Richard O., and Todd A. Ehlers. "Incision into the Eastern Andean plateau during Pliocene cooling." Science 341.6147 (2013): 774-776. Molnar, Peter. "Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates?." Annu. Rev. Earth Planet. Sci. 32 (2004): 67-89. Reusser, Luke J., et al. "Rapid Late Pleistocene incision of Atlantic passive-margin river gorges." Science 305.5683 (2004): 499-502. Sklar, Leonard S., and William E. Dietrich. "Sediment and rock strength controls on river incision into bedrock." Geology 29.12 (2001): 1087-1090. Sklar, Leonard S., and William E. Dietrich. "A mechanistic model for river incision into bedrock by saltating bed load." Water Resources Research 40.6 (2004).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2018/5050/sir20185050.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2018/5050/sir20185050.pdf"><span>Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.</p> <p>2018-05-01</p> <p>Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and therefore lower total sediment load in Clear Creek was primarily due to significantly lower discharge and cannot be directly attributed to sediment mitigation work in the basin.Water chemistry in Clear Creek shows that the general water type of the creek under base-flow conditions in autumn is a dilute calcium bicarbonate. During winter and spring, the chemistry shifts toward a slightly more sodium and chloride character. Though the chemical characteristics show seasonal change, the water chemistries examined as part of this investigation remain within ecological criteria as adopted by the Nevada Division of Environmental Protection. There was no evidence of aqueous polynuclear aromatic hydrocarbons (PAHs) present in Clear Creek water during this study. Concentrations of PAHs, as determined in one bed-sediment sample and multiple semi-permeable membrane device extracts, were either less than quantifiable limits of analysis or were found at similar concentrations as blank samples.In July 2014, a 250–300-acre fire burned in the Clear Creek drainage basin. One day after the fire was extinguished, a thunderstorm washed sediment into the creek. A water chemistry sample collected as part of the post-fire storm event showed that the stormwater entering the creek had increased the concentrations of ammonium and organic nitrogen, phosphorus, manganese, and potassium; a similar finding of many other studies evaluating the effects of fires in small drainage basins. Subsequent chemical analyses of Clear Creek water in August 2014 (one month later) showed that these constituents had returned to pre-fire concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME14A0570T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME14A0570T"><span>Application of Dredged Materials and Steelmaking Slag as Basal Media to Restore and Create Seagrass Beds: Mesocosm and Core Incubation Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsukasaki, A.; Suzumura, M.; Tsurushima, N.; Nakazato, T.; Huang, Y.; Tanimoto, T.; Yamada, N.; Nishijima, W.</p> <p>2016-02-01</p> <p>Seagrass beds stabilize bottom sediments, improve water quality and light conditions, enhance species diversity, and provide habitat complexity in coastal marine environments. Seagrass beds are now experiencing worldwide decline by rapid environmental changes. Possible options of seagrass bed restoration are civil engineering works including mounding to raise the bottom to elevations with suitable light for seagrass growth. Reuse or recycling of dredged materials (DM) and various industrial by-products including steelmaking slags is a beneficial option to restore and create seagrass beds. To evaluate the applicability of DM and dephosphorization slag (Slag) as basal media of seagrass beds, we carried out mesocosm experiments and core incubation experiments in a land-based flow-through seawater tank over a year. During the mesocosm experiment, no difference was found in growth of eelgrass (Zostera marina L.) and macrobenthic community structures between Slag-based sediments and sand-based control experiments, even though Slag-based sediments exhibited substantially higher pH than sand-based sediments. During the core incubation experiment, we investigated detailed variation and distributions of pH and nutrients, and diffusion fluxes of nutrients between the sediment/seawater interface. Though addition of Slag induced high pH up to 10.7 in deep layers (< 5 cm), the surface pH decreased rapidly within 10 days. Concentrations of dissolved inorganic nitrogen were comparable between Slag- and sand-based sediments, whereas dissolved phosphate concentration was substantially reduced by the addition of Slag. The low concentrations of phosphate was likely due to precipitation with calcium under high pH condition. Diffusion fluxes of nutrients from the cores were comparable with those reported in natural coastal systems. It was suggested that the mixture of Slag and DM is applicable as basal media for construction of artificial seagrass beds.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22489479','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22489479"><span>[Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li</p> <p>2012-01-01</p> <p>Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=205708&keyword=slope+AND+stability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=205708&keyword=slope+AND+stability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Bed Stability and sedimentation associated with human disturbances in Pacific Northwest streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>To evaluate anthropogenic sedimentation in United States (U.S.) Pacific Northwest coastal streams, we applied an index of relative bed stability (LRBS*) to summer low flow survey data collected using the U.S. Environmental Protection Agency's Environmental Monitoring and Assessme...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=185865&keyword=environmental+AND+assessment+AND+natural+AND+environment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=185865&keyword=environmental+AND+assessment+AND+natural+AND+environment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Developing Water Quality Critera for Suspended and Bedded Sediments-Illustrative Example Application.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The U. S. EPA's Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) provides a consistent process, technical methods, and supporting materials to enable resource managers to develop ambient water quality criteria for one of the m...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4997W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4997W"><span>What multi-beam bathymetric data can tell about morphodynamics and sediment transport in an estuarine environment?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winterscheid, Axel; Reiß, Marcel</p> <p>2017-04-01</p> <p>The Elbe River Estuary is one of the most important waterways for commercial shipping in Europe. It connects the North Sea with the Port of Hamburg located about 100 km inlands. To secure navigation, the Federal Waterways and Shipping Administration (WSV) is operating a fleet of survey vessels all equipped with a multi-beam echo sounder controlling the required water depths. Beyond navigational purposes, this monitoring is creating a comprehensive and ever-growing data base, which can be used for a consistent morphodynamical description of the river bed. The history of multi-beam records in the Elbe River Estuary reaches back to 2008. At particular river sections where large amounts of fine grained sediments accumulate surveys are taken biweekly; at other sections there are monthly surveys. Locally, sedimentation rates of up to 12 cm per day have been observed within the fairway. The time series of multiple multi-beam records have been analyzed with a particular focus on morphodynamics and sedimentation rates. Here we compare the morphodynamical characteristics of two river sections. The first section is located at the downstream end of the estuarine turbidity zone near the city of Cuxhaven; the second section is located 50 km away at the upstream end of the turbidity zone near the city of Hamburg. These two sections have been selected because in both the morphology of the river bed and the sedimentation processes are strongly influenced by the presence of fine grained sediments. The results show that changing sedimentation rates in both sections are conditioned by different site specific factors, e.g. the dynamic shifting of the turbidity zone along the estuary, which is resulting in a temporarily higher availability of suspended sediments and more intense sedimentation rates in the upper part of the estuary and the respective section. In contrast, in the downstream located river section more intense sedimentation rates could be related to periods of strong north-western wind conditions causing increased water levels and higher wave loads on the adjacent wadden areas of the German Bight. These processes were formerly inferred from theory and numerical studies but could not so far be supported on the basis of direct measurements due to a lack of continuous data records on sedimentation rates with a sufficiently high spatial and temporal resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeCoA.133..280B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeCoA.133..280B"><span>Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence</p> <p>2014-05-01</p> <p>In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.crcpress.com/product/isbn/9781566704694','USGSPUBS'); return false;" href="http://www.crcpress.com/product/isbn/9781566704694"><span>Pesticides in stream sediment and aquatic biota: distribution, trends, and governing factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nowell, Lisa H.; Capel, Peter D.</p> <p>1999-01-01</p> <p>More than 20 years after the ban of DDT and other organochlorine pesticides, pesticides continue to be detected in air, rain, soil, surface water, bed sediment, and aquatic and terrestrial biota throughout the world. Recent research suggests that low levels of some of these pesticides may have the potential to affect the development, reproduction, and behavior of fish and wildlife, and possibly humans. Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors assesses the occurrence and behavior of pesticides in bed sediment and aquatic biota-the two major compartments of the hydrologic system where organochlorine pesticides are most likely to accumulate. This book collects, for the first time, results from several hundred monitoring studies and field experiments, ranging in scope from individual sites to the entire nation. Comprehensive tables provide concise summaries of study locations, pesticides analyzed, and study outcomes. Comprehensive and extensively illustrated, Pesticides in Stream Sediment and Aquatic Biota: Distribution, Trends, and Governing Factors evaluates the sources, environmental fate, geographic distribution, and long-term trends of pesticides in bed sediment and aquatic biota. The book focuses on organochlorine pesticides, but also assesses the potential for currently used pesticides to be found in bed sediment and aquatic biota. Topics covered in depth include the effect of land use on pesticide occurrence, mechanisms of pesticide uptake and accumulation by aquatic biota, and the environmental significance of observed levels of pesticides in stream sediment and aquatic biota.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7852','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7852"><span>Sediment transport and resulting deposition in spawning gravels, north coastal California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle</p> <p>1989-01-01</p> <p>Incubating salmonid eggs in streambeds are often threatened by deposition of fine sediment within the gravel. To relate sedimentation of spawning gravel beds to sediment transport, infiltration of fine sediment (</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70005805','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70005805"><span>Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Liu, Xiaofeng; Parker, Gary; Czuba, Jonathan A.; Oberg, Kevin; Mier, Jose M.; Best, James L.; Parsons, Daniel R.; Ashmore, Peter; Krishnappan, Bommanna G.; Garcia, Marcelo H.</p> <p>2012-01-01</p> <p>The lake levels in Lake Michigan-Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan-Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan-Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two-dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high-resolution bathymetry and three-dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship-induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice cover and dredging in the lower river, require further investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..111..205C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..111..205C"><span>An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien</p> <p>2018-01-01</p> <p>A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DSRI...60...32M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DSRI...60...32M"><span>The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.; Seim, H.; Bane, J.; van Weering, T. C. E.</p> <p>2012-01-01</p> <p>Near-bed hydrodynamic conditions were recorded for almost one year in the Viosca Knoll area (lease block 826), one of the most well-developed cold-water coral habitats in the Gulf of Mexico. Here, a reef-like cold-water coral ecosystem, dominated by the coral Lophelia pertusa, resembles coral habitats found off the southeastern US coast and the North East Atlantic. Two landers were deployed in the vicinity and outside of the coral habitat and measured multiple near-bed parameters, including temperature, salinity, current speed and direction and optical and acoustic backscatter. Additionally, the lander deployed closest to the coral area was equipped with a sediment trap that collected settling particles over the period of deployment at 27 day intervals. Long-term monitoring showed, that in general, environmental parameters, such as temperature (6.5-11.6 °C), salinity (34.95-35.4) and current speed (average 8 cm s -1, peak current speed up to 38 cm s -1) largely resembled conditions previously recorded within North East Atlantic coral habitats. Major differences between site VK 826 and coral areas in the NE Atlantic were the much higher particle load, and the origin of the particulate matter. Several significant events occurred during the deployment period beginning with an increase in current speed followed by a gradual increase in temperature and salinity, followed by a rapid decrease in temperature and salinity. Simultaneously with the decrease in temperature and salinity, the direction of the current changed from west to east and cold and less turbid water was transported upslope. The most prominent event occurred in July, when a westward flow lasted over 21 days. These events are consistent with bottom boundary layer dynamics influenced by friction (bottom Ekman layer). The Mississippi River discharges large quantities of sediment and dominates sedimentation regimes in the area. Furthermore, the Mississippi River disperses large amounts of terrestrial organic matter and nutrients, resulting in increased primary productivity, whereby marine organic matter is produced that will sink to the seafloor and can serve as food for the cold-water corals and associated species. As a result mass fluxes from the sediment trap were higher (1120-4479 mg m -2 day -1) than those observed in the North East Atlantic and were highest during periods of westward-flow, which corresponded to warm turbid water. During eastward-flow, colder and less turbid water was pushed upslope, resulting in lower mass fluxes. Trap samples had a low CaCO 3, high organic carbon content and high C/N ratios, suggesting a fluvial origin. The high sediment load in the water column can be a limiting factor for coral growth, especially since the corals can be smothered with sediment. However, eastward-flows provided periods of relatively clearer water that can remove sediment from the coral area and allow corals to expel sediment from their polyps. Around Viosca Knoll food supply comes from two possible sources. During April and June several fluorescence peaks were observed near the seabed, showing the arrival of phytodetritus in the area. Furthermore, a consistent diel vertical migration of zooplankton was observed that might provide an additional food source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/2322','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/2322"><span>Trace Elements in Bed Sediments and Biota from Streams in the Santee River Basin and Coastal Drainages, North and South Carolina, 1995-97</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas A. Abrahamsen</p> <p>1999-01-01</p> <p>Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1113/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1113/"><span>Bed-Sediment Sampling and Analysis for Physical and Chemical Properties of the Lower Mississippi River near Memphis, Tennessee</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Blanchard, Robert A.; Wagner, Daniel M.; Evans, Dennis A.</p> <p>2010-01-01</p> <p>In February 2010, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Memphis District, investigated the presence of inorganic elements and organic compounds in bed sediments of the lower Mississippi River. Selected sites were located in the navigation channel near river miles 737, 773, and 790 near Memphis, Tennessee. Bed-sediment samples were collected using a Shipek grab sampler mounted to a boom crane with a motorized winch. Samples then were processed and shipped to the U.S. Geological Survey Sediment Laboratory in Rolla, Missouri, the USGS National Water Quality Laboratory in Denver, Colorado, and to TestAmerica Laboratory, Inc. in West Sacramento, California. Samples were analyzed for grain size, inorganic elements (including mercury), and organic compounds. Chemical results were tabulated and listed with sediment-quality guidelines and presented with the physical property results. All of the bed material samples collected during this investigation yielded concentrations that were less than the Consensus-Based Probable Effect Concentration guidelines. The physical properties were tabulated and listed using a standard U.S. Geological Survey scale of sizes by class for sediment analysis. All of the samples collected during this investigation indicated a percent composition mostly comprised of sand, ranging from less than 0.125 millimeters to less than 2 millimeters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019678','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019678"><span>Characterisation of physical environmental factors on an intertidal sandflat, Manukau Harbour, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bell, R.G.; Hume, T.M.; Dolphin, T.J.; Green, M.O.; Walters, R.A.</p> <p>1997-01-01</p> <p>Physical environmental factors, including sediment characteristics, inundation time, tidal currents and wind waves, likely to influence the structure of the benthic community at meso-scales (1-100 m) were characterised for a sandflat off Wiroa Island (Manukau Harbour, New Zealand). In a 500 x 250 m study site, sediment characteristics and bed topography were mostly homogenous apart from patches of low-relief ridges and runnels. Field measurements and hydrodynamic modelling portray a complex picture of sediment or particulate transport on the intertidal flat, involving interactions between the larger scale tidal processes and the smaller scale wave dynamics (1-4 s; 1-15 m). Peak tidal currents in isolation are incapable of eroding bottom sediments, but in combination with near-bed orbital currents generated by only very small wind waves, sediment transport can be initiated. Work done on the bed integrated over an entire tidal cycle by prevailing wind waves is greatest on the elevated and flatter slopes of the study site, where waves shoal over a wider surf zone and water depths remain shallow e enough for wave-orbital currents to disturb the bed. The study also provided physical descriptors quantifying static and hydrodynamic (tidal and wave) factors which were used in companion studies on ecological spatial modelling of bivalve distributions and micro-scale sediment reworking and transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD36005B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD36005B"><span>Towards establishing the rheology of a sediment bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart</p> <p>2017-11-01</p> <p>In order to gain a better understanding of erosion, we have conducted numerical simulations of particle-resolved flows similar to the experiments of Aussillous et al. (2013), which involve laminar pressure-driven flows over erodible sediment beds. These simulations allow us to resolve velocity profiles and stresses of the fluid-particle mixtures within and above the sediment bed, which can be difficult or impossible to measure experimentally. Thus, we can begin investigating the rheology of the fluid-particle mixtures. In particular, we compare the effective viscosity as a function of volume fraction to existing models, such as those of Eilers (1943), Morris and Boulay (1999), and Boyer et al. (2011).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP13B1615A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP13B1615A"><span>Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.</p> <p>2017-12-01</p> <p>Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the sediment fall velocity is arbitrarily greatly reduced. A consideration of sediment mixtures, however, shows that the two formulations give very different patterns of grain sorting. We explain this in terms of the structures of the two Exner equations for sediment mixtures, and define conditions for applicability of each formulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52.9274R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52.9274R"><span>A generalized threshold model for computing bed load grain size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Recking, Alain</p> <p>2016-12-01</p> <p>For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5065/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5065/"><span>Channel change and bed-material transport in the Lower Chetco River, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wallick, J. Rose; Anderson, Scott W.; Cannon, Charles; O'Connor, Jim E.</p> <p>2010-01-01</p> <p>The lower Chetco River is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. Since the early twentieth century, the large gravel bars have been a source of commercial aggregate for which ongoing permitting and aquatic habitat concerns have motivated this assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers shows that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, are zones of active sedimentation and channel migration.Multiple analyses, supported by direct measurements of bedload during winter 2008–09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000–100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5–30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably little bed material leaves the lower river under natural conditions, with most net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean.The year-to-year flux, however, varies tremendously. Some years may have less than 3,000 cubic meters of bed material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000–2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s.Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965–95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964 and, to a lesser extent, 1996.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1163/ofr20091163.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1163/ofr20091163.pdf"><span>Channel change and bed-material transport in the Lower Chetco River, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wallick, J. Rose; Anderson, Scott W.; Cannon, Charles; O'Connor, Jim E.</p> <p>2009-01-01</p> <p>The lower Chetco River is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. The large gravel bars have been a source of commercial aggregate since the early twentieth century for which ongoing permitting and aquatic habitat concerns have motivated this assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers show that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, have been zones of active sedimentation and channel migration.Multiple analyses, supported by direct measurements of bedload during winter 2008–09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000–100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5–30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably very little bed material leaves the lower river under natural conditions, with most of the net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean.The year-to-year flux, however, varies tremendously. Some years probably have less than 3,000 cubic meters of bed-material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000–2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s.Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965–95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed-sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964, and to a lesser extent, 1996.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP32A..07O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP32A..07O"><span>Channel Change and Bed-Material Transport in the Lower Chetco River, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Connor, J. E.; Wallick, R.; Anderson, S.; Cannon, C.</p> <p>2009-12-01</p> <p>The Chetco River drains 914 square kilometers of the Klamath Mountains in far southwestern Oregon. For its lowermost 18 km, it is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. The large gravel bars have been a source of commercial aggregate since the early twentieth century for which ongoing permitting and aquatic habitat concerns have motivated an assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers show that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, have been zones of active sedimentation and channel migration. Multiple analyses, supported by direct measurements of bedload during winter 2008-09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000-100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5-30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably very little bed material leaves the lower river under natural conditions, with most of the net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean. The year-to-year flux, however, varies tremendously. Some years probably have less than 3,000 cubic meters of bed-material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000-2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per year. Mined volumes probably exceeded 140,000 cubic meters per year for several years in the late 1970s. Repeat surveys and map analyses indicate a reduction in bar area and sinuosity between 1939 and 2008, chiefly in the period 1965-95. Repeat topographic and bathymetric surveys show channel incision for substantial portions of the study reach, with local areas of bed lowering by as much as 2 meters. A specific gage analysis at the upstream end of the study reach indicates that incision and narrowing followed aggradation culminating in the late 1970s. These observations are all consistent with a reduction of sediment supply relative to transport capacity since channel surveys in the late 1970s, probably owing to a combination of (1) bed-sediment removal and (2) transient river adjustments to large sediment volumes brought by floods such as those in 1964, and to a lesser extent, 1996.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..691O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..691O"><span>Velocity profiles, Reynolds stresses and bed roughness from an autonomous field deployed Acoustic Doppler Velocity Profiler in a mixed sediment tidal estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Boyle, Louise; Thorne, Peter; Cooke, Richard; Cohbed Team</p> <p>2014-05-01</p> <p>Estuaries are among some of the most important global landscapes in terms of population density, ecology and economy. Understanding the dynamics of these natural mixed sediment environments is of particular interest amid growing concerns over sea level rise, climate variations and estuarine response to these changes. Many predictors exist for bed form formation and sand transport in sandy coastal zones; however less work has been published on mixed sediments. This paper details a field study which forms part of the COHBED project aiming to increase understanding of bed forms in a biotic mixed sediment estuarine environment. The study was carried out in the Dee Estuary, in the eastern Irish Sea between England and Wales from the 21st May to 4th June 2013. A state of the art instrumentation frame, known as SEDbed, was deployed at three sites of differing sediment properties and biological makeup within the intertidal zone of the estuary. The SEDbed deployment consisted of a suite of optical and acoustic instrumentation, including an Acoustic Doppler Velocity Profiler (ADVP), Acoustic Doppler Velocimeter (ADV) and a three dimensional acoustic ripple profiler, 3D-ARP. Supplementary field samples and measurements were recorded alongside the frame during each deployment. This paper focuses on the use of new technological developments for the investigation of sediment dynamics. The hydrodynamics at each of the deployment sites are presented including centimetre resolution velocity profiles in the near bed region of the water column, obtained from the ADVP, which is presently the only autonomous field deployed coherent Doppler profiler . Based on these high resolution profiles variations in frictional velocity, bed shear stress and roughness length are calculated. Comparisons are made with theoretical models and with Reynolds stress values obtained from ADV data at a single point within the ADVP profile and from ADVP data itself. Predictions of bed roughness at each deployment site are compared with ripple measurements obtained on site using a three dimensional acoustic ripple profiler, 3D-ARP. These results will later be used to validate laboratory studies in mixed sediments, carried out as part of the COHBED Project, and enable development of new bed from predictors for biotic mixed sediment environments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>