Bed load transport in gravel-bed rivers
Jeffrey J. Barry
2007-01-01
Bed load transport is a fundamental physical process in alluvial rivers, building and maintaining a channel geometry that reflects both the quantity and timing of water and the volume and caliber of sediment delivered from the watershed. A variety of formulae have been developed to predict bed load transport in gravel-bed rivers, but testing of the equations in natural...
Avionics test bed development plan
NASA Technical Reports Server (NTRS)
Harris, L. H.; Parks, J. M.; Murdock, C. R.
1981-01-01
A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.
DEVELOPING WATER QUALITY CRITERIA FOR SUSPENDED AND BEDDED SEDIMENTS
The U.S. EPA’s Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) is a nationally-consistent process for developing ambient sediment quality criteria for surface waters. The SABS Framework accommodates natural variation among wa...
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.
1979-01-01
The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
Fluidized bed coal desulfurization
NASA Technical Reports Server (NTRS)
Ravindram, M.
1983-01-01
Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.
The U. S. EPA's Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) provides a consistent process, technical methods, and supporting materials to enable resource managers to develop ambient water quality criteria for one of the m...
Bedform development in mixed sand-mud: The contrasting role of cohesive forces in flow and bed
NASA Astrophysics Data System (ADS)
Baas, Jaco H.; Davies, Alan G.; Malarkey, Jonathan
2013-01-01
The majority of subaqueous sediment on Earth consists of mixtures of cohesive clay and cohesionless sand and silt, but the role of cohesion on the development and stability of sedimentary bedforms is poorly understood. The results of new laboratory flume experiments on bedform development in cohesive, mixed sand-mud beds are compared with the results of previous experiments in which cohesive forces in high concentration clay flows dominated bedform development. Even though both series of mixed sand-mud experiments were conducted at similar flow velocities, the textural and structural properties of the bedforms were sufficiently different to permit the designation of key criteria for identifying bedform generation under cohesive flows against bedform generation on cohesive substrates. These criteria are essential for improving bedform size predictions in sediment transport modelling in modern sedimentary environments and for the reconstruction of depositional processes in the geological record. The current ripples developing on the cohesive, mixed sand-mud beds, with bed mud fractions of up to 18%, were significantly smaller than equivalent bedforms in noncohesive sand. Moreover, the bedform height showed a stronger inversely proportional relationship with initial bed mud fraction than the bedform wavelength. This is in contrast with the bedforms developing under the cohesive clay flows, which tend to increase in size with increasing suspended clay concentration until the flow turbulence is fully suppressed. Selective removal of clay from the mixed beds, i.e., clay winnowing, was found to be an important process, with 82-100% clay entrained into suspension after 2 h of bedform development. This winnowing process led to the development of a sand-rich armouring layer. This armouring layer is inferred to have protected the underlying mixed sand-mud from prolonged erosion, and in conjunction with strong cohesive forces in the bed may have caused the smaller size of the bedforms. Winnowing was less efficient for the bedforms developing under the cohesive clay flows, where bedforms consisting of muddy sand were more characteristic. The winnowed sand was also found to heal irregularly scoured topography, thus reestablishing classic quasitriangular bedform shapes. In cohesive flows, the bedforms had more variable shapes, and the healing process was confined to lower transitional plug flows in which strong turbulence is only present close to the sediment bed. Furthermore, the bedforms on the cohesive beds tended to form angle-of-repose cross lamination, whereas low angle cross lamination was more common in bedforms under cohesive flows. In general terms, erosional bedforms prevail when cohesive forces in the bed dominate bedform dynamics, whereas depositional bedforms prevail when cohesive forces in the flow dominate bedform dynamics. Empirical relationships between the proportion of cohesive mud in the mixed sand-mud bed and the development rate and size of the bedforms are defined for future use in field and laboratory studies.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Powder bed charging during electron-beam additive manufacturing
Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; ...
2016-11-18
Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.
Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi
2018-07-01
This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.
van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.
2011-01-01
Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).
Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.
Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N
2008-10-01
Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities.
Recovery from Binge Eating Disorder
ERIC Educational Resources Information Center
Krentz, Adrienne; Chew, Judy; Arthur, Nancy
2005-01-01
The purpose of this study was to characterize the psychological processes of recovery from binge eating disorder (BED). A model was developed by asking the research question, "What is the experience of recovery for women with BED?" Unstructured interviews were conducted with six women who met the DSM-IV criteria for BED, and who were recovered…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miettinen, Jaakko; Sairanen, Risto; Lindholm, Ilona
2002-07-01
The interest to study the dryout heat flux in particle beds is related to interest of quantify the debris coolability margins during a hypothetical severe reactor accident. When the molten core has relocated to the containment floor, one accident management concept is based on the cooling of the corium by the water injection on top. Earlier experimental and analytical work has concentrated on homogeneous particle beds at atmospheric pressures. For plant safety assessment in Finland, there is a need to consider heterogeneous particle mixtures, layered particle bed setups and varied pressures. A facility has been constructed at VTT to measuremore » dryout heat flux in a heterogeneous particle bed. The bed dimensions are 0.3 m in diameter and 0.6 m in height, with a mixture of 0.1 to 10 mm particles. The facility has a pressure range from atmospheric to 6 bar (overpressure). The bed is heated by spirals of a resistance band. The preliminary experiments have been carried out, but a more systematic set of data is expected to be available in the spring 2002. To support the experiments analytical models have been developed for qualification of the experimental results. The first comparison is done against various critical heat flux correlations developed in 1980's and 1990's for homogeneous bed conditions. The second comparison is done against 1-D and 0-D models developed by Lipinski. The most detailed analysis of the transient process conditions and dryout predictions are done by using the two-dimensional, drift-flux based thermohydraulic solution for the particle bed immersed into the water. The code is called PILEXP. Already the first validation results against the preliminary tests indicate that the transient process conditions and the mechanisms related to the dryout can be best explained and understood by using a multidimensional, transient code, where all details of the process control can be modeled as well. The heterogeneous bed and stratified bed can not be well considered by single critical heat flux correlations. (authors)« less
NASA Astrophysics Data System (ADS)
Hofmeister, M.; Franke, M. M.; Koerner, C.; Singer, R. F.
2017-12-01
Superalloy gas turbine blades are being produced by investment casting and directional solidification. A new process, Fluidized Carbon Bed Cooling (FCBC), has been developed and is now being optimized in a prototype casting unit with 10 kg pouring weight. In early test runs with still rather simple mold cluster geometries, a reduction of the primary dendrite arm spacing of around 40 pct compared to the standard radiation cooling process (HRS) could be demonstrated. The improvement is mainly attributed to higher temperature gradients driving solidification, made possible by a functioning Dynamic Baffle. Compared to earlier development efforts in the literature, contamination of the melt and damage to the equipment are avoided using carbon-based fluidized bed materials and the so-called "counter pressure concept."
A new approach to define surface/sub-surface transition in gravel beds
NASA Astrophysics Data System (ADS)
Haynes, Heather; Ockelford, Anne-Marie; Vignaga, Elisa; Holmes, William
2012-12-01
The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (σ g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.
Development of the silane process for the production of low-cost polysilicon
NASA Technical Reports Server (NTRS)
Iya, S. K.
1986-01-01
It was recognized that the traditional hot rod type deposition process for decomposing silane is energy intensive, and a different approach for converting silane to silicon was chosen. A 1200 metric tons/year capacity commercial plant was constructed in Moses Lake, Washington. A fluidized bed processor was chosen as the most promising technology and several encouraging test runs were conducted. This technology continues to be very promising in producing low cost polysilicon. The Union Carbide silane process and the research development on the fluidized bed silane decomposition are discussed.
NASA Astrophysics Data System (ADS)
Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.
2018-04-01
Analysis of existing technologies for preparing foundation beds of oil and gas buildings and structures has revealed the lack of reasoned recommendations on the selection of rational technical and technological parameters of compaction. To study the nature of the dynamics of fast processes during compaction of foundation beds of oil and gas facilities, a specialized software and hardware system was developed. The method of calculating the basic technical parameters of the equipment for recording fast processes is presented, as well as the algorithm for processing the experimental data. The performed preliminary studies confirmed the accuracy of the decisions made and the calculations performed.
Validating Experimental Bedform Dynamics on Cohesive Sand-Mud Beds in the Dee Estuary
NASA Astrophysics Data System (ADS)
Baas, Jaco H.; Baker, Megan; Hope, Julie; Malarkey, Jonathan; Rocha, Renata
2014-05-01
Recent laboratory experiments and field measurements have shown that small quantities of cohesive clay, and in particular 'sticky' biological polymers, within a sandy substrate dramatically reduce the development rate of sedimentary bedforms, with major implications for sediment transport rate calculations and process interpretations from the sedimentary record. FURTHER INFORMATION Flow and sediment transport predictions from sedimentary structures found in modern estuaries and within estuarine geological systems are impeded by an almost complete lack of process-based knowledge of the behaviour of natural sediments that consist of mixtures of cohesionless sand and biologically-active cohesive mud. Indeed, existing predictive models are largely based on non-organic cohesionless sands, despite the fact that mud, in pure form or mixed with sand, is the most common sediment on Earth and also the most biologically active interface across a range of Earth-surface environments, including rivers and shallow seas. The multidisciplinary COHBED project uses state-of-the-art laboratory and field technologies to measure the erosional properties of mixed cohesive sediment beds and the formation and stability of sedimentary bedforms on these beds, integrating the key physical and biological processes that govern bed evolution. The development of current ripples on cohesive mixed sediment beds was investigated as a function of physical control on bed cohesion versus biological control on bed cohesion. These investigations included laboratory flume experiments in the Hydrodynamics Laboratory (Bangor University) and field experiments in the Dee estuary (at West Kirby near Liverpool). The flume experiments showed that winnowing of fine-grained cohesive sediment, including biological stabilisers, is an important process affecting the development rate, size and shape of the cohesive bedforms. The ripples developed progressively slower as the kaolin clay fraction in the sandy substrate bed was increased. The same result was obtained for xanthan gum, which is a proxy for biological polymers produced by microphytobenthos. Yet, the xanthan gum was several orders more effective in slowing down ripple development than kaolin clay, suggesting that the cohesive forces for biological polymers are much higher than for clay minerals, and that sedimentological process models should refocus on biostabilisation processes. The first results of the field experiments show that the winnowing of fines from developing ripples and the slowing down of current ripple development in mixed cohesive sediment is mimicked on intertidal flats in the Dee estuary. In particular, these field data revealed that current ripples in cohesive sediment are smaller with more two-dimensional crestlines than in non-cohesive sand. The wider implications of these findings will be discussed. COHBED Project Team (NERC): Alan Davies (Bangor University); Daniel Parsons, Leiping Ye (University of Hull); Jeffrey Peakall (University of Leeds); Dougal Lichtman, Louise O'Boyle, Peter Thorne (NOC Liverpool); Sarah Bass, Andrew Manning, Robert Schindler (University of Plymouth); Rebecca Aspden, Emma Defew, Julie Hope, David Paterson (University of St Andrews)
Overarching objectives for the development of the East Fork Watershed Test Bed in Southwestern Ohio include: 1) providing research infrastructure for integrating risk assessment and management research on the scale of a large multi-use watershed (1295 km2); 2) Focusing on process...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush
Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.
Achieving Tier 4 Emissions in Biomass Cookstoves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchese, Anthony; DeFoort, Morgan; Gao, Xinfeng
Previous literature on top-lit updraft (TLUD) gasifier cookstoves suggested that these stoves have the potential to be the lowest emitting biomass cookstove. However, the previous literature also demonstrated a high degree of variability in TLUD emissions and performance, and a lack of general understanding of the TLUD combustion process. The objective of this study was to improve understanding of the combustion process in TLUD cookstoves. In a TLUD, biomass is gasified and the resulting producer gas is burned in a secondary flame located just above the fuel bed. The goal of this project is to enable the design of amore » more robust TLUD that consistently meets Tier 4 performance targets through a better understanding of the underlying combustion physics. The project featured a combined modeling, experimental and product design/development effort comprised of four different activities: Development of a model of the gasification process in the biomass fuel bed; Development of a CFD model of the secondary combustion zone; Experiments with a modular TLUD test bed to provide information on how stove design, fuel properties, and operating mode influence performance and provide data needed to validate the fuel bed model; Planar laser-induced fluorescence (PLIF) experiments with a two-dimensional optical test bed to provide insight into the flame dynamics in the secondary combustion zone and data to validate the CFD model; Design, development and field testing of a market ready TLUD prototype. Over 180 tests of 40 different configurations of the modular TLUD test bed were performed to demonstrate how stove design, fuel properties and operating mode influences performance, and the conditions under which Tier 4 emissions are obtainable. Images of OH and acetone PLIF were collected at 10 kHz with the optical test bed. The modeling and experimental results informed the design of a TLUD prototype that met Tier 3 to Tier 4 specifications in emissions and Tier 2 in efficiency. The final prototype was field tested in India.« less
Improvements in Production of Single-Walled Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Balzano, Leandro; Resasco, Daniel E.
2009-01-01
A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to modification for conversion from batch to continuous production.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
The influence of sediment transport rate on the development of structure in gravel bed rivers
NASA Astrophysics Data System (ADS)
Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo
2013-04-01
Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure
Model of Fluidized Bed Containing Reacting Solids and Gases
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.
Process wastewater treatability study for Westinghouse fluidized-bed coal gasification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winton, S.L.; Buvinger, B.J.; Evans, J.M.
1983-11-01
In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health,more » and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.« less
NASA Astrophysics Data System (ADS)
Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev
2018-03-01
Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.
NASA Technical Reports Server (NTRS)
Hand, David W.; Crittenden, John C.; Ali, Anisa N.; Bulloch, John L.; Hokanson, David R.; Parrem, David L.
1996-01-01
This thesis includes the development and verification of an adsorption model for analysis and optimization of the adsorption processes within the International Space Station multifiltration beds. The fixed bed adsorption model includes multicomponent equilibrium and both external and intraparticle mass transfer resistances. Single solute isotherm parameters were used in the multicomponent equilibrium description to predict the competitive adsorption interactions occurring during the adsorption process. The multicomponent equilibrium description used the Fictive Component Analysis to describe adsorption in unknown background matrices. Multicomponent isotherms were used to validate the multicomponent equilibrium description. Column studies were used to develop and validate external and intraparticle mass transfer parameter correlations for compounds of interest. The fixed bed model was verified using a shower and handwash ersatz water which served as a surrogate to the actual shower and handwash wastewater.
Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.
1979-01-01
The construction of the 50 MT Si/year experimental process system development unit was deferred until FY 1980, and the fluidized bed, zinc vaporizer, by-product condenser, and electrolytic cell were combined with auxiliary units, capable of supporting 8-hour batchwise operation, to form the process development unit (PDU), which is scheduled to be in operation by October 1, 1979. The design of the PDU and objectives of its operation are discussed. Experimental program support activities described relate to: (1) a wetted-wall condensor; (2) fluidized-bed modeling; (3) zinc chloride electrolysis; and (4) zinc vaporizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.; Estochen, E.G.
The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due tomore » tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.; Estochen, E.
The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds requiremore » replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.« less
NASA Technical Reports Server (NTRS)
Breneman, W. C.; Farrier, E. G.; Rexer, J.
1977-01-01
Extended operation of a small process-development unit routinely produced high quality silane in 97+% yield from dichlorosilane. The production rate was consistent with design loadings for the fractionating column and for the redistribution reactor. A glass fluid-bed reactor was constructed for room temperature operation. The behavior of a bed of silcon particles was observed as a function of various feedstocks, component configurations, and operating conditions. For operating modes other than spouting, the bed behaved in an erratic and unstable manner. A method was developed for casting molten silicon powder into crack-free solid pellets for process evaluation. The silicon powder was melted and cast into thin walled quartz tubes that sacrificially broke on cooling.
A Model for the Development of Hospital Beds Using Fuzzy Analytical Hierarchy Process (Fuzzy AHP).
Ravangard, Ramin; Bahadori, Mohammadkarim; Raadabadi, Mehdi; Teymourzadeh, Ehsan; Alimomohammadzadeh, Khalil; Mehrabian, Fardin
2017-11-01
This study aimed to identify and prioritize factors affecting the development of military hospital beds and provide a model using fuzzy analytical hierarchy process (Fuzzy AHP). This applied study was conducted in 2016 in Iran using a mixed method. The sample included experts in the field of military health care system. The MAXQDA 10.0 and Expert Choice 10.0 software were used for analyzing the collected data. Geographic situation, demographic status, economic status, health status, health care centers and organizations, financial and human resources, laws and regulations and by-laws, and the military nature of service recipients had effects on the development of military hospital beds. The military nature of service recipients (S=0.249) and economic status (S=0.040) received the highest and lowest priorities, respectively. Providing direct health care services to the military forces in order to maintain their dignity, and according to its effects in the crisis, as well as the necessity for maintaining the security of the armed forces, and the hospital beds per capita based on the existing laws, regulations and bylaws are of utmost importance.
ASPEN simulation of a fixed-bed integrated gasification combined-cycle power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, K.R.
1986-03-01
A fixed-bed integrated gasification combined-cycle (IGCC) power plant has been modeled using the Advanced System for Process ENgineering (ASPEN). The ASPEN simulation is based on a conceptual design of a 509-MW IGCC power plant that uses British Gas Corporation (BGC)/Lurgi slagging gasifiers and the Lurgi acid gas removal process. The 39.3-percent thermal efficiency of the plant that was calculated by the simulation compares very favorably with the 39.4 percent that was reported by EPRI. The simulation addresses only thermal performance and does not calculate capital cost or process economics. Portions of the BGC-IGCC simulation flowsheet are based on the SLAGGERmore » fixed-bed gasifier model (Stefano May 1985), and the Kellogg-Rust-Westinghouse (KRW) iGCC, and the Texaco-IGCC simulations (Stone July 1985) that were developed at the Department of Energy (DOE), Morgantown Energy Technology Center (METC). The simulation runs in 32 minutes of Central Processing Unit (CPU) time on the VAX-11/780. The BGC-IGCC simulation was developed to give accurate mass and energy balances and to track coal tars and environmental species such as SO/sub x/ and NO/sub x/ for a fixed-bed, coal-to-electricity system. This simulation is the third in a series of three IGCC simulations that represent fluidized-bed, entrained-flow, and fixed-bed gasification processes. Alternate process configurations can be considered by adding, deleting, or rearranging unit operation blocks. The gasifier model is semipredictive; it can properly respond to a limited range of coal types and gasifier operating conditions. However, some models in the flowsheet are based on correlations that were derived from the EPRI study, and are therefore limited to coal types and operating conditions that are reasonably close to those given in the EPRI design. 4 refs., 7 figs., 2 tabs.« less
Hospital bed occupancy: more than queuing for a bed.
Keegan, Andrew D
2010-09-06
Timely access to safe hospital care remains a major concern. Target bed-occupancy rates have been proposed as a measure of the ability of a hospital to function safely and effectively. High bed-occupancy rates have been shown to be associated with greater risks of hospital-associated infection and access block and to have a negative impact on staff health. Clinical observational data have suggested that bed occupancies above 85% could adversely affect safe, effective hospital function. Using this figure, at least initially, would be of value in the planning and operational management of public hospital beds in Australia. There is an urgent need to develop meaningful outcome measures of patient care that could replace the process measures currently in use.
Hydrodynamics of Packed Bed Reactor in Low Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Nahra, Henry K.; Balakotaiah, Vemuri
2005-01-01
Packed bed reactors are well known for their vast and diverse applications in the chemical industry; from gas absorption, to stripping, to catalytic conversion. Use of this type of reactor in terrestrial applications has been rather extensive because of its simplicity and relative ease of operation. Developing similar reactors for use in microgravity is critical to many space-based advanced life support systems. However, the hydrodynamics of two-phase flow packed bed reactors in this new environment and the effects of one physiochemical process on another has not been adequately assessed. Surface tension or capillary forces play a much greater role which results in a shifting in flow regime transitions and pressure drop. Results from low gravity experiments related to flow regimes and two-phase pressure drop models are presented in this paper along with a description of plans for a flight experiment on the International Space Station (ISS). Understanding the packed bed hydrodynamics and its effects on mass transfer processes in microgravity is crucial for the design of packed bed chemical or biological reactors to be used for water reclamation and other life support processes involving water purification.
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2001-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at KSC because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how KSC has benefited from PE and how KSC has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where KSC's PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2002-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment
NASA Astrophysics Data System (ADS)
Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.
2016-02-01
Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.
Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana
2013-06-01
This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.
Paired Straight Hearth Furnace - Transformational Ironmaking Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei-Kao; Debski, Paul
2014-11-19
The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitablemore » as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.« less
Processing of electronic waste in a counter current teeter-bed separator.
Dey, Sujit Kumar; Ari, Vidyadhar; Das, Avimanyu
2012-09-30
Advanced gravity separation of ground electronic waste (e-waste) in a teeter-bed separator was investigated. It was established that the Floatex Density Seprator (FDS) is a promising device for wet processing of e-waste to recover metal values physically. It was possible to enrich the metal content from 23% in the feed to 37% in the product in a single stage operation using the FDS with over 95% recovery of the metals. A two-stage processing scheme was developed that enriched the metal content further to 48.2%. The influence of the operating variables, namely, teeter water flow rate, bed pressure and feed rate were quantified. Low bed pressures and low teeter water rates produced higher mass yields with poorer product grades. On the contrary, a high bed pressure and high teeter water rate combination led to a lower mass yield but better product quality. A high feed rate introduced en-masse settling leading to higher yield but at a poorer product grade. For an FDS with 230 mm × 230 mm cross section and a height of 530 mm, the process condition with 6.6l pm teeter water rate, 5.27 kPa bed pressure and 82 kg/hr feed rate maximized the yield for a target product grade of 37% metal in a single pass. Copyright © 2012 Elsevier Ltd. All rights reserved.
Utility of Recycled Bedding for Laboratory Rodents
Miyamoto, Toru; Li, Zhixia; Kibushi, Tomomi; Okano, Shinya; Yamasaki, Nakamichi; Kasai, Noriyuki
2009-01-01
Animal facilities generate a large amount of used bedding containing excrement as medical waste. We developed a recycling system for used bedding that involves soft hydrothermal processing. In this study, we examined the effects of bedding type on growth, hematologic and serum biochemical values, and organ weights of female and male mice reared on either recycled or fresh bedding from 3 to 33 wk of age. Neither growth nor physiology differed between mice housed on recycled bedding compared with fresh bedding. When 14-wk-old mice were bred, litter size and total number of weaned pups showed no significant differences between animals raised on recycled or fresh bedding. Because bedding type influences the environment within cages and animal rooms, we evaluated particulate and ammonia data from cages and animal rooms. Values were significantly lower from cages and rooms that used recycled bedding than from those using fresh bedding, thus indicating that recycled bedding has the potential to improve the environment within both cages and animal rooms. Overall, this study revealed that recycled bedding is an excellent material for use in housing laboratory rodents. Specifically, recycled bedding may reduce medical waste and maintain healthy environments within cages and animal rooms. PMID:19653951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.G.; Akgerman, A.
1993-02-01
The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed reactors, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. The goals for the quarter include: (1) Conduct experiments using a trickle bed reactor to determine the effect of reactor type on the product distribution. (2) Use spherical pellets of silica as a support for zirconia for the purpose of increasing surface, area and performancemore » of the catalysts. (3) Conduct exploratory experiments to determine the effect of super critical drying of the catalyst on the catalyst surface area and performance. (4) Prepare a ceria/zirconia catalyst by the precipitation method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; ...
2015-10-06
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less
Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †
Frank, Jared A.; Brill, Anthony; Kapila, Vikram
2016-01-01
Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464
Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing
Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.
2014-01-01
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050
Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.
Frank, Jared A; Brill, Anthony; Kapila, Vikram
2016-08-20
Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.
A fundamental investigation is proposed to provide a technical basis for the development of a novel, liquid-fluidized bed classification (LFBC) technology for the continuous separation of complex waste plastic mixtures for in-process recycling and waste minimization. Although ...
Mechanistic modelling of fluidized bed drying processes of wet porous granules: a review.
Mortier, Séverine Thérèse F C; De Beer, Thomas; Gernaey, Krist V; Remon, Jean Paul; Vervaet, Chris; Nopens, Ingmar
2011-10-01
Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet granules is given. This review provides a basis for future mechanistic model development for the drying process of wet granules in pharmaceutical processes. It is intended for a broad audience with a varying level of knowledge on pharmaceutical processes and mathematical modelling. Mathematical models are powerful tools to gain process insight and eventually develop well-controlled processes. The level of detail embedded in such a model depends on the goal of the model. Several models have therefore been proposed in the literature and are reviewed here. The drying behaviour of one single granule, a porous particle, can be described using the continuum approach, the pore network modelling method and the shrinkage of the diameter of the wet core approach. As several granules dry at a drying rate dependent on the gas temperature, gas velocity, porosity, etc., the moisture content of a batch of granules will reside in a certain interval. Population Balance Model (ling) (PBM) offers a tool to describe the distribution of particle properties which can be of interest for the application. PBM formulation and solution methods are therefore reviewed. In a fluidized bed, the granules show a fluidization pattern depending on the geometry of the gas inlet, the gas velocity, characteristics of the particles, the dryer design, etc. Computational Fluid Dynamics (CFD) allows to model this behaviour. Moreover, turbulence can be modelled using several approaches: Reynolds-averaged Navier-Stokes Equations (RANS) or Large Eddy Simulation (LES). Another important aspect of CFD is the choice between the Eulerian-Lagrangian and the Eulerian-Eulerian approach. Finally, the PBM and CFD frameworks can be integrated, to describe the evolution of the moisture content of granules during fluidized bed drying. Copyright © 2011 Elsevier B.V. All rights reserved.
Heterogeneous decomposition of silane in a fixed bed reactor
NASA Technical Reports Server (NTRS)
Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.
1982-01-01
Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.
Computational Process Modeling for Additive Manufacturing
NASA Technical Reports Server (NTRS)
Bagg, Stacey; Zhang, Wei
2014-01-01
Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.
A low tritium hydride bed inventory estimation technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.; Shanahan, K.L.; Baker, R.A.
2015-03-15
Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. Themore » first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.« less
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).
A Model for the Development of Hospital Beds Using Fuzzy Analytical Hierarchy Process (Fuzzy AHP)
RAVANGARD, Ramin; BAHADORI, Mohammadkarim; RAADABADI, Mehdi; TEYMOURZADEH, Ehsan; ALIMOMOHAMMADZADEH, Khalil; MEHRABIAN, Fardin
2017-01-01
Background: This study aimed to identify and prioritize factors affecting the development of military hospital beds and provide a model using fuzzy analytical hierarchy process (Fuzzy AHP). Methods: This applied study was conducted in 2016 in Iran using a mixed method. The sample included experts in the field of military health care system. The MAXQDA 10.0 and Expert Choice 10.0 software were used for analyzing the collected data. Results: Geographic situation, demographic status, economic status, health status, health care centers and organizations, financial and human resources, laws and regulations and by-laws, and the military nature of service recipients had effects on the development of military hospital beds. The military nature of service recipients (S=0.249) and economic status (S=0.040) received the highest and lowest priorities, respectively. Conclusion: Providing direct health care services to the military forces in order to maintain their dignity, and according to its effects in the crisis, as well as the necessity for maintaining the security of the armed forces, and the hospital beds per capita based on the existing laws, regulations and bylaws are of utmost importance. PMID:29167775
NASA Astrophysics Data System (ADS)
Marquis, G. A.; Roy, A. G.
2012-02-01
This study examines bed load transport processes in a small gravel-bed river (Béard Creek, Québec) using three complementary methods: bed elevation changes between successive floods, bed activity surveys using tags inserted into the bed, and bed load transport rates from bed load traps. The analysis of 20 flood events capable of mobilizing bed material led to the identification of divergent results among the methods. In particular, bed elevation changes were not consistent with the bed activity surveys. In many cases, bed elevation changes were significant (1 to 2 times the D50) even if the bed surface had not been activated during the flood, leading to the identification of processes of bed dilation and contraction that occurred over 10% to 40% of the bed surface. These dynamics of the river bed prevent accurate derivation of bed load transport rates from topographic changes, especially for low magnitude floods. This paper discusses the mechanisms that could explain the dilation and contraction of particles within the bed and their implications in fluvial dynamics. Bed contraction seems to be the result of the winnowing of the fine sediments under very low gravel transport. Bed dilation seems to occur on patches of the bed at the threshold of motion where various processes such as fine sediment infiltration lead to the maintenance of a larger sediment framework volume. Both processes are also influenced by flood history and the initial local bed state and in turn may have a significant impact on sediment transport and morphological changes in gravel-bed rivers.
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Huhn, Katrin; Bryan, Karin R.
2017-10-01
Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical `flume tank' model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities ( U 1-5=10-30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.
Apparatus and process for controlling fluidized beds
Rehmat, Amirali G.; Patel, Jitendra G.
1985-10-01
An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.
On-line monitoring of fluid bed granulation by photometric imaging.
Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko
2014-11-01
This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Blankenship, D. D.
2014-12-01
The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.
1995-12-31
The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalystsmore » for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.« less
Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer
2016-01-01
The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.
Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer
2016-01-01
The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two- bed design employs a chemisorption process whereby the beds alternate between adsorbtion and desorbsion. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overreview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.
Method of removing sulfur emissions from a fluidized-bed combustion process
Vogel, Gerhard John; Jonke, Albert A.; Snyder, Robert B.
1978-01-01
Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.
Enzymatic Catalytic Beds For Oxidation Of Alcohols
NASA Technical Reports Server (NTRS)
Jolly, Clifford D.; Schussel, Leonard J.
1993-01-01
Modules containing beds of enzymatic material catalyzing oxidation of primary alcohols and some other organic compounds developed for use in wastewater-treatment systems of future spacecraft. Designed to be placed downstream of multifiltration modules, which contain filters and sorbent beds removing most of non-alcoholic contaminants but fail to remove significant amounts of low-molecular-weight, polar, nonionic compounds like alcohols. Catalytic modules also used on Earth to oxidize primary alcohols and other compounds in wastewater streams and industrial process streams.
NASA Astrophysics Data System (ADS)
Phillips, Emrys R.; Evans, David J. A.; van der Meer, Jaap J. M.; Lee, Jonathan R.
2018-02-01
Published conceptual models argue that much of the forward motion of modern and ancient glaciers is accommodated by deformation of soft-sediments within the underlying bed. At a microscale this deformation results in the development of a range of ductile and brittle structures in water-saturated sediments as they accommodate the stresses being applied by the overriding glacier. Detailed micromorphological studies of subglacial traction tills reveal that these polydeformed sediments may also contain evidence of having undergone repeated phases of liquefaction followed by solid-state shear deformation. This spatially and temporally restricted liquefaction of subglacial traction tills lowers the shear strength of the sediment and promotes the formation of "transient mobile zones" within the bed, which accommodate the shear imposed by the overriding ice. This process of soft-bed sliding, alternating with bed deformation, facilitates glacier movement by way of 'stick-slip' events. The various controls on the slip events have previously been identified as: (i) the introduction of pressurised meltwater into the bed, a process limited by the porosity and permeability of the till; and (ii) pressurisation of porewater as a result of subglacial deformation; to which we include (iii) episodic liquefaction of water-saturated subglacial traction tills in response to glacier seismic activity (icequakes), which are increasingly being recognized as significant processes in modern glaciers and ice sheets. As liquefaction operates only in materials already at very low values of effective stress, its process-form signatures are likely indicative of glacier sub-marginal tills.
[The development of the multifunctional automatic rotating bed with process-monitoring].
Geng, Hongzhu; Hu, Monong; Cheng, Ping; Dong, Kejiang; Zhang, Jiaxia; Sun, Juefei
2013-04-01
We have developed a new rotating bed for the old and the paralised people. This rotating bed is composed of two bed heads at front and at end, bed boards, guardrails, an electric motor, a reducer, an induction locator and a set of electronic controls. With the preestablished program, the angle between the left/right bed board and the middle board is changed by rotating the left/right board around the rotation axis, and the gravity direction between the human body and the ground is changed by the rotation of the middle board as a whole, so that the middle bed board and the left and right ones will act respectively as supporters of weight of the person who is lying on his back or on his side. In this way, a person can turn over automatically, comfortably and naturally when he/she is asleep. This rotating bed meets the physiological needs of a sleeping person, and people with turning over problems can turn over in a comfortable and natural way by means of biotechnology. It can also improve the quality of sleep and help avoid decubitus. In addition, it can be used to promote the rehabilitation of those who are paralysed by reason of its passive exercising function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.G.; Akgerman, A.
1994-05-06
Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed beforemore » isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.« less
Sand Waves in Environmental Flows: Insights gained by LES
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis
2014-11-01
In fluvial and coastal environments, sediment transport processes induced by near-bed coherent structures in the turbulent boundary layer developing over a mobile sediment bed result in the formation of dynamically rich sand waves, or bed forms, which grow and migrate continuously. Bed form migration alters streambed roughness and provides the primary mechanism for transporting large amounts of sediment through riverine systems impacting the morphology, streambank stability, and ecology of waterways. I will present recent computational advances, which have enabled coupled, hydro-morphodynamic large-eddy simulation (LES) of turbulent flow in mobile-bed open channels. Numerical simulations: 1) elucidate the role of near-bed sweeps in the turbulent boundary layer as the mechanism for initiating the instability of the initially flat sand bed; 2) show how near-bed processes give rise to aperiodic eruptions of suspended sediment at the free surface; and 3) clarify the mechanism via which sand waves migrate. Furthermore, in agreement with recent experimental observations, the computed spectra of the resolved velocity fluctuations above the bed exhibit a distinct spectral gap whose width increases with distance from the bed. The spectral gap delineates the spectrum of turbulence from that of slowly evolving coherent structures associated with sand wave migration. The talk will also present computational results demonstrating the feasibility of carrying out coupled, hydro-morphodynamic LES of large dunes migrating in meandering streams and rivers with embedded hydraulic structures and discuss future challenges and opportunities. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33.
Fluidized-Bed Cleaning of Silicon Particles
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Hsu, George C.
1987-01-01
Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.
U.S. Army Oxygen Generation System Development
2010-04-01
engines), scroll pumps , and rotary vane pumps . The turbo compressor is a design that trades the size and weight of the low speed compressors for a...is exposed to water. A guard bed of silica gel is used to protect the bed from moisture. A variation of the process ends the cycle using a vacuum ...phase. With the vacuum assist the total change of pressure is the same as the PSA process, but the maximum pressure is lower. Not only does the vacuum
Jackman, A.P.; Walters, R.A.; Kennedy, V.C.
1984-01-01
Three models describing solute transport of conservative ion species and another describing transport of species which adsorb linearly and reversibly on bed sediments are developed and tested. The conservative models are based on three different conceptual models of the transient storage of solute in the bed. One model assumes the bed to be a well-mixed zone with flux of solute into the bed proportional to the difference between stream concentration and bed concentration. The second model assumes solute in the bed is transported by a vertical diffusion process described by Fick's law. The third model assumes that convection occurs in a selected portion of the bed while the mechanism of the first model functions everywhere. The model for adsorbing species assumes that the bed consists of particles of uniform size with the rate of uptake controlled by an intraparticle diffusion process. All models are tested using data collected before, during and after a 24-hr. pulse injection of chloride, strontium, potassium and lead ions into Uvas Creek near Morgan Hill, California, U.S.A. All three conservative models accurately predict chloride ion concentrations in the stream. The model employing the diffusion mechanism for bed transport predicts better than the others. The adsorption model predicts both strontium and potassium ion concentrations well during the injection of the pulse but somewhat overestimates the observed concentrations after the injection ceases. The overestimation may be due to the convection of solute deep into the bed where it is retained longer than the 3-week post-injection observation period. The model, when calibrated for strontium, predicts potassium equally well when the adsorption equilibrium constant for strontium is replaced by that for potassium. ?? 1984.
Economics of polysilicon process: A view from Japan
NASA Technical Reports Server (NTRS)
Shimizu, Y.
1986-01-01
The production process of solar grade silicon (SOG-Si) through trichlorosilane (TCS) was researched in a program sponsored by New Energy Development Organization (NEDO). The NEDO process consists of the following two steps: TCS production from by-product silicon tetrachloride (STC) and SOG-Si formation from TCS using a fluidized bed reactor. Based on the data obtained during the research program, the manufacturing cost of the NEDO process and other polysilicon manufacturing processes were compared. The manufacturing cost was calculated on the basis of 1000 tons/year production. The cost estimate showed that the cost of producing silicon by all of the new processes is less than the cost by the conventional Siemens process. Using a new process, the cost of producing semiconductor grade silicon was found to be virtually the same with any to the TCS, diclorosilane, and monosilane processes when by-products were recycled. The SOG-Si manufacturing processes using the fluidized bed reactor, which needs further development, shows a greater probablility of cost reduction than the filament processes.
NASA Astrophysics Data System (ADS)
Bader, B. E.
1981-10-01
The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.
In Situ Fringe Projection Profilometry for Laser Power Bed Fusion Process
NASA Astrophysics Data System (ADS)
Zhang, Bin
Additive manufacturing (AM) offers an industrial solution to produce parts with complex geometries and internal structures that conventional manufacturing techniques cannot produce. However, current metal additive process, particularly the laser powder bed fusion (LPBF) process, suffers from poor surface finish and various material defects which hinder its wide applications. One way to solve this problem is by adding in situ metrology sensor onto the machine chamber. Matured manufacturing processes are tightly monitored and controlled, and instrumentation advances are needed to realize this same advantage for metal additive process. This encourages us to develop an in situ fringe projection system for the LPBF process. The development of such a system and the measurement capability are demonstrated in this dissertation. We show that this system can measure various powder bed signatures including powder layer variations, the average height drop between fused metal and unfused powder, and the height variations on the fused surfaces. The ability to measure textured surface is also evaluated through the instrument transfer function (ITF). We analyze the mathematical model of the proposed fringe projection system, and prove the linearity of the system through simulations. A practical ITF measurement technique using a stepped surface is also demonstrated. The measurement results are compared with theoretical predictions generated through the ITF simulations.
Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.
Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua
2013-10-15
To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Chao; Savkin, Andrey V; Clout, Ray; Nguyen, Hung T
2015-09-01
We present a novel design of an intelligent robotic hospital bed, named Flexbed, with autonomous navigation ability. The robotic bed is developed for fast and safe transportation of critical neurosurgery patients without changing beds. Flexbed is more efficient and safe during the transportation process comparing to the conventional hospital beds. Flexbed is able to avoid en-route obstacles with an efficient easy-to-implement collision avoidance strategy when an obstacle is nearby and to move towards its destination at maximum speed when there is no threat of collision. We present extensive simulation results of navigation of Flexbed in the crowded hospital corridor environments with moving obstacles. Moreover, results of experiments with Flexbed in the real world scenarios are also presented and discussed.
Heating-Rate-Coupled Model for Hydrogen Reduction of JSC-1A
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S. A.
2010-01-01
A previously developed and validated model for hydrogen reduction of JSC-1A for a constant reaction-bed temperature is extended to account for reaction during the bed heat-up period. A quasisteady approximation is used wherein an expression is derived for a single average temperature of reaction during the heat-up process by employing an Arrhenius expression for regolith conversion. Subsequently, the regolith conversion during the heat-up period is obtained by using this representative temperature. Accounting for the reaction during heat-up provides a better estimate of the reaction time needed at the desired regolith-bed operating temperature. Implications for the efficiency of the process, as measured by the energy required per unit mass of oxygen produced, are also indicated.
Medical Data Architecture Project Status
NASA Technical Reports Server (NTRS)
Krihak, M.; Middour, C.; Lindsey, A.; Marker, N.; Wolfe, S.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.
2017-01-01
The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current International Space Station (ISS) medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable an increasingly autonomous crew than the current ISS paradigm. The MDA will develop capabilities that support automated data collection, and the necessary functionality and challenges in executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. To attain this goal, the first year of the MDA project focused on reducing technical risk, developing documentation and instituting iterative development processes that established the basis for the first version of MDA software (or Test Bed 1). Test Bed 1 is based on a nominal operations scenario authored by the ExMC Element Scientist. This narrative was decomposed into a Concept of Operations that formed the basis for Test Bed 1 requirements. These requirements were successfully vetted through the MDA Test Bed 1 System Requirements Review, which permitted the MDA project to begin software code development and component integration. This paper highlights the MDA objectives, development processes, and accomplishments, and identifies the fiscal year 2017 milestones and deliverables in the upcoming year.
Modeling of Powder Bed Manufacturing Defects
NASA Astrophysics Data System (ADS)
Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.
2018-01-01
Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2012-01-01
The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2013-01-01
The Rapid Cycle Amine (RCA) system is a low-power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water (H2O) vapor, whereas during the regeneration mode, the sorbent rejects the adsorbed CO2 and H2O vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low-power controller design with several modes of operation available to the user. Together with NASA Johnson Space Center, Hamilton Sundstrand Space Systems International, Inc. has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design of RCA 2.0 was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA Johnson Space Center in September 2012. This paper provides an overview of the RCA system design and results of pre-delivery testing.
In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.
A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence levelmore » were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.« less
In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLEIN, JAMES
A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percentmore » confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.« less
FPGA Based Reconfigurable ATM Switch Test Bed
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Jones, Robert E.
1998-01-01
Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.
NASA Astrophysics Data System (ADS)
Sun, May Yongmei
This research focuses on two steps of commercial fuel ethanol production processes: the hydrolysis starch process and the fermentation process. The goal of this research is to evaluate the performance of co-immobilized biocatalysts in a fluidized bed reactor with emphasis on economic and engineering aspects and to develop a predictive mathematical model for this system. The productivity of an FBR is higher than productivity of a traditional batch reactor or CSTR. Fluidized beds offer great advantages over packed beds for immobilized cells when small particles are used or when the reactant feed contains suspended solids. Plugging problems, excessive pressure drops (and thus attrition), or crushing risks may be avoided. No mechanical stirring is required as mixing occurs due to the natural turbulence in the fluidized process. Both enzyme and microorganism are immobilized in one catalyst bead which is called co-immobilization. Inside this biocatalyst matrix, starch is hydrolyzed by the enzyme glucoamylase to form glucose and then converted to ethanol and carbon dioxide by microorganisms. Two biocatalysts were evaluated: (1) co-immobilized yeast strain Saccharomyces cerevisiae and glucoamylase. (2) co-immobilized Zymomonas mobilis and glucoamylase. A co-immobilized biocatalyst accomplishes the simultaneous saccharification and fermentation (SSF process). When compared to a two-step process involving separate saccharification and fermentation stages, the SSF process has productivity values twice that given by the pre-saccharified process when the time required for pre-saccharification (15--25 h) was taken into account. The SSF process should also save capital cost. The information about productivity, fermentation yield, concentration profiles along the bed, ethanol inhibition, et al., was obtained from the experimental data. For the yeast system, experimental results showed that: no apparent decrease of productivity occurred after two and half months, the productivity was 25--44g/L-hr (based on reactor volume), the average yield was 0.45 g ethanol/g starch, the biocatalyst retained physical integrity and contamination did not affect fermentation. For the Z. mobilis system the maximum volumetric productivity was 38 g ethanol/L-h, the average yield was 0.51 g ethanol/g starch and the FBR was successfully operated for almost one month. In order to develop, scale-up and economically evaluate this system more efficiently, a predictive mathematical model that is based on fundamental principles was developed and verified. This model includes kinetics of reactions, transport phenomena of the reactant and product by diffusion within the biocatalyst bead, and the hydrodynamics of the three phase fluidized bed. The co-immobilized biocatalyst involves a consecutive reaction mechanism The mathematical descriptions of the effectiveness factors of reactant and the intermediate product were developed. Hydrodynamic literature correlations were used to develop the dispersion coefficient and gas, liquid, and solid holdup. The solutions of coupled non-linear second order equations for biocatalyst bead and reactor together with the boundary conditions were solved numerically. This model gives considerable information about the system, such as concentration profiles inside both the beads and column, flow rate and feed concentration influences on productivity and phase hold up, and the influence of enzyme and cell mass loading in the catalyst. This model is generic in nature such that it can be easily applied to a diverse set of applications and operating conditions.
Overview and evolution of the LeRC PMAD DC test bed
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.
1992-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) has been developed electrical power system test beds to support the overall design effort. Through this time, the SSFP has changed the design baseline numerous times, however, the test bed effort has endeavored to track these changes. Beginning in August 1989 with the baseline and an all DC system, a test bed was developed to support the design baseline. The LeRC power measurement and distribution (PMAD) DC test bed and the changes in the restructure are described. The changes included the size reduction of primary power channel and various power processing elements. A substantial reduction was also made in the amount of flight software with the subsequent migration of these functions to ground control centers. The impact of these changes on the design of the power hardware, the controller algorithms, the control software, and a description of their current status is presented. An overview of the testing using the test bed is described, which includes investigation of stability and source impedance, primary and secondary fault protection, and performance of a rotary utility transfer device. Finally, information is presented on the evolution of the test bed to support the verification and operational phases of the SSFP in light of these restructure scrubs.
Araújo, Paulo Jardel P; Leite, Manuela Souza; Ravagnani, Teresa M Kakuta
2016-01-01
Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane.
Apparatus for controlling fluidized beds
Rehmat, Amirali G.; Patel, Jitendra G.
1987-05-12
An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Development of the Packed Bed Reactor ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Patton, Martin O.; Bruzas, Anthony E.; Rame, Enrique; Motil, Brian J.
2012-01-01
Packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a leading candidate as a potential unit operation in support of long duration human space exploration. On earth, this type of reactor accounts for approximately 80% of all the reactors used in the chemical process industry today. Development of this technology for space exploration is truly crosscutting with many other potential applications (e.g., in-situ chemical processing of planetary materials and transport of nutrients through soil). NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. The first model developed by Motil et al., (2003) is based on a modified Ergun equation. This model was demonstrated at moderate gas and liquid flow rates, but extension to the lower flow rates expected in many advanced life support systems must be validated. The other model, developed by Guo et al., (2004) is based on Darcy s (1856) law for two-phase flow. This model has been validated for a narrow range of flow parameters indirectly (without full instrumentation) and included test points where the flow was not fully developed. The flight experiment presented will be designed with removable test sections to test the hydrodynamic models. The experiment will provide flexibility to test additional beds with different types of packing in the future. One initial test bed is based on the VRA (Volatile Removal Assembly), a packed bed reactor currently on ISS whose behavior in micro-gravity is not fully understood. Improving the performance of this system through an accurate model will increase our ability to purify water in the space environment.
Considerations on the construction of a Powder Bed Fusion platform for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Andersen, Sebastian Aagaard; Nielsen, Karl-Emil; Pedersen, David Bue; Nielsen, Jakob Skov
As the demand for moulds and other tools becomes increasingly specific and complex, an additive manufacturing approach to production is making its way to the industry through laser based consolidation of metal powder particles by a method known as powder bed fusion. This paper concerns a variety of design choices facilitating the development of an experimental powder bed fusion machine tool, capable of manufacturing metal parts with strength matching that of conventional manufactured parts and a complexity surpassing that of subtractive processes. To understand the different mechanisms acting within such an experimental machine tool, a fully open and customizable rig is constructed. Emphasizing modularity in the rig, allows alternation of lasers, scanner systems, optical elements, powder deposition, layer height, temperature, atmosphere, and powder type. Through a custom-made software platform, control of the process is achieved, which extends into a graphical user interface, easing adjustment of process parameters and the job file generation.
NASA Astrophysics Data System (ADS)
Kaverin, Dmitry; Pastukhov, Alexander
2015-04-01
The evolution of soils and landscapes has been studied in a lake bed of former thermokarst lake, which was totally drained in 1979. Melioration of thermokarst lakes was conducted experimentally and locally under Soviet economics program during 1970-s. The aim of the program was to increase in biomass productivity of virgin tundra permafrost-thermokarst sites under agricultural activities. The former thermokarst lake "Opytnoe" located in the Bolshezemelskaya Tundra, Russian European Northeast. The lake bed is covered by peat-mineral sediments, which serves as soil-forming sediments favoring subsequent permafrost aggradation and cryogenic processes as well. Initially, after drainage, swampy meadows had been developed almost all over the lake bed. Further on, succession of landscape went diversely, typical and uncommon tundra landscapes formed. When activated, cryogenic processes favored the formation of peat mounds under dwarf shrub - lichen vegetation (7% of the area). Frost cracks and peat circles affected flat mounds all over the former lake bottom. On drained peat sites, with no active cryogenic processes, specific grass meadows on Cryic Sapric Histosols were developed. Totally, permafrost-affected soils occupy 77% of the area (2011). In some part of the lake bed further development of waterlogging leads to the formation of marshy meadows and willow communities where Gleysols prevail. During last twenty years, permafrost degradation has occurred under tall shrub communities, and it will progress in future. Water erosion processes in the drained lake bottom promoted the formation of local hydrographic network. In the stream floodplain grassy willow-stands formed on Fluvisols (3% of the area). The study has been conducted under Clima-East & RFBR 14-05-31111 projects.
Wave-induced ripple development in mixed clay-sand substrates
NASA Astrophysics Data System (ADS)
Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben
2016-04-01
This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results for sediment dynamics in mixed-bed substrates are highlighted and discussed.
Use of a fluidized bed for the thermal and chemicothermal treatment of metals
NASA Astrophysics Data System (ADS)
Varygin, N. N.; Ol'shanov, E. Ya.
1971-06-01
An investigation of the heat processes in a fluidized bed shows that this unit has a high heating rate and cooling rate, and allows direct control in the process of heat treatment; chemicothermal processing is speeded up 3-5 times. Examples of experimental-industrial and industrial use show the advantages of using the fluidized bed for rapid nonoxidative heating for thermal processing and pressure processing, and also for replacing expensive salt and metal baths. The use of the fluidized bed is promising for heating temperature-sensitive aluminum and other nonferrous alloys, and for heat processing refractory metals, and alloys [45], etc. It is desirable to use the fluidized bed as the cooling medium to achieve optimum cooling with reduced stresses in components of especially complex configuration. It would be promising to use the fluidized bed for carrying out chemicothermal processing and for creating new processes (including surface saturation with rare metals), especially with the application of electrical, and possibly strong magnetic, fields.
Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M
2015-05-01
In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Rui, E-mail: Sunsr@hit.edu.cn; Ismail, Tamer M., E-mail: temoil@aucegypt.edu; Ren, Xiaohan
Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on themore » combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.C.; Olivo, C.A.; Wilson, K.B.
1994-04-01
An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation.more » The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.« less
NASA Astrophysics Data System (ADS)
Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.
2006-02-01
This paper presents the significant progress made in the research and development (R&D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li2TiO3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 °C followed by normalizing it at 930 °C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R&D on the breeder material, Li2TiO3, the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li2TiO3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li2TiO3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation.
Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard
2017-01-01
The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666
Apparatus for controlling fluidized beds
Rehmat, A.G.; Patel, J.G.
1987-05-12
An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.
The Odorant Receptor Co-Receptor from the Bed Bug, Cimex lectularius L
Hansen, Immo A.; Rodriguez, Stacy D.; Drake, Lisa L.; Price, David P.; Blakely, Brittny N.; Hammond, John I.; Tsujimoto, Hitoshi; Monroy, Erika Y.; Maio, William A.; Romero, Alvaro
2014-01-01
Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs’ antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers. PMID:25411789
The odorant receptor co-receptor from the bed bug, Cimex lectularius L.
Hansen, Immo A; Rodriguez, Stacy D; Drake, Lisa L; Price, David P; Blakely, Brittny N; Hammond, John I; Tsujimoto, Hitoshi; Monroy, Erika Y; Maio, William A; Romero, Alvaro
2014-01-01
Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs' antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko
2014-03-15
The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor; ...
2017-10-25
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Araújo, Paulo Jardel P.; Leite, Manuela Souza; Kakuta Ravagnani, Teresa M.
2016-01-01
Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane. PMID:27069982
Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification
NASA Astrophysics Data System (ADS)
Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.
Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.
Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes
Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.
2016-01-01
Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.
Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes.
Hauer, F Richard; Locke, Harvey; Dreitz, Victoria J; Hebblewhite, Mark; Lowe, Winsor H; Muhlfeld, Clint C; Nelson, Cara R; Proctor, Michael F; Rood, Stewart B
2016-06-01
Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.
NASA Astrophysics Data System (ADS)
Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe
2017-04-01
The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.
Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes
Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria J.; Hebblewhite, Mark; Lowe, Winsor H.; Muhlfeld, Clint C.; Nelson, Cara R.; Proctor, Michael F.; Rood, Stewart B.
2016-01-01
Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth. PMID:27386570
Review of the workshop on low-cost polysilicon for terrestrial photovoltaic solar cell applications
NASA Technical Reports Server (NTRS)
Lutwack, R.
1986-01-01
Topics reviewed include: polysilicon material requirements; effects of impurities; requirements for high-efficiency solar cells; economics; development of silane processes; fluidized-bed processor development; silicon purification; and marketing.
Niblett, Daniel; Porter, Stuart; Reynolds, Gavin; Morgan, Tomos; Greenamoyer, Jennifer; Hach, Ronald; Sido, Stephanie; Karan, Kapish; Gabbott, Ian
2017-08-07
A mathematical, mechanistic tablet film-coating model has been developed for pharmaceutical pan coating systems based on the mechanisms of atomisation, tablet bed movement and droplet drying with the main purpose of predicting tablet appearance quality. Two dimensionless quantities were used to characterise the product properties and operating parameters: the dimensionless Spray Flux (relating to area coverage of the spray droplets) and the Niblett Number (relating to the time available for drying of coating droplets). The Niblett Number is the ratio between the time a droplet needs to dry under given thermodynamic conditions and the time available for the droplet while on the surface of the tablet bed. The time available for drying on the tablet bed surface is critical for appearance quality. These two dimensionless quantities were used to select process parameters for a set of 22 coating experiments, performed over a wide range of multivariate process parameters. The dimensionless Regime Map created can be used to visualise the effect of interacting process parameters on overall tablet appearance quality and defects such as picking and logo bridging. Copyright © 2017 Elsevier B.V. All rights reserved.
Improved hydrocracker temperature control: Mobil quench zone technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarli, M.S.; McGovern, S.J.; Lewis, D.W.
1993-01-01
Hydrocracking is a well established process in the oil refining industry. There are over 2.7 million barrels of installed capacity world-wide. The hydrocracking process comprises several families of highly exothermic reactions and the total adiabatic temperature rise can easily exceed 200 F. Reactor temperature control is therefore very important. Hydrocracking reactors are typically constructed with multiple catalyst beds in series. Cold recycle gas is usually injected between the catalyst beds to quench the reactions, thereby controlling overall temperature rise. The design of this quench zone is the key to good reactor temperature control, particularly when processing poorer quality, i.e., highermore » heat release, feeds. Mobil Research and Development Corporation (MRDC) has developed a robust and very effective quench zone technology (QZT) package, which is now being licensed to the industry for hydrocracking applications.« less
Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.
1985-11-27
report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No
Overview and evolution of the LeRC PMAD DC Testbed
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.
1992-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) has been developed electrical power system test beds to support the overall design effort. Through this time, the SSFP has changed the design baseline numerous times, however, the test bed effort has endeavored to track these changes. Beginning in August 1989 with the baseline and an all DC system, a test bed was developed to support the design baseline. The LeRC power measurement and distribution (PMAD) DC test bed and the changes in the restructure are described. The changes includeed the size reduction of primary power channel and various power processing elements. A substantial reduction was also made in the amount of flight software with the subsequent migration of these functions to ground control centers. The impact of these changes on the design of the power hardware, the controller algorithms, the control software, and a description of their current status is presented. An overview of the testing using the test bed is described, which includes investigation of stability and source impedance, primary and secondary fault protection, and performance of a rotary utility transfer device. Finally, information is presented on the evolution of the test bed to support the verification and operational phases of the SSFP in light of these restructure scrubs.
Model simulation and experiments of flow and mass transport through a nano-material gas filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir
2013-11-01
A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing withmore » experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.« less
[Skin care and prevention of bed sores in bedridden patients].
Martínez Cuervo, Fernando; Soldevilla Agreda, J Javier; Verdú Soriano, José; Segovia Gómez, Teresa; García Fernández, Francisco Pedro; Pancorbo Hidalgo, Pedro Luís
2007-12-01
The aging process and environmental aggressions will leave their imprints on the state of a person's skin, possibly compromising some of its functions. Age is a risk factor for the development of bed sores, but not the only factor nor the most important one; therefore, we need to develop prevention programs directed to all patients who spend long periods of time sedentary or bedridden. Prevention programs for bed sores must be based on the best evidence available and include a risk evaluation on these factors: suffering a lesion due to pressure, specific skin treatment, incontinence control, excessive humidity posture changes and the use of special surfaces to manage pressure during an increase in mobility or activity by the patient, local pressure reducing devices as well as paying attention to special situations. All of these care measures have to be developed based on a continuity of treatment among the institutions and caretakers involved with treating each patient.
Bed rest from the perspective of the high-risk pregnant woman.
Gupton, A; Heaman, M; Ashcroft, T
1997-01-01
To describe the experience of prolonged bed rest from the perspective of women during high-risk pregnancies. A focused ethnographic study that used interviews, participant diaries, and field notes as data sources. Participants were obtained from an acute-care hospital antepartum unit and an antepartum home care program. Twenty-four women with complications of pregnancy requiring prolonged bed rest (range, 7-50 days). A model of the stress process in pregnant women on bed rest emerged from the data analysis. Stressors were grouped into situational (sick role, lack of control, uncertainty, concerns regarding fetus's well-being, and being tired of waiting), environmental (feeling like a prisoner, being bored, and having a sense of missing out), and family (role reversal and worry about older children) categories. Two main mediators of stress were social support and coping. Families, friends, and professionals were perceived as sources of support. Women used coping strategies, such as keeping a positive attitude, taking it 1 day at a time, doing it for the baby, getting used to it, setting goals, and keeping busy. Manifestations of stress were evidenced by adverse physical symptoms, emotional reactions, and altered social relationships. Prolonged bed rest is a stressful experience for pregnant women at high risk. Understanding the stress process in pregnant women confined to bed rest may assist nurses in developing interventions to reduce stressors and enhance mediators.
Cognitive Food Processing in Binge-Eating Disorder: An Eye-Tracking Study.
Sperling, Ingmar; Baldofski, Sabrina; Lüthold, Patrick; Hilbert, Anja
2017-08-19
Studies indicate an attentional bias towards food in binge-eating disorder (BED); however, more evidence on attentional engagement and disengagement and processing of multiple attention-competing stimuli is needed. This study aimed to examine visual attention to food and non-food stimuli in BED. In n = 23 participants with full-syndrome and subsyndromal BED and n = 23 individually matched healthy controls, eye-tracking was used to assess attention to food and non-food stimuli during a free exploration paradigm and a visual search task. In the free exploration paradigm, groups did not differ in their initial fixation position. While both groups fixated non-food stimuli significantly longer than food stimuli, the BED group allocated significantly more attention towards food than controls. In the visual search task, groups did not differ in detection times. However, a significant detection bias for food was found in full-syndrome BED, but not in controls. An increased initial attention towards food was related to greater BED symptomatology and lower body mass index (BMI) only in full-syndrome BED, while a greater maintained attention to food was associated with lower BMI in controls. The results suggest food-biased visual attentional processing in adults with BED. Further studies should clarify the implications of attentional processes for the etiology and maintenance of BED.
Cognitive Food Processing in Binge-Eating Disorder: An Eye-Tracking Study
Sperling, Ingmar; Lüthold, Patrick; Hilbert, Anja
2017-01-01
Studies indicate an attentional bias towards food in binge-eating disorder (BED); however, more evidence on attentional engagement and disengagement and processing of multiple attention-competing stimuli is needed. This study aimed to examine visual attention to food and non-food stimuli in BED. In n = 23 participants with full-syndrome and subsyndromal BED and n = 23 individually matched healthy controls, eye-tracking was used to assess attention to food and non-food stimuli during a free exploration paradigm and a visual search task. In the free exploration paradigm, groups did not differ in their initial fixation position. While both groups fixated non-food stimuli significantly longer than food stimuli, the BED group allocated significantly more attention towards food than controls. In the visual search task, groups did not differ in detection times. However, a significant detection bias for food was found in full-syndrome BED, but not in controls. An increased initial attention towards food was related to greater BED symptomatology and lower body mass index (BMI) only in full-syndrome BED, while a greater maintained attention to food was associated with lower BMI in controls. The results suggest food-biased visual attentional processing in adults with BED. Further studies should clarify the implications of attentional processes for the etiology and maintenance of BED. PMID:28825607
NASA Astrophysics Data System (ADS)
Wintenberger, Coraline L.; Rodrigues, Stéphane; Bréhéret, Jean-Gabriel; Villar, Marc
2015-10-01
Fluvial islands can develop from the channel bed by interactions between pioneer trees and bars. Although vegetation recruitment and survival is possible on all bar types, it is easier for trees to survive on nonmigrating bars developed from a change in channel geometry or to the presence of a steady perturbation. This field study details the first stages of development of a vegetated mid-channel, nonmigrating (or forced) bar and its evolution toward an island form. Over six years, analysis of bed topographical changes, vegetation density and roughness, scour and fill depths, sediment grain size and architecture, and excess bed shear stress highlighted a specific signature of trees on topography and grain size segregation. Two depositional processes combining the formation of obstacle marks and upstream-shifting deposition of sediments led to the vertical accretion of the vegetated bar. During the first stage of the bar accretion, bedload sediment supply coming from surrounding channels during floods was identified as a key process modulated by the presence of woody vegetation and a deflection effect induced by the preexisting topography. Grain size segregation between vegetated and bare areas was also highlighted and interpreted as an important process affecting the development of surrounding channels and the degree of disconnection (and hence the speed of development) of a growing island. The heterogeneity of bedload supply can explain why sediment deposition and density of trees are not strictly related. A general conceptual model detailing the first stages of evolution from a bar to an established island is proposed for relatively large lowland rivers.
Low Cost Coherent Doppler Lidar Data Acquisition and Processing
NASA Technical Reports Server (NTRS)
Barnes, Bruce W.; Koch, Grady J.
2003-01-01
The work described in this paper details the development of a low-cost, short-development time data acquisition and processing system for a coherent Doppler lidar. This was done using common laboratory equipment and a small software investment. This system provides near real-time wind profile measurements. Coding flexibility created a very useful test bed for new techniques.
Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions
NASA Technical Reports Server (NTRS)
Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.
2013-01-01
The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krish Krishnamurthy; Divy Acharya; Frank Fitch
In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream inmore » a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.« less
Decision Support Systems for Launch and Range Operations Using Jess
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar
2007-01-01
The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.
Comparative simulation of a fluidised bed reformer using industrial process simulators
NASA Astrophysics Data System (ADS)
Bashiri, Hamed; Sotudeh-Gharebagh, Rahmat; Sarvar-Amini, Amin; Haghtalab, Ali; Mostoufi, Navid
2016-08-01
A simulation model is developed by commercial simulators in order to predict the performance of a fluidised bed reformer. As many physical and chemical phenomena take place in the reformer, two sub-models (hydrodynamic and reaction sub-models) are needed. The hydrodynamic sub-model is based on the dynamic two-phase model and the reaction sub-model is derived from the literature. In the overall model, the bed is divided into several sections. In each section, the flow of the gas is considered as plug flow through the bubble phase and perfectly mixed through the emulsion phase. Experimental data from the literature were used to validate the model. Close agreement was found between the model of both ASPEN Plus (ASPEN PLUS 2004 ©) and HYSYS (ASPEN HYSYS 2004 ©) and the experimental data using various sectioning of the reactor ranged from one to four. The experimental conversion lies between one and four sections as expected. The model proposed in this work can be used as a framework in developing the complicated models for non-ideal reactors inside of the process simulators.
After reviewing existing water quality criteria and consulting stakeholders, EPA developed a process that states, tribes, and regions can use to develop scientifically defensible SABS criteria. The process is flexible, can be adapted to utilize existing data sets, and can be gea...
A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.
Robles, A; Latrille, E; Ruano, M V; Steyer, J P
2017-01-01
The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.
The extraction of bitumen from western oil sands: Volume 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.
1997-11-26
The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius.
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-04-06
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs.
Process defects and in situ monitoring methods in metal powder bed fusion: a review
NASA Astrophysics Data System (ADS)
Grasso, Marco; Colosimo, Bianca Maria
2017-04-01
Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, P.A.; Patel, N.M.; Painter, A.
Energy recovery from municipal solid waste (MSW) is an important component of an integrated waste management strategy. Waste management programs which remove or recover materials for recycling are particularly suited for considering the option of energy recovery via fluidized bed combustion (FBC). The last few years have seen growing interest in the application of FBC technology to the MSW treatment/disposal problem. This paper reviews and reports on the world-wide experience in fluidized bed combustion of MSW focusing particularly on the types and scales of the systems in operation in Japan and Scandinavia. In addition the paper also reports on themore » development of an energy from waste project employing circulating fluidized bed technology that is proposed for a local municipality in the UK. Japan currently has over 100 bubbling bed units in operation firing on 100% MSW; the technology is firmly established at scales of operation up to 160,000t/y (the largest single unit operates at 6.25t/h). The bubbling bed units accept MSW which has undergone only minimal pre-processing -- the waste is shredded to a nominal 300mm size fraction before being introduced to the furnace. There are distinct (combustion control) advantages to further processing of the waste stream prior to combustion. The Scandinavian countries in particular have been the prime movers in pioneering this technology to work in combination with circulating fluidized bed systems. Currently 2 units are in operation cofiring pre-processed MSW with a range of other biofuels. A number of FBC units firing 100% MSW are currently in the planning or construction stage around the world; they seem set to secure an increased market share particularly at the smaller scale of operation (up to about 200,000t/y).« less
Chemical Looping Combustion Reactions and Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarofim, Adel; Lighty, JoAnn; Smith, Philip
2014-03-01
Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) themore » exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.« less
Dynamic analysis of process reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Lawson, L.O.; Noel, S.D.
1995-06-01
The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process modelsmore » are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.« less
Continuous Probabilistic Modeling of Tracer Stone Dispersal in Upper Regime
NASA Astrophysics Data System (ADS)
Hernandez Moreira, R. R.; Viparelli, E.
2017-12-01
Morphodynamic models that specifically account for the non-uniformity of the bed material are generally based on some form of the active layer approximation. These models have proven to be useful tools in the study of transport, erosion and deposition of non-uniform bed material in the case of channel bed aggradation and degradation. However, when local spatial effects over short time scales compared to those characterizing the changes in mean bed elevation dominate the vertical sediment fluxes, as is the presence of bedforms, active layer models cannot capture key details of the sediment transport process. To overcome the limitations of active layer based models, Parker, Paola and Leclair (PPL) proposed a continuous probabilistic modeling frameworks in which the sediment exchange between the bedload transport and the mobile bed is described in terms of probability density functions of bed elevation, entrainment and deposition. Here we present the implementation of a modified version of the PPL modeling framework for the study of tracer stones dispsersal in upper regime bedload transport conditions (i.e. upper regime plane bed at the transition between dunes and antidunes, downstream migrating antidunes and upper regime plane bed with bedload transport in sheet flow mode) in which the probability functions are based on measured time series of bed elevation fluctuations. The extension to the more general case of mixtures of sediments differing in size is the future development of the proposed work.
Sorting it out: bedding particle size and nesting material processing method affect nest complexity.
Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N
2017-04-01
As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.
Improvement of tritium accountancy technology for ITER fuel cycle safety enhancement
NASA Astrophysics Data System (ADS)
O'hira, S.; Hayashi, T.; Nakamura, H.; Kobayashi, K.; Tadokoro, T.; Nakamura, H.; Itoh, T.; Yamanishi, T.; Kawamura, Y.; Iwai, Y.; Arita, T.; Maruyama, T.; Kakuta, T.; Konishi, S.; Enoeda, M.; Yamada, M.; Suzuki, T.; Nishi, M.; Nagashima, T.; Ohta, M.
2000-03-01
In order to improve the safe handling and control of tritium for the ITER fuel cycle, effective in situ tritium accounting methods have been developed at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute under one of the ITER-EDA R&D tasks. The remote and multilocation analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa analytical periods of 120 s. An in situ tritium inventory measurement by application of a `self-assaying' storage bed with 25 g tritium capacity could provide a measurement with the required detection limit of less than 1% and a design proof of a bed with 100 g tritium capacity.
Space station environmental control and life support systems test bed program - an overview
NASA Astrophysics Data System (ADS)
Behrend, Albert F.
As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space Station ECLSS Test Bed Program. The Space Station ECLSS Test Bed Program, which is managed by the NASA, is designed to parallel and to provide continuing support to the Space Station Program. The prime objective of this multiphase test bed program is to provide viable, mature, and enhancing technical options in time for Space Station implementation. To accomplish this objective, NASA is actively continuing the development and testing of critical components and engineering preprototype subsystems for urine processing, washwater recovery, water quality monitoring, carbon dioxide removal and reduction, and oxygen generation. As part of the ECLSS Test Bed Program, these regenerative subsystems and critical components are tested in a development laboratory to characterize subsystem performance and to identify areas in which further technical development is required. Proven concepts are then selected for development into prototype subsystems in which flight issues such as packaging and maintenance are addressed. These subsystems then are to be assembled as an integrated system and installed in an integrated systems test bed facility for extensive unmanned and manned testing.
A methodology for the comparative evaluation of alternative bioseparation technologies.
Tran, Richard; Zhou, Yuhong; Lacki, Karol M; Titchener-Hooker, Nigel J
2008-01-01
Advances in upstream technologies and growing commercial demand have led to cell culture processes of ever larger volumes and expressing at higher product titers. This has increased the burden on downstream processing. Concerns regarding the capacity limitations of packed-bed chromatography have led process engineers to begin investigating new bioseparation techniques that may be considered as "alternatives" to chromatography, and which could potentially offer higher processing capacities but at a lower cost. With the wide range of alternatives, which are currently available, each with their own strengths and inherent limitations, coupled with the time pressures associated with process development, the challenge for process engineers is to determine which technologies are most worth investigating. This article presents a methodology based on a multiattribute decision making (MADM) analysis approach, utilizing both quantitative and qualitative data, which can be used to determine the "industrial attractiveness" of bioseparation technologies, accounting for trade-offs between their strengths and weaknesses. By including packed-bed chromatography in the analysis as a reference point, it was possible to determine the alternatives, which show the most promise for use in large-scale manufacturing processes. The results of this analysis show that although the majority of alternative techniques offer certain advantages over conventional packed-bed chromatography, their attractiveness overall means that currently none of these technologies may be considered as viable alternatives to chromatography. The methodology introduced in this study may be used to gain significant quantitative insight as to the key areas in which improvements are required for each technique, and thus may be used as a tool to aid in further technological development.
Instant Grainification: Real-Time Grain-Size Analysis from Digital Images in the Field
NASA Astrophysics Data System (ADS)
Rubin, D. M.; Chezar, H.
2007-12-01
Over the past few years, digital cameras and underwater microscopes have been developed to collect in-situ images of sand-sized bed sediment, and software has been developed to measure grain size from those digital images (Chezar and Rubin, 2004; Rubin, 2004; Rubin et al., 2006). Until now, all image processing and grain- size analysis was done back in the office where images were uploaded from cameras and processed on desktop computers. Computer hardware has become small and rugged enough to process images in the field, which for the first time allows real-time grain-size analysis of sand-sized bed sediment. We present such a system consisting of weatherproof tablet computer, open source image-processing software (autocorrelation code of Rubin, 2004, running under Octave and Cygwin), and digital camera with macro lens. Chezar, H., and Rubin, D., 2004, Underwater microscope system: U.S. Patent and Trademark Office, patent number 6,680,795, January 20, 2004. Rubin, D.M., 2004, A simple autocorrelation algorithm for determining grain size from digital images of sediment: Journal of Sedimentary Research, v. 74, p. 160-165. Rubin, D.M., Chezar, H., Harney, J.N., Topping, D.J., Melis, T.S., and Sherwood, C.R., 2006, Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size: USGS Open-File Report 2006-1360.
Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang
2017-09-15
The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Metered oxygen supply aids treatment of domestic sewage
NASA Technical Reports Server (NTRS)
Weliky, N.; Hooper, T. J.; Silverman, H. P.
1972-01-01
Microbiological fixed-bed process was developed in which supplementary oxygen required by microbial species is supplied by electrochemical device. Rate of addition of oxygen to waste treatment process is controlled to maintain aerobic metabolism and prevent anaerobic metabolisms which produce odorous or toxic products.
NASA Astrophysics Data System (ADS)
Hu, Zhan; Lenting, Walther; van der Wal, Daphne; Bouma, Tjeerd
2015-04-01
Tidal flat morphology is continuously shaped by hydrodynamic force, resulting in highly dynamic bed elevations. The knowledge of short-term bed-level changes is important both for understanding sediment transport processes as well as for assessing critical ecological processes such as e.g. vegetation recruitment chances on tidal flats. Due to the labour involved, manual discontinuous measurements lack the ability to continuously monitor bed-elevation changes. Existing methods for automated continuous monitoring of bed-level changes lack vertical accuracy (e.g., Photo-Electronic Erosion Pin sensor and resistive rod) or limited in spatial application by using expensive technology (e.g., acoustic bed level sensors). A method provides sufficient accuracy with a reasonable cost is needed. In light of this, a high-accuracy sensor (2 mm) for continuously measuring short-term Surface-Elevation Dynamics (SED-sensor) was developed. This SED-sensor makes use of photovoltaic cells and operates stand-alone using internal power supply and data logging system. The unit cost and the labour in deployments is therefore reduced, which facilitates monitoring with a number of units. In this study, the performance of a group of SED-sensors is tested against data obtained with precise manual measurements using traditional Sediment Erosion Bars (SEB). An excellent agreement between the two methods was obtained, indicating the accuracy and precision of the SED-sensors. Furthermore, to demonstrate how the SED-sensors can be used for measuring short-term bed-level dynamics, two SED-sensors were deployed for 1 month at two sites with contrasting wave exposure conditions. Daily bed-level changes were obtained including a severe storm erosion event. The difference in observed bed-level dynamics at both sites was statistically explained by their different hydrodynamic conditions. Thus, the stand-alone SED-sensor can be applied to monitor sediment surface dynamics with high vertical and temporal resolutions, which provides opportunities to pinpoint morphological responses to various forces in a number of environments (e.g. tidal flats, beaches, rivers and dunes).
What controls channel form in steep mountain streams?
NASA Astrophysics Data System (ADS)
Palucis, M. C.; Lamb, M. P.
2017-07-01
Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.
NASA Technical Reports Server (NTRS)
Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini
2006-01-01
Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.
Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.
2008-01-01
The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
[Application of cryogenic stimulation in treatment of chronic wounds].
Vinnik, Iu S; Karapetian, G E; Iakimov, S V; Sychev, A G
2008-01-01
The authors have studied alterations occurring both in the ultrastructure of the cell matrix and in the microcirculatory bed of the chronic wound after local exposure to cryoagent. The up-to-date effective methods including laser Doppler flowmetry were used followed by correct statistical processing of the data obtained. The cryogenic stimulation of the wound was shown to result in considerably improved perfusion of the microcirculatory bed, epithelization and remodeling of the scar. It allowed transformation of a chronic process into acute and thus led to considerably accelerated process of regeneration. The developed method of cryogenic treatment of the chronic wound was used in 35 patients, allowed quicker healing of the chronic wounds and made ambulatory treatment of the patients 3 weeks shorter.
Virtual Design of a Four-Bed Molecular Sieve for Exploration
NASA Technical Reports Server (NTRS)
Giesy, T. J.; Coker, R. F.; O'Connor, B. F.; Knox, J. C.
2017-01-01
Aboard the International Space Station, CO2 is removed from the cabin atmosphere by a four-bed molecular sieve (4BMS) process called the Carbon Dioxide Removal Assembly (CDRA).1 This 4BMS process operates by passing the CO2-laden air through a desiccant bed to remove any humidity and then passing the dried air through a sorbent bed to remove the CO2. While one pair of beds is in use, the other pair is thermally regenerated to allow for continuous CO2 removal.
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Improving bed turnover time with a bed management system.
Tortorella, Frank; Ukanowicz, Donna; Douglas-Ntagha, Pamela; Ray, Robert; Triller, Maureen
2013-01-01
Efficient patient throughput requires a high degree of coordination and communication. Opportunities abound to improve the patient experience by eliminating waste from the process and improving communication among the multiple disciplines involved in facilitating patient flow. In this article, we demonstrate how an interdisciplinary team at a large tertiary cancer center implemented an electronic bed management system to improve the bed turnover component of the patient throughput process.
Fluidized-bed bioreactor process for the microbial solubiliztion of coal
Scott, Charles D.; Strandberg, Gerald W.
1989-01-01
A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.
Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST
Lane, Brandon; Moylan, Shawn; Whitenton, Eric; Ma, Li
2016-01-01
Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ thermographic measurements conducted at the National Institute of Standards and Technology (NIST) focusing on the melt pool region of a commercial L-PBF process. Multiple phenomena are observed including plasma plume and hot particle ejection from the melt region. The thermographic measurement process will be detailed with emphasis on the ‘measurability’ of observed phenomena and the sources of measurement uncertainty. Further discussion will relate these thermographic results to other efforts at NIST towards L-PBF process finite element simulation and development of in-situ sensing and control methodologies. PMID:28058036
Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.
Lane, Brandon; Moylan, Shawn; Whitenton, Eric; Ma, Li
2016-01-01
Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ thermographic measurements conducted at the National Institute of Standards and Technology (NIST) focusing on the melt pool region of a commercial L-PBF process. Multiple phenomena are observed including plasma plume and hot particle ejection from the melt region. The thermographic measurement process will be detailed with emphasis on the 'measurability' of observed phenomena and the sources of measurement uncertainty. Further discussion will relate these thermographic results to other efforts at NIST towards L-PBF process finite element simulation and development of in-situ sensing and control methodologies.
Effect of pulsation on black liquor gasification. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinn, B.T.; Jagoda, J.; Jeong, H.
1998-12-01
Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be usedmore » to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.« less
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir
2011-01-01
Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
NASA Technical Reports Server (NTRS)
Gradl, Paul; Barnett, Greg; Brandsmeier, Will; Greene, Sandy Elam; Protz, Chris
2016-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM) otherwise commonly referred to as additive manufacturing. The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for the GRCop-84 copper-alloy commensurate with powder bed additive manufacturing, evaluate bimetallic deposition and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. As a direct spin off of this program, NASA is working with industry partners to further develop the printing process for the GRCop-84 material in addition to the C-18150 (CuCrZr) material. To advance the process further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic additively manufactured chambers. A 1.2k sized thrust-chamber was designed and developed to compare the printing process of the GRCop-84 and C-18150 SLM materials. A series of similar MCC liners also completed development with an Inconel 625 jacket bonded to the GRcop-84 liner evaluating direct metal deposition (DMD) laser and arc-based techniques. This paper describes the design, development, manufacturing and testing of these combustion chambers and associated lessons learned throughout the design and development process.
Feasibility Study of the Geotextile Waste Filtration Unit.
2000-02-10
Treatment Module 3-32 Figure 3-20. THE SCHEMATIC OF THE MOVING BED BIOFILM REACTOR ( MBBR ) 3൪ Figure 4-1. The Original Distributed Concept for WFUs...Moving Bed Biofilm Reactor ( MBBR ) process appears to be one of the most feasible processes available to meet Force Provider liquid waste stream...Moving Bed Biofilm Reactor ( MBBR ) process was then examined.31 In this system, both activated sludge and fixed-film processes occur in a bioreactor
Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T
2011-04-18
Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test batches were used to examine the predictive ability of the model. Copyright © 2011 Elsevier B.V. All rights reserved.
Proceedings of the conference on Coal Feeding Systems
NASA Technical Reports Server (NTRS)
1977-01-01
Development of coal feed systems for coal gasification, fluidized bed combustion, and magnetohydrodynamic applications is discussed. Process operations experience, energy conversion efficiency, and environment effects are among the factors considered.
Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation
The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...
Sahoo, B K; Sudeep Kumara, K; Karunakara, N; Gaware, J J; Sapra, B K; Mayya, Y S
2017-06-01
Regulating the environmental discharge of 220 Rn (historically known as thoron) and its decay products from thorium processing facilities is important for protection of environment and general public living in the vicinities. Activated charcoal provides an effective solution to this problem because of its high adsorption capacity to gaseous element like radon. In order to design and develop a charcoal based Thoron Mitigation System, a mathematical model has been developed in the present work for studying the 220 Rn transport and adsorption in a flow through charcoal bed and estimating the 220 Rn mitigation factor (MF) as a function of system and operating parameters. The model accounts for inter- and intra-grain diffusion, advection, radioactive decay and adsorption processes. Also, the effects of large void fluctuation and wall channeling on the mitigation factor have been included through a statistical model. Closed form solution has been provided for the MF in terms of adsorption coefficient, system dimensions, grain size, flow rate and void fluctuation exponent. It is shown that the delay effects due to intra grain diffusion plays a significant role thereby rendering external equilibrium assumptions unsuitable. Also, the application of the statistical model clearly demonstrates the transition from the exponential MF to a power-law form and shows how the occurrence of channels with low probability can lower mitigation factor by several orders of magnitude. As a part of aiding design, the model is further extended to optimise the bed dimensions in respect of pressure drop and MF. The application of the results for the design and development of a practically useful charcoal bed is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Catalyst Development for Hydrogen Peroxide Rocket Engines
NASA Technical Reports Server (NTRS)
Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.
1999-01-01
The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.
Results of Microbiologic Investigations of Water-Development Works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durcheva, V. N., E-mail: durchevavn@vniig.ru; Izmailova, R. A., E-mail: izmailovara@vniig.ru; Legina, E. E., E-mail: leginaee@vniig.ru
2015-03-15
Results are presented for multiyear field investigations of the effect of microbe colonies on components of water-development works. Concrete, metal, and geologic rocks were studied as component parts of the bed of concrete dams functioning in various climatic zones. The participation of lithotrophic bacteria in processes involving corrosion failure of the metal, concrete, and rock beds of dams is established, and causes of intensification of microbe activity are exposed. The need for monitoring the composition and number of microorganisms-biodestructors is substantiated in the water of a reservoir and observation wells, as well as on the surfaces of structural components ofmore » water-development works for monitoring of the safety of the concrete dams.« less
Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang
2013-01-01
Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Main object of this quality risk management (QRM) study is to provide a sophisticated "robust and rugged" Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. THIS STUDY IS PRINCIPALLY FOCUSING ON THOROUGH MECHANISTIC UNDERSTANDING OF THE FBP BY WHICH IT IS DEVELOPED AND SCALED UP WITH A KNOWLEDGE OF THE CRITICAL RISKS INVOLVED IN MANUFACTURING PROCESS ANALYZED BY RISK ASSESSMENT TOOLS LIKE: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale.
Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang
2013-01-01
Introduction: Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Materials and Methods: Main object of this quality risk management (QRM) study is to provide a sophisticated “robust and rugged” Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. Results and Conclusion: This study is principally focusing on thorough mechanistic understanding of the FBP by which it is developed and scaled up with a knowledge of the critical risks involved in manufacturing process analyzed by risk assessment tools like: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale. PMID:23799202
The role of bio-physical cohesive substrates on sediment winnowing and bedform development
NASA Astrophysics Data System (ADS)
Ye, Leiping; Parsons, Daniel; Manning, Andrew
2017-04-01
Existing sediment transport and bedform size predictions for natural open-channel flows in many environments are seriously impeded by a lack of process-based knowledge concerning the dynamics of complex bed sediment mixtures comprising cohesionless sand and biologically-active cohesive muds. A series of flume experiments (14 experimental runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substance) are combined with a detailed estuarine field survey (Dee estuary, NW England) to investigate the development of bedform morphologies and characteristics of suspended sediment over bio-physical cohesive substrates. The experimental results indicate that winnowing and sediment sorting can occur pervasively in bio-physical cohesive sediment - flow systems. Importantly however, the evolution of the bed and bedform dynamics, and hence turbulence production, is significantly reduced as bed substrate cohesivity increases. The estuarine subtidal zone survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed plays a significant role in controlling the interactions between bed substrate and sediment suspension, deposition and bedform generation. The work will be presented here concludes by outlining the need to extend and revisit the effects of cohesivity in morphodynamic systems and the sets of parameters presently used in numerical modelling, particularly in the context of the impact of climate change on estuarine and coastal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoh, K.; Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka; Kubo, K.
2015-03-15
Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packedmore » columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)« less
Virtual Design of a 4-Bed Molecular Sieve for Exploration
NASA Technical Reports Server (NTRS)
Giesy, Timothy J.; Coker, Robert F.; O'Connor, Brian F.; Knox, James C.
2017-01-01
Simulations of six new 4-Bed Molecular Sieve configurations have been performed using a COMSOL (COMSOL Multiphysics - commercial software) model. The preliminary results show that reductions in desiccant bed size and sorbent bed size when compared to the International Space Station configuration are feasible while still yielding a process that handles at least 4.0 kilograms a day CO2. The results also show that changes to the CO2 sorbent are likewise feasible. Decreasing the bed sizes was found to have very little negative effect on the adsorption process; breakthrough of CO2 in the sorbent bed was observed for two of the configurations, but a small degree of CO2 breakthrough is acceptable, and water breakthrough in the desiccant beds was not observed. Both configurations for which CO2 breakthrough was observed still yield relatively high CO2 efficiency, and future investigations will focus on bed size in order to find the optimum configuration.
Virtual Design of a 4-Bed Molecular Sieve for Exploration
NASA Technical Reports Server (NTRS)
Giesy, Timothy J.; Coker, Robert F.; O'Connor, Brian F.; Knox, James C.
2017-01-01
Simulations of six new 4-Bed Molecular Sieve configurations have been performed using a COMSOL model. The preliminary results show that reductions in desiccant bed size and sorbent bed size when compared to the International Space Station configuration are feasible while still yielding a process that handles at least 4.0 kg/day CO2. The results also show that changes to the CO2 sorbent are likewise feasible. Decreasing the bed sizes was found to have very little negative effect on the adsorption process; breakthrough of CO2 in the sorbent bed was observed for two of the configurations, but water breakthrough in the desiccant beds was not observed. Nevertheless, both configurations for which CO2 breakthrough was observed still yield relatively high CO2 efficiency, and future investigations will focus on bed size in order to find the optimum configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baucom, R.M.; Marchello, J.M.
Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.
Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.
These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for modelmore » and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.« less
A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Tan, J. L.; Tang, C.; Wong, C. H.
2018-06-01
Selective laser melting (SLM) is a powder-bed additive manufacturing process that uses laser to melt powders, layer by layer to generate a functional 3D part. There are many different parameters, such as laser power, scanning speed, and layer thickness, which play a role in determining the quality of the printed part. These parameters contribute to the energy density applied on the powder bed. Defects arise when insufficient or excess energy density is applied. A common defect in these cases is the presence of porosity. This paper studies the formation of porosities when inappropriate energy densities are used. A computational model was developed to simulate the melting and solidification process of SS316L powders in the SLM process. Three different sets of process parameters were used to produce 800-µm-long melt tracks, and the characteristics of the porosities were analyzed. It was found that when low energy density parameters were used, the pores were found to be irregular in shapes and were located near the top surface of the powder bed. However, when high energy density parameters were used, the pores were either elliptical or spherical in shapes and were usually located near the bottom of the keyholes.
Li, Zhongwei; Liu, Xingjian; Wen, Shifeng; He, Piyao; Zhong, Kai; Wei, Qingsong; Shi, Yusheng; Liu, Sheng
2018-01-01
Lack of monitoring of the in situ process signatures is one of the challenges that has been restricting the improvement of Powder-Bed-Fusion Additive Manufacturing (PBF AM). Among various process signatures, the monitoring of the geometric signatures is of high importance. This paper presents the use of vision sensing methods as a non-destructive in situ 3D measurement technique to monitor two main categories of geometric signatures: 3D surface topography and 3D contour data of the fusion area. To increase the efficiency and accuracy, an enhanced phase measuring profilometry (EPMP) is proposed to monitor the 3D surface topography of the powder bed and the fusion area reliably and rapidly. A slice model assisted contour detection method is developed to extract the contours of fusion area. The performance of the techniques is demonstrated with some selected measurements. Experimental results indicate that the proposed method can reveal irregularities caused by various defects and inspect the contour accuracy and surface quality. It holds the potential to be a powerful in situ 3D monitoring tool for manufacturing process optimization, close-loop control, and data visualization. PMID:29649171
Removal of heavy metals from acid mine drainage using chicken eggshells in column mode.
Zhang, Ting; Tu, Zhihong; Lu, Guining; Duan, Xingchun; Yi, Xiaoyun; Guo, Chuling; Dang, Zhi
2017-03-01
Chicken eggshells (ES) as alkaline sorbent were immobilized in a fixed bed to remove typical heavy metals from acid mine drainage (AMD). The obtained breakthrough curves showed that the breakthrough time increased with increasing bed height, but decreased with increasing flow rate and increasing particle size. The Thomas model and bed depth service time model could accurately predict the bed dynamic behavior. At a bed height of 10 cm, a flow rate of 10 mL/min, and with ES particle sizes of 0.18-0.425 mm, for a multi-component heavy metal solution containing Cd 2+ , Pb 2+ and Cu 2+ , the ES capacities were found to be 1.57, 146.44 and 387.51 mg/g, respectively. The acidity of AMD effluent clearly decreased. The ES fixed-bed showed the highest removal efficiency for Pb with a better adsorption potential. Because of the high concentration in AMD and high removal efficiency in ES fixed-bed of iron ions, iron floccules (Fe 2 (OH) 2 CO 3 ) formed and obstructed the bed to develop the overall effectiveness. The removal process was dominated by precipitation under the alkaline reaction of ES, and the co-precipitation of heavy metals with iron ions. The findings of this work will aid in guiding and optimizing pilot-scale application of ES to AMD treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
A quality by design study applied to an industrial pharmaceutical fluid bed granulation.
Lourenço, Vera; Lochmann, Dirk; Reich, Gabriele; Menezes, José C; Herdling, Thorsten; Schewitz, Jens
2012-06-01
The pharmaceutical industry is encouraged within Quality by Design (QbD) to apply science-based manufacturing principles to assure quality not only of new but also of existing processes. This paper presents how QbD principles can be applied to an existing industrial pharmaceutical fluid bed granulation (FBG) process. A three-step approach is presented as follows: (1) implementation of Process Analytical Technology (PAT) monitoring tools at the industrial scale process, combined with multivariate data analysis (MVDA) of process and PAT data to increase the process knowledge; (2) execution of scaled-down designed experiments at a pilot scale, with adequate PAT monitoring tools, to investigate the process response to intended changes in Critical Process Parameters (CPPs); and finally (3) the definition of a process Design Space (DS) linking CPPs to Critical to Quality Attributes (CQAs), within which product quality is ensured by design, and after scale-up enabling its use at the industrial process scale. The proposed approach was developed for an existing industrial process. Through enhanced process knowledge established a significant reduction in product CQAs, variability already within quality specifications ranges was achieved by a better choice of CPPs values. The results of such step-wise development and implementation are described. Copyright © 2012 Elsevier B.V. All rights reserved.
The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-01-01
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs. PMID:28383033
Evaluating two process scale chromatography column header designs using CFD.
Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris
2014-01-01
Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis
2012-11-01
We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.
Beristain Guevara, C I; Vázquez Luna, A; Cortés García, R
1990-03-01
A whole flour potato obtention process was developed which could be used in semirural areas. The potato without peeling was previously washed and ground adding 100 p.p.m. of sodium bisulphite, then it was dehydrated in a cabinet tray dryer with an air flow circulation set at 70 degrees C using three different deep beds (10, 20 and 25 mm). Finally it was milled, sieved and packed in polyethylene Kraft bags and stored for 10 months at room temperature. Results showed that drying time increased less rapidly when the bed depth was increased, so that the overall dryer productivity increased when increasing bed depth. Nevertheless, a better-quality product was obtained, as well as a greater process efficiency when a 10 mm bed depth was used. The whole flour had a particle size of 80 mesh and a moisture and protein content of 7 and 6.7%, respectively. No brown color formation or mold growth occurred during storage. "Tamales de dulce" and chocolate cookies were made with the flour obtained. These were subjected to an acceptability test at community level, and the test revealed that for both products, such acceptability was higher than 90%.
Fluidized bed gasification of industrial solid recovered fuels.
Arena, Umberto; Di Gregorio, Fabrizio
2016-04-01
The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Updraft Fixed Bed Gasification Aspen Plus Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
2007-09-27
The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.
Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A
2017-08-07
A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.
Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.
2008-01-01
Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Devries, Paul; Burges, Stephen J.; Daigneau, Julie; Stearns, Daniel
2001-11-01
A relatively inexpensive prototype monitor was designed and developed to record temporal variation in scour depth and was field-tested in a gravel bed stream. The device consists of plastic practice golf balls that are fitted internally with ring magnets and strung on a two-conductor cable enclosing a small reed switch. The balls are installed and oriented near-vertically in the streambed. As each ball is disturbed and released, it slides along the cable past the reed switch, and the time of circuit closure caused by passage of the magnet is recorded by a data logger. The device can be applied in arrays that span large areas of the streambed, including in wide channels that are inaccessible during a flood. Data obtained from 19 devices installed in an aggrading site described scouring processes in a pool-riffle interface during a bed load transport event. Substantial bed excavation occurred in the region of the pool edge during the rising stage, indicating existence of a local, temporally varying imbalance in bed load transport rate. Bed disturbance in the rest of the site prior to aggradation was limited to the surface and immediate subpavement layer.
Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter
Badger, Phillip C.; Dunn, Jr., Kenneth J.
2015-09-01
A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.
NASA Astrophysics Data System (ADS)
Boravelli, Sai Chandra Teja
This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.
Evaluation of selected chemical processes for production of low-cost silicon, phase 3
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.; Seifert, D. A.
1981-01-01
A Process Development Unit (PDU), which consisted of the four major units of the process, was designed, installed, and experimentally operated. The PDU was sized to 50MT/Yr. The deposition took place in a fluidized bed reactor. As a consequences of the experiments, improvements in the design an operation of these units were undertaken and their experimental limitations were partially established. A parallel program of experimental work demonstrated that Zinc can be vaporized for introduction into the fluidized bed reactor, by direct induction-coupled r.f. energy. Residual zinc in the product can be removed by heat treatment below the melting point of silicon. Current efficiencies of 94 percent and above, and power efficiencies around 40 percent are achievable in the laboratory-scale electrolysis of ZnCl2.
NASA Astrophysics Data System (ADS)
Javernick, Luke; Redolfi, Marco; Bertoldi, Walter
2018-05-01
New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.
NASA Astrophysics Data System (ADS)
Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.
2016-12-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.
A multiarchitecture parallel-processing development environment
NASA Technical Reports Server (NTRS)
Townsend, Scott; Blech, Richard; Cole, Gary
1993-01-01
A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems.
SAVA 3: A testbed for integration and control of visual processes
NASA Technical Reports Server (NTRS)
Crowley, James L.; Christensen, Henrik
1994-01-01
The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.
NASA Technical Reports Server (NTRS)
Rhodes, Bradley; Meck, Janice
2005-01-01
NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation strategy, address Project deliverables, schedules and provide a status of bed rest campaigns presently underway.
A Hydrodynamic Characteristic of a Dual Fluidized Bed Gasification
NASA Astrophysics Data System (ADS)
Sung, Yeon Kyung; Song, Jae Hun; Bang, Byung Ryeul; Yu, Tae U.; Lee, Uen Do
A cold model dual fluidized bed (DFB) reactor, consisting of two parallel interconnected bubbling and fast fluidized beds, was designed for developing an auto-thermal biomass gasifier. The combustor of this system burns the rest char of the gasification process and provides heat to the gasifier by circulating solids inventory. To find an optimal mixing and circulation of heavy solid inventory and light biomass and char materials, we investigate two types of DFB reactors which have different configuration of distributor and way-out location of the solid inventory and char materials in the gasifier. To determine appropriate operating conditions, we measured minimum fluidization velocity, solid circulation rate, axial solid holdup and gas bypassing between the lower loop seal and the gasifier.
Innovations in coating technology.
Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut
2008-01-01
Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review.
Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, X.; Chen, Q.; Yang, Y.
1996-12-31
Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity ofmore » gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.« less
Xiu, G H; Jiang, L; Li, P
2001-07-05
A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Chen, D.; Zhang, Y.
2008-12-01
The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.
Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed
NASA Astrophysics Data System (ADS)
Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng
2018-02-01
The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.
Nelson, Paul A.; Horowitz, Jeffrey S.
1983-01-01
A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.
Heat and mass transfer within partially wetted packed fractured granular beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, E.B.; Karim, G.A.
1996-10-01
Fractured granular beds heated by hot gaseous streams have been the subject of numerous investigations in recent years due to their importance in many applications such as in in-situ and enhanced oil recovery. In a previous paper (Khalil and Karim, 1995) the results of an investigation of some aspects of the transport processes that occur within dry granular beds were reported. The present contribution examines similar beds when partially wetted. The granular beds were cylindrical in shape containing an axial central small diameter circular channel representing a fracture which can have different permeability from that of the main bed. Itmore » is shown that the mass flow rate of the hot gases, the relative permeability of the bed and the central channel as well as the initial liquid content of the bed control the drying rate. The results of an analytical model formulated to simulate the drying process in unobstructed channel beds showed good agreement with experimental results at low temperatures, however deviations occurred as the drying proceeds at higher temperatures.« less
USDA-ARS?s Scientific Manuscript database
A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measure...
NASA Astrophysics Data System (ADS)
Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan
2016-05-01
The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.
Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin
Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.
2010-01-01
The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.
Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun
2014-01-01
Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prudich, M.E.; Appell, K.W.; McKenna, J.D.
ETS, Inc., a pollution consulting firm with headquarters in Roanoke, Virginia, has developed a dry, limestone-based flue gas desulfurization (FGD) system. This SO{sub 2} removal system, called Limestone Emission Control (LEC), can be designed for installation on either new or existing coal-fired boilers. In the LEC process, the SO{sub 2} in the flue gas reacts with wetted granular limestone that is contained in a moving bed. A surface layer of principally calcium sulfate (CaSO{sub 4}) is formed on the limestone. Periodic removal of this surface layer by mechanical agitation allows high utilization of the limestone granules. A nominal 5,000 acfmmore » LEC pilot plant has been designed, fabricated and installed on the slipstream of a 70,000 pph stoker boiler providing steam to Ohio University`s Athens, Ohio campus. A total of over 90 experimental trials have been performed using the pilot-scale moving-bed LEC dry scrubber as a part of this research project with run times ranging up to a high of 125 hours. SO{sub 2} removal efficiencies as high as 99.9% were achievable for all experimental conditions studied during which sufficient humidification was added to the LEC bed. The LEC process and conventional limestone scrubbing have been compared on an equatable basis using flue gas conditions that would be expected at the outlet of the electrostatic precipitator (ESP) of a 500 MW coal-fired power plant. The LEC was found to have a definite economic advantage in both direct capital costs and operating costs. Based on the success and findings of the present project, the next step in LEC process development will be a full-scale commercial demonstration unit.« less
Measurements of near-bed intra-wave sediment entrainment above vortex ripples
NASA Astrophysics Data System (ADS)
Thorne, Peter D.; Davies, Alan G.; Williams, Jon J.
2003-10-01
In general, descriptions of suspended sediment transport beneath surface waves are based on the turbulent diffusion concept. However, it is recognised that this approach is questionable for the suspension of sediment when the seabed is rippled. In this case, at least if the ripples are sufficiently steep, the entrainment process is likely to be well organised, and associated with vortex formation and shedding from the ripples. To investigate the entrainment process above ripples, a study was carried out in a large-scale wave flume facility. Utilising acoustic techniques, visualisations of the intra-wave sediment entrainment above vortex ripples have been generated. The observations provide a detailed description of entrainment, which is interpreted here in relation to the process of vortex formation and shedding. It is anticipated that such measurements will contribute to the development of improved physical process models of sediment transport in the rippled bed regime.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2013-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier
Grindley, T.
1988-04-05
A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.
Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier
Grindley, Thomas
1989-01-01
A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.
Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco
2016-11-01
Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cognitive and emotional functioning in binge-eating disorder: A systematic review.
Kittel, Rebekka; Brauhardt, Anne; Hilbert, Anja
2015-09-01
Binge-eating disorder (BED) is characterized by recurrent episodes of binge eating and is associated with eating disorder and general psychopathology and overweight/obesity. Deficits in cognitive and emotional functioning for eating disorders or obesity have been reported. However, a systematic review on cognitive and emotional functioning for individuals with BED is lacking. A systematic literature search was conducted across three databases (Medline, PubMed, and PsycINFO). Overall, n = 57 studies were included in the present review. Regarding cognitive functioning (CoF), individuals with BED consistently demonstrated higher information processing biases compared to obese and normal-weight controls in the context of disorder-related stimuli (i.e., food and body cues), whereas CoF in the context of neutral stimuli appeared to be less affected. Thus, results suggest disorder-related rather than general difficulties in CoF in BED. With respect to emotional functioning (EmF), individuals with BED reported difficulties similar to individuals with other eating disorders, with a tendency to show less severe difficulties in some domains. In addition, individuals with BED reported greater emotional deficits when compared to obese and normal-weight controls. Findings suggest general difficulties in EmF in BED. Thus far, however, investigations of EmF in disorder-relevant situations are lacking. Overall, the cross-sectional findings indicate BED to be associated with difficulties in CoF and EmF. Future research should determine the nature of these difficulties, in regards to general and disorder-related stimuli, and consider interactions of both domains to foster the development and improvement of appropriate interventions in BED. © 2015 Wiley Periodicals, Inc.
Host-Seeking Behavior in the Bed Bug, Cimex lectularius.
Suchy, James T; Lewis, Vernard R
2011-03-07
The reemergence of the bed bug, Cimex lectularius Linnaeus, has recently spawned a frenzy of public, media, and academic attention. In response to the growing rate of infestation, considerable work has been focused on identifying the various host cues utilized by the bed bug in search of a meal. Most of these behavioral studies examine movement within a confined environment, such as a Petri dish. This has prevented a more complete understanding of the insect's host-seeking process. This work describes a novel method for studying host-seeking behavior, using various movement parameters, in a time-lapse photography system. With the use of human breath as an attractant, we qualitatively and quantitatively assessed how bed bugs navigate their environment between its harborage and the host. Levels of behavioral activity varied dramatically between bed bugs in the presence and absence of host odor. Bed bugs demonstrated not simply activation, but attraction to the chemical components of breath. Localized, stop-start host-seeking behavior or alternating periods of movement and pause were observed among bed bugs placed in the environment void of human breath, while those exposed to human breath demonstrated long range, stop-start host-seeking behavior. A more comprehensive understanding of bed bug host-seeking can lead to the development of traps and monitors that account for unique subtleties in their behavior. The time-lapse photography system uses a large, artificial environment and could also be employed to study other aspects of the insect's behavioral patterns.
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Marchello, Joseph M.
1990-01-01
Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.
NASA Technical Reports Server (NTRS)
1981-01-01
The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.
Dual fluidized bed design for the fast pyrolysis of biomass
USDA-ARS?s Scientific Manuscript database
A mechanism for the transport of solids between fluidised beds in dual fluidised bed systems for the fast pyrolysis of biomass process was selected. This mechanism makes use of an overflow standpipe to transport solids from the fluidised bed used for the combustion reactions to a second fluidised be...
1977-08-01
TR~ANSIENT COMBUSTION PROCESSES IN MOBILE GRANULAR PROPELLANT BEDS Prqprid by The Pennsylvania Stats UnIversiV 197 Dopartme of Nmchanica! EngwineerIng...the ignition and flame spreadinb prc-eases by assuming that the granular propillents are fixed in space; and 3) modeling cf mobile granular beds so...through an aggrtgate of mobile "’actin&, partic~vi. The diffevewsoa Wi derivation of conservation equa~tions betvewu our approacit md this -f a Aivorain
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.
2017-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
NASA Technical Reports Server (NTRS)
Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian
2013-01-01
To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.
Materials Characterization of Additively Manufactured Components for Rocket Propulsion
NASA Technical Reports Server (NTRS)
Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary
2015-01-01
To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.
Material Characterization of Additively Manufactured Components for Rocket Propulsion
NASA Technical Reports Server (NTRS)
Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary
2015-01-01
To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.
An analysis of bedload and suspended load interactions
NASA Astrophysics Data System (ADS)
Recking, alain; Navratil, Oldrich
2013-04-01
Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to standard convection diffusion equations.
Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping
NASA Astrophysics Data System (ADS)
Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen
We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Lance Awender; Brandvold, Timothy A.
Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed throughmore » the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.« less
Real-time monitoring of thermodynamic microenvironment in a pan coater.
Pandey, Preetanshu; Bindra, Dilbir S
2013-02-01
The current study demonstrates the use of tablet-size data logging devices (PyroButtons) to quantify the microenvironment experienced by tablets during pan coating process. PyroButtons were fixed at the inlet and exhaust plenums, and were also placed to freely move with the tablets. The effects of process parameters (spray rate and inlet-air humidity) on the thermodynamic conditions inside the pan coater were studied. It was shown that the same exhaust temperature (a parameter most commonly monitored and controlled during film coating) can be attained with very different tablet-bed conditions. The tablet-bed conditions were found to be more sensitive to the changes in spray rate as compared with the inlet-air humidity. Both spray rate and inlet-air humidity were shown to have an effect on the number of tablet defects (loss of logo definition), and a good correlation between number of tablet defects and tablet-bed humidity was observed. The ability to quantify the thermodynamic microenvironment experienced by the tablets during coating and be able to correlate that to macroscopic tablet defects can be an invaluable tool that can help to establish a process design space during product development. Copyright © 2012 Wiley Periodicals, Inc.
MDI Exposure for Spray-On Truck Bed Lining.
Lofgren, Don J; Walley, Terry L; Peters, Phillip M; Weis, Marty L
2003-10-01
Worker exposure to MDI (methylenediphenyl isocyanate) in the sprayed-on truck bed lining industry was assessed by examining Washington State OSHA inspection files and industrial insurance records. The industry uses MDI to form a protective urethane coating on pick-up truck beds. The lining is applied by a worker using a handheld spray gun with application equipment at temperatures and pressures specified by the urethane supplier. Inspections with MDI sampling were initially identified by searching the agency's laboratory database and were further screened for the targeted process. Data for 13 employers was found and extracted from the inspection records. All were small companies with only 1 to 2 workers exposed to MDI; 10 of the 13 employers had started the bed lining service within the last 4 years. The process was found in truck bed lining specialty shops as well as in other truck-related businesses. Six different urethane products were used with reported MDI monomer concentrations of up to 75 percent along with varying concentrations of MDI pre-polymers and other reactants and solvents. Sampling for MDI by inspectors found 7 worksites with worker exposure in excess of the state and OSHA ceiling limit of 0.200 mg/M(3). Deficiencies in respirator programs and engineering controls for MDI were cited. A review of the industrial insurance records found a total of five MDI-related claims at 4 inspected worksites, two for new-onset asthma. It was concluded that workers in the urethane sprayed-on truck bed lining industry are at an increased risk of developing illnesses associated with isocyanate exposure. Interventions are needed to further assess the hazard as well as motivate and assist franchisers, distributors, and retailers to implement effective engineering controls and respiratory protection programs in this nationally emerging small employer industry.
Development of a multimedia CD-ROM on telemedicine and teleradiology
NASA Astrophysics Data System (ADS)
Schnur, Mark T.; Williamson, Morgan P.; Goeringer, Fred; Zimnik, Paul; Linn, Reid; Suitor, Charles T.; Rocca, Mitra A.; Strother, Thomas
1996-04-01
The Department of Defense Telemedicine Test Bed produced a CD-ROM including information on telemedicine, teleradiology and military medical advanced technology projects. The CD-ROM was produced using media from the Telemedicine Test Bed World Wide Web site and academic papers and presentations. Apple Media Tools software was used to produce the interactive program and the authoring was done on a high speed Apple Macintosh Power PC computer. The process took roughly 100 hours to author 50 Mb of data into 200 frames of interactive material. Future versions of the Telemedicine CD-ROM are in progress which will include much more material to take advantage of the 650 Mb available on a compact disk. This paper graphically depicts and explains the authoring process.
Woolley, Thomas E; Belmonte-Beitia, Juan; Calvo, Gabriel F; Hopewell, John W; Gaffney, Eamonn A; Jones, Bleddyn
2018-06-01
To estimate, from experimental data, the retreatment radiation 'tolerances' of the spinal cord at different times after initial treatment. A model was developed to show the relationship between the biological effective doses (BEDs) for two separate courses of treatment with the BED of each course being expressed as a percentage of the designated 'retreatment tolerance' BED value, denoted [Formula: see text] and [Formula: see text]. The primate data of Ang et al. ( 2001 ) were used to determine the fitted parameters. However, based on rodent data, recovery was assumed to commence 70 days after the first course was complete, and with a non-linear relationship to the magnitude of the initial BED (BED init ). The model, taking into account the above processes, provides estimates of the retreatment tolerance dose after different times. Extrapolations from the experimental data can provide conservative estimates for the clinic, with a lower acceptable myelopathy incidence. Care must be taken to convert the predicted [Formula: see text] value into a formal BED value and then a practical dose fractionation schedule. Used with caution, the proposed model allows estimations of retreatment doses with elapsed times ranging from 70 days up to three years after the initial course of treatment.
NASA Astrophysics Data System (ADS)
Straub, K. M.; Ganti, V. K.; Paola, C.; Foufoula-Georgiou, E.
2010-12-01
Stratigraphy preserved in alluvial basins houses the most complete record of information necessary to reconstruct past environmental conditions. Indeed, the character of the sedimentary record is inextricably related to the surface processes that formed it. In this presentation we explore how the signals of surface processes are recorded in stratigraphy through the use of physical and numerical experiments. We focus on linking surface processes to stratigraphy in 1D by quantifying the probability distributions of processes that govern the evolution of depositional systems to the probability distribution of preserved bed thicknesses. In this study we define a bed as a package of sediment bounded above and below by erosional surfaces. In a companion presentation we document heavy-tailed statistics of erosion and deposition from high-resolution temporal elevation data recorded during a controlled physical experiment. However, the heavy tails in the magnitudes of erosional and depositional events are not preserved in the experimental stratigraphy. Similar to many bed thickness distributions reported in field studies we find that an exponential distribution adequately describes the thicknesses of beds preserved in our experiment. We explore the generation of exponential bed thickness distributions from heavy-tailed surface statistics using 1D numerical models. These models indicate that when the full distribution of elevation fluctuations (both erosional and depositional events) is symmetrical, the resulting distribution of bed thicknesses is exponential in form. Finally, we illustrate that a predictable relationship exists between the coefficient of variation of surface elevation fluctuations and the scale-parameter of the resulting exponential distribution of bed thicknesses.
Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio
2006-01-01
Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in the biofilter throughout the treatment. Conclusion The silica-bead packed bed biofilm reactor developed and characterized in this study was able to significantly decontaminate anaerobically digested OMWs. Therefore, the application of an integrated anaerobic-aerobic process resulted in an improved system for valorization and decontamination of OMWs. PMID:16595023
Evaluation of INL Supplied MOOSE/OSPREY Model: Modeling Water Adsorption on Type 3A Molecular Sieve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pompilio, L. M.; DePaoli, D. W.; Spencer, B. B.
The purpose of this study was to evaluate Idaho National Lab’s Multiphysics Object-Oriented Simulation Environment (MOOSE) software in modeling the adsorption of water onto type 3A molecular sieve (3AMS). MOOSE can be thought-of as a computing framework within which applications modeling specific coupled-phenomena can be developed and run. The application titled Off-gas SeParation and REcoverY (OSPREY) has been developed to model gas sorption in packed columns. The sorbate breakthrough curve calculated by MOOSE/OSPREY was compared to results previously obtained in the deep bed hydration tests conducted at Oak Ridge National Laboratory. The coding framework permits selection of various options, whenmore » they exist, for modeling a process. For example, the OSPREY module includes options to model the adsorption equilibrium with a Langmuir model or a generalized statistical thermodynamic adsorption (GSTA) model. The vapor solid equilibria and the operating conditions of the process (e.g., gas phase concentration) are required to calculate the concentration gradient driving the mass transfer between phases. Both the Langmuir and GSTA models were tested in this evaluation. Input variables were either known from experimental conditions, or were available (e.g., density) or were estimated (e.g., thermal conductivity of sorbent) from the literature. Variables were considered independent of time, i.e., rather than having a mass transfer coefficient that varied with time or position in the bed, the parameter was set to remain constant. The calculated results did not coincide with data from laboratory tests. The model accurately estimated the number of bed volumes processed for the given operating parameters, but breakthrough times were not accurately predicted, varying 50% or more from the data. The shape of the breakthrough curves also differed from the experimental data, indicating a much wider sorption band. Model modifications are needed to improve its utility and predictive capability. Recommended improvements include: greater flexibility for input of mass transfer parameters, time-variable gas inlet concentration, direct output of loading and temperature profiles along the bed, and capability to conduct simulations of beds in series.« less
Fluidization quality analyzer for fluidized beds
Daw, C. Stuart; Hawk, James A.
1995-01-01
A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.
Fluidization quality analyzer for fluidized beds
Daw, C.S.; Hawk, J.A.
1995-07-25
A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.
Assessment of Service Life for Regenerative ECLSS Resin Beds
NASA Technical Reports Server (NTRS)
Cloud, Dale L.; Keilich, Maria C.; Polis, Peter C.; Yanczura, Stephen J.
2013-01-01
The International Space Station (ISS) Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) manage and process water at various levels of cleanliness for multiple purposes. The effluent of theWPA and the influent of the OGA require water at very high levels of purity. The bulk of the water purification that occurs in both systems is performed by consumable activated carbon and ion exchange resin beds. Replacement beds must be available on orbit in order to continue the ISS critical processes of water purification and oxygen generation. Various hurdles exist in order to ensure viable spare resin beds. These include the characteristics of resin beds such as: storage environment, shelf life requirements, microbial growth, and variations in the levels and species of contaminants the beds are required to remove. Careful consideration has been given to match water models, bed capacities and spares traffic models to ensure that spares are always viable. The results of these studies and considerations, in particular, how shelf life requirements affect resin bed life management, are documented in this paper.
Physical environment virtualization for human activities recognition
NASA Astrophysics Data System (ADS)
Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2015-05-01
Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.
Optimization of enhanced coal-bed methane recovery using numerical simulation
NASA Astrophysics Data System (ADS)
Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.
2015-02-01
Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.
Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace
NASA Astrophysics Data System (ADS)
Karim, Md. Rezwanul; Naser, Jamal
2017-06-01
Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.
["Tied down"--the process of becoming bedridden through gradual local confinement].
Zegelin, Angelika
2005-10-01
To be bedridden is a common phenomenon in nursing. However, there is no solid base of knowledge on reasons, types, development of and coping with this situation. The concept of being bedridden is applied in an arbitrary manner and the state of being bedridden is far from being clearly defined. A literature review revealed that only pathophysiological effects of this state are sufficiently explained. The aim of this study was to gain knowledge of the development of being confined to bed. Thirty-two interviews with elderly, bedridden people (nineteen women, thirteen men) were conducted. They were asked about their perspective on and their experience of the development of being confined to bed. Half of the interviewees lived in a nursing home, the others were cared for at home. Data collection and analysis were performed by using a Grounded Theory approach as developed by Strauss and Corbin. "Gradual local fixation" was identified as the core category. Becoming bedridden is a slow process by which the person is increasingly confined to one location. This development is related to an increasing need for support and to negative consequences such as a pathology of immobility, narrowing of interests, and loss of time. These consequences again are responsible for a downward spiral development. This study reveals phases of development and a range of factors influencing them. Many of these factors arise from the person and his/her interactional behaviour in the circumstances, other influences are structural factors such as external pressure caused by time constraints of professional nursing services or unfavourable arrangements of furniture. A lot of factors of being confined to bed are changeable. Long periods of being bedridden can be prevented in many cases, if early warning signs are being recognized and preventive measures are taken in time.
Characterization of solid fuels at pressurized fluidized bed gasification conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven, R.; Hupa, M.
1998-07-01
The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir-Hinshelwood model.« less
Characterisation of solid fuels at pressurised fluidised bed gasification conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zebenhoven, R.; Hupa, M.
1998-04-01
The gasification or co-gasification of solid fuels (coal, peat, wood) in air-blown fluidised bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidised bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe, based on complete or partial gasification of a solid fuel in a pressurised fluidised bed. At the same time, fuel characterisation data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidised bed gasification are very scarce.more » Quantitative data on the characterisation of fuels for advanced combustion and gasification technologies based on fluidised beds are given, as a result from our participation to the JOULE 2 extension project on clean coal technology of the European Community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidised bed gasification conditions: 800-1000{degrees}C, 1-25 bar, fuel heating rate in the order of 100-1000{degrees}C/s. Carbon dioxide was used as gasifying agent. A pressurised thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilisation. increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurising from 1 to 25 bar, for the `younger` fuels such as peat and wood, this effect is negligible. Several empirical, `engineering` equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modelled using a Langmuir-Hinshelwood model.« less
NASA Astrophysics Data System (ADS)
Mokrane, Aoulaiche; Boutaous, M'hamed; Xin, Shihe
2018-05-01
The aim of this work is to address a modeling of the SLS process at the scale of the part in PA12 polymer powder bed. The powder bed is considered as a continuous medium with homogenized properties, meanwhile understanding multiple physical phenomena occurring during the process and studying the influence of process parameters on the quality of final product. A thermal model, based on enthalpy approach, will be presented with details on the multiphysical couplings that allow the thermal history: laser absorption, melting, coalescence, densification, volume shrinkage and on numerical implementation using FV method. The simulations were carried out in 3D with an in-house developed FORTRAN code. After validation of the model with comparison to results from literature, a parametric analysis will be proposed. Some original results as densification process and the thermal history with the evolution of the material, from the granular solid state to homogeneous melted state will be discussed with regards to the involved physical phenomena.
Li, Zhongwei; Liu, Xingjian; Wen, Shifeng; He, Piyao; Zhong, Kai; Wei, Qingsong; Shi, Yusheng; Liu, Sheng
2018-04-12
Lack of monitoring of the in situ process signatures is one of the challenges that has been restricting the improvement of Powder-Bed-Fusion Additive Manufacturing (PBF AM). Among various process signatures.
Second stage gasifier in staged gasification and integrated process
Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang
2015-10-06
A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.
Development of the 7-Item Binge-Eating Disorder Screener (BEDS-7)
Deal, Linda S.; DiBenedetti, Dana B.; Nelson, Lauren; Fehnel, Sheri E.; Brown, T. Michelle
2016-01-01
Objective Develop a brief, patient-reported screening tool designed to identify individuals with probable binge-eating disorder (BED) for further evaluation or referral to specialists. Methods Items were developed on the basis of the DSM-5 diagnostic criteria, existing tools, and input from 3 clinical experts (January 2014). Items were then refined in cognitive debriefing interviews with participants self-reporting BED characteristics (March 2014) and piloted in a multisite, cross-sectional, prospective, noninterventional study consisting of a semistructured diagnostic interview (to diagnose BED) and administration of the pilot Binge-Eating Disorder Screener (BEDS), Binge Eating Scale (BES), and RAND 36-Item Short-Form Health Survey (RAND-36) (June 2014–July 2014). The sensitivity and specificity of classification algorithms (formed from the pilot BEDS item-level responses) in predicting BED diagnosis were evaluated. The final algorithm was selected to minimize false negatives and false positives, while utilizing the fewest number of BEDS items. Results Starting with the initial BEDS item pool (20 items), the 13-item pilot BEDS resulted from the cognitive debriefing interviews (n = 13). Of the 97 participants in the noninterventional study, 16 were diagnosed with BED (10/62 female, 16%; 6/35 male, 17%). Seven BEDS items (BEDS-7) yielded 100% sensitivity and 38.7% specificity. Participants correctly identified (true positives) had poorer BES scores and RAND-36 scores than participants identified as true negatives. Conclusions Implementation of the brief, patient-reported BEDS-7 in real-world clinical practice is expected to promote better understanding of BED characteristics and help physicians identify patients who may have BED. PMID:27486542
Development of the 7-Item Binge-Eating Disorder Screener (BEDS-7).
Herman, Barry K; Deal, Linda S; DiBenedetti, Dana B; Nelson, Lauren; Fehnel, Sheri E; Brown, T Michelle
2016-01-01
Develop a brief, patient-reported screening tool designed to identify individuals with probable binge-eating disorder (BED) for further evaluation or referral to specialists. Items were developed on the basis of the DSM-5 diagnostic criteria, existing tools, and input from 3 clinical experts (January 2014). Items were then refined in cognitive debriefing interviews with participants self-reporting BED characteristics (March 2014) and piloted in a multisite, cross-sectional, prospective, noninterventional study consisting of a semistructured diagnostic interview (to diagnose BED) and administration of the pilot Binge-Eating Disorder Screener (BEDS), Binge Eating Scale (BES), and RAND 36-Item Short-Form Health Survey (RAND-36) (June 2014-July 2014). The sensitivity and specificity of classification algorithms (formed from the pilot BEDS item-level responses) in predicting BED diagnosis were evaluated. The final algorithm was selected to minimize false negatives and false positives, while utilizing the fewest number of BEDS items. Starting with the initial BEDS item pool (20 items), the 13-item pilot BEDS resulted from the cognitive debriefing interviews (n = 13). Of the 97 participants in the noninterventional study, 16 were diagnosed with BED (10/62 female, 16%; 6/35 male, 17%). Seven BEDS items (BEDS-7) yielded 100% sensitivity and 38.7% specificity. Participants correctly identified (true positives) had poorer BES scores and RAND-36 scores than participants identified as true negatives. Implementation of the brief, patient-reported BEDS-7 in real-world clinical practice is expected to promote better understanding of BED characteristics and help physicians identify patients who may have BED.
Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W
2017-05-01
The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.
"Smart pebble" designs for sediment transport monitoring
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars
2015-04-01
Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.
NASA Astrophysics Data System (ADS)
Whitty, Kevin J.; Siddoway, Michael
2010-07-01
Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.
Whitty, Kevin J; Siddoway, Michael
2010-07-01
Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Pratim; Al-Dahhan, Muthanna
2012-11-01
Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empiricalmore » approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nation's needs for energy and environmental safety. In addition, the outcome of the proposed study will have a broader impact on other processes that utilize spouted beds, such as coal gasification, granulation, drying, catalytic reactions, etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk
2012-04-15
Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Greene, Sandy; Protz, Chris
2017-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
NASA Astrophysics Data System (ADS)
Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David
2017-04-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel-bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on the force required to entrain sediment. There are at least two factors that standard entrainment models do not consider. The first is the way in which the spatial arrangement and orientation of grains and the resultant forces varies throughout a channel and over time, ways that have yet to be fully quantified. The second is that sediment entrainment is a 3D process, yet calculations of entrainment thresholds for sediment grains are typically based on 2D diagrams where we calculate static moments of force vectors about a pivot angle, represented as a single point rather than as a more realistic axis of rotation. Our research addresses these limitations by quantifying variations in 3D sediment structure and entrainment force requirements across two key parameters: morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel-bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel-bed with a riffle-pool morphology containing varying amounts of fine sediment. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure and entrainment force requirements through measurement of 3D metrics including grain pivot angles, grain exposure and protrusion. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure and entrainment force requirement. These results have implications for the development of sediment entrainment models for gravel-bed rivers. Keywords: fluvial sediment, geomorphology, entrainment models, X-ray computed tomography, 3D imaging, vector mechanics
Visual attentional bias for food in adolescents with binge-eating disorder.
Schmidt, Ricarda; Lüthold, Patrick; Kittel, Rebekka; Tetzlaff, Anne; Hilbert, Anja
2016-09-01
Evidence suggests that adults with binge-eating disorder (BED) are prone of having their attention interfered by food cues, and that food-related attentional biases are associated with calorie intake and eating disorder psychopathology. For adolescents with BED experimental evidence on attentional processing of food cues is lacking. Using eye-tracking and a visual search task, the present study examined visual orienting and disengagement processes of food in youth with BED. Eye-movement data and reaction times were recorded in 25 adolescents (12-20 years) with BED and 25 controls (CG) individually matched for sex, age, body mass index, and socio-economic status. During a free exploration paradigm, the BED group showed a greater gaze duration bias for food images than the CG. Groups did not differ in gaze direction biases. In a visual search task, the BED group showed a greater detection bias for food targets than the CG. Group differences were more pronounced for personally attractive than unattractive food images. Regarding clinical associations, only in the BED group the gaze duration bias for food was associated with increased hunger and lower body mass index, and the detection bias for food targets was associated with greater reward sensitivity. The study provided first evidence of an attentional bias to food in adolescents with BED. However, more research is needed for further specifying disengagement and orienting processes in adolescent BED, including overt and covert attention, and their prospective associations with binge-eating behaviors and associated psychopathology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Limestones: the love of my life - sun, sea and cycles (Jean Baptiste Lamarck Medal Lecture)
NASA Astrophysics Data System (ADS)
Tucker, M. E.
2009-04-01
In studies of sedimentary rocks we are striving to understand the short and long-term controls on deposition that lead to the variety of facies we see in the geological record. With the development and application of sequence stratigraphy has come the realisation that in most cases the stratigraphic record is not random, but there are patterns and trends in the nature (composition, facies, diagenesis) and thickness of sedimentary units. In addition, sedimentary cycles are widely, if not ubiquitously, developed through stratigraphic successions, and do themselves vary in thickness and facies through a formation and through time. In many cases, orbital forcing is clearly a major control, in addition to longer term tectonic and tectono-eustatic processes. Understanding the major controls on the stratigraphic record and the processes involved in deposition enables us to develop a degree of prediction for the occurrence of particular facies and rock-types. This is especially significant in terms of hydrocarbon potential in frontier basins, notably in the search for source and reservoir rocks. In the case of carbonate and carbonate-evaporite successions, recent work is showing that even at the higher-frequency scale of individual beds and bed-sets, there are regular patterns and changes in thickness. These show that controls on deposition are not random but well organised. Studies of Carboniferous shelf/mid-ramp bioclastic limestones and Jurassic shallow-marine oolites from England reveal systematic variations in bed thickness, as well as oxygen isotopes, Sr and org C values. Permian lower slope carbonates from NE England show thinning-thickening-upward patterns in turbidite bed thickness on several orders of scale. Turbidity current frequency of 1 per ~200 years can be deduced from thicknesses of interbedded laminated facies, which provide the timescale. Beds in ancient shelf and slope carbonates of many geological periods are on a millennial-scale and their features and patterns clearly indicate that millennial-scale changes in climate, most likely driven by fluctuations in solar output, analogous to the D-O cycles of the Quaternary, were responsible, and that these were then modulated by orbital forcing. Solar forcing rules in carbonates, even at the highest frequency.
Phase holdups in three-phase fluidized beds in the presence of disc promoter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murty, M.S.N.; Ramesh, K.V.; Venkateswarlu, P.
2011-02-15
Three-phase fluidized beds are found to have wide applications in process industries. The present investigation essentially comprises of the studies on gas holdup, liquid holdup and bed porosity in three-phase fluidized beds with coaxially placed disc promoter. Holdup data were obtained from bed expansion and pressure drop measurements. Analysis of the data was done to elucidate the effects of dynamic and geometric parameters on gas holdup, liquid holdup and bed porosity. Data were correlated and useful equations were obtained from empirical modeling. (author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E. K.
2015-05-06
This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.
Collaborative Strategy on Bed Bugs
The Collaborative Strategy on Bed Bugs was developed by the Federal Bed Bug Workgroup to clarify the federal role in bed bug control and highlight ways that government, community, academia and private industry can work together on bed bug issues.
NASA Technical Reports Server (NTRS)
Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana
2003-01-01
This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.
Integrated plan to augment surge capacity.
Dayton, Christopher; Ibrahim, Jamil; Augenbraun, Michael; Brooks, Steven; Mody, Kiaran; Holford, Donald; Roblin, Patricia; Arquilla, Bonnie
2008-01-01
Surge capacity is defined as a healthcare system's ability to rapidly expand beyond normal services to meet the increased demand for appropriate space, qualified personnel, medical care, and public health in the event ofbioterrorism, disaster, or other large-scale, public health emergencies. There are many individuals and agencies, including policy makers, planners, administrators, and staff at the federal, state, and local level, involved in the process of planning for and executing policy in respect to a surge in the medical requirements of a population. They are responsible to ensure there is sufficient surge capacity within their own jurisdiction. The [US] federal government has required New York State to create a system of hospital bed surge capacity that provides for 500 adult and pediatric patients per 1 million population, which has been estimated to be an increase of 15-20% in bed availability. In response, the New York City Department of Health and Mental Hygiene (NYC DOH) has requested that area hospitals take an inventory of available beds and set a goal to provide for a 20% surge capacity to be available during a mass-casualty event or other conditions calling for increased inpatient bed availability. In 2003, under the auspices of the NYC DOH, the New York Institute of All Hazard Preparedness (NYIHP) was formed from four unaffiliated, healthcare facilities in Central Brooklyn to address this and other goals. The NYIHP hospitals have developed a surge capacity plan to provide necessary space and utilities. As these plans have been applied, a bed surge capacity of approximately 25% was identified and created for Central Brooklyn to provide for the increased demand on the medical care system that may accompany a disaster. Through the process of developing an integrated plan that would engage a public health incident, the facilities of NYIHP demonstrate that a model of cooperation may be applied to an inherently fractioned medical system.
Tensiomygraphic Measurement of Atrophy Related Processes During Bed Rest and Recovery
NASA Astrophysics Data System (ADS)
Simunic, B. ostjan; Degens, Hans; Rittweger, Jorn; Narici, Marcco; Pisot, Venceslav; Mekjavic, Igor B.; Pisot, Rado
2013-02-01
Tensiomyographic (TMG) parameters were recently proposed for a non-invasive estimation of MHC distribution in human vastus lateralis muscle. However, TMG potential is even higher, offers additional insight into the skeletal muscle physiology, especially in the field of atrophy and hypertrophy. The purpose of this study is in developing time dynamics of TMG-measured contraction time (Tc) and maximal response amplitude (Dm), together with muscle belly thickness, measure thoroughly during 35-day bed rest and followed in 30-day recovery (N = 10 males; age 24.3 ± 2.6 years). Measurements were performed in two postural muscles (vastus medialis and lateralis) and one non-postural muscle (biceps femoris). During bed rest period we found different dynamics of muscle thickness decrease and Dm increase. Tc was unchanged in postural muscles, but in non-postural muscle increased significantly and stayed as such even at the end of recovery. We could conclude that TMG related parameters are more sensitive in measuring muscle atrophic and hypertrophic processes than biomedical imaging technique. However, a mechanism that regulates Dm still needs to be identified.
Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin
2017-09-22
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.
Rausch, Alexander M.; Küng, Vera E.; Pobel, Christoph; Körner, Carolin
2017-01-01
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts. PMID:28937633
How dynamic are ice-stream beds?
NASA Astrophysics Data System (ADS)
Davies, Damon; Bingham, Robert G.; King, Edward C.; Smith, Andrew M.; Brisbourne, Alex M.; Spagnolo, Matteo; Graham, Alastair G. C.; Hogg, Anna E.; Vaughan, David G.
2018-05-01
Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3-6 years apart, along a cumulative ˜ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a-1, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a-1 previously reported from repeat geophysical surveys in West Antarctica.
Gas processing developments. Why not use methanol for hydrate control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, R.B.; Bucklin, R.W.
1983-04-01
Hydrate formation in turboexpander plants can be avoided more economically by using methanol than by using solid bed dehydration. Although the first turboexpander plant used methanol, most expander installations now have used solid bed dehydration. The reasons are obscure, since methanol often grants greater ease of operation as well as lower capital and operating costs, especially when the water in the feed gas is low or when recompression is required. Natural gas generally contains water before processing. High pressure, low temperature, or both favor the combination of water with light gases to form hydrates. Free water always must be presentmore » for hydrates to form. Hydrates cause problems by plugging pipelines, valves, and other process equipment. Therefore, proper equipment design requires accurate prediction of the limiting conditions at which hydrates are formed anytime a gas stream containing hydrate formers and free water is cooled below 80 F. (16 refs.)« less
Growth of Fault-Cored Anticlines by Flexural Slip Folding: Analysis by Boundary Element Modeling
NASA Astrophysics Data System (ADS)
Johnson, Kaj M.
2018-03-01
Fault-related folds develop due to a combination of slip on the associated fault and distributed deformation off the fault. Under conditions that are sufficient for sedimentary layering to act as a stack of mechanical layers with contact slip, buckling can dramatically amplify the folding process. We develop boundary element models of fault-related folding of viscoelastic layers embedded with a reverse fault to examine the influence of such layering on fold growth. The strength of bedding contacts, the thickness and stiffness of layering, and fault geometry all contribute significantly to the resulting fold form. Frictional contact strength between layers controls the degree of localization of slip within fold limbs; high contact friction in relatively thin bedding tends to localize bedding slip within narrow kink bands on fold limbs, and low contact friction tends to produce widespread bedding slip and concentric fold form. Straight ramp faults tend to produce symmetric folds, whereas listric faults tend to produce asymmetric folds with short forelimbs and longer backlimbs. Fault-related buckle folds grow exponentially with time under steady loading rates. At early stages of folding, fold growth is largely attributed to slip on the fault, but as the fold increases amplitude, a larger portion of the fold growth is attributed to distributed slip across bedding contacts on the limbs of the fold. An important implication for geologic and earthquake studies is that not all surface deformation associated with blind reverse faults may be attributed to slip on the fault during earthquakes.
Elwell, Anthony C; Elsayed, Nada H; Kuhn, John N; Joseph, Babu
2018-03-01
Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled with the objective of identifying appropriate technology and the economics associated with this purification step. A general adsorption model assuming plug flow and radial symmetry was developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m/10-30 ft), inlet siloxane concentration (5-15 mg/m 3 ), moisture content (0-100% relative humidity at STP or RH), and siloxane tolerance limit (0.094-9.4 mg/m 3 ) that correlated to three distinct energy conversion technologies (electricity production using engines or fuels cells or catalytic conversion to liquid hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum allowable moisture content of LFG before purification is 50% RH and moisture removal processes are also required. The design calculations using a selected case study show that the adsorption bed height required needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for engine applications. Fuel cell applications require 3 times the bed height compared to engine applications. However, the purification costs amounted to 94%, 16% and 52% of recovered product value for engine, liquefaction, and fuel cell applications, respectively indicating the need for a high value product to justify purification costs. The approaches and conclusions can be extended to specific process conditions for landfill gas purification and to other processes that use biogas produced from waste as a feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.
The initial instability and finite-amplitude stability of alternate bars in straight channels
Nelson, J.M.
1990-01-01
The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.
Röthlisberger channel theory: its origins and consequences
Walder, Joseph S.
2010-01-01
The theory of channelized water flow through glaciers, most commonly associated with the names of Hans Röthlisberger and Ron Shreve and their 1972 papers in the Journal of Glaciology, was developed at a time when interest in glacier-bed processes was expanding, and the possible relationship between glacier sliding and water at the bed was becoming of keen interest. The R-channel theory provided for the first time a physically based conceptual model of water flow through glaciers. The theory also marks the emergence of glacier hydrology as a glaciological discipline with goals and methods distinct from those of surface-water hydrology.
NASA Technical Reports Server (NTRS)
1994-01-01
The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.
Split-estate negotiations: the case of coal-bed methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayley H. Chouinard; Christina Steinhoff
Coal-bed methane is an emerging contributor to the US energy supply. Split estates, where landowners control the surface and the energy companies lease the rights to the underground gas from the federal government, often impede successful negotiations for methane extraction. We provide an extensive form representation of the dynamic game of the negotiation process for subsurface access. We then solve for a set of Nash equilibrium outcomes associated with the split estate negotiations. By examining the optimal offers we can identify methods to improve the likelihood of negotiations that do not break down and result in the gas developer resortingmore » to the use of a bond. We examine how changes in transaction costs or entitlements will affect the outcomes, and support our finds with anecdotal evidence from actual negotiations for coal-bed methane access. 55 refs.« less
Advances in the Development of a WCl6 CVD System for Coating UO2 Powders with Tungsten
NASA Technical Reports Server (NTRS)
Mireles, Omar R.; Tieman, Alyssa; Broadway, Jeramie; Hickman, Robert
2013-01-01
Demonstrated viability and utilization of: a) Fluidized powder bed. b) WCl6 CVD process. c) Coated spherical particles with tungsten. The highly corrosive nature of the WCl6 solid reagent limits material of construction. Indications that identifying optimized process variables with require substantial effort and will likely vary with changes in fuel requirements.
NASA Technical Reports Server (NTRS)
1981-01-01
The results of the free space reactor experimental work are summarized. Overall, the objectives were achieved and the unit can be confidently scaled to the EPSDU size based on the experimental work and supporting theoretical analyses. The piping and instrumentation of the fluidized bed reactor was completed.
Valorisation of waste tyre by pyrolysis in a moving bed reactor.
Aylón, E; Fernández-Colino, A; Murillo, R; Navarro, M V; García, T; Mastral, A M
2010-07-01
The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Valorisation of waste tyre by pyrolysis in a moving bed reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylon, E.; Fernandez-Colino, A.; Murillo, R., E-mail: ramonm@icb.csic.e
2010-07-15
The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operationalmore » parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products.« less
Surface texture and hardness of dental alloys processed by alternative technologies
NASA Astrophysics Data System (ADS)
Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.
2017-08-01
Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.
Hammarstrom, J.M.; Sibrell, P.L.; Belkin, H.E.
2003-01-01
Armoring of limestone is a common cause of failure in limestone-based acid-mine drainage (AMD) treatment systems. Limestone is the least expensive material available for acid neutralization, but is not typically recommended for highly acidic, Fe-rich waters due to armoring with Fe(III) oxyhydroxide coatings. A new AMD treatment technology that uses CO2 in a pulsed limestone bed reactor minimizes armor formation and enhances limestone reaction with AMD. Limestone was characterized before and after treatment with constant flow and with the new pulsed limestone bed process using AMD from an inactive coal mine in Pennsylvania (pH = 2.9, Fe = 150 mg/l, acidity = 1000 mg/l CaCO3). In constant flow experiments, limestone is completely armored with reddish-colored ochre within 48 h of contact in a fluidized bed reactor. Effluent pH initially increased from the inflow pH of 2.9 to over 7, but then decreased to 6 during operation. Limestone removed from a pulsed bed pilot plant is a mixture of unarmored, rounded and etched limestone grains and partially armored limestone and refractory mineral grains (dolomite, pyrite). The ???30% of the residual grains in the pulsed flow reactor that are armored have thicker (50- to 100-??m), more aluminous coatings and lack the gypsum rind that develops in the constant flow experiment. Aluminium-rich zones developed in the interior parts of armor rims in both the constant flow and pulsed limestone bed experiments in response to pH changes at the solid/solution interface. ?? 2003 Elsevier Ltd. All rights reserved.
Distinct Element Method modelling of fold-related fractures in a multilayer sequence
NASA Astrophysics Data System (ADS)
Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard
2017-04-01
Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.
CONTINUOUS PROCESS FOR PREPARING URANIUM HEXAFLUORIDE FROM URANIUM TETRAFLUORIDE AND OXYGEN
Adams, J.B.; Bresee, J.C.; Ferris, L.M.
1961-11-21
A process for preparing UF/sub 6/ by reacting UF/sub 4/ and oxygen is described. The UF/sub 4/ and oxygen are continuously introduced into a fluidized bed of UO/sub 2/F/sub 2/ at a temperature of 600 to 900 deg C. The concentration of UF/sub 4/ in the bed is maintained below 25 weight per cent in order to avoid sintering and intermediate compound formation. By-product U0/sub 2/F/sub 2/ is continuously removed from the top of the bed recycled. In an alternative embodiment heat is supplied to the reaction bed by burning carbon monoxide in the bed. The product UF/sub 6/ is filtered to remove entrained particles and is recovered in cold traps and chemical traps. (AEC)
FSA future directions: FSA technology activities in FY86
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1985-01-01
The silicon material, advanced silicon sheet, device research, and process research activities are explained. There will be no new initiatives. Many activities are targeted for completion and the emphasis will then be on technology transfer. Industrial development of the fluidized-bed reactor (FBR) deposition technology is proceeding. Technology transfer and industry funding of sheet development are continuing.
Basnet, Sanjay; Kamble, Shripat T
2018-05-04
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) is a nuisance household pest causing significant medical and economic impacts. RNA interference (RNAi) of genes that are involved in vital physiological processes can serve as potential RNAi targets for insect control. Brahma is an ATPase subunit of a chromatin-remodeling complex involved in transcription of several genes for cellular processes, most importantly the homeotic genes. In this study, we used a microinjection technique to deliver double stranded RNA into female bed bugs. Delivery of 0.05 and 0.5 µg/insect of brahma dsRNA directly into hemocele resulted substantial reduction in oviposition. Eggs laid by bed bugs receiving both doses of brahma dsRNA exhibited significantly lower hatching percentage as compared to controls. In addition, brahma RNAi in female bed bugs caused significant mortality. Our results disclosed the potential of brahma RNAi to suppress bed bug population through injection of specific dsRNA, suggesting a critical function of this gene in bed bugs' reproduction and survival. Based on our data, brahma can be a promising RNAi target for suppression of bed bug population.
A message passing kernel for the hypercluster parallel processing test bed
NASA Technical Reports Server (NTRS)
Blech, Richard A.; Quealy, Angela; Cole, Gary L.
1989-01-01
A Message-Passing Kernel (MPK) for the Hypercluster parallel-processing test bed is described. The Hypercluster is being developed at the NASA Lewis Research Center to support investigations of parallel algorithms and architectures for computational fluid and structural mechanics applications. The Hypercluster resembles the hypercube architecture except that each node consists of multiple processors communicating through shared memory. The MPK efficiently routes information through the Hypercluster, using a message-passing protocol when necessary and faster shared-memory communication whenever possible. The MPK also interfaces all of the processors with the Hypercluster operating system (HYCLOPS), which runs on a Front-End Processor (FEP). This approach distributes many of the I/O tasks to the Hypercluster processors and eliminates the need for a separate I/O support program on the FEP.
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.
1991-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop test beds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC Test Bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in operation and evolution of the SSF are addressed.
Madej, Mary Ann
2001-01-01
Large, episodic inputs of coarse sediment (sediment pulses) in forested, mountain streams may result in changes in the size and arrangement of bed forms and in channel roughness. A conceptual model of channel organization delineates trajectories of response to sediment pulses for many types of gravel bed channels. Channels exhibited self‐organizing behavior to various degrees based on channel gradient, presence of large in‐channel wood or other forcing elements, the size of the sediment pulse, and the number of bed‐mobilizing flows since disturbance. Typical channel changes following a sediment pulse were initial decreases in water depth, in variability of bed elevations, and in the regularity of bed form spacing. Trajectories of change subsequently showed increased average water depth, more variable and complex bed topography, and increased uniformity of bed form spacing. Bed form spacing in streams with abundant forcing elements developed at a shorter spatial scale (two to five channel widths) than in streams without such forcing mechanisms (five to 10 channel widths). Channel roughness increased as bed forms developed.
NASA Astrophysics Data System (ADS)
Frings, Roy M.; Gehres, Nicole; Promny, Markus; Middelkoop, Hans; Schüttrumpf, Holger; Vollmer, Stefan
2014-01-01
The river bed of the Rhine River is subject to severe erosion and sedimentation. Such high geomorphological process rates are unwanted for economical, ecological, and safety reasons. The objectives of this study were (1) to quantify the geomorphological development of the Rhine River between 1985 and 2006; (2) to investigate the bed erosion process; and (3) to distinguish between tectonic, hydrological, and human controls. We used a unique data set with thousands of bedload and suspended-load measurements and quantified the fluxes of gravel, sand, silt, and clay through the northern Upper Rhine Graben and the Rhenish Massif. Furthermore, we calculated bed level changes and evaluated the sediment budget of the channel. Sediment transport rates were found to change in the downstream direction: silt and clay loads increase because of tributary supply; sand loads increase because of erosion of sand from the bed; and gravel loads decrease because of reduced sediment mobility caused by the base-level control exerted by the uplifting Rhenish Massif. This base-level control shows tectonic setting, in addition to hydrology and human interventions, to represent a major control on morphodynamics in the Rhine. The Rhine bed appears to be in a state of disequilibrium, with an average net bed degradation of 3 mm/a. Sand being eroded from the bed is primarily washed away in suspension, indicating a rapid supply of sand to the Rhine delta. The degradation is the result of an increased sediment transport capacity caused by nineteenth and twentieth century's river training works. In order to reduce degradation, huge amounts of sediment are fed into the river by river managers. Bed degradation and artificial sediment feeding represent the major sources of sand and gravel to the study area; only small amounts of sediment are supplied naturally from upstream or by tributaries. Sediment sinks include dredging, abrasion, and the sediment output to the downstream area. Large uncertainties exist about the amounts of sediment deposited on floodplains and in groyne fields. Compared to the natural situation during the middle Holocene, the present-day gravel and sand loads seem to be lower, whereas the silt and clay loads seem to be higher. This is probably caused by the present-day absence of meander migration, the deforestation, and the reduced sediment trapping efficiency of the floodplains. Even under natural conditions no equilibrium bed level existed.
Nellore, R V; Rekhi, G S; Hussain, A S; Tillman, L G; Augsburger, L L
1998-01-02
This research study was designed to develop model extended-release (ER) matrix tablet formulations for metoprolol tartrate (100 mg) sufficiently sensitive to manufacturing variable and to serve as the scientific basis for regulatory policy development on scale-up and post approval changes for modified-release dosage forms (SUPAC-MR). Several grades and levels of hydroxypropyl methylcellulose (Methocel K4M, K15M, K100M and K100LV), fillers and binders and studied. Three granulation processes were evaluated; direct compression, fluid-bed or high-shear granulation. Lubrication was performed in a V-blender and tablets were compressed on an instrumented rotary tablet press. Direct compression formulations exhibited poor flow, picking and sticking problems during tableting. High-shear granulation resulted in the formation of hard granules that were difficult to mill but yielded good tablets. Fluid-bed granulations were made using various binders and appeared to be satisfactory in terms of flow and tableting performance. In vitro drug release testing was performed in pH 6.8 phosphate buffer using USP apparatus 2 (paddle) at 50 rpm. At a fixed polymer level, drug release from the higher viscosity grades (K100M) was slower as compared to the lower viscosity grades (K100LV). In addition, release from K100LV was found to be more sensitive to polymer level changes. Increased in polymer level from 10 to 40% and/or filler change from lactose to dicalcium phosphate resulted in about 25-30% decrease in the amount of metoprolol release after 12 h. The results of this study led to the choice of Methocel K100LV as the hydrophilic matrix polymer and fluid-bed granulation as the process of choice for further evaluation of critical and non-critical formulation and processing variables.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S.
2009-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hedge, uday; Balasubramaniam, R.; Gokoglu, S.
2007-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
[Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].
Xing, Liming; Zhao, Zhengsheng
2012-07-01
To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
Miranda, Renata Pinto Ribeiro; de Cássia Lopes Chaves, Érika; Silva Lima, Rogério; Braga, Cristiane Giffoni; Simões, Ivandira Anselmo Ribeiro; Fava, Silvana Maria Coelho Leite; Iunes, Denise Hollanda
2017-10-01
Simulation allows students to develop several skills during a bed bath that are difficult to teach only in traditional classroom lectures, such as problem-solving, student interactions with the simulator (patient), reasoning in clinical evaluations, evaluation of responses to interventions, teamwork, communication, security and privacy. This study aimed to evaluate the effectiveness of a simulated bed bath scenario on improving cognitive knowledge, practical performance and satisfaction among nursing students. Randomized controlled clinical trial. Nursing students that were in the fifth period from two educational institutions in Brazil. Nursing students (n=58). The data were collected using the assessments of cognitive knowledge, practical performance and satisfaction were made through a written test about bed baths, an Objective Structured Clinical Examination (OSCE) and a satisfaction questionnaire. We identified that the acquisition and assimilation of cognitive knowledge was significantly higher in the simulation group (p=0.001). The performance was similar in both groups regardless of the teaching strategy (p=0.435). At follow-up, the simulation group had significantly more satisfaction with the teaching method than the control group (p=0.007). The teaching strategy based on a simulated scenario of a bed bath proved to be effective for the acquisition of cognitive knowledge regarding bed baths in clinical practice and improved student satisfaction with the teaching process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Sameer
2011-01-01
It is increasingly recognized that hospital operation is an intricate system with limited resources and many interacting sources of both positive and negative feedback. The purpose of this study is to design a surgical delivery process in a county hospital in the U.S where patient flow through a surgical ward is optimized. The system simulation modeling is used to address questions of capacity planning, throughput management and interacting resources which constitute the constantly changing complexity that characterizes designing a contemporary surgical delivery process in a hospital. The steps in building a system simulation model is demonstrated using an example of building a county hospital in a small city in the US. It is used to illustrate a modular system simulation modeling of patient surgery process flows. The system simulation model development will enable planners and designers how they can build in overall efficiencies in a healthcare facility through optimal bed capacity for peak patient flow of emergency and routine patients.
Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed
2014-01-01
Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576
Park, Chanhun; Nam, Hee-Geun; Kim, Pung-Ho; Mun, Sungyong
2014-06-01
The removal of isoleucine from valine has been a key issue in the stage of valine crystallization, which is the final step in the valine production process in industry. To address this issue, a three-zone simulated moving-bed (SMB) process for the separation of valine and isoleucine has been developed previously. However, the previous process, which was based on a classical port-location mode, had some limitations in throughput and valine product concentration. In this study, a three-zone SMB process based on a modified port-location mode was applied to the separation of valine and isoleucine for the purpose of making a marked improvement in throughput and valine product concentration. Computer simulations and a lab-scale process experiment showed that the modified three-zone SMB for valine separation led to >65% higher throughput and >160% higher valine concentration compared to the previous three-zone SMB for the same separation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dryepondt, Sebastien N; Pint, Bruce A; Ryan, Daniel
2016-04-01
The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayedmore » significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.« less
A general power equation for predicting bed load transport rates in gravel bed rivers
Jeffrey J. Barry; John M. Buffington; John G. King
2004-01-01
A variety of formulae has been developed to predict bed load transport in gravel bed rivers, ranging from simple regressions to complex multiparameter formulations. The ability to test these formulae across numerous field sites has, until recently, been hampered by a paucity of bed load transport data for gravel bed rivers. We use 2104 bed load transport observations...
Catalytic Destruction Of Toxic Organic Compounds
NASA Technical Reports Server (NTRS)
Voecks, Gerald E.
1990-01-01
Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.
NASA Technical Reports Server (NTRS)
1975-01-01
The gasification reactions necessary for the production of hydrogen from montana subbituminous coal are presented. The coal composition is given. The gasifier types mentioned include: suspension (entrained) combustion; fluidized bed; and moving bed. Each gasification process is described. The steam-iron process, raw and product gas compositions, gasifier feed quantities, and process efficiency evaluations are also included.
Peng, Tzu-Huan; Lin, Chiou-Liang; Wey, Ming-Yen
2015-09-15
A novel low-temperature two-stage fluidized bed (LTTSFB) incinerator has been successfully developed to control heavy-metal emissions during municipal solid waste (MSW) treatment. However, the characteristics of the residual metal patterns during this process are still unclear. The aim of this study was to investigate the metal patterns in the different partitions of the LTTSFB bottom ash by chemical sequential extraction. Artificial waste was used to simulate the MSW. Different parameters including the first-stage temperature, chloride additives, and operating gas velocity were also considered. Results indicated that during the low-temperature treatment process, a high metal mobility phase exists in the first-stage sand bed. The main patterns of Cd, Pb, and Cr observed were the water-soluble, exchangeable, and residual forms, respectively. With the different Cl additives, the results showed that polyvinyl chloride addition increased metal mobility in the LTTSFB bottom ash, while, sodium chloride addition may have reduced metal mobility due to the formation of eutectic material. The second-stage sand bed was found to have a lower risk of metal leaching. The results also suggested that, the residual ashes produced by the LTTSFB system must be taken into consideration given their high metal mobility. Copyright © 2015 Elsevier B.V. All rights reserved.
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, Swindon, Wiltshire SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk
2014-01-15
Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particularmore » is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.
Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less
Zero-G life support for Space Station Freedom
NASA Technical Reports Server (NTRS)
Kolodney, Matthew; Dall-Bauman, L.
1992-01-01
Optimal design of spacecraft environmental control and life support systems (ECLSS) for long duration missions requires an understanding of microgravity and its long-term influence on ECLSS performance characteristics. This understanding will require examination of the fundamental processes associated with air revitalization and water recovery in a microgravity environment. Short term testing can be performed on NASA's reduced gravity aircraft (a KC-135), but longer tests will need to be conducted on the shuttle or Space Station Freedom. Conceptual designs have been prepared for ECLSS test beds that will allow extended testing of equipment under microgravity conditions. Separate designs have been formulated for air revitalization and water recovery test beds. In order to allow testing of a variety of hardware with minimal alteration of the beds themselves, the designs include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air (or water) treatment equipment of interest. In the interest of minimizing spacecraft/test bed interface requirements, the beds are designed to recycle process fluids to the greatest extent possible. In most cases, only cooling water and power interfaces are required. A volume equal to that of two SSF lockers was allowed for each design. These bed dimensions would limit testing to equipment with a 0.5- to 1.5-person-equivalent throughput. The mass, volume, and power requirements for the air revitalization test bed are estimated at 125-280 kg, 1.0- 1.4 cubic meters, and 170 min 1070 W. Corresponding ranges for the water recovery test bed are 325-375 kg, 1.0- 1.1 cubic meters, and 350-850 W. These figures include individual test articles and accompanying hardware as well as the tanks, plumbing, and instrumentation included in the bed designs. Process fluid weight (i.e., water weight) is also included.
Maps of seagrass beds are useful for monitoring estuarine condition, managing habitats, and modeling estuarine processes. We recently developed inexpensive methods for collecting and classifying sidescan sonar (SSS) imagery for seagrass presence in turbid waters as shallow as 1-...
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.
Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M
2014-01-01
Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.
In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology.
Buschmüller, Caroline; Wiedey, Wolfgang; Döscher, Claas; Dressler, Jochen; Breitkreutz, Jörg
2008-05-01
This is the first report on in-line moisture measurement of pharmaceutical products by microwave resonance technology. In order to meet the FDA's PAT approach, a microwave resonance sensor appropriate for pharmaceutical use was developed and implemented into two different fluidized-bed dryers. The novel sensor enables a continuous moisture measurement independent from the product density. Hence, for the first time precise real time determination of the moisture in pharmaceutical granules becomes possible. The qualification of the newly developed sensor was performed by drying placebo granules under experimental conditions and the validation using drug loaded granules under real process conditions. The results of the investigations show good correlations between water content of the granules determined by the microwave resonance sensor and both reference methods, loss on drying by infrared light exposure and Karl Fischer titration. Furthermore, a considerable time saving in the drying process was achieved through monitoring the residual water content continuously by microwave resonance technology instead of the formerly used discontinuous methods.
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M
2014-01-01
Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041
Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.
Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas
2011-06-24
This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.
Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco
2016-04-01
Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development and characterization of couscous-like product using bulgur flour as by-product.
Yuksel, Ayse Nur; Öner, Mehmet Durdu; Bayram, Mustafa
2017-12-01
Couscous is produced traditionally by agglomeration of Triticum durum semolina with water. The aims of this study were: to produce couscous-like product by substitution of semolina with bulgur by-product (undersize bulgur); to find optimum quantity of bulgur flour and processing conditions. In order to determine the optimum processing parameters and recipes; 0, 25 and 50% of bulgur containing couscous-like samples were prepared. The color, yield, sensory properties, total phenol and flavonoid contents, bulk density, protein and ash content, texture properties were determined. Two different types of dryer e.g. packed bed and microwave were used. Optimum parameters were predicted as 50% of bulgur flour for packed bed (60 °C) and microwave (180 W) drying with 50% (w/w) of water according to yields, color (L*, a*, b*) values and sensory properties (color, odor, general appearance). For packed bed drying at 60 °C yields were 54.28 ± 3.78, 47.70 ± 1.73 and 52.57 ± 7.04% for 0, 25 and 50% bulgur flour containing samples, respectively. Lightness (L*) values of couscous-like samples were decreased with increasing the quantity of bulgur flour after both drying processes. Results of sensory analysis revealed that couscous-like bulgur were more preferable for consumers.
Principles of an enhanced MBR-process with mechanical cleaning.
Rosenberger, S; Helmus, F P; Krause, S; Bareth, A; Meyer-Blumenroth, U
2011-01-01
Up to date, different physical and chemical cleaning protocols are necessary to limit membrane fouling in membrane bioreactors. This paper deals with a mechanical cleaning process, which aims at the avoidance of hypochlorite and other critical chemicals in MBR with submerged flat sheet modules. The process basically consists of the addition of plastic particles into the loop circulation within submerged membrane modules. Investigations of two pilot plants are presented: Pilot plant 1 is equipped with a 10 m(2) membrane module and operated with a translucent model suspension; pilot plant 2 is equipped with four 50 m(2) membrane modules and operated with pretreated sewage. Results of pilot plant 1 show that the establishment of a fluidised bed with regular particle distribution is possible for a variety of particles. Particles with maximum densities of 1.05 g/cm(3) and between 3 and 5 mm diameter form a stable fluidised bed almost regardless of activated sludge concentration, viscosity and reactor geometry. Particles with densities between 1.05 g/cm(3) and 1.2 g/cm(3) form a stable fluidised bed, if the velocity at the reactor bottom is sufficiently high. Activities within pilot plant 2 focused on plant optimisation and the development of an adequate particle retention system.
Validation and Verification of LADEE Models and Software
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2013-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) mission will orbit the moon in order to measure the density, composition and time variability of the lunar dust environment. The ground-side and onboard flight software for the mission is being developed using a Model-Based Software methodology. In this technique, models of the spacecraft and flight software are developed in a graphical dynamics modeling package. Flight Software requirements are prototyped and refined using the simulated models. After the model is shown to work as desired in this simulation framework, C-code software is automatically generated from the models. The generated software is then tested in real time Processor-in-the-Loop and Hardware-in-the-Loop test beds. Travelling Road Show test beds were used for early integration tests with payloads and other subsystems. Traditional techniques for verifying computational sciences models are used to characterize the spacecraft simulation. A lightweight set of formal methods analysis, static analysis, formal inspection and code coverage analyses are utilized to further reduce defects in the onboard flight software artifacts. These techniques are applied early and often in the development process, iteratively increasing the capabilities of the software and the fidelity of the vehicle models and test beds.
Start-up of an anaerobic fluidized bed reactor treating synthetic carbohydrate rich wastewater.
Yeshanew, Martha M; Frunzo, Luigi; Luongo, Vincenzo; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni
2016-12-15
The present work studied the start-up process of a mesophilic (37 ± 2 °C) anaerobic fluidized bed reactor (AFBR) operated at a hydraulic retention time (HRT) of 20 days using synthetic carbohydrate rich wastewater. Anox Kaldness-K1 carriers were used as biofilm carrier material. The reactor performance and biofilm formation were evaluated during the process. The start-up process at lower liquid recirculation flow rate enhanced the biofilm formation and reactor performance. The organic substrate composition had a major impact on early colonization of methanogenic archaea onto the surface of the Kaldness carriers during the start-up process. Specific organic substrates favouring the growth of methanogenic archaea, such as acetate, are preferred in order to facilitate the subsequent biofilm formation and AFBR start-up. The supply of 'bio-available' nutrients and trace elements, in particular iron, had an important role on optimal methanogenic activity and speeding-up of the biofilm development on the Kaldness carriers. This paper provides possible strategies to optimize the various operational parameters that influence the initial biofilm formation and development in an AFBR and similar high rate anaerobic reactors, hence can be used to reduce the long time required for process start-up. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanical Behavior of Additively Manufactured Uranium-6 wt. pct. Niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, A. S.; Wraith, M. W.; Burke, S. C.
This report describes an effort to process uranium-6 weight% niobium using laser powder bed fusion. The chemistry, crystallography, microstructure and mechanical response resulting from this process are discussed with particular emphasis on the effect of the laser powder bed fusion process on impurities. In an effort to achieve homogenization and uniform mechanical behavior from different builds, as well as to induce a more conventional loading response, we explore post-processing heat treatments on this complex alloy. Elevated temperature heat treatment for recrystallization is evaluated and the effect of recrystallization on mechanical behavior in laser powder bed fusion processed U-6Nb is discussed.more » Wrought-like mechanical behavior and grain sizes are achieved through post-processing and are reported herein.« less
Monetary reward processing in obese individuals with and without binge eating disorder.
Balodis, Iris M; Kober, Hedy; Worhunsky, Patrick D; White, Marney A; Stevens, Michael C; Pearlson, Godfrey D; Sinha, Rajita; Grilo, Carlos M; Potenza, Marc N
2013-05-01
An important step in obesity research involves identifying neurobiological underpinnings of nonfood reward processing unique to specific subgroups of obese individuals. Nineteen obese individuals seeking treatment for binge eating disorder (BED) were compared with 19 non-BED obese individuals (OB) and 19 lean control subjects (LC) while performing a monetary reward/loss task that parses anticipatory and outcome components during functional magnetic resonance imaging. Differences in regional activation were investigated in BED, OB, and LC groups during reward/loss prospect, anticipation, and notification. Relative to the LC group, the OB group demonstrated increased ventral striatal and ventromedial prefrontal cortex activity during anticipatory phases. In contrast, the BED group relative to the OB group demonstrated diminished bilateral ventral striatal activity during anticipatory reward/loss processing. No differences were observed between the BED and LC groups in the ventral striatum. Heterogeneity exists among obese individuals with respect to the neural correlates of reward/loss processing. Neural differences in separable groups with obesity suggest that multiple, varying interventions might be important in optimizing prevention and treatment strategies for obesity. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Evaluation of process errors in bed load sampling using a Dune Model
Gomez, Basil; Troutman, Brent M.
1997-01-01
Reliable estimates of the streamwide bed load discharge obtained using sampling devices are dependent upon good at-a-point knowledge across the full width of the channel. Using field data and information derived from a model that describes the geometric features of a dune train in terms of a spatial process observed at a fixed point in time, we show that sampling errors decrease as the number of samples collected increases, and the number of traverses of the channel over which the samples are collected increases. It also is preferable that bed load sampling be conducted at a pace which allows a number of bed forms to pass through the sampling cross section. The situations we analyze and simulate pertain to moderate transport conditions in small rivers. In such circumstances, bed load sampling schemes typically should involve four or five traverses of a river, and the collection of 20–40 samples at a rate of five or six samples per hour. By ensuring that spatial and temporal variability in the transport process is accounted for, such a sampling design reduces both random and systematic errors and hence minimizes the total error involved in the sampling process.
Producing Silicon Carbide for Semiconductor Devices
NASA Technical Reports Server (NTRS)
Hsu, G. C.; Rohatgi, N. K.
1986-01-01
Processes proposed for production of SiC crystals for use in semiconductors operating at temperatures as high as 900 degrees C. Combination of new processes produce silicon carbide chips containing epitaxial layers. Chips of SiC first grown on porous carbon matrices, then placed in fluidized bed, where additional layer of SiC grows. Processes combined to yield complete process. Liquid crystallization process used to make SiC particles or chips for fluidized-bed process.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
Powder Bed Layer Characteristics: The Overseen First-Order Process Input
NASA Astrophysics Data System (ADS)
Mindt, H. W.; Megahed, M.; Lavery, N. P.; Holmes, M. A.; Brown, S. G. R.
2016-08-01
Powder Bed Additive Manufacturing offers unique advantages in terms of manufacturing cost, lot size, and product complexity compared to traditional processes such as casting, where a minimum lot size is mandatory to achieve economic competitiveness. Many studies—both experimental and numerical—are dedicated to the analysis of how process parameters such as heat source power, scan speed, and scan strategy affect the final material properties. Apart from the general urge to increase the build rate using thicker powder layers, the coating process and how the powder is distributed on the processing table has received very little attention to date. This paper focuses on the first step of every powder bed build process: Coating the process table. A numerical study is performed to investigate how powder is transferred from the source to the processing table. A solid coating blade is modeled to spread commercial Ti-6Al-4V powder. The resulting powder layer is analyzed statistically to determine the packing density and its variation across the processing table. The results are compared with literature reports using the so-called "rain" models. A parameter study is performed to identify the influence of process table displacement and wiper velocity on the powder distribution. The achieved packing density and how that affects subsequent heat source interaction with the powder bed is also investigated numerically.
NASA Astrophysics Data System (ADS)
Blois, G.; Sambrook Smith, G.; Best, J.; Hardy, R.; Lead, J.
2008-12-01
Most natural rivers have beds of loose, cohesionless sediment that form a porous bed, thus permitting significant interactions between the free flow above the bed and that within the pore spaces. Many unresolved problems in channel engineering and ecohydraulics are related to an incomplete understanding of this interstitial flow. For example, the mechanisms of pollutant transport and prediction of river bed morphodynamics may be strongly influenced by flow occurring within the pore spaces. While this lack of understanding has been widely acknowledged, the direct experimental investigation of flow within the pore spaces has been restricted by the practical difficulties in collecting such data. This has also created drawbacks in the numerical modeling of pore flow as there remains a dearth of robust experimental data with which to validate such models. In order to help address these issues, we present details of a new endoscopic PIV system designed to tackle some of the challenges highlighted above. The work presented in this paper is also being used to validate a numerical model that is being developed as part of this project. A fully endoscopic PIV system has been developed to collect velocity and turbulence data for flow within the pore space of a gravel bed. The system comprises a pulsed Nd:YAG laser that provides high intensity illumination for single exposure pairs of images on a high-resolution digital camera. The use of rigid endoscopes for both the laser light source and camera allows measurement of quasi-instantaneous flow fields by high-resolution PIV images (2352*1728 pixels). In the first instance, the endoscopic PIV system has been used to study flow within an artificial pore space model constructed from 38 and 51 mm diameter spheres, used to represent a simplified version of a natural gravel-bed river. Across-correlation processing approach has been applied to the PIV images and the processing parameters have been optimized for the experimental conditions. A series of instantaneous two-dimensional flow fields in a simple pore space has been reconstructed permitting quantification of the mean flow. A not symmetric flow structure has been highlighted showing the strong dependence of flow on the bed geometry and presence of the free surface. Preliminary results will be discussed here in order to highlight the critical aspects of the technique. Illumination from the laser endoscope must be optimized in terms of angle of divergence, uniformity and stability, with any source of irregular illumination causing strong reflections from the surface of the spheres resulting in saturation of huge image areas. The preliminary results obtained demonstrate the utility of the fully endoscopic PIV technique for investigation of flow structure in pore spaces. Further developments of the technique will include improving light uniformity, removing reflections from images and increasing the illuminated portion of the pore space area.
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.
TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS
A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...
Wang, Feng; Guo, Chen; Liu, Chun-Zhao
2013-12-01
A magnetically stabilized fluidized bed (MSFB) with the Cu(2+)-chelated magnetic mesoporous silica nanoparticles (MMSNPs-Cu(2+)) was established to purify laccase directly from the fermentation broth of Trametes versicolor. The MMSNPs-Cu(2+) particles in the MSFB maintained a stable bed expansion of two to threefold at a flow rate of 120-180 cm/h. At the optimal magnetic field intensity of 120 Gs, both the maximal Bodenstein number and the smallest axial dispersion coefficient were achieved, which resulted in a stable fluidization stage. The dynamic binding capacity of laccase in the MSFB decreased from 192.5 to144.3 mg/g when the flow velocity through the bed increased from 44.2 to 69.8 cm/h. The MSFB with MMSNPs-Cu(2+) achieved efficient laccase purification from the fermentation broth with 62.4-fold purification of laccase and 108.9 % activity yield. These results provided an excellent platform for the application of these magnetic mesoporous nanoparticles integrated with the MSFB in developing novel protein purification process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabakar, Kumaraguru; Shirazi, Mariko; Singh, Akanksha
Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the differentmore » control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.« less
Research continues on Julia Creek shale oil project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
CSR Limited and the CSIRO Division of Mineral Engineering in Australia are working jointly on the development of a new retorting process for Julia Creek oil shale. This paper describes the retorting process which integrates a fluid bed combustor with a retort in which heat is transferred from hot shale ash to cold raw shale. The upgrading of shale oil into transport fuels is also described.
Safari, Mir Jafar Sadegh; Shirzad, Akbar; Mohammadi, Mirali
2017-08-01
May proposed two dimensionless parameters of transport (η) and mobility (F s ) for self-cleansing design of sewers with deposited bed condition. The relationships between those two parameters were introduced in conditional form for specific ranges of F s , which makes it difficult to use as a practical tool for sewer design. In this study, using the same experimental data used by May and employing the particle swarm optimization algorithm, a unified equation is recommended based on η and F s . The developed model is compared with original May relationships as well as corresponding models available in the literature. A large amount of data taken from the literature is used for the models' evaluation. The results demonstrate that the developed model in this study is superior to May and other existing models in the literature. Due to the fact that in May's dimensionless parameters more effective variables in the sediment transport process in sewers with deposited bed condition are considered, it is concluded that the revised May equation proposed in this study is a reliable model for sewer design.
Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey
1986-01-01
An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.
Mehle, Andraž; Kitak, Domen; Podrekar, Gregor; Likar, Boštjan; Tomaževič, Dejan
2018-05-09
Agglomeration of pellets in fluidized bed coating processes is an undesirable phenomenon that affects the yield and quality of the product. In scope of PAT guidance, we present a system that utilizes visual imaging for in-line monitoring of the agglomeration degree. Seven pilot-scale Wurster coating processes were executed under various process conditions, providing a wide spectrum of process outcomes. Images of pellets were acquired during the coating processes in a contactless manner through an observation window of the coating apparatus. Efficient image analysis methods were developed for automatic recognition of discrete pellets and agglomerates in the acquired images. In-line obtained agglomeration degree trends revealed the agglomeration dynamics in distinct phases of the coating processes. We compared the in-line estimated agglomeration degree in the end point of each process to the results obtained by the off-line sieve analysis reference method. A strong positive correlation was obtained (coefficient of determination R 2 =0.99), confirming the feasibility of the approach. The in-line estimated agglomeration degree enables early detection of agglomeration and provides means for timely interventions to retain it in an acceptable range. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-12-01
The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
Melin, Alexander M.; Kisner, Roger A.
2018-04-03
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Denitrification is a significant process for the removal of nitrate transported in groundwater drainage from agricultural watersheds. In this paper analytical solutions are developed for advective-reactive and nonpoint-source contaminant transport in a two-layer unconfined aquife...
Heat transfer in three-phase fluidization and bubble-columns with high gas holdups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.; Kusakabe, K.; Fan, L.S.
1993-08-01
Bubble column and three-phase fluidized bed reactors have wide applications in biotechnological and petroleum processes (Deckwer, 1985; Fan, 1989). In such biotechnological processes as fermentation and waste water treatment, small bubbles of oxygen and/or nitrogen are introduced in the column to enhance oxygen transfer and to ensure the stability of immobilized cell particles. In addition, tiny bubbles are produced during the biological process due to the production of surface active compounds. The presence of these small bubbles causes an increase in the gas holdup of the system. High gas holdups are also characteristics of industrial processes such as coal liquefactionmore » and hydrotreating of residual oils. Good understanding of the transport properties of three-phase fluidized beds with high gas holdups is essential to the design, control and optimum operations of the commercial reactors employed in the above-mentioned processes. Heat-transfer studies in three-phase fluidized beds have been reviewed recently by Kim and Laurent (1991). Past studies focused primarily on the measurements of time-averaged heat transfer from the column wall to bed (Chiu and Ziegler 1983; Muroyama et al., 1986) or on immersed heating objects to bed (Baker et al., 1978; Kato et al., 1984) in aqueous systems. Recently, Kumar et al. (1992) provided a mechanistic understanding of the heat transfer in bubbly-liquid and liquid-solid systems. The purpose of this work is to investigate the heat transfer in a three-phase fluidized bed under high gas holdup conditions. The associated hydrodynamic behavior of the system is also studied.« less
NASA Astrophysics Data System (ADS)
Zhang, Weimin; Tan, Lihai; Zhang, Guobin; Qiu, Fei; Zhan, Hongtao
2014-12-01
The aeolian processes of erosion, transport and deposition are threatening the Mogao Grottoes, a world culture heritage site. A field wind tunnel experiment was conducted atop the Mogao Grottoes using weighing sensors to quantify aeolian processes over protective gravel beds. Results reveal that aeolian erosion and deposition over gravel beds are basically influenced by gravel coverage and wind speed. Erosion is a main aeolian process over gravel beds and its strength level is mainly determined by gravel coverage: strong (<30%), medium (30-50%) and slight (>50%). Aeolian deposition only occurs when gravel coverage is equal to or greater than 30% and wind speeds are between 8 and 12 m s-1, and this process continues until the occurrence of the equilibrium coverage. In addition, the change in conditions of external sand supply affects the transition between aeolian deposition and erosion over gravel beds, and the quantity of sand transport at the height of 0-24 mm is an important indicator of aeolian deposition and erosion over gravel beds. Our results also demonstrate that making the best use of wind regime atop the Mogao Grottoes and constructing an artificial gobi surface in staggered arrays, with 30% coverage and 30-mm-high gravels and in 40 mm spacing can trap westerly invading sand flow and enable the stronger easterly wind to return the deposited sand on the gravel surface back to the Mingsha Mountain so as to minimize the damage of the blown sand flux to the Mogao Grottoes.
NASA Astrophysics Data System (ADS)
Lutsenko, N. A.; Fetsov, S. S.
2017-10-01
Mathematical model and numerical method are proposed for investigating the one-dimensional time-dependent gas flows through a packed bed of encapsulated Phase Change Material (PCM). The model is based on the assumption of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for PCM and gas. The advantage of the method is that it does not require predicting the location of phase transition zone and can define it automatically as in a usual shock-capturing method. One of the applications of the developed numerical model is the simulation of novel Adiabatic Compressed Air Energy Storage system (A-CAES) with Thermal Energy Storage subsystem (TES) based on using the encapsulated PCM in packed bed. Preliminary test calculations give hope that the method can be effectively applied in the future for modelling the charge and discharge processes in such TES with PCM.
The Topographic Design of River Channels for Form-Process Linkages.
Brown, Rocko A; Pasternack, Gregory B; Lin, Tin
2016-04-01
Scientists and engineers design river topography for a wide variety of uses, such as experimentation, site remediation, dam mitigation, flood management, and river restoration. A recent advancement has been the notion of topographical design to yield specific fluvial mechanisms in conjunction with natural or environmental flow releases. For example, the flow convergence routing mechanism, whereby shear stress and spatially convergent flow migrate or jump from the topographic high (riffle) to the low point (pool) from low to high discharge, is thought to be a key process able to maintain undular relief in gravel bedded rivers. This paper develops an approach to creating riffle-pool topography with a form-process linkage to the flow convergence routing mechanism using an adjustable, quasi equilibrium synthetic channel model. The link from form to process is made through conceptualizing form-process relationships for riffle-pool couplets into geomorphic covariance structures (GCSs) that are then quantitatively embedded in a synthetic channel model. Herein, GCSs were used to parameterize a geometric model to create five straight, synthetic river channels with varying combinations of bed and width undulations. Shear stress and flow direction predictions from 2D hydrodynamic modeling were used to determine if scenarios recreated aspects of the flow convergence routing mechanism. Results show that the creation of riffle-pool couplets that experience flow convergence in straight channels requires GCSs with covarying bed and width undulations in their topography as supported in the literature. This shows that GCSs are a useful way to translate conceptualizations of form-process linkages into quantitative models of channel form.
NASA Astrophysics Data System (ADS)
Estep, J.; Dufek, J.
2013-12-01
Granular flows are fundamental processes in several terrestrial and planetary natural events; including surficial flows on volcanic edifices, debris flows, landslides, dune formation, rock falls, sector collapses, and avalanches. Often granular flows can be two-phase, whereby interstitial fluids occupy void space within the particulates. The mobility of granular flows has received significant attention, however the physics that govern their internal behavior remain poorly understood. Here we extend upon previous research showing that force chains can transmit extreme localized forces to the substrates of free surface granular flows, and we combine experimental and computational approaches to further investigate the forces at the bed of simplified granular flows. Analog experiments resolve discrete bed forces via a photoelastic technique, while numerical experiments validate laboratory tests using discrete element model (DEM) simulations. The current work investigates (1) the role of distributed grain sizes on force transmission via force chains, and (2) how the inclusion of interstitial fluids effects force chain development. We also include 3D numerical simulations to apply observed 2D characteristics into real world perspective, and ascertain if the added dimension alters force chain behavior. Previous research showed that bed forces generated by force chain structures can transiently greatly exceed (by several 100%) the bed forces predicted from continuum approaches, and that natural materials are more prone to excessive bed forces than photoelastic materials due to their larger contact stiffnesses. This work suggests that force chain activity may play an important role in the bed physics of dense granular flows by influencing substrate entrainment. Photoelastic experiment image showing force chains in gravity driven granular flow.
Method of Heating a Foam-Based Catalyst Bed
NASA Technical Reports Server (NTRS)
Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.
2009-01-01
A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.
Fluidized-bed bioreactor system for the microbial solubilization of coal
Scott, C.D.; Strandberg, G.W.
1987-09-14
A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.
Real time test bed development for power system operation, control and cyber security
NASA Astrophysics Data System (ADS)
Reddi, Ram Mohan
The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.
1991-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the NASA Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop testbeds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC test bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in the operation and evolution of the SSF are addressed.
Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T
2018-01-22
Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.
Xie, Yi; Mun, Sungyong; Kim, Jinhyun; Wang, Nien-Hwa Linda
2002-01-01
A tandem simulated moving bed (SMB) process for insulin purification has been proposed and validated experimentally. The mixture to be separated consists of insulin, high molecular weight proteins, and zinc chloride. A systematic approach based on the standing wave design, rate model simulations, and experiments was used to develop this multicomponent separation process. The standing wave design was applied to specify the SMB operating conditions of a lab-scale unit with 10 columns. The design was validated with rate model simulations prior to experiments. The experimental results show 99.9% purity and 99% yield, which closely agree with the model predictions and the standing wave design targets. The agreement proves that the standing wave design can ensure high purity and high yield for the tandem SMB process. Compared to a conventional batch SEC process, the tandem SMB has 10% higher yield, 400% higher throughput, and 72% lower eluant consumption. In contrast, a design that ignores the effects of mass transfer and nonideal flow cannot meet the purity requirement and gives less than 96% yield.
NASA Astrophysics Data System (ADS)
Lichtman, Ian; Thorne, Peter; Baas, Jacobus; O'Boyle, Louise; Cooke, Richard; Amoudry, Laurent; Bell, Paul; Aspden, Rebecca; Bass, Sarah; Davies, Alan; Hope, Julie; Malarkey, Jonathan; Manning, Andrew; Parsons, Daniel; Paterson, David; Peakall, Jeffrey; Schindler, Robert; Ye, Leiping
2014-05-01
There is a need to better understand the effects of cohesive and mixed sediments on coastal processes, to improve sediment transport models for the management of coastal erosion, siltation of navigation channels and habitat change. Although reasonable sediment transport predictors are available for pure sands, it still is not the case for mixed cohesive and non-cohesive sediments. Existing predictors mostly relate ripple dimensions to hydrodynamic conditions and median sediment grain diameter, assuming a narrow unimodal particle size distribution. Properties typical of mixed conditions, such as composition and cohesion for example, are not usually taken into account. This presents severe shortcomings to predictors' abilities. Indeed, laboratory experiments using mixed cohesive sediments have shown that bedform dimensions decrease with increasing bed mud content. In the field, one may expect current predictors to match data for well-sorted sands closely, but poorly for mixed sediments. Our work is part of the COHBED project and aims to: (1) examine, in field conditions, if ripple dimensions are significantly different for mixed cohesive sediment beds compared to beds with pure sand; (2) compare the field data with laboratory results that showed reduced ripple length due to cohesive mud content; and (3) assess the performance of a selection of ripple predictors for mixed sediment data. The COHBED project was set up to undertake laboratory experiments and fieldwork to study how physical and biological processes influence bedform development in a mixed cohesive-cohesionless sediment environment. As part of COHBED, a suite of instruments was deployed on tidal flats in the Dee Estuary (on the NW coast of England), collecting co-located measurements of the hydrodynamics, suspended sediment properties and bed morphology. The instruments occupied three sites collecting data over different bed compositions during a two week period (21 May to 4 June 2013). One site was located above a sandy bed, and the two others were above mixed beds of different mud content. The tide covered a full cycle from neaps to neaps and the weather provided onshore and offshore winds of varying strength. Bedform measurements were taken every half an hour using an Acoustic Ripple Profiler (ARP) that covered an area of about two square metres. Dynamic measurements of tides and waves were made using an Acoustic Doppler Velocimeter (ADV) at 8 Hz. Bed samples were taken when the tidal flats dried out at low tide and a sediment trap collected suspended load near the bed. In the presentation, comparisons of the sites will be made from measurements of the proportion of mud and biological sediment binders at each site and the ripple dimensions for different hydrodynamic conditions. Key words: bed morphology, current ripple, mixed sediment, cohesion, hydrodynamics, observations, tidal flat, estuary, Dee
Asghari, Fateme; Jahanshahi, Mohsen
2012-09-28
Expanded bed adsorption (EBA), a promising and practical separation technique for adsorption of nanobioproduct/bioproduct, has been widely studied in the past two decades. The development of adsorbent with the special design for expanded bed process is a challenging course. To reduce the costs of adsorbent preparation, fine zinc powder was used as the inexpensive densifier. A series of matrices named Ag-Zn were prepared by water-in-oil emulsification method. The structure and morphology of the prepared matrix were studied by the optical microscope (OM) and scanning electron microscopy (SEM). The physical properties as a function of zinc powder ratio to agarose slurry were measured. The prepared matrices had regular spherical shape, and followed logarithmic normal size distribution with the range of 75-330 μm, mean diameter of 140.54-191.11 μm, wet density of 1.33-2.01 g/ml, water content of 0.45-0.75, porosity of 0.86-0.97 and pore size of about 40-90 nm. The bed expansion factor at the range of 2-3 was examined. The obtained results indicated that the expansion factor was decreased with increasing of matrix density. In addition, it was found that matrices with large particle size were suitable for high operation flow rate. The hydrodynamic properties were determined in expanded bed by the residence time distribution method (RTD). The effects of flow velocity, expansion factor and density of matrix on the hydrodynamic properties were also investigated. Moreover, the influence of particle size distribution on the performance of expanded bed has been studied. Therefore, three different particle size fractions (65-140, 215-280 and 65-280 μm) were assessed. The results indicated that dispersion in liquid-solid expanded beds increased with increasing flow rate and expansion factor; and matrix with a wide particle size distribution leaded to a reduced axial dispersion compared to matrices with a narrow size distribution. The axial dispersion coefficient also enhanced with the increasing of matrix density. It was found that flow rate was the most essential factor to effect on the hydrodynamic characteristics in the bed. For all the prepared matrices, the values of axial mixing coefficients (D(axl)) were smaller than 1.0 × 10⁻⁵ m²/s when flow velocities in expanded bed were less than 700 cm/h. All the results indicate that the prepared matrix show good expansion and stability in expanded bed; and it is suitable for expanded bed processes as an economical adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.
Electro-optic tracking R&D for defense surveillance
NASA Astrophysics Data System (ADS)
Sutherland, Stuart; Woodruff, Chris J.
1995-09-01
Two aspects of work on automatic target detection and tracking for electro-optic (EO) surveillance are described. Firstly, a detection and tracking algorithm test-bed developed by DSTO and running on a PC under Windows NT is being used to assess candidate algorithms for unresolved and minimally resolved target detection. The structure of this test-bed is described and examples are given of its user interfaces and outputs. Secondly, a development by Australian industry under a Defence-funded contract, of a reconfigurable generic track processor (GTP) is outlined. The GTP will include reconfigurable image processing stages and target tracking algorithms. It will be used to demonstrate to the Australian Defence Force automatic detection and tracking capabilities, and to serve as a hardware base for real time algorithm refinement.
A review of the silicon material task
NASA Technical Reports Server (NTRS)
Lutwack, R.
1984-01-01
The Silicon Material Task of the Flat-Plate Solar Array Project was assigned the objective of developing the technology for low-cost processes for producing polysilicon suitable for terrestrial solar-cell applications. The Task program comprised sections for process developments for semiconductor-grade and solar-cell-grade products. To provide information for deciding upon process designs, extensive investigations of the effects of impurities on material properties and the performance of cells were conducted. The silane process of the Union Carbide Corporation was carried through several stages of technical and engineering development; a pilot plant was the culmination of this effort. The work to establish silane fluidized-bed technology for a low-cost process is continuing. The advantages of the use of dichlorosilane is a siemens-type were shown by Hemlock Semiconductor Corporation. The development of other processes is described.
A review of the silicon material task
NASA Astrophysics Data System (ADS)
Lutwack, R.
1984-02-01
The Silicon Material Task of the Flat-Plate Solar Array Project was assigned the objective of developing the technology for low-cost processes for producing polysilicon suitable for terrestrial solar-cell applications. The Task program comprised sections for process developments for semiconductor-grade and solar-cell-grade products. To provide information for deciding upon process designs, extensive investigations of the effects of impurities on material properties and the performance of cells were conducted. The silane process of the Union Carbide Corporation was carried through several stages of technical and engineering development; a pilot plant was the culmination of this effort. The work to establish silane fluidized-bed technology for a low-cost process is continuing. The advantages of the use of dichlorosilane is a siemens-type were shown by Hemlock Semiconductor Corporation. The development of other processes is described.
FY16 Summary Report: Participation in the KOSINA Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matteo, Edward N.; Hansen, Francis D.
Salt formations represent a promising host for disposal of nuclear waste in the United States and Germany. Together, these countries provided fully developed safety cases for bedded salt and domal salt, respectively. Today, Germany and the United States find themselves in similar positions with respect to salt formations serving as repositories for heat-generating nuclear waste. German research centers are evaluating bedded and pillow salt formations to contrast with their previous safety case made for the Gorleben dome. Sandia National Laboratories is collaborating on this effort as an Associate Partner, and this report summarizes that teamwork. Sandia and German research groupsmore » have a long-standing cooperative approach to repository science, engineering, operations, safety assessment, testing, modeling and other elements comprising the basis for salt disposal. Germany and the United States hold annual bilateral workshops, which cover a spectrum of issues surrounding the viability of salt formations. Notably, recent efforts include development of a database for features, events, and processes applying broadly and generically to bedded and domal salt. Another international teaming activity evaluates salt constitutive models, including hundreds of new experiments conducted on bedded salt from the Waste Isolation Pilot Plant. These extensive collaborations continue to build the scientific basis for salt disposal. Repository deliberations in the United States are revisiting bedded and domal salt for housing a nuclear waste repository. By agreeing to collaborate with German peers, our nation stands to benefit by assurance of scientific position, exchange of operational concepts, and approach to elements of the safety case, all reflecting cost and time efficiency.« less
Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS
NASA Astrophysics Data System (ADS)
Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.
Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.
Fluidized bed deposition of diamond
Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.
1998-01-01
A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.
Packed fluidized bed blanket for fusion reactor
Chi, John W. H.
1984-01-01
A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.
USDA-ARS?s Scientific Manuscript database
One of the challenges of hydraulic experimentation is designing experiments that are complex enough to capture relevant processes while retaining the simplicity necessary for useful, accurate measurements. The intricacy of the interactions between turbulent flows and mobile beds in rivers and stream...
NASA Astrophysics Data System (ADS)
Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad
2013-06-01
Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-11-30
Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report wasmore » submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.« less
Staged fluidized-bed combustion and filter system
Mei, Joseph S.; Halow, John S.
1994-01-01
A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.
Process for converting cellulosic materials into fuels and chemicals
Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan
1994-01-01
A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.
NASA Technical Reports Server (NTRS)
Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This
Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich
2017-06-30
Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright © 2017 Elsevier B.V. All rights reserved.
Fine Sediment Residency in Streambeds in Southeastern Australia.
NASA Astrophysics Data System (ADS)
Croke, J. C.; Thompson, C. J.; Rhodes, E.
2007-12-01
A detailed understanding of channel forming and maintenance processes in streams requires some measurement and/or prediction of bed load transport and sediment mobility. Traditional field based measurements of such processes are often problematic due to the high discharge characteristics of upland streams. In part to compensate for such difficulties, empirical flow competence equations have also been developed to predict armour or bedform stabilising grain mobility. These equations have been applied to individual reaches to predict the entrainment of a threshold grain size and the vertical extent of flushing. In cobble- and boulder-bed channels the threshold grain size relates to the size of the bedform stabilising grains (eg. D84, D90). This then allows some prediction of when transport of the matrix material occurs. The application of Optically Stimulated Luminescence (OSL) dating is considered here as an alternative and innovative way to determine fine sediment residency times in stream beds. Age estimates derived from the technique are used to assist in calibrating sediment entrainment models to specific channel types and hydrological regimes. The results from a one-dimensional HEC-RAS model indicate that recurrence interval floods exceeding bankfull up to 13 years are competent to mobilise the maximum overlying surface grain sizes at the sites. OSL minimum age model results of well bleached quartz in the fine matrix particles are in general agreement with selected competence equation predictions. The apparent long (100-1400y) burial age of most of the mineral quartz suggests that competent flows are not able to flush all subsurface fine-bed material. Maximum bed load exchange (flushing) depth was limited to twice the depth of the overlying D90 grain size. Application of OSL in this study provides important insight into the nature of matrix material storage and flushing in mountain streams.
Bichai, Françoise; Barbeau, Benoit; Dullemont, Yolanda; Hijnen, Wim
2010-02-01
The significance of zooplankton in the transport and fate of pathogenic organisms in drinking water is poorly understood, although many hints of the role of predation in the persistence of microorganisms through water treatment processes can be found in literature. The objective of this study was to assess the impact of predation by natural zooplankton on the transport and fate of protozoan (oo)cysts in granular activated carbon (GAC) filtration process. UV-irradiated unlabelled Cryptosporidium parvum and Giardia lamblia (oo)cysts were seeded into two pilot-scale GAC filtration columns operated under full-scale conditions. In a two-week period after seeding, a reduction of free (oo)cysts retained in the filter bed was observed. Zooplankton was isolated from the filter bed and effluent water on a 30 microm net before and during the two-week period after seeding; it was enumerated and identified. Rotifers, which are potential predators of (oo)cysts, accounted for the major part of the isolated zooplankton. Analytical methods were developed to detect (oo)cysts internalized in natural zooplankton isolated from the filter bed and effluent water. Sample sonication was optimized to disrupt zooplankton organisms and release internalized microorganisms. (Oo)cysts released from zooplankton after sonication were isolated by IMS and stained (EasyStain) for microscopic counting. Both Cryptosporidium and Giardia (oo)cysts were detected in association with zooplankton in the filter bed samples as well as in the effluent of GAC filters. The results of this study suggest that predation by zooplankton can play a role in the remobilization of persistent pathogens such as Cryptosporidium and Giardia (oo)cysts retained in GAC filter beds, and consequently in the transmission of these pathogens in drinking water. Copyright 2009 Elsevier Ltd. All rights reserved.
Additive Manufacturing of Advanced High Temperature Masking Fixtures for EBPVD TBC Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
List, III, Frederick Alyious; Feuerstein, Albert; Dehoff, Ryan
2016-03-30
The purpose of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Praxair Surface Technologies, Inc. (PST) and Oak Ridge National Laboratory (ORNL) was to develop an additive manufacturing process to fabricate next generation high temperature masking fixtures for coating of turbine airfoils with ceramic Thermal Barrier Coatings (TBC) by the Electron Beam Physical Vapor Deposition (EBPVD) process. Typical masking fixtures are sophisticated designs and require complex part manipulation in order to achieve the desired coating distribution. Fixtures are typically fabricated from high temperature nickel (Ni) based superalloys. The fixtures are fabricated from conventional processes by welding of thin sheetmore » material into a complex geometry, to decrease the weight load for the manipulator and to reduce the thermal mass of the fixture. Recent attempts have been made in order to fabricate the fixtures through casting, but thin walled sections are difficult to cast and have high scrap rates. This project focused on understanding the potential for fabricating high temperature Ni based superalloy fixtures through additive manufacturing. Two different deposition processes; electron beam melting (EBM) and laser powder bed fusion were evaluated to determine the ideal processing route of these materials. Two different high temperature materials were evaluated. The high temperature materials evaluated were Inconel 718 and another Ni base alloy, designated throughout the remainder of this document as Alloy X, as the alloy composition is sensitive. Inconel 718 is a more widely utilized material for additive manufacturing although it is not currently the material utilized for current fixtures. Alloy X is the alloy currently used for the fixtures, but is not a commercially available alloy for additive manufacturing. Praxair determined it was possible to build the fixture using laser powder bed technology from Inconel 718. ORNL fabricated the fixture geometry using the EBM technology in order to compare deposition features such as surface roughness, geometric accuracy, deposition rate, surface and subsurface porosity, and material quality. It was determined that the laser powder bed technology was ideal for the geometry and requirements of the fixture set by Praxair, and Praxair moved forward with the purchase of a laser powder bed system. The subsequent portion of the project focused on determining the ideal processing parameters for alloy X for the laser powder bed system using ORNL’s Renishaw laser powder bed system. Praxair supplied gas atomized powders of alloy X material with properties specified by ORNL. ORNL printed text cube arrays in order to determine the ideal combination of laser powder and laser travel speed in order to maximize material density, improve surface quality, and maintain geometric accuracy. Additional powder supplied by Praxair was used to fabricate a full-scale fixture component.« less
Komar, S; Miskewitz, R; Westendorf, M; Williams, C A
2012-03-01
Our objective in this study is to compare 4 of the most common bedding materials used by equine operations on the chemical and physical characteristics of composted equine stall waste. Twelve Standardbred horses were adapted to the barn and surrounding environment for 2 wk before the start of the study. Groups of 3 horses were bedded on 1 of 4 different bedding types (wood shavings, pelletized wood materials, long straw, and pelletized straw) for 16 h per day for 18 d. Stalls were cleaned by trained staff daily, and all contents removed were weighed and stored separately by bedding material on a level covered concrete pad for the duration of the study. Compost piles were constructed using 3 replicate piles of each bedding type in a randomized complete block design. Each pile was equipped with a temperature sensor and data logger. Water was added and piles were turned weekly throughout the 100-d compost process. Initial and final samples were taken, dried, and analyzed for DM mass, OM, inorganic nitrogen (nitrate-N and ammonium-N), electrical conductivity, and soluble (plant-available) nutrients. Data were analyzed using the GLM procedure, and means were separated using Fischer's protected LSD test (P < 0.05). No significant temperature differences were observed among the bedding materials. The composting process resulted in significant reductions (P < 0.05) in DM mass for each of the 4 bedding materials. The composting process resulted in significant reductions (P < 0.05) in OM and C:N ratio for all 4 bedding materials. The composted long straw material had greater concentrations of total Kjeldahl nitrogen (P < 0.05), nitrate-N (P < 0.05), and ammonium-N (P < 0.05) than the composted wood shavings. This study demonstrated that incorporating a simple aerobic composting system may greatly reduce the overall volume of manure and yield a material that is beneficial for land application in pasture-based systems. The straw-based materials may be better suited for composting and subsequent land application; however, factors such as suitability of the bedding material for equine use, material cost, labor, and availability must be considered when selecting a bedding material.
NASA Astrophysics Data System (ADS)
Sylvia, N.; Hakim, L.; Fardian, N.; Yunardi
2018-03-01
When the manganese is under the acceptable limit, then the removal of Fe (II) ion, the common metallic compound contained in groundwater, is one of the most important stages in the processing of groundwater to become potable water. This study was aimed at investigating the performance of a fixed-bed adsorption column filled, with activated carbon prepared from palm kernel shells, in the removal of Fe (II) ion from groundwater. The influence of important parameters such as bed depth and the flow rate was investigated. The bed depth adsorbent was varied at 7.5, 10 and 12 cm. At a different flow rate of 6, 10 and 14 L/minute. The Atomic Absorb Spectrophotometer was used to measure the Fe (II) ion concentration, thereafter the results were confirmed using a breakthrough curve showing that flow rate and bed depth affected the curve. The mathematical model that used to predict the result was the Thomas and Adams-Bohart model. This model is used to process design, in which predicting time and bed depth needed to meet the breakthrough. This study reveals that the Thomas model was the most appropriate one, including the use of Palm Kernel Shell for processing groundwater. According to the Thomas Model, the highest capacity of adsorption (66.189 mg/g) of 0.169-mg/L of groundwater was achieved with a flow rate of 6 L/minute, with the bed depth at 14 cm.
NASA Astrophysics Data System (ADS)
Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri
2018-02-01
Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Ralph L.; Seitz, Roger R.; Dixon, Kenneth L.
The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the informationmore » necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... approach that incorporates ``mass balance'' constraints to determine emissions from AFOs. Unfortunately... ventilation rate of the monitored confinement structure. Nitrogen content of process inputs and outputs (e.g., feed, water, bedding, eggs, milk). Nitrogen content of manure excreted. Description of any control...
2006-09-23
Roblee et al., 1958). Kubie (1988) derived a theoretical wall density function and compared it to experimental results. Reyes and Iglesia (1991) and...Engineering Chemistry Process Design and Development 7, 250-252. Kubie . J., 1988. Influence of containing walls on the distribution of voidage in
Digital Portfolios in Pre-Service Teacher Education
ERIC Educational Resources Information Center
Woodward, Helen; Nanlohy, Philip
2004-01-01
With the pre-service student portfolio process and product well in hand in a paper-based format, in the Bachelor of Education (Primary) (B.Ed. Primary) at University of Western Sydney (UWS), new horizons have presented themselves. These new possibilities are facilitated but not driven by developments in Information and Communication Technology…
USDA-ARS?s Scientific Manuscript database
This chapter presents the development and application of a three-dimensional water quality model for predicting the distributions of nutrients, phytoplankton, dissolved oxygen, etc., in natural lakes. In this model, the computational domain was divided into two parts: the water column and the bed se...
Fixed-bed bioreactor system for the microbial solubilization of coal
Scott, C.D.; Strandberg, G.W.
1987-09-14
A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.
Gas distributor for fluidized bed coal gasifier
Worley, Arthur C.; Zboray, James A.
1980-01-01
A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.
Helman, Donald L; Sherner, John H; Fitzpatrick, Thomas M; Callender, Marcia E; Shorr, Andrew F
2003-09-01
Semirecumbent head-of-bed positioning in mechanically ventilated patients decreases the risk of developing ventilator-associated pneumonia (VAP). The purpose of this study was to determine whether the addition of a standardized order followed by the initiation of a provider education program would increase the frequency with which our patients were maintained in the semirecumbent position. Prospective, pre-, and postintervention observational study. A tertiary care, U.S. Army teaching hospital. Mechanically ventilated medical and surgical intensive care unit patients. The first intervention involved the addition of an order for semirecumbent head-of-bed positioning to our intensive care unit order sets. This was followed 2 months later with a second intervention, which was a nurse and physician education program emphasizing semirecumbent positioning. Data regarding head-of-bed positioning were collected on 100 patient observations at baseline and at 1 and 2 months after each of our interventions. The mean angle of head of bed increased from 24 +/- 9 degrees at baseline to 35 +/- 9 degrees (p <.05) 2 months after the addition of the standard order. The percentage of observations with head of bed >45 degrees increased from 3% to 16% 2 months after the standardized order (p <.05). Two months after our provider education program, the mean angle of the head of bed was 34 +/- 11 degrees and the percentage of patients with head of bed >45 degrees was 29% (p = NS compared with values after the first intervention). Data collected 6 months after completion of our education programs showed that these improvements were maintained. Standardizing the process of care via the addition of an order specifying head-of-bed position significantly increased the number of patients who were placed in the semirecumbent position. In an era of cost-conscious medicine, interventions that utilize protocols and education programs should be emphasized.
NASA Astrophysics Data System (ADS)
Abbasi, Iftikhar Ahmed
2017-04-01
Early Paleozoic siliciclastics sediments of the Haima Supergroup are subdivided into a number of formations and members based on lithological characteristics of various rock sequences. One of the distinct sandstone sequence, the Barik Formation (Late Cambrian-Early Ordovician) of the Andam Group is a major deep gas reservoir in central Oman. The sandstone bodies are prospective reservoir rocks while thick shale and clay interbeds act as effective seal. Part of the Barik Formation (lower and middle part) is exposed in isolated outcrops in Al Huqf area as interbedded multistoried sandstone, and green and red shale. The sandstone bodies are up to 2 meters thick and can be traced laterally for 300 m to over 1 km. Most of sandstone bodies show both lateral and vertical stacking. Two types of sandstone lithofacies are identified on the basis of field characteristics; a plane-bedded sandstone lithofacies capping thick red and green color shale beds, and a cross-bedded sandstone lithofacies overlying the plane-bedded sandstone defining coarsening upward sequences. The plane-bedded sandstone at places contains Cruziana ichnofacies and bivalve fragments indicating deposition by shoreface processes. Thick cross-bedded sandstone is interpreted to be deposited by the fluvial dominated deltaic processes. Load-casts, climbing ripples and flaser-bedding in siltstone and red shale indicate influence of tidal processes at times during the deposition of the formation. This paper summarizes results of a study carried out in Al Huqf area outcrops to analyze the characteristics of the sandstone-body geometry, internal architecture, provenance and diagenetic changes in the lower and middle part of the formation. The study shows build-up of a delta complex and its progradation over a broad, low-angle shelf where fluvial processes operate beside shoreface processes in a vegetation free setting. Keywords: Andam Group, Barik Formation, Ordovician sandstone, Al Huqf, Central Oman,
Fixed-bed operation for manganese removal from water using chitosan/bentonite/MnO composite beads.
Muliwa, Anthony M; Leswifi, Taile Y; Maity, Arjun; Ochieng, Aoyi; Onyango, Maurice S
2018-04-24
In the present study, a new composite adsorbent, chitosan/bentonite/manganese oxide (CBMnO) beads, cross-linked with tetraethyl-ortho-silicate (TEOS) was applied in a fixed-bed column for the removal of Mn (II) from water. The adsorbent was characterised by scanning electron microscopy (SEM), Fourier transform infra-red (FT-IR), N 2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS) techniques, and moreover the point of zero charge (pH pzc ) was determined. The extend of Mn (II) breakthrough behaviour was investigated by varying bed mass, flow rate and influent concentration, and by using real environmental water samples. The dynamics of the column showed great dependency of breakthrough curves on the process conditions. The breakthrough time (t b ), bed exhaustion time (t s ), bed capacity (q e ) and the overall bed efficiency (R%) increased with an increase in bed mass, but decreased with the increase in both influent flow rate and concentration. Non-linear regression suggested that the Thomas model effectively described the breakthrough curves while large-scale column performance could be estimated by the bed depth service time (BDST) model. Experiments with environmental water revealed that coexisting ions had little impact on Mn (II) removal, and it was possible to achieve 6.0 mg/g breakthrough capacity (q b ), 4.0 L total treated water and 651 bed volumes processed with an initial concentration of 38.5 mg/L and 5.0 g bed mass. The exhausted bed could be regenerated with 0.001 M nitric acid solution within 1 h, and the sorbent could be reused twice without any significant loss of capacity. The findings advocate that CBMnO composite beads can provide an efficient scavenging pathway for Mn (II) in polluted water.
Effect of Moxidectin on Bed Bug Feeding, Development, Fecundity, and Survivorship.
Zha, Chen; Wang, Changlu; Sheele, Johnathan Michael
2017-09-30
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is a blood-feeding ectoparasite which experienced world-wide resurgence during recent decades. The control of bed bugs is often challenging, due to their cryptic nature and resistance to commonly used insecticides. In this study, we evaluated the effect of the antiparasitic drug moxidectin on bed bug survival, reproduction, and development. The LC 50 (lethal concentration to kill half the members of a tested population) of moxidectin against bed bug male adults, female adults, and large nymphs were 52.7 (95% CI (confidence interval): 39.5-70.8), 29.3 (95% CI: 20.7-40.5), and 29.1 ng/mL (95% CI: 23.3-35.3), respectively. Moxidectin (≥ 25 ng/mL) reduced egg laying of bed bug females, but showed no significant effect on egg hatching. One time feeding on rabbit blood containing 20 and 40 ng/mL moxidectin showed no negative effects in bed bug feeding and blood meal ingestion, but significantly reduced digestion rates and nymph molting rates. Although moxidectin at concentrations of 20 and 40 ng/mL only caused moderate mortality in bed bugs, it significantly interrupted digestion, development, and oviposition of survived bed bugs for at least one week after feeding. Moxidectin is a promising supplement of the existing bed bug control materials if its use on humans can be approved in the future.
Determination of Electrical Resistivity of Dry Coke Beds
NASA Astrophysics Data System (ADS)
Eidem, P. A.; Tangstad, M.; Bakken, J. A.
2008-02-01
The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500 °C to 1600 °C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450 °C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.
Stapleton, Jerod L; Crabtree, Benjamin F
2017-04-04
Many young women experiment with using indoor tanning beds with some becoming regular users. There is a dearth of research focused on factors related to the development of regular tanning. This study was designed to gain an in-depth understanding of the experiences of a regular indoor tanning bed user for the purpose of discovering working hypotheses related to the development of this behavior. The article thesis is that initial interactions with tanning salon employees transmit insider knowledge that serves to encourage the regular use of indoor tanning beyond experimentation. We used Spradley's ethnographic interviewing technique to conduct six iterative interviews with a key informant who was an active indoor tanning bed user and former salon employee. The research was completed in the United States in 2015. The informant described her experiences as a salon employee including her interactions with salon patrons. The informant was trained as a salon employee to talk about tanning as a complex process that requires multiple salon visits to achieve desired results and to develop rapport with salon patrons to be viewed as an important source of guidance and advice. In the informant's experience, indoor tanning users who viewed tanning as a complex process and felt connected to salon employees were more receptive to purchasing larger amounts of bulk tanning sessions and committing to purchasing salon memberships. Findings provide insights into our understanding of the development of regular tanning behavior and we propose working hypotheses about this behavior to be examined in future research. There are also implications for policy makers to reduce excessive tanning behaviors including considering point-of-sale regulations that limit sales techniques of salon employees and pricing restrictions.
NASA Astrophysics Data System (ADS)
Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.
2018-02-01
Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.
Mi, Jianing; Zhang, Min; Zhang, Hongyang; Wang, Yuerong; Wu, Shikun; Hu, Ping
2013-02-01
A high-efficient and environmental-friendly method for the preparation of ginsenosides from Radix Ginseng using the method of coupling of ultrasound-assisted extraction with expanded bed adsorption is described. Based on the optimal extraction conditions screened by surface response methodology, ginsenosides were extracted and adsorbed, then eluted by the two-step elution protocol. The comparison results between the coupling of ultrasound-assisted extraction with expanded bed adsorption method and conventional method showed that the former was better than the latter in both process efficiency and greenness. The process efficiency and energy efficiency of the coupling of ultrasound-assisted extraction with expanded bed adsorption method rapidly increased by 1.4-fold and 18.5-fold of the conventional method, while the environmental cost and CO(2) emission of the conventional method were 12.9-fold and 17.0-fold of the new method. Furthermore, the theoretical model for the extraction of targets was derived. The results revealed that the theoretical model suitably described the process of preparing ginsenosides by the coupling of ultrasound-assisted extraction with expanded bed adsorption system. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluidized bed selective pyrolysis of coal
Shang, J.Y.; Cha, C.Y.; Merriam, N.W.
1992-12-15
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.
Fluidized bed selective pyrolysis of coal
Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.
1992-01-01
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.
Electrowinning apparatus and process
Buschmann, Wayne E [Boulder, CO
2012-06-19
Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.
NASA Astrophysics Data System (ADS)
Asmus, H.; Asmus, R.
2000-07-01
Material exchange, biodiversity and trophic transfer within the food web were investigated in two different types of intertidal seagrass beds: a sheltered, dense Zostera marina bed and a more exposed, sparse Z. noltii bed, in the Northern Wadden Sea. Both types of Zostera beds show a seasonal development of above-ground biomass, and therefore measurements were carried out during the vegetation period in summer. The exchange of particles and nutrients between seagrass beds and the overlying water was measured directly using an in situ flume. Particle sedimentation [carbon (C), nitrogen (N) and phosphorus (P) constituents] from the water column prevailed in dense seagrass beds. In the sheltered, dense seagrass bed, a net particle uptake was found even on windy days (7-8 Beaufort). Dissolved inorganic N and orthophosphate were mainly taken up by the dense seagrass bed. At times of strong winds, nutrients were released from the benthic community to tidal waters. In a budget calculation of total N and total P, the dense seagrass beds were characterised as a material sink. The seagrass beds with sparse Z. noltii were a source of particles even during calm weather. The uptake of dissolved inorganic N in the sparse seagrass bed was low but significant, while the uptake of inorganic phosphate and silicate by seagrasses and their epiphytes was exceeded by release processes from the sediment into the overlying water. Estimates at the ecosystem level showed that material fluxes of seagrass beds in the Sylt-Rømø Bight are dominated by the dense type of Zostera beds. Therefore, seagrass beds act as a sink for particles and for dissolved inorganic nutrients. During storms, seagrass beds are distinct sources for inorganic nutrients. The total intertidal area of the Sylt-Rømø Bight could be described as a sink for particles and a source for dissolved nutrients. This balance of the material budget was estimated by either including or excluding seagrass beds. Including the subtidal part, the function of the ecosystem as a source for particles increased, supposing that all seagrass beds were lost from the area. During the vegetation period, seagrass beds act as a storage compartment for material accumulated in the living biomass of the community. There was great biodiversity among the plant and animal groups found in intertidal seagrass beds of the Sylt-Rømø Bay, representing 50-86% of the total number of species investigated, depending on the particular group. Since most species are not exclusively seagrass residents, the loss of intertidal seagrass beds would be of minor importance for biodiversity at the ecosystem level. Food web structure in seagrass beds is different from other intertidal communities. Primary production and detritus input is high, but secondary production is similar to that of unvegetated areas, although the relative importance of the trophic guilds is different. The loss of seagrass beds leads to profound alterations in the food web of the total ecosystem. Historical as well as recent changes in material fluxes and energy flow due to man-made alterations to the ecosystem are discussed.
Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling
NASA Astrophysics Data System (ADS)
Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.
2012-12-01
Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in representative live-bed meandering waterways and simulated numerically to systematically investigate the sensitivity of various design and installation parameters on structure performance and reliability. Waterway geometries are selected by a statistical classification of rivers and streams to represent typical sand-bed and gravel-bed systems found in nature. Results will be presented for rock vanes, J-hook vanes and bendway weirs. Our findings provide novel physical insights into the effects of various in-stream structures on turbulent flow and sediment transport processes in meandering rivers, underscore these effects for different stream-bed materials, and demonstrate how such physics-based analysis can yield design guidelines that often challenge what is commonly done in practice today. To our knowledge, our work is the first systematic attempt to employ advanced numerical modeling coupled with massively parallel supercomputers to design hydraulic structures for stream restoration. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, National Cooperative Highway Research Program Grant NCHRP-HR 24-33.
Development of a flexible test-bed for robotics, telemanipulation and servicing research
NASA Technical Reports Server (NTRS)
Davies, Barry F.
1989-01-01
The development of a flexible operation test-bed, based around a commercially available ASEA industrial robot is described. The test-bed was designed to investigate fundamental human factors issues concerned with the unique problems of robotic manipulation in the hostile environment of Space.
Process for the production of fuel gas from coal
Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.
1982-01-01
An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.
NASA Astrophysics Data System (ADS)
Moretti, M.; Ronchi, A.
2011-04-01
Superbly exposed soft-sediment deformation structures in Pleistocene fluvio-lacustrine deposits along the southern border of the depression area called Bajo de Añelo (Departamento de Añelo, Neuquén Basin) have been analysed. In the study area, five stratigraphic sections were measured in detail: facies distributions and stacking patterns show that these sediments result from the interaction between fluvial and lacustrine systems, represented by cross-bedded and rippled strata, and varved deposits. The lateral extent of the deformation is some hundred metres and the deformed bed involves the lower-mid part of the 30-metre-thick succession. Deformation affects about 1.5 m of coarse-grained sand, fine-grained sand and rare gravel alternations. The base and top of the deformed layer are defined by planar surfaces: undeformed beds of similar thickness, lithology and facies to the deformed layer occur above and below. Deformation is represented by a complex vertical succession of disturbed layers: each layer shows a general load-structure morphology. It can be described as a multilayered unstable density gradient system: in each bed a partial gravitational re-adjustment occurred after liquefaction. Unequal loading related to lateral variation of both bed thickness and grain packing and porosity is a probable additional driving force that can be described in the undeformed beds. Trigger mechanism recognition for the observed liquefaction features can be based on the study of the geometry of deformed beds and on facies analysis results. Two key factors drive our interpretation: (1) the occurrence of undeformed beds below and above the deformed bed; (2) deformed and undeformed beds showing the same sedimentological features. These field data allow us to exclude the action of internal erosive and/or sedimentary processes (such as overloading, wave action, etc.) as possible trigger agents for liquefaction since deformation is totally absent in beds with similar sedimentary features. Furthermore, each internal erosive and/or sedimentary process can be discussed and easily excluded by analysing its specific signature in the geological record. Having excluded every possible internal trigger (autokinetic processes), the observed liquefaction effects can reasonably be interpreted as seismically induced (allokinetic trigger). From this point of view, this deformed bed is an important record of seismic activity in this sector of the Neuquén Basin during the Pleistocene.
Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rue, David
The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work inmore » this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner was stable over the full oxygen to fuel firing range (0.8 to 1.05 of fuel gas stoichiometry) and with all fuel gases (natural gas and two syngas compositions), with steam, and without steam. The lower Btu content of the syngases presented no combustion difficulties. The molten bed was stable throughout testing. The molten bed was easily established as a bed of molten glass. As the composition changed from glass cullet to cullet with slag, no instabilities were encountered. The bed temperature and product syngas temperature remained stable throughout testing, demonstrating that the bed serves as a good heat sink for the gasification process. Product syngas temperature measured above the bed was stable at ~1600ºF. Testing found that syngas quality measured as H 2/CO ratio increased with decreasing oxygen to fuel gas stoichiometric ratio, higher steam to inlet carbon ratio, higher temperature, and syngas compared with natural gas. The highest H 2/CO ratios achieved were in the range of 0.70 to 0.78. These values are well below the targets of 1.5 to 2.0 that were expected and were predicted by modeling. The team, however, is encouraged that the HMB process can and will achieve H 2/CO ratios up to 2.0. Changes needed include direct injection of coal into the molten bed of slag to prevent coal particle bypass into the product gas stream, elevation of the molten bed temperature to approximately 2500ºF, and further decrease of the oxygen to fuel gas ratio to well below the 0.85 minimum ratio used in the testing in this project.« less
ERIC Educational Resources Information Center
Burnham, Melissa M.
2007-01-01
The purpose of the current study was to investigate the development of sleep-wake and melatonin diurnal rhythms over the first 3 months of life, and the potential effect of bed-sharing on their development. It was hypothesized that increased maternal contact through bed-sharing would affect the development of rhythms in human infants. Ten…
Fluidized bed heating process and apparatus
NASA Technical Reports Server (NTRS)
McHale, Edward J. (Inventor)
1981-01-01
Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleland, J.; Purvis, C.R.
1998-06-01
The paper discusses a biomass energy conversion project being sponsored by EPA to demonstrate an enviromentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple economical operation for units < 10 MW, and (3) the option of a clean cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving-bed gasifier utilizing hogged waste wood from the Marine Corps Base atmore » Camp Lejeune, NC. A moving-bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are described briefly, relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined.« less
Biostratinomic processes for the development of mud-cast logs in Carboniferous and Holocene swamps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastaldo, R.A.; Demko, T.M.; Liu, Yuejin
1989-08-01
Prostrate trees are common features of fossil forest litters, and are frequently preserved as mud-casts. Specimens of Carboniferous mud-cast trees and a mud-filled incipient cast of a Holocene Taxodium have been investigated to determine the biostratinomic processes responsible for their formation. These processes are complex. Hollowing of tree trunks may take place during life or by degradation after death. Once the trunk has fallen, the hollow cavity is supported by surrounding wood and/or bark tissues and acts as a conduit for sediment-laden waters. Leaf litter may be preserved on bedding surfaces. The infilling sequence of horizontal, parallel bedded, fine-grained sedimentmore » is deposited from suspended load during multiple overbank flooding events. These results differ from experimentally produced pith casts in which the sediment grain size is of fine sand. In Holocene specimens, alluvial mud within the log may provide a substrate for infaunal invertebrates. No evidence of infaunal burrowing in Carboniferous analogues exists.« less
Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.K.; Lee, J.B.; Ahn, D.H.
2002-09-19
Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermicmore » nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, M.J.; Abbasian, J.; Akin, C.
1992-05-01
This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less
Manganelli, Joe; Threatt, Anthony; Brooks, Johnell O; Healy, Stan; Merino, Jessica; Yanik, Paul; Walker, Ian; Green, Keith
2014-01-01
This article presents the results of a qualitative study that confirmed, classified, and prioritized user needs for the design of a more useful, usable, and actively assistive over-the-bed table. Manganelli et al. (2014) generated a list of 74 needs for use in developing an actively assistive over-the-bed table. This present study assesses the value and importance of those needs. Fourteen healthcare subject matter experts and eight research and design subject matter experts engaged in a participatory and iterative research and design process. A mixed methods qualitative approach used methodological triangulation to confirm the value of the findings and ratings to establish importance. Open and closed card sorts and a Delphi study were used. Data analysis methods included frequency analysis, content analysis, and a modified Kano analysis. A table demonstrating the needs that are of high importance to both groups of subject matter experts and classification of the design challenges each represents was produced. Through this process, the list of 74 needs was refined to the 37 most important need statements for both groups. Designing a more useful, usable, and actively assistive over-the-bed table is primarily about the ability to position it optimally with respect to the user for any task, as well as improving ease of use and usability. It is also important to make explicit and discuss the differences in priorities and perspectives demonstrated between research and design teams and their clients. © 2014 Vendome Group, LLC.
Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2018-02-15
The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.
Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor
NASA Astrophysics Data System (ADS)
Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.
2017-01-01
Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.
Development of system design information for carbon dioxide using an amine type sorber
NASA Technical Reports Server (NTRS)
Rankin, R. L.; Roehlich, F.; Vancheri, F.
1971-01-01
Development work on system design information for amine type carbon dioxide sorber is reported. Amberlite IR-45, an aminated styrene divinyl benzene matrix, was investigated to determine the influence of design parameters of sorber particle size, process flow rate, CO2 partial pressure, total pressure, and bed designs. CO2 capacity and energy requirements for a 4-man size system were related mathematically to important operational parameters. Some fundamental studies in CO2 sorber capacity, energy requirements, and process operation were also performed.
Bringing in the "CIA": A New Process to Improve Staff Communication.
Hunter, Rebecca; Mitchell, Jinjer; Loomis, Elena
2015-01-01
Nurses consistently express dissatisfaction with the overwhelming amount and rate of change in health care today. Nurse educators identified this as a problem at a 475-bed hospital and developed a process to present changes in information in a new and exciting method. This article reports on the identification and implementation of the new communication model and the lessons learned during the process. A new method for communication dissemination was designed utilizing a "Coordinator Information Advisory Group" concept.
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Process for converting cellulosic materials into fuels and chemicals
Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.
1994-09-20
A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.
Advanced CO2 Removal Technology Development
NASA Technical Reports Server (NTRS)
Finn, John E.; Verma, Sunita; Forrest, Kindall; LeVan, M. Douglas
2001-01-01
The Advanced CO2 Removal Technical Task Agreement covers three active areas of research and development. These include a study of the economic viability of a hybrid membrane/adsorption CO2 removal system, sorbent materials development, and construction of a database of adsorption properties of important fixed gases on several adsorbent material that may be used in CO2 removal systems. The membrane/adsorption CO2 removal system was proposed as a possible way to reduce the energy consumption of the four-bed molecular sieve system now in use. Much of the energy used by the 4BMS is used to desorb water removed in the device s desiccant beds. These beds might be replaced by a desiccating membrane that moves the water from [he incoming stream directly into the outlet stream. The approach may allow the CO2 removal beds to operate at a lower temperature. A comparison between models of the 4BMS and hybrid systems is underway at Vanderbilt University. NASA Ames Research Center has been investigating a Ag-exchanged zeolites as a possible improvement over currently used Ca and Na zeolites for CO2 removal. Silver ions will complex with n:-bonds in hydrocarbons such as ethylene, giving remarkably improved selectivity for adsorption of those materials. Bonds with n: character are also present in carbon oxides. NASA Ames is also continuing to build a database for adsorption isotherms of CO2, N2, O2, CH4, and Ar on a variety of sorbents. This information is useful for analysis of existing hardware and design of new processes.
Species removal from aqueous radioactive waste by deep-bed filtration.
Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta
2018-05-26
Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Experimental and theoretical study of diesel soot reactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcuccilli, F; Gilot, P.; Stanmore, B.
1994-12-31
In order to provide data for modelling the performance of a regenerative soot filter, a study of the oxidation kinetics of diesel soot in the temperature range from 600 C to 800 C was undertaken. Isothermal burning rates at a number of temperatures were measured in rectangular soot beds within a thermobalance. The technique was easy to use, but the combustion rate was found to depend on bed mass. The oxidation process was thus limited by mass transfer effects. A two-dimensional mathematical model of oxygen transfer was developed to extract the true kinetic rates from experimental data. The two-dimensional approachmore » was required because significant oxygen depletion occurred along both axes. Using assumed kinetic rates, oxygen concentration profiles in the gas phase above the bed and within the bed were calculated. The true kinetics at a number of temperatures were, then established by matching predicted oxygen consumption with measured consumption. Application of the model required values of the effective diffusion coefficient for oxygen within the bed. Accordingly, the structure and properties of the soot aggregates were determined. A supplements study was carried out to identify the appropriate primary reaction products. The measured kinetic rates were then used in a simpler, monodimensional model to evaluate the mean oxygen mass transfer coefficients to the surface of the bed. The results show that burning below about 730 C is in regime 1 and can be described by K = 6.9 {times} 10{sup 12} exp ({minus}207,000/RT) (s{sup {minus}1}) with R = 8.314 J/mol {times} K. Above, 730 C, there is a decrease in apparent activation energy, probably due to thermal ``annealing,`` which changes the microstructure of the carbon. As a result, the inherent reactivity declines and/or the bed becomes less accessible to oxygen.« less
John Pitlick; Yantao Cui; Peter Wilcock
2009-01-01
This manual provides background information and instructions on the use of a spreadsheet-based program for Bedload Assessment in Gravel-bed Streams (BAGS). The program implements six bed load transport equations developed specifically for gravel-bed rivers. Transport capacities are calculated on the basis of field measurements of channel geometry, reach-average slope,...
Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process
NASA Technical Reports Server (NTRS)
Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.
2001-01-01
The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.
Development of a fixed bed gasifier model and optimal operating conditions determination
NASA Astrophysics Data System (ADS)
Dahmani, Manel; Périlhon, Christelle; Marvillet, Christophe; Hajjaji, Noureddine; Houas, Ammar; Khila, Zouhour
2017-02-01
The main objective of this study was to develop a fixed bed gasifier model of palm waste and to identify the optimal operating conditions to produce electricity from synthesis gas. First, the gasifier was simulated using Aspen PlusTM software. Gasification is a thermo-chemical process that has long been used, but it remains a perfectible technology. It means incomplete combustion of biomass solid fuel into synthesis gas through partial oxidation. The operating parameters (temperature and equivalence ratio (ER)) were thereafter varied to investigate their effect on the synthesis gas composition and to provide guidance for future research and development efforts in process design. The equivalence ratio is defined as the ratio of the amount of air actually supplied to the gasifier and the stoichiometric amount of air. Increasing ER decreases the production of CO and H2 and increases the production of CO2 and H2O while an increase in temperature increases the fraction of CO and H2. The results show that the optimum temperature to have a syngas able to be effectively used for power generation is 900°C and the optimum equivalence ratio is 0.1.
Effect of Moxidectin on Bed Bug Feeding, Development, Fecundity, and Survivorship
Zha, Chen; Sheele, Johnathan Michael
2017-01-01
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is a blood-feeding ectoparasite which experienced world-wide resurgence during recent decades. The control of bed bugs is often challenging, due to their cryptic nature and resistance to commonly used insecticides. In this study, we evaluated the effect of the antiparasitic drug moxidectin on bed bug survival, reproduction, and development. The LC50 (lethal concentration to kill half the members of a tested population) of moxidectin against bed bug male adults, female adults, and large nymphs were 52.7 (95% CI (confidence interval): 39.5–70.8), 29.3 (95% CI: 20.7–40.5), and 29.1 ng/mL (95% CI: 23.3–35.3), respectively. Moxidectin (≥ 25 ng/mL) reduced egg laying of bed bug females, but showed no significant effect on egg hatching. One time feeding on rabbit blood containing 20 and 40 ng/mL moxidectin showed no negative effects in bed bug feeding and blood meal ingestion, but significantly reduced digestion rates and nymph molting rates. Although moxidectin at concentrations of 20 and 40 ng/mL only caused moderate mortality in bed bugs, it significantly interrupted digestion, development, and oviposition of survived bed bugs for at least one week after feeding. Moxidectin is a promising supplement of the existing bed bug control materials if its use on humans can be approved in the future. PMID:28973981
NASA Astrophysics Data System (ADS)
Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.
2017-05-01
Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.
ERIC Educational Resources Information Center
Hilbert, Anja; Saelens, Brian E.; Stein, Richard I.; Mockus, Danyte S.; Welch, R. Robinson; Matt, Georg E.; Wilfley, Denise E.
2007-01-01
The present study examined pretreatment and process predictors of individual nonresponse to psychological group treatment of binge eating disorder (BED). In a randomized trial, 162 overweight patients with BED were treated with either group cognitive-behavioral therapy or group interpersonal psychotherapy. Treatment nonresponse, which was defined…
Software design for automated assembly of truss structures
NASA Technical Reports Server (NTRS)
Herstrom, Catherine L.; Grantham, Carolyn; Allen, Cheryl L.; Doggett, William R.; Will, Ralph W.
1992-01-01
Concern over the limited intravehicular activity time has increased the interest in performing in-space assembly and construction operations with automated robotic systems. A technique being considered at LaRC is a supervised-autonomy approach, which can be monitored by an Earth-based supervisor that intervenes only when the automated system encounters a problem. A test-bed to support evaluation of the hardware and software requirements for supervised-autonomy assembly methods was developed. This report describes the design of the software system necessary to support the assembly process. The software is hierarchical and supports both automated assembly operations and supervisor error-recovery procedures, including the capability to pause and reverse any operation. The software design serves as a model for the development of software for more sophisticated automated systems and as a test-bed for evaluation of new concepts and hardware components.
DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING DL
2011-02-11
This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less
Mitchell, D A; von Meien, O F
2000-04-20
Zymotis bioreactors for solid-state fermentation (SSF) are packed-bed bioreactors with internal cooling plates. This design has potential to overcome the problem of heat removal, which is one of the main challenges in SSF. In ordinary packed-bed bioreactors, which lack internal plates, large axial temperature gradients arise, leading to poor microbial growth in the end of the bed near the air outlet. The Zymotis design is suitable for SSF processes in which the substrate bed must be maintained static, but little is known about how to design and operate Zymotis bioreactors. We use a two-dimensional heat transfer model, describing the growth of Aspergillus niger on a starchy substrate, to provide guidelines for the optimum design and operation of Zymotis bioreactors. As for ordinary packed-beds, the superficial velocity of the process air is a key variable. However, the Zymotis design introduces other important variables, namely, the spacing between the internal cooling plates and the temperature of the cooling water. High productivities can be achieved at large scale, but only if small spacings between the cooling plates are used, and if the cooling water temperature is varied during the fermentation in response to bed temperatures. Copyright 2000 John Wiley & Sons, Inc.
Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder
NASA Astrophysics Data System (ADS)
Pei, Wei; Zhengying, Wei; Zhen, Chen; Junfeng, Li; Shuzhe, Zhang; Jun, Du
2017-08-01
A three-dimensional numerical model was developed to investigate effects of laser scanning speed, laser power, and hatch spacing on the thermodynamic behaviors of the molten pool during selective laser melting of AlSi10Mg powder. A randomly distributed packed powder bed was achieved using discrete element method (DEM). The powder bed can be treated as a porous media with interconnected voids in the simulation. A good agreement between numerical results and experimental results establish the validity of adopted method. The numerical results show that the Marangoni flow within the molten pool was significantly affected by the processing parameters. An intense Marangoni flow leads to a perturbation within the molten pool. In addition, a relatively high scanning speed tends to cause melt instability. The perturbation or the instability within the molten pool results in the formation of pores during SLM, which have a direct influence on the densification level.
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
Is the Relationship Between ADHD Symptoms and Binge Eating Mediated by Impulsivity?
Steadman, Kylie M; Knouse, Laura E
2016-11-01
Individuals with ADHD may be at risk of developing binge eating disorder (BED). Impulsivity correlates with both BED and ADHD; however, more research is needed to explore whether impulsivity plays an underlying role in the observed relationship between ADHD and BED. Questionnaires were used to assess ADHD and BED symptoms. Multiple questionnaires and a behavioral task were used to assess impulsivity in undiagnosed undergraduate participants (n = 50). Expected correlations were found among ADHD symptoms, BED tendencies, and measures of impulsivity with the exception of impulsivity on the behavioral task and BED symptoms; however, none of the measures of impulsivity were found to be significant mediators between ADHD and BED symptoms. Although impulsivity may play an important role in the interrelationship of ADHD and binge eating, other factors may also be critical in the development of this comorbidity. Investigation of this research question in clinical samples is needed. © The Author(s) 2014.
Process of concentrating ethanol from dilute aqueous solutions thereof
Oulman, C.S.; Chriswell, C.D.
1981-07-07
Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.
Process of concentrating ethanol from dilute aqueous solutions thereof
Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA
1981-07-07
Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.
"Smart pebble" design for environmental monitoring applications
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Pavlovskis, Edgars
2014-05-01
Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.
Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions.
Hassan, Sally; Simaria, Ana S; Varadaraju, Hemanthram; Gupta, Siddharth; Warren, Kim; Farid, Suzanne S
2015-01-01
To develop a decisional tool to identify the most cost effective process flowsheets for allogeneic cell therapies across a range of production scales. A bioprocess economics and optimization tool was built to assess competing cell expansion and downstream processing (DSP) technologies. Tangential flow filtration was generally more cost-effective for the lower cells/lot achieved in planar technologies and fluidized bed centrifugation became the only feasible option for handling large bioreactor outputs. DSP bottlenecks were observed at large commercial lot sizes requiring multiple large bioreactors. The DSP contribution to the cost of goods/dose ranged between 20-55%, and 50-80% for planar and bioreactor flowsheets, respectively. This analysis can facilitate early decision-making during process development.
Thermal energy storage systems using fluidized bed heat exchangers
NASA Technical Reports Server (NTRS)
Weast, T.; Shannon, L.
1980-01-01
A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.
Thermal energy storage systems using fluidized bed heat exchangers
NASA Astrophysics Data System (ADS)
Weast, T.; Shannon, L.
1980-06-01
A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.
Using fluidized bed and flume experiments to quantify cohesion development from aging and drainage
USDA-ARS?s Scientific Manuscript database
Temporal variations in soil erosion resistance are often the result of a decrease in soil cohesion due to physical disruption followed by a regain of soil cohesion through a process analogous to a thixotropic sol-gel reaction also called aging, stabilization or consolidation. The goal of this study ...
Development of metal hydride composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
1992-12-01
Most of current hydride technology at Savannah River Site is based on beds of metal hydride powders; the expansion upon hydridation and the cycling results in continued breakdown into finer particles. Goal is to develop a composite which will contain the fines in a dimensionally stable matrix, for use in processes which require a stable gas flow through a hydride bed. Metal hydride composites would benefit the advanced Thermal Cycling Absorption process (hydrogen isotope separation), and the Replacement Tritium Facility (storage, pumping, compression, purification of hydrogen isotopes). These composites were fabricated by cold compaction of a mixture of metal hydridemore » granules and coarse copper powder; the porosity in the granules was introduced by means of ammonium carbonate. The composite pellets were cycled 138 times in hydrogen with the loss of LANA0.75 (LaNi{sub 4.25}Al{sub 0.75}) limited to the surface. Vacuum sintering can provide additional strength at the edges. Without a coating, the metal hydride particles exposed at the pellet surface can be removed by cycling several times in hydrogen.« less
Sediment transport measurements: Chapter 5
Diplas, P.; Kuhnle, R.; Gray, J.; Glysson, D.; Edwards, T.; García, Marcelo H.
2008-01-01
Sediment erosion, transport, and deposition in fluvial systems are complex processes that are treated in detail in other sections of this book. Development of methods suitable for the collection of data that contribute to understanding these processes is a still-evolving science. Sediment and ancillary data are fundamental requirements for the proper management of river systems, including the design of structures, the determination of aspects of stream behavior, ascertaining the probable effect of removing an existing structure, estimation of bulk erosion, transport, and sediment delivery to the oceans, ascertaining the long-term usefulness of reservoirs and other public works, tracking movement of solid-phase contaminants, restoration of degraded or otherwise modified streams, and assistance in the calibration and validation of numerical models. This chapter presents techniques for measuring bed-material properties and suspended and bed-load discharges. Well-established and relatively recent, yet adequately tested, sampling equipment and methodologies, with designs that are guided by sound physical and statistical principles, are described. Where appropriate, the theory behind the development of the equipment and guidelines for its use are presented.
Survival and Transstadial Persistence of Trypanosoma cruzi in the bed bug (Hemiptera: Cimicidae).
Blakely, Brittny N; Hanson, Stephen F; Romero, Alvaro
2018-05-04
Bed bug populations are increasing around the world at an alarming rate and have become a major public health concern. The appearance of bed bug populations in areas where Chagas disease is endemic raises questions about the role of these insects in the transmission of Trypanosoma cruzi, the etiological agent of the disease. In a series of laboratory evaluations, bed bug adults and nymphs were experimentally fed with T. cruzi-infected blood to assess the ability of T. cruzi to survive inside the bed bug and throughout the insect's molting process. Live T. cruzi were observed in gut contents of experimentally infected bed bug adults via light microscopy and the identity of the parasite was confirmed via polymerase chain reaction analysis. T. cruzi persisted at least 97-d postinfection in adult bed bugs. Nymphal stage bed bugs that were infected with T. cruzi maintained the parasite after molting, indicating that transstadial passage of T. cruzi in bed bugs took place. This report provides further evidence of acquisition, maintenance, and for the first time, transstadial persistence of T. cruzi in bed bugs.
NASA Technical Reports Server (NTRS)
Palopo, Kee
2016-01-01
These slides presents an overview of SMART NAS Test Bed. The test bed is envisioned to be connected to operational systems and to allow a new concept and technology to be evaluated in its realistic environment. Its role as an accelerator of concepts and technologies development, its use-case-driven development approach, and its state are presented.
NASA Astrophysics Data System (ADS)
Turowski, J. M.; Wyss, C. R.; Beer, A. R.
2014-12-01
The saltation-abrasion model (SAM) is one of the highest-developed process models for fluvial bedrock erosion, describing bedrock erosion due to the impact of saltating bedload particles. The fundamental assumption in the model is a proportionality of the erosion rate and the energy delivered to the channel bed by these impacts. So far, the SAM has been calibrated on laboratory data, but field tests are rare. Here, we exploit the availability of high-quality field data at the Erlenbach bedload observatory to test and calibrate the SAM. The Erlenbach is a small, steep stream in the Swiss Prealps that hosts a well-instrumented observatory for bedload transport and erosion. Bedload samples can be taken during floods with automatic basket samplers and bedload transport rates are measured continuously with Swiss plate geophones, a surrogate method for bedload monitoring. The geophone plates can also be used to measure the energy transferred to the bed by passingbedload. Thus, we can calibrate the SAM by exploiting independent data on particle impacts, the energy they transfer to the bed, and bedload samples including grain size distributions. We find that the dimensionless pre-factor to the model is dependent on grain size. Predictions of bedrock erosion can be compared to spatial erosion data obtained from successive scans of bedrock slabs installed in the channel bed immediately upstream of the plate geophones.
Redesign of the Extravehicular Mobility Unit Airlock Cooling Loop Recovery Assembly
NASA Technical Reports Server (NTRS)
Steele, John; Elms, Theresa; Peyton, Barbara; Rector, Tony; Jennings, Mallory A.
2016-01-01
During EVA (Extravehicular Activity) 23 aboard the ISS (International Space Station) on 07/16/2013 an episode of water in the EMU (Extravehicular Mobility Unit) helmet occurred, necessitating a termination of the EVA (Extravehicular Activity) shortly after it began. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Beds which led to various levels of contaminants being introduced into the Ion Beds before they left the ground. The Ion Beds were thereafter used to scrub the failed EMU cooling water loop on-orbit during routine scrubbing operations. The root cause investigation identified several areas for improvement of the ALCLR Assembly which have since been initiated. Enhanced washing techniques for the ALCLR Ion Bed have been developed and implemented. On-orbit cooling water conductivity and pH analysis capability to allow the astronauts to monitor proper operation of the ALCLR Ion Bed during scrubbing operation is being investigation. A simplified means to acquire on-orbit EMU cooling water samples have been designed. Finally, an inherently cleaner organic adsorbent to replace the current lignite-based activated carbon, and a non-separable replacement for the separable mixed ion exchange resin are undergoing evaluation. These efforts are undertaken to enhance the performance and reduce the risk associated with operations to ensure the long-term health of the EMU cooling water circuit.
Redesign of the Extravehicular Mobility Unit Airlock Cooling Loop Recovery Assembly
NASA Technical Reports Server (NTRS)
Steele, John; Elms, Theresa; Peyton, Barbara; Rector, Tony; Jennings, Mallory
2016-01-01
During EVA (Extravehicular Activity) 23 aboard the ISS (International Space Station) on 07/16/2013 an episode of water in the EMU (Extravehicular Mobility Unit) helmet occurred, necessitating a termination of the EVA (Extravehicular Activity) shortly after it began. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Beds which led to various levels of contaminants being introduced into the Ion Beds before they left the ground. The Ion Beds were thereafter used to scrub the failed EMU cooling water loop on-orbit during routine scrubbing operations. The root cause investigation identified several areas for improvement of the ALCLR Assembly which have since been initiated. Enhanced washing techniques for the ALCLR Ion Bed have been developed and implemented. On-orbit cooling water conductivity and pH analysis capability to allow the astronauts to monitor proper operation of the ALCLR Ion Bed during scrubbing operation is being investigated. A simplified means to acquire on-orbit EMU cooling water samples has been designed. Finally, an inherently cleaner organic adsorbent to replace the current lignite-based activated carbon, and a non-separable replacement for the separable mixed ion exchange resin are undergoing evaluation. These efforts are undertaken to enhance the performance and reduce the risk associated with operations to ensure the long-term health of the EMU cooling water circuit.
Larsen, Laurel G.; Harvey, Judson; Crimaldi, John P.
2009-01-01
Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.
Workshop on the Destruction of Bacterial Spores Held in Brussels, Belgium on May 1-3, 1985.
1985-05-03
pasteurization , sterilization , UHT, Association, Chipping Campden, fluidized beds, new developments - UK) failures in commercial heat processing 9. Window of...exposure of the food to high temperatures have been diminished by rotation outoclaves and/or HTST (high temperature short time processes). For economic...effect commercial sterility and product - . safety is dependent not only on the inherent heat resistance of spores . .. but also on the numbers
Starting procedure for internal combustion vessels
Harris, Harry A.
1978-09-26
A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.
Jourdain, Frédéric; Delaunay, Pascal; Bérenger, Jean-Michel; Perrin, Yvon; Robert, Vincent
2016-01-01
The Common bed bug, Cimex lectularius, had virtually disappeared from France in the 1950s; however, a worldwide resurgence of bed bugs (C. lectularius and C. hemipterus) has been observed since the 1990s. To document modern pest control activities for the management of bed bugs, a survey was conducted in metropolitan France among the two main categories of professionals regularly called upon to deal with the control of infestations: Municipal Health and Safety Services (MHSSs) and private Pest Management Companies (PMCs). These professionals responded to a questionnaire targeting their knowledge, attitude and practices related to the process for diagnosing a bed bug infestation and the processes taken to actually control an infestation. There were 68 responses received from MHSSs and 51 from the PMCs. The responses indicate that every single département (French administrative division) in metropolitan France has witnessed at least one intervention for bed bugs. Among the criteria considered sufficient to confirm a bed bug infestation, direct observation of bugs was the most commonly cited response. Faced with an infestation, most PMCs used a combination of non-chemical and chemical methods, and systematically performed two treatments. This survey is the first of professionals involved in bed bug control in metropolitan France and confirms the growing importance of bed bugs as a public health pest. Establishing a database to monitor this emerging pest would improve the understanding of the distribution of these insects, help guide educational requirements, identify research needs and assist in ensuring that the most appropriate control practices are undertaken. PMID:27605306
Bémer, D; Wingert, L; Morele, Y; Subra, I
2015-09-01
A process for filtering an aerosol of ultrafine metallic particles (UFP) has been designed and tested, based on the principle of a multistage granular bed. The filtration system comprised a succession of granular beds of varying thickness composed of glass beads of different diameters. This system allows the pressure drop to be regenerated during filtration ("on-line" mode) using a vibrating probe. Tests monitoring the pressure drop were conducted on a "10-L/min" low airflow rate device and on a "100-m(3)/hr" prototype. Granular bed unclogging is automated on the latter. The cyclic operation and filtration performances are similar to that of filter medium-based industrial dust collectors. Filtration of ultrafine metallic particles generated by different industrial processes such as arc welding, metal cutting, or spraying constitutes a difficult problem due to the high filter clogging properties of these particles and to the high temperatures generally encountered. Granular beds represent an advantageous means of filtering these aerosols with difficult properties.
Evaluation of selected chemical processes for production of low-cost silicon, phases 1 and 2
NASA Technical Reports Server (NTRS)
Blocher, J. M.; Browning, M. F.
1978-01-01
A miniplant, consisting of a 5 cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency. Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl2 by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility. In view of the favorable technical and economic indications obtained, it was recommended that construction and operation of the 50 MT/year experimental facility be implemented.
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed
2013-01-01
Background The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%. PMID:23289764
Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed.
Olek, Malgorzata; Baron, Jerzy; Zukowski, Witold
2013-01-06
The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.
Group living accelerates bed bug (Hemiptera: Cimicidae) development.
Saenz, Virna L; Santangelo, Richard G; Vargo, Edward L; Schal, Coby
2014-01-01
For many insect species, group living provides physiological and behavioral benefits, including faster development. Bed bugs (Cimex lectularius L.) live in aggregations composed of eggs, nymphs, and adults of various ages. Our aim was to determine whether bed bug nymphs reared in groups develop faster than solitary nymphs. We reared first instars either in isolation or in groups from hatching to adult emergence and recorded their development time. In addition, we investigated the effects of group housing on same-age nymphs versus nymphs reared with adults. Nymphal development was 2.2 d faster in grouped nymphs than in solitary-housed nymphs, representing 7.3% faster overall development. However, this grouping effect did not appear to be influenced by group composition. Thus, similar to other gregarious insect species, nymph development in bed bugs is faster in aggregations than in isolation.
Detection of patient's bed statuses in 3D using a Microsoft Kinect.
Li, Yun; Berkowitz, Lyle; Noskin, Gary; Mehrotra, Sanjay
2014-01-01
Patients spend the vast majority of their hospital stay in an unmonitored bed where various mobility factors can impact patient safety and quality. Specifically, bed positioning and a patient's related mobility in that bed can have a profound impact on risks such as pneumonias, blood clots, bed ulcers and falls. This issue has been exacerbated as the nurse-per-bed (NPB) ratio has decreased in recent years. To help assess these risks, it is critical to monitor a hospital bed's positional status (BPS). Two bed positional statuses, bed height (BH) and bed chair angle (BCA), are of critical interests for bed monitoring. In this paper, we develop a bed positional status detection system using a single Microsoft Kinect. Experimental results show that we are able to achieve 94.5% and 93.0% overall accuracy of the estimated BCA and BH in a simulated patient's room environment.
DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING DL
2010-08-03
This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.« less
An EMTP system level model of the PMAD DC test bed
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; Tam, Kwa-Sur
1991-01-01
A power management and distribution direct current (PMAD DC) test bed was set up at the NASA Lewis Research Center to investigate Space Station Freedom Electric Power Systems issues. Efficiency of test bed operation significantly improves with a computer simulation model of the test bed as an adjunct tool of investigation. Such a model is developed using the Electromagnetic Transients Program (EMTP) and is available to the test bed developers and experimenters. The computer model is assembled on a modular basis. Device models of different types can be incorporated into the system model with only a few lines of code. A library of the various model types is created for this purpose. Simulation results and corresponding test bed results are presented to demonstrate model validity.
[Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.
Zhang, Li Bin; Sun, Ping; Jin, Sen
2016-11-18
Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.
Recovery of valuable materials from spent NIMH batteries using spouted bed elutriation.
Tanabe, Eduardo H; Schlemmer, Diego F; Aguiar, Mônica L; Dotto, Guilherme L; Bertuol, Daniel A
2016-04-15
In recent years, a great increase in the generation of spent batteries occurred. Then, efficient recycling ways and correct disposal of hazardous wastes are necessary. An alternative to recover the valuable materials from spent NiMH batteries is the spouted bed elutriation. The aim of this study was to apply the mechanical processing (grinding and sieving) followed by spouted bed elutriation to separate the valuable materials present in spent NiMH batteries. The results of the manual characterization showed that about 62 wt.% of the batteries are composed by positive and negative electrodes. After the mechanical separation processes (grinding, sieving and spouted bed elutriation), three different fractions were obtained: 24.21 wt.% of metals, 28.20 wt.% of polymers and 42.00 wt.% of powder (the positive and negative electrodes). It was demonstrated that the different materials present in the spent NiMH batteries can be efficiently separated using a simple and inexpensive mechanical processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen
2016-04-01
A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process. Copyright © 2016. Published by Elsevier Ltd.
de Araújo Padilha, Carlos Eduardo; Fortunato Dantas, Paulo Victor; de Sousa, Francisco Canindé; de Santana Souza, Domingos Fabiano; de Oliveira, Jackson Araújo; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino
2016-12-15
In this study, a general rate model was applied to the entire process of expanded bed adsorption chromatography (EBAC) for the chitosanases purification protocol from unclarified fermentation broth produced by Paenibacillus ehimensis using the anionic adsorbent Streamline ® DEAE. For the experiments performed using the expanded bed, a homemade column (2.6cm×30.0cm) was specially designed. The proposed model predicted the entire EBA process adequately, giving R 2 values higher than 0.85 and χ 2 as low as 0.351 for the elution step. Using the validated model, a 3 3 factorial design was used to investigate other non-tested conditions as input. It was observed that the superficial velocity during loading and washing steps, as well as the settled bed height, has a strong positive effect on the F objective function used to evaluate the production of the purified chitosanases. Copyright © 2016 Elsevier B.V. All rights reserved.
Cunha, Bárbara; Silva, Ricardo J S; Aguiar, Tiago; Serra, Margarida; Daicic, John; Maloisel, Jean-Luc; Clachan, John; Åkerblom, Anna; Carrondo, Manuel J T; Peixoto, Cristina; Alves, Paula M
2016-01-15
The use of human mesenchymal stem cells (hMSC) in clinical applications has been increasing over the last decade. However, to be applied in a clinical setting hMSC need to comply with specific requirements in terms of identity, potency and purity. This study reports the improvement of established tangential flow filtration (TFF)-based washing strategies, further increasing hMSC purity, using negative mode expanded bed adsorption (EBA) chromatography with a new multimodal prototype matrix based on core-shell bead technology. The matrix was characterized and a stable, expanded bed could be obtained using standard equipment adapted from what is used for conventional packed bed chromatography processes. The effect of different expansion rates on cell recovery yield and protein removal capacity was assessed. The best trade-off between cell recovery (89%) and protein clearance (67%) was achieved using an intermediate expansion bed rate (1.4). Furthermore, we also showed that EBA chromatography can be efficiently integrated on the already established process for the downstream processing (DSP) of hMSC, where it improved the washing efficiency more than 10-fold, recovering approximately 70% of cells after global processing. This strategy showed not to impact cell viability (>95%), neither hMSC's characteristics in terms of morphology, immunophenotype, proliferation, adhesion capacity and multipotent differentiation potential. Copyright © 2015 Elsevier B.V. All rights reserved.
Biswas, Kristi; Taylor, Michael W; Turner, Susan J
2014-02-01
Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.
A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos
NASA Astrophysics Data System (ADS)
Greig, S. M.; Sear, D. A.; Carling, P. A.
2007-01-01
Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process-based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses.Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface-subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright
Effects of ultralow oxygen and vacuum treatments on bed bug (Heteroptera: Cimicidae) survival
USDA-ARS?s Scientific Manuscript database
Control of bed bugs has always been problematic, balancing among efficacy, safety, and cost. In this study, ultralow oxygen (ULO) and vacuum treatments were tested on bed bugs to develop a safer, effective, and environmental friendly solution to bed bug infestations. ULO treatments were establishe...
USDA-ARS?s Scientific Manuscript database
A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...
Shinmoto Torres, Roberto L; Visvanathan, Renuka; Abbott, Derek; Hill, Keith D; Ranasinghe, Damith C
2017-01-01
Falls in hospitals are common, therefore strategies to minimize the impact of these events in older patients and needs to be examined. In this pilot study, we investigate a movement monitoring sensor system for identifying bed and chair exits using a wireless wearable sensor worn by hospitalized older patients. We developed a movement monitoring sensor system that recognizes bed and chair exits. The system consists of a machine learning based activity classifier and a bed and chair exit recognition process based on an activity score function. Twenty-six patients, aged 71 to 93 years old, hospitalized in the Geriatric Evaluation and Management Unit participated in the supervised trials. They wore over their attire a battery-less, lightweight and wireless sensor and performed scripted activities such as getting off the bed and chair. We investigated the system performance in recognizing bed and chair exits in hospital rooms where RFID antennas and readers were in place. The system's acceptability was measured using two surveys with 0-10 likert scales. The first survey measured the change in user perception of the system before and after a trial; the second survey, conducted only at the end of each trial, measured user acceptance of the system based on a multifactor sensor acceptance model. The performance of the system indicated an overall recall of 81.4%, precision of 66.8% and F-score of 72.4% for joint bed and chair exit recognition. Patients demonstrated improved perception of the system after use with overall score change from 7.8 to 9.0 and high acceptance of the system with score ≥ 6.7 for all acceptance factors. The present pilot study suggests the use of wireless wearable sensors is feasible for detecting bed and chair exits in a hospital environment.
Visvanathan, Renuka; Abbott, Derek; Hill, Keith D.; Ranasinghe, Damith C.
2017-01-01
Falls in hospitals are common, therefore strategies to minimize the impact of these events in older patients and needs to be examined. In this pilot study, we investigate a movement monitoring sensor system for identifying bed and chair exits using a wireless wearable sensor worn by hospitalized older patients. We developed a movement monitoring sensor system that recognizes bed and chair exits. The system consists of a machine learning based activity classifier and a bed and chair exit recognition process based on an activity score function. Twenty-six patients, aged 71 to 93 years old, hospitalized in the Geriatric Evaluation and Management Unit participated in the supervised trials. They wore over their attire a battery-less, lightweight and wireless sensor and performed scripted activities such as getting off the bed and chair. We investigated the system performance in recognizing bed and chair exits in hospital rooms where RFID antennas and readers were in place. The system’s acceptability was measured using two surveys with 0–10 likert scales. The first survey measured the change in user perception of the system before and after a trial; the second survey, conducted only at the end of each trial, measured user acceptance of the system based on a multifactor sensor acceptance model. The performance of the system indicated an overall recall of 81.4%, precision of 66.8% and F-score of 72.4% for joint bed and chair exit recognition. Patients demonstrated improved perception of the system after use with overall score change from 7.8 to 9.0 and high acceptance of the system with score ≥ 6.7 for all acceptance factors. The present pilot study suggests the use of wireless wearable sensors is feasible for detecting bed and chair exits in a hospital environment. PMID:29016696
Palaeogeography of Late Triassic red-beds in Singapore and the Indosinian Orogeny
NASA Astrophysics Data System (ADS)
Oliver, Grahame; Prave, Anthony
2013-10-01
A red-bed facies of the Upper Triassic Jurong Formation has been logged on Sentosa Island, Singapore. An overall coarsening and thickening-upward pattern is well developed. The lower part of the section is dominated by purple-red, massive to finely laminated illite-smectite-kaolin-rich mudstones containing thin, discontinuous lenses of fine sandstone marked by low-angle lamination and small ripples. One dinosaur-like foot print has been discovered in a loose block of red mudstone. It is concluded that this is a lacustrine sequence and it is proposed to name the lake, Lake Sentosa. The upper part of the sequence consists of flat-laminated to trough cross-bedded medium-grained sandstone and granule to cobble conglomerates alternating with purple-red mudstone. The mudstone-sandstone packages are arranged in decametre-scale coarsening-upward cycles. The channelling and decimetre-scale cross-bedding characterising the sandstone and conglomeratic beds is evidence for deposition by flashy fluvial flood processes, possibly feeding into the lake as a fresh water delta. One possible dinosaur trackway in granule size conglomerate has been located. Detrital zircon U-Pb ages vary from 2.7 Ba to 209 Ma with significant populations at ˜245 Ma and 220 Ma. These ages throw light on the timing of the Indosinian Orogeny. The molasse red-beds of the Jurong Formation were deposited in a half graben formed in the hangingwall of the Bukit Timah Fault when central Peninsular Malaysia went into extension following the climax of the Indosinian Orogeny in the Late Triassic.
Crowley, S.S.; Ruppert, L.F.; Belkin, H.E.; Stanton, R.W.; Moore, T.A.
1993-01-01
The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed.provides further support for a volcanic ash component. Other factors that probably affected the geochemistry of the coal bed include (1) detrital input associated with the deposition of the roof rocks of the coal bed, (2) peat-forming processes and plant material, and (3) epigenetic ground-water flow. ?? 1993.
40 CFR 63.7499 - What are the subcategories of boilers and process heaters?
Code of Federal Regulations, 2013 CFR
2013-07-01
... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...
40 CFR 63.7499 - What are the subcategories of boilers and process heaters?
Code of Federal Regulations, 2014 CFR
2014-07-01
... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...
The report describes the second phase of studies on the CAFB process for desulfurizing gasification of heavy fuel oil in a bed of hot lime. The first continuous pilot plant test with U.S. limestone BCR 1691 experienced local stone sintering and severe production of sticky dust du...
Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.
1976-01-01
A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.
Treatment of TFT-LCD wastewater containing ethanolamine by fluidized-bed Fenton technology.
Anotai, Jin; Chen, Chia-Min; Bellotindos, Luzvisminda M; Lu, Ming-Chun
2012-06-01
The objectives of this study are: (1) to determine the effect of pH, initial concentration of Fe(2+) and H(2)O(2) dosage on the removal efficiency of MEA by fluidized-bed Fenton process and Fenton process, (2) to determine the optimal conditions for the degradation of ethanolamine from TFT-LCD wastewater by fluidized-bed Fenton process. In the design of experiment, the Box-Behnken design was used to optimize the operating conditions. A removal efficiency of 98.9% for 5mM MEA was achieved after 2h under optimal conditions of pH3, [Fe(2+)]=5mM and [H(2)O(2)]=60mM. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sensing underground coal gasification by ground penetrating radar
NASA Astrophysics Data System (ADS)
Kotyrba, Andrzej; Stańczyk, Krzysztof
2017-12-01
The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.
Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei
2018-05-10
A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.
A sorting mechanism for a riffle-pool sequence
Thomas Lisle
1979-01-01
Transport of coarse, heterogeneous debris in a natural stream under a wide range of flows usually results in a remarkably stable, undulatory bed profile, which manifests an in transit sorting process of the bed material. In general, finer material representative of the bulk of the normal bed load resides in the deep sections, or pools, below flood stages. At high...
An examination of flame shape related to convection heat transfer in deep-fuel beds
Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney
2010-01-01
Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....
Life adverse experiences in relation with obesity and binge eating disorder: A systematic review
Palmisano, Giovanni Luca; Innamorati, Marco; Vanderlinden, Johan
2016-01-01
Background and aims Several studies report a positive association between adverse life experiences and adult obesity. Despite the high comorbidity between binge eating disorder (BED) and obesity, few authors have studied the link between trauma and BED. In this review the association between exposure to adverse life experiences and a risk for the development of obesity and BED in adulthood is explored. Methods Based on a scientific literature review in Medline, PubMed and PsycInfo databases, the results of 70 studies (N = 306,583 participants) were evaluated including 53 studies on relationship between adverse life experiences and obesity, 7 studies on post-traumatic stress disorder (PTSD) symptoms in relation to obesity, and 10 studies on the association between adverse life experiences and BED. In addition, mediating factors between the association of adverse life experiences, obesity and BED were examined. Results The majority of studies (87%) report that adverse life experiences are a risk factor for developing obesity and BED. More precisely a positive association between traumatic experiences and obesity and PTSD and obesity were found, respectively, in 85% and 86% of studies. Finally, the great majority of studies (90%) between trauma and the development of BED in adulthood strongly support this association. Meanwhile, different factors mediating between the trauma and obesity link were identified. Discussion and conclusions Although research data show a strong association between life adverse experiences and the development of obesity and BED, more research is needed to explain this association. PMID:28092189
NASA Astrophysics Data System (ADS)
Mangano, J.; O'Connor, J. E.; Jones, K. L.; Wallick, R.
2011-12-01
Many topographic, hydrologic, and land use variables affect the supply and transport of bed-material in rivers, but the underlying geology is a key factor controlling both the volume of introduced material and the attrition of bed-material as it moves downstream. Recent and ongoing USGS river studies in Western Oregon document strong links between geologic province and bed-material transport. Rivers originating in the Mesozoic metamorphic and intrusive igneous rocks of the Klamath terranes of southwestern Oregon have the greatest gravel transport rates (and channel and valley-bottom morphologies reflecting high bed-material fluxes), whereas the generally lesser amounts of gravel in streams that drain Oregon's Coast Range and western Cascade Range owes in large part to Tertiary sedimentary and volcanic units underlying most of these basins. Aspects of these differences are controlled by supply as well as clast attrition. Here we aim to quantify bed-material attrition rates associated with the five main geologic provinces of Western Oregon: the Klamath terranes, Western Cascades, High Cascades, Coast Range sedimentary rocks, and Coast Range volcanic rocks. Bed-material samples were collected throughout the region from streams that drain a single geologic province and tumbled with a lapidary tumbler to determine relative attrition rates. Two kilograms of each sample were sorted into an initial distribution of clast sizes (from 16 to 64mm) and tumbled, with periodic breaks to reweigh and sieve the sample. Results show marked differences in attrition rates, with the sedimentary rocks of the Coast Range having weight loss coefficients between 1.206 and 0.211/km, orders of magnitude greater than all of the other sampled provinces. For comparison, bed material from the Klamath terranes have weight loss coefficients ranging from 0.013 to 0.005/km, and a control sample of quartzite clasts (from the Klamath terranes) has a weight loss coefficient of 0.001/km. These results confirm that bed-material attrition is an important process affecting bed-material supply and transport, and will allow for more complete development of regional bed-material sediment budgets in ongoing efforts to understand patterns of gravel abundance and channel morphology in rivers of Western Oregon.
Separation of particulate from flue gas of fossil fuel combustion and gasification
Yang, W.C.; Newby, R.A.; Lippert, T.E.
1997-08-05
The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.
Separation of particulate from flue gas of fossil fuel combustion and gasification
Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.
1997-01-01
The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.
Gasification Product Improvement Facility (GPIF). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less
Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor
NASA Astrophysics Data System (ADS)
Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko
2014-06-01
Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.
Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen
2011-01-01
An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.
Methane-producing microbial community in a coal bed of the Illinois basin.
Strapoc, Dariusz; Picardal, Flynn W; Turich, Courtney; Schaperdoth, Irene; Macalady, Jennifer L; Lipp, Julius S; Lin, Yu-Shih; Ertefai, Tobias F; Schubotz, Florence; Hinrichs, Kai-Uwe; Mastalerz, Maria; Schimmelmann, Arndt
2008-04-01
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H(2) and CO(2), which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H(2)-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H(2)-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.
NASA Astrophysics Data System (ADS)
Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.
Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.
A Comparison of Inpatient Adult Psychiatric Services in Italy and Canada.
Guaiana, Giuseppe; O'Reilly, Richard; Grassi, Luigi
2018-05-03
We examine the possibility the Organisation for Economic Co-operation and Development (OECD) bed count for Italy may be an underestimation of the actual beds available. We compared bedded services for mental disorders in two regions in Italy and Canada respectively. We found out that if we consider acute psychiatric beds only, the district of Ferrara has 30 beds (8.5 per 100,000) and the Middlesex and Elgin Counties have 89 beds (16.3 beds for 100,000). However, if we include the rehabilitation beds (that are located within a hospital setting in Ontario and in a residential community setting in Ferrara), we find that the district of Ferrara has 95 beds (27.0 per 100,000) and the Middlesex and Elgin Counties have 176 beds (32.3 per 100,000). As a result, the 10/100,000 beds rate for Italy reported by the OECD is an underestimate compared to figures reported for most other countries, as the beds included are hospital beds only.
NASA Astrophysics Data System (ADS)
Dixit, Anoop; Khurana, Rohinish; Verma, Aseem; Singh, Arshdeep; Manes, G. S.
2018-05-01
India is the second largest producer of vegetables in the world. For vegetable cultivation, a good seed bed preparation is an important task which involves 6-10 different operations. To tackle the issue of multiple operations, a prototype of tractor operated wide bed former was developed and evaluated. The machine comprises of a rotary tiller and a bed forming setup. It forms bed of 1000 mm top width which is suitable as per the track width of an average sized tractor in India. The height of the beds formed is 130 mm whereas the top and bottom width of channel formed on both sides of the bed is 330 and 40 mm respectively at soil moisture content of 12.5-16% (db). The forward speed of 2.75 km/h was observed to be suitable for proper bed formation. The average fuel consumption of the machine was 5.9 l/h. The average bulk density of soil before and after the bed formation was 1.46 and 1.63 g/cc respectively. Field capacity of the machine was found to be 0.31 ha/h. The machine resulted in 93.8% labour saving and 80.4% saving in cost of bed preparation as compared to conventional farmer practice. Overall performance of wide-bed former was found to be satisfactory.
Hutchinson, Matthew H; Chase, Howard A
2006-01-01
This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations in an intensified process used to recover purified and biologically active proteins from inclusion bodies expressed in E. coli. Delta(5)-3-Ketosteroid isomerase with a C-terminal hexahistidine tag was expressed as inclusion bodies in the cytoplasm of E. coli. Chemical extraction was used to disrupt the host cells and simultaneously solubilize the inclusion bodies, after which EBA utilizing immobilized metal affinity interactions was used to purify the polyhistidine-tagged protein. Adsorptive refolding was then initiated in the column by changing the denaturant concentration in the feed stream from 8 to 0 M urea. Three strategies were tested for performing the refolding step in the EBA column: (i) the denaturant was removed using a step change in feed-buffer composition, (ii) the denaturant was gradually removed using a gradient change in feed-buffer composition, and (iii) the liquid flow direction through the column was reversed and adsorptive refolding performed in the packed bed. Buoyancy-induced mixing disrupted the operation of the expanded bed when adsorptive refolding was performed using either a step change or a rapid gradient change in feed-buffer composition. A shallow gradient reduction in denaturant concentration of the feed stream over 30 min maintained the stability of the expanded bed during adsorptive refolding. In a separate experiment, buoyancy-induced mixing was completely avoided by performing refolding in a settled bed, which achieved comparable yields to refolding in an expanded bed but required a slightly more complex process. A total of 10% of the available KSI-(His(6)) was recovered as biologically active and purified protein using the described purification and refolding process, and the yield was further increased to 19% by performing a second iteration of the on-column refolding operation. This process should be applicable for other polyhistidine tagged proteins and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution.
Developing a shale heterogeneity index to predict fracture response in the Mancos Shale
NASA Astrophysics Data System (ADS)
DeReuil, Aubry; Birgenheier, Lauren; McLennan, John
2017-04-01
The interplay between sedimentary heterogeneity and fracture propagation in mudstone is crucial to assess the potential of low permeability rocks as unconventional reservoirs. Previous experimental research has demonstrated a relationship between heterogeneity and fracture of brittle rocks, as discontinuities in a rock mass influence micromechanical processes such as microcracking and strain localization, which evolve into macroscopic fractures. Though numerous studies have observed heterogeneity influencing fracture development, fundamental understanding of the entire fracture process and the physical controls on this process is still lacking. This is partly due to difficulties in quantifying heterogeneity in fine-grained rocks. Our study tests the hypothesis that there is a correlation between sedimentary heterogeneity and the manner in which mudstone is fractured. An extensive range of heterogeneity related to complex sedimentology is represented by various samples from cored intervals of the Mancos Shale. Samples were categorized via facies analysis consisting of: visual core description, XRF and XRD analysis, SEM and thin section microscopy, and reservoir quality analysis that tested porosity, permeability, water saturation, and TOC. Systematic indirect tensile testing on a broad variety of facies has been performed, and uniaxial and triaxial compression testing is underway. A novel tool based on analytically derived and statistically proven relationships between sedimentary geologic and geomechanical heterogeneity is the ultimate result, referred to as the shale heterogeneity index. Preliminary conclusions from development of the shale heterogeneity index reveal that samples with compositionally distinct bedding withstand loading at higher stress values, while texturally and compositionally homogeneous, bedded samples fail at lower stress values. The highest tensile strength results from cemented Ca-enriched samples, medial to high strength samples have approximately equivalent proportions of Al-Ca-Si compositions, while Al-rich samples have consistently low strength. Moisture preserved samples fail on average at approximately 5 MPa lower than dry samples of similar facies. Additionally, moisture preserved samples fail in a step-like pattern when tested perpendicular to bedding. Tensile fractures are halted at heterogeneities and propagate parallel to bedding planes before developing a through-going failure plane, as opposed to the discrete, continuous fractures that crosscut dry samples. This result suggests that sedimentary heterogeneity plays a greater role in fracture propagation in moisture preserved samples, which are more indicative of in-situ reservoir conditions. Stress-strain curves will be further analyzed, including estimation of an energy released term based on post-failure response, and an estimation of volume of cracking measure on the physical fracture surface.
NASA Astrophysics Data System (ADS)
DeTemple, B.; Wilcock, P.
2011-12-01
In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano [1971a,b] and probabilistic approach of Parker et al. [2000], as well as the bottom-up, low-pass filtered continuum approach of Coleman & Nikora [2009] which employed volume and volume-after-time averaging. It accommodates partial transport (e.g., Wilcock & McArdell [1997], Wilcock [1997a,b]). Additionally, it provides: (1) precise definitions of the geometry and kinematics of sediment in a gravel-bed stream required to collect and analyze the high resolution spatial and temporal datasets that are becoming ever more present in both laboratory and field investigations, (2) a mathematical framework for the use of tracer grains in gravel-bed streams, including the fate of streambed-emplaced tracers as well as the dispersion of tracers in the bedload, (3) spatial and temporal averaging uncompromised by the Reynolds rules necessary to assess the nature of scale separation, and (4) a kinematic foundation for hybrid Langrangian-Eulerian models of sediment morphodynamics.
Potential of Essential Oil-Based Pesticides and Detergents for Bed Bug Control.
Singh, Narinderpal; Wang, Changlu; Cooper, Richard
2014-12-01
The bed bug, (Cimex lectularius L.), is a difficult pest to control. Prevalence of insecticide resistance among bed bug populations and concerns over human-insecticide exposure has stimulated the development of alternative bed bug control materials. Many essential oil-based pesticides and detergent insecticides targeting bed bugs have been developed in recent years. We evaluated the efficacy of nine essential oil-based products and two detergents using direct spray and residual contact bioassays in the laboratory. Two conventional insecticides, Temprid SC (imidacloprid and β-cyfluthrin) and Demand CS (λ-cyhalothrin), were used for comparison. Among the 11 nonsynthetic insecticides tested, only EcoRaider (1% geraniol, 1% cedar extract, and 2% sodium lauryl sulfate) and Bed Bug Patrol (0.003% clove oil, 1% peppermint oil, and 1.3% sodium lauryl sulfate) caused >90% mortality of nymphs in direct spray and forced exposure residual assays. However, the efficacy of EcoRaider and Bed Bug Patrol was significantly lower than that of Temprid SC and Demand CS in choice exposure residual bioassay. Direct spray of EcoRaider caused 87% egg mortality, whereas the other nonsynthetic insecticides had little effect on bed bug eggs. EcoRaider and Bed Bug Patrol did not exhibit detectable repellency against bed bugs in the presence of a carbon dioxide source. These findings suggest that EcoRaider and Bed Bug Patrol are potentially useful pesticides for controlling bed bug infestations, but further testing in naturally infested environments is needed. © 2014 Entomological Society of America.
Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization
NASA Astrophysics Data System (ADS)
Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng
2018-01-01
As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.
Bed Bug Education for School Maintenance
ERIC Educational Resources Information Center
Henriksen, Missy
2012-01-01
Bed bugs are a growing problem, not only in homes and hotels, but also in schools and colleges. Facility administrators and staff need to understand the bed bug resurgence and develop best practices to deal with an infestation. In this article, the author offers tips for preventing and treating bed bugs in school and university settings.
Development Unit Configuration and Current Status of the MIP/MAAC Experiment
NASA Technical Reports Server (NTRS)
Karlmann, P. B.; Johnson, K. R.; Rapp, D.; Wu, J. J.
1999-01-01
The Mars In-Situ Propellant Production (ISPP) Precursor (MIP) experiment package is planned for inclusion on the Mars 2001 Lander. This experiment package consists of five experiments whose purpose is to demonstrate the performance of various ISPP processes in-situ on Mars. The demonstrated ability to produce propellant for Mars Return Vehicles (MRV) is considered to be a necessary precursor to any future manned mission to Mars. The Mars Atmosphere Acquisition and Compression (MAAC) experiment is part of the MIP package and is intended to demonstrate that, by using a sorption compressor, CO2 can be preferentially adsorbed at about 6 torr from the Mars atmosphere during the night when the bed is cold then subsequently compressed to about 800 torr by heating the bed and desorbing CO2 during the day. The compressed CO2 produced by MAAC is to be fed to the Oxygen Generator Subsystem (OGS) where pure oxygen is to be produced. Pure oxygen is considered to be one of the primary constituents of a future manned MRV propellant system. A MAAC Development Unit (DU) has been fabricated and tested at JPL. The MAAC DU consists of 1) a sorption bed filled with a CO2 selective sorbent material, 2) a purge system to be used to periodically backflush non-CO2 gases from the sorbent bed during adsorption, 3) a JPL-developed gas-gap heat switch that allows heat transfer to a radiator for heat removal from the bed during the night time adsorption period and that impedes heat transfer during the day time desorption period, 4) a radiator to radiate heat to the night sky during the adsorption period, 5) a set of three isolation valves and connecting tubing. 6) two pressure transducers and several thermocouples for monitoring the MAAC operating conditions, and command and data handling electronics. This paper will describe the operational theory and the configuration of the MAAC DU and will discuss the current status of the MAAC experiment development including some selected results of performance testing that has been completed prior to the ISRU III meeting.
Development Unit Configuration Status of the MIP/MAAC Experiment
NASA Technical Reports Server (NTRS)
Karlmann, P. B.; Johnson, K. R.; Rapp, D.; Wu, J. J.
1999-01-01
The Mars In-Situ Propellant Production (ISPP) Precursor (MIP) experiment package is planned for inclusion on the Mars 2001 Lander. This experiment package consists of five experiments whose purpose is to demonstrate the performance of various ISPP processes in-situ on Mars. The demonstrated ability to produce propellant for Mars Return Vehicles (MRV) is considered to be a necessary precursor to any future manned mission to Mars. The Mars Atmosphere Acquisition and Compression (MAAC) experiment is part of the MIP package and is intended to demonstrate that, by using a sorption compressor, CO2 can be preferentially adsorbed at about 6 torr from the Mars atmosphere during the night when the bed is cold then subsequently compressed to about 800 torr by heating the bed and desorbing C02 during the day. The compressed CO2 produced by MAAC is to be fed to the Oxygen Generator Subsystem (OGS) where pure oxygen is to be produced. Pure oxygen is considered to be one of the primary constituents of a future manned MRV propellant system. A MAAC Development Unit (DU) has been fabricated and tested at JPL. The MAAC DU consists of: (1) a sorption bed filled with a CO2 selective sorbent material; (2) a purge system to be used to periodically backflush non-CO2 gases from the sorbent bed during adsorption; (3) a JPL-developed gas-gap heat switch that allows heat transfer to a radiator for heat removal from the bed during the night time adsorption period and that impedes heat transfer during the day time desorption period; (4) a radiator to radiate heat to the night sky during the adsorption period; (5) a set of three isolation valves and connecting tubing; (6) two pressure transducers and several thermocouples for monitoring the MAAC operating conditions, and command and data handling electronics. This paper will describe the operational theory and the configuration of the MAAC DU and will discuss the current status of the MAAC experiment development including some selected results of performance testing that has been completed prior to the ISRU III meeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.E.; Singleton, A.H.; McAllister, K.K.
During the past twenty-five years, there have been significant developments in Underground Coal Gasification technology in the US. Government-funded programs have focused on the development of two process configurations: the Controlled Retracting Injection Point (CRIP) and the Steeply Dipping Bed (SDB). Private industry has participated in these programs and is continuing its activities in the development and commercialization of these technologies. This paper will trace the evolution of today`s processes from their origins in the Russian technologies and advancements that are continuing to be made in bringing the technologies to commercial reality in both the US and overseas. The statusmore » of both the CRIP and SDB technologies will be discussed along with developments in processes for utilization of the UCG product gas to generate power and to make chemicals and liquid fuels.« less
Minimum-sized ideal reactor for continuous alcohol fermentation using immobilized microorganism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamane, T.; Shimizu, S.
Recently, alcohol fermentation has gained considerable attention with the aim of lowering its production cost in the production processes of both fuel ethanol and alcoholic beverages. The over-all cost is a summation of costs of various subsystems such as raw material (sugar, starch, and cellulosic substances) treatment, fermentation process, and alcohol separation from water solutions; lowering the cost of the fermentation processes is very important in lowering the total cost. Several new techniques have been developed for economic continuous ethanol production, use of a continuous wine fermentor with no mechanical stirring, cell recycle combined with continuous removal of ethanol undermore » vaccum, a technique involving a bed of yeast admixed with an inert carrier, and use of immobilized yeast reactors in packed-bed column and in a three-stage double conical fluidized-bed bioreactor. All these techniques lead to increases more or less, in reactor productivity, which in turn result in the reduction of the reactor size for a given production rate and a particular conversion. Since an improvement in the fermentation process often leads to a reduction of fermentor size and hence, a lowering of the initial construction cost, it is important to theoretically arrive at a solution to what is the minimum-size setup of ideal reactors from the viewpoint of liquid backmixing. In this short communication, the minimum-sized ideal reactor for continuous alcohol fermentation using immobilized cells will be specifically discussed on the basis of a mathematical model. The solution will serve for designing an optimal bioreactor. (Refs. 26).« less
Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.
Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi
2013-01-01
We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.
Thermal and chemical remediation of mixed waste
Nelson, P.A.; Swift, W.M.
1994-08-09
A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.